diff --git a/docs/lectures/13_dimred.md b/docs/lectures/13_dimred.md index 614665a..ae4e445 100644 --- a/docs/lectures/13_dimred.md +++ b/docs/lectures/13_dimred.md @@ -144,7 +144,7 @@ We can therefore conclude that PCA is defined as: More in general, it is also worth remembering that if the training data is not zero-mean, PCA can be slightly modified to take that into account: $$ -\mathbf{c}=\mathbf{D}^T (\mathbf{x}-\boldsymbol\mu$ and $\hat{\mathbf{x}}=\mathbf{D} \mathbf{c}+\boldsymbol\mu$. +\mathbf{c}=\mathbf{D}^T (\mathbf{x}-\boldsymbol\mu \; and \; \hat{\mathbf{x}}=\mathbf{D} \mathbf{c}+\boldsymbol\mu$. $$ where $\boldsymbol\mu$ is the sample mean.