-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_dc_style_v1_4.py
855 lines (683 loc) · 28.6 KB
/
train_dc_style_v1_4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
import os
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import torch
from torch import nn, optim
from torch import autograd
import torch.nn.functional as F
from torch.nn import Parameter
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.utils.data import Dataset,DataLoader,Subset
import torch.nn.utils.spectral_norm as SN
from PIL import Image,ImageOps,ImageEnhance
import cv2
import albumentations as A
from albumentations.pytorch import ToTensor
import glob
import xml.etree.ElementTree as ET #for parsing XML
import shutil
from tqdm import tqdm
import time
import random
from sklearn.metrics import accuracy_score
import torch.backends.cudnn as cudnn
import sys
from evaluation_script.client.mifid_demo import MIFID
from glob import glob
from numpy.random import choice
import random
import pytz
from datetime import datetime
tz = pytz.timezone('Asia/Saigon')
# set params
MODEL_NAME = 'dc_style_v1_4'
LOG = 'log_{}.txt'.format(MODEL_NAME)
LIMIT_DATA = -1
EPOCHS = 500
BATCH_SIZE = 32
NUM_WORKERS = 16
NC = 3
NZ = 128
NGF = 32
NDF = 40
LR_G = 0.0003
LR_D = 0.0003
BETA1 = 0.5
BETA2 = 0.999
SPECTRAL_NORM = True
NORMALIZATION = 'adain' # selfmod or adain
RANDOM_NOISE = True
USE_STYLE = True
LOSS = 'HINGE' #NS or WGAN or HINGE
PIXEL_NORM = True
USE_SOFT_NOISY_LABELS = True
INVERT_LABELS = True
IMG_SIZE = 128
MEAN1,MEAN2,MEAN3 = 0.5, 0.5, 0.5
STD1,STD2,STD3 = 0.5, 0.5, 0.5
MANUAL_SEED = None
PATH_MODEL_G = ''
PATH_MODEL_D = ''
DIR_IMAGES_INPUT = '/data/cuong/data/motobike_gen/motobike/'
DIR_IMAGES_OUTPUT = '/data/cuong/result/motobike/{}/'.format(MODEL_NAME)
INTRUDERS = [
'2019_08_05_05_17_32_B0xS_6hHgXG_66398352_483445189138958_8195470045202604419_n_1568719912383_18787.jpg', #
'22_honda_20Blade_20_3__1568719132927_7959.jpg', #cannot write mode CMYK as PNG
'50_1_1547807271_1568719515097_13285.jpg',#cannot write mode CMYK as PNG
'83_6060897e2b1d5627435b1bec2e5a9ac2_1568719487112_12907.jpg',#cannot write mode CMYK as PNG
'94_banner_tskt_1568719223567_9195.jpg',#cannot write mode CMYK as PNG
'Motorel38d6l1smallMotor.jpg', # truncated
'MotorbausxbbzsmallMotor.jpg', # high ratio
'Motorytec9gywsmallMotor.jpg', # high ratio
'Motortq4lbb5wsmallMotor.jpg', # outlier
'Motorjp975mnnsmallMotor.jpg', # outlier
'Motor_ho4pcmksmallMotor.jpg', # outlier
'Motor2fankuyqsmallMotor.jpg', # outlier
'Motorgk66yavfsmallMotor.jpg', # outlier
]
def clean_dir(directory):
if os.path.exists(directory):
shutil.rmtree(directory)
os.makedirs(directory)
def printBoth(filename, args):
date_time = datetime.now(tz).strftime('%Y-%m-%d %H:%M:%S ')
# write log
fo = open(filename, "a")
fo.write(date_time + args+'\n')
fo.close()
# print
print(date_time + args)
class MotobikeDataset(Dataset):
def __init__(self, path, img_list, transform1=None, transform2=None):
self.path = path
self.img_list = img_list
self.transform1 = transform1
self.transform2 = transform2
self.imgs = []
self.labels = []
for i,img_name in enumerate(self.img_list):
# load image
img_path = os.path.join(self.path, img_name)
img = Image.open(img_path).convert('RGB')
# apply transform
if self.transform1:
img = self.transform1(img) #output shape=(ch,h,w)
if self.transform2:
img = self.transform2(img)
self.imgs.append(img)
#label
label = 0 #breed_map_2[img_path.split('_')[0]]
self.labels.append(label)
def __len__(self):
return len(self.imgs)
def __getitem__(self,idx):
img = self.imgs[idx]
label = self.labels[idx]
return {'img':img, 'label':label}
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class BatchNormModulate2d(nn.Module):
"""
Similar to batch norm, but with learnable weights and bias
"""
def __init__(self, num_features, dim_in, eps=2e-5, momentum=0.1, affine=True,
track_running_stats=True, use_sn=True):
super().__init__()
self.num_features = num_features
self.dim_in = dim_in
self.bn = nn.BatchNorm2d(num_features, affine=False)
self.gamma = nn.Sequential(
nn.Linear(dim_in, num_features, bias=True),
nn.LeakyReLU(0.2),
nn.Linear(num_features, num_features, bias=False)
)
self.beta = nn.Sequential(
nn.Linear(dim_in, num_features, bias=True),
nn.LeakyReLU(0.2),
nn.Linear(num_features, num_features, bias=False)
)
def forward(self, x, z):
out = self.bn(x)
gamma = self.gamma(z)
beta = self.beta(z)
out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1, self.num_features, 1, 1)
return out
class PixelNorm(nn.Module):
def __init__(self, epsilon=1e-8):
"""
@notice: avoid in-place ops.
https://discuss.pytorch.org/t/encounter-the-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/836/3
"""
super(PixelNorm, self).__init__()
self.epsilon = epsilon
def forward(self, x):
tmp = torch.mul(x, x) # or x ** 2
tmp1 = torch.rsqrt(torch.mean(tmp, dim=1, keepdim=True) + self.epsilon)
return x * tmp1
class GaussianNoise(nn.Module):
def __init__(self, channels):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1, channels, 1, 1))
def forward(self, x, noise=None):
if noise is None:
noise = torch.randn(x.shape[0], 1, x.shape[2], x.shape[3], device=x.device, dtype=x.dtype)
return x + self.weight.view(1, -1, 1, 1) * noise.to(x.device)
class AdaIn(nn.Module):
"""
latent_dim represents dimension of latent vector similar to style vector in StyleGAN
"""
def __init__(self, in_channel, latent_dim):
super().__init__()
self.norm = nn.InstanceNorm2d(in_channel)
self.style = nn.Linear(latent_dim, in_channel * 2)
def forward(self, input, style):
style = self.style(style).unsqueeze(2).unsqueeze(3)
gamma, beta = style.chunk(2, 1)
out = self.norm(input)
out = gamma * out + beta
return out
class Projection(nn.Module):
def __init__(self,
nz,
in_channel,
out_channel,
shape,
bias=False,
spectral_norm=False,
normalization='selfmod',
random_noise=False,
use_style=False,
use_pixel_norm=False):
super().__init__()
self.shape = shape
self.linear = nn.Linear(in_channel, out_channel, bias=bias)
self.conv = nn.Conv2d(shape[0], shape[0], 3, 1, 1, bias=bias)
if spectral_norm:
self.linear = SN(self.linear)
self.conv = SN(self.conv)
self.noise1 = None
if random_noise:
self.noise1 = GaussianNoise(shape[0])
self.noise2 = GaussianNoise(shape[0])
self.pixel_norm = None
if use_pixel_norm:
self.pixel_norm = PixelNorm()
self.style1 = None
self.style2 = None
if normalization == 'adain':
self.norm1 = AdaIn(shape[0], nz)
self.norm2 = AdaIn(shape[0], nz)
else:
self.norm1 = BatchNormModulate2d(shape[0], nz)
self.norm2 = BatchNormModulate2d(shape[0], nz)
def forward(self, x, nz):
x = self.linear(x)
x = x.view([x.shape[0]] + self.shape)
if self.noise1 is not None:
x = self.noise1(x)
x = F.leaky_relu(x)
if self.pixel_norm is not None:
x = self.pixel_norm(x)
x = self.norm1(x, nz)
x = self.conv(x)
if self.noise2 is not None:
x = self.noise2(x)
x = F.leaky_relu(x)
if self.pixel_norm is not None:
x = self.pixel_norm(x)
x = self.norm2(x, nz)
return x
class UpConvBlock(nn.Module):
"""
normalization is 'selfmod', 'adain'
"""
def __init__(self,
nz,
in_channel,
out_channel,
kernel=4,
stride=2,
padding=1,
bias=False,
spectral_norm=False,
normalization='selfmod',
random_noise=False,
use_style=False,
use_pixel_norm=False):
super().__init__()
self.conv1 = nn.ConvTranspose2d(in_channel, out_channel, kernel, stride, padding, bias=bias)
self.conv2 = nn.Conv2d(out_channel, out_channel, 3, 1, 1, bias=bias)
if spectral_norm:
self.conv1 = SN(self.conv1)
self.conv2 = SN(self.conv2)
self.noise1 = None
self.noise2 = None
if random_noise:
self.noise1 = GaussianNoise(out_channel)
self.noise2 = GaussianNoise(out_channel)
self.pixel_norm = None
if use_pixel_norm:
self.pixel_norm = PixelNorm()
self.style1 = None
self.style2 = None
if normalization == 'adain':
self.norm1 = AdaIn(out_channel, nz)
self.norm2 = AdaIn(out_channel, nz)
else:
self.norm1 = BatchNormModulate2d(out_channel, nz)
self.norm2 = BatchNormModulate2d(out_channel, nz)
def forward(self, x, latent):
x = self.conv1(x)
if self.noise1 is not None:
x = self.noise1(x)
x = F.leaky_relu(x)
if self.pixel_norm is not None:
x = self.pixel_norm(x)
x = self.norm1(x, latent)
x = self.conv2(x)
if self.noise2 is not None:
x = self.noise2(x)
x = F.leaky_relu(x)
if self.pixel_norm is not None:
x = self.pixel_norm(x)
x = self.norm2(x, latent)
return x
class Generator(nn.Module):
def __init__(self,
nz,
nfeats,
nchannels,
bias=False,
spectral_norm=False,
normalization='selfmod',
random_noise=False,
use_style=False,
use_pixel_norm=False):
super(Generator, self).__init__()
self.mapping = nn.Sequential(
SN(nn.Linear(nz, nz, bias=bias)),
nn.LeakyReLU()
)
self.linear = Projection(nz, nz, 8*8*nfeats*16, [nfeats*16, 8, 8], bias,
spectral_norm, normalization, random_noise, use_style, use_pixel_norm) #(nfeats*16) x 8 x 8
self.conv1 = UpConvBlock(nz, nfeats*16, nfeats*8, 4, 2, 1, bias,
spectral_norm, normalization, random_noise, use_style, use_pixel_norm) #(nfeats*8) x 16 x 16
self.conv2 = UpConvBlock(nz, nfeats*8, nfeats*4, 4, 2, 1, bias,
spectral_norm, normalization, random_noise, use_style, use_pixel_norm) #(nfeats*4) x 32 x 32
self.conv3 = UpConvBlock(nz, nfeats*4, nfeats*2, 4, 2, 1, bias,
spectral_norm, normalization, random_noise, use_style, use_pixel_norm) #(nfeats*2) x 64 x 64
self.conv4 = UpConvBlock(nz, nfeats*2, nfeats*1, 4, 2, 1, bias,
spectral_norm, normalization, random_noise, use_style, use_pixel_norm) #(nfeats*1) x 128 x 128
self.conv5 = nn.Conv2d(nfeats*1, nchannels, 1, 1, 0, bias=bias) #(nchannels) x 128 x 128
if spectral_norm:
self.conv5 = SN(self.conv5)
def forward(self, x):
latent = self.mapping(x)
out = self.linear(x, latent)
out = self.conv1(out, latent)
out = self.conv2(out, latent)
out = self.conv3(out, latent)
out = self.conv4(out, latent)
out = torch.tanh(self.conv5(out))
return out
class Discriminator(nn.Module):
def __init__(self, nchannels, nfeats):
super(Discriminator, self).__init__()
# input is (nchannels) x 128 x 128
self.from_rgb = nn.Sequential(
SN(nn.Conv2d(nchannels, nfeats*1, 1, 1, 0, bias=False)),
nn.BatchNorm2d(nfeats*1),
nn.LeakyReLU(0.2)
)
self.conv1 = nn.Sequential(
SN(nn.Conv2d(nfeats*1, nfeats*1, 3, 1, 1, bias=True)),
nn.BatchNorm2d(nfeats*1),
nn.LeakyReLU(0.2),
SN(nn.Conv2d(nfeats*1, nfeats*2, 4, 2, 1, bias=True)),
nn.BatchNorm2d(nfeats*2),
nn.LeakyReLU(0.2)
)
# (2*nfeats) x 64 x 64
self.conv2 = nn.Sequential(
SN(nn.Conv2d(nfeats*2, nfeats*2, 3, 1, 1, bias=False)),
nn.BatchNorm2d(nfeats*2),
nn.LeakyReLU(0.2),
SN(nn.Conv2d(nfeats*2, nfeats*4, 4, 2, 1, bias=False)),
nn.BatchNorm2d(nfeats*4),
nn.LeakyReLU(0.2)
)
# (4*nfeats) x 32 x 32
self.conv3 = nn.Sequential(
SN(nn.Conv2d(nfeats*4, nfeats*4, 3, 1, 1, bias=False)),
nn.BatchNorm2d(nfeats*4),
nn.LeakyReLU(0.2),
SN(nn.Conv2d(nfeats*4, nfeats*8, 4, 2, 1, bias=False)),
nn.BatchNorm2d(nfeats*8),
nn.LeakyReLU(0.2)
)
# (8*nfeats) x 16 x 16
self.conv4 = nn.Sequential(
SN(nn.Conv2d(nfeats*8, nfeats*8, 3, 1, 1, bias=False)),
nn.BatchNorm2d(nfeats*8),
nn.LeakyReLU(0.2),
SN(nn.Conv2d(nfeats*8, nfeats*16, 4, 2, 1, bias=False)),
nn.BatchNorm2d(nfeats*16),
nn.LeakyReLU(0.2)
)
# (16*nfeats) x 8 x 8
self.conv5 = nn.Sequential(
SN(nn.Conv2d(nfeats*16, nfeats*16, 3, 1, 1, bias=False)),
nn.BatchNorm2d(nfeats*16),
nn.LeakyReLU(0.2)
)
# (16*nfeats) x 8 x 8
self.linear = SN(nn.Linear(8*8*nfeats*16, 1, bias=False))
def forward(self, x):
x = self.from_rgb(x)
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = x.view(x.shape[0], -1)
x = self.linear(x)
return x
def gradient_penalty(x, y, f):
# interpolation
shape = [x.size(0)] + [1] * (x.dim() - 1)
alpha = torch.rand(shape).to(x.device)
z = x + alpha * (y - x)
# gradient penalty
z = Variable(z, requires_grad=True).to(x.device)
o = f(z)
g = grad(o, z, grad_outputs=torch.ones(o.size()).to(z.device), create_graph=True)[0].view(z.size(0), -1)
gp = ((g.norm(p=2, dim=1) - 1)**2).mean()
return gp
def R1Penalty(real_img, f):
# gradient penalty
reals = Variable(real_img, requires_grad=True).to(real_img.device)
real_logit = f(reals)
apply_loss_scaling = lambda x: x * torch.exp(x * torch.Tensor([np.float32(np.log(2.0))]).to(real_img.device))
undo_loss_scaling = lambda x: x * torch.exp(-x * torch.Tensor([np.float32(np.log(2.0))]).to(real_img.device))
real_logit = apply_loss_scaling(torch.sum(real_logit))
real_grads = grad(real_logit, reals, grad_outputs=torch.ones(real_logit.size()).to(reals.device), create_graph=True)[0].view(reals.size(0), -1)
real_grads = undo_loss_scaling(real_grads)
r1_penalty = torch.sum(torch.mul(real_grads, real_grads))
return r1_penalty
def G_wgan(G, D, nz, batch_size):
noise = torch.randn(batch_size, nz, device=device)
fake_images = G(noise)
fake_logit = D(fake_images)
G_loss = -fake_logit.mean()
return G_loss
def D_wgan_gp(G, D, real_images, nz, lammy=10.0, eps=0.001):
batch_size = real_images.shape[0]
real_logit = D(real_images)
noise = torch.randn(batch_size, nz, device=device)
fake_images = G(noise)
fake_logit = D(fake_images.detach())
D_loss = fake_logit.mean() - real_logit.mean()
D_loss += gradient_penalty(real_images.data, fake_images.data, D) * lammy
# D_loss += real_logit.mean()**2 * eps
return D_loss
def D_NS(G, D, real_images, nz, real_labels, fake_labels):
batch_size = real_images.shape[0]
real_logit = D(real_images)
D_loss_real = F.binary_cross_entropy_with_logits(real_logit, real_labels)
noise = torch.randn(batch_size, nz, device=device)
fake_images = G(noise)
fake_logit = D(fake_images.detach())
D_loss_fake = F.binary_cross_entropy_with_logits(fake_logit, fake_labels)
D_loss = D_loss_real + D_loss_fake
return D_loss, D_loss_real.item(), D_loss_fake.item()
def G_NS(G, D, nz, batch_size, real_labels):
noise = torch.randn(batch_size, nz, device=device)
fake_images = G(noise)
fake_logit = D(fake_images)
G_loss = F.binary_cross_entropy_with_logits(fake_logit, real_labels)
return G_loss
def D_Hinge(G, D, real_images, nz):
batch_size = real_images.shape[0]
real_logit = D(real_images)
D_loss_real = torch.mean(F.relu(1.0 - real_logit))
noise = torch.randn(batch_size, nz, device=device)
fake_images = G(noise)
fake_logit = D(fake_images.detach())
D_loss_fake = torch.mean(F.relu(1.0 + fake_logit))
D_loss = D_loss_real + D_loss_fake
return D_loss, D_loss_real, D_loss_fake
def G_Hinge(G, D, nz, batch_size):
noise = torch.randn(batch_size, nz, device=device)
fake_images = G(noise)
fake_logit = D(fake_images)
G_loss = -torch.mean(fake_logit)
return G_loss
def validate_images_gen(netG, fixed_noise, dir_output):
gen_images = netG(fixed_noise).to('cpu').clone().detach().squeeze(0)
gen_images = gen_images*0.5 + 0.5
for i in range(gen_images.size(0)):
save_image(gen_images[i, :, :, :], os.path.join(dir_output, '{}.png'.format(i)))
def evaluate_dataset(dir_dataset, mifid):
img_paths = glob(os.path.join(dir_dataset,'*.*'))
img_np = np.empty((len(img_paths), 128, 128, 3), dtype=np.uint8)
for idx, path in tqdm(enumerate(img_paths)):
img_arr = cv2.imread(path)[..., ::-1]
img_arr = np.array(img_arr)
img_np[idx] = img_arr
score = mifid.compute_mifid(img_np)
return score
def get_accuracy(output, label):
output = output.to('cpu').clone().detach().squeeze().numpy()
output = (output > 0.5).astype('uint8')
label = label.to('cpu').clone().detach().squeeze().numpy()
label = (label > 0.5).astype('uint8')
acc = accuracy_score(output, label)
return acc
class Trainer:
def __init__(self, nz, G, D, r1_gamma=0.0, track_grads=False):
self.nz = nz
self.track_grads=track_grads
self.G = G
self.D = D
self.fixed_noise = torch.randn(64, self.nz)
self.r1_gamma = r1_gamma
self.d_losses = []
self.g_losses = []
self.d_losses_real = []
self.d_losses_fake = []
self.img_list = []
self.g_grads = []
self.d_grads = []
def check_grads(self, model):
grads = []
for n, p in model.named_parameters():
if not p.grad is None and p.requires_grad and "bias" not in n:
grads.append(float(p.grad.abs().mean()))
return grads
def train(self, epochs, loader, criterion, optim_G, optim_D, scheduler_D, scheduler_G, loss='NS'):
step = 0
fixed_noise = torch.randn(128, NZ, device=device)
for epoch in tqdm(range(epochs)):
for ii, real_images in enumerate(loader):
real_images = real_images['img']
batch_size = real_images.size(0)
if USE_SOFT_NOISY_LABELS:
real_labels = torch.empty((batch_size, 1), device=device).uniform_(0.80, 0.95)
fake_labels = torch.empty((batch_size, 1), device=device).uniform_(0.05, 0.20)
else:
real_labels = torch.full((batch_size, 1), 0.95, device=device)
fake_labels = torch.full((batch_size, 1), 0.05, device=device)
if INVERT_LABELS and random.random() < 0.01:
real_labels, fake_labels = fake_labels, real_labels
# Train Discriminator
self.D.zero_grad()
real_images = real_images.to(device)
if loss == 'WGAN':
D_loss = D_wgan_gp(self.G, self.D, real_images, self.nz)
elif loss == 'HINGE':
D_loss, D_loss_real, D_loss_fake = D_Hinge(self.G, self.D, real_images, self.nz)
else:
D_loss, D_loss_real, D_loss_fake = D_NS(self.G, self.D, real_images, self.nz, real_labels, fake_labels)
D_loss.backward()
optim_D.step()
# Train Generator
self.G.zero_grad()
if loss == 'WGAN':
G_loss = G_wgan(self.G, self.D, self.nz, batch_size)
elif loss == 'HINGE':
G_loss = G_Hinge(self.G, self.D, self.nz, batch_size)
else:
G_loss = G_NS(self.G, self.D, self.nz, batch_size, real_labels)
G_loss.backward()
optim_G.step()
step += 1
# save model
torch.save(self.G.state_dict(), DIR_IMAGES_OUTPUT + '{}_G.pth'.format(epoch))
torch.save(self.D.state_dict(), DIR_IMAGES_OUTPUT + '{}_D.pth'.format(epoch))
# evaluate and save generated images
with torch.no_grad():
dir_output = DIR_IMAGES_OUTPUT + str(epoch)
clean_dir(dir_output)
validate_images_gen(self.G, fixed_noise, dir_output)
fdi = evaluate_dataset(dir_output, mifid)
# print
printBoth(LOG, 'epoch={}; loss_d={:0.5}; loss_g={:0.5}; fdi={:0.5}'.\
format(epoch, D_loss.item(), G_loss.item(), fdi))
# scheduler_D.step()
# scheduler_G.step()
def weights_init(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d or type(m) == nn.ConvTranspose2d:
torch.nn.init.kaiming_uniform(m.weight)
if m.bias is not None:
m.bias.data.zero_()
# m.bias.data.fill_(0.01)
def generate_seed(manualSeed=None):
if manualSeed is None:
manualSeed = random.randint(1000, 10000) # fix seed
printBoth(LOG, 'RANDOM SEED: {}'.format(manualSeed))
random.seed(manualSeed)
np.random.seed(manualSeed)
torch.manual_seed(manualSeed)
cudnn.benchmark = True
def print_params():
printBoth(LOG, 'MODEL_NAME = {}'.format(MODEL_NAME))
printBoth(LOG, 'LOG = {}'.format(LOG))
printBoth(LOG, 'LIMIT_DATA = {}'.format(LIMIT_DATA))
printBoth(LOG, 'EPOCHS = {}'.format(EPOCHS))
printBoth(LOG, 'BATCH_SIZE = {}'.format(BATCH_SIZE))
printBoth(LOG, 'NUM_WORKERS = {}'.format(NUM_WORKERS))
printBoth(LOG, 'NC = {}'.format(NC))
printBoth(LOG, 'NZ = {}'.format(NZ))
printBoth(LOG, 'NGF = {}'.format(NGF))
printBoth(LOG, 'NDF = {}'.format(NDF))
printBoth(LOG, 'LR_G = {}'.format(LR_G))
printBoth(LOG, 'LR_D = {}'.format(LR_D))
printBoth(LOG, 'BETA1 = {}'.format(BETA1))
printBoth(LOG, 'BETA2 = {}'.format(BETA2))
printBoth(LOG, 'SPECTRAL_NORM = {}'.format(SPECTRAL_NORM))
printBoth(LOG, 'NORMALIZATION = {}'.format(NORMALIZATION))
printBoth(LOG, 'RANDOM_NOISE = {}'.format(RANDOM_NOISE))
printBoth(LOG, 'USE_STYLE = {}'.format(USE_STYLE))
printBoth(LOG, 'LOSS = {}'.format(LOSS))
printBoth(LOG, 'PIXEL_NORM = {}'.format(PIXEL_NORM))
printBoth(LOG, 'USE_SOFT_NOISY_LABELS = {}'.format(USE_SOFT_NOISY_LABELS))
printBoth(LOG, 'INVERT_LABELS = {}'.format(INVERT_LABELS))
printBoth(LOG, 'MANUAL_SEED = {}'.format(MANUAL_SEED))
printBoth(LOG, 'PATH_MODEL_G = {}'.format(PATH_MODEL_G))
printBoth(LOG, 'PATH_MODEL_D = {}'.format(PATH_MODEL_D))
printBoth(LOG, 'IMG_SIZE = {}'.format(IMG_SIZE))
printBoth(LOG, 'MEAN1 = {}; MEAN2 = {}; MEAN3 = {}'.format(MEAN1, MEAN2, MEAN3))
printBoth(LOG, 'STD1 = {}; STD2 = {}; STD3 = {};'.format(STD1, STD2, STD3))
printBoth(LOG, 'DIR_IMAGES_INPUT = {}'.format(DIR_IMAGES_INPUT))
printBoth(LOG, 'DIR_IMAGES_OUTPUT = {}'.format(DIR_IMAGES_OUTPUT))
printBoth(LOG, 'NUM_WORKERS = {}'.format(NUM_WORKERS))
def generate_images(model_path, dir_images_output, num_images=10000, batch_size=1000, truncated=None, device='cuda'):
# load model
netG = Generator(NZ, NGF, 3, False, SPECTRAL_NORM, NORMALIZATION, RANDOM_NOISE, USE_STYLE, PIXEL_NORM).to(device)
netG.load_state_dict(torch.load(model_path, map_location=torch.device(device)))
# generate
clean_dir(dir_images_output)
for batch in range(int(num_images/batch_size)):
#print('Generating batch {}'.format(batch))
if truncated is not None:
cont = True
while cont:
z = np.random.randn(100*batch_size*NZ)
z = z[np.where(abs(z)<truncated)]
if len(z)>=batch_size*NZ:
cont = False
z = torch.from_numpy(z[:batch_size*NZ]).view(batch_size, NZ)
z = z.float().to(device)
else:
z = torch.randn(batch_size, NZ, device=device)
with torch.no_grad():
gen_images = netG(z)
gen_images = gen_images.to('cpu').clone().detach()
gen_images = gen_images*0.5 + 0.5
for i in range(gen_images.size(0)):
save_image(gen_images[i, :, :, :], os.path.join(dir_images_output, '{}_{}.png'.format(batch, i)))
if __name__ == '__main__':
# load the evaluation model
printBoth(LOG, 'Loading the evaluation model ...')
mifid = MIFID(model_path='./evaluation_script/client/motorbike_classification_inception_net_128_v4_e36.pb',
public_feature_path='./evaluation_script/client/public_feature.npz')
# set seeds
generate_seed(MANUAL_SEED)
# params
print_params()
# create transform
printBoth(LOG, 'Creating dataloaders ...')
transform1 = transforms.Compose([transforms.Resize(IMG_SIZE)])
transform2 = transforms.Compose([transforms.RandomCrop(IMG_SIZE),
transforms.ColorJitter(),
transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize(mean=[MEAN1, MEAN2, MEAN3],
std=[STD1, STD2, STD3]),
])
img_filenames = []
for image_name in sorted(os.listdir(DIR_IMAGES_INPUT)):
if image_name not in INTRUDERS:
img_filenames.append(image_name)
if (LIMIT_DATA>0) and (len(img_filenames)>=LIMIT_DATA):
break
printBoth(LOG, 'The length of img_filenames = {}'.format(len(img_filenames)))
# create dataloader
train_set = MotobikeDataset(path=DIR_IMAGES_INPUT,
img_list=img_filenames,
transform1=transform1,
transform2=transform2,
)
train_loader = DataLoader(train_set,
shuffle=True,
batch_size=BATCH_SIZE,
num_workers=NUM_WORKERS,
pin_memory=True)
printBoth(LOG, 'The length of train_set = {}'.format(len(train_set)))
printBoth(LOG, 'The length of train_loader = {}'.format(len(train_loader)))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
printBoth(LOG, 'DEVICE = {}'.format(device))
# train
netG = Generator(NZ, NGF, 3, False, SPECTRAL_NORM, NORMALIZATION, RANDOM_NOISE, USE_STYLE, PIXEL_NORM).to(device)
netD = Discriminator(3, NDF).to(device)
if PATH_MODEL_G is not '':
netG.load_state_dict(torch.load(PATH_MODEL_G, map_location=torch.device(device)))
if PATH_MODEL_D is not '':
netD.load_state_dict(torch.load(PATH_MODEL_D, map_location=torch.device(device)))
printBoth(LOG, 'count_parameters of netG = {}'.format(count_parameters(netG)))
printBoth(LOG, 'count_parameters of netD = {}'.format(count_parameters(netD)))
netG.apply(weights_init)
netD.apply(weights_init)
criterion = nn.BCELoss()
optimizerD = optim.Adam(netD.parameters(), lr=LR_D, betas=(BETA1, BETA2))
optimizerG = optim.Adam(netG.parameters(), lr=LR_G, betas=(BETA1, BETA2))
scheduler_D = optim.lr_scheduler.ExponentialLR(optimizerD, gamma=0.99)
scheduler_G = optim.lr_scheduler.ExponentialLR(optimizerG, gamma=0.99)
# train
clean_dir(DIR_IMAGES_OUTPUT)
trainer = Trainer(NZ, netG, netD, track_grads=True)
trainer.train(EPOCHS, train_loader, criterion, optimizerG, optimizerD, scheduler_D, scheduler_G, loss=LOSS)