-
Notifications
You must be signed in to change notification settings - Fork 1
/
predict_with_voting.py
138 lines (105 loc) · 3.81 KB
/
predict_with_voting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""..."""
import argparse
import colorama
import data
import json
import logging
import numpy as np
import os
import random
import sys
import time
import torch
import wandb
from datetime import datetime
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedShuffleSplit
from transformers import AdamW
from utils import training_utils as train_utils
from utils.colors import GREEN
from utils.colors import RED
from utils.colors import RESET
from utils.evaluate import calculate_voting_winners
from utils.evaluate import evaluate_on_testset
from utils.evaluate import evaluate_on_testset_for_votings
from utils.few_shot_sampler import FewShotSampler
from utils.trainer import train_model
wandb.init(mode="disabled")
colorama.init()
DATE = datetime.now().strftime("%d_%m_%Y_%H_%M_%S")
logging.basicConfig(level=logging.INFO)
local_rank = int(os.environ.get("LOCAL_RANK", -1))
if torch.cuda.is_available():
device = torch.device("cuda", local_rank)
else:
device = torch.device("cpu")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config", default=None, help="Path to config file.")
args = parser.parse_args()
with open(args.config, "r") as read_handle:
config = json.load(read_handle)
# parameters loaded from config (does not change (anymore))
debug = config["debug"]
min_length = config["min_length"]
model_name = config["model_name"]
model_paths = config["model_paths"]
test_data = config["test_data"]
batch_size = config["batch_size"]
max_length = config["max_length"]
logging.info(f"{GREEN} Predicting with {model_name}\n{RESET}")
# get test data (always stays the same)
(
test_input_ids,
test_attention_masks,
test_labels,
langs_test,
test_sentences,
) = data.prepare_test_data(
model_name=model_name,
test_data_file=test_data,
min_num_tokens=min_length,
max_num_tokens=max_length,
)
test_dataloader, num_test_sentences = data.get_test_data_loader(
input_ids=test_input_ids,
attention_masks=test_attention_masks,
labels=test_labels,
batch_size=batch_size,
)
# create the results dict
all_predictions = {}
for i in range(0, num_test_sentences):
all_predictions[i] = []
# chosen via sweep: seed, mode, num_shots
for model_number, model_path in enumerate(model_paths):
logging.info(f"{GREEN} Model number {model_number}: {model_path}{RESET}\n")
model = train_utils.load_fine_tuned_model(
model_id=model_path, model_name=model_name
)
model.eval()
model.to(device)
# run model on test data; return a dict with a prediction per sample:
# {sample_1: 1, sample_2: 0, sample_1: 0, ...}
results_per_doc, y_true = evaluate_on_testset_for_votings(
model=model,
prediction_dataloader=test_dataloader,
num_sentences=num_test_sentences,
model_name=model_name,
model_number=model_number,
)
# {sample_1: [0, 1, 1, 1, 0], sample_2: [0, 0, 0, 1, 0]}
for sample, prediction in results_per_doc.items():
all_predictions[sample].append(prediction)
# make sure we have the same amount of predictions as we have models
for sample, predictions in all_predictions.items():
assert len(predictions) == len(model_paths)
# determine the majority votes and calculate scores
scores, results_df = calculate_voting_winners(
all_predictions=all_predictions,
y_true=y_true,
decoded_sentences=test_sentences,
languages=langs_test,
post_processing=False)
print(f"Scores after majority vote:\n{json.dumps(scores, indent=2)}")
print(f"\nPredictions:\n{results_df}")