-
Notifications
You must be signed in to change notification settings - Fork 11
/
vocab.py
120 lines (93 loc) · 3.42 KB
/
vocab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# -------------------------------------------------------------------------------------
# Negative-Aware Attention Framework for Image-Text Matching implementation based on SCAN
# https://github.com/CrossmodalGroup/NAAF
# "Negative-Aware Attention Framework for Image-Text Matching"
# Kun Zhang, Zhendong Mao, Quan Wang, Yongdong Zhang
#
# Writen by Kun Zhang, 2022
# -------------------------------------------------------------------------------------
"""Vocabulary wrapper"""
from collections import Counter
import argparse
import os
import json
import nltk
annotations = {
'coco_precomp': ['train_caps.txt', 'dev_caps.txt'],
'f30k_precomp': ['train_caps.txt', 'dev_caps.txt'],
}
class Vocabulary(object):
"""Simple vocabulary wrapper."""
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0
def add_word(self, word):
if word not in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
def __call__(self, word):
if word not in self.word2idx:
return self.word2idx['<unk>']
return self.word2idx[word]
def __len__(self):
return len(self.word2idx)
def serialize_vocab(vocab, dest):
d = {}
d['word2idx'] = vocab.word2idx
d['idx2word'] = vocab.idx2word
d['idx'] = vocab.idx
with open(dest, "w") as f:
json.dump(d, f)
def deserialize_vocab(src):
print(src)
with open(src) as f:
d = json.load(f)
vocab = Vocabulary()
vocab.word2idx = d['word2idx']
vocab.idx2word = {v: k for k, v in vocab.word2idx.items()}
vocab.idx = max(vocab.idx2word)
return vocab
def from_txt(txt):
captions = []
with open(txt, 'rb') as f:
for line in f:
captions.append(line.strip())
return captions
def build_vocab(data_path, data_name, caption_file, threshold):
"""Build a simple vocabulary wrapper."""
counter = Counter()
for path in caption_file[data_name]:
full_path = os.path.join(os.path.join(data_path, data_name), path)
captions = from_txt(full_path)
for i, caption in enumerate(captions):
tokens = nltk.tokenize.word_tokenize(
caption.lower().decode('utf-8'))
counter.update(tokens)
if i % 1000 == 0:
print("[%d/%d] tokenized the captions." % (i, len(captions)))
# Discard if the occurrence of the word is less than min_word_cnt.
words = [word for word, cnt in counter.items() if cnt >= threshold]
# Create a vocab wrapper and add some special tokens.
vocab = Vocabulary()
vocab.add_word('<pad>')
vocab.add_word('<start>')
vocab.add_word('<end>')
vocab.add_word('<unk>')
# Add words to the vocabulary.
for i, word in enumerate(words):
vocab.add_word(word)
return vocab
def main(data_path, data_name):
vocab = build_vocab(data_path, data_name,
caption_file=annotations, threshold=4)
serialize_vocab(vocab, './vocab/%s_vocab.json' % data_name)
print("Saved vocabulary file to ", './vocab/%s_vocab.json' % data_name)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', default='data')
parser.add_argument('--data_name', default='f30k_precomp',
help='{coco,f30k}_precomp')
opt = parser.parse_args()
main(opt.data_path, opt.data_name)