From 826214d969d4781f0ff503ab451746148fcfaefd Mon Sep 17 00:00:00 2001 From: "Leaf, Andrew T" Date: Sat, 3 Aug 2024 09:46:39 -0500 Subject: [PATCH] feat(wells.py::setup_wel_data): add layer assignment from screen top/botm to wells: dictionary input option to facilitate easier testing. LGR parent models, remove wells with >50% of their open interval within the LGR child area; LGR child models, remove wells with <50% of their open interval within the LGR child area. This ensures that pumping wells aren't included twice in a partial vertical LGR case (due to the automated well rellocation routines). Add any dropped wells to dropped_wells_file. --- mfsetup/wells.py | 53 ++++++++++++++++++++++++++++++++++++++++-------- 1 file changed, 45 insertions(+), 8 deletions(-) diff --git a/mfsetup/wells.py b/mfsetup/wells.py index 94aa1209..5be780bb 100644 --- a/mfsetup/wells.py +++ b/mfsetup/wells.py @@ -128,6 +128,15 @@ def setup_wel_data(model, source_data=None, #for_external_files=True, aw['x'].values, aw['y'].values) aw['per'] = aw['per'].astype(int) + if 'k' not in aw.columns: + if model.nlay > 1: + vfd = vfd_defaults.copy() + vfd.update(v.get('vertical_flux_distribution', {})) + aw = assign_layers_from_screen_top_botm(aw, + model, + **vfd) + else: + aw['k'] = 0 aw['k'] = aw['k'].astype(int) df = pd.concat([df, aw], axis=0) @@ -401,8 +410,35 @@ def assign_layers_from_screen_top_botm(data, model, inactive = idomain[data.k, data.i, data.j] < 1 invalid_open_interval = (data['laythick'] < minimum_layer_thickness) | inactive + outfile = model.cfg['wel']['output_files']['dropped_wells_file'].format(model.name) + bad_wells = pd.DataFrame() + # for LGR parent models, remove wells with >50% of their open interval within the LGR area + # (these should be represented in the LGR child model) + if model.lgr: + data['model_top'] = model.dis.top.array[data['i'], data['j']] + data['frac_in_model'] = (data['model_top'] - data['screen_botm'])/\ + (data['screen_top'] - data['screen_botm']) + in_model = data['frac_in_model'] > 0.5 + bad_wells = pd.concat([bad_wells, data.loc[~in_model].copy()]) + bad_wells['category'] = 'dropped' + bad_wells['reason'] =\ + ">50%% of well in LGR area (should be represented in LGR child model)" + data = data.loc[in_model].copy() + # for LGR child models, remove wells with <50% of their open interval within the LGR area + if model._is_lgr: + data['model_botm'] = model.dis.botm.array[-1, data['i'], data['j']] + data['frac_in_model'] = (data['screen_top'] - data['model_botm'])/\ + (data['screen_top'] - data['screen_botm']) + in_model = data['frac_in_model'] > 0.5 + bad_wells = pd.concat([bad_wells, data.loc[~in_model].copy()]) + bad_wells['category'] = 'dropped' + bad_wells['reason'] = ( + ">50%% of well below LGR area (should be represented in " + "underlying parent model, or model bottom and open interval " + "should be checked)." + ) + data = data.loc[in_model].copy() if any(invalid_open_interval): - outfile = model.cfg['wel']['output_files']['dropped_wells_file'].format(model.name) # move wells that are still in a thin layer to the thickest active layer data['orig_layer'] = data['k'] @@ -422,22 +458,21 @@ def assign_layers_from_screen_top_botm(data, model, data['idomain'] = idomain[data['k'], i, j] # record which wells were moved or dropped, and why - bad_wells = data.loc[invalid_open_interval].copy() - bad_wells['category'] = 'moved' - bad_wells['reason'] = (f'longest open interval thickness < {minimum_layer_thickness} ' + wells_in_too_thin_layers = data.loc[invalid_open_interval].copy() + wells_in_too_thin_layers['category'] = 'moved' + wells_in_too_thin_layers['reason'] = (f'longest open interval thickness < {minimum_layer_thickness} ' f'{model.length_units} minimum ' 'or open interval placed well in inactive layer.' ) - bad_wells['routine'] = __name__ + '.assign_layers_from_screen_top_botm' msg = ('Warning: {} of {} wells in layers less than ' 'specified minimum thickness of {} {}\n' 'were moved to the thickest layer at their i, j locations.\n'.format(invalid_open_interval.sum(), len(data), minimum_layer_thickness, model.length_units)) - still_below_minimum = bad_wells['laythick'] < minimum_layer_thickness - bad_wells.loc[still_below_minimum, 'category'] = 'dropped' - bad_wells.loc[still_below_minimum, 'reason'] = 'no layer above minimum thickness of {} {}'.format(minimum_layer_thickness, + still_below_minimum = wells_in_too_thin_layers['laythick'] < minimum_layer_thickness + wells_in_too_thin_layers.loc[still_below_minimum, 'category'] = 'dropped' + wells_in_too_thin_layers.loc[still_below_minimum, 'reason'] = 'no layer above minimum thickness of {} {}'.format(minimum_layer_thickness, model.length_units) n_below = np.sum(still_below_minimum) if n_below > 0: @@ -455,6 +490,8 @@ def assign_layers_from_screen_top_botm(data, model, print(msg) # write shapefile and CSV output for wells that were dropped + bad_wells = pd.concat([bad_wells, data.loc[invalid_open_interval].copy()]) + bad_wells['routine'] = __name__ + '.assign_layers_from_screen_top_botm' cols = ['k', 'i', 'j', 'boundname', 'category', 'laythick', 'idomain', 'reason', 'routine', 'x', 'y'] cols = [c for c in cols if c in bad_wells.columns]