forked from ubsuny/CP1-24-HW2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix_operations.py
185 lines (133 loc) · 6.13 KB
/
matrix_operations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#Import Statements
import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize as opt
import time
import timeit #This one is particularly important
#Define functions used in various matrix operation methods
def generate_matrices(n):
'''Generates two nxn matrices, E and O. E contains the first n^2 even numbers (0, 2, 4, etc...)
ordered from least to greatest across rows and down columns and O contains the first n^2 odd numbers ordered in the same way.
n = size of matrix. Input of n produces two nxn matrices.'''
#Create an array with even numbers from 0 to 2*n^2-2
E = np.arange(0, 2*n**2, 2).reshape(n, n) #makes an array ranging from 0 to 2n^2 in steps of 2, then reshapes into n rows on length n, making an nxn matrix.
#Create an array with odd numbers from 1 to 2*n**2-1
O = np.arange(1, 2*n**2 + 1, 2).reshape(n, n)
return E, O
#Each of the next four functions depends on an input array predefined and named arr.
# Function to sum the array elements along the specified axis
def axisSummation(arr, axis=None):
"""
Computes the sum of array elements along a specified axis.
Parameters:
arr (ndarray): The input array.
axis (int, optional): The axis along which the summation is performed.
If None, sums over the entire array.
Returns:
float or ndarray: The sum of the array elements along the specified axis.
"""
return np.sum(arr, axis=axis)
# Define functions to time the summation for rows and columns
def sum_array():
"""
Computes the sum of all elements in the array.
Returns:
float: The sum of all elements in the array.
"""
return axisSummation(arr, axis=None) # Summing all elements in the array
def sum_rows():
"""
Computes the sum of elements along each row of the array.
Returns:
ndarray: The sum of each row in the array.
"""
return axisSummation(arr, axis=1) # Summing along rows (axis=1)
def sum_columns():
"""
Computes the sum of elements along each column of the array.
Returns:
ndarray: The sum of each column in the array.
"""
return axisSummation(arr, axis=0) # Summing along columns (axis=0)
def is_square(matrix):
"""
Accepts a 2d matrix, and returns whether or not the two dimensions have the
same number of elements.
Parameters:
matrix (ndarray): Input array (2D matrix)
Returns:
boolean: Whether or not the matrix is square
"""
return matrix.shape[0] == matrix.shape[1] # check axes size
# TODO: Implement operation 1: compute_trace()
# Implement operation 2: get_diagonal()
# Function to return the diagonal elements of an array
# TODO: unit testing and exception handling
def get_diagonal(matrix, use_custom = False):
"""
Accepts a matrix parameter as well as an optional boolean value to select
a specific implementation of the get_diagonal(). The default behavior is to
compute the diagonal elements of a matrix using the numpy diagonal()
built-in method.
Parameters:
matrix (ndarray): Input array (2D matrix)
use_custom (boolean): Selects if the custom implementation should be used.
Returns:
ndarray: Diagonal elements of the matrix
"""
if use_custom == True: # if True was passed,
diagonal = get_diagonal_custom(matrix) # use the custom method
else: # otherwise,
diagonal = get_diagonal_numpy(matrix) # use the one in numpy
return diagonal # send it home
def get_diagonal_custom(matrix):
"""
Returns the diagonal elements of a matrix using the numpy diagonal() method.
Currently limited to 2-dimensional arrays.
Parameters:
matrix (ndarray): Input array (2D matrix)
Returns:
ndarray: Diagonal elements of the matrix
"""
print("get_diagonal_custom() invoked.") # announce the routine
if is_square(matrix): # if the matrix is square
size = matrix.shape[0] # get the matrix size
indices = np.arange(size) # make a list of indices
diagonal = matrix[indices, indices] # extract the diagonal
else: # otherwise
n0 = matrix.shape[0] # get the size of 0th dim
n1 = matrix.shape[1] # get the size of 1st dim
min_size = min(n0, n1) # get the smaller of the two
indices = np.arange(min_size) # set the diagonal indices
diagonal = matrix[indices, indices] # extract the diagonal
print("Diagonal elements (as numpy array):", diagonal)
return diagonal
def get_diagonal_numpy(matrix):
"""
Returns the diagonal elements of a matrix using the numpy diagonal() method.
Parameters:
matrix (ndarray): Input array (2D matrix)
Returns:
ndarray: Diagonal elements of the matrix
"""
print("get_diagonal_numpy() invoked.")
# use the included np method for computing a matrix diagonal
return np.diagonal(matrix)
# TODO: Implement operation 2: axis_summation()
# Computes the summation along specified axes
# TODO: Implement operation 3: transpose_array()
# Performs the transposition of an array
# TODO: Implement operation 4: purmute_axes()
# Permutes the axes of an array
# TODO: Implement operation 5: matrix_multiplication() and dot_product()
# Computes matrix multiplication and dot products
# TODO: Implement operation 6: vector_inner_product() and vector_outer_product()
# Functions that compute the inner and outer product for 2 vectors
# TODO: Implement operation 7: Broadcasting, element-wise and scalar multiplication
# Implement: elementwise_multiplication() and scalar_multiplication()
# TODO: Operation 8: tensor_contraction()
# Pairs a vector space and its dual
# TODO: Implement operation 9: Chained arrays in effecient calcluation order
# Implment the chained_operations() function to efficiently compute chained operations,
# providing multiple array objects and a specified operation (maybe start
# with a single operation)