-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelpers.py
93 lines (78 loc) · 2.57 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import math
import time
import torch
from torchprofile import profile_macs
def adjust_keep_rate(iters, epoch, warmup_epochs, total_epochs,
ITERS_PER_EPOCH, base_keep_rate=0.5, max_keep_rate=1):
if epoch < warmup_epochs:
return 1
if epoch >= total_epochs:
return base_keep_rate
total_iters = ITERS_PER_EPOCH * (total_epochs - warmup_epochs)
iters = iters - ITERS_PER_EPOCH * warmup_epochs
keep_rate = base_keep_rate + (max_keep_rate - base_keep_rate) \
* (math.cos(iters / total_iters * math.pi) + 1) * 0.5
return keep_rate
def speed_test(model, ntest=100, batchsize=64, x=None, **kwargs):
if x is None:
img_size = model.img_size
x = torch.rand(batchsize, 3, img_size, img_size).cuda()
else:
batchsize = x.shape[0]
model.eval()
start = time.time()
for i in range(ntest):
model(x, **kwargs)
torch.cuda.synchronize()
end = time.time()
elapse = end - start
speed = batchsize * ntest / elapse
# speed = torch.tensor(speed, device=x.device)
# torch.distributed.broadcast(speed, src=0, async_op=False)
# speed = speed.item()
return speed
def latency_test(model, ntest=100, batchsize=128, x=None, **kwargs):
"""
Model should be in cuda!
"""
if x is None:
raise NotImplementedError
model.eval()
model(x, **kwargs) # warmup
start = time.time()
for i in range(ntest):
model(x, **kwargs)
torch.cuda.synchronize()
end = time.time()
elapse = end - start
latency = elapse * 1000 / ntest # ms
return latency
def get_macs(model, x=None):
model.eval()
if x is None:
img_size = model.img_size
x = torch.rand(1, 3, img_size, img_size).cuda()
macs = profile_macs(model, x)
return macs
def complement_idx(idx, dim):
"""
Compute the complement: set(range(dim)) - set(idx).
idx is a multi-dimensional tensor, find the complement for its trailing dimension,
all other dimension is considered batched.
Args:
idx: input index, shape: [N, *, K]
dim: the max index for complement
"""
a = torch.arange(dim, device=idx.device)
ndim = idx.ndim
dims = idx.shape
n_idx = dims[-1]
dims = dims[:-1] + (-1, )
for i in range(1, ndim):
a = a.unsqueeze(0)
a = a.expand(*dims)
masked = torch.scatter(a, -1, idx, 0)
compl, _ = torch.sort(masked, dim=-1, descending=False)
compl = compl.permute(-1, *tuple(range(ndim - 1)))
compl = compl[n_idx:].permute(*(tuple(range(1, ndim)) + (0,)))
return compl