forked from RexYing/diffpool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
651 lines (568 loc) · 26.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
import matplotlib
import matplotlib.colors as colors
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import networkx as nx
import numpy as np
import sklearn.metrics as metrics
import torch
import torch.nn as nn
from torch.autograd import Variable
import tensorboardX
from tensorboardX import SummaryWriter
import argparse
import os
import pickle
import random
import shutil
import time
import cross_val
import encoders
import gen.feat as featgen
import gen.data as datagen
from graph_sampler import GraphSampler
import load_data
import util
def evaluate(dataset, model, args, name='Validation', max_num_examples=None):
model.eval()
labels = []
preds = []
for batch_idx, data in enumerate(dataset):
adj = Variable(data['adj'].float(), requires_grad=False).cuda()
h0 = Variable(data['feats'].float()).cuda()
labels.append(data['label'].long().numpy())
batch_num_nodes = data['num_nodes'].int().numpy()
assign_input = Variable(data['assign_feats'].float(), requires_grad=False).cuda()
ypred = model(h0, adj, batch_num_nodes, assign_x=assign_input)
_, indices = torch.max(ypred, 1)
preds.append(indices.cpu().data.numpy())
if max_num_examples is not None:
if (batch_idx+1)*args.batch_size > max_num_examples:
break
labels = np.hstack(labels)
preds = np.hstack(preds)
result = {'prec': metrics.precision_score(labels, preds, average='macro'),
'recall': metrics.recall_score(labels, preds, average='macro'),
'acc': metrics.accuracy_score(labels, preds),
'F1': metrics.f1_score(labels, preds, average="micro")}
print(name, " accuracy:", result['acc'])
return result
def gen_prefix(args):
if args.bmname is not None:
name = args.bmname
else:
name = args.dataset
name += '_' + args.method
if args.method == 'soft-assign':
name += '_l' + str(args.num_gc_layers) + 'x' + str(args.num_pool)
name += '_ar' + str(int(args.assign_ratio*100))
if args.linkpred:
name += '_lp'
else:
name += '_l' + str(args.num_gc_layers)
name += '_h' + str(args.hidden_dim) + '_o' + str(args.output_dim)
if not args.bias:
name += '_nobias'
if len(args.name_suffix) > 0:
name += '_' + args.name_suffix
return name
def gen_train_plt_name(args):
return 'results/' + gen_prefix(args) + '.png'
def log_assignment(assign_tensor, writer, epoch, batch_idx):
plt.switch_backend('agg')
fig = plt.figure(figsize=(8,6), dpi=300)
# has to be smaller than args.batch_size
for i in range(len(batch_idx)):
plt.subplot(2, 2, i+1)
plt.imshow(assign_tensor.cpu().data.numpy()[batch_idx[i]], cmap=plt.get_cmap('BuPu'))
cbar = plt.colorbar()
cbar.solids.set_edgecolor("face")
plt.tight_layout()
fig.canvas.draw()
#data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
#data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
data = tensorboardX.utils.figure_to_image(fig)
writer.add_image('assignment', data, epoch)
def log_graph(adj, batch_num_nodes, writer, epoch, batch_idx, assign_tensor=None):
plt.switch_backend('agg')
fig = plt.figure(figsize=(8,6), dpi=300)
for i in range(len(batch_idx)):
ax = plt.subplot(2, 2, i+1)
num_nodes = batch_num_nodes[batch_idx[i]]
adj_matrix = adj[batch_idx[i], :num_nodes, :num_nodes].cpu().data.numpy()
G = nx.from_numpy_matrix(adj_matrix)
nx.draw(G, pos=nx.spring_layout(G), with_labels=True, node_color='#336699',
edge_color='grey', width=0.5, node_size=300,
alpha=0.7)
ax.xaxis.set_visible(False)
plt.tight_layout()
fig.canvas.draw()
#data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
#data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
data = tensorboardX.utils.figure_to_image(fig)
writer.add_image('graphs', data, epoch)
# log a label-less version
#fig = plt.figure(figsize=(8,6), dpi=300)
#for i in range(len(batch_idx)):
# ax = plt.subplot(2, 2, i+1)
# num_nodes = batch_num_nodes[batch_idx[i]]
# adj_matrix = adj[batch_idx[i], :num_nodes, :num_nodes].cpu().data.numpy()
# G = nx.from_numpy_matrix(adj_matrix)
# nx.draw(G, pos=nx.spring_layout(G), with_labels=False, node_color='#336699',
# edge_color='grey', width=0.5, node_size=25,
# alpha=0.8)
#plt.tight_layout()
#fig.canvas.draw()
#data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
#data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
#writer.add_image('graphs_no_label', data, epoch)
# colored according to assignment
assignment = assign_tensor.cpu().data.numpy()
fig = plt.figure(figsize=(8,6), dpi=300)
num_clusters = assignment.shape[2]
all_colors = np.array(range(num_clusters))
for i in range(len(batch_idx)):
ax = plt.subplot(2, 2, i+1)
num_nodes = batch_num_nodes[batch_idx[i]]
adj_matrix = adj[batch_idx[i], :num_nodes, :num_nodes].cpu().data.numpy()
label = np.argmax(assignment[batch_idx[i]], axis=1).astype(int)
label = label[: batch_num_nodes[batch_idx[i]]]
node_colors = all_colors[label]
G = nx.from_numpy_matrix(adj_matrix)
nx.draw(G, pos=nx.spring_layout(G), with_labels=False, node_color=node_colors,
edge_color='grey', width=0.4, node_size=50, cmap=plt.get_cmap('Set1'),
vmin=0, vmax=num_clusters-1,
alpha=0.8)
plt.tight_layout()
fig.canvas.draw()
#data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
#data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
data = tensorboardX.utils.figure_to_image(fig)
writer.add_image('graphs_colored', data, epoch)
def train(dataset, model, args, same_feat=True, val_dataset=None, test_dataset=None, writer=None,
mask_nodes = True):
writer_batch_idx = [0, 3, 6, 9]
optimizer = torch.optim.Adam(filter(lambda p : p.requires_grad, model.parameters()), lr=0.001)
iter = 0
best_val_result = {
'epoch': 0,
'loss': 0,
'acc': 0}
test_result = {
'epoch': 0,
'loss': 0,
'acc': 0}
train_accs = []
train_epochs = []
best_val_accs = []
best_val_epochs = []
test_accs = []
test_epochs = []
val_accs = []
for epoch in range(args.num_epochs):
total_time = 0
avg_loss = 0.0
model.train()
print('Epoch: ', epoch)
for batch_idx, data in enumerate(dataset):
begin_time = time.time()
model.zero_grad()
adj = Variable(data['adj'].float(), requires_grad=False).cuda()
h0 = Variable(data['feats'].float(), requires_grad=False).cuda()
label = Variable(data['label'].long()).cuda()
batch_num_nodes = data['num_nodes'].int().numpy() if mask_nodes else None
assign_input = Variable(data['assign_feats'].float(), requires_grad=False).cuda()
ypred = model(h0, adj, batch_num_nodes, assign_x=assign_input)
if not args.method == 'soft-assign' or not args.linkpred:
loss = model.loss(ypred, label)
else:
loss = model.loss(ypred, label, adj, batch_num_nodes)
loss.backward()
nn.utils.clip_grad_norm(model.parameters(), args.clip)
optimizer.step()
iter += 1
avg_loss += loss
#if iter % 20 == 0:
# print('Iter: ', iter, ', loss: ', loss.data[0])
elapsed = time.time() - begin_time
total_time += elapsed
# log once per XX epochs
if epoch % 10 == 0 and batch_idx == len(dataset) // 2 and args.method == 'soft-assign' and writer is not None:
log_assignment(model.assign_tensor, writer, epoch, writer_batch_idx)
if args.log_graph:
log_graph(adj, batch_num_nodes, writer, epoch, writer_batch_idx, model.assign_tensor)
avg_loss /= batch_idx + 1
if writer is not None:
writer.add_scalar('loss/avg_loss', avg_loss, epoch)
if args.linkpred:
writer.add_scalar('loss/linkpred_loss', model.link_loss, epoch)
print('Avg loss: ', avg_loss, '; epoch time: ', total_time)
result = evaluate(dataset, model, args, name='Train', max_num_examples=100)
train_accs.append(result['acc'])
train_epochs.append(epoch)
if val_dataset is not None:
val_result = evaluate(val_dataset, model, args, name='Validation')
val_accs.append(val_result['acc'])
if val_result['acc'] > best_val_result['acc'] - 1e-7:
best_val_result['acc'] = val_result['acc']
best_val_result['epoch'] = epoch
best_val_result['loss'] = avg_loss
if test_dataset is not None:
test_result = evaluate(test_dataset, model, args, name='Test')
test_result['epoch'] = epoch
if writer is not None:
writer.add_scalar('acc/train_acc', result['acc'], epoch)
writer.add_scalar('acc/val_acc', val_result['acc'], epoch)
writer.add_scalar('loss/best_val_loss', best_val_result['loss'], epoch)
if test_dataset is not None:
writer.add_scalar('acc/test_acc', test_result['acc'], epoch)
print('Best val result: ', best_val_result)
best_val_epochs.append(best_val_result['epoch'])
best_val_accs.append(best_val_result['acc'])
if test_dataset is not None:
print('Test result: ', test_result)
test_epochs.append(test_result['epoch'])
test_accs.append(test_result['acc'])
matplotlib.style.use('seaborn')
plt.switch_backend('agg')
plt.figure()
plt.plot(train_epochs, util.exp_moving_avg(train_accs, 0.85), '-', lw=1)
if test_dataset is not None:
plt.plot(best_val_epochs, best_val_accs, 'bo', test_epochs, test_accs, 'go')
plt.legend(['train', 'val', 'test'])
else:
plt.plot(best_val_epochs, best_val_accs, 'bo')
plt.legend(['train', 'val'])
plt.savefig(gen_train_plt_name(args), dpi=600)
plt.close()
matplotlib.style.use('default')
return model, val_accs
def prepare_data(graphs, args, test_graphs=None, max_nodes=0):
random.shuffle(graphs)
if test_graphs is None:
train_idx = int(len(graphs) * args.train_ratio)
test_idx = int(len(graphs) * (1-args.test_ratio))
train_graphs = graphs[:train_idx]
val_graphs = graphs[train_idx: test_idx]
test_graphs = graphs[test_idx:]
else:
train_idx = int(len(graphs) * args.train_ratio)
train_graphs = graphs[:train_idx]
val_graphs = graph[train_idx:]
print('Num training graphs: ', len(train_graphs),
'; Num validation graphs: ', len(val_graphs),
'; Num testing graphs: ', len(test_graphs))
print('Number of graphs: ', len(graphs))
print('Number of edges: ', sum([G.number_of_edges() for G in graphs]))
print('Max, avg, std of graph size: ',
max([G.number_of_nodes() for G in graphs]), ', '
"{0:.2f}".format(np.mean([G.number_of_nodes() for G in graphs])), ', '
"{0:.2f}".format(np.std([G.number_of_nodes() for G in graphs])))
# minibatch
dataset_sampler = GraphSampler(train_graphs, normalize=False, max_num_nodes=max_nodes,
features=args.feature_type)
train_dataset_loader = torch.utils.data.DataLoader(
dataset_sampler,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers)
dataset_sampler = GraphSampler(val_graphs, normalize=False, max_num_nodes=max_nodes,
features=args.feature_type)
val_dataset_loader = torch.utils.data.DataLoader(
dataset_sampler,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers)
dataset_sampler = GraphSampler(test_graphs, normalize=False, max_num_nodes=max_nodes,
features=args.feature_type)
test_dataset_loader = torch.utils.data.DataLoader(
dataset_sampler,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers)
return train_dataset_loader, val_dataset_loader, test_dataset_loader, \
dataset_sampler.max_num_nodes, dataset_sampler.feat_dim, dataset_sampler.assign_feat_dim
def syn_community1v2(args, writer=None, export_graphs=False):
# data
graphs1 = datagen.gen_ba(range(40, 60), range(4, 5), 500,
featgen.ConstFeatureGen(np.ones(args.input_dim, dtype=float)))
for G in graphs1:
G.graph['label'] = 0
if export_graphs:
util.draw_graph_list(graphs1[:16], 4, 4, 'figs/ba')
graphs2 = datagen.gen_2community_ba(range(20, 30), range(4, 5), 500, 0.3,
[featgen.ConstFeatureGen(np.ones(args.input_dim, dtype=float))])
for G in graphs2:
G.graph['label'] = 1
if export_graphs:
util.draw_graph_list(graphs2[:16], 4, 4, 'figs/ba2')
graphs = graphs1 + graphs2
train_dataset, val_dataset, test_dataset, max_num_nodes, input_dim, assign_input_dim = prepare_data(graphs, args)
if args.method == 'soft-assign':
print('Method: soft-assign')
model = encoders.SoftPoolingGcnEncoder(
max_num_nodes,
input_dim, args.hidden_dim, args.output_dim, args.num_classes, args.num_gc_layers,
args.hidden_dim, assign_ratio=args.assign_ratio, num_pooling=args.num_pool,
bn=args.bn, linkpred=args.linkpred, assign_input_dim=assign_input_dim).cuda()
elif args.method == 'base-set2set':
print('Method: base-set2set')
model = encoders.GcnSet2SetEncoder(input_dim, args.hidden_dim, args.output_dim, 2,
args.num_gc_layers, bn=args.bn).cuda()
else:
print('Method: base')
model = encoders.GcnEncoderGraph(input_dim, args.hidden_dim, args.output_dim, 2,
args.num_gc_layers, bn=args.bn).cuda()
train(train_dataset, model, args, val_dataset=val_dataset, test_dataset=test_dataset,
writer=writer)
def syn_community2hier(args, writer=None):
# data
feat_gen = [featgen.ConstFeatureGen(np.ones(args.input_dim, dtype=float))]
graphs1 = datagen.gen_2hier(1000, [2,4], 10, range(4,5), 0.1, 0.03, feat_gen)
graphs2 = datagen.gen_2hier(1000, [3,3], 10, range(4,5), 0.1, 0.03, feat_gen)
graphs3 = datagen.gen_2community_ba(range(28, 33), range(4,7), 1000, 0.25, feat_gen)
for G in graphs1:
G.graph['label'] = 0
for G in graphs2:
G.graph['label'] = 1
for G in graphs3:
G.graph['label'] = 2
graphs = graphs1 + graphs2 + graphs3
train_dataset, val_dataset, test_dataset, max_num_nodes, input_dim, assign_input_dim = prepare_data(graphs, args)
if args.method == 'soft-assign':
print('Method: soft-assign')
model = encoders.SoftPoolingGcnEncoder(
max_num_nodes,
input_dim, args.hidden_dim, args.output_dim, args.num_classes, args.num_gc_layers,
args.hidden_dim, assign_ratio=args.assign_ratio, num_pooling=args.num_pool,
bn=args.bn, linkpred=args.linkpred, args=args, assign_input_dim=assign_input_dim).cuda()
elif args.method == 'base-set2set':
print('Method: base-set2set')
model = encoders.GcnSet2SetEncoder(input_dim, args.hidden_dim, args.output_dim, 2,
args.num_gc_layers, bn=args.bn, args=args, assign_input_dim=assign_input_dim).cuda()
else:
print('Method: base')
model = encoders.GcnEncoderGraph(input_dim, args.hidden_dim, args.output_dim, 2,
args.num_gc_layers, bn=args.bn, args=args).cuda()
train(train_dataset, model, args, val_dataset=val_dataset, test_dataset=test_dataset,
writer=writer)
def pkl_task(args, feat=None):
with open(os.path.join(args.datadir, args.pkl_fname), 'rb') as pkl_file:
data = pickle.load(pkl_file)
graphs = data[0]
labels = data[1]
test_graphs = data[2]
test_labels = data[3]
for i in range(len(graphs)):
graphs[i].graph['label'] = labels[i]
for i in range(len(test_graphs)):
test_graphs[i].graph['label'] = test_labels[i]
if feat is None:
featgen_const = featgen.ConstFeatureGen(np.ones(args.input_dim, dtype=float))
for G in graphs:
featgen_const.gen_node_features(G)
for G in test_graphs:
featgen_const.gen_node_features(G)
train_dataset, test_dataset, max_num_nodes = prepare_data(graphs, args, test_graphs=test_graphs)
model = encoders.GcnEncoderGraph(
args.input_dim, args.hidden_dim, args.output_dim, args.num_classes,
args.num_gc_layers, bn=args.bn).cuda()
train(train_dataset, model, args, test_dataset=test_dataset)
evaluate(test_dataset, model, args, 'Validation')
def benchmark_task(args, writer=None, feat='node-label'):
graphs = load_data.read_graphfile(args.datadir, args.bmname, max_nodes=args.max_nodes)
if feat == 'node-feat' and 'feat_dim' in graphs[0].graph:
print('Using node features')
input_dim = graphs[0].graph['feat_dim']
elif feat == 'node-label' and 'label' in graphs[0].node[0]:
print('Using node labels')
for G in graphs:
for u in G.nodes():
G.node[u]['feat'] = np.array(G.node[u]['label'])
else:
print('Using constant labels')
featgen_const = featgen.ConstFeatureGen(np.ones(args.input_dim, dtype=float))
for G in graphs:
featgen_const.gen_node_features(G)
train_dataset, val_dataset, test_dataset, max_num_nodes, input_dim, assign_input_dim = \
prepare_data(graphs, args, max_nodes=args.max_nodes)
if args.method == 'soft-assign':
print('Method: soft-assign')
model = encoders.SoftPoolingGcnEncoder(
max_num_nodes,
input_dim, args.hidden_dim, args.output_dim, args.num_classes, args.num_gc_layers,
args.hidden_dim, assign_ratio=args.assign_ratio, num_pooling=args.num_pool,
bn=args.bn, dropout=args.dropout, linkpred=args.linkpred, args=args,
assign_input_dim=assign_input_dim).cuda()
elif args.method == 'base-set2set':
print('Method: base-set2set')
model = encoders.GcnSet2SetEncoder(
input_dim, args.hidden_dim, args.output_dim, args.num_classes,
args.num_gc_layers, bn=args.bn, dropout=args.dropout, args=args).cuda()
else:
print('Method: base')
model = encoders.GcnEncoderGraph(
input_dim, args.hidden_dim, args.output_dim, args.num_classes,
args.num_gc_layers, bn=args.bn, dropout=args.dropout, args=args).cuda()
train(train_dataset, model, args, val_dataset=val_dataset, test_dataset=test_dataset,
writer=writer)
evaluate(test_dataset, model, args, 'Validation')
def benchmark_task_val(args, writer=None, feat='node-label'):
all_vals = []
graphs = load_data.read_graphfile(args.datadir, args.bmname, max_nodes=args.max_nodes)
if feat == 'node-feat' and 'feat_dim' in graphs[0].graph:
print('Using node features')
input_dim = graphs[0].graph['feat_dim']
elif feat == 'node-label' and 'label' in graphs[0].node[0]:
print('Using node labels')
for G in graphs:
for u in G.nodes():
G.node[u]['feat'] = np.array(G.node[u]['label'])
else:
print('Using constant labels')
featgen_const = featgen.ConstFeatureGen(np.ones(args.input_dim, dtype=float))
for G in graphs:
featgen_const.gen_node_features(G)
for i in range(10):
train_dataset, val_dataset, max_num_nodes, input_dim, assign_input_dim = \
cross_val.prepare_val_data(graphs, args, i, max_nodes=args.max_nodes)
if args.method == 'soft-assign':
print('Method: soft-assign')
model = encoders.SoftPoolingGcnEncoder(
max_num_nodes,
input_dim, args.hidden_dim, args.output_dim, args.num_classes, args.num_gc_layers,
args.hidden_dim, assign_ratio=args.assign_ratio, num_pooling=args.num_pool,
bn=args.bn, dropout=args.dropout, linkpred=args.linkpred, args=args,
assign_input_dim=assign_input_dim).cuda()
elif args.method == 'base-set2set':
print('Method: base-set2set')
model = encoders.GcnSet2SetEncoder(
input_dim, args.hidden_dim, args.output_dim, args.num_classes,
args.num_gc_layers, bn=args.bn, dropout=args.dropout, args=args).cuda()
else:
print('Method: base')
model = encoders.GcnEncoderGraph(
input_dim, args.hidden_dim, args.output_dim, args.num_classes,
args.num_gc_layers, bn=args.bn, dropout=args.dropout, args=args).cuda()
_, val_accs = train(train_dataset, model, args, val_dataset=val_dataset, test_dataset=None,
writer=writer)
all_vals.append(np.array(val_accs))
all_vals = np.vstack(all_vals)
all_vals = np.mean(all_vals, axis=0)
print(all_vals)
print(np.max(all_vals))
print(np.argmax(all_vals))
def arg_parse():
parser = argparse.ArgumentParser(description='GraphPool arguments.')
io_parser = parser.add_mutually_exclusive_group(required=False)
io_parser.add_argument('--dataset', dest='dataset',
help='Input dataset.')
benchmark_parser = io_parser.add_argument_group()
benchmark_parser.add_argument('--bmname', dest='bmname',
help='Name of the benchmark dataset')
io_parser.add_argument('--pkl', dest='pkl_fname',
help='Name of the pkl data file')
softpool_parser = parser.add_argument_group()
softpool_parser.add_argument('--assign-ratio', dest='assign_ratio', type=float,
help='ratio of number of nodes in consecutive layers')
softpool_parser.add_argument('--num-pool', dest='num_pool', type=int,
help='number of pooling layers')
parser.add_argument('--linkpred', dest='linkpred', action='store_const',
const=True, default=False,
help='Whether link prediction side objective is used')
parser.add_argument('--datadir', dest='datadir',
help='Directory where benchmark is located')
parser.add_argument('--logdir', dest='logdir',
help='Tensorboard log directory')
parser.add_argument('--cuda', dest='cuda',
help='CUDA.')
parser.add_argument('--max-nodes', dest='max_nodes', type=int,
help='Maximum number of nodes (ignore graghs with nodes exceeding the number.')
parser.add_argument('--lr', dest='lr', type=float,
help='Learning rate.')
parser.add_argument('--clip', dest='clip', type=float,
help='Gradient clipping.')
parser.add_argument('--batch-size', dest='batch_size', type=int,
help='Batch size.')
parser.add_argument('--epochs', dest='num_epochs', type=int,
help='Number of epochs to train.')
parser.add_argument('--train-ratio', dest='train_ratio', type=float,
help='Ratio of number of graphs training set to all graphs.')
parser.add_argument('--num_workers', dest='num_workers', type=int,
help='Number of workers to load data.')
parser.add_argument('--feature', dest='feature_type',
help='Feature used for encoder. Can be: id, deg')
parser.add_argument('--input-dim', dest='input_dim', type=int,
help='Input feature dimension')
parser.add_argument('--hidden-dim', dest='hidden_dim', type=int,
help='Hidden dimension')
parser.add_argument('--output-dim', dest='output_dim', type=int,
help='Output dimension')
parser.add_argument('--num-classes', dest='num_classes', type=int,
help='Number of label classes')
parser.add_argument('--num-gc-layers', dest='num_gc_layers', type=int,
help='Number of graph convolution layers before each pooling')
parser.add_argument('--nobn', dest='bn', action='store_const',
const=False, default=True,
help='Whether batch normalization is used')
parser.add_argument('--dropout', dest='dropout', type=float,
help='Dropout rate.')
parser.add_argument('--nobias', dest='bias', action='store_const',
const=False, default=True,
help='Whether to add bias. Default to True.')
parser.add_argument('--no-log-graph', dest='log_graph', action='store_const',
const=False, default=True,
help='Whether disable log graph')
parser.add_argument('--method', dest='method',
help='Method. Possible values: base, base-set2set, soft-assign')
parser.add_argument('--name-suffix', dest='name_suffix',
help='suffix added to the output filename')
parser.set_defaults(datadir='data',
logdir='log',
dataset='syn1v2',
max_nodes=1000,
cuda='1',
feature_type='default',
lr=0.001,
clip=2.0,
batch_size=20,
num_epochs=1000,
train_ratio=0.8,
test_ratio=0.1,
num_workers=1,
input_dim=10,
hidden_dim=20,
output_dim=20,
num_classes=2,
num_gc_layers=3,
dropout=0.0,
method='base',
name_suffix='',
assign_ratio=0.1,
num_pool=1
)
return parser.parse_args()
def main():
prog_args = arg_parse()
# export scalar data to JSON for external processing
path = os.path.join(prog_args.logdir, gen_prefix(prog_args))
if os.path.isdir(path):
print('Remove existing log dir: ', path)
shutil.rmtree(path)
writer = SummaryWriter(path)
#writer = None
os.environ['CUDA_VISIBLE_DEVICES'] = prog_args.cuda
print('CUDA', prog_args.cuda)
if prog_args.bmname is not None:
benchmark_task_val(prog_args, writer=writer)
elif prog_args.pkl_fname is not None:
pkl_task(prog_args)
elif prog_args.dataset is not None:
if prog_args.dataset == 'syn1v2':
syn_community1v2(prog_args, writer=writer)
if prog_args.dataset == 'syn2hier':
syn_community2hier(prog_args, writer=writer)
writer.close()
if __name__ == "__main__":
main()