-
Notifications
You must be signed in to change notification settings - Fork 4
/
preprocess.py
220 lines (190 loc) · 9.81 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import pickle
import ujson
import os
import numpy as np
import spacy
from util import log
from configparser import ConfigParser
from gensim.models import KeyedVectors
class Encoder:
"""Encodes natural language.
:param vocab_size: The vocabulary size to consider (sorted by frequency).
:param word_vectors_file: Path to file containing word2vec formatted word vectors.
:param word_vector_dim: The word vector dimension.
:param language: Spacy supported language.
"""
def __init__(self,
vocab_size,
word_vectors_file,
word_vector_dim,
language='en'):
self.vocab_size = vocab_size
self.word_vectors_file = word_vectors_file
self.word_vectors = KeyedVectors.load_word2vec_format(self.word_vectors_file,
limit=self.vocab_size)
self.word_vector_dim = word_vector_dim,
self.token2idx, self.idx2vec = self.get_dictionaries()
self.nlp = spacy.load(language, disable=['tagger', 'parser', 'ner', 'textcat'])
def get_dictionaries(self):
"""Returns token2idx and idx2vec dictionaries of this encoder."""
assert (len(self.word_vectors.vocab) > 0)
token_2_idx = {'<unk>': 0, '<pad>': 1}
idx_2_vec = {0: np.zeros(self.word_vector_dim), 1: np.zeros(self.word_vector_dim)}
idx = 2
for token in self.word_vectors.vocab:
if idx > self.vocab_size:
break
token_2_idx[token] = idx
idx_2_vec[idx] = self.word_vectors[token]
idx_2_vec[0] = np.add(idx_2_vec[0], self.word_vectors[token])
idx = idx + 1
idx_2_vec[0] = idx_2_vec[0] / (idx - 2) # unk is average over all vectors
return token_2_idx, idx_2_vec
def tokenize(self, text):
"""Tokenizes text, returns list of tokens.
:param text: String to tokenize.
"""
doc = self.nlp(text)
res = [token.text for token in doc]
return res
def string_to_indices(self, text, seq_len=-1):
"""Tokenizes text and returns list with indices
:param text: String to tokenize.
:param seq_len: Maximum sequence length (cut or padded).
"""
tokens = self.tokenize(text)
if seq_len > 0:
if len(tokens) < seq_len:
pads = ['<pad>'] * (seq_len - len(tokens))
tokens = tokens + pads
else:
tokens = tokens[:seq_len]
indices = []
for token in tokens:
try:
indices.append(self.token2idx[token])
except KeyError:
indices.append(0)
return indices, tokens
def indices_to_vec(self, indices):
"""Concatenates word vectors into embedding matrix.
:param indices: Indices to vectorize.
:returns vectors: Vectorized indices.
"""
vectors = None
for idx in indices:
if vectors is None:
vectors = self.idx2vec[idx]
else:
vectors = np.concatenate(self.idx2vec[idx])
return vectors
def bundle(doc_path_in_machine,
doc_path_in_human,
doc_path_in_source,
encoder_source,
encoder_target,
doc_path_out,
seq_len=150,
prefix=-1,
print_progress_every=10000):
"""
Bundles human, machine and source lines alongside word indices in json lines.
:param doc_path_in_machine: File containing line separated machine translations.
:param doc_path_in_human: File containing line separated human translations.
:param doc_path_in_source: File containing line separated source.
:param encoder_source: Encoder which holds token-to-index dictionary of the source language.
:param encoder_target: Encoder which holds token-to-index dictionary of the target language.
:param doc_path_out: File to which json lines are written.
:param seq_len: The sequence length to which each line is cut or padded.
:param prefix: Process <prefix> number of lines. Ignore if prefix less than zero.
:param print_progress_every: Log progress every <print_progress_every> lines.
:return line: The number of lines written.
"""
machine_fin = open(doc_path_in_machine)
human_fin = open(doc_path_in_human)
source_fin = open(doc_path_in_source)
bundle_fout = open(doc_path_out, 'a')
machine_line = machine_fin.readline()
human_line = human_fin.readline()
source_line = source_fin.readline()
line = 0
while machine_line and human_line and source_line:
if 1 <= prefix <= line:
break
else:
line = line + 1
if (line + 1) % print_progress_every == 0:
bundle_fout.flush()
log('Processed line {}'.format((line + 1)))
jsonl = {'idx': line, 'machine': {}, 'human': {}, 'source': {}}
machine_idxs, machine_tokens = encoder_target.string_to_indices(machine_line.strip(), seq_len=seq_len)
jsonl['machine']['indices'] = machine_idxs
jsonl['machine']['tokens'] = machine_tokens
human_idxs, human_tokens = encoder_target.string_to_indices(human_line.strip(), seq_len=seq_len)
jsonl['human']['indices'] = human_idxs
jsonl['human']['tokens'] = human_tokens
source_idxs, source_tokens = encoder_source.string_to_indices(source_line.strip(), seq_len=seq_len)
jsonl['source']['indices'] = source_idxs
jsonl['source']['tokens'] = source_tokens
bundle_fout.write(ujson.dumps(jsonl) + os.linesep)
machine_line = machine_fin.readline()
human_line = human_fin.readline()
source_line = source_fin.readline()
return line
if __name__ == '__main__':
log("Preprocessing...")
config = ConfigParser()
config.read('./data/input/config.INI')
parser = argparse.ArgumentParser(description='Bundle line separated corpora.')
parser.add_argument('--vocab_size_source', type=int, default=config.get('PREPROCESSING', 'vocab_size_source'),
help='Vocabulary size of the source language.')
parser.add_argument('--word_vectors_source', type=str, default=config.get('PREPROCESSING', 'word_vectors_source'),
help='word2vec formatted file w/ source language word vectors.')
parser.add_argument('--embedding_dim_source', type=int, default=config.get('PREPROCESSING', 'embedding_dim_source'),
help='Word vector dimension of source language word vectors.')
parser.add_argument('--token2idx_source', type=str, default=config.get('PREPROCESSING', 'token2idx_source'),
help='Save token2idx dictionary of source language here.')
parser.add_argument('--idx2vec_source', type=str, default=config.get('PREPROCESSING', 'idx2vec_source'),
help='Save idx2vec dictionary of source language here.')
parser.add_argument('--vocab_size_target', type=int, default=config.get('PREPROCESSING', 'vocab_size_target'),
help='Vocabulary size of the target language.')
parser.add_argument('--word_vectors_target', type=str, default=config.get('PREPROCESSING', 'word_vectors_target'),
help='word2vec formatted file w/ target language word vectors.')
parser.add_argument('--embedding_dim_target', type=int, default=config.get('PREPROCESSING', 'embedding_dim_target'),
help='Word vector dimension of target language word vectors.')
parser.add_argument('--token2idx_target', type=str, default=config.get('PREPROCESSING', 'token2idx_target'),
help='Save token2idx dictionary of target language here.')
parser.add_argument('--idx2vec_target', type=str, default=config.get('PREPROCESSING', 'idx2vec_target'),
help='Save idx2vec dictionary of target language here.')
parser.add_argument('--machine', type=str, default=config.get('PREPROCESSING', 'machine'),
help='Machine translations.')
parser.add_argument('--human', type=str, default=config.get('PREPROCESSING', 'human'), help='Human translations.')
parser.add_argument('--source', type=str, default=config.get('PREPROCESSING', 'source'), help='The source file.')
parser.add_argument('--bundle', type=str, default=config.get('PREPROCESSING', 'bundle'),
help='Output path.')
parser.add_argument('--prefix', type=int, default=config.getint('PREPROCESSING', 'prefix'),
help='Only preprocess prefix lines from each corpus.')
parser.add_argument('--sequence_length', type=int, default=config.getint('PREPROCESSING', 'sequence_length'),
help='Cut or pad each input to seq_length.')
args = parser.parse_args()
enc_source = Encoder(args.vocab_size_source,
args.word_vectors_source,
args.embedding_dim_source,
language='de')
pickle.dump(enc_source.token2idx, open(args.token2idx_source, 'wb'))
pickle.dump(enc_source.idx2vec, open(args.idx2vec_source, 'wb'))
enc_target = Encoder(args.vocab_size_target,
args.word_vectors_target,
args.embedding_dim_target)
pickle.dump(enc_target.token2idx, open(args.token2idx_target, 'wb'))
pickle.dump(enc_target.idx2vec, open(args.idx2vec_target, 'wb'))
no_of_lines = bundle(doc_path_in_machine=args.machine,
doc_path_in_human=args.human,
doc_path_in_source=args.source,
encoder_target=enc_target,
encoder_source=enc_source,
doc_path_out=args.bundle,
seq_len=args.sequence_length,
prefix=args.prefix)
log("...done preprocessing.")