-
Notifications
You must be signed in to change notification settings - Fork 1
/
datasets.py
204 lines (171 loc) · 7.77 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import json
from torchvision import datasets, transforms
from torch.utils.data import Dataset
from torchvision.datasets.folder import ImageFolder, default_loader
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import create_transform
""" Stanford Cars (Car) Dataset
Created: Nov 15,2019 - Yuchong Gu
Revised: Nov 15,2019 - Yuchong Gu
"""
import os
# import pdb
from PIL import Image
import pickle
# from scipy.io import loadmat
class CarsDataset(Dataset):
"""
# Description:
Dataset for retrieving Stanford Cars images and labels
# Member Functions:
__init__(self, phase, resize): initializes a dataset
phase: a string in ['train', 'val', 'test']
resize: output shape/size of an image
__getitem__(self, item): returns an image
item: the idex of image in the whole dataset
__len__(self): returns the length of dataset
"""
def __init__(self, root, train=True, transform=None):
self.root = root
self.phase = 'train' if train else 'test'
# self.resize = resize
self.num_classes = 196
self.images = []
self.labels = []
list_path = os.path.join(root, 'cars_anno.pkl')
list_mat = pickle.load(open(list_path, 'rb'))
num_inst = len(list_mat['annotations']['relative_im_path'][0])
for i in range(num_inst):
if self.phase == 'train' and list_mat['annotations']['test'][0][i].item() == 0:
path = list_mat['annotations']['relative_im_path'][0][i].item()
label = list_mat['annotations']['class'][0][i].item()
self.images.append(path)
self.labels.append(label)
elif self.phase != 'train' and list_mat['annotations']['test'][0][i].item() == 1:
path = list_mat['annotations']['relative_im_path'][0][i].item()
label = list_mat['annotations']['class'][0][i].item()
self.images.append(path)
self.labels.append(label)
print('Car Dataset with {} instances for {} phase'.format(len(self.images), self.phase))
# transform
self.transform = transform
def __getitem__(self, item):
# image
image = Image.open(os.path.join(self.root, self.images[item])).convert('RGB') # (C, H, W)
image = self.transform(image)
# return image and label
return image, self.labels[item] - 1 # count begin from zero
def __len__(self):
return len(self.images)
class INatDataset(ImageFolder):
def __init__(self, root, train=True, year=2018, transform=None, target_transform=None,
category='name', loader=default_loader):
self.transform = transform
self.loader = loader
self.target_transform = target_transform
self.year = year
# assert category in ['kingdom','phylum','class','order','supercategory','family','genus','name']
path_json = os.path.join(root, f'{"train" if train else "val"}{year}.json')
with open(path_json) as json_file:
data = json.load(json_file)
with open(os.path.join(root, 'categories.json')) as json_file:
data_catg = json.load(json_file)
path_json_for_targeter = os.path.join(root, f"train{year}.json")
with open(path_json_for_targeter) as json_file:
data_for_targeter = json.load(json_file)
targeter = {}
indexer = 0
for elem in data_for_targeter['annotations']:
king = []
king.append(data_catg[int(elem['category_id'])][category])
if king[0] not in targeter.keys():
targeter[king[0]] = indexer
indexer += 1
self.nb_classes = len(targeter)
self.samples = []
for elem in data['images']:
cut = elem['file_name'].split('/')
target_current = int(cut[2])
path_current = os.path.join(root, cut[0], cut[2], cut[3])
categors = data_catg[target_current]
target_current_true = targeter[categors[category]]
self.samples.append((path_current, target_current_true))
# __getitem__ and __len__ inherited from ImageFolder
def build_dataset(is_train, args, infer_no_resize=False):
transform = build_transform(is_train, args, infer_no_resize)
if args.data_set == 'CIFAR':
dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform, download=True)
nb_classes = 100
elif args.data_set == 'CIFAR10':
dataset = datasets.CIFAR10(args.data_path, train=is_train, transform=transform, download=True)
nb_classes = 10
elif args.data_set == 'CARS':
dataset = CarsDataset(args.data_path, train=is_train, transform=transform)
nb_classes = 196
elif args.data_set == 'FLOWERS':
root = os.path.join(args.data_path, 'train' if is_train else 'test')
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = 102
elif args.data_set == 'IMNET':
root = os.path.join(args.data_path, 'train' if is_train else 'val')
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = 1000
elif args.data_set == 'INAT':
dataset = INatDataset(args.data_path, train=is_train, year=2018,
category=args.inat_category, transform=transform)
nb_classes = dataset.nb_classes
elif args.data_set == 'INAT19':
dataset = INatDataset(args.data_path, train=is_train, year=2019,
category=args.inat_category, transform=transform)
nb_classes = dataset.nb_classes
return dataset, nb_classes
def build_transform(is_train, args, infer_no_resize=False):
if hasattr(args, 'arch'):
if 'cait' in args.arch and not is_train:
print('# using cait eval transform')
transformations = {}
transformations= transforms.Compose(
[transforms.Resize(args.input_size, interpolation=3),
transforms.CenterCrop(args.input_size),
transforms.ToTensor(),
transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)])
return transformations
if infer_no_resize:
print('# using cait eval transform')
transformations = {}
transformations= transforms.Compose(
[transforms.Resize(args.input_size, interpolation=3),
transforms.CenterCrop(args.input_size),
transforms.ToTensor(),
transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)])
return transformations
resize_im = args.input_size > 32
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
)
if not resize_im:
# replace RandomResizedCropAndInterpolation with
# RandomCrop
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
return transform
t = []
if resize_im:
size = int((256 / 224) * args.input_size)
t.append(
transforms.Resize(size, interpolation=3), # to maintain same ratio w.r.t. 224 images
)
t.append(transforms.CenterCrop(args.input_size))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
return transforms.Compose(t)