Skip to content

Latest commit

 

History

History
258 lines (178 loc) · 13.3 KB

README.md

File metadata and controls

258 lines (178 loc) · 13.3 KB


Documentation: https://geochemistrypi.readthedocs.io

Source Code: https://github.com/ZJUEarthData/geochemistrypi


Geochemistry π is an open-sourced highly automated machine learning Python framework dedicating to build up MLOps level 1 software product for data-driven geochemistry discovery on tabular data.

Core capabilities are:

  • Continous Training
  • Machine Learning Lifecycle Management

Key features are:

  • Easy to use: The automation of data mining process provides the users with simple number options to choose.
  • Extensible: It allows appending new algorithms through Scikit-learn with automatic hyper parameter searching by FLAML and Ray.
  • Traceable: It integrates MLflow to build special storage mechanism to streamline the end-to-end machine learning lifecycle.

Latest Update: follow up by clicking Starred and Watch on our GitHub repository, then get email notifications of the newest features automatically.

Quick Installation

One instruction to download on command line, such as Terminal on macOS, Command Prompt on Windows.

pip install geochemistrypi

One instruction to download on Jupyter Notebook or Google Colab.

!pip install geochemistrypi

Note: For more detail on installation, please refer to our online documentation in Installation Manual under the section of FOR USER. Over there, we highly recommend to use virtual environment (Conda) to avoid dependency version problems.

Quick Update

One instruction to update the software to the latest version on command line, such as Terminal on macOS, Command Prompt on Windows.

pip install --upgrade geochemistrypi

One instruction to download on Jupyter Notebook or Google Colab.

!pip install --upgrade geochemistrypi

Check the latest version of our software:

geochemistrypi --version

Example

How to run: After successfully downloading, run this instruction on command line / Jupyter Notebook / Google Colab whatever directory it is.

Case 1: Run with built-in data set for testing

On command line:

geochemistrypi data-mining

On Jupyter Notebook / Google Colab:

!geochemistrypi data-mining

Note: There are four built-in data sets corresponding to four kinds of model pattern.

Case 2: Run with your own data set

On command line:

geochemistrypi data-mining --data your_own_data_set.xlsx

On Jupyter Notebook / Google Colab:

!geochemistrypi data-mining --data your_own_data_set.xlsx

Note: Currently, only .xlsx file is supported. Please specify the path your data file exists. For Google Colab, don't forget to upload your dataset first.

Case 3: Activate MLflow web interface

On command line:

geochemistrypi data-mining --mlflow

On Jupyter Notebook / Google Colab:

!geochemistrypi data-mining --mlflow

Note: Once you run our software, there are two folders (geopi_output and geopi_tracking) generated automatically. Make sure the directory where you execute the above command should have the genereted file geopi_tracking.

Copy the address in the displayed result into any browser to open the MLflow web interface. The address is normally like this http://127.0.0.1:5000. Search MLflow online to see more operations and usages.

For more details: Please refer to:

Roadmap

First Phase

It works as a software application with a command-line interface (CLI) to automate data mining process with frequently-used machine learning algorithms and statistical analysis methods, which would further lower the threshold for the geochemists.

The highlight is that through choosing simple number options, the users are able to implement a full cycle of data mining without knowledge of SciPy, NumPy, Pandas, Scikit-learn, FLAML, Ray packages.

The following figure is the activity diagram of automated ML pipeline in Geochemistry π:

Its data section provides feature engineering based on arithmatic operation. It allows the users to have a statistic analysis on the data set as well as on the imputation result, which is supported by the combination of Monte Carlo simulation and hypothesis testing.

Its models section provides both supervised learning and unsupervised learning methods from Scikit-learn framework, including four types of algorithms, regression, classification, clustering, and dimensional reduction. Integrated with FLAML and Ray framework, it allows the users to run AutoML easily, fastly and cost-effectively on the built-in supervised learning algorithms in our framework.

Second Phase

Currently, we are building three access ways to provide more user-friendly service, including web portal, CLI package and API. It allows the user to perform continuous training by automating the ML pipeline and machine learning lifecycle management by unique storage mechanism in different access layers.

The following figure is the system architecture diagram:

System Architecture Diagram

The following figure is the overview of workflow:

Overview of workflow

The following figure is the customized automated ML pipeline:

Customized automated ML pipeline

The following figure is the design pattern hierarchical architecture:

Design Pattern Hierarchical Architecture

The following figure is the storage mechanism:

Storage Mechanism

The whole package is under construction and the documentation is progressively evolving.

Team Info

Leader:

Technical Group:

  • Jianming Zhao (Jamie, Jilin University, Changchun, China)
  • Jianhao Sun (Jin, China University of Geosciences, Wuhan, China)
  • Kaixin Zheng (Hayne, Sun Yat-sen University, China)
  • Jianing Wang (National University of Singapore, Singapore)
  • Yongkang Chan (Kill-virus, Lanzhou University, China)
  • Mengying Ye (Mary, Jilin University, China)
  • Mengqi Gao (China University of Geosciences, Beijing, China)

Product Group:

  • Yang Lyu (Daisy, Zhejiang University, China)
  • Wenyu Zhao (Molly, Zhejiang University, China)
  • Keran Li (Kirk, Chengdu University of Technology, China)
  • Aixiwake·Janganuer (Ayshuak, Sun Yat-sen University, China)
  • Bailun Jiang (EPSI / Lille University, France)
  • Yucheng Yan (Andy, University of Sydney, Australia)
  • Ruitao Chang (China University of Geosciences Beijing, China)
  • Zhenglin Xu (Garry, Jilin University, China)

Join Us :)

The recruitment of research interns is ongoing !!!

Key Point: All things are done online, remote work (*^▽^*)

What can you learn?

  • Learning the full cycle of data mining on tabular data, including the algorithms in regression,classification, clustering, and decomposition.
  • Learning to be a qualified Python developer, including any Python programing contents towards data mining, basic software engineering techniques like OOP developing, and cooperation tools like Git.

What can you get?

  • Research internship proof and reference letter after working for > 200 hours.
  • Chance to pay a visit to Hangzhou, China, sponsored by ZJU Earth Data.
  • Chance to be guided by the experts from IT companies in Silicon Valley and Hangzhou.
  • Bonus depending on your performance.

Current Working Pattern:

  • Online working and cooperation
  • Three weeks per working cycle -> One online meeting per working cycle
  • One cycle report (see below) per cycle - 5 mins to finish

Even if you are not familiar with topics above, but if you are interested in and have plenty of time to do it. That's enough. We have a full-developed training system to help you, as a newbie of data mining or Python developer, learn steps by steps with seniors until you can make a significant contribution to our project.

More details about the project? Please refer to: English Page: https://person.zju.edu.cn/en/zhangzhou Chinese Page: https://person.zju.edu.cn/zhangzhou#0

Do you want to contribute to this open-source program? Contact with your CV: [email protected]

In-house Materials

Materials are in both Chinese and English. Others unshown below are internal materials.

  1. Guideline Manual – Geochemistry π (International - Google drive)
  2. Guideline Manual – Geochemistry π (China - Tencent Docs)
  3. Learning Steps for Newbies – Geochemistry π (International - Google drive)
  4. Learning Steps for Newbies - Geochemistry π (China - Tencent Docs)
  5. Code Specification v2.1.2 - Geochemistry π (International - Google drive)
  6. Code Specification v2.1.2 - Geochemistry π (China - Tencent Docs)
  7. Cycle Report - Geochemistry π (International - Google drive)
  8. Cycle Report - Geochemistry π (China - Tencent Docs)

In-house Videos

Technical record videos are on Bilibili and Youtube synchronously while other meeting videos are internal materials. More Videos will be recorded soon.

  1. ZJU_Earth_Data Introduction (Geochemical Data, Python, Geochemistry π) - Prof. Zhang
  2. How to Collaborate and Provide Bug Report on Geochemistry π Through GitHub - Can He (Sany)
  3. Geochemistry π - Download and Run the Beta Version
  4. How to Create and Use Virtual Environment on Geochemistry π - Can He (Sany)
  5. How to use Github-Desktop in conflict resolution - Qiuhao Zhao (Brad)
  6. Virtual Environment & Packages On Windows - Jianming Zhao (Jamie)
  7. Git Workflow & Coordinating Synchronization - Jianming Zhao (Jamie)

Contributors

  • Shengxin Wang (Samson, Lanzhou University, China)
  • Qiuhao Zhao (Brad, Zhejiang University, China)
  • Anzhou Li (Andrian, Zhejiang University, China)
  • Dan Hu (Notre Dame University, United States)
  • Xunxin Liu (Tante, China University of Geosciences, Wuhan, China)
  • Fang Li (liv, Shenzhen University, China)
  • Xin Li (The University of Manchester, United Kingdom)
  • Ting Liu (Kira, Sun Yat-sen University, China)
  • Xirui Zhu (Rae, University of York, United Kingdom)