-
Notifications
You must be signed in to change notification settings - Fork 11
/
data.py
131 lines (105 loc) · 4.59 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -------------------------------------------------------------------------------------
# Negative-Aware Attention Framework for Image-Text Matching implementation based on SCAN
# https://github.com/CrossmodalGroup/NAAF
# "Negative-Aware Attention Framework for Image-Text Matching"
# Kun Zhang, Zhendong Mao, Quan Wang, Yongdong Zhang
#
# Writen by Kun Zhang, 2022
# -------------------------------------------------------------------------------------
"""Data provider"""
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
import os
from PIL import Image
import numpy as np
import json as jsonmod
import json
import nltk
class PrecompDataset(data.Dataset):
"""
Load precomputed captions and image features
Possible options: f30k_precomp, coco_precomp
"""
def __init__(self, data_path, data_split, vocab):
self.vocab = vocab
loc = data_path + '/'
self.caption_non = []
with open(loc+'%s_caps.txt' % data_split, 'r') as f:
for line in f:
self.caption_non.append(line.strip())
# Image features
self.images = np.load(loc + '%s_ims.npy' % data_split, allow_pickle=True)
self.length = len(self.caption_non)
print('image shape', self.images.shape)
print('text shape', len(self.caption_non))
# rkiros data has redundancy in images, we divide by 5, 10crop doesn't
if self.images.shape[0] != self.length:
self.im_div = 5
else:
self.im_div = 1
# the development set for coco is large and so validation would be slow
if data_split == 'dev':
self.length = 5000
def __getitem__(self, index):
# handle the image redundancy
img_id = index // self.im_div
image = torch.Tensor(self.images[img_id])
caption_non = self.caption_non[index]
vocab = self.vocab
tokens = nltk.tokenize.word_tokenize(
str(caption_non).lower())
caption_non = []
caption_non.append(vocab('<start>'))
caption_non.extend([vocab(token) for token in tokens])
caption_non.append(vocab('<end>'))
captions = torch.Tensor(caption_non)
return image, captions, index, img_id
def __len__(self):
return self.length
def collate_fn(data):
"""Build mini-batch tensors from a list of (image, caption) tuples.
Args:
data: list of (image, caption) tuple.
- image: torch tensor of shape (3, 256, 256).
- caption: torch tensor of shape (?); variable length.
Returns:
images: torch tensor of shape (batch_size, 3, 256, 256).
targets: torch tensor of shape (batch_size, padded_length).
lengths: list; valid length for each padded caption.
"""
# Sort a data list by caption length
data.sort(key=lambda x: len(x[1]), reverse=True)
images, captions, ids, img_ids = zip(*data)
# Merge images (convert tuple of 3D tensor to 4D tensor)
images = torch.stack(images, 0)
# Merget captions (convert tuple of 1D tensor to 2D tensor)
lengths = [len(cap) for cap in captions]
targets = torch.zeros(len(captions), max(lengths)).long()
for i, cap in enumerate(captions):
end = lengths[i]
targets[i, :end] = cap[:end]
return images, targets, lengths, ids
def get_precomp_loader(data_path, data_split, vocab, opt, batch_size=100,
shuffle=True, num_workers=2):
"""Returns torch.utils.data.DataLoader for custom coco dataset."""
dset = PrecompDataset(data_path, data_split, vocab)
data_loader = torch.utils.data.DataLoader(dataset=dset,
batch_size=batch_size,
shuffle=shuffle,
pin_memory=True,
collate_fn=collate_fn)
return data_loader
def get_loaders(data_name, vocab, batch_size, workers, opt):
dpath = os.path.join(opt.data_path, data_name)
train_loader = get_precomp_loader(dpath, 'train', vocab, opt,
batch_size, True, workers)
val_loader = get_precomp_loader(dpath, 'dev', vocab, opt,
batch_size, False, workers)
return train_loader, val_loader
def get_test_loader(split_name, data_name, vocab, batch_size,
workers, opt):
dpath = os.path.join(opt.data_path, data_name)
test_loader = get_precomp_loader(dpath, split_name, vocab, opt,
batch_size, False, workers)
return test_loader