diff --git a/math/calculus-for-ml/symbolic_numerical_automatic_differentiation_in_python.ipynb b/math/calculus-for-ml/symbolic_numerical_automatic_differentiation_in_python.ipynb
new file mode 100644
index 0000000..58bc6e0
--- /dev/null
+++ b/math/calculus-for-ml/symbolic_numerical_automatic_differentiation_in_python.ipynb
@@ -0,0 +1,1673 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "reverse-interview",
+ "metadata": {},
+ "source": [
+ "# Differentiation in Python: Symbolic, Numerical and Automatic"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "parental-conclusion",
+ "metadata": {},
+ "source": [
+ "In this lab you explore which tools and libraries are available in Python to compute derivatives. You will perform symbolic differentiation with `SymPy` library, numerical with `NumPy` and automatic with `JAX` (based on `Autograd`). Comparing the speed of calculations, you will investigate the computational efficiency of those three methods."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "looking-barcelona",
+ "metadata": {},
+ "source": [
+ "# Table of Contents\n",
+ "- [ 1 - Functions in Python](#1)\n",
+ "- [ 2 - Symbolic Differentiation](#2)\n",
+ " - [ 2.1 - Introduction to Symbolic Computation with `SymPy`](#2.1)\n",
+ " - [ 2.2 - Symbolic Differentiation with `SymPy`](#2.2)\n",
+ " - [ 2.3 - Limitations of Symbolic Differentiation](#2.3)\n",
+ "- [ 3 - Numerical Differentiation](#3)\n",
+ " - [ 3.1 - Numerical Differentiation with `NumPy`](#3.1)\n",
+ " - [ 3.2 - Limitations of Numerical Differentiation](#3.2)\n",
+ "- [ 4 - Automatic Differentiation](#4)\n",
+ " - [ 4.1 - Introduction to `JAX`](#4.1)\n",
+ " - [ 4.2 - Automatic Differentiation with `JAX` ](#4.2)\n",
+ "- [ 5 - Computational Efficiency of Symbolic, Numerical and Automatic Differentiation](#5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "101116ab",
+ "metadata": {},
+ "source": [
+ "\n",
+ "## 1 - Functions in Python"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bc6140d8",
+ "metadata": {},
+ "source": [
+ "This is just a reminder how to define functions in Python. A simple function $f\\left(x\\right) = x^2$, it can be set up as:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "d07a15ef",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "9\n"
+ ]
+ }
+ ],
+ "source": [
+ "def f(x):\n",
+ " return x**2\n",
+ "\n",
+ "print(f(3))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "06330bd1",
+ "metadata": {},
+ "source": [
+ "You can easily find the derivative of this function analytically. You can set it up as a separate function:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "1ff4ffb5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "6\n"
+ ]
+ }
+ ],
+ "source": [
+ "def dfdx(x):\n",
+ " return 2*x\n",
+ "\n",
+ "print(dfdx(3))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8301af3f",
+ "metadata": {},
+ "source": [
+ "Since you have been working with the `NumPy` arrays, you can apply the function to each element of an array:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "9f5831d8",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x: \n",
+ " [1 2 3]\n",
+ "f(x) = x**2: \n",
+ " [1 4 9]\n",
+ "f'(x) = 2x: \n",
+ " [2 4 6]\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "\n",
+ "x_array = np.array([1, 2, 3])\n",
+ "\n",
+ "print(\"x: \\n\", x_array)\n",
+ "print(\"f(x) = x**2: \\n\", f(x_array))\n",
+ "print(\"f'(x) = 2x: \\n\", dfdx(x_array))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8428f910",
+ "metadata": {},
+ "source": [
+ "Now you can apply those functions `f` and `dfdx` to an array of a larger size. The following code will plot function and its derivative (you don't have to understand the details of the `plot_f1_and_f2` function at this stage):"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "5c255f4e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ0UlEQVR4nO3deZyNdf/H8dcxGIYx1jFkX0LWUiQtwo1yd0fpLlFGsjWUpU0bpZLlVlmylK0QbUiLsqssSakoQvaM3YyxzIyZ6/fH5zdOk20wM9dZ3s/H4zy65pozZz5OM9f1nu/qcRzHQURERIJWDrcLEBEREXcpDIiIiAQ5hQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiQc5xHOLj49GSIyLBS2FAJMgdPXqUiIgIjh496nYpIuIShQEREZEgpzAgIiIS5BQGREREgpzCgIiISJBTGBAREQlyCgMiIiJBTmFAREQkyCkMiIiIBDmFARERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEPFhgwYN4rrrriM8PJzIyEhatWrFxo0b0z2nUaNGeDyedI9u3bq5VLGI+COFAREftnTpUmJiYli5ciXz588nOTmZZs2acezYsXTP69y5M3v27Dn9GDJkiEsVi4g/yul2AZw8CTlz2kNE0pk3b166jydPnkxkZCRr1qzh5ptvPn0+LCyMqKio7C5PRDLDqVP2yJPHtRLcbRkYPx7KlYP333e1DBF/ERcXB0DhwoXTnZ82bRpFixalRo0a9OvXj+PHj5/zNRITE4mPj0/3EBEXTZ8O5cvbPdEl7v45fugQ7N0LgwZBu3aQQ70WIueSmppKr169aNiwITVq1Dh9/v7776ds2bKULFmSX375haeeeoqNGzfyySefnPV1Bg0axIsvvphdZYvI+aSmwmuvQWwsHD7sWhkex3Ec1757XByUKQPx8TBrFrRq5VopIr6ue/fufPnll3z77beUKlXqnM9btGgRTZo0YfPmzVSsWPGMzycmJpKYmHj64/j4eEqXLk1cXBwFChTIktpF5BxmzYK77oKICNixA1z6HXT3T/GICOjRw45ffRVczCUivqxHjx589tlnLF68+LxBAKB+/foAbN68+ayfDw0NpUCBAukeIuICx7F7H9i90MXfRffb5R97zAZNrF4Nixa5XY2IT3Echx49ejBr1iwWLVpE+fLlL/g1a9euBaBEiRJZXJ2IXJaFC+GHHyBvXrsXusj9MBAZCZ0723FaQhIRAGJiYpg6dSrTp08nPDyc2NhYYmNjOXHiBABbtmxh4MCBrFmzhm3btvHpp5/y4IMPcvPNN1OrVi2XqxeR80q753XuDMWKuVqKu2MG0uzYARUr2tSKlSvh/5s5RYKdx+M56/lJkyYRHR3Nzp07ad++PevWrePYsWOULl2a1q1b89xzz2W4+T8+Pp6IiAiNGRDJTitXQoMGNq1+yxYbP+ci3wgDAB07wuTJcOedMHu229WIBA2FAREX3HknfPqp3fsmTnS7Gh8KAxs2wFVX2YCKdeugenW3KxIJCgoDItls3TqoWRM8Hvj9d6hSxe2KfGDMQJqqVW16BdicSxERkUCUdo+7+26fCALgSy0DAGvWwLXXQkgI/PEHVKjgdkUiAU8tAyLZ6M8/4corISXF7nnXXON2RYAvtQwA1K0LzZvbm6SNVkREJNAMHmz3uObNfSYIgK+1DAB8+y3cdBPkzm0jLC+wwIqIXB61DIhkk127rMU7OdnudQ0bul3Rab7VMgBw441wyy2QlATDhrldjYiISOYYOtSCQKNGPhUEwBdbBgAWLIB//ctWZdq6FYoXd7sikYCllgGRbLB3r+3Se/Kk3eOaNHG7onR8r2UA7E2qXx9OnIDXX3e7GhERkcszfLgFgeuvh8aN3a7mDL4ZBjweeO45Ox492rY6FhER8UcHD8Jbb9nxc8/ZPc7H+GYYAGjZEmrXhoQEGDHC7WpEREQuzYgRdi+rUwduv93tas7Kd8PA31sH3nwT4uPdrUdERORixcV5/6D10VYB8OUwALYiYbVqcOSIdReIiIj4k7fesntYtWrQurXb1ZyTb4eBHDngmWfsePhwa2YRERHxBwkJ8L//2fEzz9g9zUf5bmVp7rsPKlWCAwdgzBi3qxEREcmYt96ywYOVK9u9zIf5fhjImROefdaOhw6FY8fcrUdERORCjh3zLpz37LN2L/Nhvh8GANq1syUc9++HcePcrkZEROT8xo61e1aFCnYP83H+EQZy5fKOHRgyBI4fd7ceERGRczl+3LvZnh+0CoC/hAGABx+0pRz37oXx492uRkRE5OzGjYN9+6B8eXjgAberyRD/CQN/bx0YPNiWKhYREfElJ054WwWeecbuXX7Af8IAQIcOUKYMxMbCO++4XY2IiEh6b79t96gyZaxF20/4VxjInRv69bPj116zTR9ERER8wcmT1nIN1iqQO7e79VwE/woDAB07QqlS8Ndfah0QERHf8fbbdm8qXRqio92u5qL4XxgIDfWOHRg0SK0DIiLivhMn7J4Edo8KDXW3novkf2EA4KGHLHn99ZdmFoiIiPvGj4c9e2yswEMPuV3NRfPPMBAa6t3RcNAgzSwQERH3HD/ubRV47jm/GiuQxj/DAFh/TNmyNmpz7Fi3qxERkWA1dqytgVOunN+NFUjjv2Egd254/nk7fu017VkgIiLZ79gxuweB3ZP8ZF2Bf/LfMAA2h7NCBVvpSTsaiohIdnvrLe8eBH6y2uDZ+HcYyJXLO3Zg8GDbO1pERCQ7JCR4Vxv041YB8PcwAJbEKlaEAwdg1Ci3qxERkWAxapTdeypVgvbt3a7msvh/GMiZE154wY6HDoX4eHfrERGRwBcX520VeOEFv9iZ8Hz8PwwA3H8/VKkChw7BG2+4XY2IiAS6N96Aw4ehalW7B/m5wAgDOXPCSy/Z8f/+Z6FAREQkKxw8aPcasHtPSIi79WSCwAgDAG3aQK1a1k0wdKjb1YiISKAaOhSOHoXateHuu92uJlMEThjIkQMGDrTjESNsAQgREZHMFBtr9xiwe06OwLiNBsa/Is0dd0C9erY0ZNoiECIiIpnltddsCfx69eDf/3a7mkzjcRzHcbuITDV/PjRrZvsXbN5s2x2LyDnFx8cTERFBXFwcBQoUcLscEd+1c6dNI0xKsntN06ZuV5RpAqtlAOx/zs03Q2IivPyy29WIXJZBgwZx3XXXER4eTmRkJK1atWLjxo3pnnPy5EliYmIoUqQI+fPn5+6772avuslEMt/LL1sQuOUWaNLE7WoyVeCFAY/HO3ZgwgT480936xG5DEuXLiUmJoaVK1cyf/58kpOTadasGcf+thdH7969mTt3Lh9++CFLly7lr7/+4q677nKxapEAtGULTJxoxwMH2r0mgAReN0Ga5s3h669tVaj33nO7GpFMsX//fiIjI1m6dCk333wzcXFxFCtWjOnTp9OmTRsANmzYQLVq1VixYgXXX3/9BV9T3QQiGdC+PUybZveWefPcribTBV7LQJpXX7X/TpsGv/7qbi0imSQuLg6AwoULA7BmzRqSk5Np+re+y6pVq1KmTBlWrFhx1tdITEwkPj4+3UNEzuPXX2H6dDtOu7cEmMANA3Xr2toDjuPdzEjEj6WmptKrVy8aNmxIjRo1AIiNjSV37twULFgw3XOLFy9ObGzsWV9n0KBBREREnH6ULl06q0sX8W/PPmv3knvugWuucbuaLBG4YQC8c0A//RSWL3e7GpHLEhMTw7p165gxY8ZlvU6/fv2Ii4s7/di5c2cmVSgSgL77DubOtVUG08ajBaDADgNVq0LHjnb8zDOW7ET8UI8ePfjss89YvHgxpf42XTYqKoqkpCSOHDmS7vl79+4lKirqrK8VGhpKgQIF0j1E5Cwcx+4dYPeSKlXcrScLBXYYAOjf39YcWLrUBhSK+BHHcejRowezZs1i0aJFlC9fPt3n69atS65cuVi4cOHpcxs3bmTHjh00aNAgu8sVCSxffQXLltk9pH9/t6vJUoEfBkqXhkceseN+/SA11d16RC5CTEwMU6dOZfr06YSHhxMbG0tsbCwnTpwAICIigk6dOtGnTx8WL17MmjVr6NixIw0aNMjQTAIROYfUVLtnAMTEBPwCdoE7tfDv9u+HChUgIQFmzoT//tftikQyxHOOucyTJk0iOjoasEWH+vbty/vvv09iYiLNmzfnrbfeOmc3wT9paqHIWcycCffdB+Hhtl5N0aJuV5SlgiMMAAwYAC++CJUrw/r1kCuX2xWJ+ASFAZF/SE6G6tVh0ya7dwR4FwEEQzdBmj59oFgx+587YYLb1YiIiK965x27VxQrZveOIBA8YaBAAXj+eTseMMC6DERERP4uIcFakQFeeMG6CYJA8IQBgK5dbezA3r3w+utuVyMiIr5m+HC7R1SsCF26uF1NtgmuMJA7N7zyih0PGWIDC0VERAD27YOhQ+34lVfsnhEkgisMgM0kqFvXmoK0xbGIiKR5+WW7N1x7rS09HESCZzbB3y1cCE2b2oyCDRus60AkSGk2gQi2RXG1ajaTYOFCaNzY7YqyVfC1DAA0aWLbUCYnaxMjERGxe0FyMrRoEXRBAIK1ZQBg7Vrbfcpx4IcfrOtAJAipZUCC3po11jXg8cBPP0Ht2m5XlO2Cs2UAoE4daNfOjp94QpsYiYgEI8eBxx+343btgjIIQDCHAbDBIqGhsHgxfPGF29WIiEh2+/xzWLLE7gVps82CUHCHgbJl4bHH7PiJJ+DUKXfrERGR7HPqlF37AXr1gjJlXC3HTcEdBsB2pSpSBH7/HSZOdLsaERHJLhMm2IyyIkW8OxQGKYWBggW9m1C88AIcPepqOSIikg2OHrVrPtgS9RERrpbjNoUBsGWKK1WyJSjTVp8SEZHANWSIrThYubLdA4KcwgDYkpODB9vxsGGwe7e79YiISNbZvRv+9z87HjxYW9qjMODVujU0bAgnTnh3NxQRkcDz/PN2rb/xRmjVyu1qfELwLjp0NitXQoMGtvDEjz/aWgQiAU6LDklQ+eknW2TOceyaX7++2xX5BLUM/N3118O999oPSZ8+WohIRCSQ/P3aft99CgJ/ozDwT4MHexci+vRTt6sREZHMMmeOLTCUJw+89prb1fgUhYF/KlsW+va148cfh6Qkd+sREZHLl5joXXa4b1+71stpCgNn8/TTEBUFmzfDqFFuVyMiIpdr1Cjbpjgqyq7xko7CwNmEh9u+BQAvvQQHDrhbj4iIXLr9+2HgQDt+5RXIn9/denyQwsC5REfbbIK4OFudSkRE/NOAAXYtr1MHOnRwuxqfpDBwLiEhMHy4HY8dC7/95m49IiJy8davh3Hj7Pj11+3aLmdQGDifW2+FO++ElBTo3VtTDUVE/EnaVMKUFFtcqFEjtyvyWQoDFzJsmC1X/PXX8NlnblcjIiIZNXeuXbtz59a+MxegMHAhlSpZqwDYfxMT3a1HREQuLDHRWgXA/lupkrv1+DiFgYx49lkoUcKmpbz5ptvViIjIhbzxhl2zS5SAZ55xuxqfpzCQEeHh3tWqBg6EPXvcrUdERM5tzx7v9PDXXrNruJyXwkBGtW8P9epBQgL06+d2NSIici5PP23X6vr17dotF6QwkFE5csCIEXY8ZQp8/7279YiIyJlWrYJ337XjESPs2i0XpHfpYtSv712w4tFHITXV3XpERMQrNdWuzWALx9Wr52o5/kRh4GINGmRLWf49fYqIiPvSWm3Dw+1aLRmmMHCxSpSA/v3t+Mkn4cgRV8sRERHg8GF46ik77t/fNiSSDFMYuBSPPQbVqtnmFy+84HY1IiLywgt2Ta5WzdtVIBmmMHApcuWCkSPtePRo+Plnd+sREQlma9fCW2/Z8ahRdo2Wi6IwcKmaNIF77rEBKz16aN8CERE3OI5dg1NT4b//hcaN3a7ILykMXI7//Q/CwuDbb2HaNLerkQC0bNky7rjjDkqWLInH42H27NnpPh8dHY3H40n3aNGihTvFirhh6lT47ju7Fg8b5nY1fkth4HKULg3PPWfHTzwB8fHu1iMB59ixY9SuXZvRo0ef8zktWrRgz549px/vv/9+NlYo4qK4OLv2Ajz/vF2T5ZLkdLsAv9enD0yaBJs2wYABMHy42xVJALntttu47bbbzvuc0NBQojRyWoLRgAGwdy9UruzdUE4uiVoGLldoqHdlwhEj4Jdf3K1Hgs6SJUuIjIykSpUqdO/enYMHD573+YmJicTHx6d7iPidn3/2DuQeOdKuxXLJFAYyQ4sWcPfdkJIC3bppZULJNi1atODdd99l4cKFDB48mKVLl3LbbbeRkpJyzq8ZNGgQERERpx+l1bQq/iY1Fbp3t2tumzbQvLnbFfk9j+NoGHym2LXL5rcmJMA770CnTm5XJAHG4/Ewa9YsWrVqdc7n/Pnnn1SsWJEFCxbQpEmTsz4nMTGRxMTE0x/Hx8dTunRp4uLiKFCgQGaXLZL53nkHOne21WA3bIArrnC7Ir+nloHMUqoUvPiiHT/5JBw44G49EpQqVKhA0aJF2bx58zmfExoaSoECBdI9RPzGgQPelQZfeklBIJMoDGSmnj2hZk04dMi20BTJZrt27eLgwYOUKFHC7VJEssZTT9k1tlYtu+ZKplAYyEy5csGYMXY8YYLNfRW5DAkJCaxdu5a1a9cCsHXrVtauXcuOHTtISEjgiSeeYOXKlWzbto2FCxdy5513UqlSJZqrD1UC0XffwcSJdjxmDOTUhLjMojEDWeHhhy0M1KwJa9ZoaUy5ZEuWLOHWW28943yHDh0YM2YMrVq14qeffuLIkSOULFmSZs2aMXDgQIoXL57h7xEfH09ERITGDIhvS06Ga66BdevsGvv2225XFFAUBrLCwYNQpYr9d8gQ76IYIj5IYUD8wpAh1kVQpAhs3Gj/lUyjboKsUKQIDB1qx/37w9at7tYjIuLPtm61BYbAlhxWEMh0CgNZJToaGjWCEyfgkUe0kZGIyKVwHFtT4MQJuPVW6NDB7YoCksJAVvF4YOxYyJ0b5s2DDz5wuyIREf8zcyZ89ZWtMDh2rF1bJdMpDGSlKlXg2Wft+LHH4PBhd+sREfEnhw/btRPsWnrlle7WE8AUBrLaU09B1aq2mYbWHhARybinnoJ9+2x117SFhiRLKAxktdBQGD/ejsePh2+/dbceERF/8M033umD48dbl6tkGYWB7HDTTTYvFqBLF/jbuvAiIvIPiYnQtasdd+4MN97obj1BQGEguwwZAsWLw++/w6uvul2NiIjveuUVu1ZGRcHgwW5XExQUBrJLoUIwapQdv/oq/Pqru/WIiPiiX36BQYPseNQou3ZKllMYyE533w2tWsGpU7bF8Xn2nBcRCTpp18ZTp6B1a7tmSrZQGMhOHg+MHg0REbB6Nbz5ptsViYj4jjffhB9+sGtkWkuqZAuFgexWsqR3qeLnnoM//3S3HhERX7BlCzz/vB0PG2bXSsk2CgNuePhhW1bzxAkbKaulikUkmDmOzbRKW3K4Uye3Kwo6CgNu8Hhs3myePLBoEbzzjtsViYi455137FqYN6+tLaAlh7OdwoBbKlWCgQPtuG9f2LHD3XpERNywY4ddA8GuiRUrultPkFIYcFPv3nD99XD0qDWRqbtARIKJ41hX6dGjdi3s1cvtioKWwoCbQkJg4kRbsvirr2DSJLcrEhHJPhMnwtdf2zVw0iS7JoorFAbcVq0avPSSHffuDbt2uVuPiEh22LkT+vSx44EDbUM3cY3CgC/o0wfq1YP4eHUXiEjgS5s9EB8P9et7Q4G4RmHAF+TMaU1kuXPDl1/ClCluVyQiknUmT4Z589Q94EMUBnzFVVd5uwt69bImNBGRQLNzp3eg4EsvWVepuE5hwJf07WtNZnFxtuiGugtEJJCkpsJDD6l7wAcpDPiSnDmtiyBvXpg/H8aMcbsiEZHMM2YMLFhg17h337VrnvgEhQFfU6UKvPaaHT/xBGze7G49IiKZYdMmu6YBDB4MV17pbj2SjsKAL+rRw9bnPn4cOnTQVsci4t9SUuxaduIENG4MMTFuVyT/oDDgi3LksBG24eGwfLnt4CUi4q+GDoUVK6BAAbu25dCtx9fo/4ivKlvW9vYGeOEF+OUXd+sREbkUv/xi1zCwa1qZMu7WI2elMODLoqPhP/+BpCRo3x5OnnS7IhGRjDt5Etq1g+Rku5Z16OB2RXIOCgO+zOOx7TwjI+HXX+HZZ92uSEQk4555Btats2uYtib2aQoDvi4yEiZMsOPhw21ajoiIr5s/H15/3Y4nTbJrmfgshQF/8O9/Q/fudtyhAxw65G49IiLnc/CgdXMCPPII3H67q+XIhSkM+Ithw2wNgr/+gq5dtTqhiPgmx7Fr1F9/2U6EQ4e6XZFkgMKAvwgLg2nTbMWujz6y1btERHzNlCnw8cd2rZo2za5d4vMUBvxJ3brezYx69NDqhCLiWzZvhp497XjgQLjmGnfrkQxTGPA3Tz4Jt9wCCQlw//027VBExG1JSdC2rV2bbrnFu/Sw+AWFAX8TEgJTp0LhwrB6NTz/vNsViYjAc8/BDz/YtWnqVLtWid9QGPBHpUp5pxsOGQJff+1uPSIS3L76yjtQcOJEu0aJX1EY8FetWtmUHYAHH4S9e10tR7LGsmXLuOOOOyhZsiQej4fZs2en+7zjOLzwwguUKFGCvHnz0rRpUzZt2uROsRKc9u61axDYBkR33uluPXJJFAb82bBhUKOG/TJGR0NqqtsVSSY7duwYtWvXZvTo0Wf9/JAhQxgxYgRjx45l1apV5MuXj+bNm3NSS1dLdkhNtbVP9u2DmjU1jdCPeRxHE9b92vr1cO21tgb40KHw+ONuVyRZxOPxMGvWLFq1agVYq0DJkiXp27cvj/////e4uDiKFy/O5MmTue+++zL0uvHx8URERBAXF0eBAgWyqnwJRMOG2UDBvHltvMBVV7ldkd86cQJCQ93b0FEtA/6uenV44w077tcPVq50tRzJPlu3biU2NpamTZuePhcREUH9+vVZsWLFOb8uMTGR+Pj4dA+Ri7ZihV1zwJYdVhC4JDt2wNNPQ+nSMG+ee3UoDASCLl3g3nvh1Cn7r5YrDgqxsbEAFC9ePN354sWLn/7c2QwaNIiIiIjTj9KlS2dpnRKADh3yXnPuu8+uQZJhjgOLF8Ndd0H58jB4sK3gPHOmezUpDAQCjwfGj4dKlSxmRkdruWI5p379+hEXF3f6sXPnTrdLEn/iODZOYOdOqFwZxo3TboQZdOyYvV21akHjxjBrlg27SDueONG92hQGAkWBAvDBB5A7N8yd690tTAJWVFQUAHv/MZNk7969pz93NqGhoRQoUCDdQyTDhg+Hzz6zDu4PPrBrj5zXn39C374247JbN9vVOSzMe7xwoU0Qc3NpBoWBQHL11d7xA089pfEDAa58+fJERUWxcOHC0+fi4+NZtWoVDRo0cLEyCVgrVlgHN9i1pk4dN6vxaY5juzj/5z/WaDt8OBw5AhUq2PHu3TBmjA378gU53S5AMlm3brBkiSX2e++FH3+EIkXcrkouUUJCApv/tgfF1q1bWbt2LYULF6ZMmTL06tWLl19+mcqVK1O+fHmef/55SpYseXrGgUimOXjQxgekjU3q2tXtinzS0aO2V9OoUbBxo/d88+a2bcNtt7k3Y+C8HAk8cXGOU6mS44DjtGjhOKdOuV2RXKLFixc7wBmPDh06OI7jOKmpqc7zzz/vFC9e3AkNDXWaNGnibNy48aK+R1xcnAM4cXFxWfAvkIBw6pTjNG9u15RKlewaI+ls3Og4PXs6Tni4vU1gxz17Os6GDW5Xd2FaZyBQ/fILXH+9TV4dMAD693e7IvFRWmdALmjAAHjxRVtPYOVKGwEnpKbadMCRI9NPC6xSxTaWffBB/xlSoTAQyN57z34aPR744gto0cLtisQHKQzIeX35JbRsaX/svvcetG/vdkWui4uDSZNg9GjvTvIej71NPXtC06Y+2hVwHgoDga57dxg71nYSW7MGypVzuyLxMQoDck7btsE118Dhw3Yteesttyty1W+/WSvAe+/ZNEGAiAjo1Mm2iqlY0d36LofCQKBLTISbbrLtjuvWhW+/hTx53K5KfIjCgJzVyZNw4432R0S9erBsmU0nDDIpKTZbe+RIWLTIe756dWsFaN8e8uVzr77M4mcNGXLRQkPho49sRsGaNdaRpfwnIufjOHatWLPGrh0ffhh0QeDQIdvupWJFaN3agkCOHN7jX3+1CRWBEARAUwuDQ5kyMH26jRmYMME2NurWze2qRMRXjR1r14ocOezaUaaM2xVlm19+sVaAadNs/DVYL2vnztZTUrasu/VlFXUTBJPBg23BkFy5LNreeKPbFYkPUDeBpPPNN7Y+7qlTds148km3K8pyyckwe7aFgG++8Z6vU8e6Atq2tYkUgUxhIJg4ji0a8sEHULy4bTlaqpTbVYnLFAbktF27bGzRvn22sND77wf0vgP798Pbb9u4yN277VxICNx9t4WAhg0D+p+fjsJAsDl2DBo0sA6vevVg6VINKAxyCgMC2IDBm2+2wca1asHy5YHTIf4Pa9ZYK8CMGTbGGqBYMRsD0K0bXHGFu/W5QQMIg02+fNYeVqgQfP89xMRoQKFIsHMcmxu3erV1kM+aFXBBICnJGjpuuMGGTU2ZYkHguuvg3XdtE8aBA4MzCIAGEAanChVs4+wWLWzPzNq14dFH3a5KRNwyYoStopMjh10bKlRwu6JMs2ePbRs8bhzExtq5XLngv/+1roD69d2tz1eomyCY/e9/8PjjdgH44gvbSUOCjroJgty8ebZ0XmoqDBtme+36OceBVausK+DDD22AIECJEtYN0KULnGeX76CkMBDMHMeWzpo0yZbRWrkSqlZ1uyrJZgoDQWzDBvvTOD4eOna06YR+PGIuMdEaNkaOtPHRaW64wVoB7roLcud2rz5fpjAQ7BITbSHtb7+1TbdXrbI+QwkaCgNB6tAhCwKbN9s04wUL/HZhoV27bGmE8eNthgDYP6VtWwsB11zjbn3+QGFAbBpRvXqwfTs0aWIbk+TK5XZVkk0UBoJQcrKNGVq0yFbRWb3ahtP7Ecexv2FGjoRPPrFlg8FmSz/yCDz8sN/9k1yl2QQCkZHw6ac2enjhQnjsMc0wEAlUjmMDhhctgvz5beF9P7prnjhhvRlXX20zIT/80ILALbfYyutbt0K/fn71T/IJmk0gplYtW3a0VSsYM8a6DPr0cbsqEclsw4dbm7rHY2vu1qzpdkUZsn27LQ70zjvWwwG2KmC7dtYVUKuWu/X5O3UTSHrDh9toYo8HPv7YduWQgKZugiDyySfQpo21DgwfDr17u13ReTkOLF5sXQGffmoTHsB2Yo+JgYce0hCnzKIwIOml7Vb21lsWu5cssfEEErAUBoLE999Do0bWzh4TY3dYH505kJAAU6fCqFGwfr33fNOm1grQsqUtGyyZR2FAznTqFPznPzaQMDLSZhiUK+d2VZJFFAaCwLZtNnNg3z64/XaYMwdy+l4v8ZYtMHq0rYUWF2fn8uWDDh3sb5Rq1dytL5ApDMjZHT0KN90EP/8MV10F330HBQu6XZVkAYWBAHfkiO2489tvtg3fsmUQHu52VaelpsL8+dZQ8cUX3rHLlSpZA0bHjrYMimQthQE5t1277K+Jv/6yobrz5mlTowCkMBDATp60lUWXLbNF91et8pnF9+PjbX+AUaPgjz+852+7zboCmje3xVEle+itlnMrVcqieni47W744IPeETwi4ttSUuCBBywIFCgAn3/uE0Fg40a72V9xhc1w/OMPK++xx+z4iy8sECgIZC/f6zQS31K7tu1y2KKFTegtUQLeeMNnBx6JCNbW3ru3TbzPlct2Iaxd27VyUlPtJj9yJHz9tfd81aoWDB54wKd6LoKSspdcWOPGtscn2O5mw4a5W4+InN/QoXbnBfvdbdzYlTKOHLEZjFdeCXfcYUHA47HxyV9/bcMYHnlEQcAXqGVAMua++2zsQN++8OST1kLQvr3bVYnIP733Hjz1lB0PH26/u9ls3TobC/Dee3D8uJ0rVMj2RXvkEShfPttLkgtQGJCM69PHBhW+/roN8S1UyCb8iohv+Owz+90E+33NxkWFTp2ylY1HjrSFgtLUrGldAe3aQVhYtpUjF0mzCeTipKbaQMJp02xmwddf2xRE8VuaTRAgli2zIfgnT9qd9913s2UU3sGDtkTwW2/Bjh12LkcOW7y0Z0/bP0BDjHyfwoBcvORk+03//HMbBrx4sfYI9WMKAwHgxx/h1lttvt6//23LDmfxzqNr11orwPTplj8AihSBLl2gWzcoUyZLv71kMoUBuTQnTtgMg2XLbHuwb76BKlXcrkougcKAn9uwwVrnDhyw9UC+/NKWEs8Cyck2MWHkSNs+OM0111grwH33aSkSf6UwIJcuLs5GKf/4I5QubVcH/TngdxQG/NiOHXDjjbBzp92RFy+21rpMtm8fjB9vmx3u3m3ncua0PY969oQGDdQV4O8UBuTy7N9vf5Vs3Gjrhy5dCiVLul2VXASFAT/111/WIb9li7XKffONtdJlotWrrRVg5kxISrJzkZHWDdC1q37VA4lmE8jlKVbMFha/+WbYvBmaNLFAEBnpdmUigWvvXvtd27LF5unNn59pQSApydYXGznSVi9OU7++tQK0aQOhoZnyrcSHqGVAMsfWrRYIdu2yuUSLF9toIvF5ahnwMwcO2GDBdeuse27ZskzZVXTPHusGGDfOsgZA7txw770WAq677rK/hfgwhQHJPJs2WSCIjbX+y4ULtdOhH1AY8CNHjtg4nZ9+soW/li6FypUv+eUcB1assFaAjz6ytQLAmv+7d4fOnaF48cwpXXybwoBkrt9+g0aNbCxB/frw1Vfaf9THKQz4ibg4W0dg1SrrEli6FKpVu6SXOnkSZsywEPDjj97zDRtaK8Bdd2X5zETxMQoDkvl++cWaMQ8dgnr1LBCohcBnKQz4gSNHLAh8/z0ULmzdcLVqXfTL7NwJY8bA229bbwNY///991sIuPrqzC1b/IfCgGSNtWuhaVNbnuzaa22lwkKF3K5KzkJhwMcdPgzNmsEPP9g4nIULL2oHQsexYQUjR9oGpCkpdr5MGdsnoFMnKFo0a0oX/6FdCyVr1KkDixbZVeaHHywYHDrkdlUBacCAAXg8nnSPqlWrul2WZIZDh+x354cf7Hdp0aIMB4Hjx60FoHZt67n7+GMLArfeagsUbtli+xkpCAhoaqFkpVq17OLVpIl1TDZpAgsWaJZBFqhevToLFiw4/XHOnPrV9nsHD1oQWLvWxggsWgQ1alzwy7ZutX0CJkywRgWwDYLat4cePWyyj8g/6YohWSttmmHjxnZRa9TIugxKlHC7soCSM2dOoqKi3C5DMsuePfCvf8H69bZmx6JFUL36OZ/uONZ7MGKEbVyY1vlbvjzExMBDD6mXTs5P3QSS9apXhyVLLACsW2fTD7dvd7uqgLJp0yZKlixJhQoVaNeuHTvSto87i8TEROLj49M9xIds326req5fb3P8liw5ZxBISLBWgOrVLTvMnWtB4F//gk8/tdm+ffsqCMiFaQChZJ8//7Sugm3bbLGUBQvgyivdrsrvffnllyQkJFClShX27NnDiy++yO7du1m3bh3h4eFnPH/AgAG8+OKLZ5zXAEIfsHGjdQ3s2mULCS1cCBUqnPG0TZtg9GiYNMk2KgTInx86dLCuAA0ZkYulMCDZa9cu+7NlwwZr/pw//5KmSMm5HTlyhLJlyzJ8+HA6dep0xucTExNJTEw8/XF8fDylS5dWGHDbzz/brIF9++xuvmABXHHF6U+nptos3ZEjbWPCNJUrWwCIjs6SPYokSGjMgGSvUqVssZTmzW0MwS23WNvmjTe6XVnAKFiwIFdeeSWbN28+6+dDQ0MJ1eLyvuXbb+GOO2w9gTp1bFzN/+81EBcHkydbS8CmTfZ0jwduu83WBmjWDHKow1cuk36EJPtFRtqgwhtusItfWgenZIqEhAS2bNlCCQ3S9A9z5tjvwJEj9juxeDEUK8bvv9vgvyuugF69LAhERNjxH3/A559DixYKApI59GMk7ihY0LoI/v1vWxu1dWt45x23q/JLjz/+OEuXLmXbtm0sX76c1q1bExISQtu2bd0uTS7k7bdt7d+TJ+GOO0iZN59PlxXkX/+Cq66ywYHHjtnxmDHWy/b667ZbuEhmUjeBuCcsDGbNso3RJ060XVH27IHnnrN2UMmQXbt20bZtWw4ePEixYsW48cYbWblyJcUyeW97yUSOAwMHQv/+ABxq/ygTaw5ndK0Qtm2zp+TIYT0HPXvazFz9SkhW0gBCcZ/jwPPPwyuv2Mddu8KoUaCFc7KFliPOZqdOWfv/+PH8Sg1GXj2RqRuu5cQJu9sXKgQPP2xLBWfCzsQiGaIwIL5j1Ch49FELBy1awMyZGh6dDRQGslF8PKfa3Mec+XkZSU+W0uj0p2rVslaA+++3RjOR7KQwIL5l9my7Gp44YasXfv65rUkgWUZhIHsc+Hk3bzf/iDF7W7OTMgCEhNhwmZ49bZ0hdQWIWxQGxPf88IN1lsbG2qqFc+dC3bpuVxWwFAay1o8/wsgBB3h/bn4SyQNA0YLJdHkkF926KeuKb1AYEN+0fTu0bGlLsoaFwbvvwt13u11VQFIYyHzJybZL4MiRsHy593zdPOvp+UoU9z5ShDx53KtP5J80tVB8U9my8N13tqLK8ePQpg0MGGDLsIn4qNhYeOkl+/Ft29aCQE6Sact0ltfrxeo9pejQR0FAfI/CgPiuiAgbM9Crl3384otwzz22O4uID1m1yrYILlPGZgvu2QNRoYfpzwB2UIbpvX+gwXfD8BSMcLtUkbNSN4H4h0mToFs3SEqyYdezZ9v+rHLZ1E1waRIT4YMPrCtg9Wrv+euvPknPAwNos3M4uXN7YNw42zhAxIcpDIj/WLHChl7v3WuTsadNswXa5bIoDFyc3bth7FgYP972FALInRvuuw96XvMd1754Bxw+DFFR8Mkn0KCBuwWLZIC6CcR/NGhgMw2uu84uti1bWptsSorblUmAcxzbS+jee20hoJdftiBwxRV2vHNbClPKvsC1vW60n8169ay5QEFA/IRaBsT/JCZC7962WDvYIMNp06BoUXfr8lNqGTi3Eyfg/fetK2DtWu/5m26ytQFatYJccQdsbYz58+2TjzwCw4eDdoYUP6IwIP7rvfds6eITJ2yy9owZtuubXBSFgTPt2GGbBL3zDhw8aOfy5IF27aBHD9tlGLDpAvfdBzt3Qt681nfQvr1bZYtcMoUB8W+//mrrD2zaZMu5vfQSPPWUHUuGKAwYx4ElS6wVYM4c7yzWsmXtj/1OnaBIkf9/ckoKvPaat5uqcmVbWKBmTbfKF7ksCgPi/+LjoXt3mD7dPm7c2FoNSpZ0ty4/Eexh4NgxmDrVtsZYt857vnFj6wq4445/ZMu//rK//hcvto/vv9+6rILwvZPAoTAggcFxYMoU2w3u+HEbPzB5sg0ylPMK1jDw558werTtnn3kiJ0LC4MHH7SugOrVz/JFn39u0wQPHLAnjx4NHTpoUwHxewoDElg2bLA+3J9/to+7dIH//Q/y53e3Lh8WTGHAcWyc38iRdl9Pu/pVrGg5smNHKFjwLF+YkAB9+9qYALBBAzNmQJUq2VS5SNbS1EIJLFWrwsqV3lULx4+H2rVtaWMJWkePWjdAtWrQvDl89pkFgbTjP/6wCSpnDQLffms/Q2lBoHdvW/NCQUACiFoGJHAtXmxNujt2WDPuk0/aksaa8pVOILcM/PGHhYDJky0QAISH249FTMwF7ucnT9oAwaFDLTmUKWMvdOutWV+4SDZTGJDAFhdnrQSTJ9vHVavafLGGDd2syqcEWhhITYUvv7SugK++8p6vUsXGAnToYIHgvL77Dh5+2LqdwNLDG2/YfhkiAUhhQILD7Nm2t8HevdZKEBMDr76agbtC4AuUMHDkiG1hMXo0bNli5zwe+Pe/bVZA06YZGOd39Cj062eLDDgOFC9uaw+3apXF1Yu4S2FAgsehQ/D443bHAFuoaOxYuP12d+tymb+Hgd9+s1aA996zaYJgf8B36mSZr0KFDL7QF19YYNy50z5+6CEYNsz2wRAJcAoDEnwWLLBZBlu32setW8Prr9vqMkHIH8NASgrMnWvjARYu9J6vXt1aAdq3h3z5Mvhi27dbV9Ls2fZx+fI2WLBp00yuWsR3aTaBBJ+mTW3lwr59bTWZWbNsmPmrr9q+B+KzDh2CIUNsKmDr1hYEcuSw40WL7H9r164ZDAKJifDKK/b/fvZs+1no29deREFAgoxaBiS4rVtno8qWLrWPK1e2VoLbbw+ahWT8oWXg55+tK2DaNBvkD1C4MHTubItPXlSjjuPYIgN9+tgy1gC33GLNDDVqZHrtIv5AYUDEcWwp48cfh9hYO9ekiS1WVLu2u7VlA18NA6dO2R/sI0fCsmXe83XqWFdA27a2N9BFWbvW/vpftMg+joqy/89t2wZN+BM5G4UBkTRxcdZV8MYbkJRkN4foaNuwPoD3OfC1MLB/v3XZjx0Lu3bZuZAQ24+qZ0+bFXrR9+2//oLnnrMppo4DuXPbOIFnntF0QREUBkTOtHWrTS+bOdM+zpvXuhKefNL2PAgwvhIG1qyBESNsld+kJDsXGWljPbt1gyuuuIQXPXDABhmMGmVbXYMtVz1oEJQrl1mli/g9hQGRc1m50pqUly+3j/Pnt6Vo+/Q5x7q1/snNMJCUBB99ZF0BK1d6z193HTz6KNxzzyUuGHnkCAwfbuM/EhLsXMOG1iVQv35mlC4SUBQGRM7HcWw5u+eeg59+snOFClkTc48eNorNz7kRBmJjYdw46wpIG6aRKxf897/WFXDJ9+tDh6wV4PXXvVsRXn21dfXcdpvGBYicg8KASEakptoUxBdesFVuwFoKuna1lgI/HlOQXWHAceyv/5EjrTUgOdnOlyhh3QBduth4vkvy11/WEjBunLcl4KqrYOBAm3eoECByXgoDIhcjJcXuZIMGebdJzp3bFrx/7DFb9cbPZHUYOHnShl+MHGnjAtLccIO1Atx1l72Fl2T9enjzTZgyxTvQoHZtG/PRpo2NPBSRC1IYELkUad0HgwbZFrdpmjSxzu6WLf3mRpRVYWDXLhgzBt5+22YIgPX/t21rIeCaay7xhVNSbJ2AESPSLz944402O6BFC7UEiFwkhQGRy/Xtt9ZHPXu2dSeALWnbtau1GFxy23f2yMww4Dj2dowcCZ98YvdtgFKl4JFHbCPAYsUu8cVjY60FYNw471LSacsP9uplYUBELonCgEhm2b7ddrt7+204fNjOhYTYtnmdOtkAtpw53a3xLDIjDBw/bus2jRrl7T0BW9ivZ0+4885L/KefOmUbCE2YYK0BaemiUCEbZHDRyw+KyNkoDIhktuPH4f337Qa2YoX3fFQU3HuvzXOvX99nmrIvJwxs22b5Z8IEG8gPtixD+/Y22aJWrUsoyHFg1SpbcGDmTO90A4AGDSxYtW0LYWGX8OIicjYKAyJZ6bff7E757ru2AE6acuUsGLRpY53nOdzbM+xiw4Dj2Gq+I0fazoFpPSPlytmWwQ89dAkzLlNT4ccfbXDmjBnWypKmWDF48EF74auuusgXFpGMUBgQyQ5JSfD113ajmz0bjh3zfq5kSRtweMcdNgAxm//izWgYSEiAqVOtK2D9eu/5pk2tK+Cix0weP24DAOfOhc8+gz17vJ/Llw9atbJWlGbNLmO6gYhkhMKASHY7ftz6v2fOhHnz0geDPHlsIFzjxvaoWzfLxxlcKAxs2QKjR8PEibZ9A9i9ukMH6wqoVi2D3+jUKZtbuGiRPb791rsFYdqLtmhhLSYtW6obQCQbKQyIuOnkSViyxP46njsXdu5M//nwcFtG9/rrbZxBvXpnbYMfPXo0Q4cOJTY2ltq1azNy5Ejq1auXoRLOFgZSU2H+fOsK+OIL6xoAqFTJAkB0dAb29zl0CL7/3lYaWrUKvvsOjh5N/5zSpeE//7FWkUaNLnHtYRG5XAoDIr7CcWyMweLF9pfzkiXeWQl/V7myjcyrUQNq1OCLHTto8/TTjB43jvr16/PGG2/w4YcfsnHjRiIjIy/4bf8eBqAAU6ZYV8Aff3ifc9tt1hXQvPlZhjecOgWbN8O6dd7HL7/Apk1nfrNCheym37gx3HqrjQHwkYGUIsFMYUDEV6Wk2Dy9FSu8f12f7QYLpHg8hJQtC+XL45Qvz5APP6Rms2bcHh1tW/9FRkKRItb0/o+O/bQw0KVLHO+/X+D0H+8FCjh0bJdMzD37qJzvL9i3zx5//WXz/NMeO3d6p/z905VXWotG/fo2E6B2bb9ZjEkkmGQoDDiOw9F/Nu+JSPY7dAjWroXff4f160n97TdO/PQT+S7iJZzQUJywMFLy5GN+0i28dbQ13yS1AXYCBbgyxya6eN7mvpSphHPsQi9n8ua1wQNXXWWPatWgTp2A2MhJJBCEh4fjOU8rXIbCQNpfDiIiIuJ/LjRbSC0DlyA+Pp7SpUuzc+fObN//PZjofb6wPXv2ULVqVebPn59uwODzzz/Pd999x6JFi+yE4/D72kTGjXOYMSuUEyet4z8iXzJ3NvyNd7++mY3vv09UZKSN6g8Ls10Zw8JshoP69S+bfp6zh97ns7tQy0CG5ix5PB69qWdRoEABvS/ZQO/zueXJk4eQkBASEhLSvUdHjhzhiiuuICysAHPn2oDAtFwAULOmDQi8/344fLg875aGsBtvpECpUi78K4KLfp6zh97ni+Pesmcictly585N3bp1Wfi33ftSU1P5+us1JCX1omJF2yJ40SIbt3f33TZJ4eefoXNnawQQEfG9XVNE5KL06dOHDh06cO211xIefhPPPPMXsbGrmTcvL2CTCNL29Cld2uViRcQnKQxcgtDQUPr370+oFkjJUnqfM+auu+7lq68i6Nq1MImJFYAKAFx9NTz6qK3omyfPub8+7f3V+5y19POcPfQ+XxqtMyDip/bts92Sx4yB3bvtXM6c1hXQsyfccEPGxv1lxhbGIuLf1DIg4mdWr7ZlgmfOtP2PwNYU6tYNuna1fY9ERC6GwoCIH0hKgg8/tBCwapX3fL161gpwzz1a1l9ELp3CgIgP27MHxo2DsWNh7147lyuXbezXs6eFARGRy6UwIOJjHMe2Ixg5Ej76yPYBAmv+79bNZgYUL+5ujSISWBQGRHzEyZMwY4aFgB9/9J5v2NBaAe66y1oFREQymxYdyiSJiYnUqVMHj8fD2rVr3S4noGzbto1OnTpRvnx58ubNS8WKFenfvz9JaaPn/NzOnfDMM7YGQMeOFgRCQ73H335r3QJZEQRGjx5NjRo1AGjcuDHff/995n+TIDdo0CCuu+46wsPDiYyMpFWrVmzcuNHtsgLea6+9hsfjoVevXm6X4hcUBjLJk08+SUkN484SGzZsIDU1lXHjxrF+/Xpef/11xo4dyzPPPON2aZfMcWDpUmjTBsqXh0GD4MABCwSDBsGuXTBxoq0VkFVmzpxJnz59ePrppwGoUaMGzZs3Z9++fVn3TYPQ0qVLiYmJYeXKlcyfP5/k5GSaNWvGsWMZ3BFSLtrq1asZN24ctWrVcrsU/+HIZfviiy+cqlWrOuvXr3cA56effnK7pIA3ZMgQp3z58m6XcdGOHXOc8eMdp2ZNx7FIYI9GjRzn448dJzk5+2qpV6+eExMT48TFxTmAc/jwYadkyZLOoEGDsq+IILRv3z4HcJYuXep2KQHp6NGjTuXKlZ358+c7t9xyi/PYY4+5XZJfUMvAZdq7dy+dO3fmvffeIywszO1ygkZcXByFCxd2u4wM27YNnngCSpWyAYC//mobAnbpAr/8AosX25iAnNk0iicpKYk1a9bQtGnT0+dy5MhB06ZNWbFiRfYUEaTi4uIA/Orn15/ExMTQsmXLdD/bcmEaQHgZHMchOjqabt26ce2117Jt2za3SwoKmzdvZuTIkQwbNsztUs7LcWDhQhsQOHeufQzWLRATAw89BIUKuVPbgQMHSElJofg/piUUL16cDRs2uFNUEEhNTaVXr140bNjw9FgNyTwzZszgxx9/ZPXq1W6X4nfUMnAWTz/9NB6P57yPDRs2MHLkSI4ePUq/fv3cLtkvZfR9/rvdu3fTokUL7rnnHjp37uxS5eeXkABvvQXVq8O//gWffmpBIO140ybo29e9ICDuiYmJYd26dcyYMcPtUgLOzp07eeyxx5g2bRp5zrcZh5yV9iY4i/3793Pw4MHzPqdChQr897//Ze7cuXj+tgB8SkoKISEhtGvXjilTpmR1qX4to+9z7ty5Afjrr79o1KgR119/PZMnTyZHDt/Ksps2wejRMGkSxMfbufz5oUMH6NEDqlZ1t76/S0pKIiwsjI8++ojGjRuf3pugZ8+eHDlyhDlz5rhdYsDp0aMHc+bMYdmyZZQvX97tcgLO7Nmzad26NSEhIafPpaSk4PF4yJEjB4mJiek+J+kpDFyGHTt2EJ921cduVs2bN+ejjz6ifv36lCpVysXqAsvu3bu59dZbqVu3LlOnTvWZX+rUVPjqK+sK+PJL7/nKlS0AREeDr+79U79+ferVq8crr7xCREQEhw8fpkaNGvTo0eP0DAO5fI7j0LNnT2bNmsWSJUuoXLmy2yUFpKNHj7J9+/Z05zp27EjVqlV56qmn1C1zARozcBnKlCmT7uP8+fMDULFiRQWBTLR7924aNWpE2bJlGTZsGPv37z/9uaioKFdqiouDyZOtJWDTJu/522+3BYKaNQMfa7g4Q58+fejQoQPVq1cHoHfv3hw7doyOHTu6XFlgiYmJYfr06cyZM4fw8HBiY2MBiIiIIG/evC5XFzjCw8PPuOHny5ePIkWKKAhkgMKA+Lz58+ezefNmNm/efEbIyu6Grd9/h1GjYMoUSJsmXqCADQaMiYFKlbK1nMty7733sn//fl555RUAfv31V+bNm3fGoEK5PGPGjAGgUaNG6c5PmjSJ6Ojo7C9I5CzUTSByASkp8Pnn1hWwYIH3/FVXWVfAAw/Y2AB/FR8ff3rMQAFf7dMQkSyllgGRczh8GCZMsJkBW7fauRw54I47rCugcWP429hRERG/pTAg8g+//mqtAFOnwokTdq5QIXj4YXjkEShXztXyREQyncKACLZN8Jw5FgKWLvWer1XLWgHuv99WDBQRCUQKAxLUDhyAt9+GMWNs90CAkBBo3dpCwE03qStARAKfwoAEpR9/tFkB06dDYqKdK1rU9gro1s12DxQRCRYKAxI0kpPh44+tK2D5cu/5unWtFeDee0GrmIpIMFIYkIC3dy+MGwdjx8KePXYuZ0645x6bGtiggboCRCS4KQxIwFq1yloBPvjAWgUAoqKga1d7lCjhbn0iIr5CYUACSmKi3fxHjYLvv/eev/566wpo0wb+f98jERH5fwoDEhB277ZugPHjYd8+O5c7N9x3n4WAa691tz4REV+mMCB+y3Hgu++sK+CTT2ytAIArroDu3aFzZ4iMdLdGERF/oDAgfufECXj/fQsBa9d6z990k7UCtGoFuXK5VZ2IiP9RGBC/sWOHLQ709ttw8KCdy5MH2rWzWQF16rhanoiI31IYEJ/mOLBkibUCzJkDqal2vkwZ2zK4UycoUsTVEkVE/J7CgPikY8dso6BRo2DdOu/5xo2tK+Df/7a1AkRE5PLpcio+5c8/bcvgCRPgyBE7FxYGDz5oXQHVq7tanohIQFIYENc5DixYYF0Bn31mHwNUrGhdAR07QsGCrpYoIhLQFAbENUePwpQp1hWwcaP3fPPm1hVw222QI4d79YmIBAuFAcl2f/xhAWDyZAsEAOHhEB1tLQFVqrhZnYhI8FEYkGyRmgrz5llXwLx53vNVqthYgA4dLBCIiEj2UxiQLBUXB5MmwejRsHmznfN4oGVL6wpo2lRdASIibtNlWLLEb7/ZksBXXAG9e1sQiIiAPn1g0yaYOxeaNVMQuFzlypXD4/Gke7z22mtulyUifkYtA5JpUlJsNsCIEbBokfd89erWCtC+PeTL5159geqll16ic+fOpz8OV3+LiFwkhQG5bIcO2boAb70F27bZuRw54M47LQQ0amRdA5I1wsPDiYqKcrsMEfFjHsdJm9UtcnF++cUGBE6bZpsHARQubLsFdu8OZcu6W18wKFeuHCdPniQ5OZkyZcpw//3307t3b3KeZ3nGxMREEhMTT38cHx9P6dKliYuLo0CBAtlRtoj4GLUMyEU5dQpmz7augG++8Z6vU8daAdq2hbx53aou+Dz66KNcc801FC5cmOXLl9OvXz/27NnD8OHDz/k1gwYN4sUXX8zGKkXE16llQDJk/37bLXDMGNi1y86FhMDdd1sIaNhQXQGZ5emnn2bw4MHnfc7vv/9O1apVzzg/ceJEunbtSkJCAqGhoWf9WrUMiMg/KQzIea1ZY10BM2ZA2v2jWDHo2hW6dbPZApK59u/fz8G0PZrPoUKFCuTOnfuM8+vXr6dGjRps2LCBKhlcvSk+Pp6IiAiFAZEgpm4COUNSEnz8sYWAFSu856+7zloB/vtfOMcfnZIJihUrRrFixS7pa9euXUuOHDmIjIzM5KpEJJApDMhpsbEwbhyMHWvHALly2c2/Z0+oX9/d+iS9FStWsGrVKm699VbCw8NZsWIFvXv3pn379hQqVMjt8kTEjygMBDnHgVWrrBXgww8hOdnOlyhh3QBduoBmrfmm0NBQZsyYwYABA0hMTKR8+fL07t2bPn36uF2aiPgZjRkIUomJMHOmhYAffvCev+EG2yvg7rvhLF3SEoA0ZkBE1DIQZHbtsm6A8eNthgBY/3/bttYVcM017tYnIiLZT2EgCDgOfPuttQJ88oktGwxQqhQ88gg8/LDNEBARkeCkMBDATpyA6dMtBPz8s/f8LbdYK8Cdd8J5FqoTEZEgoVtBANq+3fYJeOcd2zcAbFXA9u1tPECtWu7WJyIivkVhIEA4DixebK0An34Kqal2vlw5iImBhx6yfQNERPxBSkoKyWnTm+SccuXKRUhIyGW/jsKAn0tIgKlTYdQoWL/ee75pU+sKaNnSlg0WEfEHjuMQGxvLkSNH3C7FbxQsWJCoqCg8l7EmvMKAn9qyBUaPhokTIS7OzuXLBx06WFdAtWru1icicinSgkBkZCRhYWGXdYMLdI7jcPz4cfbt2wdAiRIlLvm1FAb8SGoqzJ9vXQFffGFdAwCVKlkAiI6GiAhXSxQRuWQpKSmng0CRIkXcLscv5P3/bWL37dtHZGTkJXcZKAz4gfh4mDLFugL++MN7/rbbrCugeXPIkcO9+kREMkPaGIGwsDCXK/Evae9XcnKywkAg2rjRAsDkyTY2ACA8HDp2tEGBV17pankiIllCXQMXJzPeL4UBH5OSAl9+aV0BX3/tPV+tmnUFPPCABQIREZHMojDgI44cscGAo0fDn3/aOY8H7rjDugKaNLGPRUREMpt6ml22bp3tDnjFFdC3rwWBggXh8cdtxsCcOTZNUEFARMR3OY5Dly5dKFy4MB6Ph7Vr13Lw4EEiIyPZtm1bhl4jKSmJcuXK8cPfd4/LJmoZcMGpUzB3rnUFLF7sPV+jhrUCtGtn0wRFRMQ/zJs3j8mTJ7NkyRIqVKhA0aJFefLJJ7nzzjspV65chl4jd+7cPP744zz11FMsXLgwawv+B4WBbHTwoC0R/NZbsGOHncuRA1q3thBw881qARAR8UdbtmyhRIkS3HDDDQAcP36cCRMm8NVXX13U67Rr146+ffuyfv16qlevnhWlnpXCQDZYu9ZaAaZPh5Mn7VyRItClC3TvDqVLu1qeiIjvchw4fjz7v29YWIb/OouOjmbKlCmAjewvW7Ysw4YNIzQ0lOuvv/7081566SXGjh3Lr7/+enodhZYtW3L8+HEWLlxIjhw5KFSoEA0bNmTGjBkMHDgw8/9d56AwkEWSk2HWLAsB337rPX/11fDoo3DffZAnj3v1iYj4hePHIX/+7P++CQkZ7q998803qVixIuPHj2f16tWEhITw8ssvU7du3XTPe/bZZ5k3bx4PP/wws2bNYvTo0Sxfvpyff/6ZHH9bLKZevXp88803mfrPuRCFgUy2bx+MHw9jx8Lu3XYuZ05o08a6Aho0UFeAiEggiYiIIDw8nJCQEKKiogDYvn07JUuWTPe8kJAQpk6dSp06dXj66acZMWIE77zzDmXKlEn3vJIlS7J9+/Zsqx8UBjLNDz/AiBEwcyYkJdm5yEjo2tVmC/zjZ0JERDIiLMy76lp2f9/LcOLECfKcpfm3QoUKDBs2jK5du3Lvvfdy//33n/GcvHnzcjybu0YUBi5DUhJ8+KF1Baxa5T1fr561AtxzD4SGulefiIjf83j8cnpV0aJFOXz48Fk/t2zZMkJCQti2bRunTp0iZ870t+JDhw5RrFix7CjzNK0zcAn27IH+/aFMGWjf3oJA7tze41Wr7FhBQEQkOF199dX89ttvZ5yfOXMmn3zyCUuWLGHHjh1nHSS4bt06rr766uwo8zSFgQxyHFi+HNq2tRDw0kuwd681/w8caFMF33vPWgVERCS4NW/enPXr16drHdi1axfdu3dn8ODB3HjjjUyaNIlXX32VlStXpvvab775hmbNmmVrvQoDF3DypG0UdO210LAhzJhhiwY1bGjjA7Ztg+eeg+LF3a5URER8Rc2aNbnmmmv44IMPAFuhMDo6mnr16tGjRw/AAkP37t1p3749Cf8/LmLFihXExcXRpk2bbK3X4ziOk63f0U/s3AljxsDbb8OBA3YuNBTuv9/GA2RzC45IlomPjyciIoK4uDgKFCjgdjkSxE6ePMnWrVspX778WQff+ZvPP/+cJ554gnXr1qWbOng+9957L7Vr1+aZZ57J8PfJjPdNAwj/xnFg2TIbEDh7tu0gCLYo0COPwMMPQ9GirpYoIiJ+omXLlmzatIndu3dTOgOryyUlJVGzZk169+6dDdWlp5YBbE2LadMsBPz6q/d8o0bWCvCf/9haASKBSC0D4isCrWUgu6hl4DJt3Wr7BEyYAGljPPLmhQcegB49oGZNd+sTERHJDkEXBhwHFiyAUaNs58C0dpHy5SEmBh56CAoVcrdGERGR7BQ0YSAhAd5910LA7797z//rX9YVcPvtEBLiXn0iIiJuCfgwsGkTjB4NkyZBfLydy58fOnSwroCqVd2tT0RExG0BGQZSU+Hrr22vgC+/9J6vXNkCQHQ0aJyUiIiICagwEBdnCwSNHm0tAmluv926Apo1gwxO9RQREQkaAREGfv/dxgK8+653c6sCBWwwYEwMVKrkbn0iIiK+zG//Tk5JgU8/tQGAV11lUwQTEqBaNTvevRtef11BQEREsp7jOHTp0oXChQvj8XhYu3btGc/ZuHEjUVFRHD16NEOveeDAASIjI9m1a1cmV3smvwsDhw7BsGF2k7/zTpsmmCOH93j9euje3QYJioiIZId58+YxefJkPvvsM/bs2cOwYcMYMGBAuuf069ePnj17Eh4enqHXLFq0KA8++CD9+/fPgorT85tugl9/tRUCp06FEyfsXKFCtkTwI49AuXKuliciIkFsy5YtlChRghtuuAGAnP9YtnbHjh189tlnjBw58qJet2PHjtStW5ehQ4dSuHDhTKv3n3w6DJw6BXPmWAhYutR7vlYtGxB4//0QFuZefSIikrUcx5aMz25hYeDxZOy50dHRTJkyBQCPx0PZsmVp1KhRuud88MEH1K5dmyuuuOL0uYceeogffviB1atXExoaSlJSEvXr16dmzZq8++67AFSvXp2SJUsya9YsOnXqlCn/trPxyW6CAwdg0CCoUAHatLEgEBLiPV671loEFAQkkL3yyivccMMNhIWFUbBgwbM+Z8eOHbRs2ZKwsDAiIyN54oknOHXqVPYWKpKFjh+3bt/sflxMAHnzzTd56aWXKFWqFHv27GH16tVnPOebb77h2muvTXduxIgRHDt2jKeffhqAZ599liNHjjBq1Kh0z6tXrx7ffPPNxb95F8GnWgZ+/NFaAd5/HxIT7VzRotClC3TrZrsHigSLpKQk7rnnHho0aMCECRPO+HxKSgotW7YkKiqK5cuXs2fPHh588EFy5crFq6++6kLFIsEpIiKC8PBwQkJCiIqKAmDy5MnpnrN9+/YzwkD+/PmZOnUqt9xyC+Hh4bzxxhssXrz4jA3DSpYsyU8//ZSl/wbXw0ByMnz8sYWA5cu95+vWta6Ae+8FbV4lwejFF18EzryopPn666/57bffWLBgAcWLF6dOnToMHDiQp556igEDBpA7d+5srFYka4SFeaeMZ/f3zUwnTpw4646CDRo04PHHHz/9u3vjjTee8Zy8efNyPIv7SlwNA2PGwMCBsGfP/xeTE+65x0LA9ddnvL9GJBitWLGCmjVrUrx48dPnmjdvTvfu3Vm/fj1XX331Wb8uMTGRxLSmN2wLYxFf5fFAvnxuV3H5ihYtyuG07XH/JjU1le+++46QkBA2b9581q89dOgQxYoVy9L6XB0zcPSoBYGoKOjfH3bsgOnToUEDBQGRC4mNjU0XBIDTH8fGxp7z6wYNGkRERMTpR2n1v4lkuauvvprffvvtjPNDhw5lw4YNLF26lHnz5jFp0qQznrNu3bpzhvvM4moY6NQJpk2D7dthwAAoUcLNakSy3tNPP43H4znvY8OGDVlaQ79+/YiLizv92LlzZ5Z+PxGxVrsVK1aQkpJy+txPP/3ECy+8wDvvvEPDhg0ZPnw4jz32GH/++efp5xw/fpw1a9bQrFmzLK3P1W6CIkVseqBIsOjbty/R0dHnfU6FChUy9FpRUVF8//336c7t3bv39OfOJTQ0lNDQ0Ax9DxHJHLfddhs5c+ZkwYIFNG/enJMnT9K+fXuio6O54447AOjSpQuff/45DzzwAMuWLSMkJIQ5c+ZQpkwZbrrppiytz/UBhCLBpFixYpnW99egQQNeeeUV9u3bR2RkJADz58+nQIECXHXVVZnyPUQkY3r16kWvXr3O+fmcOXPyzDPPMHz4cJo3b06ePHlYv379Gc+bM2dOuo/ffPNNXnjhhcwu98z6svw7iMgl2bFjB4cOHWLHjh2kpKScXuu8UqVK5M+fn2bNmnHVVVfxwAMPMGTIEGJjY3nuueeIiYnRX/4iPqhr164cOXKEo0ePZmhJ4gMHDnDXXXfRtm3bLK/N4ziOk+XfRUQu2t9XNfu7xYsXn17dbPv27XTv3p0lS5aQL18+OnTowGuvvXbGUqjnEx8fT0REBHFxcWfMbxbJTidPnmTr1q2UL1/+rNPw5Owy431TGBAJcgoD4isUBi5NZrxvPrkcsYiIBC/9jXpxMuP9UhgQERGfkCtXLoAsX20v0KS9X2nv36XQAEIREfEJISEhFCxYkH379gEQFhaGRyvQnZPjOBw/fpx9+/ZRsGBBQkJCLvm1FAZERMRnpK2RkRYI5MIKFix43rVFMkJhQEREfIbH46FEiRJERkaSnJzsdjk+L1euXJfVIpBGYUBERHxOSEhIptzkJGM0gFBERCTIKQyIiIgEOYUBERGRIKcwICIiEuQUBkRERIKc9iYQCXKO45zeRU0LvIgEJ4UBERGRIKduAhERkSCnMCAiIhLkFAZERESCnMKAiIhIkFMYEBERCXIKAyIiIkFOYUBERCTI/R8NnCOO7lHTiwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "