-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathquant.py
246 lines (216 loc) · 8.14 KB
/
quant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import numpy as np
import torch
import torch.nn as nn
def quantize_qfna(x, scale, zero, maxq):
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
return scale * (q - zero)
def quantize_qfnb(x, scale, maxq):
q = x / scale
q = torch.clamp(torch.round(((q+1)/2) * maxq), 0, maxq)
q = (q / maxq) * 2 - 1
q = q * scale
return q
def quantize_qfnc(x, scale, zero, maxq):
# for LDL vs GPTQ equivalency
q = torch.clamp((x / scale) + zero, 0, maxq)
q = torch.round(q)
return scale * (q - zero)
class Quantizer(nn.Module):
def __init__(self, shape=1):
super(Quantizer, self).__init__()
self.register_buffer('maxq', torch.tensor(0))
self.register_buffer('scale', torch.zeros(shape))
self.register_buffer('zero', torch.zeros(shape))
def configure(self,
bits,
perchannel=False,
sym=True,
qfn='a',
mse=False,
norm=2.4,
grid=100,
maxshrink=.8):
self.maxq = torch.tensor(2**bits - 1)
self.perchannel = perchannel
self.sym = sym
self.qfn = qfn
self.mse = mse
self.norm = norm
self.grid = grid
self.maxshrink = maxshrink
def find_params(self, x, weight=False):
if self.qfn == 'a':
self.find_params_qfna(x, weight=weight)
elif self.qfn == 'b':
self.find_params_qfnb(x)
elif self.qfn == 'c':
self.find_params_qfna(x, weight=weight)
def find_params_qfna(self, x, weight=False):
dev = x.device
self.maxq = self.maxq.to(dev)
shape = x.shape
if self.perchannel:
if weight:
x = x.flatten(1)
else:
if len(shape) == 4:
x = x.permute([1, 0, 2, 3])
x = x.flatten(1)
if len(shape) == 3:
x = x.reshape((-1, shape[-1])).t()
if len(shape) == 2:
x = x.t()
else:
x = x.flatten().unsqueeze(0)
tmp = torch.zeros(x.shape[0], device=dev)
xmin = torch.minimum(x.min(1)[0], tmp)
xmax = torch.maximum(x.max(1)[0], tmp)
if self.sym:
xmax = torch.maximum(torch.abs(xmin), xmax)
tmp = xmin < 0
if torch.any(tmp):
xmin[tmp] = -xmax[tmp]
tmp = (xmin == 0) & (xmax == 0)
xmin[tmp] = -1
xmax[tmp] = +1
self.scale = (xmax - xmin) / self.maxq
if self.sym:
self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2)
else:
self.zero = torch.round(-xmin / self.scale)
if self.mse:
best = torch.full([x.shape[0]], float('inf'), device=dev)
for i in range(int(self.maxshrink * self.grid)):
p = 1 - i / self.grid
xmin1 = p * xmin
xmax1 = p * xmax
scale1 = (xmax1 - xmin1) / self.maxq
zero1 = torch.round(-xmin1 /
scale1) if not self.sym else self.zero
q = quantize(x, scale1.unsqueeze(1), zero1.unsqueeze(1),
self.maxq)
q -= x
q.abs_()
q.pow_(self.norm)
err = torch.sum(q, 1)
tmp = err < best
if torch.any(tmp):
best[tmp] = err[tmp]
self.scale[tmp] = scale1[tmp]
self.zero[tmp] = zero1[tmp]
if not self.perchannel:
if weight:
tmp = shape[0]
else:
tmp = shape[1] if len(shape) != 3 else shape[2]
self.scale = self.scale.repeat(tmp)
self.zero = self.zero.repeat(tmp)
if weight:
shape = [-1] + [1] * (len(shape) - 1)
self.scale = self.scale.reshape(shape)
self.zero = self.zero.reshape(shape)
return
if len(shape) == 4:
self.scale = self.scale.reshape((1, -1, 1, 1))
self.zero = self.zero.reshape((1, -1, 1, 1))
if len(shape) == 3:
self.scale = self.scale.reshape((1, 1, -1))
self.zero = self.zero.reshape((1, 1, -1))
if len(shape) == 2:
self.scale = self.scale.unsqueeze(0)
self.zero = self.zero.unsqueeze(0)
def find_params_qfnb(self, x):
dev = x.device
self.maxq = self.maxq.to(dev)
self.scale = None #needs to be calculated after preproc
self.zero = None
def quantize(self, x):
if self.qfn == 'a':
assert self.ready()
return quantize_qfna(x, self.scale, self.zero, self.maxq)
elif self.qfn == 'b':
assert torch.all(self.maxq != 0)
self.scale = 2.4 * x.square().mean().sqrt() + 1e-16
return quantize_qfnb(x, self.scale, self.maxq)
elif self.qfn == 'c':
# for LDL vs GPTQ equivalency, does round in same order as bal code
assert self.ready()
return quantize_qfnc(x, self.scale, self.zero, self.maxq)
else:
return NotImplementedError()
def enabled(self):
return self.maxq > 0
def ready(self):
return torch.all(self.scale != 0)
try:
import quant_cuda
except:
print('CUDA extension not installed.')
# Assumes layer is perfectly divisible into 1024 * 1024 blocks
class Quant3Linear(nn.Module):
def __init__(self, infeatures, outfeatures):
super().__init__()
self.register_buffer('zeros', torch.zeros((outfeatures, 1)))
self.register_buffer('scales', torch.zeros((outfeatures, 1)))
self.register_buffer('bias', torch.zeros(outfeatures))
self.register_buffer(
'qweight',
torch.zeros((infeatures // 1024 * 96, outfeatures),
dtype=torch.int))
def pack(self, linear, scales, zeros):
self.zeros = zeros * scales
self.scales = scales.clone()
self.bias = linear.bias.clone()
intweight = torch.round(
(linear.weight.data + self.zeros) / self.scales).to(torch.int)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(np.uint32)
qweight = np.zeros(
(intweight.shape[0] // 1024 * 96, intweight.shape[1]),
dtype=np.uint32)
i = 0
row = 0
while row < qweight.shape[0]:
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i))
i += 10
qweight[row] |= intweight[i] << 30
row += 1
qweight[row] |= (intweight[i] >> 2) & 1
i += 1
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i) + 1)
i += 10
qweight[row] |= intweight[i] << 31
row += 1
qweight[row] |= (intweight[i] >> 1) & 0x3
i += 1
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i) + 2)
i += 10
row += 1
qweight = qweight.astype(np.int32)
self.qweight = torch.from_numpy(qweight)
def forward(self, x):
if x.shape[-1] == x.numel():
outshape = list(x.shape)
y = self.bias.clone()
outshape[-1] = self.bias.numel()
dtype = x.dtype
x = x.float()
quant_cuda.vecquant3matmul(x, self.qweight, y, self.scales,
self.zeros)
y = y.to(dtype)
return y.reshape(outshape)
raise ValueError('Only supports a single token currently.')
def make_quant3(module, names, name=''):
if isinstance(module, Quant3Linear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
setattr(module, attr,
Quant3Linear(tmp.in_features, tmp.out_features))
for name1, child in module.named_children():
make_quant3(child, names, name + '.' + name1 if name != '' else name1)