-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_reader.py
251 lines (206 loc) · 8.47 KB
/
image_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from PIL import Image
from math import floor, sqrt
from adb_controller import get_cap_bytes
from arguements import *
if DEBUG_MODE:
from adb_controller import get_cap_path
pic_path = ''
def current_district(district_lst):
if len(district_lst) > 0:
return district_lst[-1]
else:
return new_district(district_lst)
def new_district(district_lst):
district_lst.append({"edge_point_list": [], "vertex_list": [], "vertex_y": 10000})
return district_lst[-1]
def judge_district(cur_edge_point, last_edge_point):
# 如果当前点的x或y坐标与上一个点的x或y坐标差值大于20,则将该点视为新区域的点
if abs(last_edge_point[0] - cur_edge_point[0]) > DIVIDE_X or abs(last_edge_point[1] - cur_edge_point[1]) > DIVIDE_Y:
return True
else:
return False
def add_edge_point(p_district, point):
p_district["edge_point_list"].append(point)
vertex_y = p_district["vertex_y"]
# 判断新点的y坐标是否小于区域当前顶点的y坐标
# 若是,则将该区域顶点列表更新为仅point
# 若相同,则将point加入该区域的顶点列表
if point[1] < vertex_y:
p_district["vertex_y"] = point[1]
p_district["vertex_list"] = [point]
elif point[1] == vertex_y:
p_district["vertex_list"].append(point)
# def get_absolute_coordinate(r_co):
# return r_co[0] + 140, r_co[1] + 700
def get_vertex_x(vertex_list):
"""获取顶点x坐标"""
return sum(it[0] for it in vertex_list) / len(vertex_list)
def calculate_distance(p1, p2):
"""
计算两坐标点间距
"""
return sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
def geometry_data_verify(data_list, std_data=None, tolerance=TOLERANCE):
"""判断数据集中的数据是否足够接近标准值
std_data: 标准值. 若未指定,则取data_list中位数做标准值
tolerance: 误差百分比(默认5%)
"""
if std_data is not None:
data_list.sort()
std_data = data_list[floor(SAMPLE_SIZE / 2)] # 取中位数作为标准值
std_float = std_data * tolerance # 合理的误差范围
diff_list = [] # data_list中各个数值与std_data的差值的绝对值集合
for d in data_list:
diff_list.append(abs(d - std_data))
diff_list.sort()
for dif in diff_list[:-EXCLUSION]: # 排除误差最大的值
if dif > std_float:
return False
return True
def circle_recognize(p_list):
"""根据坐标list判断是否是圆(模型头部)"""
vertex = p_list[0]
center = (vertex[0], vertex[1] + CIRCLE_R)
p_amount = len(p_list)
step = 1 # 获取样本点的步长
if p_amount > SAMPLE_SIZE:
step = p_amount / SAMPLE_SIZE
r_list = []
for i in range(1, SAMPLE_SIZE):
r_list.append(round(calculate_distance(p_list[floor(i * step)], center), 1))
return geometry_data_verify(data_list=r_list, std_data=CIRCLE_R)
def get_player_coordinate(player_district):
""" 获取用户当前坐标(相对于裁剪后的图片)"""
vertex_list = player_district["vertex_list"]
vertex = (get_vertex_x(vertex_list), player_district["vertex_y"])
p_list = quarter_filter(player_district['edge_point_list'], vertex)
if len(p_list) > SAMPLE_SIZE and circle_recognize(p_list):
return vertex[0], vertex[1] + PLAYER_HEIGHT
else:
return None
def quarter_filter(edge_p_list, vertex):
"""在 边界坐标列表 中筛选出目标图形(菱形或椭圆或圆)右上方约1/4边界的坐标点集合"""
quarter_p_list = []
last_y = 0
for i, p in enumerate(edge_p_list):
if p[0] >= vertex[0] and p[1] >= last_y:
quarter_p_list.append(p)
last_y = p[1]
return quarter_p_list
# def calculate_slop(origin, point):
# return round((point[1] - origin[1]) / (point[0] - origin[0]), 2)
def get_aim_coordinate(aim_district):
"""
获取落点坐标
:param aim_district: 落点物块的图形区域
:return: 落点坐标
"""
vertex = (get_vertex_x(aim_district["vertex_list"]), aim_district["vertex_y"])
edge_p_list = aim_district["edge_point_list"]
p_list = quarter_filter(edge_p_list, vertex)
if len(p_list) <= 1:
raise Exception("BLOCK_NOT_FOUND")
aim_r_co = (p_list[0][0], p_list[-1][1])
return aim_r_co
def get_img(pic_name=None):
"""
从数据流或文件获取Image对象,并做简单处理
:param pic_name: 截图名称
:return: 原截图经灰度化,FIND_EDGES滤镜,裁剪后的Image对象
"""
if DEBUG_MODE:
global pic_path
if pic_name is None:
pic_path = get_cap_path()
else:
pic_path = '{pic_dir}/{pic_name}'.format(pic_dir=PIC_DIR, pic_name=pic_name)
img = Image.open(pic_path)
else:
img = Image.open(get_cap_bytes())
# img = img.convert("L")
# img = img.filter(ImageFilter.FIND_EDGES)
return img.crop((CROP_X_L, CROP_Y_U, CROP_X_R, CROP_Y_D))
def get_districts_debug(px, img_width, img_height):
"""
get_districts的DEBUG模式
该模式下将遍历整个px,并将未被收入districts的点设置为纯黑,收入的点设置为纯白,便于debug执行结果
:param px: 像素点阵
:param img_width: 图片宽度
:param img_height: 图片高度
:return: 图形区域列表
"""
district_lst = []
last_edge_point = (0, 0)
bg_rgb = px[0, 0]
for wi in range(img_width):
hi = 0
flag = True
while hi < img_height:
cur_point = (wi, hi)
cur_rgb = px[wi, hi]
if flag and (abs(cur_rgb[0] - bg_rgb[0]) > MIN_RGB_TOLERANCE or abs(
cur_rgb[1] - bg_rgb[1]) > MIN_RGB_TOLERANCE or abs(
cur_rgb[2] - bg_rgb[2]) > MIN_RGB_TOLERANCE):
flag = False
px[wi, hi] = (WHITE_GRAYSCALE, WHITE_GRAYSCALE, WHITE_GRAYSCALE)
if judge_district(cur_point, last_edge_point):
district = new_district(district_lst)
else:
district = current_district(district_lst)
add_edge_point(district, cur_point)
last_edge_point = cur_point
else:
px[wi, hi] = (BLACK_GRAYSCALE, BLACK_GRAYSCALE, BLACK_GRAYSCALE)
hi += 1
return district_lst
def get_districts(px, img_width, img_height):
"""
根据图片像素点灰度值,查找图形边界坐标点,并按一定规则将获得的坐标点划分图形区域
:param px: 像素点阵
:param img_width: 图片宽度
:param img_height: 图片高度
:return: 图形区域列表
"""
district_lst = []
last_edge_point = (0, 0)
bg_rgb = px[0, 0]
for wi in range(img_width):
hi = 0
while hi < img_height:
cur_point = (wi, hi)
cur_rgb = px[wi, hi]
# if px[wi, hi] >= MIN_GRAYSCALE_LIMIT:
if abs(cur_rgb[0] - bg_rgb[0]) > MIN_RGB_TOLERANCE or abs(
cur_rgb[1] - bg_rgb[1]) > MIN_RGB_TOLERANCE or abs(
cur_rgb[2] - bg_rgb[2]) > MIN_RGB_TOLERANCE:
if judge_district(cur_point, last_edge_point):
district = new_district(district_lst)
else:
district = current_district(district_lst)
add_edge_point(district, cur_point)
last_edge_point = cur_point
break
hi += 1
return district_lst
def get_coordinates(district_lst):
"""
由district_lst获取起点坐标和终点坐标
:param district_lst: 区域列表
:return: 终点坐标,起点坐标
"""
district_lst_filtered = [x for x in district_lst if len(x["edge_point_list"]) >= MIN_POINTS_LIMIT]
district_lst_filtered.sort(key=lambda x: x['vertex_y'])
# district_lst_filtered[0] 可能是目标物块的边界,也可能是玩家模型头部边界
# 若district_lst_filtered[0] 不是目标物块边界,则district_lst_filtered[1]一定是目标块边界
player_co = get_player_coordinate(district_lst_filtered[0])
if player_co is None:
aim_co = get_aim_coordinate(district_lst_filtered[0])
for lst in district_lst_filtered[1:]:
player_co = get_player_coordinate(lst)
if player_co is not None:
break
if player_co is None:
raise Exception("PLAYER_NOT_FOUND")
else:
aim_co = get_aim_coordinate(district_lst_filtered[1])
return aim_co, player_co