From 8a876f16feaf53d4764ab92eeac00e804eafee2f Mon Sep 17 00:00:00 2001 From: aleaf Date: Thu, 21 Sep 2023 16:13:46 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20=20@=20db036?= =?UTF-8?q?0491bf85dae72673f513f78c8906089c601=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- latest/.buildinfo | 2 +- latest/10min.html | 6 +- ...tebooks_Pleasant_lake_lgr_example_24_1.png | Bin 30740 -> 30740 bytes ...tebooks_Pleasant_lake_lgr_example_34_0.png | Bin 111883 -> 111873 bytes latest/_modules/index.html | 6 +- latest/_modules/mfsetup/discretization.html | 6 +- latest/_modules/mfsetup/fileio.html | 6 +- latest/_modules/mfsetup/grid.html | 6 +- latest/_modules/mfsetup/interpolate.html | 6 +- latest/_modules/mfsetup/mf6model.html | 8 +- latest/_modules/mfsetup/mfmodel.html | 24 +- latest/_modules/mfsetup/mfnwtmodel.html | 6 +- latest/_modules/mfsetup/tdis.html | 16 +- latest/_modules/mfsetup/tmr.html | 6 +- .../Pleasant_lake_lgr_example.ipynb.txt | 188 +++--- latest/_static/documentation_options.js | 2 +- latest/api/index.html | 6 +- latest/api/mfsetup.discretization.html | 6 +- latest/api/mfsetup.fileio.html | 6 +- latest/api/mfsetup.grid.html | 14 +- latest/api/mfsetup.interpolate.html | 6 +- latest/api/mfsetup.mf6model.html | 6 +- latest/api/mfsetup.mfmodel.html | 6 +- latest/api/mfsetup.mfnwtmodel.html | 6 +- latest/api/mfsetup.tdis.html | 12 +- latest/api/mfsetup.tmr.html | 6 +- latest/concepts/index.html | 6 +- latest/concepts/perimeter-bcs.html | 6 +- latest/config-file-defaults.html | 548 +++++++++--------- latest/config-file-gallery.html | 63 +- latest/config-file.html | 6 +- latest/contributing.html | 6 +- latest/examples.html | 6 +- latest/genindex.html | 6 +- latest/index.html | 10 +- latest/input/basic-stress.html | 10 +- latest/input/dis.html | 6 +- latest/input/ic.html | 6 +- latest/input/index.html | 6 +- latest/input/lak.html | 6 +- latest/input/obs.html | 6 +- latest/input/oc.html | 6 +- latest/input/props.html | 6 +- latest/input/sfr.html | 6 +- latest/installation.html | 6 +- .../notebooks/Pleasant_lake_lgr_example.html | 30 +- .../notebooks/Pleasant_lake_lgr_example.ipynb | 188 +++--- latest/objects.inv | Bin 9972 -> 9973 bytes latest/philosophy.html | 10 +- latest/py-modindex.html | 6 +- latest/references.html | 6 +- latest/release-history.html | 6 +- latest/search.html | 6 +- latest/searchindex.js | 2 +- latest/structure.html | 6 +- latest/troubleshooting.html | 6 +- 56 files changed, 680 insertions(+), 669 deletions(-) diff --git a/latest/.buildinfo b/latest/.buildinfo index c3f4729d..cf9d2b1a 100644 --- a/latest/.buildinfo +++ b/latest/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 7120a413fddcd01edc1a4040adba86c4 +config: a2fae29f9adf14a325f19777fee33d24 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/latest/10min.html b/latest/10min.html index f2a371e4..4ce231a0 100644 --- a/latest/10min.html +++ b/latest/10min.html @@ -4,7 +4,7 @@ - 10 Minutes to Modflow-setup — modflow-setup 0.3.0.post11+g3a6ec42 documentation + 10 Minutes to Modflow-setup — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -443,7 +443,7 @@

5) Make a minimum working configuration file and model build script

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/_images/notebooks_Pleasant_lake_lgr_example_24_1.png b/latest/_images/notebooks_Pleasant_lake_lgr_example_24_1.png index 336d7843b1d43d75d6b4afde2ec2c343b8e1385c..e0e73710a5a9ef742b5c0a0dc34398b744620372 100644 GIT binary patch delta 45 zcmbR8fpN+Q#tCi;7J3Fc3K=CO1;tkS`nicE1v&X8Ihjd%`9RyC2LOgG B5wZXP diff --git a/latest/_images/notebooks_Pleasant_lake_lgr_example_34_0.png b/latest/_images/notebooks_Pleasant_lake_lgr_example_34_0.png index 7b2395613de9d94ba430b5400556669b2b26af78..c6b1571dc8a99ced2a51d648109a2c097d2dd993 100644 GIT binary patch delta 32408 zcmXV11yEG)+g(~(x?7MES&)$K?(SMjx*IOt-JQ~nfONMYASp;A0!nxP@9&#$hM669 zc6RT5@B5tRob#MF<`6mP5IIqbnwO28mD<|P&B>MT{d;>;HzzwsH@i<}Y>qBg@3|UV zs)H=kEaBe3nYF~gDRLo5N{VExa=}r+QD@w7!BGPPv^UKMr#C3u+heDV&6BIBZ(>!O z7Q!*jWsZKK?jPKt*J`DsVkt2Nu6Ob{-P9Exeh!A3Y>I5o(oq}tAR2U-N9whNE~3dO ze2y0j3JR>X=UuFO$Ji_f+4sYwRQOY^LSr&hSkll!LEEh7ooq*+==2Ion3pe1b^G90 zXg&_4ri)c2=1_`#vs))`b7Qhid-9$=sQH!)-Qn@OHxG)Zs4ui#I+6Q^zk0i~Z3F8M z9%*QeAG$ru(KH&Ja2s8ywlFbEj!dHS z99&rVpwBU{>E<(?Z^jGs2)VhLXA0aQpZ@_;tM;3jHzmuz$auhGtbTPY$S~l6qX3i( zG~V*?Tf^WbEjj%B)zQ-GjR65^jMWiU__?LGYl}6rlaE%vx$^i7HT>$Q^X3fT6)kU+b7k&W z9hMV&e&r6}$uvo|1_%574(kZ$QwJy`2XSJN&;!S04(V1(B4$=93Z5RAZo8Ez^ceOk zkneDv^Y}!H#LfnoOU%}LN^46>8hl=%(j(74r@w2?t&IECtE>-Y?VUiyM$xLT3;Fye z8k_v1nsr=cr)N;g+Z;&YOH}$hB&~g6quw(5fWSj?EGo7dpbqqCPa>=Qm5xjL*v$?_+eoH^!2yZ^z_%Z4xC%X(K&TsD^ zxE*7>dHc86cFEYc6WoW>yxAd{1i?PH?BqY-Jv{rZ=@ zYKE++D8B`~{Dq9X(doQ?v%Mp1BY-7uxbt#3jwhd?B%+auvp3cGN_-H|_GY#`U0@Ne zF&4&6N|Lf(`i^jQn5V8kncFc6oE77E934iAg_$*a95LB@ z|9xXLkm`MYCe&iY z_)8fN0^_x+uA%0~=g)6Om^EaWnDg+mbZ5C(I!@Mn16v#v`3RVRf#vy1vM=w%4KH2} z)a4pa^Z36o@RXls_SYo+mXtI!G`zjLtDI*3ZJtx9&g4<&YPA`$@L(`Cp3-c;VWcDI zLU!)euapg}h?T8l$?0)f<@^DC#o3jkm ze3~o!Z%e5qHh+fv-j6 zPR)aymxrV!F*r1e06dC5&`GJ7C33rNBPM26M5vVp+5oh#ykp~$Ehh_~vN++?=iZnS zz&ChvIvtZEjU2Ba%~#MghzUFWi5ILhprLc0V{jhQbWt1A%Ii<2mw#ra#wN@o6UAPFWc52{RrpCYJ&)vSCSQ!{lSwDR69n~DQa=*XCjK1*QjdbDApx|ut;W|(+ zQ+N%ej5o2VlNf&Ce<_jXl>B8QCU(8Mhfm3w$+u^_9xE;NXdWYslkAuf=pez_qW| zya+Y1rW$ z5DaDho|TH&?2yMF@-!C`Jo>5NhE|KBTv?r>35_5SjUaSU>S|1w^ZHtsMLd=47Pzcr z_c$qgTBvRj=C*zC==+AwsD^00{@6WpxOt=xc5Jx`-3|@%KRi%qsqvSTIUZ5>yDZzK zz{ppHB0;>5*EusQPCw}Mp&=kfw)tE!v%Wj1+IhG+vHtNH)u_j>k{f9_QUw~q@2O@e ziifv3MRp&e9%f)M1G0v%<8(Se4e{w!_2DkFyh9X;L2C_VzR5IXUk~V%w`zV{2lKNemaD0hJmkz|#UT99(*Z@do-}xFEjdWMknn`y<6mI3}0#A0=6h+IxbX(G9J?w_omcxu8s8FHZ?TQ}5oCJ|+qZ zOG}*ayDXCKKQlB|xdOU43)Q^?%Z>G%e%J{l^U0Z_Z{L<1Q@VP1Xw62qTvJO-Zr+^4 z60j*a6U7i!E7dhw>+MaXeekf*Grh>{Z?*^z=a78Az~k6d-q{-4t4Kz=5lt}hP3CWp z4h*?mx%^B|kAo0Dl`CrkAeUC(Ioa6AgNyyS!fZ^Znznr`WTDwK zuroRj5JI@^Agsf9+-3OA&bvR6D$1&eZQdNOW4?I<;pPr1t~z2)g1pn4d5$5H4Ab0u zD+H9)mRiI%L_2Z3(I43yi6h%OI6$?svf}0E-&yPQtX!FMo*xWD?_2M_4BO}+m{}sy zqno53B#T;#GLIBELbSBBc)d=kgF`~jo*q2Od7U8OJ6XL+B_A^OMBvDPcCiO8n_IN%*z7iW zn&5^O%&{vX74>rX{Ctrp+`dB5gitMM`Y~6$az#98sN3ls9}=;yE_7M;L?FcpzlTL!*FW5nTLVy#L!?gZ?u8~$ z372I*+}?T-laQ49Oid?Pcu+yi%*;$|Y_jP{goV@7C#|M!HgC^1RJyz%&$lq!R`+QI zWoYcn>DHc;r>EFj$Jg1OC-G8qbN9!I{i>?7h;YKuDnRq8FB9wecIS08(M!d3`;Vbp zt7*#keQWhtvafiOF~}^nomC^ig(b|OU5)Jf_mkPmIZ@Tgm+6G|PVIr&l3r1UImsm2 z{{4-YHwp?pXxuNdvU{1FR)}wK!*##x4Gz88*%=ubDOSkhP@zA(eNt9tgZ2GtS3Et= zBOv9z90F#FbbHxj;^Kxk`$LBFMAT~aT8teQsUT%|-&# zJG$-%Gg<1NUmb;QmlH>RmdY=>EuiH|>SnYVEiFt@e1+kL6d(lUW%$ zv&ElnpC4ndPF@^aEh=oDH@fKr(ePD{zseCR&x#Ye#NFGCI6 zA*}$Ad)N;bn3vafSXY@Gfo<=+gM8&{*s5S{uOaQ?BKJ%4`ElS79+H$49{q;9@r5vh zg($XMxe{Mn1HZx7(^qmVvESy;vV?r?^XCSEf|Oyg6A7f=)EFe8JNr zyE@(PUC087ir-x`dp1A%8wU7?n@)HLgJQ8)|F40Y6Q+l|bJX&P+@<>3e&Wq-_~qqS zwTgQ>`sxZ!H^&ed?&AqCu%DC>+i%zj!N%_UmD`iBB9(3iLK;b{!&-E^>z`uL5CA!o z-;+%)owXA6Ng}EvMyc0VT9_{?sxMz~mqa7XK(m-B3kQcu_zkEPIqu}T_T8ctMgq@v za%idhaC={l<2M2xJ|`D{Gb4M6A&P7CbR=kNzbm$1U6Ug?ClH_g9lP%OS4-CJmku5h z`iSZ8i8=NU3g46KR#e>dj4Il!XTgqP9Ka>rQEm39|22K6#g=RK^SCqy>7@?-MM2t< zgd~Z{?P+}CxLbqIm8_25h>hE`zrU^N(F&iF8^%yykS~W|T`OT;d>qn5I@04~;O}oi z&O1%-m06;d`1$xaP*6}>!Fsyho60eE@Wyl>!C-jHsZ~!oOwnvNuEs?^4MZ7emM~>4 z)z7szd{M9cm0OGnb^SE%=BXU@2^C%4$g?p4*jFL_b9qn|HHfP}S*S6g)9&(NL^6hB zQ5+N-A;H9)T&0b16uz9J|J?+atq*75cE((C76D0iG|A&#KoqVqL1X;Hgo?*AkA1PX z-4dJUC%nqw+aC8a45;6k~@zI46!(cF)BpG)9dpDUkxD8afQMgfvMn*<99GVxD z`mHK|xzyD+3xJ{78#Ng(f6;{|e|~#@_lY%mo|E<2R)de5`fL~^0v-xRdvDu zP3OFg-`<}{q=(Ju8*wFcGngynYc~YuUG&c4vE2BX4TKy6p@AASlWx_(kvrX6dRtorehBIH|js*6Jpc%|d!5S1us0_OG z(6#GSl0z7xA`1cgAoy&-I)*Iaf{}x5_{&53X6}iU(o9h$oB77pX=0Vy6>R~3J#sD^ zm3{+5!?ei7!%R_W>3f(kV06bSM9C?`@f&Knx3{J9WlzA(Ep^Fo5*m`9FPbUzqzvg> ztd%}JT757e;ABh~^dmy|YJ9&PU zOrV@rZ8=OcAmY?%u~F8jlCT$iZ-ki5rEZk3HH6`!RubRx6oSIECt_UCxKyvnkPa>D zhK4u;&anskGu~$x>L998UuU*An=e+1|7p_y`sd@K;pC2S*DWgoF^h)G$1Gj%I29^TVllkDSR3J5$nkMX(~F}4fyhSj$pKYy7+4)t{WOpGO6{6B;My07P3@a z@l&OGP&7f*)K0L8je-j7MD*xp`}U?8Lt z+0r5QF5vD5snvIgk56ATftYQIYa5giek8uMLk|>9(V3!Hr-uagdAVM+ib_d0-u7#x zj2eudi)$%(;LFYS0$z%Wp*>`^#s{L-T8w!|0pqf+Dm@ zMT%raEvl6M{#AzP5U}lsF#Lc3>)l@vA@f!A@#{aTB$$z||5d_6h(9LdE;Lh6a#kQ# z8LSF>#y=O*Fz~n&@CVBcyHa-{9ETPS`*F;7m&}#)F2q zWW~bGmGgvTXq#T1ybw?202+ErHL<|`CEw{~vv>yEdyp;UupZRCgNCqZtG(+V2n$M} z3K9!*VM_tUA5E3sDu9h`RpaFx{gIeQiSsJ4S+-1o5;lkoYCj~i_^gL30V6BOLaDqG zp)|Rc&xz{rt?klt&3|{-s)EpERLp0|ps;oTWu>N>;_ivxMEVKXV;gbOt7CujA zUVHL5@x_gm-Tmb^yKjUe&-XEnl!C-$e3znC_caso!t9Aq00F_`iu(OAp%0^M# zMU8`VzQGQ9O()KT@5}7#jRI?HeG*DPjU<%kPnXK0z&1r*0$uz$r}I85;6(`mkq?oh)Yedt{PoON218(_amcWHrjKYURrF4 zwENj5lhdX3^;L8%VpkWM=^%24u#eldMI=Ex)VfHD%yL7BIT~vQ$=YH2P;+xrw4;KO z7dVB2s9EF5AO=<(L{+tKv%gu`k9VdpsNp^mM_HNrV^;94H$$V#8~Rd>5h_k8UzQ!K zh+8j?LdX#ha!N{&`(GP6#z?dk(BkCR!WI)_%rc$I=9W=HuF{_V^#FdAA$fMrXtA*{ zUR&GDM`t(0=cgNms>}v>q&kz;);-|#ytu=$MC$3jKOq`k2w=!EGV1&JWufsCUab@& zA_Vd@uCI?^*jYx*vw{Ze>u~Rjz;-jvqCC;vnn+6xzP4ZKk}Q>rKm3>o0aX&6)XekC zGs^O61Zs6+^sF_!>=(PqCMa{_gO05!~({fVe=6DSb0#Y~N`R?uaJbsiYiD2iQ5z|n=R>))y z4>rHYKL`YrgXpfmnQS4g_N(ENF@&NFDMg@TvD{#aaCzBeN%rT%jO)IN4Zn6VqQ&II z7kI8&6@7j4=ZE(#3e|uXrjzG?jJgOD^^NCoYF{{Ji>VoINQ>=s|FTZDJ;}iukuCgq z4v$u*a4#wvVeIhz)mxgR3LZw`w>wjIkE03NL$f8{**W9}f{}?vwfk3qJ5cMBz+ z&gU8kL;wAnsvaBip9dd_bEDefX5G;tCDmbe{HrWc#+;ZBa6yRHP*{7`z_o< z{g?92OgtIDavIrksu(@g^CZyqkH$l9ayhQdz`y|h!wa}T)duYxuvn0M`m$kJeHup8WtMb zfJ-me@YQjHV}!WV`+}ibr3gMIKHd_1@HI9IK-E8Rkz%1EU0q$E?2yzI5rL$Po7dQ{ zw%YBC#OYE>E5Qp+=N9#;M};<$@u&%p;>oC)v+0QZsZ^!{QIfz+sc^X$5Kb8iU?xUsYIBteSa=uhGC;yZ6+ygc@cv+cOurHQSOS9y@G3nvVYJdd> z`Xc7zzsbPFi!4x3w2{R1^0(L=$-R)fmQTQsXL27W~0pl@!yrS zMl1@WMnPZ3Ga3Pd+q>!SzCV296r}$2O|pVsFbOF~tH(Qnknfep!hi41=wOzX&KM>& z&ajc~9nA|}O{A*ZC*VbhK5Ksy5M3C5!YRU&`9P{YZvl{*Qh*F(DO3-F(-_YcU|U z^v})Vfv6)so_zWH=ITnZMZ?O`F<~@;iY4FnG^E7>{HNqa60iJ9$k=$p&0R@GMnp_3 zcssz{+`M&kig=g|5gDF>AuTXTHgV~l4>N-`@$L+d)+tm#z-gZgM=6F=|0Yp zZ3%RY7;t*&K`&D*DQ@ldMR=z#1g9cpz0f3~mW)+rjKXGIw%jUa~I#E;g%#X*IX}&6Rb)G<55@Q5URUPCB^4_iAVKL`$!XV@KPvOL#pY zj%%n9Hg$SVZ}`;K)+IijZ`H4();e9puy-h(m7m|*=3K%jAQ(f(#N=L$>I*#7TmQPH znaFsF-QAsZPl%6$$4G{Q6bMo@`2H2i+>04l9+xkwW)YW=5v|eVhQp1*AjmV`xwm8<@WsBoLl?s45Pnaa`TTiqH!-_ z|5E+p?e!Gy_;^R_*8fX@JOt$=qSV4J z-Qx3=j+hucIXQWuoXhzG6@dlFvGwSfCtj^}bc;k_Q8Fjx5H>b85({`Wm_S2iGmw4?aF+YMQJ+-&Gk(y9L=T6;{cOqdtAR)uiDO5GXyG|M&AgljC=S05l+r^*2Aa zZ8`zy_em=!wv7VU0IRoCuRnsDyM<1Z1PW|4Jwl>5J6rCM6bM5Tgj%3EJ^M}UNJc{x zbKrZQkUxBa$A51`E^@~DEwB9(`RA4{@KG&lAVX5^ZV{VW>uC^9kFW%_+IF>@R|Uyr zcNn&x7W8f%@?Je?QGS}3?{utBtYn_(KB)TPnw=`)j(>9m@W)BTt(*8}4gkgw zdDMCTaPk2=jTz4OrbEPdLz3QQj+TQ1H{`d46ru=h#KheEO>s$yDGY`HxxLu{RNI_P zb#!$4#>RkGJdW!UA;_4o$;o5E=E2w$1*#!a3kxKWX~ht|9~c}&==QmShqxWB5ae*% ziC{4X6EJwua8!tC%r9SK%!RSu-1_Yg(26})HFEn zNL}vF(iyH{Vq&U$2Q|e=z#DYEvRgsKAS(l!GX(~Je`~g1`Eb**yD;4RX+E~c&zm_u zTf5CA?3reX<=3=MO(9(FKkm#e9{VdK%UH5BHrkk zMFQJOdws(P5&1!W&mZ1vO=0)^e=I*(Vn|6y6uSQT9vKr85+9Gn`tF_c-XzKX;o@#@$2zt+}NTkUiq zeM3=rTl+HZasL4;xS;*x1`zR>jv_U^a0HEg=T*1db7vGAeD zo1{clUQafsZHbDRs#1Bk4-2&htr#*gg_+%yf-)yRN;N%m9UbMi4z~7Qol+NFJ1~uG zdbUINPYEC@6 zu^}GxvCsE2oN|GUx*uY((4~qZi)g+VlylHYMki(%>cSBN{lWKR83{t8>FM}9hOMk? z6KN&)Sz?B79v;*Mj=wruHhd|WKEvL+X%BDX?P!BzTN6oAN)ZRrOIy1K(*A(qPfA<9DIx%-MeRG3-%N4a23b}ks6DEm+hk4`7V0kpcMj*!tZufJ9m z4Z}gK!pWhqvm47y*#Li>?#HiO2P8BI7$MP=zYSwPy(rm8OQ3>7k0CbbbwKm=EoxE2 zzSx5+5Sq<>r$gP$ogL&!y%ib0Z;hakBlQ5h)IL9FwMTV&j+a!GOXp{Ig$lTK$P+n# zWdma4O23PrGiyCPq@ZX|)-s-~l^k=O51e3O?UKaCbcR=Hx;iuq_{(i^KHPlEkh3qU zE(ksEU6cM@M`Wt~+rDaP>1l^uXuT#paeCO<><8}~iMeqW&6`hEOY|e8{Wr2mUcye{ z(^odHF2BfL+}@8kk2w;c?F6f`PZFV*JVF8RHO4R9lu?KE6_Q=BN`nqHhQju1sw`}0 zoI4ychj6j?07%ccaEN7$dQUbgx$>h>*J9(wVYek`Te$2$UCAurqEH3Kms`O+Nu+UEu7S7uce);S||B>k%DTSg7k3IZz zH6n6gx~M#Fp2V=~sHqww^VH4WmsiqD3o#A8eSThRwZ&dt3QwcA=gk6LR3CRP5Ug%{ znbEU8Ty5wlof|dOpW%9F3a9`LUexDAs6nPZ%dFEuNxH0PgxK&94Q3ruLEpWg7IBrk zOsP1=5mib$ua|(>8JkL^tXRHK+0sk@qZv`_xDP1*-QMO1CirLL*lZ!c9_{&!>8qnU zg1f&zqd>KH*xkjagBEd=LroSbu<%MB8rby+1zZp-jE${pe=tA+9G$jAGlZR;aUF^e zkzMtYE}11b_!3v}H^-$Grhz?w^7z&Lw4Uz!YNmK-6h~jD!jAUCT3wemH(umI;QAKp zSdxfyI_Bm3x8eS~rBXD1@w4@%xf=1Y@l2|}uhLnwaKS6@naQq<$m6dxf;~U>t+aq+ zPu(`?7*1|vB#^qdHy94rVvAm#z}-(g>;iXLo<|naJ~ueWIV{fQ-_g+Vc@#{+_`OSm zcW~&NE!m#x@_WuruQPtms8{V3@@8kz{@(r%1v{|L@KZYu_5004n!Z3d4F$eVe71v( z!vM1yXe_#9-}({3KijTQ|2S>NOXIS}b$?%(mZ8@*nm~2>3^U{DHA6z-SDr8wgI=X^ zmiDw$Cy{kR?>z+(OnN{P6I|k8P8b*d#c{ z6xDCF%$giPLfJ>(bPVcB{QaLPU07z9UT^7>c$|(6ek=?GH+|`J|8~dG+AHi`?RixE zkwrh916U{HQd9D9Nv1ru{~Ot<-vNQRU8SgaE}N#-Js@gX_*2i~e2xg7Xdsf63eO;# zN~(WP-(k>;g+J}nE>mm1$Qu2`s?Fx8^}IPkEv5?~n80#(jv3N$cmnpYl%TKF4Zk}rY-)np z$^`}s0_Qu!F_n{Okjo=^dB=(CXG}k_xWnj%RJf z_~WD@Z$>*)O*D+&(H_OKCtm})WaqfqU#!&oT#Yu@`1J_m<4TKn&%IP-K^= z^igKNye+6$R`bQ^5B-c-)7wbN*2?D8=pK~RgJYSOj}-Gr7(Lp$wif;ve)xjRIilj| zENF1nmb~@X?fDCaODD}M$Y?^!&D_{4oklTh`%pS;1up4W(6)V&&CG&(xQ@EPRy5Dz&&$1+WO{Gl34S9MS^~PNNbsH2Io8={9gH&tJ zJ?9Hn*;}L$@p{BMfTM})Bk!HVrx}_FH$|DkMU`^p>X8{0df-`BetB_GLqfMEoLZ#R zEI0&CTH55+X<>Y=C$DwF616<+Ly*#E*?yT?PDHrEU`3>wle`~He=ASad5Ju=hykg4 zDc+Yq-jKefnfm1ir}qG*e?Vx%GCM|vAmqvRMw$KuwkiG3y8-2WZ;yn80iq4x{Lp|B zI>B_raOhUygQ$V8CuR|}sKU5R$g(vj%GR;o^oXk}qv?D?ZePZYz3Pk+pMxoM7Dakz z_K)QHL2=>Oo7A6TR$6!4ka zJ1~7%<98Z1n%pOJ#+UeN_)qXm6;_F#`HJAr=Wm#pSD*Ci|0F)pG#jmwrrERXET6(= z7G@>=)cmTJYC3^dEdQ@pk{8iaXD5+>ss0$@#y~GqKCpQQaVK074JdhB7WNX(js8f( zn{C#Z7sFp--Ctax+Jrp9O%WrU^B9F2CU0_4JC!+WiCh=oiT3ge&{1xXdMdqAoh>W& zQ4Z}34NcT0FRZPsY`A~*AC!{*2CLkQM_PK~!>)M(aJCcFCt}l?zA8WdhC%H}!kgx( z5ysRbZFjUP%B3a)QHhX&P^}vt{x{4aNWS z$1TRa&aRNEmP_lxcDGJ~ihRSj$Ec)dy3|}DeKGGVjXf`(6eooQ$=*umOXU4sR-R;hyrVT|| zwfwiik&&$4h?Id+d5vl%TDVsGl2()UG@yZ_HYkZ>a_-+1V}=BkfW*ySRp3}>vU|;V*l_b7Fs|4-74tp|qCsXbfynEXoZ5{HDG9EOc#sZJ@bA zf=~#CG3{4S%D1RqP+nn|v%TsR6m#M!`3h{_ zv#(@jnZg95VL^#bYlyV($H!Nt1UgVa-(ZAW(U0~ohr95BACl6euHu?Ei2V*9@H_ZA(CDxs z@U-ww<2$%~TE`V$|F-@_RH!t=$6m%kAYg$GeXD=3-n|DF_gE$dh?wBLE?<}^SN#!2 z3=lC;BWK31g+N|KV+0$w8E1#DkN=o8KvzHEE^5sgwjb z;at(vN3T^Kv0IZHcAuKkG_H8KbzWJlEV;j+R;Hd^5SgS-k=^X6C-`;KBBr52llBcb zyub(1kvUc%unP!-s5I)x#jc-~kE(lLuHW_s1?9t$vr^zEPmBAV4lvavrB4WZ4J~ zsfMrMFDVw&aU~DK$wJ6m@Lr4520%<^X$un%0hlWnAf2Fwf=)r9XEdE5&wp*$^=h(U z1978QUHDf7_HYjM#da81nNsPK`(MUE-O13<&-3TGf;kvsnlAr{?K|C6YYjG~r%i$n z!(N7}IWe8Q$4v~3IEZa??EBY6znuNscZ|fG{+Xea%_?bPPEF}8EY?o@`!#u*nn|xh z5(kJw!0>a#1C3(3*~{Ql+rBdnRytOsVk8noqq#Ct;u9^KuYpwZ2h@mP*jr;MbZ8-s ziLx~KP?lhX1T1RZ^jNYJN0YyKwT$|oS!s7F-d`*=)Hg6$BM2G_DhP3tpiolu#oh4C zn2Mw9@9%GBop4GFOK&YKX)k-hVDTd?TEy}Pz{-3zk#W&I4k}FH!Q~2x0d!K3(D1=D zgT86;fVGFPurR*5xH8mzY$|>doWE_Y3;Oc%hMIiOl|NVv|5m#*9rbHQ1*VYy3wL%l z+(`u;;3M$LwyW$xdCMf|_ zOO%N@h72v57NFYe>u}30)jaFHU&R{DKw^F>aCzx+{pF=3e``zXcH@OF5Q@53Cm1yl z2GgX~{vJ=E>3rv+>$ZPN3c7O>t&=xGj(unrb?RopaEsHK!4;9lt6vZH-wYNF_-a%= zWBfKS8lp{qtA~x- zF86TZX%X1F`km%kCACRAkBY&K%3`y+Qw~aRD zmP9n81$gb_~4>@yD$HpD0aU zYI!b;BC~5XEc0A1l{nZ9wHMXQW*XMWd{maoU~!w{1Y)fm9EARDOY-$*Z$6hlC@`cj z9s44CbA*^8PjZf_bD}+lwmxg|Sc|ywTE^P^u7Y>}NuV3{9?x}N3gq^iU?k=jeSzU( zEdn?|sQKINJ8U?_Tb|1+x;l~eBta(CN6c>i>U0~)#F8)pHae6yJ4MXy&g}FO0G?k` zH87S0xKiU&-s4pBIZG%#0;Sinu^a)0N|9(EMnm!_Adt9`e?j@CxM+kA@p`=leT9Q~ z?3Y7~^AsMh_UIp}71@VMq&=+H$r-ido0`PM=F7<-7%N<_h>VOOFpPp=p`w%4p3I+? zmQ}=JN+VqXn7_JYvj%rYP;29E|I;h>HF|)gEM0nfJO6C}4MueV#((H&%&lIB1z{@Bxz%C*<%IA$Mqf{nQpjJBXiqRfaT4%PiAwYh5h_8v} z$Y<&s{<9Pp)#T`w1WbE}^$LUMCN>Y{HWmn2_KT0kaPAdY#QpsIvJ-Bq*RVU0j|UpJ zMjOihkhZ0{$zMHQAN4)leEN2IbEB=4g~6_oBH!h-HDHs(lA;6+bs)BKv74{f-Y7?-7VV|tPFvvq~UKqQu{jhz}eIb2WL{=*HMqIZM4<*Tp^t+rB5g?l{-Wy0Q z&RM5f&jcKV!jCAz^{E_7JKl9RV`#4%i7J?32=w|E4~Anc`vW{(!QH29n-u9r2GPmt za@#AbwrJk1d#yS?&P;6G?WymcevcGZ+qSN!1Ld3C9MYwe`HI4ut*uPZklabr*p(?H zls_RM2=pww1iShDHVdH(J60YiN(XU%`-wj3Os;4!k&T|uRFKI$bcLKUl9S)PFF&;M zp61jqnvaMs?HCzsNjRFPbrBPI4K&Kc~_ z!%vhBf(_62J|C)=G2}Z~W$7=bLx5tNs48|IE@|JTYhqVxjBp#vOsq*h^h zHy*`}bi;0>2V|yxU(WvffWV%Yxh?>JLu)J$0ho8rU=w~w)}P*d^_WmWkx!rbkyuxU z;d^sP4FnW%{lGXo+Z~3lNc;Ki-_pDm`bG~NY-Hv+_oK*M8JNFjiy=&+si;>jD8Qol z;A)T+n`{Fqbho{tkUr)D50iBN+kImg`k)I3iB5f}ak&#F4Nede9{3R>51d&amS}`i zL;hoR>s&sA?QNX2W^_)EBv;qAhs*fN{sr5M5&DcK29UW`g$N1S{_;X)-hTnaG*FuV z>Zc&vpZadgq+hk4cR%2D{)XUx5_XUbE20sumcI8<&Y1nr_V+{v`Nlu}lrq$!FDp;# z#t&r~4d~SHk8r!pjsG2EV+Yp6T}S9EO=fO}&Ut zv8sJ*v;?j}K@I6!SkyezX<{WglRX=AOuZj%C{~p0db%duDCrsG=(Wh^dznmm+gxk# zQU3jO%Bh7}yc~D}xKuFeV|g zOQI3R9d?0S8`y;WV`Lns)foCKl@murl3>W`Z+X$suvw%6zP}MdULyML%?~kHY>4a> z`}_3$^8#X5D7Qi5qYNclm3kFM97j5lwNGCM=4bHLvhbm(P~tXM>Sw-tB7sLi6HD{( zZtQFDw3i96p5?vYT1iHlY8&_;p#!D-{#QYI@ss%rbtnDJa5JPBQ;i)}FS1j@g*{F2 z;tx0w62o{&3R5%d;Lp2na(x2Oz+ElB^cpd+-DH=LDWrADz+Ijx@B%$UV21?UfJ&8D-uPuN}qE9 zsei-OwHBfTVqaYYMgF~zq($e1OftY=dOv<(ty4z>8bx_^LQy{?a{b*2|N7L)UwI9> zU_!qfDX@08;a_DeN;d`%&wSM~j(xEgU_IAoG`gAp!}JChl`zlvv)4b^%&76M;FW(g z;wSjWCvC}9@_BWvTHTV^>OqV0~1-i-8PE7+iqOp+NNza4u=fDV9-VjNm; zT#lb+^d&r6!Ik5!KyKH^t*uL|uMT-$7_^EsJjlaM7-W=6)i;nbO+d7YV-@=5+0|CKYaPFyDekch5fm2v>-!cZU+=# zZ7UtcT1iHQm@dhk??na z-$biZ_f-EdBCq!(6s9W8%GdkqzeQ|fEv4-Pi(6&AL%`w59gugfw$Ua?J5sA(5_&kt z@VC7lZeE;Y@7i+mLwyLYxMkFMcUHZ6C%%b7d_Y#DQ&e+>^!%75kZl$tOGrlBwfEZ^ zPgZvRfSM^PJ>2*5wI1COwNO6uRG4n`p*dt9S$!7A;@mO8_uxG0}k@*)(HWWZ`O?+NCRdA zCRrP}A%|E4g&iTF<&~J28n_ftZ)zz)ukW$G8U>KpTNVb&2D!O=AH9%{Adf_2Y!@(D ztGx!zP-ze?p*NETle`}hf|7zjWnDu2ZF-z}RGK`Z$6+GkTK|>@+|Pxk?ct27ZHRLC zY(b5Rqh`zNrniqzUy5Vna((k}W*Q8{_Ye0i5Bz+5l4qw^i!3p2FkD=QwuhU|!Ld8g z;0#;8uwxQ;;Q)Phr@w?ImdLrn*t^3W4d967TW*U@6zp-Mr_|i}z1|z89Rp^h|EAmJ z3UFwjUxe$p!NYTjudC?FzyDCBda3?jSMME<^&kEJUoy%{*|I{};o*a$6gGUu)7>o1rzD(1Wkg#RF5T8p?K)c!Q%k$afXlS@R=hl4TP{J_s_}tvgF>{DCT%F)OKO+w@x@Y^#>Kd;# zdRRdDre==h?&8LDlNSAZq`qdb*q_&$2)vAvV@ahg4?4|?XreT+=pADuwL)EyY-z0HYHm3KByQRy)k9^`@X7OnVwoJzE+8bb}uC% z;d(SPj?3)uM2}+IBUYJ!yhoY*>xnh?$|@A2IQzzDxatHJ_hM8K!$2>g(=Hw3EruTjs3}uq7~JG@*@=i>Pe1eQ3nqk+IwHTAJfi_y0fuicU4qXXfMQGyT5rwQrec|7^XEOs3F$FzKf=q~J9F71zecI&HQb?2t1f;X>pcjw(G=Vf%yxIk6DW8L$;VZ7Pr9j7 z?9qo6sjuJYo0;AAY+xcH+Wo!dq(9&Pfv)J8suy{G7rpqil9*(%db<(+Tm`vorfb6F z#w?ac|L7b2k`Kne>`9vh94pY9qjm|R$Gh5ocQl^lBl1`*g|X%pw}9JFCBASJr0|%)h2Ejw1Fc&(w|70Z?cvFS zVt7GE@x<0~AQeWKHpgsqw%1Di@!E%qa3 zEqZe}7hix|*6a(KsrKx*cfc9|lGOD7NcN1=fU=~-Tpg3? zlCx>(YW*2n?(Z_PhHgR4^$6kxz9(V9XwE3+WNj^eEW@3`Cb*iA}35V7H>xk1{;8^yHyWW*h6zpnP9*+lzky*t@R zAVXDl-!mtz>X6RhyPD}EcNOh3iin2A#CAH!)}+tv$7FWkFV?ep(X$Vpq7)vTjKr^U z#Ls_Tee`|i)oGd}A!5$DV)LRzGlY!oXRgJWKeXJc&%S#XwYcWzmD@a(bZms@>f0>jyB{uly?q`VUtDE0k#&1Y(Y#K*GRS&c zX;c8GUezv&3?@5i>@L|~gvR)+(>WD7-xTlAjY?LxrIbJt zO=fmUg=RUy1jC;#@cQCEr}Y{eZ$4VsG|KaF*?me(tJq^;isd1kr@J!(XS+snsEE-u#K^H_ehwjF`uR%#Q=y3>#kwp;9B}6Q34JMix?Sx@X5D zD^{XWM6Q&>k4r72Y8Z(6^ivwiQB8l^lzwo$pE7f=DB9og#5SUY?aEcGpBroyudUUs zn0dZo2Sd&npU?Kpo{y#4tgYNV^Wx=~zsCFVk*~{bm-Gf;Zc~?4jRAXe^YpHkX7ihO zak3g|ZayXV_)&bWc@n(0vhi03vFIg68BNk}y=xC7-%6!wdYs<+k)LM!Wb57OUpYqw zvs-=@O|qfEqebE4Y*Gsgd5zo8`D73~+`KsRb&CO)k11%dl3b?B!fAZHJ*GI`sn5Z<91 z6cog+&+Vu;F2o~(*1kAa{5m+-9P3N@a;QdjeCd4ybb?F^f36f)bSl?|Ea!MQO!X_q zw_cQL8|Zi__p{tNv&PKGdc0ixX^g<_g)s^?$!p}oQIbvXkOagkx& zf*=7!^ibVER#Mswmw~GF$-#PU?bDu5srI8%K2wQh+%Z%l?_#KgA58yYz`OiMJ8FP2 zapM}P6---*-!?Faka~Q1S$XAgu82i=&@XFR+DFi=S?V=9x50K>$so-(Gl?%*&~^n$ zIn@>}IQjP?Bjerl^fk)#?j`Mi*Q^JE? z&W7)KSbk~(%|W9n)ha3}#3wr}e1ZN4=}(3BjqYj`JF_#&+>_muIUi_Jx5XzYn10gN z_wJRgJzr433%dSOnx<+-X|1}o3%I3sEHpCyr;iiyljImgsW~#>pkk4ZuY?iBMjh0{ zEiSpm16lXh?tZ<$fA;m|eHj_!5E#U6UG-SelHAUhUlDpZZ)!?G_dJQDkHs`g{@*7S3|4Q1~zQ_wDPuoh$vWJ7&Rwyu*u&#xN}nn*3nk zPP#-RF(;g00}Z8L&>ix*JnF-xU(@H*DN?4w0Td_+9nSy3ZPK+<{2d zliHK`1C_|fKJi#>y(c|!eICD-a3q6>8k{&9?4~izMl}4^c-#M^v>Mn0*F@Lq1H>Mk zAIj|JtuK#s-Yry0rcyCyoO~VAT>X?I)c>#hb-pX?deM^URt3I03(;q9T{tYe-rYVL zaOCCv@h|YX(p@AaIq5Opc&Z9FTak<#!`Z8cXy7sAQ42&!PDuF=+c)TPZucAuRr zQQ!tQd34)fxfgNAZj$b1$CYh9KvkTcl?7@F6(8?3+V$el*7s+oIh^ z*@V-q7En7p5)Y$)Sg2;Hs1|&n@iQPn@62OERrnXL5i3_alwRbH7_9HM8aW*d4Zn?=Y9cx!9O*9eV@@-%XU%J zZKuW+M9t4NsQb$oawaBnpMX8q?gQ@)MJgs1#h0E%iOQunQUJttyuu1fSmlla4iBM# zB28VDF@9BIBR+v@-}7t<5tlUn?ftuJ&+7bNi`IKEO6EDaKnK(abN*`;CjKNMMnAe7 zU4k#=xW2xqTp8@I)mTG0_!W!U5)I=ov3Oh%h5X;5%W~fTJSFD})}^kn^#k)Jg+rd| ztDT(HEI>yXhZOR7CSRsMGxT!-d)%wwY1Ke^i|>EXed%5)fUDMVed3J1a3 z)qP0dSBUT70Ya(ug9z$&t-+4ES>Fgb1t*HvOiMj4tKd!umqDr1z~8;jwX_%W@ZjYA zzcT=hEJ;n(D;+i4S*?DT_>_hFGeMHq9~W|^T{NoJHD5G6GFSTb`(NLJ6SWT{;!0_w za2f+LtriOk*jN6{A$`Gt=Q#^>h^cA#7)(6wj?&O#r*b*|ZhXE=WGvy2g*r9E&noKD zws6+S7pXGQ>17uCyO(Ug{nz8YZvXgpsnKQBk1;ljNxtb^G9-}+ z4Z@E;P=pq9kdprFHDbjU_e4GXa>cmNTtx%#GJ_}X?IO15m|-m40-RbqV&vD!k=D0% zXzM!i{j@;w>NKuJ0<@W+$!)0{VQ}$*GsbIc&qjciyX=#oCKu?BpJdm9rWR@0#2>3n|#0# zYH|we{FJ3Zv6Ih^i050z3nWHlG2rX1cQAi9@VQJXCu94dxbjT9urw|osw5Fxb2_6v zC7QYq6_up}3#y8-_pz}ZDt`0dWyLMjuDgkQXV&nWTHD3Nm-yD?tRqbVH>1h9@SNr} z6n{jLEM484Ozb4bBPou#8NUv@PSRy zCAqoDqnCkJWR!okJ<#UE)3`>_U3YBH5SHS~qZ;!NN}i7!_I8SyiAAc3Y&WEHjw}CZ zx!>hm>d7l^5y!z9)+ZB^*hmmX(Mxf({?-rKN+wvBxz0ubOeBZ$)gcaU%b!~7UElMu zO&?U7DD~-@cU(YDnUIDzO;pZAD{k@hYJE80>)E{Cn`k^tN-EXbsWJ(!b7Q_`M&5qC z_6j__bNX&fkD@W*F}_r(C0=QSee@TLk`f(lHE9LywY%;E8CV0kBs1-IRg`;rmar13 zOewE5p$(fGR^l_Wh@kuSAA3CEaHTz; zXhu9SijwlVm>u#xUn$Q%CAem&e{rm;{J9wWMU?4jrAhido3lZBcU3xR^|{EWmn`@D zxwdiNORC0}SNH_yBTDW(nX6P(c^dRCsMlfo92C0+qlt+rm9G&WUYaRVe66>)c%tw>*V}tu z-dirTT6n(D84C|4kL(TYrL zZpnvS;J6vRbkj~y_Ve6%xMe#vP8%?=&$i=2 zKmU2j(Y35Sti(lW?iVNlI)Fd_d0`-w<^_}O{=9*al{1RJybO=Ov%`c~L zkTF-v(eS~JcrWZsBsSTTdB^m}R<)Gay2)Ou zSP#Fn5PbMY1|QYf;CrQ&F}hUT?^fqrZfmg5R?^PbN}6z7LzCq6nU7D!<2^T(?@V?Z zwg`$KopJ9adt#`xaK?r*u>~ENE2XXMRy8bUM5l8_NT{XnYkA?o%(W_sO3@cv+a=|E zA=TW~AqO!=R2uiyImRfM9&g~V{e8HG{o%vQpmt-S-H-UcK0~76AkU^?K;yT1_3pJ$ z)Q^c(qDp$Ht5o`^ixHncv^~mxXTyAQ#X*b=Vb%IPBp+GYul#`BuMc^7Uu<2Fc_pT4 zCL#=-Bav##%)+9bcN+`1XB4cgtenXktE-V#4_(LlmV0{Et*0ASE)floP*EZ3S-v`J zGW1?Q%YX0KU-UV&f;{3D^_c9&gv&_9*FD{c@C;AA67@{=C*g#&3!iBnCnpswe$S{O ze8Oqb-ls8?LLd6m?`T(~ktoJBmyl*UB+_R#H#h&BsG>!EYOU4|{bV((7w@Z8p zMq^=~M$_}RdR6u2W^jpSpF|=Vl36~Xm%TU?KT~1Aaf=U~_^Rry^VxXU4N6Q3GA$VG zARvUxAXSh=B9@wYRV?xGKBwRJKl^27nW6H7w#AYB{2f6>MH`1(YkTDMce}G{%!)|w zTqH>_UALE2Hg^ZOe5J_Zw+|M{Qwf;m!!)iAi<}I%$%)1&q-aTz3Gp2Ml2#LzgHHj2crtmwq@d6(%M?L~@r-Bw@>26cwk zzv3okmdSmy*bSMiC70Jy_w~~*czU{*!pq3##>``n{Vtxq(}ymRMU&yGRTMR9^OwWM zFP?#&o22|-X#}52vLrBQ_vI+Yg^m1DY7fGdl>B&|l(X3Ifwh*#>xbkf#KX8=_wM!7tlH#S zb(elTVnnpG&yV-RC)i!UrtfQLU8%LZOMin+htiiTG!~*6>VfW$ z#P4eP$VA0=1<(F$?-v=?zq?(&olv5+?bdk-za_* zONXD4fjT=Otioq9XQt#&)^P@2>+S6WS83^n&*=%#*F91eHw<=UcH?*mWh1V4LXV9+!ErfKbMGZ$Pa%_fAWFX^a23|sWF$OMXYgSAMdq; ztr8m+1WiVPJCLn*B4D3Xa(DAIg9l%$|FvfB&nz}p*3R3vH%wU7c8CZZh|<_)zhzKA zh6Dw-GtF|pVAXLZ-#XaKO+@E&8J5rf_P$6t6di#*8N;lv9)!c zQSKOdZ|hg&5#KZ4V{z-lw-*ZuC{8}pmNyA`$4?Vq-dM*yS*PGRyWezSa+;tj)zxVZ z(TJe9{jDzB#k#oK5Eyt0+s?SyKBzeC-k=!}YWq zNePS&T!&_Eui|TXO;3-GP(^CVOc^5&B ziTS8}+y&!IJmKTG%4od6!0>T-2CKb;s#^aCWFsTGjpt{Njoq3&RkEmLvdA0J88MS> z5=F|p?SZFo^POieh05e``-(ovBPOO0f`gWpWSxc4qE`AR zg*=#Rgehw;Gt`5>m3|(U`&U^)LUh0Aauy{?OkbfY(P(WAF4J*9*6#f>;*{}-u#zMu z3hs^xpI~*oapM{K(#!j?PvZ!w9&q8+Tz}?{=4wE*9}@ZdY1;`PY=P8;lsTXza95`4 z8x#hv%7EG8hDDC08s4YtK7RTdJM9*$}(J|eUVblVik#gXp5)i-9cTS)7G}uy1pJ=LZ1=ffEG+yCngA2kej1I z8P-RrZn*|6AMK=UEgkQ7?!R7Pk4!tobsdE%rXOE8jQJ(}krXRI(K38|v^LJ>(DUw% zaMKn=qb?X^j5+v_7W7xnEeBO=6LsJj)#RJ_a6B_ZYeNj}4xotdGo>B%)a+WQXI~j9 zrzIw<>0x@7rU;mX6*1I)2i!&Je}9g=8_w@s@9LADq5fi3ZFaYb)Z}fvf0X;ZF6vsp zdRhQLB>YBdI>IKD4WERrDZM~jY+L-|=({jH)7^7#!lT9vYGqzac$>AB3vGri{;6;7 zKEG7aJM^(FRE{>36ra!j@~;{bARa&cU`2_Ah4sZmLO4yeZ@b9zR~T)madZu@kXCv+ z9*rcd;)lNCyYDIt?pWF=^mqCDHDVRcp#B_|Txdor^zo~-Cz`y8MSY+BOZi$op5r@Y z@-|q)=c9*AQ0wsYOJZw|9ND^Sp>pZzSf#qEao5OS1Rh#h=Z{~-t*cuSI@=8o(z#6k z>03wLG?572YpBhsQsZAPE{cKq!_^_}WC*P>LMX$Ar#@FE8?TD`B@rcKUu-B$;6=f_ zLnT6wB4WI(Tg_c5Jtg~_f=-mL$hU6N_av=VqNnF}l`$;AwYnRLsIs=u1eb9|T`h)3 zR{t1xeZBnfGwba+@G=Xtfq&F*5&Q4Ta(Gb!<7(d(hr}!*BI?^{>G=4N0`A=k6?n8Y z9f0c2e3%Rb$(#E-uV1OIy{#f{Y|)7mg8bhtlI>&q(~SuV^F)8NA0C!!bg2oIa@zXh z?8Km41q=IFiB48?yYv}JRKD;{B|i{Wwoa3%&FMQ+xsfC#U8oLbPD%_+bPqgngOA42d zT0?WWi8DYqR)&1KA`z0Cps(pDdBhVg;F7v?8|W;WH@&(w^Zk)_d%%@q&5m+i(XcDI zpcB? z7e>8r0CTK@G_(B2R>wwXe?KLUNxS@9`;ac{VcQUGtsGLvnS2qI#7CC;>CfMv!EF^0 zEMi7fzrJKB#=UPwu-|BW((4V+7PWI+A+R*Zx20*^#*$?G7NFVNV*%DsF zyYRh5XTU)JoLV5Mg4-&UBlX_Q*kbPzuEb+XQD3br%#~X)`xV907aqOiG6;Sygy=CF zvn+PFhOB5Aq^lZ;iY?zSF8`=*w>7I9@YZ8BCFn!>vkD>_fHanHpFkD8MN$9T)radq zF(=b1CJOKT@PVC*w(7Den`V1F;M$qYrFV_XIrW`airt<~?CQtWo?~Pze`bFB#N@a= zdVzVjP>o8JT6?)X#_-%gkO?s`^}eIu*A-(wEf2YM9ShA94UN{vii+IE3K16hat#5A z217az*u9cOy@`g$)Ow=G$^~$QWCJAm+;99k|68&fk#_~2>Shk1_#Qp4ZMKOBh-$Qy zcRMJ$WtR2E&FxPnCE?&87;cpKk<%r1dfb-5} zYu$HyI{<9WYJTuQjk2`Z?;l-;)Qf|!Rb(y)#m#@WLx?(PMM{IWk9OXUG?Wb++a}yp zE3Jr+yQ_M5@ew?K|J2|#u6i0JzB)Aa#z??&Ul|y;s&p4VBr9APzEj+)JN#T|DSYVj z4YsxUqob%x`y6-z8(T;Q-#n!*HBDMDlSMsETHqN&4`CIh zQa3o04_T7<>N)Bs75Y&E-!!?Qbg-;bSy`H6W_F)pwmCH|qN}S<;Aoo(s++I~Bt50s zdI6FYw|`?eJg*{WxF(Bt7`*oj`1^BtyOZ0b@gl%eOQAR|3(ZkDIIA}_Z zZ27j>-EkLT8c|VG4~BBy?Qh&pWQM8yz#K`Ah>oWk|Jv7F)r4R8L{a% z4{ug7WP;!S=6hAV5CBMeFHGK+`uaF8o(YNEH$hbHM!ry=j2hj~y;ONs$rP?XEZ|Hv zCp?2X&q3$cL)v18g2FNaX=`1Z=D^3$2gyA$l5+pX)Ks@i?2C(yT^5>H#-UY{1M43fj%)FVXLjzr%)h*? z`>wUa&r2yg3~Zl~yM!gZ&dHy8S!H~Jv~>1eYb|QHd;YPJtLV}efL+c3)817f2Nn*QhYP$o$V)HB zd?79Ro}PPEe8r=3%p;fOx0SfL!zON@jEsK{jL6Fx-OnMYx}YQvy_D%44Ol|yd?i>o z>HQ5@WXOXr)J_wXG+Ei%^B{rXk>vc}y;W2&Ae;*ItBgy5X+}p+UuV-t+WlBkN^0b# z3Rz=wb3wr0U22&iNgIC7V2rn?;3h0ME(GAk7J{Fv{G+}T}LlSKZ}E%qk#z6${Y ziF^dn`xFkH?ae8HnYPDN{b@X*k&zcs7M)@E59ZpXa%7PB)uG(Q(IT}**ZB)5i>=wV z?d@%V?lEoyLWLWUvhWpb)J(G%;l;~z0Nm%DpP$EMUyBRfF{t37Tp4S?Pp&n3tX`H5 zJPrdWx6`*bcauw=bit>hyR1YGi^F{+@A4X+$o~BKl1^Guk`8r+j0~VJ*cmTgl=$;t z@JCD>9QXjz!$r}FdtL&PPiS@Zt%1*5~#%lA9%P0bpIiSW3w+B8x1@a%} z*|M<9ERmz5BMRs?6~k{HnVjwo$y_2N>;giHc9Xj;D!8VGSM_xG;>X!p1^|KUOMcCh z4b>f@m+}|4OFRT$qxiDFmQ^1IrfA9FTLcaPwrM0>(e?2bQ(`*T!S7|&Z0IS;=ub`6f{CNcc zc$%7;c8-qyz%J^gws!iI!r|1HbQ7R;7XTazobD;$b<Xqw8N%{Xll$ksLh_wlv z9s5}HMDbl(@1t$YZV&sxEX%lSLRPV8VfQ8FaP=PQ$7jbvTt=^Knwtl+#FDXohy*SE z-#NvLo%smPP{Fg7K+SnLYS(E#6t=;Eq zzJ7jKs7j==a`=_4+Dxk-SsblMM0PfPYg?Oko4*$-I3a-qC`+i@J6Tzk(&?0N3dH+H zw?*>9uC6Za0tNh|Ddn*=NH)0o&zZNaozeksD%V_Y`91b;99W6^S^(` zzq0KIT7m6)_AEL#5yF#Z3l+NQJQVKHN8iIJr%=V7TKZEaGY(s@aMun0bAVK`qN zRf-cA8XCH=lgeelIV%8MB=~7(yA1yg?Fv2o&;NjTfW9l@vUp%ON&e@hR8u>_R&=D^ zKKdpM?gg(1z5s8=l&U%|>i$bUvnk1Av4kPHcV>K?0-BdZz1GQL zL#)eX`tAPtqmayc_Xqe|;JaC$9__%)Eea=xO}3nt01gqjISHqT1o^efhT?6)hjeIX zU&hBmd1M7&Bp~|~(;66YoLH+~#&>C8C>;N67CpoyP8ptkSaCUO2DI_D)`9J?+ z)5x-T?fBIWoMkNfAwFlSDvfnO^_M6(10%#8a7#w>o#93S0g~3SL#fSLb~)mnKi}!s zn0=($x~Cw^QK)zZsc7(h1psk;2K{crh*QRbn8qLm4Tafc zgoH7=342YW3`h5)02Q8Yb+9=V{pJOn*f2akj{9y^b--z^oj&mRk9G>jyvNO3%*@Ov zl$)CyX6FJt6YG+Mrr#&(O&}L#Wo7aCZd(ML|1;e=!eFETyZ8Hh3)k`WexrIj;!mku zk(_$v7RcVpXZHJze84{VN_A5;MXPlXTx@%LyO@7`vYhwo`sv@jOC%%)o+W>;!ri`; zxiub5!S!QvGgkP~^bZKD(Y=4~m!)qGra~0MU|q$%*7J;CKQyeji(3%;pI1GB^Mt ze53Hhk-JdnulwYdOQ%=i4C6kJ!N-`)z-jT;I(SqjYBoAtS$ zgg8&=*iJks7#QM#FKB&syubEo$)kuN<*(W2Tp7k(>A+5iooM92@bw0#DVWn8iC%>( zxoEqh%9+{;2*|h2-(f62z1Fs$5(DPik<8`V&)YnwK+#Ef6WM-B(QdFx?OIjcXBW`K zV9_w{Vrz?pk&$t8u7mMwwW*FI?-$rC*29B?mr;2&H3?|zo*w{6L!rQ{qCAPxJq%5D48 zeE8aAwSvk@bZ-KK)F+50 ziU0Sjpl|HS*feZnwQE~myr7kUF!P_Ke(ZC}1MZ}NkdQ5KQ_C1uF_)6f2EX2TtZIbE z!WOUXiX;)}3Cm_{+surgRskfTIE03!B^$n;A3uH|!EjCs3lkF-xDR+-e8JPx)56j+ zU%C5YFl?K}u@cSUuU{i`au{It`{I8g;D5!1yd%_K4`Nzj1=uU(&c|>(Rvw6^{{r*> z3uZ%_qWk;d;%MIg&qZS65#5Fl;_2muSUNeyVmOGT zSy%oi0`+w*WdgzdKOsgpSOX2b|Dy%jNV?+E+Z(WW5w@7gZ{G?b)Vq3l>CH$=N~R=v zLAU^Ly^7l$oT>w=YuSVeG zyv^0ej~{1=dEljT>V2xK1oy@yE`AM^wN8lLx;2>MWW7B}HPrWmW4nOxYq|6>@#k0x z2`L$wcCCeM>*GV@*4Kuz-Gc+g*AK@5gLvBS0q|*m|AmV28iF?GnZ^)s?if}zqjW%U zNC*}tkQb>^V4NDDi>Hn^xhlp$4{KE!3&qlj@tbTV(>~tSk91dzr4D&6)Ttz1);eZS*UST64#}T1>Rj2KFI&^u^1FK z3PVx-Ql@k9)~#Ev?(Us)$ax&t5+Ld0Cfgp1z_AQy`$0P2$B(-@JLQ-(VS;OCp}SPO z5D$(OiGtn3p3@R|A`B4$^Pa%n&W8wVv^x#=oXhNMt))Do{#+0r<5kP<6@hH86`UI@ z)n=J#@ga$dib4fHKKyM7k~f;+I|-w77`SUN`dTorJ2%f7dWcc*JsF~I%$T=dSSTpX z%gxG)1#OjguSgXmApqZ6B)S6Y!)Nv3lHj9ha_~cU03t~~lr0^24NlH-^+LP=A)e|A zgz4@hj1XQsseb~xXk{oj0bZRC+V|3>OScOZ5 zzYAb@J(y`kgO4Q*}RVwa{(F} z8b2XOL-;0NZE->7+JAm2BZK=0e*UfQVpKvxFW518u3B)r2_e<3FmQQ5Uv*vnL;=SL z;es$!1X;YZ@|m{V@o;l06tJp!kcB=N&cib62#U+ggQGOi*ap@2Ln9pu&B)P)RFutwG@Dk|L4(m51d z`mrE3V?fA*$V1c;Tco9?3$A+te*_pbWwm^*?n4Lv(zzOqyJ`@ubtu=Y;jCOHx z(FYm@B|ZIT(8fcMae)kS0*qrUdc9%_u){>XQjQbc6Lr=~l#Gn<|J>~CPvOTvo^A-T z7^CAbK?+Wavr$Xqwv5%TSp!K@H#up@nyPAqftLR}I|0opCLvMZ;lqIQ<;X2mAuMr&P&BSC<@8!7|-X#&4ZJL!(0{b)lb^tE*P* zTd)u(=zj#oI{n(Q7lM4rGums{K2ck5zMTuwX_evRjHck!eTsYWVmqADnvb8lt zT{x5h$=S&P@{9K5^sfN+GgUMH)dKKen{ZqXycu*{8-hNgI15MMQOyR>(#tpD%_||u z!2dq{Qu-be()9KElJt;g)H+wuRBa|&NqoVL7JXVO{?gO^D9>f<0 z-VQYd$MN!1Id~T0jD};*dJNZx#366?=%x-VVZHl2WyM#N&Wovi|MF#}4^R#e{9N=Z z@Z`X9C`U>eDB1V#(^XbgVWA+c>jg!6m5dB_!nHhyF{Ic?S|8#977Ef12omzZfCo#) zghsG$ER?wS=F=y*gq%WY5MtSnv0Iv(F$xWwN8&d$-3y>LYqU`RhliwMDu;~5xy73_UJds6=iGVse$3KxRYSlI4950miu9gL0u zqk{yFvsDvzT^I(~o(Cr3yT6{gAUO!<6o5LC1K*+j*4Z@NsmWj;aIhGEML=~c)?*bJ zeBa+s2rtzA`JTE94iLoT;&9AaK2-6eS4YLEfCG;qVZ$w>sDZq>2R7{}y(1Xc{NiFL zKzijgHA$8~rRqqgQ~1f`RQy?yxOM9?i(>3M&`tS;g`vFW?HH|Is$VtDdkk=H+_uMu z`T>JbRDyiOpB>3@87n3RQtv2T|JNFGin(sa#NH77vU|9Y=soz}EQHE~ttSei3-x2E zFB!VFabff2`_2JOW$X{<92jq}$IV_C6#yZm>LE!N-wY&=$YlB7GfkmzCfGb|)7plH z4`n(fd=RKmx54_g!NBjg2heOxRCOUx^>KyoEffka&($_6pZ;TqoT>?|aAcfI1_{(v%pDfEz*7KuOm z`}LBu7>qe&FNOg1E$_AEH!9u@k~CODd#&q|bKJuLbAS_)7$8$hS*QD_Y?q6~#m3uP zSv_fNY&2&`A4;sQuI|)Iol760vL=G8Q8yr6K#s!W=J`xdZ!g!a`=WGr;VfLSEILw3 zN<0Ap0VvzCpwU+`DUswMC#m8q%8RA|@xtswD3kyc;f}Mtepnopnav4=>+9HfO z5CpP%4jU+n^<>+Q5CbJ&+KRvm(zG*OYJ=Fwb&=;!wJ7PA;f~0uVBju=OECB|z=95DH0+ zzB|mQA0Wmj-?}go5fQ;0G8DkDhIfC12gTG!U|ns+#zx>=2C(v8IJv{@v!)Q{!wL%T+K&N3X!Ltb&Q+jYG6WKIhMzc50q`!RBS@GAz+XTq!;wV3-2%)pRAjafc;P$-hPdV6Ck@cg1<9H3acpqdAz zcv%oY^?w+|FtG$e1E!XIgN+TC`uLbc4kE)aRQ0({-VlLgF4e1`#5nk*CaYKu$zHm6 z*7+h^Q92$LPEG>wiWgDV-TcXK--@83wOim+4qmnQ^QXNK1l{&l?pB(2m_5+rUk0Hc zePn%EDcN=CdSsz3rUn2IzA$yxP^j))rW4KM`^O+1z+UT37vG2}0D-G!O72rY63Ky; i4k45U=)DHMvkyIXPh;8xrz?o!;pyfa@W`H|$A z$&ieC2bS*}oSU1A}pY%`B3dab$o6<`uUm zBe5%WaMQEb1iDpBI3$^>fKDyetw~bR`L76OJpnL1{ox{AzDO;eGnibq$W?f;sWPOY zuy8Q^?T(c?Y9iK2faymf&L5Lny+J)afzrlS+}hTS|EQN`DgI)bGVuw1C%e4g6p6qF z(=&&vQ*sN2BrjJII$oJBFg#!9&+4S``aOMrc&NkVb8U%YG3a7sREN}sjR1uteTBa*%xOG6Bt2Fdc5k3*RVRi;e5I0#T0-FF zp0yiM)|xq5Z~wWy*6KYy6KC?L@Pv)SC$;>rfniIsq+Z4y7In4JHYG)$8-^4dL#{!~ z&2Mc6D`^Sx^;1Jms?qack_IKs8yM^u)rUbAnyS2m{w2+5%wDr5uz#_Xmlf+@s2U}g z9==k_l6|_rsL8B8mZeDJzZaNYq+QpnSr~t@+T$YSH&phmnaZBmhgGn=k0DojWU4mG z=~~O|!;$$d)f5!uyBFH#-y;Vm`_YdT^>`gPEOY#6rL%o{r8LLyneL&}-Cp|)l@KlnWYaA=9(a^EBHnc+1Lg$+CNY5W6@NzjQuR|;h^K~NnwItVksU+nvy?=SwI zpI3VdP*K5Jc#X#7K0LvmEX=$GA#7Lm)yUqR7gcG)=DMIr$NXt>u`;<;{@`q;%(R@4 zzCTTAd}p_Ev3P-nh*r)}DJC1ASP18(vr5DjGQTJNb}zj3eD6!A5)|(|5IeWM1Lt}S zPfdH0FPCEE(}W_aiap&9<{tFbD#Z*)Vzdv@j0lF_*3-ko)@+Fq@QWSvxs>aJLiSKK8X7E#*YxdZ7ss=^XCZ*o3BeL2_)JMFP>%x3(q2?)rGZZ`VwrB9ZBf>_y^-;AzH+| z5NoCBR${%)Y961X_)jCm^83ASt! zvc~E|eR+GRq|KX}_nMnQjrf$wsl6$zYNiKd0?Juyl@y8NNsKlfXhfx&4(>Be zsjcJYc1t1$^Xr1PLo>x!N*PVRU~UW|q9=UVgXhaTjR9tgicy0@KWQ!H)23Hk+r^{2ijZ|641Yk?M(L}W6O0Ou@A9jM1tikL0f|v6qrzIf@h&eN5k;JW!opw~6XEg;0%?_oXA2RfV^r-{5k0+O z@$p5%(ZMw#njZkQ-*bp3Ghw2l4)1>(i#pBCo1+5x5|5F;d`tX8oc0O*H=fBt;a40~ z;xDKe<=*^2HJd zv#`K2=9_Hq1PZ_9zW(i}XP3#~^(T>$pA#R67tsJ?g$PJV!_Ah=zC{rRl-b1BBEu{- zAo2Jl!;hmXpDc@xfcZehu@b3VilYaZJ)-vh3vdBRrnA(eg z0?xepXCdi&_C#{F>Qi3np0Q+xsFX<;6a2xz#1cOOkCCNkK%)G{GnA}b9#KAf4c4d& zSL9%lb-HfHw#ZFm{vk)mKHO|5Q>DcbH<^j|XHO3+QO-L#ISMN0V2e`~Wx`P*pLBX< zed>l!e!(rfrM%q0Kx(dD^MUo^B*(=4B{)@-`3K={A%*Ms)+ShOJhY10Oh<*Xc>s0P zwh)c9T(@;JSApFnZKP8Dh!GB$!Nqv;U+xhw;PwF^Ec(iZVcMqqzsuWm$jyq2Z~TsC zc3hJ;60)At$=iO(fyayizeYJTB%YPB-H%8vj8}R)AkC^ME zltoo9XT7Twq*6I>QBwLiyCBC9juYuHFkgR)ArtINV$`CDlbLRDGE*;8mAu7gpf%X& zfWc?Zf1R&@p=6;5*Mnl5kdVBE!0UbALTwb80^HLq0 zQuQOW08O!qLe7W?`ms9ul@73IZ%}m~1N_$Zpze=|Jc}j8tdNDU7SFgQjfy8xsyb}V zG;$gFLK<6uc9(#g2h%UlVa@Ta{fUg3Ix}hC=R35wx3|Nkx=&4Z%lRzpJi@&|yaRbz zSl!0atlqaH(cYbgDIctgUuq?#=sJ)8L>~W%*%o;3<`8}euS}vGMe_x}SVtJNTZ88r z&SEB3n$Rxq5RnNG)46zN{^uvGn|Rf^0r8%jA`d(>zHHE>xflW`xM zpZ}aGxS*r?#JHm+rR5f7#4z7$1m+SG3BWs^zlKcbVMt(c6rVl_gVB59X}}arw_J|T?nvro|L}Go>#8RY^-nrn?DP@uuQA}?-TRXU2-4EFjnTr) zX@s2zTcQM+JSs5If;N!KUIX%l*2%f}R8cFd10ymQCnuGe$i_PgiSe!bizppk)wRKV z$?}8>ru5`iQ-o-PG|eReOE&woygd0Cx!c>5)1zwUo$u@EkY?Z3f1p2YtP82VHnY|p znwn7v2o?&(An?%4+{5$jHMDrTyN@o)sP8=l2NQB|7P|PpcR7PVf5ewlMbo0{uxVs! zu6Amy+0pvpeC^jo_uwaE2;!~2UDmPyiMgi?;Rtp(nv zN~%oMk!1E3lYT@`FR$LgK?G>e^nAXvFTZmoxpjOKsI|iI``c^>b8{QIAagC?FR#Zw zM=-_=CJ~TXP3Q6p(U4H+@R4q$zr9URE{li4kd$GWTpte#Ucyqtb#5(cIQzAaA>kQ4 z8)QH>5o>!oOP?L7l^T_uP&!itu!IAukiR~z4#u0RaE|co!YG5TvLNSI{mf}1^Bg*;}P;l_o>$At{W;Z$XleF%*0?w3u5g1}{m;Cd5#WQk6RC%Qj?z+Q*zeaJRVQOq_3S%&bvpH!xeT$u2M=B4Tv67;mZF z#{*20$*+YTiY#e%we7+NiZ7RNP@E|o=l)*FW~GRutqU=pNKar$$iNZueTe;bzO%Dq zVs4&z%q1+GyzB?~5fKqsR%Y|d{N+Vk7nCDZ^~-F?U%bu~=3ys>d3iyQLvWDoO*}lk zx4)mz?RZVB-5nz_K5qVsv7n+HLQbTM$_UoFLonlmULH)Rc^bTOAd9n;!(|K1FHm52 zKSjr-$F6KRFDH7BCXRM|bY^a8=@1|K^+AIDU08VkuL_p*uNTBLd4f=s4+TcuIBe{X z3`;MxG&;t2r+;H*fR>Y)A8-<)Vu*=}fBq?w6HhALxfd2}je>F6=Y*^_FIZ3apn%20 z%wPMMzI?$CMnuE*fc-jOt^sb{V$W(eGU^Mg=hBXmevWoFc6u9U4w9qZ}oS=eUK;t1n*JSS>u zN@Y2bUSw#?6%(KO5tT?ni>TA5WFUA~a`!68H$s~$B#emBTfpOtp_1j8N&uXB+zS)X z+1YYjT^9cVgBD|mJ0my@gLrrd zrz`V{SfD(czJ43M+yJ(rMQT-gike6cZ%*aP)ZAn947)*8$k32kZxDi`vvZLA=irhO z+PAmo?`}uQB|5+1J#Ufe)WLMu8~v@Mk1=dYWGZO)=gYzDqqU9A1iHkxmzUl1Y4J3H zzK;!T>HH|vpJAWxT44a66$?Fk*ZS@+=${||A(ez@YSq~F0Jn~jmsXIg6!w>vl;s_p z9ROz7FBjmx!?={F-Yk9?C8eIepstt|sbo_`3lJf+Wd-rN?C1Kwf}c`3tk7i>>GF_X zB_i5>Dt7zH3G+on^qjBn5~_#lYvj|XVPVk=QwIhHfF5N#4qYSVApuT1=@b+_$ldSf zft&u%rSbV=ro`{p2hp`wN)|2c&-n@&2C{hn@Wf~KqBdNvEs^Y&l;IGN2TTSd)z~=Y zC*!MElwEZVOIu{(pdCZcokqH?!t_P2DY0k1f@`|v>H{jtgADFAq7go;P!x^@@l{jA;2pZnWXHr2 zXYYf;8Kf$700l(=EP-4Swl)?GoyI7EkdUO)UL<(`glj+4VmlVo_^;SX4!;)3;7k&w z9AwMNYhLD;E)p6SB$2*B80>!@38RX?;U(cV0DF(LEtE<e~$Q( z3$}lINf)gCoW>mkIXXtZIi+v-GMZ47DysNxuC8ecsN8t0CE%rsI$xpIt8ZYC^kd;T zRg{+Y$xPTo@sUZ0j6(*r$8L#_|5v;7iNw`4anWF$J=oAtH1*4w5}+rUIsEEuwOt>N zgD$2Y^hI%?@GG%On`<8G?KG5cg}@uggVR(AHoNddmw$_<3cVt~ylMz*Ehk;=$@$A? zE@3}CjVyIMendqz*Tv!Z2!NI_$ZrcXEK>U)fpFyc`mGs68SmoZZP4l&Ef!`W)w_++8m|4X9eVQQ~kQu5!@@GWEGU73{}5JIW4 zsJ7ogPzfz_gpMw(kNSy{bt^&IZcd4@-1TY@>D62l}4#juarOx*6r#er; z$ua>t^(>|<4J7cSg~3e_RK-*g13amyVV&8F4l<6zqeq0Xlo%Z~xJqVPJ(q2V1A$0P8$`)1LsH_})-4kDM+Slb}^J^*l;QeDyn zER|7I=2!f|o;+rQkt*Z8OLggG;e`sIy({3!VufZk1E$OPTFt=~5nL&Yf%9*k?b<&+ zF$@r+iUnH9O$&?vvJv`M^csG2p?G_%y6-@0rmUp3peoJzs`QStYhg?8>3EVnB(+=E zY_{0IG=rPtZqX>p?P78%mhxV0-b%y$B``3G5DXmN;b1NFHiXvFy@u~Oci+p)58nTZ zKOQ8p8*NseRHLy6`}@yb6B^rHTh5Q*@maFT6_w3@rE)yMpWjPkgNa1lUXz!RIgcdla7RlONV|K!^@;MnT?>U4sMBTfRl`mY z7y|(b1+Lo2V<7lLgYWY;0wxhMK*8VJ!Yw3B)mlPPHr;MTVw2p%BUil)a}OcnN9=o; ziA~wY4wJ6LYPKK@KmRS6+-wxFv|x^05;7zJCKLn?PVR{o4Q%mF^0xyRpJ+l^Jah|5 ziNR9TSQu7k*0x!5_}s%{VOiETPI!U!#O*1mLrf7}g4uyY-=by;=;O+bgmYCsu>xBA zfv6}PeW54~n-yA+8Z>moa;*;?ofReC`dS2Z>U79S3~71l^b8N}&K96wBr}5vv^{a3 zmKPa8*q3)KKW5D*bhchdBgu?s-LkTbl z*4^x>nW&WpdMKiz>eKG8PiuAFnAl{kMqWua0|pgfnt;hd7y878Xrx!$m~_030f9 zKoAfA&Jg1OTSW9plzOO%_F=)D~P6fhKP{II(GVk8+g?oA_ z<+VfAqoil<#C?*c5)vZ20$*J{yxwnKEgFGg z08oq{@V7tw6CK@0)iPYD5-Hv6unqu#(on%~kF=B7f+!IZL3L(BrY*irfblGTg4O2l z9{@L}%Q!B(^tON|hxN!%6aul&33*OC5bbV%!JC`kmc$2~(=Nl9-}tpUcr3<8>tVTO zl=bw?-=0|;JHgP?ZKJU%b}*OiWZ#l@x;^31I)N?h$jRbD zDt8S#GVYJTHaA*|xKeI9VcMMuyO*I~8qkoluz_UzULFrj%y6m_&rQElJYG@)m2$oe zJYHL1k=I}VYU?5fF8|&um#bU1wMj{}nM`JWhN_rAkSSOYSxaX9O&!}3R+CNBX_ILb z|M8mNc%gE0>mY@EZ>(GN=nn`UVNYB+mL3*X9up_wN>#qgm%X+zS~BBHcB$&1(ItF- z)JDRxtzpOI(BRMY%iXW+fBPYBZvTL~UYX68Q>#e@)RSSC3$aq(Vc+@3akX7F8D; zi)jgMbcWsj6F{>{%_?2H=ex5gb_gsiY-&~(>GRVqBlM~)evjW$(M0TJ>Z4*}V%k^R zgUcD*-+^XP>n%>fNvuZMlG4)k4-cN2MY4Ec_qP`>2+(X}W1~_gj*1Bil19uy3&je= zO(y+eOfjEm1G7t%)V9hb`j&1_%5rv)sOdomQzh4P?aklz%8}V=l}}fjV@AxQT3e=h z?KWPDRY4%A)&QLlJe?d!5#z|9lgZP!bXh4)x)SgOQd5W2rEw5)uzxk)EifIQhz8d= z?Ksr#?#_YyliRJPp!$yN1>u*dx+7vpE&UXKVcY9V>PySPB>UjipEey`kY*!;nL!)d zLf5NYlMgqIP)In6@cXitl6Otq$RSB;hBPREU0fWpP?={s%{%{UB`EA`JiaFI3nq%| z+km!j$2XyhauK}l_lu1pY8+CYTrgj&FqJE8gjD|s%FA>WA9N1DCoEAP{=OIj`urIY z`lzj~1poxVZzRlmP4EC*7JXoKbv2LYB?Vw>t2Y?P=St`5<^~N}V6{Q}c26K&L&&htqj*$OJ5?&^?qV9?p=hM%&xl1MUfI5Vk}$BAfh} zEfCMaVps_9QB%vcoH!7xC}6KPEV3_<>N}3ZQOqs`@};3#uRVwtU%8snFpYo2`83?YRt^g*1ypF@X#kFCYc$HunjvsT?Tb0MuK}nvHz*ez@r&)Jnb|d=oD2KM;@L z++6M8WwR$zuFm8Jhhda}G=_e`Tp#3!OTfR9`FH}t(P0eQyCg0)8qBNC{9FkO;w>6& z;h1#+adDP(TIima0i&*EZI%@|()#83e1lW3cyaoiEtu_}Jw7Wk%Uv&Q`hS;q%Ac4Pp`2q;|HeYTsl`RP5cW3J8 z=y1G0H%O!tHS#wy+EkZwLq|vVyg7{9ZhaEg)`Py``DeuGq9ZE4(jjV0q1+|F)x2Lgwc6aU2Qj`gK~3dPx%+^DC@;Sa?R?@;aTJ66PuCZs z;3$}T@Oi80u{y)I)e3^?{6RB7QK%-f95v0+)(Y3wADT!~pPN$BT~Qep7LnH{k6LGo zGbXDBT53QzMmvDQ?6)!{pY*B^v)FVyF5L8m4KJ$gE3g>9`;BEP8!a`1y#L{92QTJq zlN_B=^Y5IbX+HY-2EzH~hx2tf7Q<7(qfufWm~!j3uMrc{tam?!;%5*NwpaDJ$ zNvO-gxbu7~0v#n(@;om5?eBMPA3&i!a|GSp+t9@0@wsF2zC8|gKU>MOU97&myOV+{ z7>-AOXcC$A@P&kgfWrO)(1H$tQozHLlLGBJQ|%@@!py9!I{Vcx>J^%3fLe!jKCpoQ z3vji`UOeNA{dDtpBiExp2mr_ZaY81&CRD8&!$D}`ntcBrgY;g+*XjRCWWUl7*xc-q z-Zq)Zi&Jko@w9gZ-4{L7KW%zE&T)s@+!}K$82c-A2>u>E*k0P`vg4JDkUG!Pa|jt? z1b^_5aQ@Ab%qomPoMD|btU&|SKQ`E2{{GWqNP5F|dAc@BTmKNy(!v8ICO(h}3zya* z;hRHzdiwfsQe)4?i8`7*UfJ=PLogKhUZn>eE}4H?T7oxOYcY@=Q@4B>jk+ItuB!{< z@ou0u?8vPk*IH~ooY_GI%8lOf&JF0l(#?*Ip)b~G1*d4SQ_~bVaQ)r71mi^$35v8j z=fq}aww}+_sRW3E09y$upWN*U0kgg;Kn@!uS2v3vAL#><o>}>+bYKtPE}N4}D`M03uWbaANBq{Q#gitxGspKCgt94lTG(D*katcN`yQU= z5jVSZD0y|blSst-CFV-6z^J#!f9WT};KzT0Y+fM8bN$hsP!u?YbU^njBBui? zE~6%@NFCEyR-F@5A(t>5K&ZMJ9zZv<#cpnID2lkXYVSS%dqAsUoeSlw8SU13Qu>2K z!pHFBY@5-!_JiEmGKSHv^ZY+9>4_3+6v5621MeZFQ{s`uF zSc8_9TPzZiDCjVn@pl9q9Gr>0JsPx2pb)V1%+BHn`rN?-{@a(t+zt{$zeusLumXcW zU@#qPp~X8GfZ}wfLsJ(M?Qn z)acOS_w|<*&4Upzl#5ZP+wW5YN~0Pz(eGw_=13HS6+^yXrUY z4`Z4oq6s30f;vlsobptS004wY1Xw`dD{{qtt__9ULZEy(ieNuyWi6Nqn@rJZ`rqpF zy}A%1bqKPRG$X$7iaA4tv1qO=Uaqr6n?{YIQ(F2{)yo}PDt|LpmtO(Oo$aEtk%>(} za+t?y?sc0N$F0ZYg!MQu>cz9I)87DW~b-p2cZp@&HYqcrbv~V zhQ{RO;R^ZtW|>+^tt0ra*x}Jp9u)dO3u0@I>*nQU96E=!u%g%W=4O0dZ#3wMfzKW5qsYUf(IGashF#>Xp z>i__e2Z9Vca$5RHKwMz*k2iu`Ki3hz;+j^A4g-_EQ zvH^8ooKYxf5_z?Gl#^KnpiiMF2`Pp;FhFo1?9*^cjL?v#CN8%@G3xqga?w+om;v?k zvzowp^Y{JQ=8~x^jKBA-VJ$puEiiNo-BM^Kw=?iW9EfM9r#sNp>72bgLou_y z4%4}!M{SC3Zfus(vP@{~ie2$Rd!~r4(SyXTE2djK8=~)sUfTwpnmASqMZ}>%-kR z@O&3d#%Lsj+3t=fmBdiaE2WNG3l^^RdIS1iD>!kq-U}hs_t7K%UgN*t7qf4<7YZ%( z)UErPT>LBTIqfj^<jm_9K#8LOqryNQBF@KDdgR z(B+?AnX0*juJ$xD*nev}@6$J=Ze;|2|C{!If8mr%l~Jn=I6{Mir*+H1TU`QU$ZaO~ zr=WWFL=S(gqlCC?15B}E(QEg+Cis1PZ6J$(S7mNJ)rc$ ztMGpv4rbifO!T-=y(jYe>me=u4;3VLS=D$jTOGoq(E`eu2dS6^WgwV8qLgjMs zJDo~CA}rj<$^9#TBZPxJFQbm#3l+@y*1$V$GU$< zI8e-d`NB(h%BU4jpjOFV*VT1H`ch-ZI6i*(0_CJhj3Zxl77nfB+nqjL8qu%;8c=oD z9^o0H1P~K~RBXDqjq)5_bs90-pQeKEvqmF_$3U@P)!sYt zSPsy_k6De4mT?fkkqCX2jvt|`VCjV(HEyPotBncBH4RifocV-NNg6ad#AzqP{_7vG z*XQ0eL{pA=*nEyso}uW%_W4fCwve}leHaU2u?B9jM$M;SBI8=KLr<~Q?I%&`$%*)1 zoe9SA3~9NVvsJYkU3TYl66W>r(3#&`fBQu`y~S*kzC=WTdx8*fiGk!wkmH`fT|ef` zev;^1igJP$D-327xEsNXxrpuh<9Rqshc*}+zOY;pV%qNwY4t?!Z(2m-(@aEq?UfRy zcE_r$(3;zm_k@zj^nf<#Z6H^VPDyL#U-?NpUqUu&tJ6o!wwTQQG}k-Y(y}L=3mOES z|L#2V2lz+g{=RrPY~weiikL6Gz(Hr2o02Tz;MUpxF~&i0F8lP_w!)zZoCaU!B-rzF zDF5D`==96OQ}Yj5xo&_`?<*3xv55lFPWlALZqONF?Ip z{+=ng?4HO)uq;-?4E{D`QDscyO)wQ6OP*t6X8D4si{bR01Ca3jZb(9rd7tL zref>y`ulFQ#jm#}bOiD7(O<=zZiD*}a?PYc4Q=iS?q~VhqIG|F#OqX)a{j#jA|27L zZ<O4lRl%;&9_@pML8 zOriuQw2`=I>At=>vArP&@bYhqCPSlgTm$OE!`Kq-s2l^0J|NpST({2SX_$waUY+bu zKbiY^N#>yg&YRP(S3&3J+tH8Mj4&_(9U=RbI=Gja1fI{y$)RRuWpu3qhN?^*{t98n zz5>%t%wDX6E3L-YmdNbT7Wdn`-D9eik}e6BSudW_+Ddw-+lAH&9Jb|AW6E=TPbY(e zs`C5X43+nemZ4#qOq`999_FOFCb%MtQU6Ter0{!4T8U+TtPbU%ncjt6Xj2%6SasJ_y2suF(|B^@)}ZIabRnppS$S6%E___JY#J90I=(9#0&Ed1FCv_ zyt%!>%E666ZoXvcO2oms%yqj~geL>Z4ojw~%go}uA+a>9^sIsL4mJgdW%8nBoK>^ux zE>Oku;fV5S?l4#-TAGp#gvt79n6KC9a4aMk^xF~*Ov8%LEDJFV&IDZMX7w$ssEt#N4r z205J!S*``UhSy$jkm?HTX!lOJNV*8}F(GxCVrhWDm0ytTUH8HX@1YZB)k1?9O}i`) z-zl9d*v%ChqMTzc+nQ?0oGQQRN->TX{uiSqyoUbf%kPl~7e4FKXOfL3mgZr8!FRo_ zr5r&8^!TeqsVI@SbV0{7<{%BpD74eK!lUP8O$l57H0)mK|uv%w^%w z_|N%J!GER>>DUI?D=0wKZfj_fnxT7tCI=6;^YW?`Q_}iG5r2S3R9$UcGnDRQ znCKf+C})y`T-QvgEDO0YQ!9a$P?rVa!{2$LEb%g60NLQLuWiH^4#o>*Iy~&#@ZfJL z<^RziE2Hc@XD4q3PdlEKD%!~m)C-hJSL%16W(s^ga9ReSg~h zWNdsENN1*o2pGHz9SrMjP2~WHd`>WdW@GA-FBNiz8e?k90FS5tHCTN(-NhSy?R0Ir zgG%Qiie2E=Fa20s$u~PU-r!qJ;cmBlW-!?Y_TwJ9OhPv)6OnyQA+RDnO}%y8gTGct z0C6x$bZlax>afd$Ba}ixk@*)YD%B390;#=o7Uqo&&aMhA`q|sLvcw`M_Ff=!c$b&B z+Y&k%uE$HUy6lDqIAF3QA>r5@{0J-HDMG-I#aE`t0+7M6Nz>kxd5-R-?NZ9ED5zlj z2c4)>0SE+H^TmtMBZtU*y#xM9j`quJegs@@pP+O+JW@Y4P;#!wNk?g>5 zzGUKXL5-3gF>xN(XezT_X-joz=rM{LIlt8EN}~ptY!`{TjpzrVIS5JMt|??_Bl!n1 zL#gwlk}o(rH^?3#H10!eGbVrmS0Q4C|87^CA!ft&eUWXNBcLFuV7snA2E9Q3FNlo; zB(7}-?2`7A_FDZ{X3j(4rb%564H&Yxpm<_EeYk`Tl__>9(L<;f!L*OucaoqHU!+wIhy1W)oWY)*; zRRPl@+{qEJpc#-Foch#aK)=2dTnb0YCfKsx`>_W{dxj{(Vmf4VVkCB=lcr_5^CT7 z`s;%|NY56V!+-rk&wdh;RQJU-^!JNE121y#T6dU+)+JUe2>SfPD<_X*gEX*e85vW3 z`V!z-t_r=!!4k|?4#vWSE_@3%NpNX<}e!6 zz)|>>853$*a6dCF&}$~(O)f)LXHH-@{!@tm@UIBKpz*JNIL^bwoLVEoPUD0K2)2%- zSMwLw&txb1^75lMSWx}59;wUiqYJ?O{4~_#qEe;78XljC=YwEp=IiNusg-97*4use zow0lnm#t#YACM-E^Pb(NAwmjElIZhY&2;0*nBAD~!8K8(@jf5TXQ1)=&B%|)hep4Q zUy2}-v2O9fZ%Qf)w|K}jI+lD&jo@$dVprShQx~)MN~vDoinm*#OK1$OY?05j*;zg1 zV->kI6*1lE@1f8(NJRkx^dDo0N5{Js)m@(}+I4o~Nj*scwXG=dv-N%maXlH^&DH?| zhJ<3+Uk6+zAd=fLPhbkp&$uyuWChW-#IDtU2>ng`flVI38`m4<-X>VEWn)$-m)2sg zPN=0!GL6~Hqa@G!lYp+KUBtYgX8+n!=A@h{)h|;1FmeS1``0S}w>89{_*@~?4j||( zAI|m!2$gmb>gwu%oYt6BR8+9J#1$zJxWZYNCoA*)@nlOI|7fELV7?0&-@X$Hb!8`0~e0@FK zphe_B3uo=w6FTJr4f@qkuv)Us1$ZHN*+>QEOfPI6Ki%4(OUGzd>1*V&v{O}FTA2P? zk&%~2dLjQ3)xKLlw$j*BB$w#cX%*A*6L^rgGi0Mz7N29?{}Bj>h=G_b{9$}z$LXfD zg`!he7??zE+`mzQjr_>$LSx9sRr$@;fVK|x$HO5!cVE(4c_5BXe(^?>mggk;z9HTG4g}e|c%=2NIY$6@TVoX)jUFOG=D_lSz|A+0D zifiMjzh=|YH_Iy@ICQ6E@Wh8lQlT0PF*luy=c#rcxDku|zj73v#7J*5Fv{RTD_9Dr zG?loNTqIXkZS1iBS9~Rzm7Kbgim=w1=5}R%7Vhok`b#7pj&8wC#Log2ihsJ<8Qg07 zh2=;{Fx5sSe)eAwYiiDrY&s|-TRSD8QpM{(-#l#pQtnfVHy(CuIP@s-ddmxA2Xx;T z88>3^PrL%6Tosk$neV385&z-3EN)lGF=Itt{wlJ(4VR?ghcQ@Ees}esYsCr~<&rFb zN+YFJ_p{RPUue1hyYWy~qk!dl8}JBrHfKC3Hcp^n=b=)qB+7gf3eKk}m>9Ad{|M~7 zK86HzC|83{(cXSr1SHIQnBa~6XQ|i+|E)IIML2?tI=_qE+|Zy7{;8i9 zr7Hou&7?+y2nA&-C}t10i^D28N;m$BM84!NJEC z9Ekcl3*-Rhygh{_KJfTI9|Z+4z1`Lb&eo|8DD3qWI@LU)I=?b|8aMw?@V=H~&<>kG zYjq~*SyR(=Em&967rCZLXryicqi^-cwz!r&>rCS}q4Lh7F7 zv~4z0QX3mR(vWa9X&ezhh_NXZ)Fg41LSNwhXxPlyf3G5WNccIow^UGeBvxkl!RIkv z){0qQM(QCHg_Hbbp~%0JQzud`J7w!}0>_)ryHvY@3JNc?%I|VJGUPOe6=_R0o8Qsj z9l;Gw_Q6=uQs%GG;P9vBJmy zvz@IY)^UnLx@Z9M2ZKT+G(Ibf!(Wg#^vB1o9PqaQ_O?G4;AzV1`(4Ccxq7;_ zHmMwo))a*(zc?7sn^Y79tA;8zp{2(~JY}h(Vovc6FE7mAnAMxN#luZR2h=5b+{)(d zkv7`Y;?@@OBKe0~_jgbo`@Ey?ZDd!w#i;U+C=v*8L0>1B@8|JWsvV^tP@j}Rm ze)jDkm)Kx}%hJ!fzYi_e)=bBlU(^_-GYt;=eY#?~Bqc%S1ppL+|D*A-i$noqM zsd7|={zLOz_=ULZFC_m6uO}z_rv=5GuKOp{n~Mliw*O^}{rDOc2<4*Ga>}O8Ncw&*8kAF$eduy5Oud7P1ohye?lqvR%hrl~mYKhKZ7HeK8zSHr<69prpci2Lg481R z;~FSKUcMkMm{ry7oTGC(=cg)u^7|BJ%Lo4Nim(H_DW;RD=-%=FG%gDPZ;7-T0CV*2 zf+FFu@s+7A(VzJwlPNON)HI~3ILjX~w5<3dRpW-{-NjA14|ixl!Sp+;Da3S6EcGl` zot9WsQ9r+@mxk{(X*;9liRy5GD&4XR9_O06pFfW+XlakA)~1L6$}Oj~Nn`Ke8BAX& zKTg)y4hmNzD+a;C~#iKv_B_7IC1NQdzSRPRVCaC~@cB+?4R&c}ZRHCZfhh z5<>JFpo|g!7=aX+kwxsic!)NF@d4!*G6W_D?(*pzp*_eQxL^#7LbGOm9MpOWYQ=R4 zgzir$FA#@CdYV5@k%h!~f}ea$XR8!04R$L$PghoLf5=4zyUfhV2`gl#7lJsU_U&wc zuSkdaHhMCYpGf_y0nOU;eo5PPP+kH6IJi4R4nfi952eWPG?ioWekjwu++QX3jd?<6 z4Fc_#nID5HW*;2y#@Z~{n;~+%LSa{ ziEw|e0`QHaI@bF(&Jv{pG4bS?ha{#vU=f!nB@kfdZfvGQmuPD&1@FV3^h;0F7mnK9KI}O?RSak>By-aJ*v^}s=*%@`uG*k020gh~d$}ey zXht3+^g?wJae+fEgTrRNh&h~!Dnuz%J8l)hpK#tY&*B#Bys7+8SvIzj9QFHmFo-QH zbAa%g5x>PMHo?rWQJPc+U}Sj;`C|^dwL?PvK-{<| zflOeGFl$-yklJR6W4(*`M0|q;IJcxCe4)CE{a~DAjzI^-!fup8CH=>zm>A=u!6M*H ztWYf@OI3gbm1xOmRu8bh>b{xnY0J97%^rmxrTq8Hz&%prE^AQO7*P;=m~h5RTAtQr z_M)J~pmd(YQCk_=;>=9%coWCp<^c?T|4o<@Dn)Hi2g?6cDRUiJ$$%2DQFeZ&0`J<( zN%6MkU>7pOa*1J$-_sube~MjMRk5jdu*n1V9fHc0N~!9LR`d09&pq28Zn2plofDLo zBOEWzLHq=!FA|;;V>6%Q<4b2nRk4}TJT6!oq*g?I1vL7=uj$D$gBvUIqz}&})G;r2 z8MST0Ivv1|$W*L-xPQS!0_MZT3L+wa`6PZ{ZNKc+sLQ)z;iZ+vd5@?RR-2RKafDL=%V7W$jH{K|ZY` zR6xty8{duF?ToL6OUPhI@8~%4e>=N}4~{ZUCN?%PK+C@dZ0sOGqvyW19(Yt$@~Qjl zo2#4G-a9e`5d!t|=Fl6f0$#t}ibM5Kwu2iId0}?az_`F#X5$Lr*whHaP#Ae|m&0iI zo!$dCyaaqMG{N4-c%sw4dFB)*ttpeKk+I0AG3=Pe1uH8!s z`vrqD!6bFoSj;+jOdsu*V($g?Mq@KkZ%&ccI*?K`;0`8Xyy{p^yWjtStR~X8f$z=V z>2=orSJivRWBq=C|2MKlvMEa0ikr$-A!P5pcPLpQ^dfsFdt_#l*&rF&D=Q+pU3z2{l3Q^>Bj4IUFSOMI_G(aX+j4D6Xbl6v&_?u7~hlS^QfYTcG+t;{a4xx zDqVgCo!eUGX)6fjfwP8%dLOd#G1oA(y5T`D3X2@8UUZRS#!s%2Yub6!y2V@>@lHRR z5t5H*xuF{$&T%VmYQb1w%XXOS%E|1t8jZEA%~e?9{%SdE13FLKUMr|yC{N(c>L+-# z-3}QVSvjTeTjy8XzDE+nl9uhx43M}+fdw(Y-lp-V2@=X#lb>GI*A8>0QxPRo`fG~o z(VK-&hxEo6x0+>GzmZE5MLg!(Mn1ac2*0*AN_)I#)Jpr|+t)y?AG%$7X51~b#YSTC z4jq-4bkv>R^t{+8-Ad^z$dZ|i(bx4!1Pcepc5!|s`RJe14S)t{y~}xA(Ud9_+pSia z>rRmYWqgsh0*F+#DX&96D)`PTPx+6|#GcA0XhnI6Ny-(zVa-QIR(c)YGEt-`Hy3gh zO);en(Es3SCte%**!Je7BxTxX(9B+>M<-zdJ);e@cdyt@^)Jd0Nv|-B)X)@u@{#o9#U>J>^+{)qbg=oqcwsFigAD zrYKUdjw#v`Z^(*-J{p}!>F}n5%lSv~r%IKEFR0`XHlfT%VGp!rXz*U*>HK=ivXY=k zSbIWwLI^&KN?m(t!JY^*8ItK4nDrw|_<5O&Pu&OccsIke71|s75f9?3HKz=I(t**` z=`%%qvl!YBmNp7RZJQWK+sgCW`oIWxKM}y+>pU6D>w$bbHZ%6Mn2wBW$+~Pvd1iyQ z`qJwb^z@bf(%+REM)Xm-Ppvb9JjqZE5Vbm3o{D(_L6G#iH5h`^`czXGX?^rkkMf=ta!Uc+~qDt#5Ik6nCB z=79~}wlllCVT5oy6FYObwHK4L*j8S&~x z!UfJV<=S_df3^kdoJ)UX#u3xK-Rm0GrY&1u<}2LFC#j6Z5@u^VcN6`+cy7PVb_V~W z_^#w#O~+fz`f-^3YFK@d2@!u^^3^kb@~t)aXQ}o(bA-=N1Wzf7_3)cAoA?_yP=zrsTBu} zMzJ3`!s32wTiMxf3&)8X@j7En@-1k#eRYaTQouK?A)xvEUNKb&XLschV|k`z2W@we z{jaxb>>fj$juzxym4TkSmmE~bpr7dA*;sGn#t*&GEaT-$5 z$vUjVR>eIf<<@-&<3raa!)&(&o?}7>2R+t!S=yDMS$XZGMo`Z7XwQ4MD3Vgz%zq1K zek8wd-8E&|NB&PS3;W_+N9;^{3>(f38KNSx2Xwy|f2b~BMjs3qeU5yq&#A5D z@U*^ra~qqP8RdOy@$p6YV}`C%>W!gG;TYepH+Q(DKwp2OOqKY zgq+oOT6CEE7#h?Ot~?&0hMYtPA0wlN93BdfWOJ$|hktriH$xKt*!=GV-RReZnQz<7 zZtHJobXjp;onK89P_~I^?_zPdEAaf9N?~l-@p~DAE0i=wvu(tl=<6Fdo?6p<7>1l2 zn&Y4C4hek-(o0K1M08m%fSdf%rd`q%%}dnOxtE2;KVflc^}WiLHsXv<8jt4nP=BZt z9}*reb#`)8ZrMehn7^6O+1pF@D9oy)uqJn&m375r<>$iYPFEB(c>^@UH103w!j`r6 z!eHK`GP6g9vN<)+-40rU$=x#Z5{|SL2@HpB?aa$FAjJl{433U?`5GN$=52poe|R>w zC=pX5?xjP*r9B*wnMv7|kS+mS8lm_k^?|pZM@}5}<60LnJ=86sgUe}OSKBq>ABC;V z9y#mZdE!KagLjxOwGh?rdXW&_+8(`@2?et2zww=K?!4=@D|=nPUmg*0uW?}Or||NI z>uhE=!qruw@Hp{tGM{s(Zfwa?-8m~OYgu{uLoYAUI^;a^{rj5{-e;~ZE+&?ixcvP5 z{(*tackbM2I$&d2HW~TQ`Nb(ft*=P)-)p6Jq>X=!_FQ{4yh+W>&Cxb}*QBJR8Vn45 zE9js@hXn{Bg=tl%{|>Tcq8K@2^5m*1*wowtk?#QoKSo=^3P&`%XL}>NXWKf6;}d1? z?(T2&zDyuc{9E`eDMbLMDNr?Y?Rc+4Ke>M|Cf7w#F3WzDjLGN8U`4%DaY3)G6Q8T( z(WWnv+4+(64@*vYl}kg^3QBnKx5XkHXZ03!7JA!Vz0cD^6&HJzZ(%!s505avUUGDl z(1yg!kd(b|#X>cF`6^~=le`y(_05y?NoO|)m9blg<|Lxnxwn%|mH6+V!&BVzUJDMB zD7(1fpoHOzM_L$-p-_!5=^Ptp9!D?~q>`{by=Q+7hZh}fhFfV)u)u1;XEJcJFem|h zn)QnYU#_J|Z|Q$};|oivka(@?-m>#Ha&uX??Ak3$;*RO2JJ5rH`t(WFRxG|IM#d-h z!e!K()*WV-vF@G}N@dS;ag_`d%i8Iwz?-J#HBsFAnyDm^0sYei@njy^-r)TEp8o7P z+?WoZMn9<8+{wM3m?$e&IKP#{Z-x5$A|!9g&gBlT9rc=WIw?f*Mat6cJl~PPi#Xf! z6j}-2JfDmgB^*bwMA2#Fq1pRQ`|e&cp18*LmseVokp3=n@5f61%_Z`_tbo4cCzzD2 zMf>h@!&kQl(agI!v+sK=EUQi@&)fY96J&@5BIq9(-SqZ0SyWo7Va_F4fkxqm2N@QR zw+%u=%vwS@_9tsI{h<+Wnjb0s_RZJxz=rXzs*>C~orX4Rd1~xgv&U{%VGB^V{LFT3 zwsqV#l+yd(vIGn(h)hqSlxilvrI=0G|0(_>{(kI7k@l|S`#hO03NyY}cRCh&EC}Rp zLJh|YG0r*l zW{gEV^pm>TK-m$({O{UxKIk4f4x0QbLj{_@N83lE z8CcIxU#^T?q?e+3;kMxg|Jlg>hfb9xQZU@108G*Ld^Q)h@$YIpf9C8XlJ|9uM_ktDgLy zVXVQ&Ji5BSA0zyMM>8l?`E)YReB%)nbh7ySt4wS~Fi?(F|vEP$g+{*_Ux1fb!bo+}aF)?Qx za{VBXz*j-K2k{y1GI}D)S?su7m>n z?rP`n%ke3gTwPQKCFAap8z7wN= zCHg+ms{0}l`3xZ!zPN;#&1Pk>FYF?dNQaO2LFCMp-xL0W8*BR819S{Hahy-qza(#y zj0t++piYd4QgfPAO-vtV3Y6%nwlND?SF0;RGXVumogps09A zi;WcjiHraI%8g^Vz>q$Z-#?3n{9gyj047Xa_QEaT@NN(|I^o@du z%+CUJfg68R2U^>rG;F11#b3QI$;H{j!Ff`&&Zo$Vo28nGi~GpPcu@Tt{_J}~b4u3! z0t%K;%3DPCVVW}72l?eqOk3EiGyERid)ZTPco>ThatSmLVNk)n6}6%qzlhAy9+ z{KD4Ks%mDFc8IB|1`-y-y*|FhKi@2xgCo8OZad+)_}<7ZJ}fo%UFhlfYyC_qDVjz8 zE!$1;wBzD46(>dBxz>!_ufi8D^l4Gt75RH{lI*G&N9~42;KuCs%6&LBc}l8J3axwD zxlP+Itu+0v6En2=V2H?fXc*UHBPZ9ZK2_5^BUx~aWK`_909j?%Mtvn)$Y`i+^`!We zJ2KxkxKwwo>{9JZT>D>Y7g2QjJt@S+D#FD^7Y~oH0*G4JLrud1y#KX#p}mE99T=f4 znB_VhLkzx@k&CVkG{qLEC5u=&@ok=ptl531<+hXaEVI);Z|_V)AAL;w{)7T|=v8>A znQuH1VneHvDW(jNeWoQO%=D*5Ee*`$l3WZJTC`?nX2;Q2+M2OIJ^L*eIFc#(eVJ8; zHCyoZgUYnVDa1th9*UCleUkYwofGX#X~M(f;w$2RinEgZoKSr&y<;Ca9t}H8vgS2s zO740G2Vc^vuf;aL)Scbjg7r>hFx_))tYM-WTB40;vzhZf4+btDN8flLB~{jE`{YWi z&C$ZCXTx`9JkNt<32kkgk^!qTuVV^FS6thXGm?zlK29V@!bn4y@9o=<`>WS)=rd!j z{LExQXL=mR{xGfc(oir^KS|_`Ni9w)qvHR|tFiWq`oPVlA;MKmwQ!w6*5yl>3dJ2e z>H1PYHaxCevI$N4Sf2ToFFHDz>qT0^bXucmXE3=&SH~E=pu0+C((AF--Q}v-+tDiH z)wO!Tp7U}Dpa0&T@BQ=IY;>vOi=&ey(Tgam3pC~(=|oiQ6H`!LZ6KeJYjN3!Nbze8 zQ4tf$pjLKVI^xd1e{b$1av{tfA#{o=vj>Q2A`jlf4Y`J$*LY!^3lAkEIl|3%thR%d zlP|b?s1|$>aPX6`@N?t9xF#ah@eOXPa#EGzASF^A2UWbLagbM?tJ@F<}pM zl??3){p^3db>YbX?H!Iw5i6%kDAeuS^ufJkQX20>X{I-njT%JU+7IoHwQnzLc78V=*ep=qV6I(lX zU+ojOD?Ry6i@`I=@3g(|I&ViuM+1rMKG0;aDJUr7I`;lkkn&}D&dJ<-5AABpe*rJK zacGE%f^|aWSXt(3O`+$>ug0cqcC8P^IIS*yg+mOxt4G{%rq@{whd9((V@w)f5sh8h>lIX3l~Sdp^CgDTqw6@U@XkXZZQ@AhS-zdn_WV(8fYdHUwQbBzDekb*C|i zOzUu`cRb(dG)&IIDy~_|5Q9&aVPiI+AK6^hU6U$)9} zstM!Xw^I3YD#sc#J@(O#fQV=y@qZ_R-}I`}`Pu2xpKtiWu31`ugxYV2 zVVir`9-^T6xA4c7waj`P7bOk2&cBBBKb@?YUJm=P5-;S+*;191j7`R*))AE2*&UqP z{>>?%_Sx~VMrn6HdXaBXk}k=(eqdnltJ|(eXk@P05A6>sAz3*1?dlb_adMiPawBMS zc4?PQ6TL$9fbQaJ3FDP)L!yRAg}>RZ&ApM z==V@63xbuu>X#oVku*+pHwDdog!tR`kU=2Sp+HqVRa`Of+5;pUnSW#urOhfI^5lx} zot8_K6o3B2vNNBH&UfJ}BtGc+g(~y@x_MP*u02M^UxyhFg^xe>>WsU4i{&z(|HcHC z{nHK~Xz4J}rDZtU%_~U}U>5?dA3Zq-vDEkmS%B@kV>7q3eBEps~K8?xAa<=gJX8Yxk9-=OT*$M>VAGcf@yGw z6@W8+n~j}7=UdG^sH>p3SIYX(qBV$Y4#T0a{fUZXLV}ivsO&-y-TCysH*wTG{l$l= z;A?J8vZadmVdOnRxKuRguagucr{rt$T~92L3b@7AuL;W(N_xi_6`=&R9(%Q3ud z=j2BLZ_=4g)0|@4Cev*v&Vr>RrZ4~bLn+fmjt54}Y!1&vCy_8U)jj#u%fn-}VqKGK zLvA97=RFo5A)f8UbPjY*5NXbBY;Ng$PqXe{W?%?)9lR$Uj#5y7{Ez>z{~I21;-n4^ z0ce@L=I$xT#5A_hCG+TwQ0LYjm&fVYr_-Tp6E$&WQXb#*r`xl`Og#LO_zQeWGEFZ> zG7j|);winnfcN(L(qH+9GXV6&B_=9~k`ZcWV5T>Q7MS`nQX5{kXhoq0;f-#*Ct z;#GJ2h5Y%kwkVe$pl(dBW$fLG$#KUExPuo)llN4Ca5+7lU@y%Ve-sIGpRXc&`8;JOVO@q&s8RIFZOV=^Q{x1 z7KiyRnd!?CrZ%!63_hFkE%)jDQdf7*#6IfmZf8~SLAWxxH1)Q2KuBixxj8S*_7Q&z z6PAWajn*xuhkN8V9zXs`ygx6mcU+Bl(UnzF=y6Steu^OB^7$0Q3OlYvK!Adv@6=ovAAk%Tywa!g$12r zlDyeNfz8cQ5zDQQFACr}(``?km+^MeQ+saKtDGFMo$|uNBR)BDaGCxb@j4>`2lO8? zwT<$`?{K=Rxs~-ZyZ8?}x|M;SzP$_?B=%mv@-#(&MvLs4Wx=S-l$~yM(7>dzj#yR1 zl!>0<;c*<_^2P)?GWysk5ZY#dX;NU4m%}nd(OpDWPPf&2-zBE4MYFrPewc_TSDzNM3uX zO0mAoVso?qOLSOf)nhAOX|ZfezHNfx60Ry~UGrJ#l?{VDQeqW)8bA~iwdJAEKwYmmAz(uNw%7noMEwd zP>aOq;k9`)EyTuLWu0z!KeyXT>6lmgmMD*57I8PfwM|IkjaOgLiNpkCd0gdR1Vi`8 z?eOugn}&zaL#IJYz>40Jrh%*)Svl;N`|sydYh2ZD-)vU$@{;qKO+?SwizHCvlMS@U zmYe-tR|#*I?+l)oP6 zlO$vH71~M+Ia65F)YcYVYnYP{%goepP+`A$`M3_Q28J|V2JLXQMdo<1jg(M)D7`Bq zR5i!r6N4~@QDdv{q=f7qKmYj{9RW%eb@5f?8K+`tgP=3G${CX#&xh8R!Hd>Hn$Jv zaeV8RiNFpdA=hG3+6U4Uwe!4OXB=E`{*;f6p+{PM6jLV1$sZyv$SF&e^!Lkf%QzN} z<%jn~`7yQ6!tHzU6=|OPlzJ(}Hv~+ANU1hj#^SiDo=)iKh`o|tze+hq8!P*t0=zZ7 zYr+yYsVfNx2r~YRm6vPC1@h$BvB9#cd3hK3*3{l<&v*!qy3)O87mVt-v2WbaV;t^6 znl94L<7L#}r|L7TRwRI{fM~A)jxgO z(Bx-Zyu1=BBKojS${;WDF!X0w2S0&|n$$bt2NfDjZl7H)>s@`AbT4A&=ic5jB1`g- zL#VSU;^8gx)0dFt>pT;6Vb9^^V!I1g{_``{w~b7QXkW6uuInYH(lAD`d~W$L>Yt&? z`iI*rEew?wgeodwsc5HClU^hZIQO7;$eql~q6xIcTjuC4sCnY2U;TG68jJZNwkE%T zLp1)yM`y?s zi2g3JyrW_1GB|n)=E<2Xb}^8DP>f~Z|#GF z-&{}xFV6Z_8(CRW4JE7fqRUs6WXZbAceb66Ff2GfL;JuwrRsQwu`5UD< zg=X_s|Mg=F$@iIF9$e92<^MT?C*sK?0sXzgZn=m*x#owO;63CKh0~Cwwndz1t$VH* z1lL!E-&|i>?fz$+3o2v*dsB|;T z+sJfZa6xbwuV1!#Ftb5OjL4KahZAi!c3Ko87B%(HN0Ry#5AOCiKtIacEetgzMiH@il-|(SMlJliNta(AEB_dd+lrI_dm?SEiVyOYRTIa(+77n_GQSgWL=sH3X0+>8 z_>Tp^?P(C1oidM>V$7QdEwMRjoL{p8HL*&jRx}F(_NQ@JXnubq{!;UbLa)SrdhOl7 zb;~2CEtlqYqK(PH1FB2)rdy8Ro_-M+7E@r%7g0rb`A7a?vRa*r10 zM=t|56PYz_Vsqx-2MW491vSXX%ISbAYV(z>i(w@7h4~Bp{qSmWi-8pnr1$Fqb ztEwdN_^Vs&9qiyqE&>!>U4F8ZH{EL|xp8BxHLQ>B?(=IUV-vN=zP6W><)8 zg(uukNMj2RbW9=yS6;*W&;8Zj=5B6ADJI)!kMk;0TvgQEq|0U=TpPm_LWV@<&M|x3 z@6)aH`R1v9_TXa(w93Mr7^?lt(5FarrFD#UnV|@DMP+{Mplwx~!ELFPA_*R+<<^UR zRpdL7AbWYU6(MJ1i^5AJ<#ZE^vK5QtT5IYj{eotf0H%zVvyu`eTYf1I_^4FkHN~&rDEBS|xE2@5e7(hRnp26nUb;8pudeL7K?&0mtIk>&e z5+S)dI@))@DyZXiYw4BMj#cK}_QYJp%TE==~H^?gaqB z9fn<~z-^GI=ROH)6I$(o8$%Jtsrfo4hJu>MsMtL!A%O8&bCJQDM;h; zLOG~(`^$Oq`0cj0Ugpy^oT=HdR{pZm#~~H>h5V-)uaZV98A1>hA5?r0p$ z&XKcI_pKRRQ86*c^$8&ZfHk8wmj~GtQtm;a!X%`znaD3)@+r~(Y`d-TpG9n%4#tMX z!F{zJy~v2gHAAk%{Kxgiq?bWl=ugD<>Lwi`%#wa`8CzsteK zlezW6#rxlW%SXEr)Pw2i@j7o2Nah3qN{C^y9%+M~3lnp59F$JA6AQq4{QwP!5BRgh zdr#>(H487GHuv@(Z806Agaier`m<$17gt6~(^rsc_?7Sfi38Hh#Z^gG_JM@N>zTR< z!HDp1jWenD5AE%XJ1q<4KYVJ}NSLVoz{PYQ{;gkWOTUzWdgAg{&XTq0p_NfO;@Te9 zWfoqbVD-ra8>mF2!r0bd7<91DChMvHLt!u)*8>gwt!pb6>B!xhs+lWrN+CZds6 z9TSslMJk!tUm>soNM0xvS49vR6Q>1W+u~2p{%rt8Pw(@y9@4AA@7>n{8&eGYJNTM( zIBn*e4qEe4qi<#`aQ&kJ0@)`+HCwvu^XE1Y zCDjtWyC@$Rld`(DhV@`8HMLkgfjWjwxplPMoa&&dsY$ig-SP1Fm>D@c;S^%JvUiD& zj!;BI#Or7qcVS^cqNu3@C9XY&mCm;2+Z(r!$-8+Xp8qtiJJCN<*RqBtteu@5^@;m0 zR%yBPs@P-Xa*84GxC)GDcweY6_yKE^yLl)iB2o!$HoUF0VUdwmP#B`+e)7p-@&_Ek z?)PdO#Ds*V`}_OdgM%^X)=>}^od6;#9T%57VNp@mKrS?0{PE5_Jo=#gKUhJ+|HBnb z&`!tVLR?q;L3S}*%Fa%rJmvI2$Y;XR`@^0}aKNa<+JQWp;#3XQEY5%s0RQ*>-%V@Ehr*_gQ{`ch=f@cIM+62 zi*+kizP@V2y~k7#Hce&f$D`cwuglbL@-pKSC>)6<^|Njh04k9C%q>=i~VN-ld^fc1=)dn~T>lD^ z=`#O)(-i>YVepmQqN1s2>01wT)Huw;F)xMe3#dc}1>sj#RatCpZH1%%`%1Qxbz=G- zZK>eFKx(wg%^tk~L|toQ*-osrs9&c_#sjRDR~j0WH!p{Le|;a=jG)no3=Iu+baXNR zjt2u6d}gZ8PX9Ii{7D%Y7>H5t`x}#FC_$$=0%4aWA7IP^+RbFC56KK&6cjRF9W77f zHN_^P;*4E!grkI$&gEEc(Q&yu`L2Bbi@~um`kI;=)S*F0($n!znQj|@Lit#{J~Tgq zqlLP5`!?z0$B)_7-V>lq7de#a{Jy>1dkyF)yo>by8$wH_| zyHpy)TeaHB(jEaMVtjl&3T13;Ovz(puqBL-j}J$EVM$1d=-0a<=fxk_MMVwz-z{KP zlE$)58}>2?tS6|h2ryn8jEl}WMinC37(=wXL=JSSh(gUGv%Qs}(8d3K2MRE~J+|IC9?-an23@L-LL<#x3iS*KSi9MYgDru#EsFKGpl=hra$aB0b=WykBoPd`3q zmN>cT`S}1aqBHQ3(OM6F;LsMir}f6YRM|f#LPau)g~D(LF1_;3Y3H1mu}OI#rCG}9 z;xLXR2z2QF+ISGGFlQQ#ZQ6D?+Qz|w4AnO>(zeu}?f7^27Rm>>sVL!Ss2%VDt|7wd zryN;S#1%??EA;P3Dc79$*@^B}ZB$g$3~i@)+jUr3Fa+PhWKXTHlfvFy5pue~Z`Iup zPRCEV4GWA9TkYLx~iqJ)>eq@<)DEF7F+$?M8x9-UhLnemseUVX<& zX8|Hp4C~0v!4ZOc;Q~A3eURnK&!4p?4t94nR*{p#XkC4ME=G*`www4;&fGWn=a13W z#Qzkv8t%(95w}R7%O)g@@c5>kpX@{l2bCh4>>}Ftx1C>OW1e@_!24+XQ8@ziIIAa5 z3S?ELoO2js-xYc6ER=(W;%#Lg{r&s*J1`PpI2Pp$=jH_Z#>Z2Vl9MZfgM&4qcB<9H zI)B7~?2nh52T4fJcgFn!5*w}g_a8Av`wB8^H+gw4y%TnoaB||KHGl5n(u{yLe)Hyy z59o&L*RNxNVq@3Hf5S}0gkn`p_6ISMFg9j-`SPXC*B7@^Q&UkuzuEN#ebEWSw|r)B z=6e5!YSa9({PlkZ0E0e6+YNL7{9wocB;yGByT|jKw|TNx4JCYgMFeKC#` zQeKWGWfCv`Kd*{5Zw0X38B8ylhjMZ#v!uc7Dk`1JH9BUp0dxA*^OSf61eEs#)47JS zS4Gz*swqI28Y(Qi0K(u8;>Tt7J0O+qPfFtd94xXJYXG|c&jYRp?(~0s;Z#u)0lWn6 z6s+4wD)-FPln*HH#-1KU#~s*Dx#7LPBaT}$k6OGD1i1tABs2?iA9uyyg0m4r9-K*0=_hNuBgI%UkN)ru%-O5*(Oyz|Vz()c;#mwo0+w)zL%F4=) z_4=Qm*$$`~7}USI3WdKQol3}_J9KBm>u#OK${d9+zyJNtNn2;DCW_XD_5Q$?>^Be)G(@o%HUEEz87Z?YE6?Cv;o)S**&GC(%rP>R)xS4RE+;@ssDnq!6$AS8lw8~ySA}e=#%aw{{Bj9W$=9P=DQMPvZW&~(F0EY3vw=As8NvBx0jBb`IeUQ zKv|vo@?fd){bHkUzy=0C4(i=90Ro(FP|X*~2uyBNXm1z9Q<(BV@ZMN|J7c0F&<)>z z|Go;-od9k5vc|k8frp9yuI+pG4X9n}1DvBqtGx8~D{<}Ro&zw8m~YnjU_b|t()Jpc z7zGK3w3dz-w({rG65!mK!s$Ul`kW>kUf}tQ7t)~E!Bx%_oJ2sWJOuH;cu)W^&Y@R^ z%3D%K(fmUL?A_mbWhPh?zkg3JEd|3bG2fo+$k!;i%&C#@Gg4~IW%L!st!R`QT?Kzx z8Ww5`ju429DXbz!p9S4p-44v`i(*E#XMCMAQUc1(gFew|EI(YV4$R~T< zg_V`UFDy52g7^LJ?DXr5D={^<$@#y@bHI3m3JV3Jth{9)D@y<_5d8<9re-`_k1dJcqyg)6}DLTd4TrQS!|ayZ8DbA=$@0`jjJc-v;-s>VHl8nqN$ zPvW<(0F6)vrx5=B;lqbu5{65Sd+G1kG|bG->Z++-w(HNr)vt9&n}@$t94Xd~X=!cc z14cRQdkd(^Hd^!UmX?6u)y_x|x>d)?sUl0;1|IDfY%HHQqIV)n1Dj>?!<7y82!#W&2{OPIwC$|lwfQi076?m}v z)BTj0Q&m+}OvuA6D3}Pba=Ba_CmPghE3J1cgj~N6Fz=%flhFETY!8UgKz_m!D6J;p z==j*!=H$C}xl24JH%2}fnq#6IAmp3DX27q~0>17(yog5nyYRVFuMYz$8}03~E#{at z?dgf|aCc{4_}lhp2E@=3ETMY1H6$49f!!LqV_0RQN=-|f*s8$yVrKzSTv%UETS24j zAvl0#gk^13P*50M9?XM~_Lg2%@ZM6tA8aF}7j!|2sb2npZLR+Dg|}4=8KyJmOyO!> z61nR*(|o6`X*!>HtHkZOAoBu{oS)o|TZ4EMOrtbh{3nvn*Dhs*7|JIxk@jb) zF_R*ae5Yf(9N^MGf`-9OX=#kWm&crBb93{bCHgd|zD!AcN_Le81?2#iHSA{^g&4%h z$S7a8a)GDRZnW(B2jhBD2uSY$H#IjmmtCjqTAkO?YjCK5YW%RimhGD(#BcQQ=zf`* z*HM@d5cT|M+mhsppvuI2f!01EF@r;BYHv@1dhX_?-7J3Z*#s@vCus;Q`>UR) z!x_#I8s7bruKDWx)J^v0WmMG_A;%f1i8^nFa5Nk`jP;!Mwgsu<=H^DB?%EAE!-=I@ zgbYme;o;T|&>jB5t}E;oUEd0WNUutOzA^zaZzW>g`+aE9SKypH+7bbq7zyP-$?JPQ;pLv6dUQ9T!aGQ7%@we^Y z@^X#WkrTv~^l&&N>tCJr6>0Op6a-_rsJmjIZ1P5p>%4?uBmu}h4lJiBgjvB+QN6o5 zm|X=3x#N5%6@Yhf!BRCtHliQIESw&>ON51mH41Jlkf@6V*+Bh2p~p+Vj|9TxxkBgI z;cCphTyT0sMMX18OVj7K;0)3L^tu(II(4zzF&%ty2eZ|3Q5@>I8PBJ`yC3gz?C$RN zfezGI+?3(_XK&#m3iTAtEiI?pU%VoL=1&z^cv9z8M{5p&q7O3jHI=+Dk?Uyjp18P? z%p?s>VtC`n1 zL@-H9jNCXclA^Ya{DXqH($XQjIQ+pdr4s8@swway=HnB!9u%-ccn{DX^6}ih0Odx& zz#}l=VD{Pgr&}NcA%MI`%{{^LfyrYRMP95vfQfIAj)CDD$t*l8Ac?A(61d^CXl(e2 z>Q`jm`3D3vf+R>wOJjiGVDl??>%gUH?C&Rsj3G?7Qm3q;2icZSxSfbL$Aghu{l&V# zCM(hV2o4jz0hH}%UY`YNU2YZ0b-mr)-3@8l-x|{I>g$n0`^_p$FbzK7fjq10i}@UZ zNyr644uck!cys-?2#D0e|ysoJs6Z%>vapY&zssrq8zZ&tUU$*x#{1_d*;%T2z4@xy zm_P#bSEfyWmhL@;;bL7sICqT=4JgPf0H!}_rg{=NzY2MjL_x%n8AK8bg-cA`45pCR z^!o(}Hu1oyW736Nvu%U1>3^y*uiP4WmDt+a8a4NLyv!5_l6ZiugJF}2cb=#v_gcyr zz1)FGFGx1T#+XloL)VwDdZWb?ToXUYjm*Nr(W1>RVA2!`JjPitMGywDJ$FPL8{sVS z3l4G!3JPLWb*XW^G^F|}b{U1hrEP-A4*eetMQ*aO!HgV2kQxaXq1X=-Yr*5Egi#q_ z6<9ITtlw6fg>#6uU5R9!h5<%bZr$MIB(k!yLS^V!9iJTWqe4|d(K7PLH%_0lfzSJV zw)JAM{%0i{DNVk4_#L5#=A<$)fKCa@w!9+t5;*Y1KG1sz_5(6GrMzd1qVCtqUR;U% xvNZOQ3l#J9m<}lW{8wr9K9%}O2@3vs{76aagM`WJ{}1a3)|dbQ diff --git a/latest/_modules/index.html b/latest/_modules/index.html index b54c4359..34136918 100644 --- a/latest/_modules/index.html +++ b/latest/_modules/index.html @@ -3,7 +3,7 @@ - Overview: module code — modflow-setup 0.3.0.post11+g3a6ec42 documentation + Overview: module code — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -38,7 +38,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -119,7 +119,7 @@

All modules for which code is available

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/_modules/mfsetup/discretization.html b/latest/_modules/mfsetup/discretization.html index ec2d1412..63583743 100644 --- a/latest/_modules/mfsetup/discretization.html +++ b/latest/_modules/mfsetup/discretization.html @@ -3,7 +3,7 @@ - mfsetup.discretization — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.discretization — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -38,7 +38,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -847,7 +847,7 @@

Source code for mfsetup.discretization

 
   

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/_modules/mfsetup/fileio.html b/latest/_modules/mfsetup/fileio.html index 0381ef4a..72424962 100644 --- a/latest/_modules/mfsetup/fileio.html +++ b/latest/_modules/mfsetup/fileio.html @@ -3,7 +3,7 @@ - mfsetup.fileio — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.fileio — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -38,7 +38,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -1329,7 +1329,7 @@

Source code for mfsetup.fileio

 
   

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/_modules/mfsetup/grid.html b/latest/_modules/mfsetup/grid.html index 55dd413a..24f4965f 100644 --- a/latest/_modules/mfsetup/grid.html +++ b/latest/_modules/mfsetup/grid.html @@ -3,7 +3,7 @@ - mfsetup.grid — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.grid — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -38,7 +38,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -1261,7 +1261,7 @@

Source code for mfsetup.grid

 
   

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/_modules/mfsetup/interpolate.html b/latest/_modules/mfsetup/interpolate.html index cf0c537c..64d4db6c 100644 --- a/latest/_modules/mfsetup/interpolate.html +++ b/latest/_modules/mfsetup/interpolate.html @@ -3,7 +3,7 @@ - mfsetup.interpolate — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.interpolate — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -38,7 +38,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -517,7 +517,7 @@

Source code for mfsetup.interpolate

 
   

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/_modules/mfsetup/mf6model.html b/latest/_modules/mfsetup/mf6model.html index 8c56202c..38d49c77 100644 --- a/latest/_modules/mfsetup/mf6model.html +++ b/latest/_modules/mfsetup/mf6model.html @@ -3,7 +3,7 @@ - mfsetup.mf6model — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.mf6model — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -38,7 +38,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -850,7 +850,7 @@

Source code for mfsetup.mf6model

             # including lake package lakes and non lake, non well BCs
             # (high-K lakes are excluded, since we may want head obs at those locations,
             #  to serve as pseudo lake stage observations)
-            iobs_domain = ~((self.isbc == 1) | np.any(self.isbc > 2))
+            iobs_domain = ~((self.isbc == 1) | np.any(self.isbc > 2, axis=0))
 
         # munge the observation data
         df = setup_head_observations(self,
@@ -1112,7 +1112,7 @@ 

Source code for mfsetup.mf6model

 
   

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/_modules/mfsetup/mfmodel.html b/latest/_modules/mfsetup/mfmodel.html index 223934f3..566bc01f 100644 --- a/latest/_modules/mfsetup/mfmodel.html +++ b/latest/_modules/mfsetup/mfmodel.html @@ -3,7 +3,7 @@ - mfsetup.mfmodel — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.mfmodel — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -38,7 +38,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -676,8 +676,8 @@

Source code for mfsetup.mfmodel

                             bbox = self.bbox
                         elif self.parent.modelgrid is not None:
                             bbox = self.parent.modelgrid.bbox
-                            model_proj_str = self.parent.modelgrid.proj_str
-                            assert model_proj_str is not None
+                            model_crs = self.parent.modelgrid.crs
+                            assert model_crs is not None
 
                         if features_crs != self.modelgrid.crs:
                             bbox_filter = project(bbox, self.modelgrid.crs, features_crs).bounds
@@ -703,10 +703,14 @@ 

Source code for mfsetup.mfmodel

                     return
             else:
                 df = self._features[f]
-            if id_column is not None and include_ids is not None:
+            if id_column is not None:
                 id_column = id_column.lower()
+                # convert any floating point dtypes to integer
+                if df[id_column].dtype == float:
+                    df[id_column] = df[id_column].astype(int)
                 df.index = df[id_column]
-                df = df.loc[include_ids]
+            if include_ids is not None:
+                df = df.loc[include_ids].copy()
             dfs_list.append(df)
         df = pd.concat(dfs_list)
         if len(df) == 0:
@@ -1045,10 +1049,12 @@ 

Source code for mfsetup.mfmodel

             if 'lak' in self.package_list:
                 lakes_shapefile = self.cfg['lak'].get('source_data', {}).get('lakes_shapefile', {}).copy()
                 if lakes_shapefile:
-                    lakesdata = self.load_features(**lakes_shapefile)  # caches loaded features
+                    kwargs = get_input_arguments(lakes_shapefile, self.load_features)
+                    lakesdata = self.load_features(**kwargs)  # caches loaded features
                     lakes_shapefile['lakesdata'] = lakesdata
                     lakes_shapefile.pop('filename')
-                    lakarr2d = make_lakarr2d(self.modelgrid, **lakes_shapefile)
+                    kwargs = get_input_arguments(lakes_shapefile, make_lakarr2d)
+                    lakarr2d = make_lakarr2d(self.modelgrid, **kwargs)
             self._lakarr_2d = lakarr2d
             self._set_isbc2d()
 
@@ -1906,7 +1912,7 @@ 

Source code for mfsetup.mfmodel

 
   

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/_modules/mfsetup/mfnwtmodel.html b/latest/_modules/mfsetup/mfnwtmodel.html index 1d08f32d..8f68ae49 100644 --- a/latest/_modules/mfsetup/mfnwtmodel.html +++ b/latest/_modules/mfsetup/mfnwtmodel.html @@ -3,7 +3,7 @@ - mfsetup.mfnwtmodel — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.mfnwtmodel — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -38,7 +38,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -1002,7 +1002,7 @@

Source code for mfsetup.mfnwtmodel

 
   

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/_modules/mfsetup/tdis.html b/latest/_modules/mfsetup/tdis.html index 8f8eef1e..e80b20af 100644 --- a/latest/_modules/mfsetup/tdis.html +++ b/latest/_modules/mfsetup/tdis.html @@ -3,7 +3,7 @@ - mfsetup.tdis — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.tdis — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -38,7 +38,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -205,7 +205,8 @@

Source code for mfsetup.tdis

             data = defaults.copy()
             data.update(v)
             if is_valid_perioddata(data):
-                data = get_input_arguments(data, setup_perioddata_group)
+                data = get_input_arguments(data, setup_perioddata_group,
+                                           errors='raise')
                 perioddata_groups.append(data)
             else:
                 print_item(k, data)
@@ -810,7 +811,12 @@ 

Source code for mfsetup.tdis

     aggregated.reset_index(inplace=True)
 
     # add datetime back in
-    aggregated['start_datetime'] = pd.Timestamp(start) if start is not None else start_datetime
+    aggregated['start_datetime'] = start if start is not None else start_datetime
+    # enforce consistent datetime dtypes
+    # (otherwise pd.concat of multiple outputs from this function may fail)
+    for col in 'start_datetime', 'end_datetime':
+        if col in aggregated.columns:
+            aggregated[col] = aggregated[col].astype('datetime64[ns]')
 
     # drop original datetime column, which doesn't reflect dates for period averages
     drop_cols = [datetime_column]
@@ -936,7 +942,7 @@ 

Source code for mfsetup.tdis

 
   

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/_modules/mfsetup/tmr.html b/latest/_modules/mfsetup/tmr.html index 0309fc01..c496d303 100644 --- a/latest/_modules/mfsetup/tmr.html +++ b/latest/_modules/mfsetup/tmr.html @@ -3,7 +3,7 @@ - mfsetup.tmr — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.tmr — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -38,7 +38,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -1096,7 +1096,7 @@

Source code for mfsetup.tmr

 
   

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/_sources/notebooks/Pleasant_lake_lgr_example.ipynb.txt b/latest/_sources/notebooks/Pleasant_lake_lgr_example.ipynb.txt index f7bdeabc..f11fdcfc 100644 --- a/latest/_sources/notebooks/Pleasant_lake_lgr_example.ipynb.txt +++ b/latest/_sources/notebooks/Pleasant_lake_lgr_example.ipynb.txt @@ -40,10 +40,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:05.662908Z", - "iopub.status.busy": "2023-08-22T13:45:05.662607Z", - "iopub.status.idle": "2023-08-22T13:45:07.039235Z", - "shell.execute_reply": "2023-08-22T13:45:07.038512Z" + "iopub.execute_input": "2023-09-21T16:07:53.385465Z", + "iopub.status.busy": "2023-09-21T16:07:53.385051Z", + "iopub.status.idle": "2023-09-21T16:07:55.162996Z", + "shell.execute_reply": "2023-09-21T16:07:55.162035Z" } }, "outputs": [], @@ -81,10 +81,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:07.042890Z", - "iopub.status.busy": "2023-08-22T13:45:07.042482Z", - "iopub.status.idle": "2023-08-22T13:45:07.982371Z", - "shell.execute_reply": "2023-08-22T13:45:07.981788Z" + "iopub.execute_input": "2023-09-21T16:07:55.167492Z", + "iopub.status.busy": "2023-09-21T16:07:55.166701Z", + "iopub.status.idle": "2023-09-21T16:07:56.320323Z", + "shell.execute_reply": "2023-09-21T16:07:56.319579Z" } }, "outputs": [], @@ -106,10 +106,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:07.985861Z", - "iopub.status.busy": "2023-08-22T13:45:07.985441Z", - "iopub.status.idle": "2023-08-22T13:45:07.992064Z", - "shell.execute_reply": "2023-08-22T13:45:07.991610Z" + "iopub.execute_input": "2023-09-21T16:07:56.324249Z", + "iopub.status.busy": "2023-09-21T16:07:56.323520Z", + "iopub.status.idle": "2023-09-21T16:07:56.332648Z", + "shell.execute_reply": "2023-09-21T16:07:56.332138Z" } }, "outputs": [ @@ -139,10 +139,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:08.029391Z", - "iopub.status.busy": "2023-08-22T13:45:08.029011Z", - "iopub.status.idle": "2023-08-22T13:45:08.035853Z", - "shell.execute_reply": "2023-08-22T13:45:08.035305Z" + "iopub.execute_input": "2023-09-21T16:07:56.375962Z", + "iopub.status.busy": "2023-09-21T16:07:56.375190Z", + "iopub.status.idle": "2023-09-21T16:07:56.381868Z", + "shell.execute_reply": "2023-09-21T16:07:56.381260Z" } }, "outputs": [ @@ -180,10 +180,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:08.038727Z", - "iopub.status.busy": "2023-08-22T13:45:08.038280Z", - "iopub.status.idle": "2023-08-22T13:45:08.043722Z", - "shell.execute_reply": "2023-08-22T13:45:08.043132Z" + "iopub.execute_input": "2023-09-21T16:07:56.385045Z", + "iopub.status.busy": "2023-09-21T16:07:56.384443Z", + "iopub.status.idle": "2023-09-21T16:07:56.388768Z", + "shell.execute_reply": "2023-09-21T16:07:56.388248Z" } }, "outputs": [ @@ -215,10 +215,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:08.046516Z", - "iopub.status.busy": "2023-08-22T13:45:08.046088Z", - "iopub.status.idle": "2023-08-22T13:45:08.917611Z", - "shell.execute_reply": "2023-08-22T13:45:08.917124Z" + "iopub.execute_input": "2023-09-21T16:07:56.391710Z", + "iopub.status.busy": "2023-09-21T16:07:56.391117Z", + "iopub.status.idle": "2023-09-21T16:07:57.507471Z", + "shell.execute_reply": "2023-09-21T16:07:57.506650Z" } }, "outputs": [ @@ -227,11 +227,11 @@ "output_type": "stream", "text": [ "creating shapely Polygons of grid cells...\n", - "finished in 0.01s\n", + "finished in 0.02s\n", "\n", "writing postproc/shps/plsnt_lgr_parent_grid.shp... Done\n", "creating shapely Polygons of grid cells...\n", - "finished in 0.11s\n", + "finished in 0.13s\n", "\n", "writing postproc/shps/plsnt_lgr_inset_grid.shp... Done\n" ] @@ -254,10 +254,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:08.920228Z", - "iopub.status.busy": "2023-08-22T13:45:08.919920Z", - "iopub.status.idle": "2023-08-22T13:45:08.923362Z", - "shell.execute_reply": "2023-08-22T13:45:08.922561Z" + "iopub.execute_input": "2023-09-21T16:07:57.510775Z", + "iopub.status.busy": "2023-09-21T16:07:57.510380Z", + "iopub.status.idle": "2023-09-21T16:07:57.513999Z", + "shell.execute_reply": "2023-09-21T16:07:57.513358Z" } }, "outputs": [], @@ -277,10 +277,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:08.925824Z", - "iopub.status.busy": "2023-08-22T13:45:08.925444Z", - "iopub.status.idle": "2023-08-22T13:45:17.198092Z", - "shell.execute_reply": "2023-08-22T13:45:17.197546Z" + "iopub.execute_input": "2023-09-21T16:07:57.517571Z", + "iopub.status.busy": "2023-09-21T16:07:57.517014Z", + "iopub.status.idle": "2023-09-21T16:08:07.670361Z", + "shell.execute_reply": "2023-09-21T16:08:07.669595Z" } }, "outputs": [], @@ -301,17 +301,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:17.200945Z", - "iopub.status.busy": "2023-08-22T13:45:17.200662Z", - "iopub.status.idle": "2023-08-22T13:45:17.209997Z", - "shell.execute_reply": "2023-08-22T13:45:17.209509Z" + "iopub.execute_input": "2023-09-21T16:08:07.674034Z", + "iopub.status.busy": "2023-09-21T16:08:07.673526Z", + "iopub.status.idle": "2023-09-21T16:08:07.684263Z", + "shell.execute_reply": "2023-09-21T16:08:07.683747Z" } }, "outputs": [ { "data": { "text/plain": [ - "Pleasant Lake test case version 0.1.post11+g3a6ec42\n", + "Pleasant Lake test case version 0.1.post15+gdb03604\n", "Parent model: /home/runner/work/modflow-setup/modflow-setup/examples/data/pleasant/pleasant\n", "5 layer(s), 25 row(s), 25 column(s)\n", "delr: [200.00...200.00] meters\n", @@ -351,10 +351,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:17.212211Z", - "iopub.status.busy": "2023-08-22T13:45:17.211933Z", - "iopub.status.idle": "2023-08-22T13:45:17.215481Z", - "shell.execute_reply": "2023-08-22T13:45:17.215077Z" + "iopub.execute_input": "2023-09-21T16:08:07.687438Z", + "iopub.status.busy": "2023-09-21T16:08:07.686896Z", + "iopub.status.idle": "2023-09-21T16:08:07.692082Z", + "shell.execute_reply": "2023-09-21T16:08:07.691468Z" } }, "outputs": [ @@ -385,10 +385,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:17.217652Z", - "iopub.status.busy": "2023-08-22T13:45:17.217381Z", - "iopub.status.idle": "2023-08-22T13:45:17.221549Z", - "shell.execute_reply": "2023-08-22T13:45:17.221150Z" + "iopub.execute_input": "2023-09-21T16:08:07.694955Z", + "iopub.status.busy": "2023-09-21T16:08:07.694448Z", + "iopub.status.idle": "2023-09-21T16:08:07.700718Z", + "shell.execute_reply": "2023-09-21T16:08:07.700117Z" } }, "outputs": [ @@ -445,17 +445,17 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:17.223714Z", - "iopub.status.busy": "2023-08-22T13:45:17.223270Z", - "iopub.status.idle": "2023-08-22T13:45:17.233013Z", - "shell.execute_reply": "2023-08-22T13:45:17.232532Z" + "iopub.execute_input": "2023-09-21T16:08:07.703775Z", + "iopub.status.busy": "2023-09-21T16:08:07.703182Z", + "iopub.status.idle": "2023-09-21T16:08:07.715336Z", + "shell.execute_reply": "2023-09-21T16:08:07.714769Z" } }, "outputs": [ { "data": { "text/plain": [ - "{'plsnt_lgr_inset': plsnt_lgr_inset model version 0.3.0.post11+g3a6ec42\n", + "{'plsnt_lgr_inset': plsnt_lgr_inset model version 0.3.0.post15+gdb03604\n", " Parent model: ./plsnt_lgr_parent\n", " 5 layer(s), 70 row(s), 80 column(s)\n", " delr: [40.00...40.00] meters\n", @@ -495,17 +495,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:17.236118Z", - "iopub.status.busy": "2023-08-22T13:45:17.235162Z", - "iopub.status.idle": "2023-08-22T13:45:17.472118Z", - "shell.execute_reply": "2023-08-22T13:45:17.471547Z" + "iopub.execute_input": "2023-09-21T16:08:07.718247Z", + "iopub.status.busy": "2023-09-21T16:08:07.717824Z", + "iopub.status.idle": "2023-09-21T16:08:08.002829Z", + "shell.execute_reply": "2023-09-21T16:08:08.002183Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 13, @@ -514,7 +514,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAywAAAMjCAYAAABH2JRIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3gUlEQVR4nO3deXxU1f3/8XdYMlkgo5E17MpSkUWFFqJVUCEQEaHtFy3QCNqAViWtiK3BBbCyVIHWQqFoUOpXln6Vorg0RmsBEYJASQVEiQKCQMAiTDAxAZLz+wMzvw4JTJa55Mzl9Xw87h/cOTnve+8hDsd7PvdGGGOMAAAAAMBCdWr7AAAAAADgbJiwAAAAALAWExYAAAAA1mLCAgAAAMBaTFgAAAAAWIsJCwAAAABrMWEBAAAAYC0mLAAAAACsxYQFAAAAgLWYsAAAAACwFhMWAAAAAOc0ffp0ff/731fDhg3VpEkTDR06VJ9++mnQn1u9erV69OihqKgoXXrppfrzn/9c5WwmLAAAAADOafXq1brvvvuUnZ2td955R6dOnVJSUpIKCgrO+jO7d+/WzTffrOuuu05btmzRxIkTlZaWpuXLl1cpO8IYY2p6AgAAAAAuHF999ZWaNGmi1atX6/rrr6+wzW9+8xutXLlSO3bs8O+755579O9//1vr16+vdFa9Gh8tAAAAgLMqKirSiRMnavswyjHGKCIiImCfx+ORx+MJ+rM+n0+SFB8ff9Y269evV1JSUsC+AQMGaOHChTp58qTq169fqeNkwgIAAAA4pKioSO3aNFDe4ZLaPpRyGjRooG+++SZg36RJkzR58uRz/pwxRuPHj9cPf/hDdenS5azt8vLy1LRp04B9TZs21alTp/Sf//xHzZs3r9RxMmEBAAAAHHLixAnlHS7RF5vbKq6hPeXj+cdL1abHHu3bt09xcXH+/ZW5u3L//ffro48+0tq1a4O2PfMOTlk1ypn7z4UJCwAAAOCwuIZ1FNewbm0fRjlxcXEBE5Zgxo0bp5UrV2rNmjVq2bLlOds2a9ZMeXl5AfsOHz6sevXq6ZJLLql0JhMWAAAAwGGlMipVaW0fhl+pqvbcLWOMxo0bpxUrVmjVqlVq165d0J9JTEzU66+/HrAvKytLPXv2rHT9isRjjQEAAAAEcd999+mll17SkiVL1LBhQ+Xl5SkvL0/ffvutv016erruuOMO/5/vueceffHFFxo/frx27Nih559/XgsXLtSECROqlM2EBQAAAMA5zZ8/Xz6fT3379lXz5s3921//+ld/m4MHD2rv3r3+P7dr105vvfWWVq1apSuvvFK//e1v9cc//lE/+clPqpTNe1gAAAAAh+Tn58vr9erwp22sK7pv0ukL+Xy+KtWw1AZ7rhoAAAAAnIEJCwAAAABr8ZQwAAAAwGGnnxJmTyWGTccSDHdYAAAAAFiLCQsAAAAAa7EkDAAAAHBYqVWvjZRlR3Nu3GEBAAAAYC0mLAAAAACsxZIwAAAAwGElxqjEove123QswXCHBQAAAIC1mLAAAAAAsBZLwgAAAACH8eLI6uMOCwAAAABrMWEBAAAAYC2WhAEAAAAOK5VRiUXLsFgSBgAAAAAhwIQFAAAAgLVYEgYAAAA4jKeEVR93WAAAAABYiwkLAAAAAGuxJAwAAABwWIkxKjH2LMOy6ViC4Q4LAAAAAGsxYQEAAABgLZaEAQAAAA4r/W6zhU3HEgx3WAAAAABYiwkLAAAAAGuxJAwAAABwWImMSix6WaNNxxIMd1gAAAAAWIsJCwAAAABrsSQMAAAAcFiJOb3ZwqZjCYY7LAAAAACsxYQFAAAAgLVYEgYAAAA4jBdHVh93WAAAAABYiwkLAAAAAGuxJAwAAABwWKkiVKKI2j4Mv1KLjiUY7rAAAAAAsBYTFgAAAADWYkkYAAAA4LBSc3qzhU3HEgx3WAAAAABYiwkLAAAAAGuxJAwAAABwWIllTwmz6ViC4Q4LAAAAAGsxYQEAAABgLZaEAQAAAA5jSVj1cYcFAAAAgLWYsAAAAACwFkvCAAAAAIeVmgiVGnuWYdl0LMFwhwUAAACAtZiwAAAAALAWS8IAAAAAh/GUsOrjDgsAAAAAazFhAQAAAGAtloQBAAAADitRHZVYdK+gpLYPoArsuWoAAAAAcAYmLAAAAACsxZIwAAAAwGHGshdHGouOJRjusAAAAACwFhMWAAAAANZiSRgAAADgMF4cWX3cYQEAAABgLSYsAAAAAKzFkjAAAADAYSWmjkqMPfcKSkxtH0Hl2XPVAAAAAOAMVZqwzJ8/X926dVNcXJzi4uKUmJiov//97/7PDx06pNGjRyshIUExMTEaOHCgcnNzA/q4++67ddlllyk6OlqNGzfWkCFD9MknnwS0OXr0qFJSUuT1euX1epWSkqJjx44FtNm7d68GDx6s2NhYNWrUSGlpaTpx4kRAm61bt6pPnz6Kjo5WixYt9MQTT8iYMJpOAgAAABe4Kk1YWrZsqRkzZmjTpk3atGmTbrzxRg0ZMkTbt2+XMUZDhw7Vrl279Nprr2nLli1q06aN+vXrp4KCAn8fPXr00AsvvKAdO3bo7bffljFGSUlJKikp8bcZMWKEcnJylJmZqczMTOXk5CglJcX/eUlJiQYNGqSCggKtXbtWy5Yt0/Lly/Xggw/62+Tn56t///5KSEjQxo0bNWfOHM2cOVOzZ8+uyfUCAAAAqqxUESpVHYu28HlKWISp4S2H+Ph4Pf3007ruuuvUqVMnbdu2TVdccYWk0xOLJk2a6He/+51SU1Mr/PmPPvpI3bt312effabLLrtMO3bsUOfOnZWdna1evXpJkrKzs5WYmKhPPvlEnTp10t///nfdcsst2rdvnxISEiRJy5Yt0+jRo3X48GHFxcVp/vz5Sk9P16FDh+TxeCRJM2bM0Jw5c/Tll18qIiJ8BgkAAADhKT8/X16vV29+dKliG9at7cPxKzheokHddsnn8ykuLq62D+ecql10X1JSopdfflkFBQVKTExUcXGxJCkqKsrfpm7duoqMjNTatWsrnLAUFBTohRdeULt27dSqVStJ0vr16+X1ev2TFUnq3bu3vF6v1q1bp06dOmn9+vXq0qWLf7IiSQMGDFBxcbE2b96sG264QevXr1efPn38k5WyNunp6dqzZ4/atWtX4XkVFxf7z0WSSktL9fXXX+uSSy5hkgMAAGAhY4yOHz+uhIQE1alDibbbVHnCsnXrViUmJqqoqEgNGjTQihUr1LlzZ508eVJt2rRRenq6FixYoNjYWM2ePVt5eXk6ePBgQB/z5s3Tr3/9axUUFOh73/ue3nnnHUVGRkqS8vLy1KRJk3K5TZo0UV5enr9N06ZNAz6/+OKLFRkZGdCmbdu2AW3KfiYvL++sE5bp06drypQpVb0sAAAAqGX79u1Ty5Yta/swKsSLI6uvyhOWTp06KScnR8eOHdPy5cs1atQorV69Wp07d9by5cv185//XPHx8apbt6769eun5OTkcn2MHDlS/fv318GDBzVz5kzddttt+uCDD/x3Zyq6k2GMCdhfnTZlq9/OdackPT1d48eP9//Z5/OpdevW2rdvn6O3y15++WUNGzbMsf7PR4YbzoEMe/onw64MN5wDGfb0T4ZdGW44h/z8fLVq1UoNGzZ0LAO1p8oTlsjISLVv316S1LNnT23cuFHPPPOMFixYoB49eignJ0c+n08nTpxQ48aN1atXL/Xs2TOgj7Knf3Xo0EG9e/fWxRdfrBUrVmj48OFq1qyZDh06VC73q6++8t8hadasmTZs2BDw+dGjR3Xy5MmANmV3W8ocPnxYksrdnflvHo8nYBlZmbInozklJibG8fWDTme44RzIsKd/MuzKcMM5kGFP/2TYleGGcyjD8n13qvEiP2NMQM2HdHpC0rhxY+Xm5mrTpk0aMmRIpftITEyUz+fThx9+6P98w4YN8vl8uuaaa/xttm3bFrDULCsrSx6PRz169PC3WbNmTcCjjrOyspSQkFBuqRgAAADgpLIXR9q0hYsqHenEiRP1/vvva8+ePdq6daseeeQRrVq1SiNHjpR0+nbfqlWr/I827t+/v4YOHaqkpCRJ0q5duzR9+nRt3rxZe/fu1fr163XbbbcpOjpaN998syTp8ssv18CBAzVmzBhlZ2crOztbY8aM0S233KJOnTpJkpKSktS5c2elpKRoy5Yt+sc//qEJEyZozJgx/tn7iBEj5PF4NHr0aG3btk0rVqzQtGnTNH78eGbfAAAAQJio0pKwQ4cOKSUlRQcPHpTX61W3bt2UmZmp/v37S5IOHjyo8ePH69ChQ2revLnuuOMOPfbYY/6fj4qK0vvvv68//OEPOnr0qJo2barrr79e69atCyi0X7x4sdLS0vwTnVtvvVVz5871f163bl29+eabuvfee3XttdcqOjpaI0aM0MyZM/1tvF6v3nnnHd13333q2bOnLr74Yo0fPz6gPgUAAACA3ao0YVm4cOE5P09LS1NaWtpZP09ISNBbb70VNCc+Pl4vvfTSOdu0bt1ab7zxxjnbdO3aVWvWrAmaBwAAADjp9Isj7VnlY9OxBBM+i9cAAAAAXHCYsAAAAACwVrXfdA8AAACgckpVRyUW3SsolantQ6g0e64aAAAAAJyBCQsAAAAAa7EkDAAAAHCYbS9rLDEsCQMAAACAGmPCAgAAAMBaLAkDAAAAHFaqOiq16F4BTwkDAAAAgBBgwgIAAADAWiwJAwAAABxWYiJUYiJq+zD8bDqWYLjDAgAAAMBaTFgAAAAAWIslYQAAAIDDSlRHJRbdKyjhKWEAAAAAUHNMWAAAAABYK8IYEz73g2pBfn6+vF6vMjIyFBMT41jO/v371aJFC8f6Px8ZbjgHMuzpnwy7MtxwDmTY0z8ZdmW44RwKCwuVmpoqn8+nuLg4x3Kqo+zfks//6yrFNKxb24fjV3i8RHddvcXKa3YmalgqadiwYY4O5tKlSzV8+HDH+j8fGW44BzLs6Z8MuzLccA5k2NM/GXZluOEc8vPzlZqa6lj/qF0sCQMAAABgLe6wAAAAAA7jKWHVZ89VAwAAAIAzMGEBAAAAYC2WhAEAAAAOK5VUYiJq+zD8Smv7AKqAOywAAAAArMWEBQAAAIC1WBIGAAAAOKxUdVRq0b0Cm44lmPA5UgAAAAAXHCYsAAAAAKzFkjAAAADAYSWmjkqMPfcKbDqWYMLnSAEAAABccJiwAAAAALAWS8IAAAAAh5UqQqWy6cWR9hxLMNxhAQAAAGAtJiwAAAAArMWSMAAAAMBhPCWs+sLnSAEAAABccJiwAAAAALAWS8IAAAAAh5Wojkosuldg07EEEz5HCgAAAOCCw4QFAAAAgLVYEgYAAAA4rNREqNTY87JGm44lmAhjjKntg7BZfn6+vF6vMjIyFBMT41jO/v371aJFC8f6Px8ZbjgHMuzpnwy7MtxwDmTY0z8ZdmW44RwKCwuVmpoqn8+nuLg4x3Kqo+zfkk9tvE7RDey5V/DtN6f06++/b+U1O5M9V81yw4YNc3Qwly5dquHDhzvW//nIcMM5kGFP/2TYleGGcyDDnv7JsCvDDeeQn5+v1NRUx/pH7WLCAgAAADis1LKnhJVadCzBhM+RAgAAALjgMGEBAAAAYC2WhAEAAAAOKzV1VGrsuVdg07EEEz5HCgAAAOCCw4QFAAAAgLVYEgYAAAA4rEQRKpE9L2u06ViC4Q4LAAAAAGsxYQEAAABgLZaEAQAAAA7jKWHVFz5HCgAAAOCCw4QFAAAAgLVYEgYAAAA4rER2PZmrpLYPoAq4wwIAAADAWkxYAAAAAFiLJWEAAACAw3hKWPWFz5ECAAAAuOAwYQEAAABgLZaEAQAAAA4rMXVUYtEyLJuOJZjwOVIAAAAAFxwmLAAAAACsxZIwAAAAwGFGESq16MWRxqJjCYY7LAAAAACsFWGMMbV9EDbLz8+X1+tVRkaGYmJiHMvZv3+/WrRo4Vj/5yPDDedAhj39k2FXhhvOgQx7+ifDrgw3nENhYaFSU1Pl8/kUFxfnWE51lP1b8uH1yfI0qF/bh+NX/M1JzUj8u5XX7EwsCaukYcOGOTqYS5cu1fDhwx3r/3xkuOEcyLCnfzLsynDDOZBhT/9k2JXhhnPIz89XamqqY/2HghueErZmzRo9/fTT2rx5sw4ePKgVK1Zo6NCh5/yZxYsX66mnnlJubq68Xq8GDhyomTNn6pJLLql0rj1XDQAAAIC1CgoK1L17d82dO7dS7deuXas77rhDP//5z7V9+3a9/PLL2rhxY5Unl9xhAQAAABBUcnKykpOTK90+Oztbbdu2VVpamiSpXbt2uvvuu/XUU09VKZc7LAAAAIDDSk2EdZt0ejndf2/FxcUhO+drrrlGX375pd566y0ZY3To0CG98sorGjRoUJX6YcICAAAAXKBatWolr9fr36ZPnx6yvq+55hotXrxYt99+uyIjI9WsWTNddNFFmjNnTpX6YcICAAAAXKD27dsnn8/n39LT00PW98cff6y0tDQ9/vjj2rx5szIzM7V7927dc889VeqHGhYAAADAYSWqoxKL7hWUHUtcXJxjT8KdPn26rr32Wj300EOSpG7duik2NlbXXXednnzySTVv3rxS/dhz1QAAAAC4RmFhoerUCZxu1K1bV5JUlVdBMmEBAAAAENQ333yjnJwc5eTkSJJ2796tnJwc7d27V5KUnp6uO+64w99+8ODB+tvf/qb58+dr165d+uCDD5SWlqYf/OAHSkhIqHQuS8IAAAAAh/33k7lsUJ1j2bRpk2644Qb/n8ePHy9JGjVqlBYtWqSDBw/6Jy+SNHr0aB0/flxz587Vgw8+qIsuukg33nijfve731UplwkLAAAAgKD69u17zqVcixYtKrdv3LhxGjduXI1yWRIGAAAAwFrcYQEAAAAcVqo6KrXoXoFNxxJM+BwpAAAAgAsOExYAAAAA1mJJGAAAAOCwEhOhEoueEmbTsQTDHRYAAAAA1mLCAgAAAMBaLAkDAAAAHOaGF0fWFu6wAAAAALAWExYAAAAA1mJJGAAAAOAwY+qo1Nhzr8BYdCzBhM+RAgAAALjgMGEBAAAAYK0IY4yp7YOwWX5+vrxerzIyMhQTE+NYzv79+9WiRQvH+j8fGW44BzLs6Z8MuzLccA5k2NM/GXZluOEcCgsLlZqaKp/Pp7i4OMdyqqPs35I/X32bIhvUr+3D8TvxzUkt7PN/Vl6zM1HDUknDhg1zdDCXLl2q4cOHO9b/+chwwzmQYU//ZNiV4YZzIMOe/smwK8MN55Cfn6/U1FTH+kftYkkYAAAAAGtxhwUAAABwWKmx62WNpWFUFMIdFgAAAADWYsICAAAAwFosCQMAAAAcVmrZiyNtOpZgwudIAQAAAFxwmLAAAAAAsBZLwgAAAACHlSpCpbLoKWEWHUsw3GEBAAAAYC0mLAAAAACsxZIwAAAAwGElJkIlFr040qZjCYY7LAAAAACsxYQFAAAAgLVYEgYAAAA4jBdHVl/4HCkAAACACw4TFgAAAADWYkkYAAAA4LBSRajUoidz8eJIAAAAAAgBJiwAAAAArFWlCcv8+fPVrVs3xcXFKS4uTomJifr73//u//zQoUMaPXq0EhISFBMTo4EDByo3N9f/+ddff61x48apU6dOiomJUevWrZWWliafzxeQc/ToUaWkpMjr9crr9SolJUXHjh0LaLN3714NHjxYsbGxatSokdLS0nTixImANlu3blWfPn0UHR2tFi1a6IknnpAxpiqnDAAAANSYUcTpZWGWbCaMloRVqYalZcuWmjFjhtq3by9J+stf/qIhQ4Zoy5Yt6ty5s4YOHar69evrtddeU1xcnGbPnq1+/frp448/VmxsrA4cOKADBw5o5syZ6ty5s7744gvdc889OnDggF555RV/zogRI/Tll18qMzNTkjR27FilpKTo9ddflySVlJRo0KBBaty4sdauXasjR45o1KhRMsZozpw5kqT8/Hz1799fN9xwgzZu3KidO3dq9OjRio2N1YMPPhiSiwcAAADAWVWasAwePDjgz1OnTtX8+fOVnZ2t+vXrKzs7W9u2bdMVV1whSZo3b56aNGmipUuXKjU1VV26dNHy5cv9P3/ZZZdp6tSp+tnPfqZTp06pXr162rFjhzIzM5Wdna1evXpJkp577jklJibq008/VadOnZSVlaWPP/5Y+/btU0JCgiRp1qxZGj16tKZOnaq4uDgtXrxYRUVFWrRokTwej7p06aKdO3dq9uzZGj9+vCIiwmdWCQAAAFyoql3DUlJSomXLlqmgoECJiYkqLi6WJEVFRfnb1K1bV5GRkVq7du1Z+/H5fIqLi1O9eqfnTuvXr5fX6/VPViSpd+/e8nq9Wrdunb9Nly5d/JMVSRowYICKi4u1efNmf5s+ffrI4/EEtDlw4ID27Nlz1uMpLi5Wfn5+wAYAAADURKmJsG4LF1V+rPHWrVuVmJiooqIiNWjQQCtWrFDnzp118uRJtWnTRunp6VqwYIFiY2M1e/Zs5eXl6eDBgxX2deTIEf32t7/V3Xff7d+Xl5enJk2alGvbpEkT5eXl+ds0bdo04POLL75YkZGRAW3atm0b0KbsZ/Ly8tSuXbsKj2n69OmaMmVKuf0vv/yyYmJiznJVam7//v1aunSpY/2fjww3nAMZ9vRPhl0ZbjgHMuzpnwy7MtxwDoWFhY71jdpX5QlLp06dlJOTo2PHjmn58uUaNWqUVq9erc6dO2v58uX6+c9/rvj4eNWtW1f9+vVTcnJyhf3k5+dr0KBB6ty5syZNmhTwWUXLtYwxAfur06as4P5cy8HS09M1fvz4gONs1aqVhg0bpri4uLP+XE0tXbpUw4cPd6z/85HhhnMgw57+ybArww3nQIY9/ZNhV4YbziE/P1+pqamO9Y/aVeUJS2RkpL/ovmfPntq4caOeeeYZLViwQD169FBOTo58Pp9OnDihxo0bq1evXurZs2dAH8ePH9fAgQP9d2jq16/v/6xZs2Y6dOhQudyvvvrKf4ekWbNm2rBhQ8DnR48e1cmTJwPalN1tKXP48GFJKnd35r95PJ6AZWQAAABATZWaOio19rxRxKZjCabGR2qM8devlPF6vWrcuLFyc3O1adMmDRkyxP9Zfn6+kpKSFBkZqZUrVwbUvEhSYmKifD6fPvzwQ/++DRs2yOfz6ZprrvG32bZtW8BSs6ysLHk8HvXo0cPfZs2aNQGPOs7KylJCQkK5pWIAAAAA7FSlCcvEiRP1/vvva8+ePdq6daseeeQRrVq1SiNHjpR0us5j1apV2rVrl1577TX1799fQ4cOVVJSkqTTd1aSkpJUUFCghQsXKj8/X3l5ecrLy1NJSYkk6fLLL9fAgQM1ZswYZWdnKzs7W2PGjNEtt9yiTp06SZKSkpLUuXNnpaSkaMuWLfrHP/6hCRMmaMyYMf5lWyNGjJDH49Ho0aO1bds2rVixQtOmTeMJYQAAAEAYqdKSsEOHDiklJUUHDx6U1+tVt27dlJmZqf79+0uSDh48qPHjx+vQoUNq3ry57rjjDj322GP+n9+8ebN/KVfZsrIyu3fv9t/5WLx4sdLS0vwTnVtvvVVz5871t61bt67efPNN3Xvvvbr22msVHR2tESNGaObMmf42Xq9X77zzju677z717NlTF198scaPHx9QnwIAAACcD7Y9mcumYwmmShOWhQsXnvPztLQ0paWlnfXzvn37VupN8/Hx8XrppZfO2aZ169Z64403ztmma9euWrNmTdA8AAAAAHYKn2obAAAAABecKj8lDAAAAEDVlCpCpbJnGZZNxxIMd1gAAAAAWIsJCwAAAABrsSQMAAAAcBhPCas+7rAAAAAAsBYTFgAAAADWYkkYAAAA4DCWhFUfd1gAAAAAWIsJCwAAAABrsSQMAAAAcBhLwqqPOywAAAAArMWEBQAAAIC1WBIGAAAAOIwlYdXHHRYAAAAA1mLCAgAAAMBaLAkDAAAAHGYklcqeZVimtg+gCiKMMeF0vOddfn6+vF6vMjIyFBMT41jO/v371aJFC8f6Px8ZbjiH85Wxa9cueTyegH2nTp1SvXr1Qrbv22+/VXR09DnbOd0/GXZluOEcyKh8hhvOgYzTiouLdemll8opbvhuLSwsVGpqqnw+n+Li4hzLqY6yf0v2e+tu1Yv1BP+B8+RUQbHevXmBldesHINz8vl8RpLx+XyO5ixZssTR/s9HhhvO4XxlPP3005XKrcm+ymQ43T8ZdmW44RzIqHyGG86BjLNnhJIbvlvP17/XqqPs2Pq9dbcZuDrNmq3fW3dbe83OxJIwAAAAwGE8Jaz6KLoHAAAAYC0mLAAAAACsRdF9EGWFUk4XJC1dulTDhw93rP/zkeGGczhfGTNmzFCbNm0C9lVUkFiTfZ9//rkuu+yyc7Zzun8y7MpwwzmQUfkMN5wDGad98cUXevjhh+UUN3y3nq9/r1VH2bH1feMX1hXdr7plvpXXrJzaLqKxHUX39vTvpgxbCkHDsdCUDMabDMabjNByw3drOBTd933jF6bfP39lzdb3jV9Ye83OxJIwAAAAANbiKWEAAACAw3hKWPVxhwUAAACAtSi6D4Kie3v6d1MGRfdkMN5kMN5kUHQfOuFQdH/96/daV3S/ZvA8K69ZObVdRGM7iu7t6d9NGbYUgoZjoSkZjDcZjDcZoeWG79ZwKLr/4cr7TN9/jLdm++HK+6y9ZmdiSRgAAAAAazFhAQAAAGAtnhIGAAAAOMyYCBmLnsxl07EEQ9F9EBTd29O/mzIouieD8SaD8SaDovvQCYei+2tfu9+6ovsPhsy18pqVU9tFNLaj6N6e/t2UYUshaDgWmpLBeJPBeJMRWm74bg2HovtrX7vf9Hn3QWu2a1+739prdiaWhAEAAAAOK1WESmXPMiybjiUYiu4BAAAAWIsJCwAAAABrUXQfBEX39vTvpgyK7slgvMlgvMmg6D50wqHovteradYV3W8Y+kcrr1k5tV1EYzuK7u3p300ZthSChmOhKRmMNxmMNxmh5Ybv1nAouu/1apq59p2HrNl6vZpm7TU7E0vCAAAAAFiLp4QBAAAADuPFkdXHHRYAAAAA1qLoPoiyQqmMjAzFxMQ4llNRkV24ZbjhHM5XRm5ubrm/T0VFRYqKigrZvoKCAsXGxp6zndP9k2FXhhvOgYzKZ7jhHMg4rbCwUB06dJBT3PDdWlhYqNTUVCsLyMv+LfmDFb+0ruj+wx89Y+U1K6e2i2hsR9G9Pf27KcOWQtBwLDQlg/Emg/EmI7Tc8N0aDkX3Pf/2K9P77d9Ys/X826+svWZnYkkYAAAAAGsxYQEAAABgLZ4SBgAAADiMp4RVH0X3QfCme3v6d1MGb7ong/Emg/Emgzfdh044vOm+x/IHrCu63/yT31t5zcqp7SIa21F0b0//bsqwpRA0HAtNyWC8yWC8yQgtN3y3hkPRfY/lD5hemQ9bs/VY/oC11+xMLAkDAAAAHGZMhEotWoYVTkvCKLoHAAAAYC0mLAAAAACsRdF9EBTd29O/mzIouieD8SaD8SaDovvQCYei+6teGa+6MfYU3ZcUFmvL/8y28pqVU9tFNLaj6N6e/t2UYUshaDgWmpLBeJPBeJMRWm74bg2HovurXhlver6Vbs121Svjrb1mZ2JJGAAAAABr8ZQwAAAAwGGlilCE7HkyV6lFxxIMd1gAAAAAWIui+yAourenfzdlUHRPBuNNBuNNBkX3oRMORffdX3nQuqL7f//PLCuvWTm1XURjO4ru7enfTRm2FIKGY6EpGYw3GYw3GaHlhu/WcCi67/byBHPVm49Ys3V7eYK11+xMLAkDAAAAYC0mLAAAAACsxVPCAAAAAIeVmghFGHuezFVq0bEEQ9F9EBTd29O/mzIouieD8SaD8SaDovvQCYei+y7/95B1RffbbnvaymtWTm0X0diOont7+ndThi2FoOFYaEoG400G401GaLnhuzUciu67/N9Dpvsbj1qzdfm/h6y9ZmdiSRgAAADgMGNOb7aw6ViCoegeAAAAgLWYsAAAAACwFkX3QZQVSmVkZCgmJsaxnIqK7MItww3ncL4ycnNzy/19KioqUlRUVMj2FRQUKDY29pztnO6fDLsy3HAOZFQ+ww3nQMZphYWF6tChg5zihu/WwsJCpaamWllAXvZvyc7Lfm1d0f3HP33KymtWTm0X0diOont7+ndThi2FoOFYaEoG400G401GaLnhuzUciu47L/u16bryMWu2zst+be01OxNLwgAAAABYi6eEAQAAAA4zJkLGopc12nQswXCHBQAAAIC1KLoPgjfd29O/mzJ40z0ZjDcZjDcZvOk+dMLhTfeXL/2NdUX3O4b/zsprVk5tF9HYjqJ7e/p3U4YthaDhWGhKBuNNBuNNRmi54bs1HIruOy152HR+dZI1W6clD1t7zc7EkjAAAAAA1mLCAgAAAMBaPCUMAAAAcJgxpzdb2HQswVB0HwRF9/b076YMiu7JYLzJYLzJoOg+dMKh6L7j4oetK7rfOXKGldesnNouorEdRff29O+mDFsKQcOx0JQMxpsMxpuM0HLDd2s4FN13XPywuXzFJGu2jovDp+ieJWEAAACAw04vCbPnZY3htMaKonsAAAAA1mLCAgAAAMBaFN0HQdG9Pf27KYOiezIYbzIYbzIoug+dcCi6b/+/6aobE1Xbh+NXUlikz1KmW3nNyqntIhrbUXRvT/9uyrClEDQcC03JYLzJYLzJCC03fLeGQ9F9+/9NN52WT7Fma/+/6dZeszOxJAwAAACAtXhKGAAAAOAw891mC5uOJRjusAAAAACwFkX3QVB0b0//bsqg6J4MxpsMxpsMiu5DJxyK7i+zsOj+c4ru3YGie3v6d1OGLYWg4VhoSgbjTQbjTUZoueG7NRyK7i99caLp8MoT1myXvjjR2mt2JpaEAQAAALAWExYAAAAA1uIpYQAAAIDTeExYtVF0H0RZoVRGRoZiYmIcy6moyC7cMtxwDucrIzc3t9zfp6KiIkVFRYVsX0FBgWJjY8/Zzun+ybArww3nQEblM9xwDmScVlhYqA4dOsgpbvhuLSwsVGpqqpUF5GX/lrz0LxOtK7rfNWqaldesnNouorEdRff29O+mDFsKQcOx0JQMxpsMxpuM0HLDd2tYFN3/ZaLp8PIT1myX/iV8iu5ZEgYAAAA4zUTImIjaPor/z6ZjCYKiewAAAADWYsICAAAAwFoU3QfBm+7t6d9NGbzpngzGmwzGmwzedB864fCm+3YvPKI6FhXdlxYWafedU628ZuXUdhGN7Si6t6d/N2XYUggajoWmZDDeZDDeZISWG75bw6Hovt0Lj5jL/vpba7Z2LzxS5Wu2evVqc8stt5jmzZsbSWbFihVBf6aoqMhMnDjRtG7d2kRGRppLL73ULFy4sErXkKJ7AAAAAEEVFBSoe/fuuvPOO/WTn/ykUj9z22236dChQ1q4cKHat2+vw4cP69SpU1XKZcICAAAAOMxY9pSw6hxLcnKykpOTK90+MzNTq1ev1q5duxQfHy9Jatu2bZVzKboHAAAALlD5+fkBW3Fxccj6XrlypXr27KmnnnpKLVq0UMeOHTVhwgR9++23VeqHovsgKLq3p383ZVB0TwbjTQbjTQZF96ETDkX3bZ9/1Lqi+z13PVlu/6RJkzR58uSgPx8REaEVK1Zo6NChZ20zcOBArVq1Sv369dPjjz+u//znP7r33nt144036vnnn6/8wVap4uUCRNG9Pf27KcOWQtBwLDQlg/Emg/EmI7Tc8N0aDkX3bRc+Zi5dOtWare3Cx4wks2/fPuPz+fxbUVFRpc5LlSi679+/v4mKijLHjh3z71u+fLmJiIgwhYWFlb6GLAkDAAAALlBxcXEBm8fjCVnfzZs3V4sWLeT1ev37Lr/8chlj9OWXX1a6HyYsAAAAAELu2muv1YEDB/TNN9/49+3cuVN16tRRy5YtK90PExYAAADAYcbYt1XVN998o5ycHOXk5EiSdu/erZycHO3du1eSlJ6erjvuuMPffsSIEbrkkkt055136uOPP9aaNWv00EMP6a677lJ0dHSlcym6D4Kie3v6d1MGRfdkMN5kMN5kUHQfOuFQdN8m4zHriu6/SP1tla7ZqlWrdMMNN5TbP2rUKC1atEijR4/Wnj17tGrVKv9nn3zyicaNG6cPPvhAl1xyiW677TY9+eSTVZqwUHQfBEX39vTvpgxbCkHDsdCUDMabDMabjNByw3drOBTdt8l4zLRbMtWarU3GY9ZeszPx4kgAAADAaea7zRY2HUsQ1LAAAAAAsBYTFgAAAADWoug+CIru7enfTRkU3ZPBeJPBeJNB0X3ohEPRfetnH7eu6H7v2CesvGblVKXgZd68eaZr166mYcOGpmHDhqZ3797mrbfe8n+el5dnRo0aZZo3b26io6PNgAEDzM6dOwP6WLBggenTp49p2LChkWSOHj1aLufrr782P/vZz0xcXJyJi4szP/vZz8q1++KLL8wtt9xiYmJizCWXXGLGjRtniouLA9p89NFH5vrrrzdRUVEmISHBTJkyxZSWllbllCm6t6h/N2XYUggajoWmZDDeZDDeZISWG75bw6HovvWzj5u2L02zZmv97OPWXrMzVWlJWMuWLTVjxgxt2rRJmzZt0o033qghQ4Zo+/btMsZo6NCh2rVrl1577TVt2bJFbdq0Ub9+/VRQUODvo7CwUAMHDtTEiRPPmjNixAjl5OQoMzNTmZmZysnJUUpKiv/zkpISDRo0SAUFBVq7dq2WLVum5cuX68EHH/S3yc/PV//+/ZWQkKCNGzdqzpw5mjlzpmbPnl2VUwYAAABQi6r0lLDBgwcH/Hnq1KmaP3++srOzVb9+fWVnZ2vbtm264oorJEnz5s1TkyZNtHTpUqWmpkqSfvWrX0lSwPOZ/9uOHTuUmZmp7Oxs9erVS5L03HPPKTExUZ9++qk6deqkrKwsffzxx9q3b58SEhIkSbNmzdLo0aM1depUxcXFafHixSoqKtKiRYvk8XjUpUsX7dy5U7Nnz9b48eMVERFRlVMHAAAAaoZCjGqpdtF9SUmJli1bpoKCAiUmJqq4uFiSFBX1/9fm1a1bV5GRkVq7dm2l+12/fr28Xq9/siJJvXv3ltfr1bp16/xtunTp4p+sSNKAAQNUXFyszZs3+9v06dNHHo8noM2BAwe0Z8+es+YXFxcrPz8/YAMAAABQO6pcdL9161YlJiaqqKhIDRo00JIlS3TzzTfr5MmT6tChg37wgx9owYIFio2N1ezZs5Wenq6kpCS9/fbbAf2UvSnz6NGjuuiii/z7p02bpkWLFmnnzp0B7Tt27Kg777xT6enpGjt2rPbs2aOsrKyANh6PR4sWLdLw4cOVlJSktm3b6tlnn/V/fuDAAbVo0ULr1q1TYmJihec3efJkTZkypdz+jIwMxcTEVOVSVUlFRXbhluGGczhfGbm5ueX+PhUVFQVM+Gu6r6CgQLGxseds53T/ZNiV4YZzIKPyGW44BzJOKywsVIcOHeQUN3y3FhYWKjU11coC8oCi+2iLiu6/dWnRvTHGFBcXm9zcXLNx40bz8MMPm0aNGpnt27cbY4zZtGmT6d69u5Fk6tatawYMGGCSk5NNcnJyuX7++c9/Vlh0P3XqVNOxY8dy7du3b2+mT59ujDFmzJgxJikpqVyb+vXrm6VLlxpjjOnfv78ZO3ZswOdffvmlkWTWr19/1vMrKioyPp/Pv+3bt4+ie0v6d1OGLYWg4VhoSgbjTQbjTUZoueG7NRyK7lstmGTavDjdmq3VgknWXrMzVflN95GRkWrfvr0kqWfPntq4caOeeeYZLViwQD169FBOTo58Pp9OnDihxo0bq1evXurZs2el+2/WrJkOHTpUbv9XX32lpk2b+tts2LAh4POjR4/q5MmTAW3y8vIC2hw+fFiS/G0q4vF4ApaRAQAAAKg9NX5xpDHGX79Sxuv1qnHjxsrNzdWmTZs0ZMiQSveXmJgon8+nDz/80L9vw4YN8vl8uuaaa/xttm3bpoMHD/rbZGVlyePxqEePHv42a9as0YkTJwLaJCQkqG3bttU5VQAAAADnWZVqWCZOnKjk5GS1atVKx48f17JlyzRjxgxlZmaqf//+evnll9W4cWO1bt1aW7du1S9/+Uv16NFDy5cv9/eRl5envLw8bdq0SWPGjNGaNWvUsGFDtW7dWvHx8ZKk5ORkHThwQAsWLJAkjR07Vm3atNHrr78u6XTB/5VXXqmmTZvq6aef1tdff63Ro0dr6NChmjNnjiTJ5/OpU6dOuvHGGzVx4kTl5uZq9OjRevzxxwMefxwML460p383ZfDiSDIYbzIYbzJ4cWTohMOLI1v9eZJ1NSz77pli5TUrpyrrx+666y7Tpk0bExkZaRo3bmxuuukmk5WV5f/8mWeeMS1btjT169c3rVu3No8++mi5lzlOmnR6vdyZ2wsvvOBvc+TIETNy5Ej/CypHjhxZ4YsjBw0aZKKjo018fLy5//77TVFRUUCbjz76yFx33XXG4/GYZs2amcmTJ/PiyDDu300ZtqyrDsd122Qw3mQw3mSElhu+W8OihuXPk0ybv0y3Zmv1Z5fWsCxcuPCcn6elpSktLe2cbSZPnqzJkyefs018fLxeeumlc7Zp3bq13njjjXO26dq1q9asWXPONgAAAADsVeWiewAAAABVFfHdZgubjuXcalx0DwAAAABOqfKLIy80FN3b07+bMii6J4PxJoPxJoOi+9AJj6L7yRYW3U+28pqVU9tFNLaj6N6e/t2UYUshaDgWmpLBeJPBeJMRWm74bg2Lovv5k02bRTOs2VrNn2ztNTsTS8IAAAAAWIsJCwAAAABr8ZQwAAAAwGllbx+0hU3HEgRF90FQdG9P/27KoOieDMabDMabDIruQycsiu7nWVh0fy9F965A0b09/bspw5ZC0HAsNCWD8SaD8SYjtNzw3RoWRffzJps2L8ywZms1L3yK7lkSBgAAADjNRJzebGHTsQRB0T0AAAAAazFhAQAAAGAtiu6DoOjenv7dlEHRPRmMNxmMNxkU3YdOOBTdt5w7xbqi+y/vn2TlNSuntotobEfRvT39uynDlkLQcCw0JYPxJoPxJiO03PDdGg5F9y3nTjGtF/7Omq3l3CnWXrMzsSQMAAAAgLV4ShgAAADgNF4cWW3cYQEAAABgLYrugygrlMrIyFBMTIxjORUV2YVbhhvO4Xxl5Obmlvv7VFRUpKioqJDtKygoUGxs7DnbOd0/GXZluOEcyKh8hhvOgYzTCgsL1aFDBznFDd+thYWFSk1NtbKA3F90P8fCovtxFN27AkX39vTvpgxbCkHDsdCUDMabDMabjNByw3drWBTd//EJ0/q5p6zZWv7xCWuv2ZlYEgYAAADAWkxYAAAAAFiLp4QBAAAADoswpzdb2HQswVB0HwRvurenfzdl8KZ7MhhvMhhvMnjTfeiEw5vuWz3zhHVF9/t++biV16yc2i6isR1F9/b076YMWwpBw7HQlAzGmwzGm4zQcsN3azgU3bd65gnT5tmnrNlaPRM+RfcsCQMAAACcxosjq42iewAAAADWYsICAAAAwFoU3QdB0b09/bspg6J7MhhvMhhvMii6D52wKLr//W/tK7p/4DErr1k5tV1EYzuK7u3p300ZthSChmOhKRmMNxmMNxmh5Ybv1rAouv/9b02bPz9tzdbq97+19pqdiSVhAAAAAKzFU8IAAAAAp/GUsGrjDgsAAAAAa1F0HwRF9/b076YMiu7JYLztztj2r+06vv/bgH0NW0RXat/FlzXQ0c+/Cdqu9dXNGW8yKLoPkbAoup9tYdH9eIruXYGie3v6d1OGLYWg4VhoSgbjfT4yxg0fb/pF/E/AVtl9Eyc8Uql2jDcZFN2HTlgU3c/6rWkz72lrtlazKLoHAAAAgBpjwgIAAADAWjwlDAAAAHAaTwmrNorug6Do3p7+3ZRB0T0ZjLfdGeej6L4mhfiM94WVQdF9cGFRdD/TwqL7CRTduwJF9/b076YMWwpBw7HQlAzG2y1F9zUpxGe8yQglN3y3hkXR/czfmjZ/etqardXM8Cm6Z0kYAAAA4DQTcXqzhU3HEgRF9wAAAACsxYQFAAAAgLUoug+irFAqIyNDMTExjuVUVGQXbhluOIfzlZGbm1vu71NRUZGioqJCtq+goECxsbHnbOd0/2TYlVFr5/BtvqI8JwL3FUeW21fwbZRio4sC9h0/7tGpopKAffWi6lZqX7Q3qtrncdx3vNq59WPq6WThqZAdc9iNNxkhzygsLFSHDh3kFDd8txYWFio1NdXKAvKyf0u2fupJ64ru9/76USuvWTm1XURjO4ru7enfTRm2FIKGY6EpGeE33otfSDUlBzsEbBXte/p3vym3rybF7xTdh//fWTLOnhFKbvhuDYei+9ZPPWnazplpzdb6qSetvWZnYkkYAAAAAGvxlDAAAADAabw4stq4wwIAAADAWhTdB8Gb7u3p300ZvOmeDGvGe9+/ldDkSMC+A4cvKbfv088Tyr29vaK3stfWG+JrkmH7eVR0fPx+X1gZvOk+uHB4033r31lYdP+b8Ci6Z0kYUAvq1atX7j/cFf3HvCb7Zs6cGbSd0/2TYVdGRT+3ZNF7+unA1QH7lmX2KbfvsVm3aceyvQH7Egf3LNdf2usPlmt3+U9bV2rfDx7sVO2frUmG7edR0fHx+33hZQAXMpaEAQAAALAWExYAAAAA1mJJGAAAAOCwCEkRFlWOR9T2AVQBRfdBUHRvT/9uyqDonozayKiokLz1lfUrVXS/a19zXdrqYMC+7dubVq5ovIKMin62torubc+g6J4Miu6DC4ei+za/e1J1oiwqui8q0hcU3QM4G4ruyaiNjIoKyXsnXVSpovvZL/643L5fZQ2uVNF4RRkV/WxtFd3bnkHRPRkU3eNCRw0LAAAAAGtxhwUAAABwmok4vdnCpmMJgjssAAAAAKxF0X0QFN3b07+bMii6J8MNRfcVtavJvspmVLbY3y1F9xXta9L5Yn6/L6AMiu6DC4ui+xlT7Su6f/gRK6/ZmVgSBtQCiu7JcEPRfUXtarKvshmVLfZ3S9F9RftaP9Wc3+8LLAMuYL7bbGHTsQTBkjAAAAAA1mLCAgAAAMBaLAkDAAAAnMaSsGqj6D4Iiu7t6d9NGRTdk2FL0X1l30xP0b1dGRTdX1gZFN0HFxZF99MsLLqfSNE9gLOg6J4MW4ruK/tmeoru7cqg6P7CywAuZExYAAAAAIdFmNObLWw6lmAougcAAABgLSYsAAAAAKxF0X0QZYVSGRkZiomJcSynoiK7cMtwwzmcr4zc3Nxyf5+KiooUdUYxXk32FRQUKDY29pztnO6fDLsyKvq5477jOlVUErCvXlTdcvsiG9RTbHRRYP/FkYrynAjs77inUv1Fx9Up97MF30aFNKOiffVj6ulk4alq/axNGZEN6vP7fQFlFBYWqkOHDnKKG75bCwsLlZqaamUBedm/Jds+aV/R/Z5HKbp3lWHDhvGUsFru300ZM2fO1IQJE4Lm1rRIM1iG0/2TYVdGRT+XNqJyhfgDZlym8Xf8LWBfhQXx4ytXEH/n8xUX9ocy42wF8R/O+rRaP2tTxoCnevH7fYFl8P19bvn5+UpNTXWsf9QuloQBAAAAsBZ3WAAAAACn8eLIauMOCwAAAABrUXQfBG+6t6d/N2XwpnsybBnvbf/abs3b28ngTfdk8Kb76gqHN923/a2FRfePUXQP4Cx40z0Ztox32uuVK7p3yxvi3ZLBm+4vvAyEP14cWX0sCQMAAABgLSYsAAAAAKzFkjAAAADAaSbi9GYLm44lCIrug6Do3p7+3ZRB0T0ZtZFR2QJ7NxeruyWDovsLK4Oi++DCoei+3ZRp1hXd75400cprdibusAC1gKJ7Mmojo7IF9m4uVndLBkX3F14GcCFjwgIAAAA4jRdHVhtF9wAAAACsxYQFAAAAgLUoug+Cont7+ndTBkX3ZFB0TwZF92RQdB864VB0f+kk+4rud02h6B7AWVB0TwZF92RQdE8GRfdA5bAkDAAAAIC1uMMCAAAAOI2nhFUbd1gAAAAAWIui+yAourenfzdlUHRPBkX3ZFB0TwZF96ETFkX3j1tYdP8ERfcAzoKiezIouieDonsyKLq/wBgpwqbbBDYdSxAsCQMAAABgLSYsAAAAAKzFkjAAAADAaTwlrNooug+irFAqIyNDMTExjuVUVGQXbhluOIfzlZGbm1vu71NRUZGizijGq8m+goICxcbGnrOd0/2TUbsZx33HdaqoxP/nelF1A/5clX31Y+rpZOGpav0sGaHPiGxQn9/vCyijsLBQHTp0kFPc8N1aWFio1NRUKwvI/UX3j05TXYuK7kuKirTrSYruXWXYsGE8JayW+3dTxsyZMzVhwoSguTUt0gyW4XT/ZNRuRtqIwCL7mhaSfzjr02r9LBmhzxjwVC9+vy+wDL6/zy0/P1+pqamO9Y/axYQFAAAAcBpLwqqNonsAAAAA1mLCAgAAAMBaFN0HwZvu7enfTRm86Z6MUGd88vEnQd+ubvvb28moeF/rq5vz+32BZ/Cm++DC4U33l020r+j+82kU3QM4C950T0aoMx556NGgxdq2v72djIr3JQ7uye83GQIuZCwJAwAAAGAtJiwAAAAArMWEBQAAAIC1KLoPgqJ7e/p3UwZF92Scj4xt/9puRdF9RUXjZx5bTTMouuf3280ZFN0HR9F91VF0D+CcKLon43xkpL0e2jfdh7Jo/Mxjq2kGRff8frs9Ay7AiyOrjSVhAAAAAKzFhAUAAACAtVgSBgAAADgswpzebGHTsQRD0X0QFN3b07+bMii6J6Mm/VVUsN6k88VWFN1XVCAeygcHnLfzuLK+EpocCdh34PAlldr36ecJIX1AAb/fZFB0H1w4FN23f9i+ovvPZlB0D+AsKLonoyb9VVSw3vqp5lYU3VdUIB7KBwecr/PonXSRfjpwdcC+ZZl9KrXvsVm3hbTAnt9vMii6x4WOCQsAAABwPrCuqVoougcAAABgLSYsAAAAAKxF0X0QFN3b07+bMii6JyPURfeVKSYPx6L7WhuLff+m6N6WsSCDovtKCIui+99MU12PRUX3xUX67HcuLLqfP3++5s+frz179kiSrrjiCj3++ONKTk6WJB06dEi/+c1vlJWVpWPHjun666/XnDlz1KFDB38fxcXFmjBhgpYuXapvv/1WN910k+bNm6eWLVv62xw9elRpaWlauXKlJOnWW2/VnDlzdNFFF/nb7N27V/fdd5/ee+89RUdHa8SIEZo5c6YiIyP9bbZu3ar7779fH374oeLj43X33XfrscceU0RERJUvFBBKFN2TEeqi+8oUk4dj0X1tjcWSRe9RdG/JWJBB0T1QpSVhLVu21IwZM7Rp0yZt2rRJN954o4YMGaLt27fLGKOhQ4dq165deu2117Rlyxa1adNG/fr1U0FBgb+PX/3qV1qxYoWWLVumtWvX6ptvvtEtt9yikpISf5sRI0YoJydHmZmZyszMVE5OjlJSUvyfl5SUaNCgQSooKNDatWu1bNkyLV++XA8++KC/TX5+vvr376+EhARt3LhRc+bM0cyZMzV79uyaXC8AAAAA51GV7rAMHjw44M9Tp07V/PnzlZ2drfr16ys7O1vbtm3TFVdcIUmaN2+emjRpoqVLlyo1NVU+n08LFy7U//7v/6pfv36SpJdeekmtWrXSu+++qwEDBmjHjh3KzMxUdna2evXqJUl67rnnlJiYqE8//VSdOnVSVlaWPv74Y+3bt08JCQmSpFmzZmn06NGaOnWq4uLitHjxYhUVFWnRokXyeDzq0qWLdu7cqdmzZ2v8+PHcZQEAAMB5w4sjq6/aRfclJSVatmyZCgoKlJiYqOLiYklS1H+9EKdu3bqKjIzU2rVrJUmbN2/WyZMnlZSU5G+TkJCgLl26aN26dZKk9evXy+v1+icrktS7d295vd6ANl26dPFPViRpwIABKi4u1ubNm/1t+vTpI4/HE9DmwIED/iVtFSkuLlZ+fn7ABgAAAKB2VLnofuvWrUpMTFRRUZEaNGigJUuW6Oabb9bJkyfVoUMH/eAHP9CCBQsUGxur2bNnKz09XUlJSXr77be1ZMkS3Xnnnf7JTZmkpCS1a9dOCxYs0LRp07Ro0SLt3LkzoE3Hjh115513Kj09XWPHjtWePXuUlZUV0Mbj8WjRokUaPny4kpKS1LZtWz377LP+zw8cOKAWLVpo3bp1SkxMrPD8Jk+erClTppTbn5GRoZiYmKpcqiqpqMgu3DLccA7nKyM3N7fc36eioqKACX9N9xUUFCg2Nvac7Zzun4zzl/HN8W90svBUwL56UXV1qqjkrH+uyr76MfWC9i9J0d4oq69TZTOO+46XP7e4OorynAhsd9xj7bWy/e8sGZXfV1hYGFAPHGpu+G4tLCz0r+axrYC8rOi+w6/tK7rPfSo8iu5lqqi4uNjk5uaajRs3mocfftg0atTIbN++3RhjzKZNm0z37t2NJFO3bl0zYMAAk5ycbJKTk40xxixevNhERkaW67Nfv37m7rvvNsYYM3XqVNOxY8dybdq3b2+mT59ujDFmzJgxJikpqVyb+vXrm6VLlxpjjOnfv78ZO3ZswOdffvmlkWTWr19/1vMrKioyPp/Pv+3bt89IMj6frzKXp9qWLFniaP/nI8MN53C+Mp5++ulK5dZkX2UynO6fjPOXMXHCI6ZfxP8EbOOGjz/nn6uyrzL994v4H+uvU2UzKjq3xS+kmpKDHQI2m6+VW8aCjIozQskN360+n++8/HutOsqOrcND08z3Hp1tzdbhoWnWXrMzVXlJWGRkpNq3b6+ePXtq+vTp6t69u5555hlJUo8ePZSTk6Njx47p4MGDyszM1JEjR9SuXTtJUrNmzXTixAkdPXo0oM/Dhw+radOm/jaHDh0ql/vVV18FtMnLywv4/OjRozp58uQ52xw+fFiS/G0q4vF4FBcXF7ABAAAAqB01fnGkMabcEi+v16vGjRsrNzdXmzZt0pAhQySdntDUr19f77zzjr/twYMHtW3bNl1zzTWSpMTERPl8Pn344Yf+Nhs2bJDP5wtos23bNh08eNDfJisrSx6PRz169PC3WbNmjU6cOBHQJiEhQW3btq3paQMAAAA4D6pUwzJx4kQlJyerVatWOn78uJYtW6YZM2YoMzNT/fv318svv6zGjRurdevW2rp1q375y1+qR48eWr58ub+PX/ziF3rjjTe0aNEixcfHa8KECTpy5Ig2b96sunXrSpKSk5N14MABLViwQJI0duxYtWnTRq+//rqk0wX/V155pZo2baqnn35aX3/9tUaPHq2hQ4dqzpw5kiSfz6dOnTrpxhtv1MSJE5Wbm6vRo0fr8ccfD3j8cTC8ONKe/t2UwYsjyaiNjIpeOFmTF0fW5CWRNl+ns+2r7PWz5Vq5eSwutAxeHBlcOLw4suME+2pYds50YQ3LXXfdZdq0aWMiIyNN48aNzU033WSysrL8nz/zzDOmZcuWpn79+qZ169bm0UcfNcXFxQF9fPvtt+b+++838fHxJjo62txyyy1m7969AW2OHDliRo4caRo2bGgaNmxoRo4caY4ePRrQ5osvvjCDBg0y0dHRJj4+3tx///2mqKgooM1HH31krrvuOuPxeEyzZs3M5MmTTWlpaVVO+bytiXTD+lE3nMP5yrBlXXU4rtsmo/oZoa5hcet1Otu+cLtWbh4LMkLLDd+t4VDD0nHCNHP5I7Ot2TpOCJ8aliq9h2XhwoXn/DwtLU1paWnnbBMVFaU5c+b474RUJD4+Xi+99NI5+2ndurXeeOONc7bp2rWr1qxZc842AAAAAOxVpQkLAAAAgGow3222sOlYgqhx0T0AAAAAOKXKL4680FB0b0//bsqg6J4MxpsMxpsMiu5DJyyK7h+0sOh+lguL7i9EFN3b07+bMmwpBA3HQlMyGG8yGG8yQssN361hUXQ/fpq5PH22NVvH8eFTdM+SMAAAAABBrVmzRoMHD1ZCQoIiIiL06quvVvpnP/jgA9WrV09XXnlllXOZsAAAAAAIqqCgQN27d9fcuXOr9HM+n0933HGHbrrppmrl8pQwAAAAwGER5vRmi+ocS3JyspKTk6v8c3fffbdGjBihunXrVumuTBmK7oOg6N6e/t2UQdE9GYw3GYw3GRTdh044FN13esC+ovtPfz9R+/btC7hmHo9HHo8n6M9HRERoxYoVGjp06DnbvfDCC5o3b57Wr1+vJ598Uq+++qpycnKqdrC1XURjO4ru7enfTRm2FIKGY6EpGYw3GYw3GaHlhu/WcCi67/TANNP54dnWbJ0emFb2ZpiAbdKkSZU6L0lmxYoV52yzc+dO06RJE/Ppp58aY4yZNGmS6d69e5WvIUvCAAAAAKdZ+uLIiu6whEJJSYlGjBihKVOmqGPHjjXqiwkLAAAAcIGKi4tzZBnd8ePHtWnTJm3ZskX333+/JKm0tFTGGNWrV09ZWVm68cYbK9UXExYAAAAAIRUXF6etW7cG7Js3b57ee+89vfLKK2rXrl2l+6LoPgiK7u3p300ZFN2TwXiTwXiTQdF96IRF0f0vLSy6f6Zqb7r/5ptv9Nlnn0mSrrrqKs2ePVs33HCD4uPj1bp1a6Wnp2v//v168cUXK/z5yZMnU3TvBIru7enfTRm2FIKGY6EpGYw3GYw3GaHlhu/WsCi6/+U00/nXs63ZOv2y6m+6/+c//1lhof6oUaOMMcaMGjXK9OnT56w/T9E9AAAAAMf07dtX5hyLsxYtWnTOn588ebImT55c5VwmLAAAAIDD3PDiyNpSp7YPAAAAAADOhqL7IMoKpTIyMhQTE+NYTkVFduGW4YZzOF8Zubm55f4+FRUVKSoqKmT7CgoKFBsbe852TvdPhl0ZbjgHMiqf4YZzIOO0wsJCdejQQU5xw3drYWGhUlNTrS66/16afUX3n/yxakX3tabKVS8XGIru7enfTRm2FIKGY6EpGYw3GYw3GaHlhu/WcCi6/964aeaKCbOt2b43rupF97WFJWEAAAAArMWEBQAAAIC1eEoYAAAA4DCeElZ9FN0HwZvu7enfTRm86Z4MxpsMxpsM3nQfOuHwpvvL77ev6H7HXIruXYGie3v6d1OGLYWg4VhoSgbjTQbjTUZoueG7NRyK7i+/f5rp8uBsa7bL7w+fonuWhAEAAABOM99ttrDpWIKg6B4AAACAtZiwAAAAALAWRfdBUHRvT/9uyqDongzGmwzGmwyK7kMnLIru77Ww6H4eRfeuQNG9Pf27KcOWQtBwLDQlg/Emg/EmI7Tc8N0aFkX3904zXR6Ybc12+b3hU3TPkjAAAAAA1uIpYQAAAIDDIr7bbGHTsQTDHRYAAAAA1qLoPgiK7u3p300ZFN2TwXiTwXiTQdF96IRD0X1nC4vuP6bo3h0ourenfzdl2FIIGo6FpmQw3mQw3mSElhu+W8Oh6L7zL6aZrr+abc3W+RcU3QMAAABAjTFhAQAAAGAtnhIGAAAAOCzCnN5sYdOxBEPRfRAU3dvTv5syKLong/Emg/Emg6L70AmHovsr7rGv6H77nym6dwWK7u3p300ZthSChmOhKRmMNxmMNxmh5Ybv1nAour/inmmm2y9nW7NdcU/4FN2zJAwAAABwmvlus4VNxxIERfcAAAAArMWEBQAAAIC1KLoPoqxQKiMjQzExMY7lVFRkF24ZbjiH85WRm5tb7u9TUVGRoqKiQravoKBAsbGx52zndP9k2JXhhnMgo/IZbjgHMk4rLCxUhw4d5BQ3fLcWFhYqNTXVygJyf9H93dNUN9KiovsTRdq+gKJ7V6Do3p7+3ZRhSyFoOBaaksF4k8F4kxFabvhuDYui+7unmW7jZluzXXF3+BTdsyQMAAAAgLV4ShgAAADgMF4cWX3cYQEAAABgLYrug+BN9/b076YM3nRPBuNNBuNNBm+6D51weNN9l7H2Fd1ve5aie1eg6N6e/t2UYUshaDgWmpLBeJPBeJMRWm74bg2HovsuY6aZ7vfNtmbrMoaiewAAAACoMSYsAAAAAKzFU8IAAAAAh/GUsOqj6D4Iiu7t6d9NGRTdk8F4k8F4k0HRfeiEQ9F911T7iu63ZlB07woU3dvTv5sybCkEDcdCUzIYbzIYbzJCyw3freFQdN81dZq58t7Z1mxdU8On6J4lYQAAAIDTzHebLWw6liAougcAAABgLSYsAAAAAKxF0X0QFN3b07+bMii6J4PxJoPxJoOi+9AJh6L7bnfZV3T/0fMU3bsCRff29O+mDFsKQcOx0JQMxpsMxpuM0HLDd2s4FN13u2uaueqe2dZs3e4Kn6J7loQBAAAAsBZPCQMAAACcxlPCqo07LAAAAACsRdF9EBTd29O/mzIouieD8SaD8SaDovvQCYui+zstLLp/gaJ7V6Do3p7+3ZRhSyFoOBaaksF4k8F4kxFabvhuDYui+9HTzFVjZ1uzdRtN0T0AAAAA1BgTFgAAAADW4ilhAAAAgMMizOnNFjYdSzAU3QdRViiVkZGhmJgYx3IqKrILtww3nMP5ysjNzS3396moqEhRUVEh21dQUKDY2NhztnO6fzLsynDDOZBR+Qw3nAMZpxUWFqpDhw5yihu+WwsLC5WammplAXnZvyW7j7Kv6P7ff6Ho3hUourenfzdl2FIIGo6FpmQw3mQw3mSElhu+W8Oh6L77qGnm6jGzrdm6jwqfonuWhAEAAABO48WR1UbRPQAAAABrMWEBAAAAYC2K7oPgTff29O+mDN50TwbjTQbjTQZvug+dcHjT/ZUpU60rus/530esvGbl1HYRje0ourenfzdl2FIIGo6FpmQw3mQw3mSElhu+W8Oh6P7KlKmmx89nWbNdmTLV2mt2JpaEAQAAALAWTwkDAAAAnMZTwqqNOywAAAAArEXRfRAU3dvTv5syKLong/Emg/Emg6L70AmLovufWVh0/xJF965A0b09/bspw5ZC0HAsNCWD8SaD8SYjtNzw3RoORfdXjZxqet45y5rtqpEU3QMAAABAjTFhAQAAAGAtnhIGAAAAOI2nhFUbRfdBUHRvT/9uyqDongzGmwzGmwyK7kMnHIrurxphX9H9liUU3bsCRff29O+mDFsKQcOx0JQMxpsMxpuM0HLDd2tYFN2PmGp6jp5lzXbViPApumdJGAAAAOCwCHN6s4VNxxIMRfcAAAAArMWEBQAAAIC1KLoPgqJ7e/p3UwZF92Qw3mQw3mRQdB864VB0f/VP7Su6/9cyiu5dgaJ7e/p3U4YthaDhWGhKBuNNBuNNRmi54bs1HIrur/7pVPP9O2ZZs1390/ApumdJGAAAAABr8ZQwAAAAwGE8Jaz6uMMCAAAAwFoU3QdRViiVkZGhmJgYx3IqKrILtww3nMP5ysjNzS3396moqEhRUVEh21dQUKDY2NhztnO6fzLsynDDOZBR+Qw3nAMZpxUWFqpDhw5yihu+WwsLC5WammplAXnZvyV73G5f0f3mv1J07woU3dvTv5sybCkEDcdCUzIYbzIYbzJCyw3freFQdN/jtqnmBz+bZc3W4zaK7gEAAACgxpiwAAAAALAWTwkDAAAAzoNwejKXTSi6D4I33dvTv5syeNM9GYw3GYw3GbzpPnTC4U33PW6bqnr17Sm6P3WySJv/j6J7V6Do3p7+3ZRhSyFoOBaaksF4k8F4kxFabvhuDZei+14jZ1mzhVPRPUvCAAAAAKcZc3qzhU3HEgRF9wAAAACsxYQFAAAAgLUoug+Cont7+ndTBkX3ZDDeZDDeZFB0HzrhUHTf83+etK7oftMrj1p5zcqp7SIa21F0b0//bsqwpRA0HAtNyWC8yWC8yQgtN3y3hkPRfc//edL0Hj7Tmq3n/zxp7TU7E0vCAAAAAFiLp4QBAAAATjPfbbaw6ViC4A4LAAAAAGtRdB8ERff29O+mDIruyWC8yWC8yaDoPnTCouj+JxYW3S+n6N4VKLq3p383ZdhSCBqOhaZkMN5kMN5khJYbvlvDoej++z960iTeNtOa7fs/ougeAAAAAGqMCQsAAAAAa/GUMAAAAMBpPCWs2ii6D4Kie3v6d1MGRfdkMN5kMN5kUHQfOuFQdP/9ofYV3W981YVF9/PmzTNdu3Y1DRs2NA0bNjS9e/c2b731lv/z48ePm/vuu8+0aNHCREVFme9973tm3rx5AX189tlnZujQoaZRo0amYcOGZtiwYSYvLy+gzddff21+9rOfmbi4OBMXF2d+9rOfmaNHjwa0+eKLL8wtt9xiYmJizCWXXGLGjRtniouLA9p89NFH5vrrrzdRUVEmISHBTJkyxZSWllbllCm6t6h/N2XYUggajoWmZDDeZDDeZISWG75bw6LofuiTJnHYTGu27w91adF9y5YtNWPGDG3atEmbNm3SjTfeqCFDhmj79u2SpAceeECZmZl66aWXtGPHDj3wwAMaN26cXnvtNUlSQUGBkpKSFBERoffee08ffPCBTpw4ocGDB6u0tNSfM2LECOXk5CgzM1OZmZnKyclRSkqK//OSkhINGjRIBQUFWrt2rZYtW6bly5frwQcf9LfJz89X//79lZCQoI0bN2rOnDmaOXOmZs+eXe3JHQAAAFAdEca+LVxUqYZl8ODBAX+eOnWq5s+fr+zsbF1xxRVav369Ro0apb59+0qSxo4dqwULFmjTpk0aMmSIPvjgA+3Zs0dbtmzx33p64YUXFB8fr/fee0/9+vXTjh07lJmZqezsbPXq1UuS9NxzzykxMVGffvqpOnXqpKysLH388cfat2+fEhISJEmzZs3S6NGjNXXqVMXFxWnx4sUqKirSokWL5PF41KVLF+3cuVOzZ8/W+PHjFRERUdNrBwAAAMBh1X5KWElJiZYtW6aCggIlJiZKkn74wx9q5cqV2r9/v4wx+uc//6mdO3dqwIABkqTi4mJFRETI4/H4+4mKilKdOnW0du1aSdL69evl9Xr9kxVJ6t27t7xer9atW+dv06VLF/9kRZIGDBig4uJibd682d+mT58+AVkDBgzQgQMHtGfPnrOeV3FxsfLz8wM2AAAAALWjykX3W7duVWJiooqKitSgQQMtWbJEN998syTpxIkTGjNmjF588UXVq1dPderUUUZGhn8511dffaX27dvrzjvv1LRp02SM0W9+8xv96U9/8t+NmTZtmhYtWqSdO3cG5Hbs2FF33nmn0tPTNXbsWO3Zs0dZWVkBbTwejxYtWqThw4crKSlJbdu21bPPPuv//MCBA2rRooXWrVvnn2SdafLkyZoyZUq5/RkZGYqJianKpaqSiorswi3DDedwvjJ27doVMJmWpFOnTqlevXoh2/ftt98qOjr6nO2c7p8MuzLccA5kVD7DDedAxmnFxcW69NJL5RQ3fLcWFhYqNTXVygLysqL7H9z6W+uK7j9c+ZiV1+xMVX6scadOnZSTk6Njx45p+fLlGjVqlFavXq3OnTvrj3/8o7Kzs7Vy5Uq1adNGa9as0b333qvmzZurX79+aty4sV5++WX94he/0B//+EfVqVNHw4cP19VXX626dev6MyparmWMCdhfnTZlc7NzLQdLT0/X+PHj/X/Oz89Xq1atNGzYMJ4SVsv9k2FXhhvOgQx7+ifDrgw3nAMZ9vR/PjLy8/OVmprqWP+oXVWesERGRqp9+/aSpJ49e2rjxo165pln9Ic//EETJ07UihUrNGjQIElSt27dlJOTo5kzZ6pfv36SpKSkJH3++ef6z3/+o3r16umiiy5Ss2bN1K5dO0lSs2bNdOjQoXK5X331lZo2bepvs2HDhoDPjx49qpMnTwa0ycvLC2hz+PBhSfK3qYjH4yn3f74BAAAA1I4av+neGKPi4mKdPHlSJ0+eVJ06gV3WrVs34AlgZRo1aqSLLrpI7733ng4fPqxbb71VkpSYmCifz6cPP/zQ33bDhg3y+Xy65ppr/G22bdumgwcP+ttkZWXJ4/GoR48e/jZr1qzRiRMnAtokJCSobdu2NT1tAAAAoNJq+4lg4fyUsCpNWCZOnKj3339fe/bs0datW/XII49o1apVGjlypOLi4tSnTx899NBDWrVqlXbv3q1FixbpxRdf1I9+9CN/Hy+88IKys7P1+eef66WXXtKwYcP0wAMPqFOnTpKkyy+/XAMHDtSYMWOUnZ2t7OxsjRkzRrfccou/TVJSkjp37qyUlBRt2bJF//jHPzRhwgSNGTPGv2xrxIgR8ng8Gj16tLZt26YVK1Zo2rRpPCEMAAAACCNVWhJ26NAhpaSk6ODBg/J6verWrZsyMzPVv39/SdKyZcuUnp6ukSNH6uuvv1abNm00depU3XPPPf4+Pv30U6Wnp+vrr79W27Zt9cgjj+iBBx4IyFm8eLHS0tKUlJQkSbr11ls1d+5c/+d169bVm2++qXvvvVfXXnutoqOjNWLECM2cOdPfxuv16p133tF9992nnj176uKLL9b48eMD6lMAAAAA2K1KE5aFCxee8/NmzZrphRdeOGebGTNmaMaMGedsEx8fr5deeumcbVq3bq033njjnG26du2qNWvWnLMNAAAA4Djz3WYLm44liBrXsAAAAACAU5iwAAAAALBWlR9rDAAAAKBqbHsyl03HEgx3WAAAAABYiwkLAAAAAGuxJAwAAABwmjGnN1vYdCxBcIcFAAAAgLWYsAAAAACwFkvCAAAAAIfxlLDq4w4LAAAAAGsxYQEAAABgLZaEAQAAAE4z3222sOlYguAOCwAAAABrMWEBAAAAYC2WhAEAAAAO4ylh1ccdFgAAAADWYsICAAAAwFoRxpgwuiF0/uXn58vr9SojI0MxMTGO5ezfv18tWrRwrP/zkeGGcyDDnv7JsCvDDedAhj39k2FXhhvOobCwUKmpqfL5fIqLi3MspzrK/i15Tf8pqlc/qrYPx+/UySKte2eSldfsTNSwVNKwYcMcHcylS5dq+PDhjvV/PjLccA5k2NM/GXZluOEcyLCnfzLsynDDOeTn5ys1NdWx/lG7WBIGAAAAwFrcYQEAAACcxosjq407LAAAAACsxYQFAAAAgLVYEgYAAAA4LEJ2vawxorYPoAq4wwIAAADAWkxYAAAAAFiLJWEAAACA04w5vdnCpmMJgjssAAAAAKzFhAUAAACAtVgSBgAAADgswlj2lDCLjiUY7rAAAAAAsBYTFgAAAADWYkkYAAAA4DTz3WYLm44lCO6wAAAAALAWExYAAAAAQa1Zs0aDBw9WQkKCIiIi9Oqrr56z/d/+9jf1799fjRs3VlxcnBITE/X2229XOZcJCwAAAOCwCGOs26qqoKBA3bt319y5cyvVfs2aNerfv7/eeustbd68WTfccIMGDx6sLVu2VCmXGhYAAADgApWfnx/wZ4/HI4/HU2Hb5ORkJScnV7rvP/zhDwF/njZtml577TW9/vrruuqqqyrdD3dYAAAAgAtUq1at5PV6/dv06dMdyyotLdXx48cVHx9fpZ/jDgsAAADgtNLvNlt8dyz79u1TXFycf/fZ7q6EwqxZs1RQUKDbbrutSj/HhAUAAAC4QMXFxQVMWJyydOlSTZ48Wa+99pqaNGlSpZ9lwgIAAADAMX/961/185//XC+//LL69etX5Z9nwgIAAAA4rLpP5nLK+TqWpUuX6q677tLSpUs1aNCgavURYYxFV85C+fn58nq9ysjIUExMjGM5+/fvV4sWLRzr/3xkuOEcyLCnfzLsynDDOZBhT/9k2JXhhnMoLCxUamqqfD7feVneVBVl/5a8/rrHVa9eVG0fjt+pU0Va8/4TVbpm33zzjT777DNJ0lVXXaXZs2frhhtuUHx8vFq3bq309HTt379fL774oqTTk5U77rhDzzzzjH784x/7+4mOjpbX6630sTJhCaLsL5nTvwBLly7V8OHDHev/fGS44RzIsKd/MuzKcMM5kGFP/2TYleGGczhf/16rDjdNWFatWqUbbrih3P5Ro0Zp0aJFGj16tPbs2aNVq1ZJkvr27avVq1eftX1lsSQMAAAAcJr5brNFNY6lb9++Ote9jjMnIWUTl5riPSwAAAAArMWEBQAAAIC1WBIGAAAAOM2Y05stbDqWILjDAgAAAMBaTFgAAAAAWIslYQAAAIDDIszpzRY2HUsw3GEBAAAAYC0mLAAAAACsxZIwAAAAwGk8JazauMMCAAAAwFpMWAAAAABYiyVhAAAAgMMiSk9vtrDpWILhDgsAAAAAazFhAQAAAGAtloQBAAAATuMpYdXGHRYAAAAA1mLCAgAAAMBaLAkDAAAAnGa+22xh07EEwR0WAAAAANZiwgIAAADAWiwJAwAAABwWYYwiLHoyl03HEgx3WAAAAABYK8KYMJpe1YL8/Hx5vV5lZGQoJibGsZz9+/erRYsWjvV/PjLccA5k2NM/GXZluOEcyLCnfzLsynDDORQWFio1NVU+n09xcXGO5VRH2b8lb+g5UfXqRdX24fidOlWkf26aZuU1OxNLwipp2LBhjg7m0qVLNXz4cMf6Px8ZbjgHMuzpnwy7MtxwDmTY0z8ZdmW44Rzy8/OVmprqWP8hwYsjq40lYQAAAACsxYQFAAAAgLVYEgYAAAA4zUgqre2D+C/hsyKMOywAAAAA7MWEBQAAAIC1WBIGAAAAOIwXR1Yfd1gAAAAAWIsJCwAAAABrsSQMAAAAcJqRXS9rtOhQguEOCwAAAABrMWEBAAAAYC2WhAEAAABOM8ayJWEWHUsQ3GEBAAAAYC0mLAAAAACsxZIwAAAAwGmlkiJq+yD+S2ltH0DlcYcFAAAAgLWYsAAAAACwFkvCAAAAAIdFGKMIi57MZdOxBMMdFgAAAADWYsICAAAAwFosCQMAAACcxosjq407LAAAAACsxYQFAAAAgLUijAmj+0G1ID8/X16vVxkZGYqJiXEsZ//+/WrRooVj/Z+PDDecAxn29E+GXRluOAcy7OmfDLsy3HAOhYWFSk1Nlc/nU1xcnGM51VH2b8mbOk9Qvbqe2j4cv1MlxfrHxzOtvGZnooalkoYNG+boYC5dulTDhw93rP/zkeGGcyDDnv7JsCvDDedAhj39k2FXhhvOIT8/X6mpqY71j9rFkjAAAAAA1uIOCwAAAOA0nhJWbdxhAQAAAGAtJiwAAAAArMWSMAAAAMBppZIiavsg/ktpbR9A5XGHBQAAAIC1mLAAAAAAsBZLwgAAAACHRRijCIuezGXTsQTDHRYAAAAA1mLCAgAAAMBaLAkDAAAAnMaLI6uNOywAAAAArMWEBQAAAIC1WBIGAAAAOK3USBEWLcMqtehYguAOCwAAAABrMWEBAAAAYC2WhAEAAABO4ylh1cYdFgAAAADWYsICAAAAwFpVmrDMnz9f3bp1U1xcnOLi4pSYmKi///3v/s+/+eYb3X///WrZsqWio6N1+eWXa/78+QF95OXlKSUlRc2aNVNsbKyuvvpqvfLKKwFtjh49qpSUFHm9Xnm9XqWkpOjYsWMBbfbu3avBgwcrNjZWjRo1Ulpamk6cOBHQZuvWrerTp4+io6PVokULPfHEEzJhdPsLAAAAbmH+/7IwGzaFz7+Jq1TD0rJlS82YMUPt27eXJP3lL3/RkCFDtGXLFl1xxRV64IEH9M9//lMvvfSS2rZtq6ysLN17771KSEjQkCFDJEkpKSny+XxauXKlGjVqpCVLluj222/Xpk2bdNVVV0mSRowYoS+//FKZmZmSpLFjxyolJUWvv/66JKmkpESDBg1S48aNtXbtWh05ckSjRo2SMUZz5syRJOXn56t///664YYbtHHjRu3cuVOjR49WbGysHnzwwdBcPQAAAACOqtIdlsGDB+vmm29Wx44d1bFjR02dOlUNGjRQdna2JGn9+vUaNWqU+vbtq7Zt22rs2LHq3r27Nm3a5O9j/fr1GjdunH7wgx/o0ksv1aOPPqqLLrpI//rXvyRJO3bsUGZmpjIyMpSYmKjExEQ999xzeuONN/Tpp59KkrKysvTxxx/rpZde0lVXXaV+/fpp1qxZeu6555Sfny9JWrx4sYqKirRo0SJ16dJFP/7xjzVx4kTNnj2buywAAABAmKj2U8JKSkr08ssvq6CgQImJiZKkH/7wh1q5cqXuuusuJSQkaNWqVdq5c6eeeeYZ/8/98Ic/1F//+lcNGjRIF110kf7v//5PxcXF6tu3r6TTExqv16tevXr5f6Z3797yer1at26dOnXqpPXr16tLly5KSEjwtxkwYICKi4u1efNm3XDDDVq/fr369Okjj8cT0CY9PV179uxRu3btKjyv4uJiFRcX+//s8/kkyT8RckphYWHYZ7jhHMiwp38y7MpwwzmQYU//ZNiV4YZzKOvb6v8pzVPCqi3CVHFkt27dqsTERBUVFalBgwZasmSJbr75ZknSiRMnNGbMGL344ouqV6+e6tSpo4yMDKWkpPh/3ufz6fbbb9fbb7+tevXqKSYmRq+88or69+8vSZo2bZoWLVqknTt3BuR27NhRd955p9LT0zV27Fjt2bNHWVlZAW08Ho8WLVqk4cOHKykpSW3bttWzzz7r//zAgQNq0aKF1q1b559knWny5MmaMmVKVS4JAAAALPD555/r0ksvre3DCJCfny+v16t+7capXh1P8B84T06VFuvd3XPk8/kUFxdX24dzTlW+w9KpUyfl5OTo2LFjWr58uUaNGqXVq1erc+fO+uMf/6js7GytXLlSbdq00Zo1a3TvvfeqefPm6tevnyTp0Ucf1dGjR/Xuu++qUaNGevXVVzVs2DC9//776tq1qyQpIiKiXK4xJmB/ddqUzc0q+tky6enpGj9+vP/Px44dU5s2bbR37155vd7KXCKEsfz8fLVq1Ur79u2z/pcXNcd4X1gY7wsL431h8fl8at26teLj42v7UOCAKk9YIiMj/UX3PXv21MaNG/XMM8/oD3/4gyZOnKgVK1Zo0KBBkqRu3bopJydHM2fOVL9+/fT5559r7ty52rZtm6644gpJUvfu3fX+++/rT3/6k/785z+rWbNmOnToULncr776Sk2bNpUkNWvWTBs2bAj4/OjRozp58mRAm7y8vIA2hw8fliR/m4p4PJ6AZWRlvF4v/8G7gJQ9CQ8XBsb7wsJ4X1gY7wtLnToWv7Gj1LInc5VadCxB1HhUjTEqLi7WyZMndfLkyXJ/UerWravS0lJJp9cvSuX/Mv13m8TERPl8Pn344Yf+zzds2CCfz6drrrnG32bbtm06ePCgv01WVpY8Ho969Ojhb7NmzZqARx1nZWUpISFBbdu2relpAwAAADgPqjRhmThxot5//33t2bNHW7du1SOPPKJVq1Zp5MiRiouLU58+ffTQQw9p1apV2r17txYtWqQXX3xRP/rRjyRJ3/ve99S+fXvdfffd+vDDD/X5559r1qxZeueddzR06FBJ0uWXX66BAwdqzJgxys7OVnZ2tsaMGaNbbrlFnTp1kiQlJSWpc+fOSklJ0ZYtW/SPf/xDEyZM0JgxY/z/F2XEiBHyeDwaPXq0tm3bphUrVmjatGkaP378OZeEAQAAALBHlZaEHTp0SCkpKTp48KC8Xq+6deumzMxMf8H8smXLlJ6erpEjR+rrr79WmzZtNHXqVN1zzz2SpPr16+utt97Sww8/rMGDB+ubb75R+/bt9Ze//MVfuC+dfiRxWlqakpKSJEm33nqr5s6d6/+8bt26evPNN3Xvvffq2muvVXR0tEaMGKGZM2f623i9Xr3zzju677771LNnT1188cUaP358QH1KZXg8Hk2aNKnCZWJwH8b7wsJ4X1gY7wsL431hCYvxNqWnN1vYdCxBVPkpYQAAAAAqx/+UsNb32veUsL3zwuIpYRZXJgEAAAC40FX7xZEAAAAAKokXR1Ybd1gAAAAAWIsJCwAAAABrhfWEZfLkyYqIiAjYmjVr5v989OjR5T7v3bt3QB933323LrvsMkVHR6tx48YaMmSIPvnkk4A2R48eVUpKirxer7xer1JSUnTs2LGANnv37tXgwYMVGxurRo0aKS0tLeAdMJK0detW9enTR9HR0WrRooWeeOIJ8cyDygvFeJcxxig5OVkRERF69dVXAz5jvO0QivHu27dvuTY//elPA9ow3nYI1e/3+vXrdeONNyo2NlYXXXSR+vbtq2+//db/OeNth5qO9549e8p9Xra9/PLL/naMtx1C8fudl5enlJQUNWvWTLGxsbr66qv1yiuvBLSxfrxLjX1bmAj7GpYrrrhC7777rv/PdevWDfh84MCBeuGFF/x/joyMDPi8R48eGjlypFq3bq2vv/5akydPVlJSknbv3u3va8SIEfryyy+VmZkpSRo7dqxSUlL0+uuvS5JKSko0aNAgNW7cWGvXrtWRI0c0atQoGWM0Z84cSaefENG/f3/dcMMN2rhxo3bu3KnRo0crNjZWDz74YOgvjEvVdLzL/OEPfzjr+3gYb3uEYrzHjBmjJ554wv/n6OjogM8Zb3vUdLzXr1+vgQMHKj09XXPmzFFkZKT+/e9/B7ysmPG2R03Gu1WrVgEvj5akZ599Vk899ZSSk5P9+xhve9T09zslJUU+n08rV65Uo0aNtGTJEt1+++3atGmTrrrqKkmMt6uZMDZp0iTTvXv3s34+atQoM2TIkCr1+e9//9tIMp999pkxxpiPP/7YSDLZ2dn+NuvXrzeSzCeffGKMMeatt94yderUMfv37/e3Wbp0qfF4PMbn8xljjJk3b57xer2mqKjI32b69OkmISHBlJaWVukYL1ShGu+cnBzTsmVLc/DgQSPJrFixwv8Z422PUIx3nz59zC9/+cuzfs542yMU492rVy/z6KOPnvVzxtseTnx/X3nlleauu+7y/5nxtkcoxjs2Nta8+OKLAfvi4+NNRkaGMcbu8fb5fEaS6dfiHjOw1S+t2fq1uMdI8p+7zcJ6SZgk5ebmKiEhQe3atdNPf/pT7dq1K+DzVatWqUmTJurYsaPGjBmjw4cPn7WvgoICvfDCC2rXrp1atWol6fT/sfN6verVq5e/Xe/eveX1erVu3Tp/my5duighIcHfZsCAASouLtbmzZv9bfr06RPwQqMBAwbowIED2rNnT42vw4WipuNdWFio4cOHa+7cuQG3o8sw3nYJxe/34sWL1ahRI11xxRWaMGGCjh8/7v+M8bZLTcb78OHD2rBhg5o0aaJrrrlGTZs2VZ8+fbR27Vp/G8bbLqH8/t68ebNycnL085//3L+P8bZLTcf7hz/8of7617/q66+/VmlpqZYtW6bi4mL17dtXUpiMd9lTwmzawkRYT1h69eqlF198UW+//baee+455eXl6ZprrtGRI0ckScnJyVq8eLHee+89zZo1Sxs3btSNN96o4uLigH7mzZunBg0aqEGDBsrMzNQ777zjvxWZl5enJk2alMtu0qSJ8vLy/G2aNm0a8PnFF1+syMjIc7Yp+3NZG5xbKMb7gQce0DXXXKMhQ4ZUmMF42yMU4z1y5EgtXbpUq1at0mOPPably5frxz/+sf9zxtseNR3vsn/8TJ48WWPGjFFmZqauvvpq3XTTTcrNzZXEeNskVN/fZRYuXKjLL79c11xzjX8f422PUIz3X//6V506dUqXXHKJPB6P7r77bq1YsUKXXXaZJMbb7cK6huW/16l27dpViYmJuuyyy/SXv/xF48eP1+233+7/vEuXLurZs6fatGmjN998M+AfLSNHjlT//v118OBBzZw5U7fddps++OADRUVFSVKFtQ7GmID91WljvpvZnq2WAoFqOt4rV67Ue++9py1btpwzh/G2Qyh+v8eMGRPQpkOHDurZs6f+9a9/6eqrr5bEeNuipuNdWloq6fSDVO68805J0lVXXaV//OMfev755zV9+nRJjLctQvX9LUnffvutlixZoscee6xcDuNth1CM96OPPqqjR4/q3XffVaNGjfTqq69q2LBhev/999W1a1dJjLebhfUdljPFxsaqa9eu/v+bdqbmzZurTZs25T73er3q0KGDrr/+er3yyiv65JNPtGLFCklSs2bNdOjQoXJ9ffXVV/4Zd7NmzcrNuo8ePaqTJ0+es03Z7c4zZ/KonKqO93vvvafPP/9cF110kerVq6d69U7P13/yk5/4bykz3vaq7u/3f7v66qtVv359fxvG215VHe/mzZtLkjp37hzQ7vLLL9fevXslMd42q8nv9yuvvKLCwkLdcccdAfsZb3tVdbw///xzzZ07V88//7xuuukmde/eXZMmTVLPnj31pz/9SVKYjLdR7S8BC9hqdjrnk6smLMXFxdqxY4f/i+tMR44c0b59+876eRljjP82ZGJionw+nz788EP/5xs2bJDP5/Pfek5MTNS2bdsCnliSlZUlj8ejHj16+NusWbMm4NF5WVlZSkhIUNu2bat1vhe6qo73ww8/rI8++kg5OTn+TZJ+//vf+59MwnjbKxS/39u3b9fJkyf9bRhve1V1vNu2bauEhAR9+umnAe127typNm3aSGK8bVaT3++FCxfq1ltvVePGjQP2M972qup4FxYWSlLAE/+k008aK7u7yni73Hku8g+pBx980Kxatcrs2rXLZGdnm1tuucU0bNjQ7Nmzxxw/ftw8+OCDZt26dWb37t3mn//8p0lMTDQtWrQw+fn5xhhjPv/8czNt2jSzadMm88UXX5h169aZIUOGmPj4eHPo0CF/zsCBA023bt3M+vXrzfr1603Xrl3NLbfc4v/81KlTpkuXLuamm24y//rXv8y7775rWrZsae6//35/m2PHjpmmTZua4cOHm61bt5q//e1vJi4uzsycOfP8XbAwV9PxrojOeEqYMYy3LWo63p999pmZMmWK2bhxo9m9e7d58803zfe+9z1z1VVXmVOnTvlzGG87hOL3+/e//72Ji4szL7/8ssnNzTWPPvqoiYqK8j/10RjG2xah+u95bm6uiYiIMH//+98rzGG87VDT8T5x4oRp3769ue6668yGDRvMZ599ZmbOnGkiIiLMm2++6c+xdbz9TwlrfrcZ2GKcNVu/5neHzVPCwnrCcvvtt5vmzZub+vXrm4SEBPPjH//YbN++3RhjTGFhoUlKSjKNGzc29evXN61btzajRo0ye/fu9f/8/v37TXJysmnSpImpX7++admypRkxYoT/8Xdljhw5YkaOHGkaNmxoGjZsaEaOHGmOHj0a0OaLL74wgwYNMtHR0SY+Pt7cf//9AY/EM8aYjz76yFx33XXG4/GYZs2amcmTJ/NIxCqo6XhXpKIJC+Nth5qO9969e831119v4uPjTWRkpLnssstMWlqaOXLkSEAO422HUP1+T58+3bRs2dLExMSYxMRE8/777wd8znjbIVTjnZ6eblq2bGlKSkoqzGG87RCK8d65c6f58Y9/bJo0aWJiYmJMt27dyj3m2Nbx9k9Ymo01AxPut2br12xs2ExYIowJo2eaAQAAAGEkPz9fXq9X/ZqNVb06Fb/QujacKj2hd/Oelc/nU1xcXG0fzjm5qoYFAAAAgLuE9WONAQAAgLBQWiqptLaP4v8rtehYguAOCwAAAABrMWEBAAAAYC2WhAEAAABOK3thoy1sOpYguMMCAAAAwFpMWAAAAABYiyVhAAAAgNNYElZt3GEBAAAAYC0mLAAAAACsxZIwAAAAwGmlRpJFy7BKLTqWILjDAgAAAMBaTFgAAAAAWIslYQAAAIDDjCmVMaW1fRh+Nh1LMNxhAQAAAGAtJiwAAAAArMWSMAAAAMBpxtj1ZC5eHAkAAAAANceEBQAAAIC1WBIGAAAAOM1Y9uJIloQBAAAAQM0xYQEAAABgLZaEAQAAAE4rLZUiLHpZIy+OBAAAAICaY8ICAAAAwFosCQMAAACcxlPCqo07LAAAAACsxYQFAAAAgLVYEgYAAAA4zJSWylj0lDDDU8IAAAAAoOaYsAAAAACwFkvCAAAAAKfxlLBq4w4LAAAAAGsxYQEAAABgLZaEAQAAAE4rNVKERcuwWBIGAAAAADXHhAUAAACAtVgSBgAAADjNGEkWvayRJWEAAAAAUHNMWAAAAABYiyVhAAAAgMNMqZGx6ClhhiVhAAAAAFBzTFgAAAAAWIslYQAAAIDTTKnsekqYRccSBHdYAAAAAFiLCQsAAAAAa7EkDAAAAHAYTwmrPu6wAAAAALAWExYAAAAA1mLCAgAAADjNlNq3VdGaNWs0ePBgJSQkKCIiQq+++mrQn1m9erV69OihqKgoXXrppfrzn/9c5VwmLAAAAACCKigoUPfu3TV37txKtd+9e7duvvlmXXfdddqyZYsmTpyotLQ0LV++vEq5FN0DAAAACCo5OVnJycmVbv/nP/9ZrVu31h/+8AdJ0uWXX65NmzZp5syZ+slPflLpfpiwAAAAAA47pZOSRQ/mOqWTkqT8/PyA/R6PRx6PJyQZ69evV1JSUsC+AQMGaOHChTp58qTq169fqX6YsAAAAAAOiYyMVLNmzbQ2763aPpRyGjRooFatWgXsmzRpkiZPnhyS/vPy8tS0adOAfU2bNtWpU6f0n//8R82bN69UP0xYAAAAAIdERUVp9+7dOnHiRG0fSjnGGEVERATsC9XdlTJn9l/2/pcz958LExYAAADAQVFRUYqKiqrtwzjvmjVrpry8vIB9hw8fVr169XTJJZdUuh+eEgYAAAAg5BITE/XOO+8E7MvKylLPnj0rXb8iMWEBAAAAUAnffPONcnJylJOTI+n0Y4tzcnK0d+9eSVJ6erruuOMOf/t77rlHX3zxhcaPH68dO3bo+eef18KFCzVhwoQq5UaYsoVkAAAAAHAWq1at0g033FBu/6hRo7Ro0SKNHj1ae/bs0apVq/yfrV69Wg888IC2b9+uhIQE/eY3v9E999xTpVwmLAAAAACsxZIwAAAAANZiwgIAAADAWkxYAAAAAFiLCQsAAAAAazFhAQAAAGAtJiwAAAAArMWEBQAAAIC1mLAAAAAAsBYTFgAAAADWYsICAAAAwFpMWAAAAABY6/8Bg74SxR7dMgIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAywAAAMjCAYAAABH2JRIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3gUlEQVR4nO3deXxU1f3/8XdYMlkgo5E17MpSkUWFFqJVUCEQEaHtFy3QCNqAViWtiK3BBbCyVIHWQqFoUOpXln6Vorg0RmsBEYJASQVEiQKCQMAiTDAxAZLz+wMzvw4JTJa55Mzl9Xw87h/cOTnve+8hDsd7PvdGGGOMAAAAAMBCdWr7AAAAAADgbJiwAAAAALAWExYAAAAA1mLCAgAAAMBaTFgAAAAAWIsJCwAAAABrMWEBAAAAYC0mLAAAAACsxYQFAAAAgLWYsAAAAACwFhMWAAAAAOc0ffp0ff/731fDhg3VpEkTDR06VJ9++mnQn1u9erV69OihqKgoXXrppfrzn/9c5WwmLAAAAADOafXq1brvvvuUnZ2td955R6dOnVJSUpIKCgrO+jO7d+/WzTffrOuuu05btmzRxIkTlZaWpuXLl1cpO8IYY2p6AgAAAAAuHF999ZWaNGmi1atX6/rrr6+wzW9+8xutXLlSO3bs8O+755579O9//1vr16+vdFa9Gh8tAAAAgLMqKirSiRMnavswyjHGKCIiImCfx+ORx+MJ+rM+n0+SFB8ff9Y269evV1JSUsC+AQMGaOHChTp58qTq169fqeNkwgIAAAA4pKioSO3aNFDe4ZLaPpRyGjRooG+++SZg36RJkzR58uRz/pwxRuPHj9cPf/hDdenS5azt8vLy1LRp04B9TZs21alTp/Sf//xHzZs3r9RxMmEBAAAAHHLixAnlHS7RF5vbKq6hPeXj+cdL1abHHu3bt09xcXH+/ZW5u3L//ffro48+0tq1a4O2PfMOTlk1ypn7z4UJCwAAAOCwuIZ1FNewbm0fRjlxcXEBE5Zgxo0bp5UrV2rNmjVq2bLlOds2a9ZMeXl5AfsOHz6sevXq6ZJLLql0JhMWAAAAwGGlMipVaW0fhl+pqvbcLWOMxo0bpxUrVmjVqlVq165d0J9JTEzU66+/HrAvKytLPXv2rHT9isRjjQEAAAAEcd999+mll17SkiVL1LBhQ+Xl5SkvL0/ffvutv016erruuOMO/5/vueceffHFFxo/frx27Nih559/XgsXLtSECROqlM2EBQAAAMA5zZ8/Xz6fT3379lXz5s3921//+ld/m4MHD2rv3r3+P7dr105vvfWWVq1apSuvvFK//e1v9cc//lE/+clPqpTNe1gAAAAAh+Tn58vr9erwp22sK7pv0ukL+Xy+KtWw1AZ7rhoAAAAAnIEJCwAAAABr8ZQwAAAAwGGnnxJmTyWGTccSDHdYAAAAAFiLCQsAAAAAa7EkDAAAAHBYqVWvjZRlR3Nu3GEBAAAAYC0mLAAAAACsxZIwAAAAwGElxqjEove123QswXCHBQAAAIC1mLAAAAAAsBZLwgAAAACH8eLI6uMOCwAAAABrMWEBAAAAYC2WhAEAAAAOK5VRiUXLsFgSBgAAAAAhwIQFAAAAgLVYEgYAAAA4jKeEVR93WAAAAABYiwkLAAAAAGuxJAwAAABwWIkxKjH2LMOy6ViC4Q4LAAAAAGsxYQEAAABgLZaEAQAAAA4r/W6zhU3HEgx3WAAAAABYiwkLAAAAAGuxJAwAAABwWImMSix6WaNNxxIMd1gAAAAAWIsJCwAAAABrsSQMAAAAcFiJOb3ZwqZjCYY7LAAAAACsxYQFAAAAgLVYEgYAAAA4jBdHVh93WAAAAABYiwkLAAAAAGuxJAwAAABwWKkiVKKI2j4Mv1KLjiUY7rAAAAAAsBYTFgAAAADWYkkYAAAA4LBSc3qzhU3HEgx3WAAAAABYiwkLAAAAAGuxJAwAAABwWIllTwmz6ViC4Q4LAAAAAGsxYQEAAABgLZaEAQAAAA5jSVj1cYcFAAAAgLWYsAAAAACwFkvCAAAAAIeVmgiVGnuWYdl0LMFwhwUAAACAtZiwAAAAALAWS8IAAAAAh/GUsOrjDgsAAAAAazFhAQAAAGAtloQBAAAADitRHZVYdK+gpLYPoArsuWoAAAAAcAYmLAAAAACsxZIwAAAAwGHGshdHGouOJRjusAAAAACwFhMWAAAAANZiSRgAAADgMF4cWX3cYQEAAABgLSYsAAAAAKzFkjAAAADAYSWmjkqMPfcKSkxtH0Hl2XPVAAAAAOAMVZqwzJ8/X926dVNcXJzi4uKUmJiov//97/7PDx06pNGjRyshIUExMTEaOHCgcnNzA/q4++67ddlllyk6OlqNGzfWkCFD9MknnwS0OXr0qFJSUuT1euX1epWSkqJjx44FtNm7d68GDx6s2NhYNWrUSGlpaTpx4kRAm61bt6pPnz6Kjo5WixYt9MQTT8iYMJpOAgAAABe4Kk1YWrZsqRkzZmjTpk3atGmTbrzxRg0ZMkTbt2+XMUZDhw7Vrl279Nprr2nLli1q06aN+vXrp4KCAn8fPXr00AsvvKAdO3bo7bffljFGSUlJKikp8bcZMWKEcnJylJmZqczMTOXk5CglJcX/eUlJiQYNGqSCggKtXbtWy5Yt0/Lly/Xggw/62+Tn56t///5KSEjQxo0bNWfOHM2cOVOzZ8+uyfUCAAAAqqxUESpVHYu28HlKWISp4S2H+Ph4Pf3007ruuuvUqVMnbdu2TVdccYWk0xOLJk2a6He/+51SU1Mr/PmPPvpI3bt312effabLLrtMO3bsUOfOnZWdna1evXpJkrKzs5WYmKhPPvlEnTp10t///nfdcsst2rdvnxISEiRJy5Yt0+jRo3X48GHFxcVp/vz5Sk9P16FDh+TxeCRJM2bM0Jw5c/Tll18qIiJ8BgkAAADhKT8/X16vV29+dKliG9at7cPxKzheokHddsnn8ykuLq62D+ecql10X1JSopdfflkFBQVKTExUcXGxJCkqKsrfpm7duoqMjNTatWsrnLAUFBTohRdeULt27dSqVStJ0vr16+X1ev2TFUnq3bu3vF6v1q1bp06dOmn9+vXq0qWLf7IiSQMGDFBxcbE2b96sG264QevXr1efPn38k5WyNunp6dqzZ4/atWtX4XkVFxf7z0WSSktL9fXXX+uSSy5hkgMAAGAhY4yOHz+uhIQE1alDibbbVHnCsnXrViUmJqqoqEgNGjTQihUr1LlzZ508eVJt2rRRenq6FixYoNjYWM2ePVt5eXk6ePBgQB/z5s3Tr3/9axUUFOh73/ue3nnnHUVGRkqS8vLy1KRJk3K5TZo0UV5enr9N06ZNAz6/+OKLFRkZGdCmbdu2AW3KfiYvL++sE5bp06drypQpVb0sAAAAqGX79u1Ty5Yta/swKsSLI6uvyhOWTp06KScnR8eOHdPy5cs1atQorV69Wp07d9by5cv185//XPHx8apbt6769eun5OTkcn2MHDlS/fv318GDBzVz5kzddttt+uCDD/x3Zyq6k2GMCdhfnTZlq9/OdackPT1d48eP9//Z5/OpdevW2rdvn6O3y15++WUNGzbMsf7PR4YbzoEMe/onw64MN5wDGfb0T4ZdGW44h/z8fLVq1UoNGzZ0LAO1p8oTlsjISLVv316S1LNnT23cuFHPPPOMFixYoB49eignJ0c+n08nTpxQ48aN1atXL/Xs2TOgj7Knf3Xo0EG9e/fWxRdfrBUrVmj48OFq1qyZDh06VC73q6++8t8hadasmTZs2BDw+dGjR3Xy5MmANmV3W8ocPnxYksrdnflvHo8nYBlZmbInozklJibG8fWDTme44RzIsKd/MuzKcMM5kGFP/2TYleGGcyjD8n13qvEiP2NMQM2HdHpC0rhxY+Xm5mrTpk0aMmRIpftITEyUz+fThx9+6P98w4YN8vl8uuaaa/xttm3bFrDULCsrSx6PRz169PC3WbNmTcCjjrOyspSQkFBuqRgAAADgpLIXR9q0hYsqHenEiRP1/vvva8+ePdq6daseeeQRrVq1SiNHjpR0+nbfqlWr/I827t+/v4YOHaqkpCRJ0q5duzR9+nRt3rxZe/fu1fr163XbbbcpOjpaN998syTp8ssv18CBAzVmzBhlZ2crOztbY8aM0S233KJOnTpJkpKSktS5c2elpKRoy5Yt+sc//qEJEyZozJgx/tn7iBEj5PF4NHr0aG3btk0rVqzQtGnTNH78eGbfAAAAQJio0pKwQ4cOKSUlRQcPHpTX61W3bt2UmZmp/v37S5IOHjyo8ePH69ChQ2revLnuuOMOPfbYY/6fj4qK0vvvv68//OEPOnr0qJo2barrr79e69atCyi0X7x4sdLS0vwTnVtvvVVz5871f163bl29+eabuvfee3XttdcqOjpaI0aM0MyZM/1tvF6v3nnnHd13333q2bOnLr74Yo0fPz6gPgUAAACA3ao0YVm4cOE5P09LS1NaWtpZP09ISNBbb70VNCc+Pl4vvfTSOdu0bt1ab7zxxjnbdO3aVWvWrAmaBwAAADjp9Isj7VnlY9OxBBM+i9cAAAAAXHCYsAAAAACwVrXfdA8AAACgckpVRyUW3SsolantQ6g0e64aAAAAAJyBCQsAAAAAa7EkDAAAAHCYbS9rLDEsCQMAAACAGmPCAgAAAMBaLAkDAAAAHFaqOiq16F4BTwkDAAAAgBBgwgIAAADAWiwJAwAAABxWYiJUYiJq+zD8bDqWYLjDAgAAAMBaTFgAAAAAWIslYQAAAIDDSlRHJRbdKyjhKWEAAAAAUHNMWAAAAABYK8IYEz73g2pBfn6+vF6vMjIyFBMT41jO/v371aJFC8f6Px8ZbjgHMuzpnwy7MtxwDmTY0z8ZdmW44RwKCwuVmpoqn8+nuLg4x3Kqo+zfks//6yrFNKxb24fjV3i8RHddvcXKa3YmalgqadiwYY4O5tKlSzV8+HDH+j8fGW44BzLs6Z8MuzLccA5k2NM/GXZluOEc8vPzlZqa6lj/qF0sCQMAAABgLe6wAAAAAA7jKWHVZ89VAwAAAIAzMGEBAAAAYC2WhAEAAAAOK5VUYiJq+zD8Smv7AKqAOywAAAAArMWEBQAAAIC1WBIGAAAAOKxUdVRq0b0Cm44lmPA5UgAAAAAXHCYsAAAAAKzFkjAAAADAYSWmjkqMPfcKbDqWYMLnSAEAAABccJiwAAAAALAWS8IAAAAAh5UqQqWy6cWR9hxLMNxhAQAAAGAtJiwAAAAArMWSMAAAAMBhPCWs+sLnSAEAAABccJiwAAAAALAWS8IAAAAAh5Wojkosuldg07EEEz5HCgAAAOCCw4QFAAAAgLVYEgYAAAA4rNREqNTY87JGm44lmAhjjKntg7BZfn6+vF6vMjIyFBMT41jO/v371aJFC8f6Px8ZbjgHMuzpnwy7MtxwDmTY0z8ZdmW44RwKCwuVmpoqn8+nuLg4x3Kqo+zfkk9tvE7RDey5V/DtN6f06++/b+U1O5M9V81yw4YNc3Qwly5dquHDhzvW//nIcMM5kGFP/2TYleGGcyDDnv7JsCvDDeeQn5+v1NRUx/pH7WLCAgAAADis1LKnhJVadCzBhM+RAgAAALjgMGEBAAAAYC2WhAEAAAAOKzV1VGrsuVdg07EEEz5HCgAAAOCCw4QFAAAAgLVYEgYAAAA4rEQRKpE9L2u06ViC4Q4LAAAAAGsxYQEAAABgLZaEAQAAAA7jKWHVFz5HCgAAAOCCw4QFAAAAgLVYEgYAAAA4rER2PZmrpLYPoAq4wwIAAADAWkxYAAAAAFiLJWEAAACAw3hKWPWFz5ECAAAAuOAwYQEAAABgLZaEAQAAAA4rMXVUYtEyLJuOJZjwOVIAAAAAFxwmLAAAAACsxZIwAAAAwGFGESq16MWRxqJjCYY7LAAAAACsFWGMMbV9EDbLz8+X1+tVRkaGYmJiHMvZv3+/WrRo4Vj/5yPDDedAhj39k2FXhhvOgQx7+ifDrgw3nENhYaFSU1Pl8/kUFxfnWE51lP1b8uH1yfI0qF/bh+NX/M1JzUj8u5XX7EwsCaukYcOGOTqYS5cu1fDhwx3r/3xkuOEcyLCnfzLsynDDOZBhT/9k2JXhhnPIz89XamqqY/2HghueErZmzRo9/fTT2rx5sw4ePKgVK1Zo6NCh5/yZxYsX66mnnlJubq68Xq8GDhyomTNn6pJLLql0rj1XDQAAAIC1CgoK1L17d82dO7dS7deuXas77rhDP//5z7V9+3a9/PLL2rhxY5Unl9xhAQAAABBUcnKykpOTK90+Oztbbdu2VVpamiSpXbt2uvvuu/XUU09VKZc7LAAAAIDDSk2EdZt0ejndf2/FxcUhO+drrrlGX375pd566y0ZY3To0CG98sorGjRoUJX6YcICAAAAXKBatWolr9fr36ZPnx6yvq+55hotXrxYt99+uyIjI9WsWTNddNFFmjNnTpX6YcICAAAAXKD27dsnn8/n39LT00PW98cff6y0tDQ9/vjj2rx5szIzM7V7927dc889VeqHGhYAAADAYSWqoxKL7hWUHUtcXJxjT8KdPn26rr32Wj300EOSpG7duik2NlbXXXednnzySTVv3rxS/dhz1QAAAAC4RmFhoerUCZxu1K1bV5JUlVdBMmEBAAAAENQ333yjnJwc5eTkSJJ2796tnJwc7d27V5KUnp6uO+64w99+8ODB+tvf/qb58+dr165d+uCDD5SWlqYf/OAHSkhIqHQuS8IAAAAAh/33k7lsUJ1j2bRpk2644Qb/n8ePHy9JGjVqlBYtWqSDBw/6Jy+SNHr0aB0/flxz587Vgw8+qIsuukg33nijfve731UplwkLAAAAgKD69u17zqVcixYtKrdv3LhxGjduXI1yWRIGAAAAwFrcYQEAAAAcVqo6KrXoXoFNxxJM+BwpAAAAgAsOExYAAAAA1mJJGAAAAOCwEhOhEoueEmbTsQTDHRYAAAAA1mLCAgAAAMBaLAkDAAAAHOaGF0fWFu6wAAAAALAWExYAAAAA1mJJGAAAAOAwY+qo1Nhzr8BYdCzBhM+RAgAAALjgMGEBAAAAYK0IY4yp7YOwWX5+vrxerzIyMhQTE+NYzv79+9WiRQvH+j8fGW44BzLs6Z8MuzLccA5k2NM/GXZluOEcCgsLlZqaKp/Pp7i4OMdyqqPs35I/X32bIhvUr+3D8TvxzUkt7PN/Vl6zM1HDUknDhg1zdDCXLl2q4cOHO9b/+chwwzmQYU//ZNiV4YZzIMOe/smwK8MN55Cfn6/U1FTH+kftYkkYAAAAAGtxhwUAAABwWKmx62WNpWFUFMIdFgAAAADWYsICAAAAwFosCQMAAAAcVmrZiyNtOpZgwudIAQAAAFxwmLAAAAAAsBZLwgAAAACHlSpCpbLoKWEWHUsw3GEBAAAAYC0mLAAAAACsxZIwAAAAwGElJkIlFr040qZjCYY7LAAAAACsxYQFAAAAgLVYEgYAAAA4jBdHVl/4HCkAAACACw4TFgAAAADWYkkYAAAA4LBSRajUoidz8eJIAAAAAAgBJiwAAAAArFWlCcv8+fPVrVs3xcXFKS4uTomJifr73//u//zQoUMaPXq0EhISFBMTo4EDByo3N9f/+ddff61x48apU6dOiomJUevWrZWWliafzxeQc/ToUaWkpMjr9crr9SolJUXHjh0LaLN3714NHjxYsbGxatSokdLS0nTixImANlu3blWfPn0UHR2tFi1a6IknnpAxpiqnDAAAANSYUcTpZWGWbCaMloRVqYalZcuWmjFjhtq3by9J+stf/qIhQ4Zoy5Yt6ty5s4YOHar69evrtddeU1xcnGbPnq1+/frp448/VmxsrA4cOKADBw5o5syZ6ty5s7744gvdc889OnDggF555RV/zogRI/Tll18qMzNTkjR27FilpKTo9ddflySVlJRo0KBBaty4sdauXasjR45o1KhRMsZozpw5kqT8/Hz1799fN9xwgzZu3KidO3dq9OjRio2N1YMPPhiSiwcAAADAWVWasAwePDjgz1OnTtX8+fOVnZ2t+vXrKzs7W9u2bdMVV1whSZo3b56aNGmipUuXKjU1VV26dNHy5cv9P3/ZZZdp6tSp+tnPfqZTp06pXr162rFjhzIzM5Wdna1evXpJkp577jklJibq008/VadOnZSVlaWPP/5Y+/btU0JCgiRp1qxZGj16tKZOnaq4uDgtXrxYRUVFWrRokTwej7p06aKdO3dq9uzZGj9+vCIiwmdWCQAAAFyoql3DUlJSomXLlqmgoECJiYkqLi6WJEVFRfnb1K1bV5GRkVq7du1Z+/H5fIqLi1O9eqfnTuvXr5fX6/VPViSpd+/e8nq9Wrdunb9Nly5d/JMVSRowYICKi4u1efNmf5s+ffrI4/EEtDlw4ID27Nlz1uMpLi5Wfn5+wAYAAADURKmJsG4LF1V+rPHWrVuVmJiooqIiNWjQQCtWrFDnzp118uRJtWnTRunp6VqwYIFiY2M1e/Zs5eXl6eDBgxX2deTIEf32t7/V3Xff7d+Xl5enJk2alGvbpEkT5eXl+ds0bdo04POLL75YkZGRAW3atm0b0KbsZ/Ly8tSuXbsKj2n69OmaMmVKuf0vv/yyYmJiznJVam7//v1aunSpY/2fjww3nAMZ9vRPhl0ZbjgHMuzpnwy7MtxwDoWFhY71jdpX5QlLp06dlJOTo2PHjmn58uUaNWqUVq9erc6dO2v58uX6+c9/rvj4eNWtW1f9+vVTcnJyhf3k5+dr0KBB6ty5syZNmhTwWUXLtYwxAfur06as4P5cy8HS09M1fvz4gONs1aqVhg0bpri4uLP+XE0tXbpUw4cPd6z/85HhhnMgw57+ybArww3nQIY9/ZNhV4YbziE/P1+pqamO9Y/aVeUJS2RkpL/ovmfPntq4caOeeeYZLViwQD169FBOTo58Pp9OnDihxo0bq1evXurZs2dAH8ePH9fAgQP9d2jq16/v/6xZs2Y6dOhQudyvvvrKf4ekWbNm2rBhQ8DnR48e1cmTJwPalN1tKXP48GFJKnd35r95PJ6AZWQAAABATZWaOio19rxRxKZjCabGR2qM8devlPF6vWrcuLFyc3O1adMmDRkyxP9Zfn6+kpKSFBkZqZUrVwbUvEhSYmKifD6fPvzwQ/++DRs2yOfz6ZprrvG32bZtW8BSs6ysLHk8HvXo0cPfZs2aNQGPOs7KylJCQkK5pWIAAAAA7FSlCcvEiRP1/vvva8+ePdq6daseeeQRrVq1SiNHjpR0us5j1apV2rVrl1577TX1799fQ4cOVVJSkqTTd1aSkpJUUFCghQsXKj8/X3l5ecrLy1NJSYkk6fLLL9fAgQM1ZswYZWdnKzs7W2PGjNEtt9yiTp06SZKSkpLUuXNnpaSkaMuWLfrHP/6hCRMmaMyYMf5lWyNGjJDH49Ho0aO1bds2rVixQtOmTeMJYQAAAEAYqdKSsEOHDiklJUUHDx6U1+tVt27dlJmZqf79+0uSDh48qPHjx+vQoUNq3ry57rjjDj322GP+n9+8ebN/KVfZsrIyu3fv9t/5WLx4sdLS0vwTnVtvvVVz5871t61bt67efPNN3Xvvvbr22msVHR2tESNGaObMmf42Xq9X77zzju677z717NlTF198scaPHx9QnwIAAACcD7Y9mcumYwmmShOWhQsXnvPztLQ0paWlnfXzvn37VupN8/Hx8XrppZfO2aZ169Z64403ztmma9euWrNmTdA8AAAAAHYKn2obAAAAABecKj8lDAAAAEDVlCpCpbJnGZZNxxIMd1gAAAAAWIsJCwAAAABrsSQMAAAAcBhPCas+7rAAAAAAsBYTFgAAAADWYkkYAAAA4DCWhFUfd1gAAAAAWIsJCwAAAABrsSQMAAAAcBhLwqqPOywAAAAArMWEBQAAAIC1WBIGAAAAOIwlYdXHHRYAAAAA1mLCAgAAAMBaLAkDAAAAHGYklcqeZVimtg+gCiKMMeF0vOddfn6+vF6vMjIyFBMT41jO/v371aJFC8f6Px8ZbjiH85Wxa9cueTyegH2nTp1SvXr1Qrbv22+/VXR09DnbOd0/GXZluOEcyKh8hhvOgYzTiouLdemll8opbvhuLSwsVGpqqnw+n+Li4hzLqY6yf0v2e+tu1Yv1BP+B8+RUQbHevXmBldesHINz8vl8RpLx+XyO5ixZssTR/s9HhhvO4XxlPP3005XKrcm+ymQ43T8ZdmW44RzIqHyGG86BjLNnhJIbvlvP17/XqqPs2Pq9dbcZuDrNmq3fW3dbe83OxJIwAAAAwGE8Jaz6KLoHAAAAYC0mLAAAAACsRdF9EGWFUk4XJC1dulTDhw93rP/zkeGGczhfGTNmzFCbNm0C9lVUkFiTfZ9//rkuu+yyc7Zzun8y7MpwwzmQUfkMN5wDGad98cUXevjhh+UUN3y3nq9/r1VH2bH1feMX1hXdr7plvpXXrJzaLqKxHUX39vTvpgxbCkHDsdCUDMabDMabjNByw3drOBTd933jF6bfP39lzdb3jV9Ye83OxJIwAAAAANbiKWEAAACAw3hKWPVxhwUAAACAtSi6D4Kie3v6d1MGRfdkMN5kMN5kUHQfOuFQdH/96/daV3S/ZvA8K69ZObVdRGM7iu7t6d9NGbYUgoZjoSkZjDcZjDcZoeWG79ZwKLr/4cr7TN9/jLdm++HK+6y9ZmdiSRgAAAAAazFhAQAAAGAtnhIGAAAAOMyYCBmLnsxl07EEQ9F9EBTd29O/mzIouieD8SaD8SaDovvQCYei+2tfu9+6ovsPhsy18pqVU9tFNLaj6N6e/t2UYUshaDgWmpLBeJPBeJMRWm74bg2HovtrX7vf9Hn3QWu2a1+739prdiaWhAEAAAAOK1WESmXPMiybjiUYiu4BAAAAWIsJCwAAAABrUXQfBEX39vTvpgyK7slgvMlgvMmg6D50wqHovteradYV3W8Y+kcrr1k5tV1EYzuK7u3p300ZthSChmOhKRmMNxmMNxmh5Ybv1nAouu/1apq59p2HrNl6vZpm7TU7E0vCAAAAAFiLp4QBAAAADuPFkdXHHRYAAAAA1qLoPoiyQqmMjAzFxMQ4llNRkV24ZbjhHM5XRm5ubrm/T0VFRYqKigrZvoKCAsXGxp6zndP9k2FXhhvOgYzKZ7jhHMg4rbCwUB06dJBT3PDdWlhYqNTUVCsLyMv+LfmDFb+0ruj+wx89Y+U1K6e2i2hsR9G9Pf27KcOWQtBwLDQlg/Emg/EmI7Tc8N0aDkX3Pf/2K9P77d9Ys/X826+svWZnYkkYAAAAAGsxYQEAAABgLZ4SBgAAADiMp4RVH0X3QfCme3v6d1MGb7ong/Emg/Emgzfdh044vOm+x/IHrCu63/yT31t5zcqp7SIa21F0b0//bsqwpRA0HAtNyWC8yWC8yQgtN3y3hkPRfY/lD5hemQ9bs/VY/oC11+xMLAkDAAAAHGZMhEotWoYVTkvCKLoHAAAAYC0mLAAAAACsRdF9EBTd29O/mzIouieD8SaD8SaDovvQCYei+6teGa+6MfYU3ZcUFmvL/8y28pqVU9tFNLaj6N6e/t2UYUshaDgWmpLBeJPBeJMRWm74bg2HovurXhlver6Vbs121Svjrb1mZ2JJGAAAAABr8ZQwAAAAwGGlilCE7HkyV6lFxxIMd1gAAAAAWIui+yAourenfzdlUHRPBuNNBuNNBkX3oRMORffdX3nQuqL7f//PLCuvWTm1XURjO4ru7enfTRm2FIKGY6EpGYw3GYw3GaHlhu/WcCi67/byBHPVm49Ys3V7eYK11+xMLAkDAAAAYC0mLAAAAACsxVPCAAAAAIeVmghFGHuezFVq0bEEQ9F9EBTd29O/mzIouieD8SaD8SaDovvQCYei+y7/95B1RffbbnvaymtWTm0X0diOont7+ndThi2FoOFYaEoG400G401GaLnhuzUciu67/N9Dpvsbj1qzdfm/h6y9ZmdiSRgAAADgMGNOb7aw6ViCoegeAAAAgLWYsAAAAACwFkX3QZQVSmVkZCgmJsaxnIqK7MItww3ncL4ycnNzy/19KioqUlRUVMj2FRQUKDY29pztnO6fDLsy3HAOZFQ+ww3nQMZphYWF6tChg5zihu/WwsJCpaamWllAXvZvyc7Lfm1d0f3HP33KymtWTm0X0diOont7+ndThi2FoOFYaEoG400G401GaLnhuzUciu47L/u16bryMWu2zst+be01OxNLwgAAAABYi6eEAQAAAA4zJkLGopc12nQswXCHBQAAAIC1KLoPgjfd29O/mzJ40z0ZjDcZjDcZvOk+dMLhTfeXL/2NdUX3O4b/zsprVk5tF9HYjqJ7e/p3U4YthaDhWGhKBuNNBuNNRmi54bs1HIruOy152HR+dZI1W6clD1t7zc7EkjAAAAAA1mLCAgAAAMBaPCUMAAAAcJgxpzdb2HQswVB0HwRF9/b076YMiu7JYLzJYLzJoOg+dMKh6L7j4oetK7rfOXKGldesnNouorEdRff29O+mDFsKQcOx0JQMxpsMxpuM0HLDd2s4FN13XPywuXzFJGu2jovDp+ieJWEAAACAw04vCbPnZY3htMaKonsAAAAA1mLCAgAAAMBaFN0HQdG9Pf27KYOiezIYbzIYbzIoug+dcCi6b/+/6aobE1Xbh+NXUlikz1KmW3nNyqntIhrbUXRvT/9uyrClEDQcC03JYLzJYLzJCC03fLeGQ9F9+/9NN52WT7Fma/+/6dZeszOxJAwAAACAtXhKGAAAAOAw891mC5uOJRjusAAAAACwFkX3QVB0b0//bsqg6J4MxpsMxpsMiu5DJxyK7i+zsOj+c4ru3YGie3v6d1OGLYWg4VhoSgbjTQbjTUZoueG7NRyK7i99caLp8MoT1myXvjjR2mt2JpaEAQAAALAWExYAAAAA1uIpYQAAAIDTeExYtVF0H0RZoVRGRoZiYmIcy6moyC7cMtxwDucrIzc3t9zfp6KiIkVFRYVsX0FBgWJjY8/Zzun+ybArww3nQEblM9xwDmScVlhYqA4dOsgpbvhuLSwsVGpqqpUF5GX/lrz0LxOtK7rfNWqaldesnNouorEdRff29O+mDFsKQcOx0JQMxpsMxpuM0HLDd2tYFN3/ZaLp8PIT1myX/iV8iu5ZEgYAAAA4zUTImIjaPor/z6ZjCYKiewAAAADWYsICAAAAwFoU3QfBm+7t6d9NGbzpngzGmwzGmwzedB864fCm+3YvPKI6FhXdlxYWafedU628ZuXUdhGN7Si6t6d/N2XYUggajoWmZDDeZDDeZISWG75bw6Hovt0Lj5jL/vpba7Z2LzxS5Wu2evVqc8stt5jmzZsbSWbFihVBf6aoqMhMnDjRtG7d2kRGRppLL73ULFy4sErXkKJ7AAAAAEEVFBSoe/fuuvPOO/WTn/ykUj9z22236dChQ1q4cKHat2+vw4cP69SpU1XKZcICAAAAOMxY9pSw6hxLcnKykpOTK90+MzNTq1ev1q5duxQfHy9Jatu2bZVzKboHAAAALlD5+fkBW3Fxccj6XrlypXr27KmnnnpKLVq0UMeOHTVhwgR9++23VeqHovsgKLq3p383ZVB0TwbjTQbjTQZF96ETDkX3bZ9/1Lqi+z13PVlu/6RJkzR58uSgPx8REaEVK1Zo6NChZ20zcOBArVq1Sv369dPjjz+u//znP7r33nt144036vnnn6/8wVap4uUCRNG9Pf27KcOWQtBwLDQlg/Emg/EmI7Tc8N0aDkX3bRc+Zi5dOtWare3Cx4wks2/fPuPz+fxbUVFRpc5LlSi679+/v4mKijLHjh3z71u+fLmJiIgwhYWFlb6GLAkDAAAALlBxcXEBm8fjCVnfzZs3V4sWLeT1ev37Lr/8chlj9OWXX1a6HyYsAAAAAELu2muv1YEDB/TNN9/49+3cuVN16tRRy5YtK90PExYAAADAYcbYt1XVN998o5ycHOXk5EiSdu/erZycHO3du1eSlJ6erjvuuMPffsSIEbrkkkt055136uOPP9aaNWv00EMP6a677lJ0dHSlcym6D4Kie3v6d1MGRfdkMN5kMN5kUHQfOuFQdN8m4zHriu6/SP1tla7ZqlWrdMMNN5TbP2rUKC1atEijR4/Wnj17tGrVKv9nn3zyicaNG6cPPvhAl1xyiW677TY9+eSTVZqwUHQfBEX39vTvpgxbCkHDsdCUDMabDMabjNByw3drOBTdt8l4zLRbMtWarU3GY9ZeszPx4kgAAADAaea7zRY2HUsQ1LAAAAAAsBYTFgAAAADWoug+CIru7enfTRkU3ZPBeJPBeJNB0X3ohEPRfetnH7eu6H7v2CesvGblVKXgZd68eaZr166mYcOGpmHDhqZ3797mrbfe8n+el5dnRo0aZZo3b26io6PNgAEDzM6dOwP6WLBggenTp49p2LChkWSOHj1aLufrr782P/vZz0xcXJyJi4szP/vZz8q1++KLL8wtt9xiYmJizCWXXGLGjRtniouLA9p89NFH5vrrrzdRUVEmISHBTJkyxZSWllbllCm6t6h/N2XYUggajoWmZDDeZDDeZISWG75bw6HovvWzj5u2L02zZmv97OPWXrMzVWlJWMuWLTVjxgxt2rRJmzZt0o033qghQ4Zo+/btMsZo6NCh2rVrl1577TVt2bJFbdq0Ub9+/VRQUODvo7CwUAMHDtTEiRPPmjNixAjl5OQoMzNTmZmZysnJUUpKiv/zkpISDRo0SAUFBVq7dq2WLVum5cuX68EHH/S3yc/PV//+/ZWQkKCNGzdqzpw5mjlzpmbPnl2VUwYAAABQi6r0lLDBgwcH/Hnq1KmaP3++srOzVb9+fWVnZ2vbtm264oorJEnz5s1TkyZNtHTpUqWmpkqSfvWrX0lSwPOZ/9uOHTuUmZmp7Oxs9erVS5L03HPPKTExUZ9++qk6deqkrKwsffzxx9q3b58SEhIkSbNmzdLo0aM1depUxcXFafHixSoqKtKiRYvk8XjUpUsX7dy5U7Nnz9b48eMVERFRlVMHAAAAaoZCjGqpdtF9SUmJli1bpoKCAiUmJqq4uFiSFBX1/9fm1a1bV5GRkVq7dm2l+12/fr28Xq9/siJJvXv3ltfr1bp16/xtunTp4p+sSNKAAQNUXFyszZs3+9v06dNHHo8noM2BAwe0Z8+es+YXFxcrPz8/YAMAAABQO6pcdL9161YlJiaqqKhIDRo00JIlS3TzzTfr5MmT6tChg37wgx9owYIFio2N1ezZs5Wenq6kpCS9/fbbAf2UvSnz6NGjuuiii/z7p02bpkWLFmnnzp0B7Tt27Kg777xT6enpGjt2rPbs2aOsrKyANh6PR4sWLdLw4cOVlJSktm3b6tlnn/V/fuDAAbVo0ULr1q1TYmJihec3efJkTZkypdz+jIwMxcTEVOVSVUlFRXbhluGGczhfGbm5ueX+PhUVFQVM+Gu6r6CgQLGxseds53T/ZNiV4YZzIKPyGW44BzJOKywsVIcOHeQUN3y3FhYWKjU11coC8oCi+2iLiu6/dWnRvTHGFBcXm9zcXLNx40bz8MMPm0aNGpnt27cbY4zZtGmT6d69u5Fk6tatawYMGGCSk5NNcnJyuX7++c9/Vlh0P3XqVNOxY8dy7du3b2+mT59ujDFmzJgxJikpqVyb+vXrm6VLlxpjjOnfv78ZO3ZswOdffvmlkWTWr19/1vMrKioyPp/Pv+3bt4+ie0v6d1OGLYWg4VhoSgbjTQbjTUZoueG7NRyK7lstmGTavDjdmq3VgknWXrMzVflN95GRkWrfvr0kqWfPntq4caOeeeYZLViwQD169FBOTo58Pp9OnDihxo0bq1evXurZs2el+2/WrJkOHTpUbv9XX32lpk2b+tts2LAh4POjR4/q5MmTAW3y8vIC2hw+fFiS/G0q4vF4ApaRAQAAAKg9NX5xpDHGX79Sxuv1qnHjxsrNzdWmTZs0ZMiQSveXmJgon8+nDz/80L9vw4YN8vl8uuaaa/xttm3bpoMHD/rbZGVlyePxqEePHv42a9as0YkTJwLaJCQkqG3bttU5VQAAAADnWZVqWCZOnKjk5GS1atVKx48f17JlyzRjxgxlZmaqf//+evnll9W4cWO1bt1aW7du1S9/+Uv16NFDy5cv9/eRl5envLw8bdq0SWPGjNGaNWvUsGFDtW7dWvHx8ZKk5ORkHThwQAsWLJAkjR07Vm3atNHrr78u6XTB/5VXXqmmTZvq6aef1tdff63Ro0dr6NChmjNnjiTJ5/OpU6dOuvHGGzVx4kTl5uZq9OjRevzxxwMefxwML460p383ZfDiSDIYbzIYbzJ4cWTohMOLI1v9eZJ1NSz77pli5TUrpyrrx+666y7Tpk0bExkZaRo3bmxuuukmk5WV5f/8mWeeMS1btjT169c3rVu3No8++mi5lzlOmnR6vdyZ2wsvvOBvc+TIETNy5Ej/CypHjhxZ4YsjBw0aZKKjo018fLy5//77TVFRUUCbjz76yFx33XXG4/GYZs2amcmTJ/PiyDDu300ZtqyrDsd122Qw3mQw3mSElhu+W8OihuXPk0ybv0y3Zmv1Z5fWsCxcuPCcn6elpSktLe2cbSZPnqzJkyefs018fLxeeumlc7Zp3bq13njjjXO26dq1q9asWXPONgAAAADsVeWiewAAAABVFfHdZgubjuXcalx0DwAAAABOqfKLIy80FN3b07+bMii6J4PxJoPxJoOi+9AJj6L7yRYW3U+28pqVU9tFNLaj6N6e/t2UYUshaDgWmpLBeJPBeJMRWm74bg2Lovv5k02bRTOs2VrNn2ztNTsTS8IAAAAAWIsJCwAAAABr8ZQwAAAAwGllbx+0hU3HEgRF90FQdG9P/27KoOieDMabDMabDIruQycsiu7nWVh0fy9F965A0b09/bspw5ZC0HAsNCWD8SaD8SYjtNzw3RoWRffzJps2L8ywZms1L3yK7lkSBgAAADjNRJzebGHTsQRB0T0AAAAAazFhAQAAAGAtiu6DoOjenv7dlEHRPRmMNxmMNxkU3YdOOBTdt5w7xbqi+y/vn2TlNSuntotobEfRvT39uynDlkLQcCw0JYPxJoPxJiO03PDdGg5F9y3nTjGtF/7Omq3l3CnWXrMzsSQMAAAAgLV4ShgAAADgNF4cWW3cYQEAAABgLYrugygrlMrIyFBMTIxjORUV2YVbhhvO4Xxl5Obmlvv7VFRUpKioqJDtKygoUGxs7DnbOd0/GXZluOEcyKh8hhvOgYzTCgsL1aFDBznFDd+thYWFSk1NtbKA3F90P8fCovtxFN27AkX39vTvpgxbCkHDsdCUDMabDMabjNByw3drWBTd//EJ0/q5p6zZWv7xCWuv2ZlYEgYAAADAWkxYAAAAAFiLp4QBAAAADoswpzdb2HQswVB0HwRvurenfzdl8KZ7MhhvMhhvMnjTfeiEw5vuWz3zhHVF9/t++biV16yc2i6isR1F9/b076YMWwpBw7HQlAzGmwzGm4zQcsN3azgU3bd65gnT5tmnrNlaPRM+RfcsCQMAAACcxosjq42iewAAAADWYsICAAAAwFoU3QdB0b09/bspg6J7MhhvMhhvMii6D52wKLr//W/tK7p/4DErr1k5tV1EYzuK7u3p300ZthSChmOhKRmMNxmMNxmh5Ybv1rAouv/9b02bPz9tzdbq97+19pqdiSVhAAAAAKzFU8IAAAAAp/GUsGrjDgsAAAAAa1F0HwRF9/b076YMiu7JYLztztj2r+06vv/bgH0NW0RXat/FlzXQ0c+/Cdqu9dXNGW8yKLoPkbAoup9tYdH9eIruXYGie3v6d1OGLYWg4VhoSgbjfT4yxg0fb/pF/E/AVtl9Eyc8Uql2jDcZFN2HTlgU3c/6rWkz72lrtlazKLoHAAAAgBpjwgIAAADAWjwlDAAAAHAaTwmrNorug6Do3p7+3ZRB0T0ZjLfdGeej6L4mhfiM94WVQdF9cGFRdD/TwqL7CRTduwJF9/b076YMWwpBw7HQlAzG2y1F9zUpxGe8yQglN3y3hkXR/czfmjZ/etqardXM8Cm6Z0kYAAAA4DQTcXqzhU3HEgRF9wAAAACsxYQFAAAAgLUoug+irFAqIyNDMTExjuVUVGQXbhluOIfzlZGbm1vu71NRUZGioqJCtq+goECxsbHnbOd0/2TYlVFr5/BtvqI8JwL3FUeW21fwbZRio4sC9h0/7tGpopKAffWi6lZqX7Q3qtrncdx3vNq59WPq6WThqZAdc9iNNxkhzygsLFSHDh3kFDd8txYWFio1NdXKAvKyf0u2fupJ64ru9/76USuvWTm1XURjO4ru7enfTRm2FIKGY6EpGeE33otfSDUlBzsEbBXte/p3vym3rybF7xTdh//fWTLOnhFKbvhuDYei+9ZPPWnazplpzdb6qSetvWZnYkkYAAAAAGvxlDAAAADAabw4stq4wwIAAADAWhTdB8Gb7u3p300ZvOmeDGvGe9+/ldDkSMC+A4cvKbfv088Tyr29vaK3stfWG+JrkmH7eVR0fPx+X1gZvOk+uHB4033r31lYdP+b8Ci6Z0kYUAvq1atX7j/cFf3HvCb7Zs6cGbSd0/2TYVdGRT+3ZNF7+unA1QH7lmX2KbfvsVm3aceyvQH7Egf3LNdf2usPlmt3+U9bV2rfDx7sVO2frUmG7edR0fHx+33hZQAXMpaEAQAAALAWExYAAAAA1mJJGAAAAOCwCEkRFlWOR9T2AVQBRfdBUHRvT/9uyqDonozayKiokLz1lfUrVXS/a19zXdrqYMC+7dubVq5ovIKMin62torubc+g6J4Miu6DC4ei+za/e1J1oiwqui8q0hcU3QM4G4ruyaiNjIoKyXsnXVSpovvZL/643L5fZQ2uVNF4RRkV/WxtFd3bnkHRPRkU3eNCRw0LAAAAAGtxhwUAAABwmok4vdnCpmMJgjssAAAAAKxF0X0QFN3b07+bMii6J8MNRfcVtavJvspmVLbY3y1F9xXta9L5Yn6/L6AMiu6DC4ui+xlT7Su6f/gRK6/ZmVgSBtQCiu7JcEPRfUXtarKvshmVLfZ3S9F9RftaP9Wc3+8LLAMuYL7bbGHTsQTBkjAAAAAA1mLCAgAAAMBaLAkDAAAAnMaSsGqj6D4Iiu7t6d9NGRTdk2FL0X1l30xP0b1dGRTdX1gZFN0HFxZF99MsLLqfSNE9gLOg6J4MW4ruK/tmeoru7cqg6P7CywAuZExYAAAAAIdFmNObLWw6lmAougcAAABgLSYsAAAAAKxF0X0QZYVSGRkZiomJcSynoiK7cMtwwzmcr4zc3Nxyf5+KiooUdUYxXk32FRQUKDY29pztnO6fDLsyKvq5477jOlVUErCvXlTdcvsiG9RTbHRRYP/FkYrynAjs77inUv1Fx9Up97MF30aFNKOiffVj6ulk4alq/axNGZEN6vP7fQFlFBYWqkOHDnKKG75bCwsLlZqaamUBedm/Jds+aV/R/Z5HKbp3lWHDhvGUsFru300ZM2fO1IQJE4Lm1rRIM1iG0/2TYVdGRT+XNqJyhfgDZlym8Xf8LWBfhQXx4ytXEH/n8xUX9ocy42wF8R/O+rRaP2tTxoCnevH7fYFl8P19bvn5+UpNTXWsf9QuloQBAAAAsBZ3WAAAAACn8eLIauMOCwAAAABrUXQfBG+6t6d/N2XwpnsybBnvbf/abs3b28ngTfdk8Kb76gqHN923/a2FRfePUXQP4Cx40z0Ztox32uuVK7p3yxvi3ZLBm+4vvAyEP14cWX0sCQMAAABgLSYsAAAAAKzFkjAAAADAaSbi9GYLm44lCIrug6Do3p7+3ZRB0T0ZtZFR2QJ7NxeruyWDovsLK4Oi++DCoei+3ZRp1hXd75400cprdibusAC1gKJ7Mmojo7IF9m4uVndLBkX3F14GcCFjwgIAAAA4jRdHVhtF9wAAAACsxYQFAAAAgLUoug+Cont7+ndTBkX3ZFB0TwZF92RQdB864VB0f+kk+4rud02h6B7AWVB0TwZF92RQdE8GRfdA5bAkDAAAAIC1uMMCAAAAOI2nhFUbd1gAAAAAWIui+yAourenfzdlUHRPBkX3ZFB0TwZF96ETFkX3j1tYdP8ERfcAzoKiezIouieDonsyKLq/wBgpwqbbBDYdSxAsCQMAAABgLSYsAAAAAKzFkjAAAADAaTwlrNooug+irFAqIyNDMTExjuVUVGQXbhluOIfzlZGbm1vu71NRUZGizijGq8m+goICxcbGnrOd0/2TUbsZx33HdaqoxP/nelF1A/5clX31Y+rpZOGpav0sGaHPiGxQn9/vCyijsLBQHTp0kFPc8N1aWFio1NRUKwvI/UX3j05TXYuK7kuKirTrSYruXWXYsGE8JayW+3dTxsyZMzVhwoSguTUt0gyW4XT/ZNRuRtqIwCL7mhaSfzjr02r9LBmhzxjwVC9+vy+wDL6/zy0/P1+pqamO9Y/axYQFAAAAcBpLwqqNonsAAAAA1mLCAgAAAMBaFN0HwZvu7enfTRm86Z6MUGd88vEnQd+ubvvb28moeF/rq5vz+32BZ/Cm++DC4U33l020r+j+82kU3QM4C950T0aoMx556NGgxdq2v72djIr3JQ7uye83GQIuZCwJAwAAAGAtJiwAAAAArMWEBQAAAIC1KLoPgqJ7e/p3UwZF92Scj4xt/9puRdF9RUXjZx5bTTMouuf3280ZFN0HR9F91VF0D+CcKLon43xkpL0e2jfdh7Jo/Mxjq2kGRff8frs9Ay7AiyOrjSVhAAAAAKzFhAUAAACAtVgSBgAAADgswpzebGHTsQRD0X0QFN3b07+bMii6J6Mm/VVUsN6k88VWFN1XVCAeygcHnLfzuLK+EpocCdh34PAlldr36ecJIX1AAb/fZFB0H1w4FN23f9i+ovvPZlB0D+AsKLonoyb9VVSw3vqp5lYU3VdUIB7KBwecr/PonXSRfjpwdcC+ZZl9KrXvsVm3hbTAnt9vMii6x4WOCQsAAABwPrCuqVoougcAAABgLSYsAAAAAKxF0X0QFN3b07+bMii6JyPURfeVKSYPx6L7WhuLff+m6N6WsSCDovtKCIui+99MU12PRUX3xUX67HcuLLqfP3++5s+frz179kiSrrjiCj3++ONKTk6WJB06dEi/+c1vlJWVpWPHjun666/XnDlz1KFDB38fxcXFmjBhgpYuXapvv/1WN910k+bNm6eWLVv62xw9elRpaWlauXKlJOnWW2/VnDlzdNFFF/nb7N27V/fdd5/ee+89RUdHa8SIEZo5c6YiIyP9bbZu3ar7779fH374oeLj43X33XfrscceU0RERJUvFBBKFN2TEeqi+8oUk4dj0X1tjcWSRe9RdG/JWJBB0T1QpSVhLVu21IwZM7Rp0yZt2rRJN954o4YMGaLt27fLGKOhQ4dq165deu2117Rlyxa1adNG/fr1U0FBgb+PX/3qV1qxYoWWLVumtWvX6ptvvtEtt9yikpISf5sRI0YoJydHmZmZyszMVE5OjlJSUvyfl5SUaNCgQSooKNDatWu1bNkyLV++XA8++KC/TX5+vvr376+EhARt3LhRc+bM0cyZMzV79uyaXC8AAAAA51GV7rAMHjw44M9Tp07V/PnzlZ2drfr16ys7O1vbtm3TFVdcIUmaN2+emjRpoqVLlyo1NVU+n08LFy7U//7v/6pfv36SpJdeekmtWrXSu+++qwEDBmjHjh3KzMxUdna2evXqJUl67rnnlJiYqE8//VSdOnVSVlaWPv74Y+3bt08JCQmSpFmzZmn06NGaOnWq4uLitHjxYhUVFWnRokXyeDzq0qWLdu7cqdmzZ2v8+PHcZQEAAMB5w4sjq6/aRfclJSVatmyZCgoKlJiYqOLiYklS1H+9EKdu3bqKjIzU2rVrJUmbN2/WyZMnlZSU5G+TkJCgLl26aN26dZKk9evXy+v1+icrktS7d295vd6ANl26dPFPViRpwIABKi4u1ubNm/1t+vTpI4/HE9DmwIED/iVtFSkuLlZ+fn7ABgAAAKB2VLnofuvWrUpMTFRRUZEaNGigJUuW6Oabb9bJkyfVoUMH/eAHP9CCBQsUGxur2bNnKz09XUlJSXr77be1ZMkS3Xnnnf7JTZmkpCS1a9dOCxYs0LRp07Ro0SLt3LkzoE3Hjh115513Kj09XWPHjtWePXuUlZUV0Mbj8WjRokUaPny4kpKS1LZtWz377LP+zw8cOKAWLVpo3bp1SkxMrPD8Jk+erClTppTbn5GRoZiYmKpcqiqpqMgu3DLccA7nKyM3N7fc36eioqKACX9N9xUUFCg2Nvac7Zzun4zzl/HN8W90svBUwL56UXV1qqjkrH+uyr76MfWC9i9J0d4oq69TZTOO+46XP7e4OorynAhsd9xj7bWy/e8sGZXfV1hYGFAPHGpu+G4tLCz0r+axrYC8rOi+w6/tK7rPfSo8iu5lqqi4uNjk5uaajRs3mocfftg0atTIbN++3RhjzKZNm0z37t2NJFO3bl0zYMAAk5ycbJKTk40xxixevNhERkaW67Nfv37m7rvvNsYYM3XqVNOxY8dybdq3b2+mT59ujDFmzJgxJikpqVyb+vXrm6VLlxpjjOnfv78ZO3ZswOdffvmlkWTWr19/1vMrKioyPp/Pv+3bt89IMj6frzKXp9qWLFniaP/nI8MN53C+Mp5++ulK5dZkX2UynO6fjPOXMXHCI6ZfxP8EbOOGjz/nn6uyrzL994v4H+uvU2UzKjq3xS+kmpKDHQI2m6+VW8aCjIozQskN360+n++8/HutOsqOrcND08z3Hp1tzdbhoWnWXrMzVXlJWGRkpNq3b6+ePXtq+vTp6t69u5555hlJUo8ePZSTk6Njx47p4MGDyszM1JEjR9SuXTtJUrNmzXTixAkdPXo0oM/Dhw+radOm/jaHDh0ql/vVV18FtMnLywv4/OjRozp58uQ52xw+fFiS/G0q4vF4FBcXF7ABAAAAqB01fnGkMabcEi+v16vGjRsrNzdXmzZt0pAhQySdntDUr19f77zzjr/twYMHtW3bNl1zzTWSpMTERPl8Pn344Yf+Nhs2bJDP5wtos23bNh08eNDfJisrSx6PRz169PC3WbNmjU6cOBHQJiEhQW3btq3paQMAAAA4D6pUwzJx4kQlJyerVatWOn78uJYtW6YZM2YoMzNT/fv318svv6zGjRurdevW2rp1q375y1+qR48eWr58ub+PX/ziF3rjjTe0aNEixcfHa8KECTpy5Ig2b96sunXrSpKSk5N14MABLViwQJI0duxYtWnTRq+//rqk0wX/V155pZo2baqnn35aX3/9tUaPHq2hQ4dqzpw5kiSfz6dOnTrpxhtv1MSJE5Wbm6vRo0fr8ccfD3j8cTC8ONKe/t2UwYsjyaiNjIpeOFmTF0fW5CWRNl+ns+2r7PWz5Vq5eSwutAxeHBlcOLw4suME+2pYds50YQ3LXXfdZdq0aWMiIyNN48aNzU033WSysrL8nz/zzDOmZcuWpn79+qZ169bm0UcfNcXFxQF9fPvtt+b+++838fHxJjo62txyyy1m7969AW2OHDliRo4caRo2bGgaNmxoRo4caY4ePRrQ5osvvjCDBg0y0dHRJj4+3tx///2mqKgooM1HH31krrvuOuPxeEyzZs3M5MmTTWlpaVVO+bytiXTD+lE3nMP5yrBlXXU4rtsmo/oZoa5hcet1Otu+cLtWbh4LMkLLDd+t4VDD0nHCNHP5I7Ot2TpOCJ8aliq9h2XhwoXn/DwtLU1paWnnbBMVFaU5c+b474RUJD4+Xi+99NI5+2ndurXeeOONc7bp2rWr1qxZc842AAAAAOxVpQkLAAAAgGow3222sOlYgqhx0T0AAAAAOKXKL4680FB0b0//bsqg6J4MxpsMxpsMiu5DJyyK7h+0sOh+lguL7i9EFN3b07+bMmwpBA3HQlMyGG8yGG8yQssN361hUXQ/fpq5PH22NVvH8eFTdM+SMAAAAABBrVmzRoMHD1ZCQoIiIiL06quvVvpnP/jgA9WrV09XXnlllXOZsAAAAAAIqqCgQN27d9fcuXOr9HM+n0933HGHbrrppmrl8pQwAAAAwGER5vRmi+ocS3JyspKTk6v8c3fffbdGjBihunXrVumuTBmK7oOg6N6e/t2UQdE9GYw3GYw3GRTdh044FN13esC+ovtPfz9R+/btC7hmHo9HHo8n6M9HRERoxYoVGjp06DnbvfDCC5o3b57Wr1+vJ598Uq+++qpycnKqdrC1XURjO4ru7enfTRm2FIKGY6EpGYw3GYw3GaHlhu/WcCi67/TANNP54dnWbJ0emFb2ZpiAbdKkSZU6L0lmxYoV52yzc+dO06RJE/Ppp58aY4yZNGmS6d69e5WvIUvCAAAAAKdZ+uLIiu6whEJJSYlGjBihKVOmqGPHjjXqiwkLAAAAcIGKi4tzZBnd8ePHtWnTJm3ZskX333+/JKm0tFTGGNWrV09ZWVm68cYbK9UXExYAAAAAIRUXF6etW7cG7Js3b57ee+89vfLKK2rXrl2l+6LoPgiK7u3p300ZFN2TwXiTwXiTQdF96IRF0f0vLSy6f6Zqb7r/5ptv9Nlnn0mSrrrqKs2ePVs33HCD4uPj1bp1a6Wnp2v//v168cUXK/z5yZMnU3TvBIru7enfTRm2FIKGY6EpGYw3GYw3GaHlhu/WsCi6/+U00/nXs63ZOv2y6m+6/+c//1lhof6oUaOMMcaMGjXK9OnT56w/T9E9AAAAAMf07dtX5hyLsxYtWnTOn588ebImT55c5VwmLAAAAIDD3PDiyNpSp7YPAAAAAADOhqL7IMoKpTIyMhQTE+NYTkVFduGW4YZzOF8Zubm55f4+FRUVKSoqKmT7CgoKFBsbe852TvdPhl0ZbjgHMiqf4YZzIOO0wsJCdejQQU5xw3drYWGhUlNTrS66/16afUX3n/yxakX3tabKVS8XGIru7enfTRm2FIKGY6EpGYw3GYw3GaHlhu/WcCi6/964aeaKCbOt2b43rupF97WFJWEAAAAArMWEBQAAAIC1eEoYAAAA4DCeElZ9FN0HwZvu7enfTRm86Z4MxpsMxpsM3nQfOuHwpvvL77ev6H7HXIruXYGie3v6d1OGLYWg4VhoSgbjTQbjTUZoueG7NRyK7i+/f5rp8uBsa7bL7w+fonuWhAEAAABOM99ttrDpWIKg6B4AAACAtZiwAAAAALAWRfdBUHRvT/9uyqDongzGmwzGmwyK7kMnLIru77Ww6H4eRfeuQNG9Pf27KcOWQtBwLDQlg/Emg/EmI7Tc8N0aFkX3904zXR6Ybc12+b3hU3TPkjAAAAAA1uIpYQAAAIDDIr7bbGHTsQTDHRYAAAAA1qLoPgiK7u3p300ZFN2TwXiTwXiTQdF96IRD0X1nC4vuP6bo3h0ourenfzdl2FIIGo6FpmQw3mQw3mSElhu+W8Oh6L7zL6aZrr+abc3W+RcU3QMAAABAjTFhAQAAAGAtnhIGAAAAOCzCnN5sYdOxBEPRfRAU3dvTv5syKLong/Emg/Emg6L70AmHovsr7rGv6H77nym6dwWK7u3p300ZthSChmOhKRmMNxmMNxmh5Ybv1nAour/inmmm2y9nW7NdcU/4FN2zJAwAAABwmvlus4VNxxIERfcAAAAArMWEBQAAAIC1KLoPoqxQKiMjQzExMY7lVFRkF24ZbjiH85WRm5tb7u9TUVGRoqKiQravoKBAsbGx52zndP9k2JXhhnMgo/IZbjgHMk4rLCxUhw4d5BQ3fLcWFhYqNTXVygJyf9H93dNUN9KiovsTRdq+gKJ7V6Do3p7+3ZRhSyFoOBaaksF4k8F4kxFabvhuDYui+7unmW7jZluzXXF3+BTdsyQMAAAAgLV4ShgAAADgMF4cWX3cYQEAAABgLYrug+BN9/b076YM3nRPBuNNBuNNBm+6D51weNN9l7H2Fd1ve5aie1eg6N6e/t2UYUshaDgWmpLBeJPBeJMRWm74bg2HovsuY6aZ7vfNtmbrMoaiewAAAACoMSYsAAAAAKzFU8IAAAAAh/GUsOqj6D4Iiu7t6d9NGRTdk8F4k8F4k0HRfeiEQ9F911T7iu63ZlB07woU3dvTv5sybCkEDcdCUzIYbzIYbzJCyw3freFQdN81dZq58t7Z1mxdU8On6J4lYQAAAIDTzHebLWw6liAougcAAABgLSYsAAAAAKxF0X0QFN3b07+bMii6J4PxJoPxJoOi+9AJh6L7bnfZV3T/0fMU3bsCRff29O+mDFsKQcOx0JQMxpsMxpuM0HLDd2s4FN13u2uaueqe2dZs3e4Kn6J7loQBAAAAsBZPCQMAAACcxlPCqo07LAAAAACsRdF9EBTd29O/mzIouieD8SaD8SaDovvQCYui+zstLLp/gaJ7V6Do3p7+3ZRhSyFoOBaaksF4k8F4kxFabvhuDYui+9HTzFVjZ1uzdRtN0T0AAAAA1BgTFgAAAADW4ilhAAAAgMMizOnNFjYdSzAU3QdRViiVkZGhmJgYx3IqKrILtww3nMP5ysjNzS3396moqEhRUVEh21dQUKDY2NhztnO6fzLsynDDOZBR+Qw3nAMZpxUWFqpDhw5yihu+WwsLC5WammplAXnZvyW7j7Kv6P7ff6Ho3hUourenfzdl2FIIGo6FpmQw3mQw3mSElhu+W8Oh6L77qGnm6jGzrdm6jwqfonuWhAEAAABO48WR1UbRPQAAAABrMWEBAAAAYC2K7oPgTff29O+mDN50TwbjTQbjTQZvug+dcHjT/ZUpU60rus/530esvGbl1HYRje0ourenfzdl2FIIGo6FpmQw3mQw3mSElhu+W8Oh6P7KlKmmx89nWbNdmTLV2mt2JpaEAQAAALAWTwkDAAAAnMZTwqqNOywAAAAArEXRfRAU3dvTv5syKLong/Emg/Emg6L70AmLovufWVh0/xJF965A0b09/bspw5ZC0HAsNCWD8SaD8SYjtNzw3RoORfdXjZxqet45y5rtqpEU3QMAAABAjTFhAQAAAGAtnhIGAAAAOI2nhFUbRfdBUHRvT/9uyqDongzGmwzGmwyK7kMnHIrurxphX9H9liUU3bsCRff29O+mDFsKQcOx0JQMxpsMxpuM0HLDd2tYFN2PmGp6jp5lzXbViPApumdJGAAAAOCwCHN6s4VNxxIMRfcAAAAArMWEBQAAAIC1KLoPgqJ7e/p3UwZF92Qw3mQw3mRQdB864VB0f/VP7Su6/9cyiu5dgaJ7e/p3U4YthaDhWGhKBuNNBuNNRmi54bs1HIrur/7pVPP9O2ZZs1390/ApumdJGAAAAABr8ZQwAAAAwGE8Jaz6uMMCAAAAwFoU3QdRViiVkZGhmJgYx3IqKrILtww3nMP5ysjNzS3396moqEhRUVEh21dQUKDY2NhztnO6fzLsynDDOZBR+Qw3nAMZpxUWFqpDhw5yihu+WwsLC5WammplAXnZvyV73G5f0f3mv1J07woU3dvTv5sybCkEDcdCUzIYbzIYbzJCyw3freFQdN/jtqnmBz+bZc3W4zaK7gEAAACgxpiwAAAAALAWTwkDAAAAzoNwejKXTSi6D4I33dvTv5syeNM9GYw3GYw3GbzpPnTC4U33PW6bqnr17Sm6P3WySJv/j6J7V6Do3p7+3ZRhSyFoOBaaksF4k8F4kxFabvhuDZei+14jZ1mzhVPRPUvCAAAAAKcZc3qzhU3HEgRF9wAAAACsxYQFAAAAgLUoug+Cont7+ndTBkX3ZDDeZDDeZFB0HzrhUHTf83+etK7oftMrj1p5zcqp7SIa21F0b0//bsqwpRA0HAtNyWC8yWC8yQgtN3y3hkPRfc//edL0Hj7Tmq3n/zxp7TU7E0vCAAAAAFiLp4QBAAAATjPfbbaw6ViC4A4LAAAAAGtRdB8ERff29O+mDIruyWC8yWC8yaDoPnTCouj+JxYW3S+n6N4VKLq3p383ZdhSCBqOhaZkMN5kMN5khJYbvlvDoej++z960iTeNtOa7fs/ougeAAAAAGqMCQsAAAAAa/GUMAAAAMBpPCWs2ii6D4Kie3v6d1MGRfdkMN5kMN5kUHQfOuFQdP/9ofYV3W981YVF9/PmzTNdu3Y1DRs2NA0bNjS9e/c2b731lv/z48ePm/vuu8+0aNHCREVFme9973tm3rx5AX189tlnZujQoaZRo0amYcOGZtiwYSYvLy+gzddff21+9rOfmbi4OBMXF2d+9rOfmaNHjwa0+eKLL8wtt9xiYmJizCWXXGLGjRtniouLA9p89NFH5vrrrzdRUVEmISHBTJkyxZSWllbllCm6t6h/N2XYUggajoWmZDDeZDDeZISWG75bw6LofuiTJnHYTGu27w91adF9y5YtNWPGDG3atEmbNm3SjTfeqCFDhmj79u2SpAceeECZmZl66aWXtGPHDj3wwAMaN26cXnvtNUlSQUGBkpKSFBERoffee08ffPCBTpw4ocGDB6u0tNSfM2LECOXk5CgzM1OZmZnKyclRSkqK//OSkhINGjRIBQUFWrt2rZYtW6bly5frwQcf9LfJz89X//79lZCQoI0bN2rOnDmaOXOmZs+eXe3JHQAAAFAdEca+LVxUqYZl8ODBAX+eOnWq5s+fr+zsbF1xxRVav369Ro0apb59+0qSxo4dqwULFmjTpk0aMmSIPvjgA+3Zs0dbtmzx33p64YUXFB8fr/fee0/9+vXTjh07lJmZqezsbPXq1UuS9NxzzykxMVGffvqpOnXqpKysLH388cfat2+fEhISJEmzZs3S6NGjNXXqVMXFxWnx4sUqKirSokWL5PF41KVLF+3cuVOzZ8/W+PHjFRERUdNrBwAAAMBh1X5KWElJiZYtW6aCggIlJiZKkn74wx9q5cqV2r9/v4wx+uc//6mdO3dqwIABkqTi4mJFRETI4/H4+4mKilKdOnW0du1aSdL69evl9Xr9kxVJ6t27t7xer9atW+dv06VLF/9kRZIGDBig4uJibd682d+mT58+AVkDBgzQgQMHtGfPnrOeV3FxsfLz8wM2AAAAALWjykX3W7duVWJiooqKitSgQQMtWbJEN998syTpxIkTGjNmjF588UXVq1dPderUUUZGhn8511dffaX27dvrzjvv1LRp02SM0W9+8xv96U9/8t+NmTZtmhYtWqSdO3cG5Hbs2FF33nmn0tPTNXbsWO3Zs0dZWVkBbTwejxYtWqThw4crKSlJbdu21bPPPuv//MCBA2rRooXWrVvnn2SdafLkyZoyZUq5/RkZGYqJianKpaqSiorswi3DDedwvjJ27doVMJmWpFOnTqlevXoh2/ftt98qOjr6nO2c7p8MuzLccA5kVD7DDedAxmnFxcW69NJL5RQ3fLcWFhYqNTXVygLysqL7H9z6W+uK7j9c+ZiV1+xMVX6scadOnZSTk6Njx45p+fLlGjVqlFavXq3OnTvrj3/8o7Kzs7Vy5Uq1adNGa9as0b333qvmzZurX79+aty4sV5++WX94he/0B//+EfVqVNHw4cP19VXX626dev6MyparmWMCdhfnTZlc7NzLQdLT0/X+PHj/X/Oz89Xq1atNGzYMJ4SVsv9k2FXhhvOgQx7+ifDrgw3nAMZ9vR/PjLy8/OVmprqWP+oXVWesERGRqp9+/aSpJ49e2rjxo165pln9Ic//EETJ07UihUrNGjQIElSt27dlJOTo5kzZ6pfv36SpKSkJH3++ef6z3/+o3r16umiiy5Ss2bN1K5dO0lSs2bNdOjQoXK5X331lZo2bepvs2HDhoDPjx49qpMnTwa0ycvLC2hz+PBhSfK3qYjH4yn3f74BAAAA1I4av+neGKPi4mKdPHlSJ0+eVJ06gV3WrVs34AlgZRo1aqSLLrpI7733ng4fPqxbb71VkpSYmCifz6cPP/zQ33bDhg3y+Xy65ppr/G22bdumgwcP+ttkZWXJ4/GoR48e/jZr1qzRiRMnAtokJCSobdu2NT1tAAAAoNJq+4lg4fyUsCpNWCZOnKj3339fe/bs0datW/XII49o1apVGjlypOLi4tSnTx899NBDWrVqlXbv3q1FixbpxRdf1I9+9CN/Hy+88IKys7P1+eef66WXXtKwYcP0wAMPqFOnTpKkyy+/XAMHDtSYMWOUnZ2t7OxsjRkzRrfccou/TVJSkjp37qyUlBRt2bJF//jHPzRhwgSNGTPGv2xrxIgR8ng8Gj16tLZt26YVK1Zo2rRpPCEMAAAACCNVWhJ26NAhpaSk6ODBg/J6verWrZsyMzPVv39/SdKyZcuUnp6ukSNH6uuvv1abNm00depU3XPPPf4+Pv30U6Wnp+vrr79W27Zt9cgjj+iBBx4IyFm8eLHS0tKUlJQkSbr11ls1d+5c/+d169bVm2++qXvvvVfXXnutoqOjNWLECM2cOdPfxuv16p133tF9992nnj176uKLL9b48eMD6lMAAAAA2K1KE5aFCxee8/NmzZrphRdeOGebGTNmaMaMGedsEx8fr5deeumcbVq3bq033njjnG26du2qNWvWnLMNAAAA4Djz3WYLm44liBrXsAAAAACAU5iwAAAAALBWlR9rDAAAAKBqbHsyl03HEgx3WAAAAABYiwkLAAAAAGuxJAwAAABwmjGnN1vYdCxBcIcFAAAAgLWYsAAAAACwFkvCAAAAAIfxlLDq4w4LAAAAAGsxYQEAAABgLZaEAQAAAE4z3222sOlYguAOCwAAAABrMWEBAAAAYC2WhAEAAAAO4ylh1ccdFgAAAADWYsICAAAAwFoRxpgwuiF0/uXn58vr9SojI0MxMTGO5ezfv18tWrRwrP/zkeGGcyDDnv7JsCvDDedAhj39k2FXhhvOobCwUKmpqfL5fIqLi3MspzrK/i15Tf8pqlc/qrYPx+/UySKte2eSldfsTNSwVNKwYcMcHcylS5dq+PDhjvV/PjLccA5k2NM/GXZluOEcyLCnfzLsynDDOeTn5ys1NdWx/lG7WBIGAAAAwFrcYQEAAACcxosjq407LAAAAACsxYQFAAAAgLVYEgYAAAA4LEJ2vawxorYPoAq4wwIAAADAWkxYAAAAAFiLJWEAAACA04w5vdnCpmMJgjssAAAAAKzFhAUAAACAtVgSBgAAADgswlj2lDCLjiUY7rAAAAAAsBYTFgAAAADWYkkYAAAA4DTz3WYLm44lCO6wAAAAALAWExYAAAAAQa1Zs0aDBw9WQkKCIiIi9Oqrr56z/d/+9jf1799fjRs3VlxcnBITE/X2229XOZcJCwAAAOCwCGOs26qqoKBA3bt319y5cyvVfs2aNerfv7/eeustbd68WTfccIMGDx6sLVu2VCmXGhYAAADgApWfnx/wZ4/HI4/HU2Hb5ORkJScnV7rvP/zhDwF/njZtml577TW9/vrruuqqqyrdD3dYAAAAgAtUq1at5PV6/dv06dMdyyotLdXx48cVHx9fpZ/jDgsAAADgtNLvNlt8dyz79u1TXFycf/fZ7q6EwqxZs1RQUKDbbrutSj/HhAUAAAC4QMXFxQVMWJyydOlSTZ48Wa+99pqaNGlSpZ9lwgIAAADAMX/961/185//XC+//LL69etX5Z9nwgIAAAA4rLpP5nLK+TqWpUuX6q677tLSpUs1aNCgavURYYxFV85C+fn58nq9ysjIUExMjGM5+/fvV4sWLRzr/3xkuOEcyLCnfzLsynDDOZBhT/9k2JXhhnMoLCxUamqqfD7feVneVBVl/5a8/rrHVa9eVG0fjt+pU0Va8/4TVbpm33zzjT777DNJ0lVXXaXZs2frhhtuUHx8vFq3bq309HTt379fL774oqTTk5U77rhDzzzzjH784x/7+4mOjpbX6630sTJhCaLsL5nTvwBLly7V8OHDHev/fGS44RzIsKd/MuzKcMM5kGFP/2TYleGGczhf/16rDjdNWFatWqUbbrih3P5Ro0Zp0aJFGj16tPbs2aNVq1ZJkvr27avVq1eftX1lsSQMAAAAcJr5brNFNY6lb9++Ote9jjMnIWUTl5riPSwAAAAArMWEBQAAAIC1WBIGAAAAOM2Y05stbDqWILjDAgAAAMBaTFgAAAAAWIslYQAAAIDDIszpzRY2HUsw3GEBAAAAYC0mLAAAAACsxZIwAAAAwGk8JazauMMCAAAAwFpMWAAAAABYiyVhAAAAgMMiSk9vtrDpWILhDgsAAAAAazFhAQAAAGAtloQBAAAATuMpYdXGHRYAAAAA1mLCAgAAAMBaLAkDAAAAnGa+22xh07EEwR0WAAAAANZiwgIAAADAWiwJAwAAABwWYYwiLHoyl03HEgx3WAAAAABYK8KYMJpe1YL8/Hx5vV5lZGQoJibGsZz9+/erRYsWjvV/PjLccA5k2NM/GXZluOEcyLCnfzLsynDDORQWFio1NVU+n09xcXGO5VRH2b8lb+g5UfXqRdX24fidOlWkf26aZuU1OxNLwipp2LBhjg7m0qVLNXz4cMf6Px8ZbjgHMuzpnwy7MtxwDmTY0z8ZdmW44Rzy8/OVmprqWP8hwYsjq40lYQAAAACsxYQFAAAAgLVYEgYAAAA4zUgqre2D+C/hsyKMOywAAAAA7MWEBQAAAIC1WBIGAAAAOIwXR1Yfd1gAAAAAWIsJCwAAAABrsSQMAAAAcJqRXS9rtOhQguEOCwAAAABrMWEBAAAAYC2WhAEAAABOM8ayJWEWHUsQ3GEBAAAAYC0mLAAAAACsxZIwAAAAwGmlkiJq+yD+S2ltH0DlcYcFAAAAgLWYsAAAAACwFkvCAAAAAIdFGKMIi57MZdOxBMMdFgAAAADWYsICAAAAwFosCQMAAACcxosjq407LAAAAACsxYQFAAAAgLUijAmj+0G1ID8/X16vVxkZGYqJiXEsZ//+/WrRooVj/Z+PDDecAxn29E+GXRluOAcy7OmfDLsy3HAOhYWFSk1Nlc/nU1xcnGM51VH2b8mbOk9Qvbqe2j4cv1MlxfrHxzOtvGZnooalkoYNG+boYC5dulTDhw93rP/zkeGGcyDDnv7JsCvDDedAhj39k2FXhhvOIT8/X6mpqY71j9rFkjAAAAAA1uIOCwAAAOA0nhJWbdxhAQAAAGAtJiwAAAAArMWSMAAAAMBppZIiavsg/ktpbR9A5XGHBQAAAIC1mLAAAAAAsBZLwgAAAACHRRijCIuezGXTsQTDHRYAAAAA1mLCAgAAAMBaLAkDAAAAnMaLI6uNOywAAAAArMWEBQAAAIC1WBIGAAAAOK3USBEWLcMqtehYguAOCwAAAABrMWEBAAAAYC2WhAEAAABO4ylh1cYdFgAAAADWYsICAAAAwFpVmrDMnz9f3bp1U1xcnOLi4pSYmKi///3v/s+/+eYb3X///WrZsqWio6N1+eWXa/78+QF95OXlKSUlRc2aNVNsbKyuvvpqvfLKKwFtjh49qpSUFHm9Xnm9XqWkpOjYsWMBbfbu3avBgwcrNjZWjRo1Ulpamk6cOBHQZuvWrerTp4+io6PVokULPfHEEzJhdPsLAAAAbmH+/7IwGzaFz7+Jq1TD0rJlS82YMUPt27eXJP3lL3/RkCFDtGXLFl1xxRV64IEH9M9//lMvvfSS2rZtq6ysLN17771KSEjQkCFDJEkpKSny+XxauXKlGjVqpCVLluj222/Xpk2bdNVVV0mSRowYoS+//FKZmZmSpLFjxyolJUWvv/66JKmkpESDBg1S48aNtXbtWh05ckSjRo2SMUZz5syRJOXn56t///664YYbtHHjRu3cuVOjR49WbGysHnzwwdBcPQAAAACOqtIdlsGDB+vmm29Wx44d1bFjR02dOlUNGjRQdna2JGn9+vUaNWqU+vbtq7Zt22rs2LHq3r27Nm3a5O9j/fr1GjdunH7wgx/o0ksv1aOPPqqLLrpI//rXvyRJO3bsUGZmpjIyMpSYmKjExEQ999xzeuONN/Tpp59KkrKysvTxxx/rpZde0lVXXaV+/fpp1qxZeu6555Sfny9JWrx4sYqKirRo0SJ16dJFP/7xjzVx4kTNnj2buywAAABAmKj2U8JKSkr08ssvq6CgQImJiZKkH/7wh1q5cqXuuusuJSQkaNWqVdq5c6eeeeYZ/8/98Ic/1F//+lcNGjRIF110kf7v//5PxcXF6tu3r6TTExqv16tevXr5f6Z3797yer1at26dOnXqpPXr16tLly5KSEjwtxkwYICKi4u1efNm3XDDDVq/fr369Okjj8cT0CY9PV179uxRu3btKjyv4uJiFRcX+//s8/kkyT8RckphYWHYZ7jhHMiwp38y7MpwwzmQYU//ZNiV4YZzKOvb6v8pzVPCqi3CVHFkt27dqsTERBUVFalBgwZasmSJbr75ZknSiRMnNGbMGL344ouqV6+e6tSpo4yMDKWkpPh/3ufz6fbbb9fbb7+tevXqKSYmRq+88or69+8vSZo2bZoWLVqknTt3BuR27NhRd955p9LT0zV27Fjt2bNHWVlZAW08Ho8WLVqk4cOHKykpSW3bttWzzz7r//zAgQNq0aKF1q1b559knWny5MmaMmVKVS4JAAAALPD555/r0ksvre3DCJCfny+v16t+7capXh1P8B84T06VFuvd3XPk8/kUFxdX24dzTlW+w9KpUyfl5OTo2LFjWr58uUaNGqXVq1erc+fO+uMf/6js7GytXLlSbdq00Zo1a3TvvfeqefPm6tevnyTp0Ucf1dGjR/Xuu++qUaNGevXVVzVs2DC9//776tq1qyQpIiKiXK4xJmB/ddqUzc0q+tky6enpGj9+vP/Px44dU5s2bbR37155vd7KXCKEsfz8fLVq1Ur79u2z/pcXNcd4X1gY7wsL431h8fl8at26teLj42v7UOCAKk9YIiMj/UX3PXv21MaNG/XMM8/oD3/4gyZOnKgVK1Zo0KBBkqRu3bopJydHM2fOVL9+/fT5559r7ty52rZtm6644gpJUvfu3fX+++/rT3/6k/785z+rWbNmOnToULncr776Sk2bNpUkNWvWTBs2bAj4/OjRozp58mRAm7y8vIA2hw8fliR/m4p4PJ6AZWRlvF4v/8G7gJQ9CQ8XBsb7wsJ4X1gY7wtLnToWv7Gj1LInc5VadCxB1HhUjTEqLi7WyZMndfLkyXJ/UerWravS0lJJp9cvSuX/Mv13m8TERPl8Pn344Yf+zzds2CCfz6drrrnG32bbtm06ePCgv01WVpY8Ho969Ojhb7NmzZqARx1nZWUpISFBbdu2relpAwAAADgPqjRhmThxot5//33t2bNHW7du1SOPPKJVq1Zp5MiRiouLU58+ffTQQw9p1apV2r17txYtWqQXX3xRP/rRjyRJ3/ve99S+fXvdfffd+vDDD/X5559r1qxZeueddzR06FBJ0uWXX66BAwdqzJgxys7OVnZ2tsaMGaNbbrlFnTp1kiQlJSWpc+fOSklJ0ZYtW/SPf/xDEyZM0JgxY/z/F2XEiBHyeDwaPXq0tm3bphUrVmjatGkaP378OZeEAQAAALBHlZaEHTp0SCkpKTp48KC8Xq+6deumzMxMf8H8smXLlJ6erpEjR+rrr79WmzZtNHXqVN1zzz2SpPr16+utt97Sww8/rMGDB+ubb75R+/bt9Ze//MVfuC+dfiRxWlqakpKSJEm33nqr5s6d6/+8bt26evPNN3Xvvffq2muvVXR0tEaMGKGZM2f623i9Xr3zzju677771LNnT1188cUaP358QH1KZXg8Hk2aNKnCZWJwH8b7wsJ4X1gY7wsL431hCYvxNqWnN1vYdCxBVPkpYQAAAAAqx/+UsNb32veUsL3zwuIpYRZXJgEAAAC40FX7xZEAAAAAKokXR1Ybd1gAAAAAWIsJCwAAAABrhfWEZfLkyYqIiAjYmjVr5v989OjR5T7v3bt3QB933323LrvsMkVHR6tx48YaMmSIPvnkk4A2R48eVUpKirxer7xer1JSUnTs2LGANnv37tXgwYMVGxurRo0aKS0tLeAdMJK0detW9enTR9HR0WrRooWeeOIJ8cyDygvFeJcxxig5OVkRERF69dVXAz5jvO0QivHu27dvuTY//elPA9ow3nYI1e/3+vXrdeONNyo2NlYXXXSR+vbtq2+//db/OeNth5qO9549e8p9Xra9/PLL/naMtx1C8fudl5enlJQUNWvWTLGxsbr66qv1yiuvBLSxfrxLjX1bmAj7GpYrrrhC7777rv/PdevWDfh84MCBeuGFF/x/joyMDPi8R48eGjlypFq3bq2vv/5akydPVlJSknbv3u3va8SIEfryyy+VmZkpSRo7dqxSUlL0+uuvS5JKSko0aNAgNW7cWGvXrtWRI0c0atQoGWM0Z84cSaefENG/f3/dcMMN2rhxo3bu3KnRo0crNjZWDz74YOgvjEvVdLzL/OEPfzjr+3gYb3uEYrzHjBmjJ554wv/n6OjogM8Zb3vUdLzXr1+vgQMHKj09XXPmzFFkZKT+/e9/B7ysmPG2R03Gu1WrVgEvj5akZ599Vk899ZSSk5P9+xhve9T09zslJUU+n08rV65Uo0aNtGTJEt1+++3atGmTrrrqKkmMt6uZMDZp0iTTvXv3s34+atQoM2TIkCr1+e9//9tIMp999pkxxpiPP/7YSDLZ2dn+NuvXrzeSzCeffGKMMeatt94yderUMfv37/e3Wbp0qfF4PMbn8xljjJk3b57xer2mqKjI32b69OkmISHBlJaWVukYL1ShGu+cnBzTsmVLc/DgQSPJrFixwv8Z422PUIx3nz59zC9/+cuzfs542yMU492rVy/z6KOPnvVzxtseTnx/X3nlleauu+7y/5nxtkcoxjs2Nta8+OKLAfvi4+NNRkaGMcbu8fb5fEaS6dfiHjOw1S+t2fq1uMdI8p+7zcJ6SZgk5ebmKiEhQe3atdNPf/pT7dq1K+DzVatWqUmTJurYsaPGjBmjw4cPn7WvgoICvfDCC2rXrp1atWol6fT/sfN6verVq5e/Xe/eveX1erVu3Tp/my5duighIcHfZsCAASouLtbmzZv9bfr06RPwQqMBAwbowIED2rNnT42vw4WipuNdWFio4cOHa+7cuQG3o8sw3nYJxe/34sWL1ahRI11xxRWaMGGCjh8/7v+M8bZLTcb78OHD2rBhg5o0aaJrrrlGTZs2VZ8+fbR27Vp/G8bbLqH8/t68ebNycnL085//3L+P8bZLTcf7hz/8of7617/q66+/VmlpqZYtW6bi4mL17dtXUpiMd9lTwmzawkRYT1h69eqlF198UW+//baee+455eXl6ZprrtGRI0ckScnJyVq8eLHee+89zZo1Sxs3btSNN96o4uLigH7mzZunBg0aqEGDBsrMzNQ777zjvxWZl5enJk2alMtu0qSJ8vLy/G2aNm0a8PnFF1+syMjIc7Yp+3NZG5xbKMb7gQce0DXXXKMhQ4ZUmMF42yMU4z1y5EgtXbpUq1at0mOPPably5frxz/+sf9zxtseNR3vsn/8TJ48WWPGjFFmZqauvvpq3XTTTcrNzZXEeNskVN/fZRYuXKjLL79c11xzjX8f422PUIz3X//6V506dUqXXHKJPB6P7r77bq1YsUKXXXaZJMbb7cK6huW/16l27dpViYmJuuyyy/SXv/xF48eP1+233+7/vEuXLurZs6fatGmjN998M+AfLSNHjlT//v118OBBzZw5U7fddps++OADRUVFSVKFtQ7GmID91WljvpvZnq2WAoFqOt4rV67Ue++9py1btpwzh/G2Qyh+v8eMGRPQpkOHDurZs6f+9a9/6eqrr5bEeNuipuNdWloq6fSDVO68805J0lVXXaV//OMfev755zV9+nRJjLctQvX9LUnffvutlixZoscee6xcDuNth1CM96OPPqqjR4/q3XffVaNGjfTqq69q2LBhev/999W1a1dJjLebhfUdljPFxsaqa9eu/v+bdqbmzZurTZs25T73er3q0KGDrr/+er3yyiv65JNPtGLFCklSs2bNdOjQoXJ9ffXVV/4Zd7NmzcrNuo8ePaqTJ0+es03Z7c4zZ/KonKqO93vvvafPP/9cF110kerVq6d69U7P13/yk5/4bykz3vaq7u/3f7v66qtVv359fxvG215VHe/mzZtLkjp37hzQ7vLLL9fevXslMd42q8nv9yuvvKLCwkLdcccdAfsZb3tVdbw///xzzZ07V88//7xuuukmde/eXZMmTVLPnj31pz/9SVKYjLdR7S8BC9hqdjrnk6smLMXFxdqxY4f/i+tMR44c0b59+876eRljjP82ZGJionw+nz788EP/5xs2bJDP5/Pfek5MTNS2bdsCnliSlZUlj8ejHj16+NusWbMm4NF5WVlZSkhIUNu2bat1vhe6qo73ww8/rI8++kg5OTn+TZJ+//vf+59MwnjbKxS/39u3b9fJkyf9bRhve1V1vNu2bauEhAR9+umnAe127typNm3aSGK8bVaT3++FCxfq1ltvVePGjQP2M972qup4FxYWSlLAE/+k008aK7u7yni73Hku8g+pBx980Kxatcrs2rXLZGdnm1tuucU0bNjQ7Nmzxxw/ftw8+OCDZt26dWb37t3mn//8p0lMTDQtWrQw+fn5xhhjPv/8czNt2jSzadMm88UXX5h169aZIUOGmPj4eHPo0CF/zsCBA023bt3M+vXrzfr1603Xrl3NLbfc4v/81KlTpkuXLuamm24y//rXv8y7775rWrZsae6//35/m2PHjpmmTZua4cOHm61bt5q//e1vJi4uzsycOfP8XbAwV9PxrojOeEqYMYy3LWo63p999pmZMmWK2bhxo9m9e7d58803zfe+9z1z1VVXmVOnTvlzGG87hOL3+/e//72Ji4szL7/8ssnNzTWPPvqoiYqK8j/10RjG2xah+u95bm6uiYiIMH//+98rzGG87VDT8T5x4oRp3769ue6668yGDRvMZ599ZmbOnGkiIiLMm2++6c+xdbz9TwlrfrcZ2GKcNVu/5neHzVPCwnrCcvvtt5vmzZub+vXrm4SEBPPjH//YbN++3RhjTGFhoUlKSjKNGzc29evXN61btzajRo0ye/fu9f/8/v37TXJysmnSpImpX7++admypRkxYoT/8Xdljhw5YkaOHGkaNmxoGjZsaEaOHGmOHj0a0OaLL74wgwYNMtHR0SY+Pt7cf//9AY/EM8aYjz76yFx33XXG4/GYZs2amcmTJ/NIxCqo6XhXpKIJC+Nth5qO9969e831119v4uPjTWRkpLnssstMWlqaOXLkSEAO422HUP1+T58+3bRs2dLExMSYxMRE8/777wd8znjbIVTjnZ6eblq2bGlKSkoqzGG87RCK8d65c6f58Y9/bJo0aWJiYmJMt27dyj3m2Nbx9k9Ymo01AxPut2br12xs2ExYIowJo2eaAQAAAGEkPz9fXq9X/ZqNVb06Fb/QujacKj2hd/Oelc/nU1xcXG0fzjm5qoYFAAAAgLuE9WONAQAAgLBQWiqptLaP4v8rtehYguAOCwAAAABrMWEBAAAAYC2WhAEAAABOK3thoy1sOpYguMMCAAAAwFpMWAAAAABYiyVhAAAAgNNYElZt3GEBAAAAYC0mLAAAAACsxZIwAAAAwGmlRpJFy7BKLTqWILjDAgAAAMBaTFgAAAAAWIslYQAAAIDDjCmVMaW1fRh+Nh1LMNxhAQAAAGAtJiwAAAAArMWSMAAAAMBpxtj1ZC5eHAkAAAAANceEBQAAAIC1WBIGAAAAOM1Y9uJIloQBAAAAQM0xYQEAAABgLZaEAQAAAE4rLZUiLHpZIy+OBAAAAICaY8ICAAAAwFosCQMAAACcxlPCqo07LAAAAACsxYQFAAAAgLVYEgYAAAA4zJSWylj0lDDDU8IAAAAAoOaYsAAAAACwFkvCAAAAAKfxlLBq4w4LAAAAAGsxYQEAAABgLZaEAQAAAE4rNVKERcuwWBIGAAAAADXHhAUAAACAtVgSBgAAADjNGEkWvayRJWEAAAAAUHNMWAAAAABYiyVhAAAAgMNMqZGx6ClhhiVhAAAAAFBzTFgAAAAAWIslYQAAAIDTTKnsekqYRccSBHdYAAAAAFiLCQsAAAAAa7EkDAAAAHAYTwmrPu6wAAAAALAWExYAAAAA1mLCAgAAADjNlNq3VdGaNWs0ePBgJSQkKCIiQq+++mrQn1m9erV69OihqKgoXXrppfrzn/9c5VwmLAAAAACCKigoUPfu3TV37txKtd+9e7duvvlmXXfdddqyZYsmTpyotLQ0LV++vEq5FN0DAAAACCo5OVnJycmVbv/nP/9ZrVu31h/+8AdJ0uWXX65NmzZp5syZ+slPflLpfpiwAAAAAA47pZOSRQ/mOqWTkqT8/PyA/R6PRx6PJyQZ69evV1JSUsC+AQMGaOHChTp58qTq169fqX6YsAAAAAAOiYyMVLNmzbQ2763aPpRyGjRooFatWgXsmzRpkiZPnhyS/vPy8tS0adOAfU2bNtWpU6f0n//8R82bN69UP0xYAAAAAIdERUVp9+7dOnHiRG0fSjnGGEVERATsC9XdlTJn9l/2/pcz958LExYAAADAQVFRUYqKiqrtwzjvmjVrpry8vIB9hw8fVr169XTJJZdUuh+eEgYAAAAg5BITE/XOO+8E7MvKylLPnj0rXb8iMWEBAAAAUAnffPONcnJylJOTI+n0Y4tzcnK0d+9eSVJ6erruuOMOf/t77rlHX3zxhcaPH68dO3bo+eef18KFCzVhwoQq5UaYsoVkAAAAAHAWq1at0g033FBu/6hRo7Ro0SKNHj1ae/bs0apVq/yfrV69Wg888IC2b9+uhIQE/eY3v9E999xTpVwmLAAAAACsxZIwAAAAANZiwgIAAADAWkxYAAAAAFiLCQsAAAAAazFhAQAAAGAtJiwAAAAArMWEBQAAAIC1mLAAAAAAsBYTFgAAAADWYsICAAAAwFpMWAAAAABY6/8Bg74SxR7dMgIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -564,10 +564,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:17.475586Z", - "iopub.status.busy": "2023-08-22T13:45:17.474663Z", - "iopub.status.idle": "2023-08-22T13:45:17.880171Z", - "shell.execute_reply": "2023-08-22T13:45:17.879618Z" + "iopub.execute_input": "2023-09-21T16:08:08.006909Z", + "iopub.status.busy": "2023-09-21T16:08:08.006469Z", + "iopub.status.idle": "2023-09-21T16:08:08.535929Z", + "shell.execute_reply": "2023-09-21T16:08:08.535192Z" } }, "outputs": [ @@ -696,10 +696,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:17.883004Z", - "iopub.status.busy": "2023-08-22T13:45:17.882616Z", - "iopub.status.idle": "2023-08-22T13:45:21.349848Z", - "shell.execute_reply": "2023-08-22T13:45:21.349411Z" + "iopub.execute_input": "2023-09-21T16:08:08.539550Z", + "iopub.status.busy": "2023-09-21T16:08:08.538992Z", + "iopub.status.idle": "2023-09-21T16:08:12.660716Z", + "shell.execute_reply": "2023-09-21T16:08:12.660127Z" } }, "outputs": [ @@ -729,7 +729,7 @@ "use of the software.\n", "\n", " \n", - " Run start date and time (yyyy/mm/dd hh:mm:ss): 2023/08/22 13:45:17\n", + " Run start date and time (yyyy/mm/dd hh:mm:ss): 2023/09/21 16:08:08\n", " \n", " Writing simulation list file: mfsim.lst\n", " Using Simulation name file: mfsim.nam\n", @@ -748,8 +748,8 @@ " Solving: Stress period: 12 Time step: 1\n", " Solving: Stress period: 13 Time step: 1\n", " \n", - " Run end date and time (yyyy/mm/dd hh:mm:ss): 2023/08/22 13:45:21\n", - " Elapsed run time: 3.457 Seconds\n", + " Run end date and time (yyyy/mm/dd hh:mm:ss): 2023/09/21 16:08:12\n", + " Elapsed run time: 4.106 Seconds\n", " \n", " Normal termination of simulation.\n" ] @@ -781,10 +781,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:21.352450Z", - "iopub.status.busy": "2023-08-22T13:45:21.351919Z", - "iopub.status.idle": "2023-08-22T13:45:21.366360Z", - "shell.execute_reply": "2023-08-22T13:45:21.365837Z" + "iopub.execute_input": "2023-09-21T16:08:12.664399Z", + "iopub.status.busy": "2023-09-21T16:08:12.663619Z", + "iopub.status.idle": "2023-09-21T16:08:12.682021Z", + "shell.execute_reply": "2023-09-21T16:08:12.681011Z" } }, "outputs": [], @@ -821,10 +821,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:21.368884Z", - "iopub.status.busy": "2023-08-22T13:45:21.368466Z", - "iopub.status.idle": "2023-08-22T13:45:21.466355Z", - "shell.execute_reply": "2023-08-22T13:45:21.465791Z" + "iopub.execute_input": "2023-09-21T16:08:12.686477Z", + "iopub.status.busy": "2023-09-21T16:08:12.686211Z", + "iopub.status.idle": "2023-09-21T16:08:12.828991Z", + "shell.execute_reply": "2023-09-21T16:08:12.828151Z" } }, "outputs": [], @@ -866,16 +866,16 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:21.469341Z", - "iopub.status.busy": "2023-08-22T13:45:21.468981Z", - "iopub.status.idle": "2023-08-22T13:45:22.771892Z", - "shell.execute_reply": "2023-08-22T13:45:22.771400Z" + "iopub.execute_input": "2023-09-21T16:08:12.832939Z", + "iopub.status.busy": "2023-09-21T16:08:12.832608Z", + "iopub.status.idle": "2023-09-21T16:08:14.540920Z", + "shell.execute_reply": "2023-09-21T16:08:14.540300Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoMAAAJRCAYAAAA+mL2qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZXQTWxeG39QFSpFSrLhDgeLuLhfn4g4ffnF3d3fXFoq7u2vx4sVKC9Rdc74fmyQUKkmaZGaa86zV1ZnIznsySWbPOVtkjDEGDofD4XA4HI5RYiK0AA6Hw+FwOByOcHBnkMPhcDgcDseI4c4gh8PhcDgcjhHDnUEOh8PhcDgcI4Y7gxwOh8PhcDhGDHcGORwOh8PhcIwY7gxyOBwOh8PhGDHcGeRwOBwOh8MxYrgzyOFwOBwOh2PEGNQZbNiwIUqVKoUyZcqgRo0aePz4MQDg/v37qFatmvK+S5cuKZ8zadIkODs7o0yZMihTpgz27dunvE8ul2Po0KEoUKAAChYsiLVr1yZ4vdmzZ6NAgQIoUKAApkyZkuC+LVu2oFChQihQoAD69++PuLg4/Q2cw+FwOBwOR6wwAxIYGKjcPnz4MHNxcWFyuZzlzJmTXbp0iTHGmKenJ8uVKxeLiIj46zne3t4sffr0LCAggDHG2I4dO1jdunVZXFwc8/f3Z3ny5GGenp6MMcauXr3KihcvzsLCwlhUVBQrV64cO3PmDGOMsQ8fPrDs2bMzX19fJpfLWYsWLdj69esN8A5wOBwOh8PhiAuDzgza29srt4ODg2FiYgJ/f38EBASgTp06AICiRYvC3t4ep0+f/us5oaGhkMlkkMvlAIB9+/ZhwIABMDU1RaZMmdChQwfs3btXeV/Pnj1ha2sLS0tL9O7dG25ubgCAAwcOoHXr1nB0dIRMJsOAAQOU93E4HA6Hw+EYE2aGfsHu3bvj8uXLAIAzZ84gS5YscHR0xMGDB9G2bVvcvXsXb968wcePH5XPWblyJdasWYOvX79i69atyJw5MwDg8+fPyJMnj/JxefPmxYMHD5T31apVK8F9Bw4cSPJ5nz9/TlJzdHQ0oqOjlftyuRwBAQHInDkzZDJZKt4NDofD4XA4xg5jDKGhociRIwdMTAyfzmFwZ3Dnzp0AgB07dmDMmDE4deoUjh49inHjxmHOnDlwdnZG9erVYW5urnzOsGHDMGzYMDx58gRdu3ZF/fr1lQ7h784YYyzBa2l735/MmzcPM2bM0HCkHA6Hw+FwOOrz5csX5MqVy+Cva3BnUEGPHj0wYMAA+Pv7o1SpUsplYQAoVqwYihcv/tdzSpcujZw5c+LKlSto27YtcufOjY8fP6JChQoAgE+fPiF37twAoLxPgbr3JcaECRMwcuRI5X5wcDBy586NL1++wM7OTqvxJ8b+/fvRvn17ndnTp12p2NSXXWPXysfPx8/Hz8eva4xZa0hICJycnJA+fXqd2dQEgzmDISEhCAsLQ44cOQAAhw8fRubMmZEpUyb4+voiW7ZsAIBNmzbB1tYWdevWBQB4enqiWLFiAID379/Dw8ND6Si2b98eGzZsQJs2bRAcHIx9+/bhzJkzyvuGDBmCQYMGwczMDFu3bsXs2bMBAG3btkX16tUxdepUZM2aFevXr0fHjh2T1G5paQlLS8u/brezs9OpM2hjY6NTe/q0KxWb+rJr7Fr5+Pn4+fj5+HWNsWsFIFjomcGcweDgYLRt2xaRkZEwMTGBg4MDTpw4AZlMhg0bNmDPnj1gjKFYsWI4fPiw8g0ZP3483r17B3Nzc5iZmWH16tVK57Bbt264f/8+ChcuDAAYM2aM8r7atWujQ4cOcHZ2BgB07NgRjRs3BgDkz58fM2bMQLVq1SCXy1G3bl306dPHUG8Fh8PhcDgcjmgwmDPo5OSEe/fuJXrftGnTMG3atETvO3r0aJI2TU1NsWbNmiTvnzp1KqZOnZroff369UO/fv2SUczhcDgcDoeT9uEdSDgcDofD4XCMGO4McjgcDofD4Rgx3BnkcDgcDofDMWK4M8jhcDgcDodjxHBnkMPhcDgcDseI4c4gh8PhcDgcjhHDnUEO5zdS6EzI4XA4nEQwlt/OtDpO7gxyOL/4+BGoXBl4+VJoJZzUsHUrsGgREBcntBJxc/ky0K8fEB4utBLdEBsL9OgBPHoktBLtGDYMuH076baoYubRI6BKFeDrV6GV6JfYWKBNG8DdXWgluoc7gxwOAG9voG5d4N49YODAtHv1l9b5/BkYPhwYOxbYu1doNeLF3x/o1g3YvBmYO1doNbph6VJg506gSRMgKkpoNZqxZw+wahWwenUVvHkjtBrNeP4caNgQuHsXGDdOaDX6Qy4H+vQBjhyh/yEhf7eolTLcGeQYPd+/A/XqAV5eQIECgJsbIFB7SE4qYAz43/+A0FCgalWgc2ehFYkTxoC+fekCqHBhYOJEoRWlnnfvgOnTaXvhQsDKSlA5GvH2LTBgAG23bv0Cv7qrSoJXr+i3098fqFABWLtWaEX6Y9w4YNcuwNQU2LcPsLOLFlqSTuHOIMeoCQgAGjQAXr8GnJyAixeBHDmEVsXRhu3bgTNnAEtLYMsWwIT/uiXKxo00u2FuThc+trZCK0odjJEzFRUF1K8PdO8utCL1iY4GOnYEwsKAWrWANm1eCC1Jbd69o9WUHz8AFxfg7FkgQwahVemHxYvpD6AwlKZNhdWjD/jPJcdo+fGDrmqfPQOyZQMuXQLy5BFaFUcbPnwA/vuPtmfMAIoWFVaPWHn5EhgxgrbnzwfKlhVWjy7YsYMu4qytgfXrpTWrP348xdtlzgzs3g2YmEgjPuXHD1vUrQv4+ADOzsC5c0DGjEKr0g/u7sCYMbS9aJG0LjY0wUxoARyOEHz9SjOCr14BWbMCFy4ABQsKrYqjDTExNLsSGgpUqwaMHi20InESFQV06gRERlKM1/DhQitKPT9+AKNG0fb06RTmIRWOHweWL6ftbduAXLkElaM2X74Ac+bUxc+fdNF1/jyQJYvQqvSDlxeFVAB0EZWWf1v4zCDH6PjwAahRgxxBJyfg+nWgRAmhVXG0ZdIk4P59mplwdaWYHs7fjB0LPH1KFz87dqSNZfThwynUo0wZYORIodWoz9evQK9etD18ONCihaBy1ObbN6BOHeDnz3QoWJBmZB0dhValH+LjKclKcZG5cKHQivRLGvg54HDU5+VLoHp1KiNToAA5glIK2OYk5PTphLE8uaVZmUPvnDhB2aoAxVZmyyaoHJ1w+jTFPJqYUFa0mUTWueLjgS5dKOmibFlarpcCikS79+8BB4cwXLqUtuOr588Hbt4E0qenxBGpfL60hTuDHKPBw4OCtH18aCbw+nUeIyhlvn1Txe8MHQq0aiWoHNESHGyVYBaqSRNB5eiEkBCgf3/aHj4cKFdOUDkaMXs2cO0akC4dlT+ylECFEj8/Ss5RrKZMmnQJTk5Cq9IfDx6ostNXrwby5RNUjkGQMcYrqmlKSEgIMmTIgM2bN8PGxkZndr29vZEzZ06d2dOnXanYVNgNDy+NhQtrISLCAvny+WP8+CtInz4mVTb5sRJu/HK5DHPn1sHLl47IkycQM2acg4WFPFU29aFTDHYXLy6FR49KIHfuQMyadQ7m5om/T5og9Pi3bCmPixcLIWvWUCxYcBqWlvGptqkJ2tr09HTA7Nl1wZgJBg26herVP+nEbnKk1mZYmDnmzq2Ljx8zwd4+AlOnXkR8/GvJfP41tRkVZYpJkxrDx8cOlSt/wtChtxJNStK11oiICPTt2xfBwcGws7PTmV21YRyNCQ4OZgBYcHCwTu26urrq1J4+7UrFJmOMTZhwkdnYMAYwVqMGY7o4bPxYCTv+GTPoeNraMvb6tW5saoLQ41eXq1fpfZLJGLt3T3d2hRz/xYs0JoCxy5d1Y1NTtLH58ydjOXKQ7l69dGc3JVJjMziYsYoVSXPWrIx5eqbeZnKIYfz9+9N4c+ZkzN9fd3ZTQl9+hbqk8VVwjrFz7BiwaFEtxMVRBuXhw4AOJ3M5AnDtGpWPAYB163jMZ1LExQFDhtB2v35UFFjqhIersjsHDgRq1xZUjtowBvTsSaENRYqo4jfFTFgYhRTcu0elby5cSPslm9zdqQ6nTEbdbDJlElqR4eAxgxxJExREX9qjR6ld0J/s3g3ExZmidWtyDLkjKG38/amziFxOfWi7dRNakXjZsYNqaKZLF51mWs5NmkTlPnLnBhYsEFqN+qxYAZw8SfGB+/aJv9B3RARlON+6BdjbU/kYZ2ehVemXd+9UFxrjxlFBbWOCzwxyJMvr10CzZkDx4nTSc3enHp+/s2sXYGHhge3bXdJ8NlhaRzG74u1NsyurVwutSLxERADTptF2q1YvkDmzNKpLZ0imhcXNm8DKlbS9cSNleUqBR4+orA8ALFkClC4trJ6UiIqiZKwrV+g9PnuWOoykZaKigH//pTIy1asDs2YJrcjw8JlBjiSRy6k8w+LFNOP36BFw6hTwKWE8NiwtgWbNXnFHUCI4JzP9sHIllUixtKQszHTpDChMYqxaRU5znjxAgwZvhZajNk2T6PMVEUF1+Rij/40aGViYloSFUaHv2FhysAYNElpR8sTGAu3a0UygrS2V76lYUWhV+mf0aFUnGDe3tF9GJjG4M8iRJB4e1IxeUU4kY0agZk3gRSKtPQXJzOJoRcmSJZO8Ly6OCkovWUJFhjmJExAAzJtH27NnQyfZw4YiLIyO85+YmdHMTZ48wNKlhtelLcOGAW/eADlzUi1EMbfKY4xiS0+epNZ+J09SseW0zv79wJo1tL1rl3Q6wega7gxyJEm5chQP+Du5ctGJEKC6WI8e0XYZ7jlIhhs3KOlh9mzqlvE7o0bRbWKfXRGaefOA4GBajuzcWWg16hMTQy0iXV3/vs/CgpbuXr6kGDYpsHcvtZmTySh8JXNmoRUlz9SpFGdqagocOEA1WdM6b9+q4gTHj08bNTi1hTuDHMmSN2/C/QwZKKEkLAxo2hS4e5duNzc3N7Q0jhYcPQoMGADkz09ZlzVqUBC7t7fqMcWLi3t2RWg+fVJlqs6fL62Wc9u2UVeg7t2pS8fBgzQL/Py56jFSSQD78oU+ywAlvYjdsdq2jS7AAGDDBvr9TOv8+AE0b04FzI01TvB3JPRTwTF2Vq6k0jBJYWdHM4Jt2wKNG1PpCQB4+fKlYQRyUsWWLXQiGjkSWLuWWgbmzk1LwopZXk7yjBsHREdTJqRU4uoUPHqkCvsYMABYvpx6TlepQk6hVGCMZpuCg4FKlVSJPGLl6lXgf/+j7SlTgD59hNVjCEJCaBbwzRv6jXF3N844wd8x8uFzpMLDh8CcOZT15edHsS1/kiEDXd117aqqQwcAPj4+hhPK0RozM+DxY1WcUsaMFMtToQLQvj3g6UnLhZzEuXmTypaYmADLlklvBtXeHrhzh/r1PnkC3L5NS5avXgFVqwIdO1LsndjZvRs4d45imnfsELeT4eUFtGlDiSMdOqhasKVloqKAli3p4sPBgZJlsmcXWpXwiPhjyuGomDuXZgcKFaKp/e/fafnl9xNezZoUI7V2rfROhBw6EdWsSeUsunVTHcOePcm5+fwZKFhQSIXiRS6nHr0AzeyUKiWoHK0YMkSVuZotGzmCABU6dnGhZT2xO4MBARTbCtCMYJEiwupJjthYcrADAoDy5YHt26UVVqANcXE0ZkXZnDNneNF6BdwZ5EiCdevoKk4mA65fpyWw79+pmKuJCV3hligBbNoktFKOtpQqRWWCunShJILJk2lG6PNnigXlV+9Js3s38OABneCkGvvk5EQ17Zo3p5i7+fMp1OPJE4ohlYKDO3Ys8PMn/RYpnEKxMnUqdRext6eEEWtroRXpl7g4urA8epTKUx07RrPQHII7gxzRwhgQGEjLhVmzqm4vWpSWxBo3phpedeoAW7fSElNav7JN69SsSRnDq1bR0nBYGCUNbN4s/q4NQhEcrCpqPHky4OgorB5NiI8nRyQ4mJy9SpUoY3jHDvpOz5tHMzfu7qqZQrFy8SLFvQIU+yrmvLUzZ8jZBugCOk8eYfXom5gYOlccOkSfo337pNPK0FDwUydHNJj+9mv/9Clljjo4kNMXFZXwsblyUY9aT09g4UK62uOOoPSYNIkc+9/JmJFmLXx8KDv282fKKuYkzrRpNEtepIhqqVgKyOV0XHfsoJJCrVtTyai7d4HBgylOODiYkkjE3gotPBzo35+2Bw8Wd30+b29VG8eBA6nIdFomJsYUrVqRI2hhQVnqLVsKrUp88NMnRzQU/dUF/etXOkksW0ZZX+HhwOXLfz/+5Uu6/9w5voQoRZ4/V5Wx6NKFjvufZMpESzqcxHn2TNWWb9UqaSXYPHxImc8nT1J/8Y8fyaFq3156iQxTpgAfPtBSt6LgtxiJi6O4aj8/ytKXUgFvbQgNBRYurIXTp2mF4cQJ7ggmBXcGOaIh56/o8HHjgIkTaUbQ1paWiXbsAP75h04cCvz86GqPJxVIk337KCv89Wty+IoVU2WMA8D69dQ8npM4jFHSRXw8lVNq0EBoRZoRGUkna8Zo39KSSso8fkzO4cGDgspTmzt3qAwOQBc3Yu6ZPGsWraikS0dL71ZWQivSH4GBQMOGwMuXjsoey1L7jhgS7gxyRENMTAwAYMwYVa2rS5do5q95c3IGO3WigHKAapLxAGDp0r07zQRly0bxYZcu0ZV78eKUET5vXsJYUU5C9uyhE7u1tTRneKpUofitAQMShoHkzk3H/tgx4bSpS3AwzWozRiWtxNzB4sEDutgCyGktVEhYPfrk50+qtXnnDpAuXTQuXaLC0pyk4c4gRzQ8+lVZuEwZVW2uoCCqA9W1KxVybd+enAaO9ClUCMiXT7VfoQLFD86cCYwYQbUieVvpxPn+XRUfOHkyOVBSw9ycisi/fUut8/btU/Ul9vQU/5gYo2LNHz5QAoai84sYiYkBevemWeSOHaXVplBTvL2p48vjx3QxOXnyRZQvL7Qq8cOdQY5oCAkJ+eu2Nm1o+RCgHzIPDwoy50iXly8pHlQxw/s7JiZAlix0QdC9u8GlSYYhQwB/f8rAHT1aaDWaERRE4R3v39Os8MWLlA09YwbFiBYsSLeNHCm00uTZvJkcWDMz6kMs5p7Jc+ZQfKmDA3VySqt8/EgVCTw9Kcnw+nUgd+5goWVJAu4MciRBfDzw33/kGNasKbQajrZcuULLN7du0XF89uzvxwQE0CwLzw5PnAMH6M/UlHrKSilpxNubHP2FC+n/zZt0nPv0AV68oAuFw4fpc5Ixo8Bik+HLlwwYNoy258wBKlcWVk9yfPxoj7lzaXv1anII0yJv3lA/8w8fqL/59eu8oLQm8DqDHFGxcyeVkXBxUd0WH08Zp9myqep4caRHXBwljJw8SbO7y5ZRksiXL7ScM38+zQqm5SWs1OLnR6VLAGD8eOnFzA4dSroHDKBC2Tt3kkMrk1FGbu7cNKMjZsLDgZUrqyEqiorfi3lmNi4O2LixEuLiqHRP+/ZCK9IPT59ScsiPH1SH9sIF8XerERsyxhS5XBx1CQkJQYYMGbB582bY2NjozK63t7cyo1aX6MOurm0yBuzenROnT9dEhgyRmDfvDOzto9CoUSNkypQJYWGUAQcAnz9/xq1bt6DuR1cK49enXaFtFipUCOXLl8eZM5QYokgMGDWK+s+OGUPLbZ8+0T4AfP/+HU+ePIG/v79BtQppUx27q1dXwa1beZErVxDmzDkLc3N5qm1qgyY2HRwcUL9+ffj6UtLI+/c0G7h9OzmAU6dScsPp0xQ/aGkJXLx4ET9+/DC4VnVYv74Srl3LD3v7CMybdwYZMkTrzLautR4/XhRubi6wsYnBokUnkTFjVMpPUgMx/f69f58J8+fXRni4JfLkCcSECZdhZ6c6JmLSmhwRERHo27cvgoODYSdEsDTjaExwcDADwIKDg3Vq19XVVaf29GlXlzbj4hgbMoQxcgkZGzeOMblcZ+ZFP3592xWLzQ8fGLt6lbbDwhgrXJgxPz/aj4lhzMqKbtc1Yhl/au0ePUrfDxMTxu7d041NbdHG5ufPjK1dS9tyOWMuLgnHUaIEY/fv60jgb+hy/Nu30zGQyeLZ5cs6M6tEl1rfvWPM2pr0btmiM7OMMfH8/l27xlj69DTGKlUYCwxMvU110bVdffkV6sKXiTmCEhVF1fAPHKD95cspNpCT9siXT5U9bGtLCSSKOme+vrRUrMOJ9jTF9++qDhejR1PmtdRwcqKOFwAtC587R2EBAC1nBgfTY8TKy5fAoEG03bbtc9SuLd5myYpM58hIoEQJX/TqlU1oSTrn4kVqThAZSS1Jjx1TrR5xNIeHaHMEIziYCksfOEBlJoYMuckdQSNC4QgyBkyYAAwbRk4CJyGMUVmQ79+BkiWl150jKRSOIEB176pVE29f5YgIoEMH+l+/PtCq1UuhJSXLjh3kLFlZAX373k9z36sLF6j2bGQk1XY8eZI7gqmFO4McQfj2jbJJr16liv2nTwNVq34WWhZHAGbNogxifiGQONu3A6dOUSzd3r1UZDotceYMrQgouniIkaFDKds5WzZKfDExEW+o/ffvqrI8M2YAjo5hwgrSMefP04xgVBQ5hIcPp73vhBBwZ5BjcF6/BqpWpQwwR0dyCOvVE1oVxxD4+Pzdg3jMGPpBNzMDPnz4IIwwkfL1KxXgBqgYd4kSwupJLRERVPrjdxo0oMShbNmAoKAgQXQlx+7d1CHHxARwdRXv7KWCYcOoFZuLi/hrNWrKuXPUiSoqihzCAwd473JdwZ1BjkG5c4eWgz59og4Ut28nLCPDSdsMGUKlH/bvV91mba36Qb93754wwkQIYxQnGBwMVKpE2ddSZ/ZscmjXrVPdZmqqWjK+cuWKILqS4tUrKoMDUNZznTrC6kmJY8eo57CpKRXFNktDWQEXLwItW5Ij+M8/3BHUNdwZ5BiMI0eo4LC/v6r12O/tyDhpm5MnqfNEVBQ5hInBeKUrJTt2UPiEpSXV4jM1FVpR6nj1Cli8mI5/jhyJPyYyMtKwopIhOpriBMPD6Xdr8mShFSVPYKAqwWXUKOnVoEwOb2+qkahwBPfvl1axdSnAnUGOQVi4kFrLKQJ+L19Ou5XwOX8THEzZjQD11HV2FlSO6PnxQzUTOGOGqiWjlBk5EoiNpTivli2FVpMy8+apWrjt2SNuZ1yRZOTtTe380kqSkYKpU8nZLVeOZj65I6h7uDPI0TvLlgHjxtEP1uDBtJRhayu0Ko4hGTVKdaKaOVNoNeJn5EhKqildOm3EfZ09S7Oc5ubA0qVCq0mZFy+QoIVbNpFXZlm1ilZeLCzSXpLR8+eURAXQOPnSsH7gziBHr7i7q05mc+bQD2taimPhpMzJk9RGUCajQHxeSzB5zp6lmSgTE2DTJnKgpEx0NM0GAxQzWqiQoHJSJD4e6NuXZjFbtBB/C7cHD1Qt8RYvptmztMT48YBcDrRtSx1sOPqBO4McvXH9OhWUBugkMGGCsHo4hsfPD+jTh7aHD6dG8pykiY42VRZmHjZMmsWl/2TWLIoXzJqV2s+JnbVrKdEtfXraFnONvqAg4N9/yXFt04Z+Z9MSV67QxaSpqWqmlqMfuDPI0Qs/flDwdUwMNUhfvlzcP6oc/TBoENU9K16c/5irg7t7KXh5USeOWbOEVpN6PD2BBQtoe80aIGNGYfWkhJ+fymFdsADIlUtYPckRG0u/sR8+AHnzqmbf0wqMARMn0nb//kDhwsLqSetwZ5Cjc+RyoEcPajFWvDjV6RJz8DVHP+zbR1l/ZmbAzp2qjiOcxLlzBzhzpggA6sgh9Y4KjFGx5rg4Shpp105oRSkzdiwlO5UurWr/J0YU7+358xR2cegQYG8vtCrdcvYslR6zspLGjLLU4c4gR+esWEFdBaysyCHgMWLGh4+PqszFpElpL45J10RHUzYoYzJ060YZ91Jn/36qDWdpSb8JYufaNSrhA1AdRDFfwC5ZQhcMMhkVwk5rtVoZowxigJIOs2cXVo8xwJ1Bjk55+pQCfgHKIi5ZUlg9HMOjKJYcEEAnqUmThFYkfmbPpiXVDBkiRd2WTV1CQ1WdUyZMAPLnF1ZPSsTEqIpL9+8v7kSFgwepaw9AmdlSKNOjKcePA/fvU9WJsWOFVmMccGeQozOiooAuXeiHtUULVV05jnGxfj1w4gSVudi5U/rZsPrm8WNg/nza7tXrATJlElSOTpg1i/qP588vjZP5kiXkjDs4qI6FGLl7F+jalbYHD06b/bzlctWs4LBhlHjE0T/cGeTojAkTqCZU1qzUCiktBTNz1OPBA1UZkXnz+MxwSsTG0vJwXByVzqhY8WvKTxI5jx7RqgAArFwp/pp3Hz6oal8uXSreJBcvL1Vf3qZN025S3qFDwJMnlM2dFlowSgXuDHJ0wvnzUC5vbdvGr+aMkcBAqskWE0NLV4plQk7SLFoEeHgAmTJRtq3UiYgAOndWObfNmgmtKHkUhfCjooB69WhlQ4wEBtJ7+eMHUKYMxWKnxXqtcrkM06bR9ogRQObMwuoxJrgzyEk1/v5Az560PWgQXbVyjAvGgF69gI8fqd/09u1pc9ZCl3h6Uqs5gC6kHB0FlaMTRo0CXr+m3sMbNgitJmX27qVkNwsL8dYUjI4GWrWiz0uuXBSCIfVM86S4cyc3Xr6kzGh+MWlYuDPISRWMUWzgt29A0aI008ExPpYuBY4epZPq/v1pr8yFromPp2LcMTF08aSIA5Myx45RvChAsaJin9Xx8lIljUyaJM46dnI5XWRdu0bLpidPAjlzCq1KP3z/DuzbVwoAdVThvyGGRcYYY0KLkBohISHIkCEDNm/eDBsd1k3x9vZGTj180/VhV2Hz6tV82LChMkxN5Zg58xzy5QtMtU1do8/x6xqpaP3d5ps3WTBzZj3I5Sbo1es+GjR4pxO7ukKMNk+fLoJdu8rC2joWCxeeQubMETqxmxiGsBkYaIXx45sgNNQKzZp5okuXxzqxqwsSsxkXJ8PMmfXx7l0WFC78E1OmXISpqfqnQkN9//fuLY1jx4rD1FSOsWOvwtnZN9U2dYGubX79aodVq6rhyxd7ZMkShgULTsPaOk4ntqXyWx0REYG+ffsiODgYdnZ2OrOrNoyjMcHBwQwACw4O1qldV1dXndrTp11XV1f27h1j6dIxBjA2b55ubOoDfY1fH0hFq8JmSAhj+fLRZ6BTJ8bkct3Y1SVis/n+PWM2NvSerV+vO7tJoW+b8fGMNWxI4ylThrGoKN3Y1RWJ2Rw3jvTa2zP28aNubOqC3+1u2EAaAca2bdONTV2hK5uhoYyNGcOYmZnieESwt291YlqJVH6r9eVXqEsaDEHlGIL4eCqOGxYG1KypqnvFMS5Gj6bltjx5aIlQjDFXYoIxoG9fSrSoUwfo109oRaln1Srg3DkqMu/qSkWmxcy5c6oWeVu20GdXbHh5qfoMT5+uislOKzAGHDhAcYHe3nRbixZA/frnUbDgP8KKM1J4zCBHK44eLY7btwE7O4oPEnO1fo5+OHMG2LiRtrdto88CJ3k2bQIuX6ZyK5s2ASYS/wV+9gwYN462lywBihUTVk9KfP8OdO9O2wMGAG3aCKsnKWbOpLJD9eqpau6lFV6/Bho1or7K3t6UcHb8OMWcOjiECy3PaJH4TxFHCO7eBQ4dogJya9aI88qao19iY02UMxfDhtEsFyd5vnyhmVQAmDMHKFBAWD2pJTKSyshER1Pv4YEDhVaUPIpZ2e/fgRIlKOlJrJw6Rf8nT047s+3h4VSL1tmZSpFZWpKj++IFfX44wsKXiTkaERZGmY9yuQk6dhRvXS6Ofjl1qijev6eeobNnC61G/DBGM1GhoUDlyuRAS53x41VF5rdsEb/TsnmzqjOOm5t4i2FHRFA9QQAoXVpYLbri3DlyxL98of1mzaggudjbFGpLXJz06kDymUGORowYAbx7B2TKFC7aulwc/fL1K3DkSAkAwMKFVPKCkzx79tBsj4UFsHWr9MMqHj/OjpUraXv7dvEXmX//XlW3bu5cmp0SK58+0X87u7RRXmXrViqf9OULrSIdPUpOeVp1BE+eBEqVos42UoI7gxy1OXJE1WZu0KA7om3bxNEv48YB0dFmqFqVzwyrg4+PqofstGnij6tLie/fgQ0bKgEAhg4FmjQRWFAKyOUy9OhBy5S1aom/mLGXF/3Pl0/6F9tz51I9zfh4oEcP4OVLaqmXVrl3j7oweXpSYpWU4M4gRy0+f6YeqgBlDhcv/kNYQRxBOHWKMkZlMoZVq6R/stI3jAH9+wMBAUDZstLPuvfxofjQ4GBrlCihysoVM+fPF8TNmzSDvWOH+JN2rl2j/1KfOVuzhop5A8DEiZRkpsOyvKLj61dqwxkZCTRuTKsmUkLkXwuOGIiNBTp2pP6YFSoAs2YJrYgjBAEBFPcDAI0bv0bZssLqkQLbtqni1HbsAMzNhVakPZ8/UxkpT08gU6YIHDok3rg7Bd++Ae7uFHi3YIH4k90iIsyxbh1tK7KepcjRo6q42JkzKWEqLV84RkZSy0BfXwpBcHeX3nedO4OcFJk8Gbh9G8iQgRqkW1gIrYgjBEOG0MxQ0aLAv/8+FVqO6Pn0CRg+nLZnzQJKlhRUTqp4/x6oUYPihfPmBaZOvSDK9m1/MnIkEBlpjkqVqG2m2Dl/vhBCQoDixaW7nPrhA2WZy+VUR3PyZKEV6RfGaCn84UMgSxYqkSPFOGruDHKS5dQp1XT31q0Ux8IxPvbvpwxMU1Oa4bKwiBdakqiRyymsIjQUqFoVGDVKaEXa4+lJjuDnz9S/9/p1IGtW8deDO3uWLl5lMjnWrRP/8nBEBLUpBKgEi9j1JoZcTo5RRATFZxpDkuGCBfTbaGZGhbTz5hVakXZI8OPGMRRXrgCdOtH2kCHiLdDK0S+fPlFZFIBOUhUrCqtHCmzcCFy6RDFSO3ZIN3v4xw+gbl2aES5ZkuLZcuUSWlXKxMZScgsANG78Bi4uwupRh+nTgZAQK+TNS2E5UmTPHjpv2NjQ5IHUyqtoyrlzFA8JUMJIrVrC6kkN3BnkJMqhQ1QlPiQEqF0bWLxYaEUcIYiJoey4gACgfHlgyhShFYkfb2+qwQcA8+YBBQsKq0dbGKNlPl9fCg24fBlwdBRalXps2gS8fUslb9q1eya0nBTZtQtYtIi2Fy2SphMVH0+xgQAtDUs9ASYlAgOt0bWr6nuiuGCWKtwZ5PzFxo3kAMTEAK1bA6dPi7/fKEc/TJwI3L8PZMpESyA8XjR5FPFDwcGUbDV4sNCKtGfzZop/srAA9u6leCgpEBoKzJhB29OmAdbWccIKSoE7d1SJWf/88wLt2gmrR1sOHqRWcxkzqvoqp1Xi4oDVq6vg50+qKbhihdCKUg93BjkJWLmSAq3lciqJsX8/NaDnGB9nzlC/WYAKC4s9E1MMbNhAsWpWVtJeHn77VpX8MneutDphLFlCy9sFC9KMjZj5+pUuuGNiqCxJhw7STMySy1WdiIYPl2YChSbMnAl4ejoiXTrKHBZ7Vr06cGeQo+TgQdUJYOJEYP166Z7MOKnj508qEgtQ7FWLFsLqkQLv3qkSRebNk3Zx6f79KQmgTh3xF2n+nYAAVUjL3LniLu8REUEOoK8vxWPu2iXNpBGAyic9e0ZOoCJWM61y+bLK8d2wAShSRFg9ukKiHz2Orrlxg7pJMAYMGkQf9rSeBcZJmsGDaXalZEnpFU81BOnSpUuwr+iwEBFBMbZS7j0cGEhJAAAlAUjJQTlxgjqNlCgBUS+3MkbZ5o8eSbscCUBjUdSeHTwYabozVUQELekzBtSp8w6dOwutSHdI6GvO0RevXlFNq+houlJduZI7gsbM/v30pygjw8ME/qbFH1OlJ04At27RCX37dmk5UH9y/z79L1BAemUyTpyg/61bi/s3bM4cKntjZkYrMlIu2XXuHPDgAS2VjhwptBr9Mns21VHMlQvo2tVDaDk6RYI5Sxxd4uNDrXMCA4HKlanVGF8aNl5+/lQlPUyYAN5l5A+8vIAvX4AqVRIuQbZsSSf3+Hjpx1bevUv/pVZCKCaG4jUBoHlzYbUkx+HDqqz8tWupq4tU+X1W8H//AxwchNWjT549U2V8r14NRESIOzFJU7gzaMQwRvWsPn0CChUCjh9P270jOcnDGC2B/PxJy8NpvXOApri50cyHhQXg5ARcvZrwwqlDB+G06RKFM1ipkrA6NOXWLSqF5eBAmdxi5OlToFs32h46VPwJLilx5Qpw8yZ9J6Tedzs55HJyduPiaNa5ZUv6PUhLyBhjTGgRUiMkJAQZMmTA5s2bYaND78nb2xs5c+bUmb2U7F69mg8bNlSGpWUc5s07jWzZwlJtMzUYevxis6kvu+ravHixALZsqQgzs3jMnHkOefMGpdqmpojtWGXJkgUNGjRAUBDVWbx9m2KiGjUC/vsP8PCg25s1o8dfu3YN3t7egmjVhU3GgIEDWyMkxArTp59D4cL+qbapCamxe/BgSRw86IwqVT5h6NBbOrGZFNrYDA62xJQpjeDnZ4uSJX0xbtwVmJomPP2KRas6NjNkyIeJExvBzy8d6td/i969H+jErhjH/+hRDixeXAtWVrFYtOgkMmeO1LnWiIgI9O3bF8HBwbCzs9OZXbVhHI0JDg5mAFhwcLBO7bq6uurUXnJ2/f0Zy5KFMYCxBQt0YzO1GHL8YrSpL7vq2PT0ZMzamj4PS5boxqY2iPVYHTvGWPv2qv0OHRirVYuxceMYc3RkbNGiVL8EY0z48Xt50WfA3JyxyEjd2NSE1NitV4+0r1mjO5tJoanN6GjGqlcnfQUL0u+vLuyqgz5s7t7typo3p/EUKMBYUJBu7Ip1/IpjN3asbu3+jr78CnXhy8RGyoQJgJ8fZd1JqXQER/fExFAmeWQkUL++qrwQR0WBAlR3cfNmyii8fx948YKC5lu3pvdv9GihVaaeGzfof5ky0kocio2lWVuA+iiLCbmcloNv3ADs7CgcJ1MmoVWljhMniuHECWpGcOAAkCGD0Ir0x40b9GdhkbZ/GyWc88bRljt3qMsIAKxbJ+5aXBz9M3UqlbjIlImyh6WcCasvihenvqunTlEtu2LFVIVmzc2l0a9XHS5fpv+1awsqQ2M8PMhJz5iRLnDFgiLWbOdO+l7t3Uut/aTMhQuAu3spANSPt0wZYfXomwUL6H/PnkD27IJK0St8ZtDIiIsDBg6k7Z49xXcVzTEsly6p6ghu3gzkyCGsHjHTogX9RUZSAsmaNRQv+N9/1PYsLaCoLyg1Z/DaNfpfvbp4LmbkcupXu3kzadq1C2jSRGhVqePUKaBtW0AuN0G3bqo2emmVZ8+oXJFMljZm/pNDJF8bjqFYswZ4/JiuoHkxYePG1xfo3FmVRdy6tdCKxEVEBHXiSJeOWpuNGkVlZaytqQXVzp2Ujd+7t/RP8gDw+TPVUDM1ld5F4vXr9F8suuVyuujetIkcwZ07IfkCxfv3UxZtVBRQtuxXbNwo7lqOukBxjmzblipupGX4zKAR8e2bqr7V/PlpuyYUJ3ni4oBOnYDv36mMzPLlQisSH3PmUEzUp0/Uam7NGlouXrKEYsAUJVjSCopZwfLlpdUNQy5XxTqKwRlkDBgyhEJxTEwo9KJLF6FVpY6tW+kzL5fT70aTJjdgZdVRaFl65eNHVfmY8eMFlWIQ+MygETFyJBAaSvXD0vr0Pid5pk6lk3+6dBQAbmsrtCLxcf8+0LUrkDkzfWd27qRuC/PmAUuXCq1O90g1XtDTk+I4bWzEUSR96VKKxZbJqBtN165CK0odK1cCffqoEmF27QLMzNJ+RbrFi6mIfIMGQLlyQqvRP9wZNBKuXKEOCSYm9EMllrgajuE5dYocGoDimdJKo3Vd4+ysOiEoqFKF4ixnzqRs/LQCYzQuAKhTR1gtmnLxIv2vXJkyPoXk2TNg7FjaXr5cVWBaqixYQDGxAE0mbNhgHB2qfvwAtmyhbWOYFQS4M2gUMAZMnEjb//sf4OIirB6OcHz5AnTvTtuDBwP//iusHjEzaxa1n2vcmOLpFOTLRzGE4eHCadM1z57RGK2sKAlDKjCmqozwzz/CagEou1YuJy1DhwqtJnXMmqVyhKZNowujtB4jqGDpUoqNrFBBehdH2sJjBo2AR49y4PZtCnxXxAxyjI/YWIr38fenZY8lS4RWJG5sbCgxYfRoKgfSpQvQsCHw6hVgZgbkzi20Qt1x5Aj9b9hQWiEDV65QvUdbW6qOICSBgcDu3bQ9erR0HSfGyPlT9ByeO5fq0hoLAQEUHwzQ+VKqx1FT+MxgGkcuB9zdSwMAhg1L23WSOMkzZQr1EbWzo2xYS0uhFYmPmzdpeThfPuDwYbqAWrOGZs4yZ6ZkgB8/aKk9LZ0kFM5gq1ZCqtCc1avpf/fuwhc+3raNyg6VKiWt2dXfUawiKRzBRYuMyxEEKEYyLAwoXRpo3lxoNYaDzwymcdzdgS9f7JEhgyqWhWN8nD6tKp66dSuQP7+wesTIt280c7p6NZ0UR44E6tWjmUAXF8rAT4t8/EhFm01MpHXy8/JSObGDBwsqBXK5ajZpyBDpXijMnKn6nC9frooXNBYCA8kZBIBJk6R7HLWBzwymYRhT1UkaOVL6LZA42hEQYK2MExwyhGpmcf5m+XJyKv75h+qp2dnRcnr79uQMfvumeuz9+/cF06lrFBcJdepIp9wUYxSTJ5dTtqfQXUeuXKEajXZ20q0nuHo1MH06ba9YYXyOIEAzooGB9Hlq00ZoNYaFO4NpmBs36Irf3DxO8CtnjjDExwNr11aBnx85NIsXC61IvNy7p8r+vHWLEkTu3KEZqNKlVUuSAPDu3TthROoYLy/KKAeo3JBU2LsXOHmSsofFUCNz2zb637GjtGIuFezdS2FEADmEim1j4s0bSgACKIHEGLKmf4c7g2kYxY9k9eofkTmzoFI4AjF3LvDypSNsbekHn8cJJs25c6p2fDExVCMuc2ZaPq1WLW1lDyuYOpUKkDdsCNSsKbQa9fDzUzkrkyZRIXAhCQ4GDh6k7V69hNWiDefOUcwlYzQzLqWLAl0yahR9F5o1o++DscGdwTTKhw+qeJomTV4LqoUjDNevq5Z91q8HChcWVI7o+b1GXe3aQNWqtM0Y4OoqveSKlPDwUGW/zp0rrBZNGDGCHMKSJcVRA87dnRJHihal4uRS4v59akMZG0tlplauNK44OQXnz1MPYjMz462ywJ3BNEh8PHUYkcvpCidXrhChJXEMjL8/JUPI5UCNGl6S74IgFIxRUL29vfQ6cyQHY8CYMbTdubN0OiycOUMOrExGy9tCF5kGqJg/QKVtpORIffoEtGhBPbgbNqQOO8bYjCAuji4wAJoZNdYi/AY99A0bNkSpUqVQpkwZ1KhRA48fPwZAwdjVqlVT3ndJUQofwMSJE1GsWDGULl0aFStWTHCfXC7H0KFDUaBAARQsWBBr165N8HqzZ89GgQIFUKBAAUz5o8Deli1bUKhQIRQoUAD9+/dHXFyc/gZuYObModZStraqzCiO8cAYnZi8vWk2sFevB0JLkiyBgVRmwtVVWif6lDh3jjp3WFjQ74UUCA2lovkAMHy4OGbhgoOBq1dpW0oJB8HBlDn+/TuVwjlwQByOtRBs2kS1KjNlovqKxopBnUF3d3c8ffoUjx8/xqhRo9C7d28wxtC6dWvMnj0bT58+xd69e9GjRw9ERkYCAGrUqIFHjx7hyZMn2LRpE9q2bYuoqCgAwO7du/Hy5Uu8efMG9+7dw8KFC/Hq1SsAwLVr1+Dm5oanT5/i5cuXOH36NM6ePQsA8PLywpQpU3Djxg28e/cOvr6+2KLoPSNxrl4FZsyg7XXrjPcqx5hZuZKWPCwsaNbCyirtXOjok+hoyiS+cEF1W6ZMVGvNzk44XbomPl5VZmrIECBvXkHlqM3EidQlJV8+VR08oTl7lmaWihQBChUSWo16xMZShvzz51R39uRJIH16oVUJQ2CgqhHDzJlAxozC6hESgzqD9vb2yu3g4GCYmJjA398fAQEBqPOr50vRokVhb2+P06dPAwCaNGkCa2trAICzszPi4+Ph96sp6L59+zBgwACYmpoiU6ZM6NChA/bu3au8r2fPnrC1tYWlpSV69+4NNzc3AMCBAwfQunVrODo6QiaTYcCAAcr7pMzPn7TkI5fTzJDU+2JyNOfhQ9Xy35IlQJkygsqRFIsWAcePA1270tJZWmXPHuDpU1r6njRJaDXqcfGiKpt7wwbxZOweP07/W7QQVoe6MEYXAOfPU4edEyeAXLmEViUco0dTSE2xYqpZZ2PF4BEC3bt3h5OTEyZPnowdO3YgS5YscHR0xMFf6Vh3797Fmzdv8PHjx7+eu23bNhQoUAC5fn16P3/+jDx58ijvz5s3Lz7/aiKq7X2JER0djZCQkAR/YuPHD4r7+PaNApl/L4PBMQ5CQ6m0RWws1cnj5YTU5907YPZs2l62jE6UaZHISGDyZNqeMEEatUeDg4HevWl7wACqKygG4uOpmDsgHWdw0SLq5SyTAW5uQNmyQisSjjNnqAC/TEYXGGZG3oLD4MPfuXMnAGDHjh0YM2YMTp06haNHj2LcuHGYM2cOnJ2dUb16dZibmyd43sWLFzFjxgycP38+we2y3wJ5GGM6ue9P5s2bhxmKtdff2L9/P2x0eNbw9vbWaobS398Gc+fWgY+PHezsotC790UcO6ZyWLW1mxxSsakvu2LTyhjVE3z3Li8yZw5Hs2ZnsHdvTKps6kOnEHZTsskYMH9+bURHZ0fJkr5g7DJSkiDV8R8/XgxfvpRB5szhcHQ8CTe3+FTb1CWJ2V2/vhI+f86PrFlDUbHiGbi5aRb2oK/3dPbs8/D3bwBb22h8/nwYbm7Jn0fUtauv43/rVh6sXk0p8l27PkR4+JsUP+cp2dQ1hvr+R0SYY+zYJgBs0bDha3z9+kjj90LXWiOEXo5gAmJlZcX8/Pz+ur1o0aLswoULyv0rV64wJycn9vjx4wSPa9q0KXN3d1fujxkzhk2bNo0xxtigQYPYwoULlfetWbOG9ejRgzHG2MKFC9mgQYOU9508eZLVqlUrSZ1RUVEsODhY+fflyxcGgAUHB2sy3BRxdXXV+Dlv3jCWOzdjAGNOToy9fq0buykhFZv6sis2rdu20WfA1JSxGzd0YzM5xDb+1Nh0c6P3ztKSvk+6sKkt+hx/YCBj9vY01h07dGNT1/xp98gR0iuT/f251tamLnB1dWUTJ5K2jh11a1fXuLq6skuXGDM3J70jRujGpj4w1Pe/b196LwoUYCwsTHd2U0NwcLBe/Ap1MdgycUhICL791s/p8OHDyJw5MzJlygRfX1/l7Zs2bYKtrS3q1q0LgBJBunXrhqNHj6J06dIJbLZv3x4bNmxAfHw8AgICsG/fPvz777/K+3bs2IHw8HBER0dj69at6NixIwCgbdu2OHz4ML5//w7GGNavX6+8LzEsLS1hZ2eX4E8MPH0K1KhBQdWFC1PHEV5Lzvjw9FQtCc+cSQWSOeoRFESZqQAlKEglCUAbli6l8ZYoAXTpIrSalPnxA+jXj7bHjBHf5/rkSfrftKmwOlLi8+cMaNVKlThi7F2Izp6lskQyGXWOEUv8qdAYbJk4ODgYbdu2RWRkJExMTODg4IATJ05AJpNhw4YN2LNnDxhjKFasGA4fPqxcxu3Tpw+io6PR67fS7rt27YKzszO6deuG+/fvo/AvD2jMmDEoVqwYAKB27dro0KEDnJ2dAQAdO3ZE48aNAQD58+fHjBkzUK1aNcjlctStWxd9+vQx1FuhE1xdgf79qStCmTL0Ac+aVWhVHEMTGUlxghERQL16wLhxQiuSFhMmUHmNwoXT9nsXEECxkABdMIi91RZjFB/48ycVl545U2hFCfH3t8aTJ+RQ/DqtiJLPn4GFC2sjJIQmDoy1lqCC4GDVBcbQofSecAiDOYNOTk64d+9eovdNmzYN05Io8PP27dskbZqammLNmjVJ3j916lRMTaK3Tr9+/dBP8amQENHRVCBz3Trar1uXWiH9lqjNMSJGj6YZYgcHYNcu8Z/kxcTVq9SZBaAA8rTcqm/NGqqXWLo0dZwQO7t3A4cPA+bm9LkW27F58oT6FlaqRN89MfLzJyUVBgTYoFgx6khlZSW0KmEZMwb48gXIn19aXXcMgRFfI0gPLy9aKlm3jq5Ip0yh4rHcETRODh4EFHXWd+2immEc9YiIoC49AJWUSEvdRf4kOtpUWXx+3DjxF8/+8oXKnwDUTlGM5ZE8PMgZbNZMYCFJEBpKy9evXwOZM4fj7FlpZI7rkwsXqMA0QFnEfHk4IUaeTC0dnj4F6tSh5Z7MmenKWczLExz98uwZ1ZIEqIBwo0aCypEc06dTOZmcOYEFC4RWo1+uXs0PPz8q1ty+vdBqkkcuB3r1AkJCgMqVVcWxxUR0NPD8uSMAccYLRkdTN5QHD+hcMX78ZTg5NRdalqCEhgKKSLAhQ4BatYTVI0a4MygBPn+m2loBAUD58sChQ4CTk9CqOEIREECdMsLCKExAUR+Pox4PHqia0a9bB2TIIKwefRIXB5w8WRQAMGqU+GupnT9fCBcvAtbWwI4d4tR79SoQHW2O7NkBFxeh1SRE4UxfuEAzX6dOAe/fhwotS1AYo9AqRfeaefOEViRO+DKxyGGMlrN+/KB4n/PnuSNo7AwaBHz8CBQoAOzfT3FVHPWIiaECxnI5Jd5IpViwthw/Dvz8mQ6ZM5OTIGa+fgX27aOKEQsWiLcygiLO9J9/xLfkPmMGFZM2N6dJg4oVhVYkPGfOFMaWLXSsNm8G0qUTWpE44c6gyNm8mRxAKyvA3Z3HBxo7bm7Ub9jUlLaNPQ5IUxYupCX2zJmhjKNLyyjy6/r1E39XlWHDgKgoc1SuLN7uOa9eUSIGQHrFxJ49qqzrDRsoecTYOX4c2L2b2qwsXEgrKZzE4c6giPn8mZZ2AMp8EuuVMscwfPlCs4IAJQ9VqCCsHqnx8iUwaxZtr1wp3ixQXeHpST19ZTI5BgwQWk3yHDtG2cOmpnJs3Cje8ieLFtFqTblyX1G8uNBqVNy8qWrZN3as+GeBDcHDhzT7z5gM//uf6lzKSRyRfuU4cjktD4eGAlWriu8qlGNY5HL6sQ8KoqWfiROFViQt4uPp/YuJAZo3Bzp1ElqR/lHMCpYr543fWrGLjrAwVfZw06av8Ks0rOjw9qasfQBo0cJTWDG/8fEjlQuKiQFateIxcQDw6ROFgEREAM7OPli1SnxL+mKDO4MiZeZM1fLwtm28fpyxs2gRBYVbW1PhWB4nqBkrVwJ37wJ2dhTzldZPDBER9DkBgAYNkq7VKgbmzaNZ77x5gTZtngstJ0nGj6cuHtWrA4UL+wktBwDNUvbuTTUFXVyoyoRYZ1UNxbt3QM2agI8PFSz/77+b/PdSDYz8YyNO3N0pEBigOnJ8edi4uXEDmDSJtlesAIoUEVaP1Pj+PZ3y/Vu0iMrJpHUOHaJVhXz5gBIlvgstJ0k+fVJldi9bBlhaxgsrKAnOniVHSyYTVzu3HTuAy5fpInH/fl4778WLhC1aT58GbGxihZYlCbRyBuPjxfmFTQs8eqSqHzdyJI/9MHZ+/qS4l/h46ierKJTMUQ/GgE2bKiIykup0SrDpkFZs307/e/QQ90zRxIlUF692baBlS6HVJE54OJQxl8OGUdcRMfDzpyoObto0qi5gzDx6RPUDfX0BZ2fg2jUgVy6hVUkHtX8mrl27hq5duyJ79uywsLCAlZUVKlasiAULFiAgIECfGo2GwEArtGxJ/WYbN6bsJ47xIpcD3bpRrFKRIsaxvKlrNm0CXr50hLU1bRvD+/fpE3DpEm336CGsluS4e5d6rMtkNDso1mMzdSrF5eXOLZ6annFxQNeuVHO0VCmaODBmbt6kiz1/f0qsu3IFcHQUWpW0UMsZbNasGZYuXYoWLVrg3r17iIqKws+fP7F69WpER0ejXr16OHPmjL61pmmiooBly2rg61egaFFg714eJ2jsTJ5My1OKJSBeH0szfvygXqQAMGeO8cyc7NhBM6J16lAcnlhRZHb36AGULSuslqR49AhYvpy2160Tx3dQLqcZ7nPnqFyQsccQX7hAZXRCQihW8OJFXnJLG9Sq7z5v3jyUKlUqwW3m5uaoWLEiKlasiAkTJsDLy0svAo0BuZyWht+9y4KMGak2UlruisBJmd27VVmBGzZAtBmWYmb+fDpB5M0bgGHDjOPsIJerlojFHGISG0uxbgB1hxAjcXEUlqEoUC6G1nNyOS1Zb99OkwW7d1MzAmPl2DFqsRgTQy05Dx0Sfz1NsaLWzOCfjiAAMMYQGkptbszNzVGYZzloBWPAf/8pCgnH48ABoGBBoVVxhOTJE6B/f9qeNImWijma4e1NyVcA8O+/T4xmlv3aNcDLC0ifHmjbVmg1SfPgAWU8Z8pEGZ9iZNkywMMDyJhRNTsoJIxRCZ5NmygOdNcuKiljrLi6Ug/mmBh6H44e5Y5gatAotLhPnz4ICgpCTEwMypQpA0dHR6xV/OJytGLWLGD1aoqXGTjwLq+QbuSEhZmjTRtV3Kgiq5yjGbNnU2JCjRpAqVK+QssxGFu30v+OHcV9Yrx6lf7XqiXOBJf37ylWEACWLhVH/NmYMbRULZPRzKAx1MpMijVrKGYyPp7+u7sDlpZCq5I2Gn0NHz58CHt7e5w9exYuLi7w9fXFhg0b9KUtzbNiBWWBKbarVv0krCCOoDAGbNhQGR8+UKzXnj08blQbPnygNo4AOYViTUzQNYGBwIEDtK3oRiFGGANOnKDt2rUFlZIo8fG0PBwVBdSrJ44knDVrVCV4Nm823tUCxug7PWSIaqZ0xw7ATK2AN05yyBhjTN0Hly5dGk+ePMGYMWNQqVIltGvXDi4uLvDw8NCnRtEREhKCDBkyYPPmzbDR8vL75Mmi2LPHBQDQuvVztG//DN7e3siphyJo+rArFZv6svvhwwdY/nYpGhcXB7M/fpH+vC2l/YcPi2Hv3mYwNY3DkCGuyJXrh8Y2ErstMjIS1tbWqbKhqU1txq+N1sRs7NnTGI8fl0Thwl7o1++gQcavjVZdj//06eq4dKkysmX7gZEjdyqdYH0cq9SM/9mzgti5sxVMTeMxbtwWZMwYovX4tdGako0zZ6rh4sUqsLCIwYgRO5ElS5Cgx9/LKz82b24HudwEjRpdQf36D/Q6fm1sajveP2+Ljo5G/vz5kRhyObBnjwtOny4KgM6b7do9S/FiTyrnlYiICPTt2xfBwcGws7PTmV21YRrQsGFD9r///Y/lyZOHBQYGspiYGObs7KyJiTRBcHAwA8CCg4O1ev78+YzRdQ1jkyczJpfT7a6urjpUqUIfdqViU192Fy1alOJr/Hlbcvs+PoxlzEifidmztbOR1G0padVGu67Hr63WP/efPmVMJpMzgLEHD7Szqc5j/rSpjVZdjt/HhzEbG/r8jBhxVSOb2mjVdvxhYYw5OZHOli2f/2VD6M/qyZOq3+Y9e9S3qY4ObY7/smXHlL8L3boxtmePOL6ruhi/unYZYywmhrHu3VXHZvnyRB+WKFI5r6TWr0gtGi0T79mzB0WLFsXevXthb28Pb29vjDT2AkcaMmcOtTUCaIl45kzjWcbiJE5MDMV4BQYCOXN+x9ixQiuSLpMmUWP69u2BcuWEVmM45syhhIxKlYDy5b2FlpMks2ZR67k8eYBWrV4ILScBXl4UfwYADRq8QefOwuoJCQEWL66JwEDqR75xo3GeKyIiKEFk504Km9m+nZIuObpF7ZX2+Ph4dOrUCefPn1feljdvXvRUtMvgJAtj5PhNn077s2erWoxxjBfGqKvB1auUAdqp0ymYm4u4JoiIuXSJyjKZmMgxa5YIsxL0hJcXlR8CgLlzge8i7T7n7W2njHtbuRIIDxdPJ6vYWBO0b08XZJUqAV27egAQrkIGY4qC8xmQIwdw5Aj1qTc2/P2BFi2A27ep3qq7O9C8udCq0iYaxQzWr18f586dg4kY078MiCJmUJO1/enTVZmh8+cD48b9/Rg3Nzd00kOKmD7sSsWmvuzOnz8fefLkUe4nFj/y522J7T9/Xhs7dpSHTMYwevQ12NldR4HfqiOrYyOl133//r1GNtV5TEo2tdWuqVbFfnCwJSZMaIygIBtUrvwYw4Z5GnT82oxXV+M/cKAD7t7NjZIlfTFx4mWDHCtNxy+XA5Mn18DHj7ng4uKNMWOu6WT82mhNzMbatYVx40Y5pEsXjblzzyA6+q2gx//KlfzYuLESzMziMG3aRRQoEKDX8ev7+Kv7up8+fcL4X0tn798DTZoAb98C9vbAyZNA1arQGKmcV7TxK3SKJmvKkyZNYs2bN2f79u1jJ0+eVP4ZG9qs7R87xpi5OWNLliT9GKnENkjJpr7s6iIOZ8KEi8zUlGJgFi5Uzy6PGfx7Pz6esQYN6H0sXpyxrVv3pcqmOo8RS8zglCnnGcCYiQljT56op1WImLG1a+n42Noy9ulT0jr0cayW/xFg9uHDhwT7Z8+qYtEUpzMhj7+3N2MZMpCezp0fpfictBgzeOcOYw4O9B7kzs3Yixd/PVVtpHJeETpmUKOE7Js3bwIA1q1bp7xNJpOhqRhKs4ucFi2AV6+AJBKlOEbG27fAihXVER8PdO8OjB4ttCLpMm8ecP68ahnp6VPxLD/qk/h4YOdOCozs35961IqRr19VKyHz5lGPX0PSVREI+It8+fIl2K9RA6hX7y3KlCkkeJcRxoCBA4HgYOqx26TJawAuwooyMEeOAJ07U61VFxeaEcyeXWhVaR+NnMHLiv5BHK3gjiAHoDiY5s2BiAgLVK5M8V7GGBiuCzw9HTBnDm2vXQuUKAE8fSqsJkOxZQvw6VNG2NtTPLIYYQwYPBgIDQUKFvTDoEFZDK4hc+bM+PwZmDgR8PGhdm7t26vut7YG+vR5gI4dCxlc2588eVIEx45Rr+GtW4Fnz9SO4koT3LjhgrFj6XPTtCl15hJDP2hjQKPgv/j4eKxYsQJDhw4FQHEDly5d0oswDictEh8PdOkCvHkDZMkSjsOHjTMwXBf4+QGrV1eFXE6FgY0ply0kBJg8mbanTwccHASVkySnTkHp3PTrd0+QIurh4RR7VqgQOYEDBqg6oCho0aKF4BdkX74Ahw7VB0DJhWJt06cv5swBjh6tB8boGB09yh1BQ6JRAsmgQYMQGxuLGzduwNPTE0FBQWjQoAHu37+vT42iQ1+BnlIJdJWSTX3Z1TaB5M6dRjh40BkWFnEYMmQ3ypdP2ENJ2wSK5F43LSaQyOXAkiU14eGRE9mzh2DOnDOwsooXbPzajDc149+/3xmHD5eEg0MAliw5BzMzluRzhEog+PzZBytW9IWPjx2aNfNE7dondZ5Ak9xjypUrh8KFC2PjRuqFvHEj3b9lCzmpBw/SPmOqmfmLFy/ix48fBj/+crkMs2fXxatXWZE/vz+mT78AMzO5aL+rukwgyZ49J9zcyuDkyWIAaJZ78mTdrZZI5bwiqQSS0qVLM8YYK1OmjPK2UqVK6TCEURroK9BTKoGuUrKpL7vaBGWPH3+JyWQUFL1zp36KLid2W1pMIFEUbjc3j2MeHsm/blpLIPm9wPTw4ddS1CFUAkGPHvcZQIkAQUH6SaBR5zHt2zN25IhqPyyMNEVH037v3oxd++NtNPTxnzmTjqelZTR7+1Z9G9poFVMCyc6dbgmKSTdvfvmvx6QWqZxXhE4g0WiZ2OqP9az4+HjI5XIduqYcTtrkyxda0mQM+N//jLe3qC64dk1Vo7NHj4coU0ZQOQZnxgwqxFu5MlChwleh5SRKQABw4IAzAJrpyZBBOC0zZyYsQG5rC5QtC9y4Ady5Q3+VKwun7/ZtVdmx1q0voGBB4bQYkogIYNmyGgmKSdeq9SDF53H0g0bOYKlSpbBnzx4wxvDx40cMGjQINWvW1Jc2DidNEBMDdOgAhIVZomxZYPlyoRVJl+BgK3TsSLGXXbsCdeq8F1qSQfH1TYdNm2h74ULxJh7NnAmEh1uiZEmgb1/DvnahQgkTQYoWBXLlSviYRo2A06epk8XSpRTTKATBwRRDrIglLlfupTBCDMyHD0DNmoCHR05YW1MGcY8eQqsybjSKGQwLC8OoUaNw5MgRAMA///yDZcuWIZ2RRXnymEHp2NSXXU1iBnftoubq1tZRmDfvHLJmDU/yOTxmMGm78fEyTJ9eFe/f50bOnMGYNesc/P0/iWL82oxXm+O/eHEpPHpUAmXKeGPs2MQLNwsdM+btnR7jxjWFXG6CCRMuw9nZV2fjT0l75syZ0bBhQzBGZYZcXYGsWYF//gGaNQMU/RJevqTZwQYNqGsNABw7dgzh4Yl/N/V1/I8caYebN/PCwSEM8+adgY/PK0l8V7Udv6NjLpw6VRQHD5ZEbKwZbGwiMGbMTRQp4gcgYdFpXSGV84qkYgZ//vyp1m1pHR4zKB2b+rKrbhzOkSOqeJiRI6+m+BweM5i03XHj6H1Ml44xT0/1XzetxAy+esWYTBbPAMbu31dfu6Fjxpo2peNUtuwXjWyqo1Ud7Ywxtn07Y9WqMebuztjcuYzly8eYszNTxpfK5Yx168bY69e0/+KPqsaGOP6DBt1iAGOmpozdupW4XbF+V7UZ//TpZ1nJkqrfw7p1GVux4miKdlOLVM4rkooZbNiwoVq3cTgc4McPW2W5k5EjgfLlvQXVI2WOHQMWLKDtLVto6c/YmDkTYMwE//wDlC8vtJrEOXeOMnXNzIAuXR4LpuPAAWDRIiolM2EClXLq3h2oVQs4e5aW13fuBAr/aj/84sULg+r78AHYto0O4vTpQJUqBn15gxIRAQwdCsyY0QDPnwNZstB7f+EC4OAQLrQ8zi/Ucgbj4uIQEREBuVyOyMhIREREICIiAj4+PoiIiNC3Rg5HckRGAitXVkNQEDW+nzdPaEXS5cMHVTxRo0av0aGDsHqE4PlzwM2NtqdPF1RKksTHyzBqFG0PHgxkzx4qmBY7O3L6FJiZUZefgwfJKQz9Q1pcXJzBtMXFUXxgZKQ5atQgZzWt8vgxLcevXg0wJkOvXtSJq1s38ca76oLISKEVaI5aMYMzZszAjBkzIJPJ8PvD7ezsMGrUKEyZMkWvIsUGjxmUjk192U0uZpAxYM2aKrh1Ky/SpYvGnDln4OAQoZeYqbQeM+jl9QPr1/fAly/2KFjQD3367ESePNmTtZEWYwaXLKmBhw9zoVSp1xg//pFOx6+N1sTGv29fVhw9Wg/p0kVj6dITCA720ludxT+158qVC/ny5UOlSpUAAJ8+0ezpkCHUeeT3BJFKlYBdu2hW8Pz58/Dz8zNonb3Dh0tg//5SsLKKxoIF9NuQ2vGLLWaQMWD/fgecPFkHsbGmyJgxAm3bnkTdunFJPgdIGzGDhw4Bw4dT0WwXDToJSipmcMCAAXpZq5YaPGZQOjb1ZTe5OJwpU9ivWKB4dulS0jp4zGDy45fLGatc+SMDGMuWjbGvX8U7fnWeo+3xv3mTKWPLFi8+rrF2Q8SM+foyZm0dzQDG1q/XzqY6WhN7jru7+1+3MUZxpS4ujBUvTnU9v39n7MYNih+MiEj4WEPV2XvwgDEzMzqegwbd+suGVL6ryY0/NJSxdu1+rx3ImJ+fdp9VXWDI88r9+4xZW9O4R43SzJ6kYgbXrVuHx48fw9XVFQAQFBQEHx8fPbioHI402bABmDWLtnv1eoA6dYTVI2UWLgTu3MkDc3OKAftjMsMoYEy1jNirF5Ajh3BLr8kxYQIQGWmBsmUNX0qmQoUKAIDAQGDsWKBfP1qKLFqUagiOHw+sWwcULEg1PvfsoX7EhiYmxhRdu9Iycbt2QLVqHw0vQs98/QrUqEHfV1PTeCxbRvG+mTMLrUz/fP1KWeuRkdT+cP58oRVphkbO4Pr169GjRw/lsrC/vz+6dOmiF2EcjtQ4cgQYNIi2p00D6tY1rhp4uuTsWZUTtHIlUK2asHqE4unT7Lh2DbC0pM+UGLlzB9i2jbZXr4bB+w/nzZsXsbF0Ag4OBmxsgDZt6D4LC4pPu3WL+jk/fy5cssbevaXx6hWQPTuwfn3ai5l7+zYzKlakOMGsWYEpUy5i+PC0N87ECAsDWrQAfHyop/TevRSnKiU0qjPo4uKCW7duoWrVqvDw8AAAlCxZEs+fP9ebQDGiWNvfvHkzbGxsdGY3sVgOsdqVik192X379m2CY//iRXbs2vUv4uPNUKnSE7Rtex7R0VEJuvZERSW/DwDh4eGwtbVV+zmJ2fjzNk1tqvOYlGxqqz08PBwREbmwalUXREZaoVw5D/z770XlCUWs49dmvCkdf8aA5cu74Nu37KhZ8wFatLiil/Fro1VhMz5ehpUru+LbN0e4uDxB587ndTZ+dZ7TqFEjODs7Y8sW4OJFqisIkMOXNStw6RJlFK9dCyie5unpievXryMkJCTV41f3PfTyyol16zqCMRn69DmIokW9dDJ+bbTq8vgD9Dm9fr0cTp6sCbncFNmy/UTv3odhbf1DY+0RERF/FQ1PLfo+r8jlMixbVh0PH+aCnV0UZs06p1WWdEREBPr27SuNmMGKFSsyxhL2Jlb0KzYmeMygdGzqy+7vsS03bzJmaRnLAMbatGEsNjbx1+Uxgym/7syZK1iRIhRzU6UKYzt27E21dqnGDB46pKqr+OOH9tr1GTO2fDlpzJiRsXXrDqbKpjpak/ou16nD2O3btP39O+k5cYKx9+8Zq1qVsVmzkrehz5jBqCjGihal96l37+R1SOW7qrApl1NsnCI+sEMHxkJCtNcuxZjBuXMVfaVVn0FtkFTMoIODA968eQPZr8v0Xbt2wcnJSQ8uKocjDZ4+pc4G0dFmaNSIZiaktjwgFuLjAVfX5nj9mtqHHToEmJsbZ+9zuRyYOpW2hw8HHBwElZMo3t7A5Mm0vWABkCFDtGBaVq4EfoUO4to1Kr/TrBmQPz8wYADVGRSKBQsohjFDhkgsXiycDl3DGMVoLllC+127PsLevUD69MLqMiS3bwOKYirr1gnb4zq1aHTaWr58OTp37ozXr18jb968sLGxwXFFLx8Ox8h4/x5o2BAICgIKF/6JgwcdYGkptCrpMmEC8OpVflhbU1mGbNmEViQcbm4U32ZjE4ORIy2ElpMow4dTrFSVKkCfPsC+fcLoiI6ORsmSqi9eu3YJ7795E6ha1cCifvHmDTBnDm136/YIGTOmjeBXRWKTwrlduxawt38NmayssMIMSHi4OTp1oovYTp2gbDAgVTSaGSxYsCDu3LmDBw8e4NSpU3j27NlftYY4HGMgIsIKTZoA378DpUoBY8ZcxR8hRBwN2LaNOkYAwPbtVKjWWImJUc02tGjhiYwZhdWTGJ6e+X9ljFIyhIlGZxLd8ueERGxsrHL7xg3g/HlKIjE0jAHDhtHxbNwYqFLls+FF6Ilr18orOwKtXg0MHCisHiFwcyuDT5+AfPnSRkKQRgkkAAU5fv36NUHF9uLFi+tcmJjhRaelY1MfdmNjgWLFPuL9+7zIkiUcM2eeQ3j4e70UXTaGotOvXjlgzpw6iI83Re3a19G//1fJjV8brUkd/3fvGmPHjvKwt4/EmDEbkS9fVr2OX1OtUVFmGDGiIYKDM6B5c0907vxYp+NP7bEyMTHBv//+i9BQWipevpwuLn78+IGLFy8apOgyAFy4YIGtW9vCzCweixadQlzca4OMX9/H//79XFi+vDoYk6FzZw80b/5KYxtJ3SaVotOPHgHlyzMwJsPVq0DNmqm3Kami00uXLmXp0qVjuXPnZnnz5mV58+Zl+fLl0080o4jhCSTSsakPuwMGqAL7nzxJ+jV4AknK2j98YCxLFno/27VjbMECaY5fG62Jve6sWcuZgwO9H+vWGWb8mmodOZL05c3LWFiYdjaS0qHtsQoPJ10/fjB28ODBvx6jjg1N9lM6/jExjGXPHswAxsaOVX8sYv6uMsbYo0eM2dgoimZTAommNjTRqgt0/fsvl1NSEsBY5866syupBJJVq1bh9evX+PTpE7y8vODl5YUPHz7ox0vlcETI5s2KJQEGV1daIuZoR0SEGVq0APz8gHLlgB07hF1uFAPXr5fHz59UILlPH6HV/I2HB820ARQnJpbQiOnTgaVLKYY3KiphIsvXr18Tf5IeWbcO8PGxQ9aswKRJBn95vfDtG9XSi4gAChf2wooV0l8a1YY9e6hupaVlLBYuFFqN7tDop9fJyQk5cuTQlxYOR9Q8fgwMHkzbjRrdQIsWgsqRNHFxwOrVVfHiBRXhPXqUigUbM35+wNWr5QEAs2cn7KcrBuLjqYOHXA6ULv0KTZoIrYj48CGTMqN15sy/HZS9e/caVE9QEDmnAB1HIVb8dE1cnAxt21IGebFiQNeux42yasKPH8CYMbTdqtXLNNUVSaOYwStXrmD37t1o2rRpgkKRTZs21Ys4scJjBqVjU1d2IyJo9urVK2o5VKnSfOTLl0d5vy7ikADjiRncsaMszp4tAnPzOEyZchEFCwZIevzaaP1z39W1DE6cKIa8eQMwe/ZZmJgYZvzqan3ypC527y4LG5sYDBmyFmXKOOp0/Opo/XM/Ls4EY8fWha+vA6pW/YghQ27rPWYuMZu/P+bgwZI4eNAZjo5+WLLkAkxMmN7Gr41WbWxs2ZIXFy9WgY1NDObMOYuwsCep/vwndpuYYwblcupyc+4cOcTjx+9D9+7/6kAhIamYwf/++49lzZqV1ahRg9WuXZvVrl2b1alTRz8L2CKGxwxKx6au7A4cSDEi2bMz9vOn/oouG0PMoKJQMcDY/v0JnyPV8Wuj9fd9Hx9Vg/uTJ7W3qY5Wbca7fPlRZazYxo2GKbqtznOmTydNDg70vUzsMfosuvznYwIDGcuQgTQNG3ZdI5vqaBUiZvDqVcZkMjkDGNu3L3Gb6uiQesygori0tTVjz57p/nwldMygRhO9R48excePH2EtRJdvDkcgjh2jGCCA4tqyZBFWj5Q5cgQYMYK2O3XyQLt2LoLqEQtz5lCD+zx5vNGkibjWnhgDtmypgIgIoFYtimVculRoVcCzZ7QMC1B5EzF8L1eupP7IxYsDFSt+EVpOqvH3B7p0ARiToWdPoEMHoRUJw/XrqgLrq1dT/+Fnz4TVpGs0ihksUKAAzMUWyMLh6JGPH1WB/KNGAQ0aCCpH0rx/nwmdO5Nz8b//QVmSwtjx8gI2bKDtJk1uiC4of+dO4Nmz7LC0BDZtEkeST2ws0KsXxZ6WL/8F7dsLrQiIiDDHsmW0PW2aON6n1MAYFVL++hXIli0EK1cKrUgYvn0DOnakZeKuXelzlxbRKGZw4MCBePHiBVq1apUgZnDQoEF6ESdWeMygdGymxu6PH0D16sDbt0CZMsCdO1B2GJk/fz7y5OExg+ra+P49HSZProfwcBuULv0No0dfg6/v1zQzfm20KvY3bqyIK1cKwNnZBx06bDH4+JOzGxBgjbFjmyIiwgIdOz7GP/946nz8v6PusTp0qAQOHCgFG5sYjBq1BcWK2etl/OraBIBdu3Li9OmayJkzGAsWnIKPjzB1FnU1/qdP62DXrnIwN4/H4MG7UbGiRZI21dEhxZjByEg6Bzx6BBQtCty/D6RLl3q7iSGpmMGePXv+9derVy/9LGCLGB4zKB2b2toNDmasbFmKEcmTh7GvXxPez2MG1R+/nx9jhQrRe1m2bNKN7LXRKpbxa6PV1dWVeXkxZmZG782tW8KMPym7cjljzZqRtvz5/VhsbNI2tdGq7fF/+FD1nu3ZY9g6e0nZjIhgzM4ukgGM7dypnU11tBoqZnDu3NPMwoLe49Wr9fP5V0erLtD2vCKXM9a9O70HWbIw9v69buwmhaRiBrdt26Yfj5TDERFRUUCrVnQ16OBA2WNpqYSAIYmOpvfy7VsgS5YwnDyZzqga2afE/Pm01Fm/PvX4vXlTaEUqdu4ETp4ELCyAAQPuwMysmdCSEBNjgu7d6T1r25Z6whq4ckyibNsGhIRYIU8eWlKUMmFhwMqVVRETQ9/dQYPE8R4bmrVr6TtgYkJ9t/PnF1qRflErquHu3bvJ3h8ZGYmXL1/qRBCHIyTx8RQwffkykD49cPo0ULiw0KqkiVwO9O5N/WEzZADGjr2KbNmEViUe/P1tsHUrbU+bJqyWPwkMtMbw4bQ9YwaQK1eIoHoUHDhQCi9eAFmzUlKXGOIr4+JUfbVHjxZffUhNGTIE8PW1Q65cwJYt4niPDc3Nm1B+/hcuBOrWFVSOQVArZrBt27YIDg5Gly5dULVqVWTLlg2RkZF49eoVTp06hTNnzmD58uWoawzvGHjMoJRsamKXMcp0XbGCZkPOnAHq1En8sTxmMOU4pI0bC+DKlYowNZVj3LgryJjxUZodvzZa16wpgps3y6J48e+YPPmSYOP/8zbGgJkzK+P163zIn98fM2ac/yu+U4iYwVevHDBrVj0wJsPIkddQvry3Wnb1HTN4/XperFtXBba2EVi9+gQsLeP1Mn5ttWsy/ocPc2LJkpqQyeSYMuUSihb9qZZNbccrxpjBsDDA2ZmSBzt2BFxdE3eIjTZm8N69e6xPnz6sQIECzNLSkmXKlInVrl2brVq1ioWGhupvIVuE8JhB6djUxO7s2ar6d3v2JP9YHjOYvM0VK1Tv5fbt6r+uVMevqVYfH8bMzeMYwNilS9pr1UfM4IYNdNwsLRl78UI9m9po1eT4BwdTL2SAsZ49NXtdfcYMxsUxVrgw6erY0SNVNtXRqs+YwaAgxnLkoLG0aPFCI5vq6JBKzOCgQapYcUV8sy7spoRkYgYrVKiAChUq6M8r5XAEZP16VR2p5cuBzp0FlSNpDh1SLbHMmQP06CGoHFGyZAkQG2uKqlWB2rWFVqPiwwdg5EjanjeP6uWJgWHDaKbGwSEMK1akE1qOEnd34M0bIFMmoEGDtwDKCC1Ja8aOpTIqhQoBbds+ByCSg29Atm2jWEEA2LoVRhXfLPFKSBxO6tm/n4KkAWoq/99/wuqRMvfvUy0uxoD69d9iwgShFYmPnz9VJ5xJk8QTkyWXUw218HCgWLHvovkeHDhAxd5NTICBA2+LptevXA7MmkXbI0cC1tZxwgpKBS9fZsXGjbS9aRNgYREvrCABOHsW6N+ftidONI44wd/hziDHqDl7VlFhnwohK37cOZrj5QW0aEG1uZo0AXr0eCgaR0dMrFhBva7z5fNHkyZCq1GxfDlw7Rpgawv87393RVE02d/fWnmCHj8eKFrUT1hBv3HwIODpCdjbU9KFVPn5E1i/vhIA+g2sVUtgQQLg4QG0a0fJQF27qjrbGBMaFZ3mEIpAz82bN8PGxkZndhMLsBWrXanYTM7uzZt5sH59JcTHm6Jixc8YNuyWsql8Srx9+zbBsY+KikpQiD2x21LaB4Dw8HDY2tqmysaft2lqU53H/GkzIADYsqUXfvzIjOzZf2DQIDcAoUYzfnW1ymTpMWfO/xAZaYWOHfejXLlPgo8fAD5+tMP69b0RH2+GNm3OwcXlnl7Gr8nxl8tlWLeuHT5+zINcuXwxeLAr4uIiUn2sdPFdDQ0Nx8aNg+Dr64AGDW6hYcNbOh+/us9Jzfjj402waVM7vH+fG1myBGLYsF2wto7R2+c/Je0REREoVKgQdElK55WfP20xbVoDBAVZo0QJX4wbdxVmZvJU29WUiIgI9O3bV/wJJHFxcWz58uX6i16UEDyBRDo2E7MrlzO2aJEqwaFDB8aiojSzyRNIVDYjIxkrWvQ7AxhzcmLM21t77VIcvyZaly2jz1zhwozt3u32lw0hxh8ZyZiTU+CvxAH6fug7gSYp7b/bVSR02doy9uZN0s8RIoGke/fDDGDMzo6xgADtbIghgWTYMHqPraxi2PPn2ttU5zliTCDx9masaFF6D5ydGQsK0o1dbRA6gUTthQBTU1McPHhQf14ph2MA5HKK7xkzhvaHDwfc3FRt5jiawRj1bn71Kivs7IBTp4AcOYRWJU7i4mTK3rWjR0PtWWh9M3Ei8OWLPbJmBTZvFkcM461bqtqLa9ZQUoNYYAy4cKEKAEpsyZhRYEFasnUrlP2GBw68jRIlhNVjaC5coDajr14BuXLRb1eGDEKrEg6NokIaNGiAffv26UsLh6NXFAHyy5fT/uLFwLJl0m8oLyQzZ1IdLlNTOQ4dAkqWFFqReLlzJzc+fwYcHYFu3YRWQ5w7B6WDunUrFXMWmsBAyuaPjweqVv2I7t2FVpSQ48eBb98ckS6dKmteaty7BwwcSNszZgAVKngLK8jArFgBNGxI8ZKlS1OTgVy5hFYlLBrFDDo4OMDf3x/W1tawtbUFYwwymQw/fvzQp0bRwYtOS8fm73YnTqRyGWZmlJ2YmvIxvOj0e/j41MXatVUBAO3anUWbNgFGNX5Niu4yBowZUxffvjmiQ4cnaNXqpeDjDw62wrhxTRASYoUqVTwwdOgrvY1fXe3v3r3HiRPdce9ebmTNGoqhQ7ehQAEHjcarz6LTcjkwaVJjfPqUEf/88xIdOz7R6fgN8Vl9+9Yfq1b1hJ9fOlSo8AX//XcDPj7aF91OzXgNXXRaLqcSOkuW0H19+gCrVgHW1qmzqwskU3SaMcY+fvyY6J+xwWMGpWNTYXfjxr+LIKcGY48ZHDjQVdnIfuxY4xu/pjFTFy/Se2Vjw5i/f9Kva6jxx8cz1qiRKlZq+/Z9Gr2OvmIG27Q5xwDGzM0Zu3/fsEWX1dnfu1cRYxfF/Py0s5GcDn1/VuVyxsqV+8IAxgoUUMXIaapVijGDcjljffuqzgPz59NtqbWrKyQTMwgAefLkQdasWeHr64vv378ja9asCWZHOBwx8vRpNuWSyNSpvAhyann7FtixoxViYoC2bWm2lZM8ipmInj2pQLHQLFtGZZWsrYG9e8VRV+7pU+DYMer/OH8+UL68wIL+IC4OmDKFtmvWvI/MmYXVow1LlgAPH+aChQUVzDaWGDnGgFGjKCbWxATYuRMYN04c8bFiQe0OJABw69YttGvXDo6OjmCM4efPnzhw4ACqVKmiL30cTqp48gRYsaI64uOpftT06UIrkjaBgUDz5kBEhDUqVqQfVR5zmTyPH1NwukzGMHy48GefDx8yYcYM2l6+nLqMPHmS7FP0Tng49YGNizND06bCx+IVK1bsr9t27KALoSxZgBo1HgKobnhhqeDWLarVCNBxL1tWUDkGZeZMVWzsli3iidkVExrFDFauXBlLlixBtWrVAJBzOHLkSNy5c0dvAsUIjxmUhs0PH4Bq1QBfX6BmTQqW11XWsDHGDDo65sKCBbXx4kU2ZMgQjPnzLyFDhiijGb+2MVPLl1fDvXu5UaaMJ8aOfSzo+ENCLDB+fAMEBdmhYsXP+O+/m5DJNH8dXcYMMgasW1cZN27kQ/r0oVi06Dzs7KK1Hq+2MYNFihRBtWrVkOmPqduQkBDcu3cPT55Ew82tNIoV+4EiRU7pJWZSn5/VmTPr4dWrrChTxhNjxjxOMCsmxPFP7DZ9xAx27eqBPXtcAFD29NChurFr1DGDpUuXVuu2tA6PGRS/TR8fxvLnp9iQ3LkDWGCgzkwzxowvZnDPHlfWvz+9n+nSMTZixDaNbUh5/NrGTD1/ropRWrjwRIqvq8/x/x4nWLBgwppqQsSMKfbXrydNpqaMDRzoptZzUqM1MRv79+9Xbvv5MbZjB2NHj6pqCP4O1SnVf51FdZ+jzvhv3GDKWMzVqw+nWrtUYgYVny2AsTlzdGrauGMGbWxscOHCBeX+lStXdNqBg8PRBUFBQOPGNDOYPz8wbtwV2NsLrUranDlTBBs3UoyNqyuQI4d42oKJGUU8ZZs2QK5cIYJqWbiQ4gQtLOJw6JA44sUePKBafQC9V/nzfxVEh6LrxevXQKVKwMmTwIIFgJMTMHgw/aYokGKc2fz59L9HDyBTpkhhxRiIXbtU5XMmTKB6mpyk0cgZXLlyJfr06YPChQujSJEi6NmzJ1YqqlZyOCIgMhL45x+KgXJ0pKXhjBmjhJYlaU6eBHbvLgOAajO2aCGsHqng45MObm60PXmysFpu3lRp6NnzIZydhdUDAGFhFmjXDoiJAVq2pELcQpElSxYAFFc2ZQqwbx+9Zw8fAj4+gLOz8HGV2uLjkwUnTpATqyi2n9Y5dIiStRgDGjZ8gzlzhFYkfjRKIClfvjzevXuH169fgzGGokWLwtzcXF/aOByNiI4GWrcGrl8H7OyAM2eAAgWowCpHO54+pcB+xkzQty8wYoTQiqTD0aMlIJcDTZsCLi7U6UAIoqIs0KULFXHu0gWoVesDgErCiPmFXA6sXVsZnz7Rd3T7dmFn3ExNTQEAYWHkQCgoUoQci/XryWF9/hxIlw5wdHQUSKnm3LpVBgBl/hcuTA5uWubUKfrNksvJIaxf/yFkssJCyxI9GiWQtGrVCkeOHEnxtrQOTyARn82YGKBdO+oOYGNDy2HVq6feblIYQwKJrW0BTJnSEP7+tihY8BOmTr2jbOCuy0K+Yh1/agLov31LjzFjmoIxE8yadRYFCgQINv5Fi4rDw6M0HBzCMH/+aQQEfEr1sUptAsGhQyVw4EApmJvHYcaM88ibN0ir8WujNTEb1atXh5OTE65doyX9Q4co6ex3GjYEJk0CatUCDhw4gNjYWK3Hn5QOXY8/Pl6GAQNaIDzcFuPHX0apUr46+a6KNYHk4kWgWTOaGOjQgUJa3N2lcV6VVAKJi4vLX7eVLFlSN9GLEoInkIjLZmwsY23bKorBMnbhgm7sJkdaTyDZvn0fq1iR3tPChRnbuHF/gvvT+vhTG0DfqRO9dy1aaPa6uh7/4cOkQyZj7Pp19Z6jzn5qEgiOHlUF9W/dmtCGIY5VSr8Hrq6MZchABYrfvqXbIiIYK1GCsTdvaP/3hBN1dQiRQHL+PL3PWbLQ76Q2NhLbF2MCyfHjVNQdYKxlS8ZiYpJ+XV1glAkkmzZtQoUKFfDmzRtUrFhR+VekSBHky5dPv94qh5MM8fFA9+7AwYOAhQVw+DBQr57QqqSNXA6sX18J9+5RgeQTJ4B06WJTfiIHAC2t791L2zNnCqcjIADo35+2x45VzZQLycuXVO8ToFiuXr2E1aMgMBB48QIIDQU6daLakIxR39oiRYBChWim6VeeCb59+yaoXnXZt4/+t21LbTjTKhs20DJ+RATQpAmNm0ewaYZaH4+GDRuiUKFCGDhwIBYtWqS83c7ODqVKldKbOA4nOeRyoG9fwM2NfugOHKAsYk7qmDIFuHMnD8zNabmsUCHK+uSkDGNUx4wxoHLlTyhTRrgOTTNmAD9/Ao6OfpgxI4tgOhSEhlqgZUtyuGrXBrp2fQRA+FiuY8eAAQMAW1vgyxeKO544kbpVLFtGVQnSp6fKBApiYmKEE6wmoaF0kQyQI5sWiYqiAuUbNtB+r160zR1BzdEoZpBD8JhB4W3GxdGsx7ZtgKkpXQm2bZt6u+qSVmMGL1/Oj02bKLmgf/87qF3bSyubUh2/uo9JKmbq7dvq2LixMiwt4zBq1BaULGmntk1djt/MrDBGj26G+HhT9Oy5Bw0bmqT4HH3GjMXFyTBjRlW8f58bDg5hmDXrHEJDPxi06PLv9+fLlw9t27ZFXBw5edevA3nyAN++AStWAGvXUuvK37Nv4+Li8ODBA3h5eem06La+xn/sWDHs3VsGmTP7Y8WK8zAxYVq/h2KMGfz4kRz3x48p+WjGDMqY/zMRSSrnVUnFDP78+ZMNGTKE1ahRg1WoUEH5Z2zwmEFhbYaGMta0KcWGmJhQjI8u7GpCWoyZO3eOCv8CjLVp8zRVNrXVLuWYwfXrD7DMmen9W7RI2PF36UI6GjbUz7HSJGZMLmcJCpY/e5a0DkPHDIaEMJYtG2NxcQltvnjBWL58jG3a9NfLJWpTHR2GjBkMCWHKz2LHjie1spHcvtAxgw8f0nFTxEOeOZP0Y6VyXpVEzKCC3r17I1euXPD19cWUKVOQNWtWNGrUSD9eKoeTCN+/A3XqUPkAa2uKEdTDRZ/R8eIFZWMreji3bftcaEmSw9XVBf7+QKlSwH//Cafj40d7uLrStqLYsJAsXoxfBcsZ3NyAkiWFVqQiXToqtzJ2LIWdKChenMJOli+n/ejoaEH0acuaNYC/P4V4lCnjKbQcnXLmDGV6+/pS/cdHjwDuhqQejZzBz58/Y9y4cbCyskKLFi1w6NAh3Lp1S1/aOJwEvHkDVK1K8WtZsgCXLlGBaU7qCAy0QrNmQEgIUKMGxUpJscuCkJw/D1y7lh8ymfAxS+7upcAY1VpzcRFOB0AO1dixtN216yM0by6sHgBwcnJSbstkFGJy9iw5GL/HxtrY0AUnADAJRVNFRZlh8WLanjoVMDWVjvaU2LIFaN4cCA+nRMHr16lLDCf1aBQzWLFiRdy7dw8VKlTA2bNnYW9vj2LFiuH169f61Cg6FGv7mzdv1mk7vsRiKsRq19A2Hz7MgfXrKyM83BJZs4Zi3LgryJ49LNV2teXt27cJjn1UVBSsrKwSPObP21LaB4Dw8HDY2tqmysaftyVnMyrKHGvXdoCPT3ZkyRKAIUNcYWsbleLrpKRTKuPXVvvvNoOC0mP58m4ID7dBlSoeaNPmomDj9/XNgiVLekImk2Ps2K3IkiVIL8fqT5uJPebNmyzYtq0r4uLMUK3aIzRufErn49dUa6lSpdCwYcNfj6N4Y3Nz2p49G1i9mmYKS5YkR2PhQopLe/XqFU6cOKHR+A1x/BO77dKlUjh9uiGyZAnE6NFbERUVJsjx10Z7RESEsjXgnxw+XAL791PCavXqXujf/56y7mlySOW8GhERgb59+0ojZrBr167M39+fLV++nBUqVIiVL1+e/fvvv3pZvxYzPGbQcDajoxkbMUJVl6xiRcZ8fVNvN7WkhZi5mBjGGjWi9zVrVsbevVP/ddLC+DWxkZTNsDDGXFzoPcyb159FRKROe2rH36sXaWnXTn2b2rxOSjFj794xlj59JAMY++cfiskTos5eUloXLmTMzIyxjBkpVlZBWBhjR44wtnYtxQ0qOH36dIo2xRAzGB3NWKZMYQxgbONG9Wxqo9XQMYMzZ6rOAZMmURyqukjlvCp0zKBGlYd27doFAPjvv/9Qvnx5BAYGokmTJnpwUTkcKunw77+qpZsRIygGysJCWF1pAcaoifvZs4ClZRxOnDDDH8mBnBSQyym+0sMDcHAARoy4AWtr4eIWvnwB9uyh7ZEjBZMBPz9qwRcaaoVy5agLxK9ub6Lg/Hlg1y7Ay4vizRYvpuXid++o+0jLln8/JzAw0PBCtcDVFQgIsEX27FR/NS0waxYtdwP0+z9unLB60ioaxQzev38foaGhAIBq1aqhZs2a8PDw0IswjnFz9izFOz14AGTMCBw9Cixdyh1BXTF7NsXfmJgAQ4bcRIUKQiuSFowBo0cDR47QZ/LIEcDBIVwwPf7+1C4tJgYoVOgnqlQRRkdoKDmCb94AWbKE4/hxqt8nJhYtosSQXLkoGe3mTWDePPqNKVuWystIEbmclrUBqr1naSmoHJ0wZw53BA2FRjGDZcuWxf3795VNvePi4lCpUiU8TOudr/+A1xnUr809e6jBeFwcJYy4uQG5c6feri6Rcp3Bw4czYv9+qs7dq9d9FC9+VS/9XsU6/tTWrouLk2HZsmLw8CgNABg06BaqV/8kSJ05b29v5MiRE0uW1MCjR7mQKVM4+vVzRenS6dS2qY3WxOrMeXl9x+7dneDp6Yh06aIxcOAeuLhY63X86motXLgwOnToALkcqFwZuHOHLoSWLaPZwZ07aXawc2egQgVahfD09MTjx4/VHr/QdQbv38+JZctqwsoqGqtXH4eNTaxaNrXRaog6g0uW0AUXkDpHUCrnVUnVGSxduvRft5UqVUo3C9YSgscM6s/msmWq2JDOnSkGRhd2dY1UY+aOHWNMJotnAGMTJmivXarj19aGYj8ggLF69ejzaWqqisvSRquuxr9yJemxsGDMw8Mwx+pPm1FRjJUu7c0AxtKnZ+zePWHr7CVnMz5etX3jBmM+Pqr9wYMZW7/+r5fQS8ycLscvlzNWoYKiL+9zjWxqo1XfMYN79qjOA3Pm/PU0jZDKeVXomEGNloktLCzw/v175f67d+9gzvu+cHQAY8DevaUxYgTtDx9OcT18WVh33L5NMZiMmaBnT1qC4ajP27c0q3TxImBhEYNjx4B+/YTV9PFjRuXsyeLFQJkyhtcQF0e1Pp88yQFra6oBKuawA5lMtRhWrRqQLRttBwXRcn+bNoLIShUXLwL371MpnMaNpV3d49o1KHtWjxxJrQE5+kcjZ3DatGmoXr06+vbti759+6JWrVqYPXu2vrRxjIS4ODqpHjtWHADF7yxdSss4HN3w6hXV54qMBMqU8f5VBFhoVdLh2TNHVKpEsXBOTsDgwW5o2lRYTWFhwKpVVRETQ/U2hwwxvIboaLrAOHwYMDOLx9GjQPXqhtehCQcOHPjrtpAQoH17YNgwSgaKiIgQQJn2zJ1L//v1AzJkkFaB7N/58SMjWrWi2Ne2bSm+k2MY1D7dMsZQtmxZXLt2DWXLllVuN27cWJ/6OGmciAi6Et+yBZDJ5Ni0CRg/njsquiQoKB0aNQICAoCKFYFhw27yRu5qEhEBDB0KzJtXF4GBNDN47x6QI8dPQXV5eQG1awM+PnbImRPYutXw35mICKBVK+DQIZrBHz78Bho0MKwGbQgNBX7+cfjMzCi7XtGL+MHv1adFzps3mXH5Mo1BMUssRaKjgV27/lF+z3btkuaEwM+fdFHh5ye0Es1QO4GEMQYXFxdlQK0xwxNIdGPT3x9o0YKWLy0tgUGDrmHp0po6UqjCmBNIwsLMMXlyTfz4kRXZs4dg2rQLCA39oJOg/LSeQBIbWxKrV1fBt28ZAAB1675D9+4PYWEhFzSBwNe3Itatq4yICAvY2ERg3LgbKFTIX+vxa6P1xYsvOHiwJ169ygpLyziMHHkdmTI9FDSBQt3xL19eAq9eFcagQbdRuvR3VKlSJcF3+enTpzh37pzeEyh0Nf5ZsyrC07MAatd+j/797xnk+OsjgcTNrTSOHy+OrFmBp08BR0foBEOfV/v1oy5OdevS8r26SCqBpE2bNszPz08fsYuSgieQpN7mp0+MFStGAcL29oxdvy6t8UshgSI8nLFq1eg9zpGDMS8vzW0ktS+F8WtrMz6esc6dHzFzc3rvsmdnbPz4S8na1EarpuOPiWGsefOXysD6ypUZW7XqSIo6dH2s/P0Zc3L6xgDG7OwoCUNTG0np0HcCybFj9N7JZIxdvap6zKVLCY+vIRIodDF+Dw8aj4kJY2/eqKdVjAkkFy/SMQGo6LcuMeR55e5d1TgU3wt1ETqBRKOi07a2tnBxcUHz5s2RLp2qdMFCRXEjDkcNnj8HGjcGvL2p1teZM0CJElRChqMbYmMpluvmTcDaOgpnzlghb16hVYkfHx8qJH3pEjX1bd0a2LgROH/eVzBNYWG0ZLZ6NfDyZTEAlGC1YAFw8KBhY9u8vIBmzYAvX7Ijc2aqB1qunEElaM2PH0DfvrQ9ahT1Ilbg6yvc8U0NiljBf/8FkujiJnp8fKikD2NAxYpP0bJlKaElaYVcDgweTOPo3p2Sk6SERs5ggQIF/poa5nA04epVijMKCgKKFydHkDca1y2MAf37AydOAFZWQK9eh+HsrPtlkrTG4cP0vvn5UVeW1avN0KePsPGrUVGmqFwZePGC9q2tY7BrlwXatjW8lps3yTn++RPIkCEUV6+mR4kShtehLQMHkkPo5BSEWbPshZaTal69AhS5MFLNuI2Pl6FTJ+D7d8DZGWjZ8hIAaTqD27ZRkwQ7O7pQkxoaFZ3mEDxmUDub7u5At26UKVatGnDsGJApk3516suumGMGN23Kj8uXK8HERI4RI67D3v663uOwxDR+TbW+e+eH8+eb4/r1fACAPHkC0aHDIbi42KhtUxut6ox/2bKSuH/fGXZ2UWjZ8gUKFbqFggWz6HT86mg7diwDDhxohLg4U+TNG4D27XfBxSWr3sevq8+qn19trFhRHaamcgwdugsVK1poZEOMMYNr11bGjRv5UKLEW0ya9CDJ54g5ZnD9+oK4dq0CrK1jMWvWWcTGPlcWndYVhjivhIfTzKyPD5V4GjVKc3uSihn8+vUra9myJStbtixjjDEPDw+2bNky3S9eixweM6i5zWXLVLEUbdowFhGRepvqYkwxg78X7d66VTub6jxGrOPXVOvly4xlzhymjLuaMIEKKIshZszNTRXfdvmy+jZ0eawiIxkbPVr1mWrdmrGwMPHEzKnzmOnTV7GsWUn/lCniiZlLzfjfv6ei5wBjs2ef0UirWMbv7q76XB08mLTd1GKI88qMGTSOfPno90MbhI4Z1Chx+3//+x/atWuHuLg4AEDJkiWxZcsWPbionLRCXBzVPxsxgr72Q4bQDKG1dcrP5WiGmxuURbvnzlUVbuX8TXw8MG0aZfz5+9uiYEHg+nV638TQ0zUoCPjf/2h78mQqI2NoLl6kpbvFi2l/wgRalhRbr+GUOH68Dn78oLCUSZOEVqMbFi6kz3CjRkD+/AFCy9EYT0/V79PYsdIs9K3A11fVE3rePHH8fmiDRs6gr68vunbtCpNfxX/MzMxgZqZR2CHHiAgOpmDzNWso7mrhQmDlSuBXa2uODjl3DujRg7YbNXoNHa+0pCkCA61Rrx4wcyZdoNSu/R6PH1MfbLFw6RIVQnZ0DMXUqYZ97bAwYOPGiqhfH3j3DsieHRgx4jrmzpVe3bezZ4GHD0tAJqNaplI9Uf/Ot28UnwbQhYLUiIoCOnSgpdXixb9LvhPS9Ok0looVaVxSRaOYwcqVK+P27dsoW7YsPDw8EBgYiNq1a+PJkyf61Cg6eMxgyjY/fKAagi9fAjY2wJ49lDhiaJ36siummMHIyFKYM6cOoqPNUaXKJ7RqtR9OTqmvs5cWYwafPXPEqlWVEBZmCyurWPTpcx95895K9fi10Zrc+LduLY8LFwqhalUPDBnySmfjT+45OXLkxP37ueDmVgbfv6eHTMbQoMFbdOjwFIGBH0UXM5fSY+LiZBg3ril8fOzQuPFrdO/+SGMbSe0LOf6bNxvjyJGSKFLkB6ZNuyjIdzU149+zpwxOniwGO7soDB++FUWLZlQ+5tOnT5KKGSxTphOcnWmW9urVhBnqmiKpmMHFixez/v37swIFCrBt27axChUqsBUrVqj9/AYNGjBnZ2dWunRpVr16debh4cEYY+zevXusatWqyvsuXryofM6WLVtYyZIlmampKVu1alUCe/Hx8WzIkCEsf/78rECBAmzNmjUJ7p81axbLnz8/y58/P5s8eXKC+zZv3swKFizI8ufPz/r168diY2PVHgePGUze5tWrjGXJoqpv9/Bh6m2mhrQcM7ho0QmWOTO91w0bMhYdnfo6e+q9rjjGr27MXFQUYyNHqmKUSpVi7PVr7bXrM2ZMLqfYI4CxUaOuaGxD02MllzM2duxlVras6v3JlCmMXbmS9HOEjplT5zGK+Flb23AWFKSZjTNnNIvDU0frkT8K6J0+ffovGymNf/v2vcrfVkWcnRDfVXXGn9h7eOWKKnb82DH17KYWfZ5XWrSgsbRsmXp7QscMarTGO2rUKLi5uSEoKAinTp3CsGHD0LVrV7Wf7+7uDnt7ewDAkSNH0Lt3bzx8+BCtW7fGrl27UKdOHbx69QoNGjTAmzdvYG1tjXLlysHd3R3z5s37y97u3bvx8uVLvHnzBsHBwShbtizq1q2LokWL4tq1a3Bzc8PTp09hZmaGatWqoXr16mjUqBG8vLwwZcoUeHh4IGvWrGjZsiW2bNmC/ymCdDhawRgtCY8YQbGCZctSxvAfF6EcHfHlCzB/fm34+9MSxcGD1BaMkxBf38yoWJG6GgBAvXpvcfx4IdHGrb57R/X8zM2BEiV+6O11GKPwgtmzgRs3agMA0qWj72+ePKdRq1Y7vb22vvHzA2bMoO0mTa4jQ4ZGyvsqV6781+Or/hEj0KhRowT7Jlqsj5ctWzbBfsuWLRPsa9PK9fbtPPDzA3Lnpn7U6jD6jx515cuX1/h1teHP99DZuRxat6bPXZ8+tHJkiNqyDfTUI9HT0wHHj1PYkxRLyfyJxp/wTp06Yd++fXB3d9fIEQSgdAQBIDg4GCYmJvD390dAQADq1KkDAChatCjs7e1x+vRpAEDp0qVRrFixRL+M+/btw4ABA2BqaopMmTKhQ4cO2Lt3r/K+nj17wtbWFpaWlujduzfcfn3yDhw4gNatW8PR0REymQwDBgxQ3pcY0dHRCAkJSfDHSUhUFNC7N/VxjYsDOnWigHzuCOoHf38KHvf3t0XRosDJk3Qi56hgjAo1r1jRDU+fAg4OdHHSp88D0TqCAMW5AVR+ycoqTuf2GaOaii4uVPz9xg3A3DwOo0ZReMfMmYCNTazOX9eQTJ1KSTilSwMVKjxPcF++fPn+evzvIR+JUaqU5rXvihQpovFzkovBZww4e7YwAGDQIOpFnBh/LgH/SSGBqlOXLFkY3boBefMCy5Yl/piKFSvq/HWzZMmS8oM0RC4H9uyhwvT9+wNaHGrRoVbM4NixY5O9X5MOJN27d8fly5cBAGfOnEGJEiWQL18+LF68GG3btsXdu3dRs2ZNzJs3DyNHjlQ+r2fPnihfvjyGDBmivM3Z2RlbtmxRfoDWrl2LBw8eYOvWrWjRogW6deuGDr8iOk+dOoXFixfj0qVLGDp0KJycnJTjevnyJZo3b44PHz4kqnn69OmYobjM/I3NmzfDxsYmkWdoR2KxHGK1+7vNgABrLF1aAx8+ZIZMJkfnzk/QtOkrjYv1Smn8b9++TXDso6KiYGVlleAxf96W0j4AhIeHw/a3dM3EnmNikh4bNrTH5885YGcXgiFD3JAxY2iSz1HHpqbaU7Kpz/Gro10ut4e7eyO8eEEnvqJFP6B9+zOws4vQy/i10ZrU+N3du+Dly4Jo0uQaqla9ptX4k9L67ZsDDh6si8+fqdK7hUUMKlZ8hipVbiBr1tgkbRhy/Kn9rH75YoPVqwdALjfBgAH78O+/jqidynTs2NhYrFixIlGdMpkMZmZmCAsLQ7p06dCrVy+tY74uX76Mhw8fKvd/H9vHjzmxbVsnxMTEYvLkDbC1jfrrMdWqVUOVKlU0es09e/bAy8sLVlZWMDc3R3x8PCIiIpQ2ZTIZYmNjEziqfx4nc3Nz2NjYoF+/fsm+VlAQw8SJ+5A//9e/tDds2FArp9uQHDt2DOHh4bh+PS/WrasCK6tYLFt2AhkyRKXadkREBPr27SvumEGZTMYqVqzIpk6dyqZPn/7XnzZs376dNWnShDHG2JMnT1jjxo2Zi4sL6969O6tbty5buXJlgsf36NHjr5jBkiVLsnv37in3V69ezXr16sUYY6x58+bM3d1ded+JEydYnTp1GGOMDRkyhC1cuFB53/Pnz1m+fPmS1BoVFcWCg4OVf1++fOExg79senkxljevIs6IsXPnUm9T16SlmMGdO/eyRo1U7/fChSdSfF1jixmcOvUcc3Ki98jCgrGWLS8wuVwzG0LFDM6bt4SlS0faHz3SXcwkY9S7NlMmsm1tzdikSdRnWButYo4ZrFz5IwMYa978r4cyxhiLjo1mRz2OsgWnF7Bl55ex8y/Os8iYSOX93TZ3Y/WW1GOrL61O3ABjbP369Une9ztPvjxh/Xb0Yy1Xt2SDdg9i0bHR7KPfRzbMbRhrtboV672tN/MN9k3y+QcOHEjxNZL7fYuOjWZHPI6w+afms2Xnl7ELLy8kGGuSz4uOTvb+5cuXp2ijw/oOrN6Semzj1Y1JPiYp7XK5nO25s4d9DfiqvC0gLIC53nFlC04vYCsurGAXXl5g4VHhyvuvvb7GjnocTfLP85snC4sKS/S+q6+vssDwwAQann55yk4/+zuuMzSU+pUDjM2fn+LboDZCxwyqtUx84cIFFC5cGK6uroiJiUHXrl0xbdo05Z829OjRA5cvX4a/vz9KlSqF06dP49GjR9ixYwe+ffuG4sWLp2gjd+7c+Pjxo3L/06dPyJ07d6ruSwxLS0vY2dkl+OPQklKtWsDHj0DBgtSKR0/hGRzQ0sT69ZVw9ixlaJ88CeTKxUMWFMjlVCdw9ux6+PKFPpN37gDVq3sI2lJOEz59yoGwMFrSLl1ad3YDAqjMU0AAkD+/P969o1jB3zsApQU8PIA7d2jJd9GihPfJ5XIsPrsYtRbVgpefF8rmLgt7a3uMcB8Bx1GOuPL6CgBgZ5+d+BLwBeam5km+jjrx5W+/v0W9JfUwpO4Q7Ou/Dx5fPBAeHY5q86uhUYlGODjwID4FfIKlWdL1btqq0XdQlsiHWy6XY+GZhai9uDY++X9CuTzlkME6A4a5DUO2Udlw/c31ZG1apBB8/N9//6Woa9//9uHdj3fJji8xomOj0X9Xf/iH+SOHfQ6ydX8fqsyvgsCIQJTNXRbprdKj9/beqLukrvJ5nwI+YcbxGRi+bzhuvb+V4G/h2YW4+e4mwqLD8MHvA1quaYkDDw/gc8BnvPvxDvNPz0f+Cflx891Npb0CDgUw4/gMXHtzLYG+deuo04ijYyiGD9doaKJGrQSSunXrom7duggJCYGbmxu6dOkCa2trzJ8/H5UqVVLrhUJCQhAWFoYcOejgHj58GJkzZ0amTJng6+uLbNmyAQA2bdoEW1tb1K1bNzlzAID27dtjw4YNaNOmDYKDg7Fv3z6cOXNGed+QIUMwaNAgmJmZYevWrZg9ezYA+oJVr14dU6dORdasWbF+/Xp07NhRrXFwCF/fdKhVC/j6FShcGLh8Gfh1aDl6gDFg5Ejg1q28MDOjZJHKlSnRgEO117p3p0LJgAm6dKEf7fTpFbdJgzdv8gIAGjbUXU2/uDgTtGsHvH1LiQejR19DjhytdWNcZCjq7nXqBBQtmvC+YXuHweOzBy6MvABbS9USZ4PiDZB3Ql7YWdFFfkhkCN58f4OyuRMmgGjK1ptbUSFvBZTKRUuft8bfwpbrW2BjYYOmzk0BABdGXkjVawCJx9kNdh2M597PcWHEBdhYqsJZGhSjsWawyZDq100J/zB/fPL/hLJ5kn4fMyVyNTLEbQgy2mTE0HpDAQDfQ76j65auuDnuJirmU41VLpfj9ofbyv2ulbtiybklaF6qOea3nZ/AZv+d/VE2T1k42jmifrH6AIChdYeiQr4Kym37/+yx6/YuVCtYDQBgY2mDoXWHYqT7SDyYrGr39/79r9fr6gFLy1TUkhEZGmUT29nZ4Z9//kFAQABWrlyJV69eqe0MBgcHo23btoiMjISJiQkcHBxw4sQJyGQybNiwAXv27AFjDMWKFcPhw4eVVzu7d+/G+PHjERgYiKNHj2L+/Pk4fvw4XFxc0K1bN9y/fx+FC1NQ7ZgxY1CsWDEAQO3atdGhQwc4OzsDADp27KjM3sqfPz9mzJiBatWqQS6Xo27duujTp48mb4VR4+cHzJtXBz9/AsWKUYHcX748R0/MnQsoQpa2b6fAfw5x9ChlJ/r704xp1653sX59JcnMBipgDHjxoiAA3c2wBwcDW7e2wdu3lGB0/Djw4kXq45vEyL17wKlTgImJHHPnJvSkr725hjWX1+DptKcJHEEAyJkxJ7pV7oYSOUoAAJ58eQJTE1PktM+JRWcXwT/MH+3Lt0e5POX+es2X317i6OOj+Bb0DTkz5sT4JuMhl8ux9eZWHHt8DLkz58bm65tRKV8lvPj2Arvv7kZ6q/TYfH0zimUvhmoFq4ExhgcfH+DI4yOIio1C3aJ10axUswSv8+HnB+y7vw/fQ76jRI4S6F29N0xNqHp//vz5Ezz2kuclrL+6Hi9mvEjgCAJArky50K1yNxTLVgx+oX448vgIAKCpc1Ncf3sdt9/fRtb0WTGx2UTl+PY/2I+gyCBUyFsBnSp2SjAT6RPkg7339+Kj/0fkzZwXA2sPhJU5xQB6fPaAlbkVimYrisiYSOy5uwdmJmboWa2n8vl/Jnfc97qP/Q/24+vCr8rbzr88j7j4OOXxUdCidAvUKVpHuR8dG43n357jv3qqWcufoT/h5eeFjd03Km979OkRTE1M4ZzLWXlbTHwMYuJjYGedcNWvePbiePjpIcKiwpDOijL0cucGmjYFypb1RlpCrQSS+Ph4HDt2DFu2bIGXlxe6deuGHj16IHv27IbQKDqMueh0TAydqK5dAwoUAG7eBBwddWJaEuNXYMii056etbB1K13B/vPPJXTs+F2j102rRaejo02xcWNh3L5dBgCQJ08ghg69CcZeGXz82oz3z/0nT7JhwYI6sLKKxapVR2FrG5uqotvx8TJMmdIQHz9mgqVlLEaOvAFnZ1/Biw4npz01x2rZsuq4f98J5co9x4YN0ShXTuW8VZlXBTYWNrg4KuVp4hUXVmDR2UVoUboFyucpj+NPj+PSq0vwW+YHCzNaPg2PDkfv7b1hIjPBsHrDcPv9bbjdc8P9yfcRFRuFIx5H0HVLV0xoMgHOOZ1RIW8FPP7yGINdB6NZqWZoUKwBimUvhmLZi6HX9l4IigjC3NZzERUbhc6bO6Nn1Z6Y1Ix65y09txTbbm3D2s5rkS1DNgxxHQJzU3OcGHYiUf0VZldARtuMODfiXLLj/B7yHa53XTHSfSS6Vu6K0rlKIygiCKeen8LDyQ8x4dAEXH1zFSs7roSNhQ167+iN0rlKKx2rvff2YvKRyVjVaRWKZiuKacem4enXp3g05RFMTEyw8MxCHHx0EHcn3kVoVCg6bOiA/FnyY02XNUoNb9++TZDd3GJVC+Swz4EN3TYobzvx5ARarG6BhsUbYkrzKahWsFqiS+MPPz1E+dnlcXHkRaWjd+DhAQRFBGFC0wnKxw3fOxyXXl3C0+lPlbctPrsY049Px6PJj1A4W2Hl7U++PEGZmWXwc+lPZElPjuvy5UDz5sD9+7o9r0ii6LSjoyOrUKECW7duHXvx4sVff8aGsRadlssZ69NHEYAezV6+1IlZJWIf/+8YKoFi2LDryiKtU6bop+iwFBNInj1jrEQJVZHk0aNVDeKFGL86z0lpv359Gsvw4drb+P22K1fInpVVFHv0SL3nqLsvtgSSly9Vn4U/k6q8A70Z+oItObvkr+cmRo8tPVjxKcVZTGwMY4yxG29vMPQF8w/zVz6m7dq2rP/O/sr98QfHs347+in3X/u8ZugL5h3orbwtMiaSmf3PjF19fVV52/Lzy1nWEVlZSGSI8rbuW7qz+kvqM8YYu/3uNkNfsMefHyvvX3t5LUs3OF2i2j/5fWLoC7b8fMoJHowxtu/ePmbSz0RpPzImkp17cY4dfnSYWQ6wZJ/9PysfO+XIFFZoYiHGGGMf/T4yiwEW7NjjY8r7Tz49meB96rihIxuwawCLjIlkg/cMZpuubfrr9b9+VSWIhEWFMYsBFuzAg4RJM3HxcWz8wfHMepA1Q1+wXGNysYmHJrKAsIAEj9t4dSMz+58Zq72otvLPcaTjX0kgNRbUYLnH5ma9t/VmPbb0YLUW1mLdt3Rnz74++0vfscfH/jr24b9yVnR9XhE6gUStZWIrKyv8/PkTCxYswMKFC8F+m0yUyWRJlmThpC1WrKD+niYmwNCht1CsWG2hJaVpzp0D1qypAsaAgQOpiO6vMppGC2MUCzhyJNW2tLePhLu7teQTl548AS5coCXO//7TTbDg0aP0v0SJd3BxKZH8gyWOIlmkZcu/k6o8fTwBACVzllTL1qPPj9C9SneYm1ECybegb8hkmwkZbaht2oWXF3DB80KCpcxHnx6htUvrBDYc7RyRPYNq9ey593PExcehjFMZAEC8PB5zT81Fm7JtkN4qPUIiQ7Dz9k7svb8X7v9zBwDMPjkbZZzKoLRTacTGxeLks5OYdWIWhtYdmqj2V76vNB5rtYLVUNqJspWszK3QoHgDlJtVDnWL1oVTJidExUbh4MODWHlxJWa3orj7hWcWIr1VejR1bgq5XI7Lry9j9P7R6FKpCzLZZlLabl+uPaovqI6mzk3Rt0bfv17/9/I0V15fQUxcDGoUqpHgMaYmppjXZh7GNhqLo4+PYtedXZh7ai5OPz+Nh5MfKmcJPb54wMXJBZdHX1Y+t/ai2nDJ7aLcl8vlePzlMcY0GoOeVXvie8h3tF/fHg7pHRJ9z958f4OMNhmVxx6gUJS0iFrO4O+Ztxzj5Nw5YNQo2l68GMiWzUdYQWmce/eANm2A+HhT/PsvsGoVJBcDp2sCAoDly6vj/n3ab9oU+Oef02jQoI2wwlJJbCygaBJRqtRr5M1bLNU2f/4E9u2j7RIl3gFIu85gYKAVdu+m7fHj/06qkjM5AChj7JIjMiYSL31eKpMIAODxl8dwye2idDrWXF6DZs7NlDFkcrkcjz4/wqxWs5TP8fjskeA5itsKZi2ojEt75fMKP0J/4Prb66i+oDpCIkNQOX9lnBt+DrWK1AJjDFffXIW9jT1qLqyJoIggFM1WFEs7LEWH8h0S1a8Yq5mJeukAjz4/QvWC1RPcFhIZgkefH6GAQwHUWFADQZFBKONUBrv67ELzUs0BQJl5XW9JPQRGBCJ3ptwYUX8EelTtobTx5vsbPPz8EGWcymDjtY0Y13jcX/Ga6X6rlP/c+zmypMuCrHZZE9Wa0TYjelbriZ7VemLioYmYd3oeQiJDlMkwjz49+ivp58LICzAzVb0X73++R2hUKOoUqQOnTE5wyuSEYfWGYaT7SPgG+yJbhoTB77fe30K9YvUSXZZOa2iUQMIxTj58ADp2pNIdvXoBw4fzGaq4uLgEXWu8vb3/6mLz520p7QNUhHXJkhOYMaM+wsOtULiwF5o1uwd3d7naNv68LSoqSmMdKT0mJZupGX9ij3n3LjNWrqwGPz8nmJrGo1OnJ2jc+DV8fMQxfm3G6+3tDVdXN2zYUAnXruWHuXkcatS4Cje3x1rbBIB3735i4sQAfPuWCVmyhCNPHk+4uUWkarz6Gr+6xz+555w964jYWKBgQT94eZ2Ht7c3Pn78iLx58wIAXJxcYGpiiu8h3/Enb7+/Rbv17XBq2CnkzJgTz7yfQc7kypkygBym352MB58eYEyjMcr9+x/vIzAiEM45nRM85/fM18TsRMdFAwA2d9+MygX+bpEHALHxsRjVcBT+q/efWg5J2dxlYSIzgW+I71/3vfJ5hX83/osz/51BdvvsYIzB47MH+tVIWCg6Np6Kj89pPQf/Vvg30deJiY9Bt8rdsLTD0kR1KZJwDg08hPDocOx/uB8rL65MELsHJOy4EhkbifwOfyfD7H+4H+u6rktweybbTMieITvSW6UHAMTFx+HJ1yfoXb13QvumCV2cR58fQSaTJTi+Lcu0xEj3kTj9/DR6VeulvD1eHo+rb65iUTtVjSLGVBflac5BFGRxWuIYU8xgeDhjpUtTLE6FCoxFRqbeZlKIcfxJoa+YucmT17I8eVTv99at7sk+J63HDO7Z48pWrGDM3JzeE0fHEPbwoWavK+aYwXHjaFympowdO5b6otsREYwVLfqdAYw5ODDm6amfYyWmmMFChX4wgLEVK5J+zLgD41jZmWXZt8Bvyts8v3myktNKsm03tilvW3d5HSsyuYhyXy6XM4cRDsz1jspm+VnlWZdNXZhcLmdhUWGswdIGrOS0kgmek3l45r9i3yrNqcTmn1JVKY6MiWSOIx0TxPftf7CfTTkyRbnfeHlj1nFDRyb/VTXd85sna7O2jXKfMcYCAhLGzo12H83KzyrPfIJ8lLe98H7BSkwtwXbc3KG87bP/Z4a+YO++v0vwfLlczkpNL8VG7B2hvO3m25usz/Y+yv3+O/uz6vOrs9i4WMYYY77BvqzRskYsKoYCd5efX85KTS+lfPys47OY/TD7v+L8fmf2idms+vzqCW5beGYhKzG1RIKYyrff3zKnsU5s+83tytuefX3G0Bfs3od7LDnG7h+b4PgqKD6lOGuztk2C2449PsZyjcnFIqIjlLc9esRYyC8p51LTYSERJBEzyDFOGAP69aN4JgcHqm33Rycojg4JDga2bGkLHx+gUCEqKn3hgu5700qFkBBg5cpquHuX9tu1Axo3PoOyZdsLK0xHnDpVRLm8uXEj0KIF8Pq19vZiY4H27YFXr7LCzo56HBctCpxIPOk0TfD5M/D2rQNkMvp8JMXc1nOROV1mNFzeEI52jjAzMYONhQ02dN2AqgWrKh/nH+6PZs6qsi4B4QHIZpcNG69vROFshVEuTzms7rwaPbb1QNlZZVG9YHXUKlwLRzyOYMqRKZjVaha+BHyBf5h/glg1xczVzJYzlbdZmVvh4MCDGLFvBE48PQGH9A7IZpcNc1rPUT5mQ9cNGLhnICrPq4yCDgVhamKKlR1XJpiVunfvHho1aqTcX9B2ARadXYQGyxrA0c4RpjJTpLNK99cM5Ee/j6iYryLyZUnYq1kmk8G1rysGuQ5CzYU14ZTRCbaWtljYTtV2dn6b+RjsOhjlZ5dH8RzFIWdyLPt3GSzNqcB0YESgspYiAAyvPxwnn51E67WtsbDdwr9mTQGgdK7S2HpzKxhjyvG5OLngSuYrqDCnArLZZYOlmSVi42Ox4t8VaF2WYjQXnF6A089PwzmnMyYenoj6xepjXJNxCWzHxcfhn9X/wD/cH+ks06Hx8sZw6+eGjLYUC9ijag/svb8XTVY0wbHBxyCTyTD31FzMazMP1haqRubPnwMlf4UWRkdH/zUGKcOdQU6SrFwJuLoCpqbA/v2Ak5PQitIu0dFAq1aAj09WZMtGJ3IHB6FVCce7d9Qx482b3DA3pzjVoUOBvXul7xwzBqxZA+zeTUuG8+YBvXun8CQ1GD6cLiAsLOJw4oQZXFxSfIrkcac8C9SsmXzRexMTE4xpNAZjGo1J4Gz8iaKci4LM6TInKEECAJXyV8KrWa8S2Pn9eXe97iJ7huwJnKxn3s8QL4//ywmqVrAa7k26B7lcDpNEqoznzpwbJ4edTPJ+AAgICPhrrOOajMO4JuOSHWuNwjVwd+LdRO8rkbMEro65muTrZrTNCNd+rkneP/2f6Qn201mlw+0Jt/963O80KtEIGawz4MrrK8r6gfWL10f94lQkOqnXUow1OcxMzXDqv1NJ3j+28ViMbTxW+Tqj9o9C/WL10bVy1wSP69ZNtR0aGoq0hFp1BhV4e3tj8ODB+PLlCx4+fIjHjx/jypUrGJ6WerKogTHUGbxzB6hRA4iLo7pKf3Yf0odWMY0/JXRZZ1AuB9asqYrbt/PA0jIa06ZdQt68QRrZSO51pVZnkLEKWLSoFkJDrWBvH4IRI+6gUCF/UY9f3fHa2BTApk0V8fgx3d6o0Wt07/5IGYekqVbFPmNA797tER1thi5djqNZszC1x6/J6/yfvfMOa2LpwvibhK4ICooKKGJDBbE3ULH3Xq69X3vv5fqp13LtvfeOvfcudlGxUxQElCa9tyTz/TEmEGrKht1Afs+TJ7ub3bNnNslmMvOec1RtP9N5BiW5BQcPfocuXbyz7ePg4AB7e/kia5kgISUB3bZ3Q2eHzlJdYbowHWOOjoGBroFM/jyVz5WQgFu3bsHf3x+WlpaoXbs2atVSPlAoNTUV6enpMkEd6ub+/fto06aNdD04JhiLLy3GgREHCsyHrOx/sh8ljUqiT/28SwEy/buiEXkGJXTp0oUcO3aM1K5NtQDp6enE3t4+n6MKH4VdMxgRQYi1NdUy9e9P8wuqalMeuNJ+eWBShzV7Nr3WOjqE/P33aaVs5LVNkzSDo0adJ0ZG9HrUr0/Irl0XVPadK5rB6dPdiJkZbZu+PiGDB78lIpGsDWU1g1FRGXn2Dh+W/QwVZs1g48a0zRcu5L7PhQuyn6GcCA8Pz3cfeZh0YhI59uKYjKZv6eWlZNv9bSQ1PVVm37CwsFztzJlDyK1b8p0za3vz+13y9PTMti2r7rCgUNc9PzNJSUn576QEhS3PoEIJrUJDQzFkyBDpUK2Ojo5MNJAWzUcspjVef/6kurV9+7QpTdTJ1q10ChQADh4EqlULZNchFtm/Hzh8uCeSkoAOHYBHjwATE80vnRYeDgwZAmze3ByRkUCdOsDbt0CXLt6M1R/+9Sflnbk5oKcnYsaoBhD0pyJYlgFGGXwlxWT/8P79+2z73L17V2b9woULMuuPHz+WWb99+3aO59o+aDuGNBkiMzW7pPsSTG49WVq9RML9HIpmb99+B3p6wIYNQMWK+fuRE9evX5dZz9o2Dw+PbMfcunVLZv3SpUsy648ePZJZ37p1azYbFy5cwIMHVE7Upw9w+7ZbnjYKisuShJu5YGVF/0YVdRS6Feno6MgknI6OjoZYLGbcKS3ssWYNre9pYEB1gmyMVhcVXr+2gkRhsWqVrB6lKCEWAwsX0mAlsZiP4cNpDd0CnK1SG2fO0PrdJ04APJ4YCxcCr14BKszm5YikM2hlxaxdLiMSASF/0p3m1RnMiqenZ777ZA0OCA4Olln/9OmT/CdUgJ07KyM9HRg0iAb/5OeHPHz48EHhY5KTk2XWQyQX+g9paWnZjklNTcWuXfSzWLYsEBUlW7s3q42CguTT07O3p0nsRVn+Q0VEAEVJAaeQZnDDhg3w8fHB/fv38c8//2Dnzp0YMmQIpk6dqk4fOUdh1QzeuQN06kR/nPftA8ZkTxivsE1FYLv9iqCqZtDLyxyrVrWCUKiDtm2/YeTIN+DxlNeM5XVeLmsGzcwqYNeupnB3p9FJLVo8xbhxP6Wj0ZrS/pz2OXOmNC5douJ3a+sY9Ox5DU2bCnLdXxlfJes0Mrke6tf/hQEDTqld38kFzWBkpCGmTOkJPl+MI0fOQCAgcvnKdPuLFSuGRo0aoWzZjITFkZGREAgEMDU1lW4LCQmBj4+PtEOX1eavXyUwd24X8HhirF9/HeXKJXDqu5rf++/r+xtLl06GSCTA6tU3IRB8Udj3mJgYTJgwAUyS3/0/PBwYPJgm+ndxAUaPppH9bm50hDa3gcUirRkkhM6T9+/fn/Tr148cO3aM6WlrjaAwagZ//CCkVCmqvxkzhhmbilJUNINfvxJSsiS91j16ECIUym+Xq5o5ZWzs2HGR1K9Pr4OeHiHHjmlu+7Pus2FDhoZv2jRC0tLUo5mTrLdvT8+1YUPB6Du5oBm8fZu2uVy52DyPKaj2nzmjWE7QrOszZ9L2dO8u/zHK+Kqu9s+a9YgAhNjaKu97TnZVJafzRkcTcuoUkclZ+vMnIRIZp1hM9fKb8yjxXNg0gwoL/gYOHIiBAweCEIKEhIT8D9DCeZKTaemzqCigYUNa+kyLeggOBjp2BKKjacWEkyfNIci/Slahw8MDWLy4HaKiqM7t4kXA2TlDP6mpCIV0yknyHVq4EFixQr2628REqq8EaIm+HCRhhZLPn+mztXUMAPb1LEKh8mmP0tKAo0fp8ujRDDlUwHz+TEdGuV4n/Pt3OgJYuTL9rvzzDzB3rqzEYscO+r2aNIk1NwschTSDo0ePRkxMDNLS0lCnTh1YWFhg586d6vJNSwFACDB+PP1SaBNLq5ekJF106kQT5VarBsye/bjQFj3PDUKAXbuApk2BqKhisLOjaYycnfM/luskJOihU6eMjuBff33AypXqD8B68IB2JmxsgOrV1XsuLiGpUV2hQgyrfjDBjRtUo2ZsnIDOnfPfn4toSmdw1CiaLu3xY/oZWrWKJvzPzMSJwKVLQFGKj1WoM/j27VuYmpri9u3bqFu3LkJDQ7FnD3N5k7QUPDt30n+kfD4tbK9NLK0eUlNpTrSPHwELC+DWLaBEiewi7MJMWpoAw4bRG21qKlC3bhCeP6f/0DWd0FBg2bK2uHcPMDKif6p69PhaIOe+eJE+d+5ctCL/nz+nz9Wrh7PrCAMcPkyf69b11MgOyO/fQFCQCXg8oFUrtr3JnR8/6He1z58UgtWr01FCycg6IYC/P/091MT3QRUUCiBxdHTEhw8fMGfOHDRu3Bh9+/ZF3bp1cwxVL8xIhJ779++HEYNDOzkJbNVp98sXC/z3nwvEYj4GDfJA165eKttUhYJuvyp8+/ZN5r1PSUmBQZYhVck2sRhwde2C9+9rQF8/DePHn4KV1e8cj0lMTESxYsVytZvfek7bFLUpzz752cy6LSamOA4f7o6goPLg88Xo3PkxGjV6BkNDzW9/TIwx9u7th/DwUihRIh6jR19A+fLhSvmuqK/h4QJs2DAFIpEOJk48iUqVglV+rxRtv7I2VG3/smUTkJBQDBMn7kWlSnFy+8q19oeFmWH9+pEAgIkTd6BSpWS5bSjjqzraHxxcGps2DUfx4olYsmSX0r4nJMWDWDBb2cM4vjwaNGgAFxcXBAcDp05RKYeEbdtoKrW1a2l6q+vX6R8sQghOnTqVq12mf1eSkpIwZswYzQggad++PRk3bhypWLEiiY6OJmlpacTBwUEdWkZOUxgCSHx9MwJGBg/OObG0ojZVpTAGkIjFhIwfT6+zQCAimWubMxlAkNc2tgNI3r8npGxZeg3MzAi5fz/3YzSt/V+/EmJlRdtmbp5Avn9XzXdFfe3Z8xMBCGnaNH9f8zqvJgaQ2NrS67506W2FfOVa+4cNo+3o1Yv976qyNt3caBuqVlXN9yX/LSILP/Ri9JHf/f/tW0KaNSMkKIgWWwgIyHP3PNujCmwHkCg0TXzixAnY2dnh1KlTMDU1RVBQEGZm7mJr0Qji4oDu3TMCRrSJpdXHggXA7t30+k6Y8JLzehqmefyY1o0NDaVCf3d3oHVrtr1iBonW8dcvmhPuf/+7V6BT3omJwL17VQEAs2cX3Hm5gmRgPi1Nc+fz/P1pDkqA3is0FYnmzsSEXT+UoXZtwMsLGDsWmD8fqFCBbY/YQe7OoEgkwsCBAzF9+nQ0adIEAGBjY4MRI0aoyzctakAspsmNv3wBypWjw+GGhmx7VTi5erUG1qyhy7t3A82aBbDrUAHz9m15dOhA/3w0b047S5Uqse0VM3h62qJNG/qHqnFj4MkTwNw8qUB9OHoUSEjQR+XKQI8eBXpqTiDpDKamam44/tq1NNlxu3b0j7mmogmdQZEIuHAhe7URHR3AwYG2Yfx4dnzjAgppBtu2bYs7d+5Iy9EVVTQ56fTChcB//wH6+jSpZqNGqttkisKUdPrJExvs2tUUAKR6TKaT7uZmgwtJp58/r4idO5tALOajfv1fmDLlOcLDAwtF++/fr4xDhxpALObD0TEY06Y9hYGBqMCTLq9Z0xIfPpTPpvdlK+lwQbd/+fLW8PS0wJAhV9G5c0Kux3C1/R8/JmDdutEQifhYvPgeatQI53SC+LxsPn1aETt3NkOtWqFYtOih0r57+31FercvYBL7L/0wcOBAuLkBLVvSYgr79snuExhI00LZ2spvt0gnnV60aBHp2rUrOX36NLl+/br0UdTQVM3giRMZiXBPnGDGJpMUFs3gtWuE6OjQ6zxrVu5+FAbNXE6vHztGCI9H2z9kCCHp6fKfl8vtT0sjZNKkjO/Q8OE0mbSyvqrS/vR0QoyNqR/v3uXtO9c1c4r4mnm9Qwfa/vHjnyvkK1fa7+zsRwCaMFxeX7mqGbx2jb4X9eur5rs6NYNTp2Z8b5mgsGkGFRJbPHv2DACwa9cu6TYej4fOmpoYqQjh7p6RzHTePFr7Ugvz3LxJE3gLhUCzZv5Yu9aGbZcKlDNngOHDaXepTZtvOHKkKgrDREJcnB46dAAe0kEPdOjwFIcOObOmtX3/HoiPB4yM0lC7th47TrCMJAg1PV3zpok/fQKePbMBQPPcaTqSqnsxMWx6kTuE0CligN6ftWRHoc7gQ8mdUItGER1tgJ49gZQUoGtXYOVKtj0qnNy/D/TqRRMA9+kD9OjxEny+DdtuFRiXLtE/GWIx/ePRqtUb8PlV2XZLZT5+BBYv7oDwcKB4ceD4ceDbt5fg8djLlP34MX2uXj0cAgHz6Zg0AYnWWRM7g+vWAYTw0LcvUL8+296ojqQzGB3Nqhu58uYNDfQqVoz7SbHZQiHNoEgkwvbt2/H9+3ds27YNvr6+CAgIQOvCEh4oJ5qkGRQKAQeH3/DyKoOaNYEXLwAmXNZqBmU1g2/fpmLnzkFITtZDgwY/MXXqM4SF/VKrZio3G2xoBh880MHhw70hFArg7PwD48e/QkiI5rf/0aNKOHy4AdLSdGBhEY9Zs9xgZRXHqmauXDlLzJvXGUFBJujW7SEGDgxVqf3K+MoFzeC6dS3g4WGJnj3voX//8FyP4Vr7xWIe/v67N5KT9bB06V1UqxaRq13vgC8gJTMCk3jRRjLrOW3Ltv7bGKRMvGo2sqzrhpeS8TMsrBhmzOgOPT0hDh8+K9f1yGmbujSD7u4DsWkT0K8fnb1ggiKtGZwwYQIZM2YMsbOzI4QQEh0dTRo0aKCG2Wtuo0mawfnzqU7C2JgQb2/m7Go1gxmamdBQQszN4wlASPPmhKSk5HxeTdfM5Wbz2TNC9PTSCUBInz7yawS53P6DB0+T4cMz9IGOjkEkMjJ3m8r4qmz7T52iPpmYELJv39l8/eCqZk6V918sJqRMGUmewTt5HsO19r99S/02NEwlQqGsjax2/7d7hoz+Let6TtuyrmfV4SljI+t6Vj8/fKBtKlNG/uuR0zZ1aAaPHXOVflauXMnmgtIUac3g8+fP8f79e9StWxcAYGpqirS0olVSS5O4fh1YvZou799P6+FqYRbJlHBERHFUqUJT9ejrs+1VwREYCPTsSXO9deoEnDyp+WWcPD2B//2vPX79omWpli8HKlZ8jFKlmB+1VhSxmIcVK+jyzJlAsWLp7DrEEgEBtASajg5gY8PRuclcKIxT/FxOLfPxY1n8/g2YmwMdO7LtDXdRSNqdtZSMSCSCWCxm1CEtzBAQQPMJAkCHDt7o359dfworM2YAz55RIf/164CZGdseFRyJiTS/XXg4ULFiNM6eBfQ0OJaBEODIEZrv7dcvU5QtS3WgCxeCM0EwL19a4+tXqtGaNo1tb9jj1Sv6LBQCuroidp1REDc3+mxnF573jhpE3J9qgGzMbubHkyc0uemgQYCuLsvOcBiFbnG1a9fGiRMnQAiBv78/Jk6ciBYtWqjLNy1KIhIBgwdTMW/DhsCgQe/ZdqlQsmkTsHMnXZ448UWRGnklhCZoff8eKFMGmDXLDVlKtWoUMTH0x2LECNrJrVUrFO/f0yL2XOHrV+DIERptMHMmN0dhCoofPzKWDx1qwJ4jCkIITVAOAHZ2v9l1hkEkgSNc6wwmxRTH27dWADIGR7TkjEIBJAkJCZg1axYuXboEAOjevTs2b96crWB3YYfrASSrV9PSRsbGwIcPwMuXmhHsoUkBJAMHXsapU7Tsw4AB71G//j2VRekA9wIocls/c8YYly51BY8nxj//PECJEu81tv1PnwJnznRDRERx8Pli9O37CfXr34O1dXm5bSrjqyLt9/cvidWrXRAXZwBb20j8888DGBgIGWm/Mr7K0/5Ra5+BaZYPtoGlpSWiogxx/HhdvHxJg7gmTHiB5s395fKVzQASPr86Zs3qBl1dEf79dwsqViwnY8P7u1eewR7G8eVZSTqdNZAlawDJpUs1ceaMI1q08MP48a/kspnjeRgOIHl1pDvubxyBunWBt2+ZLbtapANItFC4HEDy7h0hurpULHv4MHN2s6IpNtVh9+5dQgQCIQEImTKFitmZEKUTwp0Airz2+fiREB2dNAIQsmqVcjZyO6Yg2y8SEbJ8OSE8nogAhNjaEvLypXznKcgAigcPMhJMV6wYRSIi8rbBlQAKgzqTGH9kPcfSpfS6GBkR8ukTt9qf0/qRI9TfZs1y9iO/YA+2kk7nF0AyerQkmEd+mzltYzKAZIFHb1LSOpgAhOzbl+3UKlPYAkgUmiauX78+du7ciRiuZpYs4iQnA0OGAOnpNLHmsGFse1T4OH2a5moUiQTo3x/YvJnZf5tcJy4O6NsXEAp10akTTWCuiURHA927A4sXA4TwMWwYnfJu3Jhtz2R59coaHTvSBNMuLsDixfeLlC41P/75B3BwCEFSEv1cxsfnfwybvHhBn5s0YdcPppFM2ytSzk3d+D2vg+if5WBklAY1TDgVOhTqDG7YsAGvX79G5cqVMWDAANy+fRtE/llmLWpm4UKqK7KwAPbsKVqdFHWTlgbMng0MGACkpgI1a37H0aPcCSwoKCZOBHx8AFPTOI1t/9u3lnBwoNH2BgbA2LEvceQIlVVwiePHga1bnZCWRv/c3bwJGBkVzejh3BAIgEmTXsDKCvD2BtasYdujvJEEvjRtyq4fTEIIvfYAUKkSu75kxuNcewBAy5Z+Gq1nLigU0gxKSEhIwJkzZ3Do0CEEBAQgMDBQHb5xFi5qBu/dy8isfv06kLlCoKbo+7iqGfTzo51Ad3e6PmsWUKrUGlSqVEG6DxM6JIDbmsHQ0EbYsKEFeDwxxow5glatDBS2wWb7fXzMcflyTXh40NcsLOIxbdoz6Op+VlmHpYyvebX/0SNb7NvXCITw0KrVd4we/QZ8PlHL+6+Mr8poBqPdt0NRSjacnO8+ywfb4NWr9jh3rjZatvRD164XONH+rOte/l/w39LFSE/Tx8Sl/6G0fmL25M9ZEkRn1QgykSCeCc1gZj9/eFfBsU0ToauXillrl0DPgKabyy9xdY77RBRjRDOYnqyHTS2PQJiqj9Wrb2LevE4q28xKYdMMKpURLCkpCdHR0YiJiYFJUQ5p4wjR0TQKEqARntpS0czx8iXNTRUbC5QsCRw6RNOprF8vkLkR5HRjyLotv3UAWL9+vULHyHNeRW3mtG3fvnPYuJFmDpgzh4/SpSMxcOBszrefEGDMmAu4c6e3NIqTzxdj7lw+/vc/YxgadoSra7TCvmf1Uxlfc2t/VNRA7N1L19u0+YY7d6qCz6+iVPtz8pWJ90qe9qsjgCQnLC0tYWNTGwBQv74tLC0tOdH+rOuz1v0P6Wn6AE+M4l08QN5aQdjUX8aG7o2aMtssvzRU2Xcm2r9kz0wZvzL76XZgJADAsckb8Fv5QPhnH50XNjLHZF3PaZvujZpgAv9XtSFM1YdJ+d+wto5hxGZhR6FJnosXL6Jbt26wt7eHr68vDh48iE+fPqnLNy1yMmkSEBQEVK0KrF/PtjeFh+fPgfbtaUewSROqKevRg22v2OH48XoICaGJy5cuZdsb+XB3p3VfDx6kHUE9PeDvv4F1627gv/8yattyiUePGmLyn8Gw6dOBUaPeaORUfEEjSW1SqhS7fuRFTAQVe5awiISOnjCfvTWDwHc1EODuAL5OOpw63mfbHSnf3Gi6oSot3mjlUnKi0G1m586dGDRoEH7+/ImdO3eiYcOG6vJLi5y4utKHQAAcOwatNoIhnjwBOnSggvRWreg0fIUK+R9XGLl2DXBzswWPBxw8yM1OVGYIAVatoh14Dw9AXz8Nc+ZQkfvevUC5ctyKMvD3B3bton88rl9vCQBYtAjYuFGr+5UXSWcwS10EThH9pzNoahXGsifMQAjwZOcAAIBjzwcwKRXDrkN/IAT4/qczWLWlO8veaA5KaQYBIDY2Fj9//oS9vT3TPnEeydz+/v37YWRkxJjdnLQceREZaYR58zohKUkPvXt/Qt++nxmxKw+aYlMZu56epbF2bUukpuqiVq1QzJ7tBn192SoH3759k3nvU1JSslXoybotv3UASExMlMnbqYyNrNsUtZl5W2SkCbZsGYLkZEM0b/4G3bs/kssmW+0Xi3k4d84F7u40OXPdul/Rtu11lCnDk9uGPPtk9VMRX9PSdPDjhxW+fLGGr28V/P4tGx7cseMTtGnzSi6bi0/4oyBY1Keswu3P6psymsGs5KQhXNSnLO7d64DHjxvCwCAFI0ceg61tbK6+MvFZVeb9f/7SBhfP94V1xQCMGr8POkIDlT//yvjKVPt9fevg2LEe0NERYu7cgzA0/K3yvSohKR7EQrU/a7FRptiy8H/g80WYv2U+dBP0s2kVmSAnDaQqpCanYs2MnZqhGezYsSNOnToFHR0dODo6AgCGDRuGf//9Vy3OcZ1+/fqxFkCSlkYDRpKSgEaNgFOnHKCr66CyXXnRFJuK2r1/HxgzhkYMt2sHXL5cFoaG2Wv5rV+/HrNnq0czl5ddZTVjitiUbOvRYyCcnGjKosqVI3D3bgPo6zfgbPuTk2kVEXd3OqK2dSsweXJNrF9/Q6n256fDymwzv2MCA4H5898jPLwOnjyhny8JAgHQrBnVpkZHH8K6dSMBNJfLj8Un8g+wYILKlSsr3P6C9G3GjIbo2BF4+tQAJ08Owfv3hrCxydlXpjSDirz/ADBp2X/AeSAktCxS2nnD0ae3yp9/ZXxlov2rVm3Bw4dUM7NwoQ6WLRvLyL1q6ep/sukKFeX3C9o3KVkxBGjhC5KDVpEJctJAqoIwgd1MAQpNE4eFhcHU1BQ3btxAjx498O3bN2k1Ei0FBxXF0xqXxsZ0elhbc1F1rl8HunShHewOHYDLl7k/JaouCAEmTKA6ydKlgenTn0Jfn22vcicmhr5nly7RWrVnz0KqvWObt2+B2rUBV9c6uHePdgStrQEXF1+cOwdERNDv8sKFgIVFJNvuaiTFitHvr6MjEBtriE6dMqaOuYJZmQgYlIiHMFUfv79VZNsdlbh3rwl+/QJsbID589n2RpZIf1o5yMwmiGVPNAuFOoPp6bTn6ubmhnbt2kFXVxd8rbq5wFm6lHYABQLg7FkUqZq46uL8eaBXL/pD3aNH0e4IAsC9e1WkeQRPnQLMzJLZdilXwsNpQuYnT2i93vnzH6JPH7a9onh70xHm2FjAxiYKW7cCXl5AQAAwduxr9OkDmJqy7WXhoEQJ2iEsVSoRXl5Az56AWMy2Vxnw+ATl7b8DAII+au5N29sbcPujyduyhXv3ycgfVBKk7QwqhkKawQEDBiAmJgZeXl74+vUrAKBZs2Z4//69uvzjJGzmGTx8GBhJI/mxbx8dIWTCrqJoik157J44AQwfDohENJ/g0aP5j7SuXr0aFStm/LvXhDx78tr48aMk/ve/thCJdDBwoAe6dfMqkNx1yvgaEBCKQ4eGwMenNExNkzFv3iPo6HxRe21mefPMPXjQFTdv2sHWNhLBJZZAUSS1eCXIk66FCW1eVuTN96eIr0z5mdW3ia0bYNu2IUhP18F//92EUPiWE3kGg4KCpPkQa9YMw8iRx1T+/Cvjq6rtP3SoPu7erYY6dYIwZ46bNMiJiXsVE7WJT45bAv+XjuiybDscez5gfDpXAtN2UxPSscHpmmZoBg8fPoxbt27B0dERRkZGCAoKwurVq9Xlm5Ys3L9PU2MAwIIF8nUEteTN4cPAqFF0WnTECGD/fjrimh86OjqFMs9gbCxNxyIS0XJtJ07UBY9Xt0By1ynqKyFAixY/4ONTGiYmwPPnhqhRoxNcXWOUbr+8+8ibZ65ECTsAwJQpZlhwBAqTNWdeQeXuUwau+NqggT7KltXBz59A27ad8OjRF07kGXR1dcXGjbVx6RLw9asFUlIcMHBgBxkbBfFZVaX9YjFNug8A//1niY4dmb1XLV39D1RFOjJY6ZfKtooSCs3xGhgYoGfPnqj0p+aMpaUlOnbsqBbHtMjy9SvQpw8gFAIDBwIrVrDtkeZz9SowenSGPu7AAfk6goUVQuj18PUFzM0TcOgQt1Ob/Pcf8PRpJalcokYNtj3KTng4fS5dml0/ihqiP8H/XPs+W1vTICcAuHqVgx/YfHj9GggJAfT1U9GqFdveZCctyQDxYeYAADObYJa90SwU6gzeunULdnZ20NPTg0AgAJ/Ph4Br37ZCSHg40LUrHbVxdqZVMLRSTdV4/hzo359qikaOBHbs0F7TLVuodlJXF5g69RmnE/iePUtz8QE0alhSipFraDuD7MDVziAAzJ1Ln93dreHjw64viiKJF7Wz+8HJgLKoABo8YlgyFoYmCSx7o1ko9PM3depUbNmyBREREYiLi0N8fDzi4uLU5ZsW0M7KkCE0Ya6tLXDxIjj5JdQkfv6kQSIpKTR6eO9ebo+AFQSfPgFz5tDlTZuAKlWi2HUoD3x8MsovdujgjYkTWXUnV75+LSP9sS9bll1fihoSJTyXAkgk1KpF/9wTwsPatWx7oxhXr9Jne/tv7DqSC9Ip4oraUUFFUSiApEGDBnjz5o06/dEICjKAZNs2YOpUmln/zRt6I2HCrqpois2sdlNTgRYt6HRH3bo0AlWZqi2FKYDk589g7NkzAn5+Zqhf/xdmznyC4OCCFaXLazcwMAR79w6Hn58ZatUKxbBhJ2BtXV6l9qsjgOTDh7LYcvu8zOvKBEzkF7ihjmARZZEnyCQz6gogWT7YBnv2jMD37+aYNOk5ypZ9wJkAEsm6l1dp/PtvW+jrC7FjxyUYGaXnaJdLASTGxrYYP743AGDBgg1wcMj7e8dGAMmDTUPx8nAv1Ot/Cx0X0QLf2gAS+VAogKRLly64du0aunbtqi5/tGTi69eMKYV165TrCGqRZdo02hEsWZJOiSpbvq8wBZAMGfIOfn5mMDEBrlyxQvnyAwtUlK5I+3v3/gw/PzOYmgK3bpXFkyflGQ2gkXefvAIIbt2io6v8mrKdQS0Fg6WlJTp0MMf374C+fjMYGDznTABJ5uCnAwdiERRkgtTUvhg9Ome7XAogMTCgHcGaNYFSpQgj33emA0jCvG0AABbVf6hkpyiicG3i7t27o0SJEihTpgxKly6NMmXKqMu3Ik1aGp0eTkmhyXQnTWLbI83n0CFgzx46JXzyJPAnDqpI4+cHnD1bGwCwfj1Qvnw+B7DIixfApUs1AQC7dwNWViw7lAMPHtB8lWlpbHtStKlPqxHi3Tt2/cgNHg9o3ZrmHNyzJ2Nam8s8eUKfmzdn14/cIAQI87IFoO0MKoNCI4PaKeKCY8ECwMMDKFUKOHhQq2lTldevacQwACxbRkt/FXUIAcaOBdLSdNCqFaSjE1wkJQUYNgwghI8hQ4C//mLbo+wkJOhi7Fjqa7duwN2fbHtUdMncGezQgYNRJACaN/fH2bP18fEjrfRTty7bHuXN06f0uXlzGlHMNRIjSiIp2gQ8vgilqwSy7Y7GoZBmUAtF3ZrBo0dpEmQAuHCBjjQwYZdJNMUmAOzYcQkrV/ZESAj9kb50SfXI4cKgGXz40Bb79jWGrm461qy5hbJlE3K1wbZm8MKFWjh3rjZKlIjHxo23pRordSTdVqb9APD8uRjbtw+GqWkyNm++gvGbn8i8ziV9X2Emq4awQ8VO+OuvjEBHLmgGJeubN/+NoCATLFz4APb2YZzVDAYGhuCff6ZBKBRg06arSEj4oHL7c9qmimbQ52FDnJu+AOaVAzH2wnTpdq1mUD4UGhn09fXF9OnT8eHDB6SkpEi3//79m3HHiiqvX9PRGoCmzlC1I1jUSUoCNm5sjpAQqrk8fpyZFDKarhls2XKgdKS0f//PmDGjm0K+F6RmsGnTgRg1iq4PG/YRo0f3Vbn96tAMfv78AABgZWWI4cP/ytYZ1MIOT5444eRJUxgZ0XUuaAYl68nJJgCAQYNao1Yt7moG1669AaFQAGNjYOrUbti40ZtzmkFJiT8rR2+lbRRlFPpZHDNmDIYMGQJjY2Pcv38fPXv2xPTp09XkWtEjOtpAWh+3e3fg33/Z9kizIYRWF/HzM4OZGXDlCq1fqgWYPJnmrWzQAOjYkds3z5kz6dSriwvQtCl3p39SU+l/a2WDkrSoh6goUwwdyr00M+npfET9yeDE9dRDAQGmAIDatbmbjzXoY3UAQHkHDUveyBEUeltjY2Px119/gc/nw8HBAXv27MHdu3fV5VuRIiUF2LSpOYKDabTWsWPc/dJpCitXAqdPAwKBGOfP0zyNWoDXr61w8SKgoyOpusJdpcjHj2Vx8SJNHrxtG7e1s5LOoIGBanaePv2Fls4nYKi7Ho3rH0H7NqfQtOFR1K51AEcPf8K7t6Fwbnochrrr4ePN3XyQObFz+zt4vAsr0HMKBEJcuABwrXJqXBz9oOjq0uwGXCYggDpYpw67fuSGWMhHyOcqAADL2trOoDIopBls3LgxXr16hWbNmsHV1RUWFhaoWbMm/Pz81Okj51CHZnDSJGDnTnpTcHcHssgxVEJT9H1M2rx4EehNMyFgzJjX2LevESN2JWiqZjApSQczZ3ZEXJwxevb8jP79P7Gauyyv9guFPMye3Q6/f5uhUycvDB3qoZY8i0xpBh8/5mPPnr8gEIixZMk9rLpwReZ1RTSDL54HoXVLV3zxGgPbyqYAgHVrXuF//zzBS/dhCAtLxMD+lxEePQ18Pod7yJkQCsUwN92CS1f7wKVVBbWdJ6tmsFW57rh5sz1sbSOxYsUdzmgGX79Ox+bNw2BqmoSdOy/naJcrmsF//20MLy9bjB79Gm3a+DLS/py2KasZDPOywYG/NkKvWBJmPhkGviBjGFirGZQPhTSDLVu2RFRUFCZPnowGDRpAX18f/fr1U5dvRYanT2lHEABcXZntCBZFPn0Chg6ly1OmAE2b+gJgtjOoqZrB6dOBuDj6GXN1tYeBgT2rucvyav/WrcDv34C5OXDypB1MTe3UkmeRKc0gIa6IigLOnuXjwIH2QEnZzqAifP4UjhIl9FDJ1kS6rUFDOpfo7x8LH58o2DuU1piOIAB884lCaqoINWuZFeh5zc2TAQDlyplh4MDsOTQBdjSDX77c/+OXkXQ7VzWDM2fSAJzBgxuhVatGjLQ/p23KagYlesHyDt9kOoJa5EfuziAhBDNmzECpUqUwaNAgNG/eHLGxsbC3t1enf4WetDRg3Di67OLiiw4dtD1BVYiIoHrLxESgTRtg40Zax1YLDU7ato0u79yp+nSmOomMBJYupcsrVwKmpmx6Ix88HrBvH/D2Lc3faKDC1N+XzxFwqF0GvEzz4m/fhkJHh4+mzcrj/DlvODrK5nh99DAQq1e9QFqaGFFRyWjUqBy272oPPb2M1Crnz3nj8MFPSE8X4cP739i0tS0GDKwBALhw3hu7d3qAz+chNiYVLVtVwOq1LtJjv3+LxupVL/DrVzx+/oxHtWolcfFKH4SEJGDooGt49vQXNm5ujY8fwvH6dTCKF9fDmfM9YWFRDFevfMfC+Y9hZKSDIQNpTbNVq1uiQcNyyl8kOREKmZm+Z5qkJF0AgIlJPjuyjFAIhIcXBwBUrcqyM7kQ9Il2Bi1rs69/Fgv58LjQDhUbfoaZTRCnpS2ZUWhksFOnTnj//j0AwNraGtbW1urwqUixdi2tNFK6NDBo0HsA2s6gsqSnA337Av7+dOTrzBmqi9NCr82YMVRE7+Tkj/btbdh2KU+WLQOio4EKFaIxejTHBVWZMDGhnzsnJ9XsfPoUDsc6GZ29Vy+DsXGdO+YtaIwyZYrh44ffmDylvvT1hw8CMHTQNdy62x/2DqURH5+GqpX2oKVLBQweWguEEEyZeBehoYk4eqIrSpY0QLXKe1C+PI12ef0qBHNnP8Lb9yNgYqKPH34x6NLprLQzeP+ePyZNuINDR7qgaTNLLF/2DIEBdLSoXLni2LWnPWrXOoiAgDjs3NMe6eliVK64G+fOeGPSlHro1r0KXr8KxnuP37h6IyMavCAQCmlnmGudweRkPQDc/6Pj7w+IRHwYGnI3Kb1kZJALesFQT1vcXjkOBsYJmP54BHgaMlKpkGawT58+2Lt3L8zMCnaYn2tINIP79++HkSRfgRIkJelg0qSeSE3VxaRJz2Fj8zybpoIJctJqFEabhw7Vx9271WBomI5ly+7AyiqOEbs58e3bN5n3PiUlBQZZfm2ybstvHQASExNRLFM4qjI2sm5LTEzEq1etcPNmCxgZJWHq1N0wMxMrZCMnm3n5qUr7k5IssX79SIjFAowYcRy1aoWq3H5Frqky7c+6z6tXDjh3rgOMjJKxbNkOAMDiE/4y++elISxXehvKWBSDhYUR0tPFKFFCD8NHOqB3n+pITk5H6ZJb8eDxIDRqXA5CoRjVKu/FiJH2+N9SZwBAaqoQVmV3YMOm1hg2wgF7dnlg4wZ3vH0/AsWL6yE6OgXly2xHUNgklCpliJXLn+P0KU+8dB8GIyM6YvX6VQgaNS6H4OAE1Hc8hP2HOqNLV/pntV/vi3Bubo1pMxoAAC5d9MGwwdcQGDwRpqb0GlSrvAczZzXC+Ik0m3Kv7udhV8MM/61xybXdTJBVM9jGshOuX+8Ce3sfDB9+hZHPan7vvzzrDx7Uxs2b7VGnjicGD76eo111fFYVteHnZ4kDB/qgVKlYzJp1hLH257QtKSkJVRUcfkxI0MPYsX0AAHv2nIexsWz5H3Xc//Oye+VKDZw6VQf16//CrFnyp5dKSkrCmDFjWNMMgsiBj48PIYSQoUOHEmtrazJhwgQyZ84c6aOoERsbSwCQ2NhYlezs2kUIQIidHSFiMSEnT55kyENZ1GGXazb37KHXkscj5MoV5uzmxrp16/I9R9Zt+a3LY1ceG1m3LViwlxga0utz5IhyNrKuq7P9/ftTXzt1Yqb9il5TefbJajPrPm/e0DaUL5/xukGdSTKP5HSS48PbN5YA68iT58E5vu72LJjw+etJZGwaSU4n5NrNHwRYR168DiUJKSLy4PEv0tLlFHF0PEJ+R6WS+GQRKVd+F9myzUNq4/a9AFLecpd0/emLEGJispWYmW0n4ybcJe8+hEtfmzHrEWnQ8JiMDxUq7iHXb/lL1xcveUaaOZ2UrsclCYmOzgZy5bqfdJul1W5y4NDnXNvN1CPrde7V6y4BCOnTR/n3W9H3X5717t2/EICQadNyt8vWd9XDw0Nm/ePHjyQ1NXeb8vihzHdVHm7epN+1atVyfr2gf1fbtaP+bN2qmD2m+hXKItck2l9//YV3796hcuXK2SKItCgHIbS+KkA1g5qiK+AiT55k1G5evpxWGdFCIQS4eLENkpOBVq1oYM2pU2x7lTs/f1rgzBn6ffjvPyqh0EQk5brKKSGJ+/I5HDweYFcj5xmYjx9+o2q1ktIRPPfXIRAIeJg98yHEYoIKFUpg6DB79PvLDnp6Arx6GYyQ4AR07ppx7373LgwODqWl6/UblIW371icOPYFe/e8x4F9H3HzTj84N7fG9Wu+GDiohnTfiIgkBAbEwd7BPMPnLxGonUnD6O0VBaFQjFr29BzR0SkI+hUP+0znLOrExNARMQsLlh3JgTpZcsg4ODjIrOvq6hagN3nz4gV9btKEXT8AmiNYUravdWt2fVEUuTqD5M9M8pIlS9TqTFHi9WvgwweqYxk2jG1vNJfAQKBPHypy7t8fWLiQbY+4xblzgJeXLfT0gF27uP2ngxDgxo0WAIAhQwBHR83tDIb+mdlWJpnw508RsLI2RvHiejm+/uljuEzHS6DDR4kS+rj3cECO+/t4R8HERB9WVsbSbXdu/UC9+tS5yMhkeHlGwsnZChMn18Pf4xxRzXYvXr4MRjMnK3zziULNWhkdv7u3/WFhYYQyZTKmCb9+iUCrVhmplr58iYCZmSHKl6eBB18+h0NHhw+7GmYQCsVISxNJO7NFldhY2hnkWsLpFy+o1rphQ7r+/Dng4QHY2ADt2gF6ekCHDh1Y9TEzL1/SZy50Bl+9ApKTgTJlaL5gTUKutMZxcXG4efMmbty4keNDi+JIRgX79wdKlWLXF00lKYmW6wsPp8lQDx7kdmenoImLo6lkAGD+fKB6dVbdyZfHj4Hv3ytCT0+zq+8IhTRFFKCc4P7z53DUyGVUEAA+fPiN2o4ZI2zt2tkgOjoFr1/R4cj0dBH69LyAx49otZaKNiWQkJCGoKB4AMC1q9/xxO2XdJTu6ZNfWL/2ldReYEAc4uPT0KVLZfD5PFhXKAHvP8mtIyKSsH7dK5kRvrQ0Eb5/i0Et+0wjhZ8jZEYOg4ISYG5uCD09ATase429e94rfmGURH5VfMESE2MIgHsjg4sW0c8wQEfn+/YFHjwAZs2io13p6YCdnR27Tv5BLKYdMIAbncFHj+hzq1aa91skVwCJsbExGjZsiJx25fF4ePDggVqc4yqqJp2OjqY/EikpwLNnQLNmdLs6Ejmryy7bNgkBBg+mP7qlS9NE3ZlyQCttV140Iem0JKCmVKkobNx4F3p6YoVt5LaujqTTGzY0x9u3VmjT5htGj36jcvvl9ZWppNNBQUEoV84Se/c2hpubLQQCEf755wGqV48AAIxa+0xm/6wBJL9+xWPU8Ov4+CEchoY6qFqtJM6c7ykNyADoLI2F2TZYWhXHP/9zQp++tIe/b897bFj/GlZWJVCsmA6GjXCQvgYAixY8xuVL31CtWil07GSLRQseo3Llkjh0tDPS0sRYsvgJIiOTYWysBz6fhznzGqOlC00M7fY4EFMm3UOZMkawszNDXHwq3B79xPSZDTFtRgN8+hiORvWPICxyCkqU0AcA9O11EW/cQzB2fB0s/KcZAvxj0aPbeZiZGaJc+eLYf7ATDAzUE+qfPYCkK65f74jGjQMxbdozTiSdFouBkSP7Ij1dF+vXX0P58vE52i3I7+qsWbPA4/FgbQ18/EhLd1auDLx5Q3N9ikR0Fmb4cPon/N27d/D29s7VrjK+BwQEYP78+ZCXb9+AatXoDFt8fM7ZIwryd7V7d+DqVWDLFmDqVMXsqaOYhULIIyysU6eOGmWLmoeqQs/Nm6nA1MGBBo5I0AaQyG9zzRp6DXV0CHn8mDm78sL1AJKnT+n1AQgZN+6UUjbyWme6/d++0eAfgBAvL+VsKOsrUwEkJ06cJJMn0zYIBITMmOEm87q8ASTaB7MBJN273ycAIX/9pfz7zXQASWBgxv0rLS13u2x8V7t1I+TyZUJSUmhQRubfqKVLCdm7N9vhcvmhjgCSEyfodWzaNPd9CvJ31cqK+vPkieL2NCKARAtzEALs2UOXx4/XvKFkLnDjBp32BGiVihYt2PWHa6Sn8zFmDF0ePRqoUuUnuw7JwY4d9LthZ+eH6tU1s4j0mTO1cZlWFcPhw4BA8ItVf7RQCKE3WYEgnx0LEC8v+lylCq1NzCXmz6cjXBMm0Cns2bOBQYNoNaATJ4A7d9j2MIM3dAIBDRqw6wdA5Uq/ftHfdEdHtr1RHLk0g927d1e3H0UGNzfA0xMoVoyK5LUoho8PvTERAowdSzvUWmS5fLkmvLzojXzdOra9yZ/UVOAITV+GZs082HVGSc6cAS5frgWAVnfRfre5g6QzyJfr165gkHQGOSK9k6FZM5qh4fdvOg27bRtNor5mDZ3+tLGheQa5gLs7feZCZ/DdO/pctSpgbJz3vlxEoaTTWiiqzO1LNAVjx2aMEErQagbzthkXBzRuTG+kTk5U1KyXc8ClQnaVgauaweBgY8yb1xEikQ6mTn2KJk1+sqpDksf3z58tsGpVa5iaJmPGjI2oWtVWYRt5nbcg2n/wYAPcu1dVRu+Yn0ZQi3rIqhlsadETt2+3hbPzD0yc+JITmkGJnrdbt68YOPBDrnYL8rtarVo1uQd+jh49mi29TEFrBhMTgZIlaUCLj0/upfIK6nd18WJgxQr6R/DYMcXtaYRmUIssys7tf/2akRg5sy5KglYzmLtNkYhqWQBCLC0JCQlhxq6ycFEzKBYT0qpVRsJmidaHCzqkvNZnz6Y+Dx+unqTbBdH+oUNpGzJv1moEuaEZ7Nz5sfTzpez7zbRmsH17+nnZv1/WBlvf1VOnMnTFsbGEnDpFyIoVhKxcScjJk4TEx+ftpzx+MK0ZvHaNXsNKlWR1jfmdgymy2nV2zvk9lRe2NYMcGjgv/KxfT5979OB+mg+usXQpHVHV1wcuXuRebi4ucPQo8PAhoKcnxI4dmqNHvX2bPnfsyK4fqpCQQJ+LF1fd1tOnv9DS+QQMddejcf0jWLv6pULHBwXFo22rUzDUXY97d/1Vd0jDkcx9cWma+Ns3+qxg5TW1ISkBFxQE1KpFZRuPHtHRruXLgQoVgO2ZBraLM/FBVxGJdrFdO/bvdUlJGSluWrVi1xdl4dDXo3ATEgIcP06X58xh1xdN48IFekMCgL17M5KhaskgJCQjp2Dv3p9RqRKr7shNUBDw6RO9mbdrx7Y3ysNkZ9DZ2Upav/e4azfMna9YAjVLS2Ps2EUvpmOdMvnsXXRgu8MgIS0NCAigy1zpDJb7Uypn1Sr6x/vGDeDuXVqtqGVLmnh68+aM6hpcyDMo6QxyIf/18+d0utraGhpz782KQtHE7969w8KFC+Hn5wehJCslAD8/P8YdK2ysWUNvAk5OGXkFteTP588ZFVqmT+dOtRahUAhXSWZhUO1L5vWctuW3DtDC7YocI1nftMkZMTHWsLGJQp069+Hq6qm0TXn2yc+mvL5v2vQYQEtUqBCNO3duKd3+vM5bEO3/8aMdAHO8e+cGgSAIqvLlM801WLlKSaWO//AhHJZWxihd2khlXzSd9HQRAMDPzxeurq8Z+a5mff8VsREUZAyxuCv09dPw8OF5mU4qW99VZ2dnADQitkZG5UHUq0cDouzsgHnzaEUjZ2fAwsKCkftd1m2Z+xV58eYN1Y7r6nKj7NvFi/S5TRvu/OlQGEXmlO3t7cnu3bvJhw8fyOfPn6WPooaic/tCISENGlA9wZ07ue+n1QzK2oyKIqRyZXrdWrcmJD2dGbtMwCXN4NmzGTnL3r9nRzOnbPt376a+d++unK9c0Qza2dF2PHyYsU0VzeDYcXdIvXpH89znxm1/0qnzeeLS6jQpXXo7+XflS+lrs+c+Jl27XSDJ6YTcvBNArCvsJn8NuCZz/M07AaSlyynStNlJUt3uABk67AaJTRSyrvljWjPYsaMbAQgZM0b595tJzeDFixKtW0Q2G2x9V319fQkhhOzaRX+r7t0j5NUrQnr1IuTff+k+hw8TMnkyXfb29lbYDyY1g8OG0Ws4eHD++6r7dzU5mZCSJak/d+8qb49tzaBCI4MCgQDjxo1TT6+0ECMQUD3B3btA27Zse6MZiEQ0hYyvL60scvp0ztnlizoJCXr45x+6PH++5tXzDaEV1PBnlkpjiY2lz6amzNj7/DlCprxbVtb89xI3rvvixKnusLIyRrvWp1DWIqNW8McPv9GoMa2Fl54ugr19aWza2kb6+sMHARg66Bpu3e0Pe4fSiI9PQ9VKe9DSpQIGD63FTCM4gljMrdQykqId5crFA8i97GBB4uvrC1tbW4wdC0RF0RyDiYlU3z5vHt3n8WNaeQQAwsPDUa1aNVZ8/f2bTl8DwJQprLggw9WrtKqYlZXm6gUBBTWDTk5O8PDQzDxgbMPnU22Dxg4hFzD//APcugUYGgKXLtFySFqyc/x4Xfz+Tad2JJ1CTaKwdAajaOlexjqDXz5HoJZ96Rxfu3XTD5s2uOPkadoRBIDPn8Jl6gV//BiOOnUtcOTQJ7ie8ITrme4oWZKWtRMKxRg98ibGjneUHqOnx4dIJIZIJGamAZyC3nS5cu+V5BgsXz6OXUcyEfXnA8znAwsX0lQtQUF0iliSvuvgQaBbN7rsJWkEC+zbRyVXDRvSVGNsc/gwfR4+nFuJzRVFobGW58+fY//+/ahevToMDDLqZb5+/Zpxx7QUXc6cAVavpssHDgB16rDqDme5cwdwc7MFj0evk74+2x4pzs8/xVHKl2fXD1U4eJAmzubxxChVSvXhp4CAWMTGpuY6Mrji3+cY/XdtWFrSjmCAfyzi49NQoyYdZQoPT0JoSCKuX/2Ow4c+4dzFXtDXz7jVP34UiJDgBHTvURUikRivX4Vg2ZKnqFy5JHr1KXxpDiTRxNrOYO7Ur18fAK2Z/PYtrfVrb5/7NYuOji5A7zJITwd27aLLXBgVDAmhgxYAd/TsyqJQZ3Dz5s1qckOLFsrHj8DIkXR59mxADblCGYHtAJLERF3Mm9cJQDG0b+8Nf/938PfP+RguB5C8eJEEwAjBwXfh6hqhcQEkz55VxM6dTQHw0KLFG1y/7gtV+fI5AgBy7AyGhibi7ZtQrFnnIt327l0YqlYrCQMDejv/8P43dHT4cHK2QlhYItateYXOXTKSDru/DoFAwMPsmQ8hFhNUqFACQ4fZo99fdtDT0+ChjVyQBCV8//4Nrq5vWA0gOXnSFR8+9AWgC13db3B1lS0VycZ3tXjx4ujWrRvEYqBrV+D1ayrT6diRppiRjAz26gWcP09HD3k8HisBJJcu0RHLMmWA/v3z3FXt8Hg8xMTQGb+EBIClWXPmYEWpqOGoS+hZ1ANI9uw5RypVokLcdu2UDxjJSkEEkFy7di3f80ZHR8usZ070KmHDhg152pCsS5IcW1jEZUsIq6iAPKtfeZ1XXpvy2Nix44I0CXtCgnx2uRRAcu4cIQIBfR8mTCDkxAnZfZQNIFm2/AUxM9uebfu+A5/IrbsBBFhHQsKTpdtHjLxF+va/Il1fufoVcXJ2JcnphDx6EkSAdeTO/UDp6/+ufElKltzGeqBHQQWQtGv3VPoeKft+MxVA4u9PPy+6uoQcPZr9+89WAAkhhNy6RUizZoSkpNDvY58+NFBDLKbbLCwy9s16n5LHDyYCSCSJnRcvznO3fM/LBL9//5Yup6Wpbo/tABK55jTm/VGQ9uvXD/3798/20KJFVYRCYPv2Zvjxg+ZpOnVKswJGunTpkm0bL8sci2kWQdlff/2V7ZgZM2bke67z52m5Iz4fmDDhhcq57bL6VVD4+9O0KXZ2tFa3JuHpaYuBA+kIysiRNCEvU9OQnz6F5zgq+OB+IEqWNACPB3h7UY3X2zehOHvGCw6Z9YLvw1GrFp0ybtykPFxaVcC6Na+kr7drZ4Po6BS8fkUFm+npIvTpeQGPHwUy0wAtufL5M32uXh3Q0eGWPvPDBzoyqK9Pv48nTwK/fgFr19Lp0MxSDrG44H1//57mOdTRYacmfXAwzcG4fj0NGCldOuM7l6Uyn0Yi18+tJAdR165d1eqMlqLLf/8Bnz6Vg5ERnQooVYptj1SnfBYhXEBAACwtLaGTRy83awdSL0vx5fh4I5no4WrVIvO1kRUjo4zcc2lpaRAKhTLblCG/c+aEvz99k+vVy9iW17XhCrGxwLFj3ZCeTmUM+/YxE6n682ccBg+4Ci/PSOjrC9DC6YTM636+Mdi9rwPWrGuFUSNuoHJlUzRzsoR1BWOcPPEVjRrTjt+nT78xdlwd6XHzFjRBp/Zn0K71KVy+1gd16lpg6/a2GDbkKqysSqBYMR0MG+GAli4VVG8EB4mIoH86uKAZlHQG7e3Z9SMnSpbM8A+g08NnzwJNm9LOT5aywgXOtm30uU+fgtcYx8TQ/MAtW9JO4ZEjgLs71VYWFniESOS1ikEIQUJCAoyNjZn2ifNICkrv379f5R/RzORUyJurdpm0GRpaHPPmdUZ6ugATJz6Hs3MAI3YlqKP93759g5GREWrVqoVOnToBAA4dOoSQkBAsXLgQAPDs2TOULVtWWiS+VKlS2LdvH/r06YO0tDS8ePECDRo0QLFMw2Kenp7g8/monqle4cePH0EIQZUqVVCsWDEIhcCnT+kIC3uEoKBAODs7w9LSMtcSUWlpadDT04NYLMbv378RHR2NGn8yy65fvx6nT5+Gu7s7AJpY/sGDByhRogRatmyJMmXKgMfjgRAi0+FLSEhAUFAQ0tLSULNmTZiZ0ZGomJgYeHl54fPnz3B0dESlSpVgniUUPC4uDj4+Ppg50xhPnlTHwoUfMHy4ISpWrAh9fX2kp6fj169feP/+Pb58+SITrJaSkpLnek7bEhMTZa6xMjYyr4eGmmPDhhEwNEzGkiW7IBDQUZLFJ/xlbES7b4eWgqdkw8ky6ynv6fswevQ52Nn5K/x+57Se9TMlr40LF3rDw6MmOnZ8Aienx9n8YPqzKo/NqlWrokePHvD1pZ2cf/8FRCIRwsLCUL58eXh6Ak2a0D8+u3cD379/x4kTJ5Rqf36+JyUlSUvjZSY+Xg+TJ/dAeroOli69i2rVIrLtkxuq3P+bNWuGihUr4t9/aZDYypU0IKlXL8DFJaPq08OHNLq5eHHg/v37+P37t8LnSkpKwpgxYxAbG4sSJUoo5a9KKDKnPGrUKBIdHU1SU1NJ7dq1iaGhIdmxY4caZq+5jVYzyJxNsTijaHvt2sF5FhxXloLQDBJCyJgxY4izs7N0/evXrzKvL126lHz8+JEQQkhYWBgBQD59+iSzz5AhQ8jIkSMZ9zc31q1bRxo0aJBte0pKitrPHRkpIi9f5r2Pv7+/zDoXNIOvXtHPa4UKsseokmRa+1CfZhAgZM0a5d9veT5T8tpwcKCfnatXmUk6r4yvOdlITk6WWQ8PD5dZ9/Ag5PXr3G3K44cqmsHVq+l1q1ePKPwbwcT9v317Qp4/z1j/8oWQKlUIEYkIiYsjpHx5QmJiVDuHRmgGJbx9+xampqa4ffs26tati9DQUOzZs0ctnVQtRYOzZ2mKFH19YMSIN5yYylEXEyZMkP7rlfxzjIiIQFhYGKKjoxEfH4/k5GQkJycjLCwMYWFhSE9Plx4fFxeHx48f49OnTyBZBvQlxwuFQri7u+Pjx48A6Aj+9+/f8fDhQ+kIozzo/8lTEx0dLfUl8yOzXyKRCK9evcKzZ8+QlpYmYycxMRGRkXQq28fHBy9evEB8fDwAoFQpvkyesODgYDx69Ag/fvyQbqtYsaJc/hYkycn02dCQXT+0yEflyoGcqAcvFPLh+adKpIMDu75k5e7duzLrTyVFiP9Qpw57NeGFQprvEKDpZNj4jahSBcg8CVqzJi2GcOsW1W/36AGYmBS8X0yikEBH8kPi5uaGrl27okSJEuBzJa27Fo0jLg6QxEssWACULZvArkNqpmbNmtizZw/69OmDDn+qqw8YMAB6enpwcnJCjRo1cOPGDfB4PDx79gwAcOvWLdSsWRPr16/Hv//+CwsLC/z+/RtVqlTB2bNnYWtrK7VTunRpvHnzBgkJCWjSpAnOnTuHxo0bIyAgAOXLl0dAQAAsLCxw5cqVHKdicmLChAl49OiRdD0tLQ3R0dFwd3dHgwYN4ObmhmHDhiElJQW6urpIT0/H7t270bNnTwDA3r17cfDgQdSpUwf37t2DSETrxEr+UAK0w/j333/jypUrsLGxQUBAANq3b4/jx4/DkIM9Lm1nULNo2/YFeDz29ZDBwcYQCoESJYAKFYDnz9n2KIOEBNl776FD1fDlCzBiBNUKvn79Go0aNWLFt6tXgcBAwMwMyCHmrkDYsSP7tokTaeCYvz8d1NB0FOoMli1bFuPHj8etW7ewaNEipKenS2/uWrQoypIlVIxbpQoteSQp9q0JSPIM2traonEuafDj4+Nz1at4eHjAwsIC9+7dg30mNfm3b9+gq6uLgwcPSre9evUKc+bMwZkzZ9CvXz8kJCSgc+fOGDVqlExH7cyZM7hz5w5cXFyk0X579+6Fo6MjeDweUlJSMGjQICxevBinJPWcsuDt7Y2IiAg4OTkBgMx+IpEIPXr0QEREBGrVqoW0tDT069cP3bt3x549e8Dj8fDPP/9g0KBB+Pnzp1RH+PnzZwwZMgRHjx6FUChE9+7dsWTJEly5cgUAsGjRInz69Anfv39H2bJlER4ejhYtWmDTpk1S/aW7uzu+f//OiTyDt29XhUGdw/ACYFg345iC0Ahm1cPJQ2HXLma9JssH2+DHj2bYubMZKlSIhqXlDsZzgiqTZ/D9ezp0VK7cb5w6dV+lPKOKnFfRnKCpqQLcuNEbV64AenrXYWUVh6CgIPj6+uZqUx4/lM0zuHEjfR47lp0/YCIRTXatpycbKNa9OzBtGs0vWKswVHBUZE45PDycbNq0ibx48YIQQsiPHz/IoUOHmJ665jxazaDqNj08COHzqQ7k9m1mbOYGVzSDZmZm5Ny5c4QQxTSDM2fOJA0bNpTZdv/+fQKABAcHE0IIad++PenVq1eOvgYHBxM3Nzdy/fp1snDhQmJubi7Tjpw0gzE5CGCmTJlCbGxsSGhoKCGEkDt37hAAMvqi5ORkYmxsTA4fPkwIIWTjxo2kVKlSRCQSSfc5ePAgsbGxIYQQkp6eTszMzIirq6vMuTZv3kzq1auXzQcuaAZ79MiuSysojWBO583vwbaGr6CvycmTJ8nff9N7y6xZzOTEZEIz2KmTJwEImTIldz/Y0gxm3nb1Kr12FStm6POY0kzmd0xWuy9eZORl/HOrUxhV7v/XrhFSujQh+vqEmJkRMny4rHbSzY2Qp0+VNi8D25pBhUYGzc3NMV0SPgPAxsYGI0aMYK5nqqVIIBbTQuhiMc0i37492x6ph5IlSzJix8fHRya6GIB0/fv37yj3p7CvZMpYglgsxogRI3Dx4kXUqVMHJUuWREREBGJjY/M9p7u7O9q2bStd37p1K44ePYrnz5/DwsJC6pe5ublMtLCBgQEqVqwIHx8f6TYrKysZOUmJEiWkusGQkBBERkZi+PDhGDlypFSKIhKJskUhs4WHhweq/SkvcOAAcPkyYFCHXZ+05M3jx/S5ZUvA25tdXyQEBND7Qd26+ezIMjdu0OfOndlPx7N+PX0eMqTg65dHRgJTpwJv3tBzHz5MRwIvXAAWL6YVspo3L1if1IlCgr93796hU6dOqFatGmxtbaUPLVoUYf9+4OVLKsjdtIltb9RH2bJlGbFTokSJbB04yXrm1E5Zc/TdunULFy5cgI+PD548eYIrV65g8mT5phmbNGkiXb5y5Qrmzp2L8+fPo2bNmjJ+xcXFZUtAGxsbK+NXXjkIJelwrly5gsTERCQlJSEpKQmpqakICgrK10+HHJT45bL8amRNgaEoAwcORMOGDTFq1ChUqRKCP5mEtHCU6GgD+PjQjgxXfqwJyUiyzuXOICHA9et0OYc8+gXK9++04wUAs2YV/Pnd3WmOxQoVaFLpv/8GnJyA27dpih2Jb4UFhUYGhw8fjsmTJ6Np06YQCApfDUst6ickBJg7ly7/+2/BJw9lCnk0g3kh6SxJRsgybw8PD5fZ1q5dO0yZMgVRUVEo9Scb97lz52BhYYHatWvneo5fv37BzMxM2iklhOBCPncwb29vpKamSu2+ffsWAwcOxM6dO9GmTRuZfdu0aYO0tDTcuHFDmpD+9evX+PnzJ9rLOdxbsmRJtGzZEkeOHJEG1UggmSKfP3z4gK9fvyIoKAheXl7o0aMH0tLSULx48Rwf169fl1k/fvw4ihcvDkNDQ5QtWxavXr2CgYEB9PX1Ua9ePQQGBkIkEkEoFEIoFKJChQrw8PBAmTJWiImJASEER48ehaurKxYsWICN/ScjICAAUVFRGW3Jol0rCK3e8sE22TSpo9Y+k1lnwy822bKlDgCgUqVI3Lx5h7E62qpoBiMijJCU1AMCgQifPp2Dp6eYk5pBP7+SCAzsCB2ddISHX4Srq4iR9svre2bN4M6dtHPaqRM7mjxbW+DuXeDrVxo9HBcH/PhBE4avXw+cOUMTYBcWFOoMCgQCjBs3Tl2+aCkCTJlCKzg0aADIOUjFSXR0dDBw4MBs2728vDB48GCZbfXq1cOsLH9tDQ0N0bhxY0yePBkuLi6oXr06xo4dCxcXFwwfPhzjxo2DiYkJpk+fjn79+mH9+vVwcXHBmDFj4O/vj61bt2LHjh15RvO3bt0aU6dOxciRI+Hs7Iw7d+7g69evebYr63T0kCFDULZsWQQFBWH58uXS7aNHj0b58uUxYcIEDB48GHPmzIG+vj7Wr1+Pnj17SiOF5WH16tVo164dunTpgs6dO0MgEMDd3R3FixfHli1bAACOjo5wdHSEq6srKlWqhMmTJyMkJAQJCQkyj8jISCQmJmbbnl/5LIFAIO04FitWTLq8ePFiJCUlAaBT1yKRCMuWLcOOHTuwfft2mc9A1k5YQWBpaZntc8iGH1zCx6cSjIyAU6fM0LDhQKxfv17mGrm6uma7Zlm35bee1WZ+x0imXmvUEGDo0L9y9SM/X5XxXZH2z55N1+vXD8GIEf1zPUbR9svr+/o/88IpKTQBNsDe70S1ajSwsUEDoHZt4OdPum5sDAgEtKNamFCoM+jk5AQPDw+FbvRatEi4dInW1RUI6FSxBlQeU4iuXbtmm6IEMqYtZ8+eDTs7O+n2W7du4dy5cwgKCpKWnevXrx/Mzc3h7u6OxMRE8Pl8FCtWDM+fP8ehQ4fw+PFjlCpVCo8fP5ZG/ALA4MGDs01LV6lSBW5ubti7dy/u3LmDVq1aYfny5TIRwk2bNs21cgkAjBo1CvHx8TJ5BYGMUbvt27ejffv2OHv2LIRCITZt2oR+/fpJp4YbN24szVkowc7ODrMlvzqgU9Kenp44duwY7t+/Dz09Pdjb2+dYuxmgORCnTJkCAHjw4AFat24t8/qnT59kpo99fHxgbW0t7ST+/v0bYrEY8fHxMh3HnDqRxYoVQ7Ikl8wfJJVcVq1ahX79+uV67bSwA58vxtmzfNby4uUEl8vQSRCLgdOn6XKzZgEA2EvHc+ECEBUFWFsDWSYMCpSZM2k6m9evadYLBwd6nbZto9PGhQmFfo6fP3+O/fv3o3r16jIlZF6/fs24Y1oKF7GxwKRJdHnuXMDRkV1/1EGPHj3Qo0ePXF+fP3++zLqpqSnGjBkjs43H46F169bZOjglSpTAtGnTMG3atBxtDxs2LMftjRo1ypYfbMmSJdJlJycnmU5lVubkk62Xz+ejZ8+e0ryCWWnWrBmaNWsms61WrVqolWXex8rKCgsWLMjzXDkRFhaWbdvnz59lOoNXrlzB7NmzYWhoCHNzc7x48UJmNOLs2bMYMmSIdD0pCZgyJRYpKSYwMkqTTl0JBAKIRCJUqlQJs2fPxvDhwxX2V4v6GTPGHZ07Ky7dUCdfvtBnLqcgefoU+PWL5kF0dAxm1Ze9e+nzmDF08KAgIYSmOXv7FujYkepOe/XKeD0oiAYmFbb/gQp1Bjdv3qwmN7QUdubOpTkFq1alkViFDbFYrHACdqFQmC3oQ1EiIyOl+fwkPHv2LM8OnjwEBgaiQgXVRgayti8yMhLGxmb4MwgqF6GhoYwF4uRG1txm27YBBw+aoFQpYPPmjFFBJycnzJ49G126dMHRo0dVDkzRoh5cXPwAaDuDinLiBH3u3RvQ08tbVqFOAgNpNDifD4waVfDnX7cOOHQIaNGC5hLcv19WG2htDfzzT8H7pW54hCg+8x0WFgYej4cyZcqowyfOExcXBxMTE8YLSuekqeCqXUVsurnRf1IALejt4qK6TUVQh93Vq1fLlEoLDw+Hvb29TIdQ0lEjhCAtLQ0JCQkoUaIEIiMjQQhBWFgY7OzsoKtrgDNnauPixVJISkrA1q2vULEiHYkKDAyErq4udHV1Ua5cOQiFQhQvXhyRkZGIjIxEUFAQbG1tUbJkSRBCEBkZiYCAAGlQgbm5OYRCIcqWLYvExESkp6cjKioKenp6SE5ORqlSpRATEwOBQICUlBSp70FBQahatSpM/tRYytrp/P79u3R6WZJqxtTUFHFxcQgNDYVYLEZYWBjs7e2ho6ODmJgYfP/+HS9fdkRwsD2aNQtF9epXpTb09fVRtmxZqU8JCQmIiIiAr6+vTIBE1iTeOSX1zrrN19cXlStXltvGgQMNcP9+VfTu/Qn/+58YHh4eqGBbFS88Y7H3zBP8jorHoj5lZWwC2bV68gRq6PCB9+/ewN7BARDo57v/9s3rVW5/QWkK1RGoklPS7ant62Lt2tEwNEzDgQPnFX7/c9qW33pWm/kdM3ZsbyQk6GP16huoUCE2Vz8U/awq42tONn78CMOKFZOQnKyLRYvuw9TUg9H2y+s7rZI0H6NGAc2aAc8Y+Kgqcv+Pjwfs7IBPn4BSpej5Bw4EfH1pRHFYGB0ZrFdPdb+yoq5+hdwokpTw69evxN7enpiamhJTU1Pi4OBAPD09mc18qAFok07LbzM1lZAaNWji0LFjmbGpKAWRdFrZRLZiMSGjRtHrU6wYIdOmHVHYRn7n5UIiW8m6szNt6/79zCTdVUf7+/enPm7enLHNpNE0mcTGOSXdVTTZc0xsPBkyZAgBQM6dOydXgmUm2q9M4mquJLvO6TwbNlwlACElSij3/ue0jcmk03Fx9PMEEJL5J4NLSacnTHhOAEJsbQkRidSTdFvez+qQIfRaLVqUbXelUOT+//AhIV27ym7r0YOQ06fp8uLFhCxbRpd//vzJiH8S2E46rdC81sSJE7FgwQJER0cjOjoaCxcuxIQJE9TSSdVSOFi/HvD0BEqXBlavZtsb7vHff8DBg3RK5PRpwMrqN9suqY3UVAEk8uLcRoe5QHQ0ff6TxQcAkJqWvUyWsvB5gNfnD6hfrw5OnjwJADKjsloUhdthnQEB9Ll48VSwMeAjD48f03zBI0fKllwraAihs0cAkEU2XSAYGdFAkcxMmUJrEKem0sTTY8fS7f7+/gXtnlpR6G2Pjo7GoEGDpOsDBgxATEwM0z5pKST4+QGSbCQbNwIMFeQoNLi7W2HRIrq8dSv7SV7Vzffv5khLo4XvuZyrXtIZVMfnVcAjOLB3Fxo1agh/f39pypu8EnNryZuYGFqwlqupPiR9BnPzRFb9yA0/P+DrVwvweADbMVHh4SURFATo69OEzwVNo0YZtZAltG4N/P4N/O9/NJhEImH+9etXwTuoRhTSDNavXx/Hjh2TViHw9vbGoEGD8PbtW7mOb9++PUJDQ8Hn82FsbIxt27ahTp06cHd3x/Tp0xEfHw8+n4+NGzdKoymTkpIwevRouLu7g8/nY/Xq1ejduzcAKtqfNm0abty4AR6Ph5kzZ2LixInS861YsQKHDh0CAAwaNEgmT9qBAwewevVqiMVitGnTBjt37pRbzK/VDOZvkxBazujWLfpluncv/9JGmtT+rJpBRbU8YWHFsWBBe6Sk6KNjR28MG/YOgOKaIXVo5uTZRxkd1oEDNrh/vymcnPwxadILRjRT6mj/9Old8fu3MZYuvYtq1SIAyKezy08jJ+ABf48egSOSBGqZcHV1Rc++A7Jtz6qRy5pkmon257SNCc2cMhrK/MhJM6j/YxViY0ugfv1fmDXrCWfaL1m/etUOrq514ejohXnzPPL0g43v6qVLNXHmjCPs7UOxcOFDxtuviO/Hjlng5s3WaNuWJnxmAibu/1u2ANOnA8+fZ3RSmf5d0SjN4M2bN4m5uTlp164dad++PSlTpgy5ffu23MdHR0dLly9evEjq1q1LxGIxsbS0JA8ePCCEEOLp6UmsrKxIUlISIYSQZcuWkeHDhxNCCPHz8yMWFhYkKiqKEELIkSNHSOvWrYlQKCSRkZGkYsWKUg3j48ePSc2aNUlCQgJJSUkh9evXJ7du3ZLaKVeuHAkNDSVisZh069aN7N69W+52aDWD+ds8fZrqPvT0CPH2ZsamsnBNM5iUREidOvT6ODkRkpYmv11N1gxWq/ZbqhfM7RgutN/EhL43Xl4Z25jQyKUJxaRLly4EABEIBAR0fpMAIKdOnZJLI6eO9stzTZTRjKlDQ5jTdQcIsbMj5M/PAmfaL1kfOpR+nvr1+5CvHwX9XRWLCalZk/p38KDyNuU5Rh7fK1X6SQBCtm/PtqvSKHr//9P1kCE+npBNm+j1UtZufmiUZrBjx474+vUrpk6dismTJ+PLly9yl50CaLShhNjYWPD5fERGRiIqKgqtWrUCQBPSmpqa4ubNmwCA06dPY9KfBHWVKlVCixYtcPnyZelr48ePh0AgQKlSpdC/f39pQt3Tp09jxIgRKFasGPT19TFq1Chp2Ztz586hV69esLCwAI/Hw/jx47OVydGiPLGx9F8UACxYQDO5a6EQAkyYALx/D5QokYJTp2iUWmEnMRHw9aUivD9fdU4iFNLPLwBkydijMiLCw8XLV3H37j00aNAAAKTR54qmJdKSQYkSKbhxg7sylE+f6LO1dQyrfuTEp0+03JqOjkgmlx4b/P4N+PvTUcLu3dnxQSikI39jxmTIRQCgeHH6m1aY1RwK3YHc3d1hYGCArl27olu3btDT08ObN28UOuGwYcNgbW2Nf/75B0eOHIG5uTksLCxw/vx5AMCrV6/g4+MjFWcGBgbKTMfZ2NggMDBQba/lRGpqKuLi4mQeWnJnyRJag7hqVSBLnuUiz549tMwSnw9MmfIcVlZse1QwPHsGiEQCWFsDlSqx7U3uZCo1jEz/XRlDRHgwMSmBPn364Pr169JqTsWLGzN/siLChAkvOPuZEgppAB3Azc6gpFS5o2OIWj7vinD1KkAID/Xq0Vx+bLBjB/DhA006LRKx4wNbKKQZrFevHtzd3SH4kxJcKBSicePGcmsGM3PkyBGcPn0aN27cwMePHzFv3jyEhYXBwcEBv379Qs+ePTFlyhQYGxvDz88PpUuXBkArIhgbG+N///sfHBwccPDgQTT8U3dox44dePv2LQ4ePIhu3bph2LBh0nJR169fx4YNG/DgwQNMmTIFFSpUkFZX+PLlC7p16wY/P78cfV26dCmWLVuWbfv+/fthZGSkcNtzIydNBVft5mYzMNAECxd2hFjMx/z5D1G7dqjKNlVFHXa/ffsm896npKTIVOXJaZuvb0ns2zccIpEOOnd+jKZNn2Q7JjExUSaZcVYb+a3ntE1Rm/Lsk5/NrNtu3nTGgwdNUL/+FwwYcDPXY9huf0iIOTZuHAFDwyT8++/OXI9ZfMIf+ZGTRk6HD3Tu2B4hISF46/EBPB4PPl6eqFrdDuIc/ptn1cgt6lOW8fbntE3R9z+nfbJeI3k0gzlpAjOzqE9ZCIUlsXPnQISHl0LFikEYPfoQDA2Z+6zKsy5P+1NSUpCQYIE1a/6Gjk46Fi9eAyOjvN+7gv6ubtw4DCEhZdCr11U0a+bNePvl9Z0QYNMm6kv//h/Qs2feNdQVQd77f3S0AWbP7oLkZD2MHv0abdr4MmJXXpKSkjBmzBjN0Aw6Ojpm21a7dm2l56gNDAxIREREtu12dnbk3r17hBBCatasSV6/fi19rV+/fuTQoUOEEEI6d+5Mzpw5I31tzpw5ZMmSJYQQQiZOnEjWrl0rfW3Hjh1S7eHatWvJxIkTpa9dv36dtGzZMlc/U1JSSGxsrPTx8+dPrWYwB5tiMSEtW1L9Se/ezNhkAi5oBqOiCCldOp4AhPTsSa8VVzVz8uyjaPubNs1fl6SMr0y3/8wZ6mfFilF5HqOshvDxYzcCgJw9e46kKKGRK+yawfyu6YEDZ0iDBvQ9srYm5OdP9eXEVLX9J0+eJHfvEqmmUZ73riC/q97e1DcdHUL27j2nkk15jsnL9+vXJRrzVBIZmW03lZD3/i/Jb9iwIc21yJRdedEozaCenh58fTN6y9+/f4eunIKnuLg4BAdn1Du8ePEizMzMUKpUKYSGZowe7du3D8WKFZNGE/fr1w87duwAAPz48QOPHz9G9z+Cgn79+mHPnj0QiUSIiorC6dOnpcXt+/XrhyNHjiAxMRGpqak4ePAgBgyg0Xp9+vTBxYsXERYWBkIIdu/eLX0tJ/T19VGiRAmZh5bsnD5NywgZGGQPzy/KiMXAiBFAeHhx2NrSUkeFWXuSlYQEwN2dLksq0XCVnX8GA2vVyl7zWFV0+MDSpUvg6OiI7j17cTw7HjfZtKk53ryhes47d8B5mcWPH/SZi9PYZ8/S5zZtgOLF01jzgxBg5Uq63KTJB5n8ngWFmxtw/Di9L+/YwW6uRbZQqDDqkiVL4OzsjC5duoAQglu3buHAgQNyHRsbG4s+ffogOTkZfD4fpUuXxrVr18Dj8bBnzx6cOHEChBDUqFEDFy9elObdmjNnDkaNGoUqVaqAz+djx44dKPXn0zJ06FC4u7uj2p8IhTlz5qBGjRoAABcXF/Tv319asH7AgAHo2LEjAMDW1hbLli2Dk5MTxGIxWrdujdGjRytyKbRkISEBmD2bLi9cCGSSZBZ5Vq8GrlyhIu2zZwWsa3MKGjc3qp0qXToBlSoVZ9udXHn9Gnj0CNDRATp18gZgx6h9t0cP8fDhQ1y8eCnHKWEt+fP5c1kUKwbcuEHLhnEdTegM/lFSscaTJzRli74+0LLlGwANC/T8QiEw+Y864e+/gYYFe3rOoHBt4m/fvuHunwRAHTp0yJZrqCigzTOY3eb+/fSLVKkSjU7LIg1RyiZTsJlnMCamLlatagVC+Ojb9zZ6947K8xgu5NmTZx9FcrcdO1YXN2/aoVGjj5g+/Qtn2797d2O4udmiefMf6N79PKN59pZP6Y4rh1cgMTERY+ZsxMw1ZyEP+eUV5HKewfzyDsrD8sE2KFfOCkuXtsX37+bQ0RFi9uwnMlpkdeTEZKr9x44NxseP5TBkyDs4Oj7I970rqO8qUANz5nQBny/Gzp0XER//Q+3vf26+u7oOwLt3VmjT5hvatj2P+QxHHeZ3/5fkECxVCvDxkT+LQJHOM5iamipd9vX1JVevXiVCoZDJaWuNQJtnMLvNbt2o3mL5cuZsMgVbmsGdOy8QCwt6XUaOVI9mSBM0g3Z29BpMm/Yk32PYan9yMq1tCxDy5AmzmjnrVvPI1WvXCQBy4eIlUrn9Irnr+xZE++Wxy4RmTJn6xidPniTr1hFp7eG1a68pfF622r9793kiEFDfvb25pRmcM4f61b27fDbUpRnctOky4fEyrlFOdlUlr/t/aGjG937PHubsKoNGaQadnJwQHx+PyMhING/eHP/99580B6CWoktyMq0wAgDdurHrC1cQiYDt25shLAywt6e1LYsi/v6AlxcgEAD29vJHlhc0N24AcXE0pUWzZszanjG8Lf5btRKNGjVCUKIxgn7HMHuCQkxQkDH++Ycub9wIWFlpTlqvV6+sIRIBDRpwK9eqUMjD0aN0eeRIdn25e7caCAE6dGDnGq1fT7/3DRoARV0pplBnUCgUwtjYGNevX8fw4cPx7NkzPH/+XF2+adEQ7t+nHUJra6B2bba94Qb//kvrfRYrRrU5DGYg0ihu3aLPTZsCxYqls+tMHpw8SZ8HDGBWPF7WvAQql0rB8+fPsXDRP9hw+B5zxosAe/c2Rmoq7SyMGsW2N4rx7JkNAGDQIHb9yMqHD+UQFgaULs1uPfTERODRI1qkfMqUgj9/dDSwezddXraM/mEtyih020tNTQUAPHr0SBrtq82cr+XiRfrcrVvRipLNjUePAEkZ7D17NEPori7+FBLCn9gtThIfr4dr1+gy0z/cM4e3xcoVy9G0aVP4xxohNEJzRra4wLdvpVGiBLBvn2bdW378AHx8SoPHA/4kuOAMjx5Rrd+QIexWPzp+HEhK0kPlykCnTgV//v37aeCjgwM75+caCgWQTJ48GQ8ePIBQKMSXL1+QkJCAdu3aKVyFRNPRBpBk2IyPB8qVk/zLUy11iCa1P7cAkqQkXcyb1wmRkcXQsOEnzJjxOds+ua0DhSuAxN8/FMuWTUFqqg5WrboFXd3PnGz/kSPWuH3bGTY2UVi58jZ4PGYE9LGxsShfvjx69OiBW7duwdfXFyUz1UzjSvuVOQ8TAQT5tf/AgQa4f78qOnXywtChHkr7zkb7z52zx4ULDrC3D8XChQ+Var+8xyjia3i4EaZP7wZC+Fi37josLePU0v781gkB5s3rhF+/TDFkyDt07kwTXgcEBBRYAEm9eoCHBx0dHDeOObvKxYMagQAAtGxJREFUolEBJGKxmHh4eEgFjuHh4eTdu3dqkDJyG20ASYbN/fup+LZqVdki3qrYZJqCDCCRJC61tSXk4MEzOe6Tl1+FKYBk3rwHBCCkfPmck2xzof3JyYSYmCQRgJATJ+Q/jzwCei8vL1KvXj3SvHlzIhaLOdl+Zc/DRABBfu2vXZt+l86fV833gm6/SESIjQ1R+DMlj6+qtn/uXOpXmzaK2WD6/b9/n/qhr59GYmLytqsqOV0zHx96foGAkPBw5uyqAtsBJHLlGUxNTYW+vj6Sk5OlOf2SkpJgZGSE6tWrq7GrqoXr7N9Pn8eM0axpHHVw5gyd+uDz6bO/v5Btl1jl/fvyAIDOnbn72Th5EoiNNYSVFfP51r5+/Yp3797h4cOH0rypWuQjNhb49IkuN23Kri+K8vQpDZwyNExHz54szsNmIT4e2LuXLrOh0cuMJLl78+b+MDGpWuDnP32aPrdtC5ibF/jpOYlcgr+mf76NxYsXh7GxcbZnLUWTDx+Aly9pkt5hw9j2hl2iow0xfjxdXrhQ837AmIYQwMODdgbZFKnnx5499HnKFGb1U2KxGMuWLUOrVq3g4uLCnOEiwtOn9DNUpkw8ypVj2xvFOHKEPjdq9JNTgWP79gExMUDZsnGsZn0IDQUuX6bLbdt+K/DzEwKcOkWXuabnZBOFk05r0WoGJTaPHRuImzfpF0ry5VLVpqa0P7NmkBBg+fLG8PKyRaVKkVi27C50dIjKmil5juGqZvDXrxKYO7cLdHRE2Lv3AgwMhJxrv79/SSxc2BECgQjbt1+BiUmK0u3PvE+xYsWQlpaGfv364cGDB4iKikJaWhrn2p/XMWxrBrdvb4rnz23QtOl7TJniqZLvBdl+I6PKmDatO4RCASZMcEXz5vKfQx5flW1/uXJ2mD69GxIS9LMlv2ey/fLYuHSpJs6ccUS1auH4++8jMvsUhGbwxQuaPsrAAAgJgdIVoYqkZrBNmzZkxYoV5Pnz50UyyXRWtJpBQhYsuC8tcv7tGzM2Nan9mbUtEt2kvj4hX77kfl6uasbUocP67z96TTp1Uuy8Bdn+ceOoj02a+OdrQzHNmIjY29uTtm3bKuy7VjO4jkRG0u8SQMiKFTdV9r0g2z97NvW7WTNCTpxQ//dfXl8XLaJ+Va9OyLFjrgrbYOr9FwoJqVCB+nLsmHx2VSXrOYYNo+cfMYJZu6rCtmZQrmniESNG4MePHxg6dChMTU3RsWNHrFmzBq9fv4ZYLFZvb1UL5xCLgZMn6wIAJk4EqlRh2SEW+fkTmDmTLq9YAdSsya4/XOHqVfrcvTu7fuRGfDxw4gRdbtv2O6O2z507h8+fP+MfSbZkLQpx4gSQmgo4OgKVKkWz7Y7cJCToSfPWLVzIHZ1sbGwxbNxIl//7DxAI2JsMvHEDCAykJd/69i3480dFZegFJbIeLRS5OoNDhgzB/v378f37d3h6emLw4MHw9vZG//79UapUKXX7qIVjHD8OBASUhIkJsHgx296wh0hEA2fi4oAqVSIwYwbbHnGD37/pVAwAdO3Kri+5ceIEzTFWvTpQo8ZvxuyKRCIsXboUHTt21N4blUAspto2QPOC0u7cqYqEBJp4v3Nntr3J4O7dZkhOplOjPXuy68uuXfR55Ejl6terypEj9I9GnTpAo0YFf34uo5BmUCgU4tWrV3j48CEePnwIf39/NGrUCK6urur0kXMUZc1gcjL9Af35E1izBpg7lxGzADSj/RJWr16Nx4974dat6tDVFWH69COoW9dQZp+iqhl8+NAW+/Y1hqVlKNate8jJ9u/dOxzfvpXG4MHvUKfOA5XbDwCJiYkwMDDA0KFD8fTpU7x9+xalS5fmZPu5qhk8etQct261g76+ENu2XUJsrL/a9a1MtD8tTYBJk7oiMdEIkyc/Q7NmgQXy/c9vn5CQ4pgzpwvEYj7+97+7sLOLYO39f/cuBevXjwSPR7BhwzWULZuQbR91agYJoQmmv3yhnVJVRwaLpGZw1apVpF27dqRatWpk8ODBZO/evcTb21u9E9gcpihrBletonoLc/MEkpzMmFlCiGa0X0K3bjSHHkDIqVPM6JAIKRyawa5d6XXp2/eDwuctiPZv3XqJAITweIQEBTHTfkII8fHxIdWqVSNdu3ZV2veirBn08CBEIEgnACG7d8t3jDK+qqP9e/bQz3zFioSkpytnUx5fFfV98GDqV+fOytvIaV2Z979FC18CENK7t2J2VUVyDnd3ei0MDIhMbkNV7TIF25pBufIM/vvvv6hbty7mzZuHli1bZvtHoKVoEB5ONScA0L//BxgYNGPXIZY4dw64ds0FALBuHY2mLmKD47kSHw/cvUuXGzb8BYB7xapfvaoAAGjeHChfnjm7z58/h4+PD05KCh1rkZukJGDgQEAk0kGPHsDYsWx7JD9iMaSavOnTaaotLuDllVFzW1Ieky1+/syo1TxvHjs+HD5Mn3v1AkxM2PGBy8j1sY2NjcWLFy/w6NEjjBkzBr9+/ULjxo3h4uKCli1bomrVgk8aqaXgWbaM/tjXqwc0axYAoOh1Bl+9AoYOBQjhYfJkYNYstj3iFrduUU1OlSqAlVUs2+7kyIsXtDPIZI4xoVCI5cuXo0ePHqhfvz5zhosIM2fSzkuJEgnYv7+4RmkFb9wAvL0BQ8M0jBqlx7Y7UlasoHMXtWp9Q7167P5Gb9oEiER8uLiwo9VLTc34wz5iRMGfXxOQK4BET08PLVu2xJIlS/Dw4UN8+fIFHTp0wLp162BnZ6duH7VwAB+fjAS969fTKhtFjbg4oH9/ICUFqFnzOzZv1iyBe0Fw8SJ97tWLm9cmMBDw8zMDnw/06cOc3WPHjsHX1xdLly5lzmgRYd8+em/h8YABA25oXEWIDRvoc5s2vmBD6pUT3t4ZnZ+2bV+w6ktEREblE7ZGBa9do5HElpZAmzbs+MB15A4gCQ4OxqNHj/Dw4UM8evQIISEhcHJyQqtWrRgXfHIdidBz//79MGIwxXxOwl6u2N20yRnu7taoWzcIc+a4qcVXLrcfAPbubYRHjyqjdOkE/P33dpQsmTGwnpKSAoMs4XFZt+W3DtAghGLFiqlkI+s2RW3Ks09ONgWCYli2bBJSU/UwZcpxlCnjz7n2P39eBxcvtkWlSr8wceIpRtrfsWNHdO/eHfXq1cPkyZPx5s0bpX1n4/1X5jxZbSpjIyUlBYGB1XDgQF+IxXy0a/cMTk73CuSzylT7Q0LMsXHjCPD5YsycuR0WFmlK25THV3l9P3++D96/r4GaNb+jf/8TrL7/N28648GDJihfPgTTp5+Q+ZOY9ZikpCTGZxqDgoJw8uRAeHhYonv3rxgw4ANjdpn8vUpKSsKYMWO4HUBStWpVYmRkRFq3bk2WL19Onj59StIlKtkiSFELIHFzo8JbPj8jqbI6fOVq+wkh5No1Ig06cHNTjyidEM0OILl8mV4ja2tCxGJutr9TJ+rj6tWK2cjL5r59+wiPxyPu7u4q+16UAkjWrr1GTEzo+zF4MP3MsJEgXRnfJTbHjqX+9+mjegCNPL7K4/vatdcIj0f98vBg9/2PjCTE2Jj6MmPG43yPUUcAya5dF4hAQH3w9GTObpEMINm3bx+aNm0KPT3u6CG0FAyEAHPm0OUxY4pmUuXISNp2gGqbmjen2kEtspw7R5/79uXmFDEhwPPndLldO2ZspqWlYfny5ejXrx/4RVE7oSS/fwPr1rVEbCzg7AwcOMDNz0xeREfTnKsArW0dHMyuPxLOn3cAIVQGUacOcO8ee75s2UJ15rVrA/XrB7Hiw9OnFSESAU2aAFpVW+7Idfdq2bKltiNYRLl8mXZ8ihWjASRFkalTaXH1GjWoKFtLdtLT+bhyhS6zUVlAHoKDgdhYgM8Xo1YtZmwePHgQP3/+xJIlS/D9O7OVTAorIhEwYAAQHl4ctrZUZ6qvz7ZXinPgAI2CdnAAWrRg2xvKu3c0Wp7HA9iWryYk6GHLFrq8eDE7OnNCADc3WwDA8OEFf35NQqGk01ooRSnptLMz8OwZsGABsGoVMzZzg4vtv3yZZu3n84GXL4GGDen21atXo2LFitL9mEjkCmhu0uk7dwxw+HAvlCqVhK1bL4PP5177v30zw5Il7VGyZCx27LihcvsHDBiAVq1aoUWLFpgxYwYePXqkctLlopB0+sqVGjh1qg709NKwcuUdWFrGK91+ZXxlov3e3j+wbdt0REUZ4e+/X6FVKz9Gkm6r0n5CgOXL28DLqwyaNfPH5Mkv1NZ+ed7/PXsq4/HjRrC2jsF//91ESEj+52U66fS7d0D9+vTPRkgIULIkY6aLZtJpLbIUFc3gy5dUZ6GrS0hwMDM284Jr7Y+IIMTCgl6DuXNlX9NqBmVtNmv2448uSDXf1dn+Cxfoe1mlSrjCNrKuHz16lGzbto3w+Xzi5eWllK9cef+VOY+ymsE3bwjR0aHvw9ixL7PZ0BTN4F9/XScAIWXLEpKSopwNpjWDly7R66qnl04CA+W3qYyv+b3/P38SoqtLE4hfuyb/eZnWDE6dSq/JX38xapYQUkQ1g1qKJpJEqoMGAeXKsesLG0yZAoSFUZ1kUZ0il4ekJODtW/rvnsncfUwTEkKfTU2TVbZVv359tGvXDkOGDEH16tVVtlcUSEkRYNAgQCikUoKWLf0ANGbbLYUhBHj8mE4RTJ/OjSlukQhYuJAud+zoDWtrhnQQSrJ0KZCeroPmzdmr05yWRmuQA9opYnlQqDPo7++PNWvWwNfXF0KhULr9wYMHjDumhV38/TMCAmbOZNUVVrh0iebpEgho5no2iqprCjduAKmpurCx4Xbx99BQ+mxqmqKyrbt37yIsLAyLFy9W2VZR4dixevDxobne9uwBbt9m2yPlOH8eCA0tjeLFgXHj2PaGcvw48PUrnQbt1s0TAHudwa9fgUOH6PKaNewFBt24QYP/TE2T0K4dcyngCisKaQYbNWqENm3aoGnTphAIBNLtXbp0UYtzXKUoaAZnzAA2bwbats0oL6aqzfzgSvuTkmiwSGAgMH9+Rgm+zGg1gxk2N292wuvXFdC1qycGDXrP2fYfPlwfd+5UQ5s2LzB6tL/S7W/UqBGcnJzQuXNnjB8/Hr6+vkr5ypX3X5nzKKoZfPvWEhs2tACPR7Bw4UPUqhXGuGauINrv718Sy5a1QWqqLrp3/4IBAz4qbCMvP5Rpf0BAKDZsGIuIiGIYOPA96tW7x9r7X768JVavdsGnT+Vgb++DhQvfKnReJjWDU6YA27cDHTp449Yt5kfvi7Rm0MHBQT2T1RpGYdcMRkcTUrw41Vrcvs2MTXngSvsXL6Ztr1CBkMTEnPfRagapzdhYQvT1M3Kaqeq7Ots/Zgz1s3//9wrbyLy+fv16oqOjQ3x9fVXylSvvvzLnUUQzmJBAtXUAIbNn5+0HlzWDAQGElCsn0Z36k9RUxW3k54cy7R869A0BCClfnpCkJHbf/wzdIiGbNl1R+LxMagYbNaK+TJ78lDGbmSlsmkGFgr3t7e3x69cv9fRKtXCGvXuBhASaMoGpfGyagq8vsHYtXd64EWCwwEyh5OJFWvezfPlYODqy7U3epPyZHdbVFSltIzExEWvWrMHIkSNha2vLkGeFm02b6BR9mTLxGpuaKSlJF126UN2pvT0wbNhlcCHbWnw8cPkynRJeuhQwNGTPl7Q0vlRSNGsWYGGRwJovqanA+/d0uXLlSNb80CQU0gxGRUWhdu3acHZ2likhc+bMGcYd08IOaWmQ5oaaPVvzEsGqglgM/P03vZG0bQv07s22R9xHUv+0WbMA8Hi12XUmH5L/xI3o6SnfGdyxYwdiYmIwefJkhrwq3ISHZ/y56t//I/T1ndh1SAl+/gTWr28BLy8aSHfjBnD6dFr+BxYAmzYBcXEGqFoVGDmSXV9u3rSDnx9QvjwNZrl6lT1fPn6kv2VmZkCZMonsOaJBKKQZPHLkSI7bhxexUJ3CrBk8cQIYMoR+oX/8QK7/fgujZnDzZqqVNDKiN5MskhgZtJpBX5QuXRMTJ/aEWMzH3Ln7UadOMU63X6Jt7N79AQYMCFO4/b169ULjxo3Rr18/dOzYEUlJSSq1lyvvvzLnkVcz+PhxF1y7VgM2NlGYMOEgrK3Vl2dPHe338THD+vUtkZCgDwODdPzvf/dhYxOtUp5FptqfkiLAlCk9kJiojylTnqFp00DG25/belab4eHFMHt2J6Sn62LChBdo3txfqfeOKc3g0aM0grhNG2D0aPZ/V+VBozSDWiiFVTMoFhNSpw7VWSxfzoxNRWCz/R8/Zmjfdu3K36ZWM7iO7N5Nr1f9+prR/nnzqL/t2nkrbOPevXtk5cqVRE9PjwQGBpL169fnewzX2q/IMUxoBnftOk+MjIg015y68+zJ66u8Nq5cIcTQkPpvYxNJ3r3L3aY8fjDd/p07qW8WFnFEKMz9GHW//2IxIV27Ul9atKDr8tiQx1dl2baN+tOvH/u/q/LCtmZQrmniLVu2YNq0aZg7d26Or6+VzANo0Wju3aM6CyMjYOJEtr0pOFJSgMGD6fRwly7cSRfBdU6fps/9+7Prh7xI0gEGByv+r7tChQro168fxo4dC2traxBt4aZ8uXatBpKSaLqhzp2BU6fY9kh+Hj60xYEDVDrSuTPQt+891K3LnQ86IcDWrXS5fXsfCAT1WfPl0iXg2jVAIBBh924BJ6RF8X+K2hQvzq4fmoRcASQSfWCxYsVyfGgpHEj69H//DZQqxa4vBck//wCfPgGlS9N6o1y4mXGduDgjPH5MlzWlMygpUh8SYqzwsXFxcTAzM2O0VFZhJjQUuHu3KgAa2KAp3yla0g3Yt68xxGJgxAja2TEwUF5nqg7u3gW8vABjY0nybnaIi6MpXACga1cv1KjBmisySDqDxop/1Yssco0MjvszVLJkyRK1OqOFPd69oyODAgHVzRUVHjwANmygywcOABYW7PqjKXz6VB1iMR31sbEBXrxg26P8qVaNPkdFFUNysmKRl3FxcfDx8QFPU3o1LLNjB5CWpoPGjYGOHdn2Rn6WLgX+/ZcuL1pEO4ZcessJoQmmJfFLI0cCRkbCvA9SIwsWAEFBQJUqQK9eX8BmsuvMhIfTZ21nUH4UCiDRQimMASQDBtBpv8GD6c2GCZuKUtDtj44GatcGfv0Cxo6lVRHkpagHkMyb54yfP60xdOg7dOrkrRHtF4uBIUPo52DXrgswMUlVuv1cCCBQtP2KHKNK+8ViYNq07oiMLJZnYAPXAkjevWsLV9c6AIBu3R5i4MBQpdqv7Hp+vsbG6mPHDnt8/kz/1djaRmLu3MeIj/crsKTbmW2mpjbFihVtAACLFj2Aqek7lT+rTAWQVKsGfPsGXL4MJCZqA0jkghWlooZT2AJIfH0J4fOp4PbDB2ZsKkNBtl8sJqR/f9rmqlVpYlxFKMoBJH5+9LrxeIQEBdFtDx48yGbj8uXLCp83q68XLlyQWQ8JCVHY98w2DQyo7z9+5G3DI0sG7az7bNq0KdsxV67knWSXq++/MufJK4Di2DF6jY2MUklysmK+sxVAMny4O6HjboSsWsVMAA1T779QSMj27YSYmlL/dHQIWbGCkPR0+eyq4/1fuXIzsbWl/owbp5wNeXxVBsn9SUeHJsXXBpDIh0JJp7UUTjZupELpjh3pSFlR4Phx4MwZQEeHptPRSl9lyWs69M0bKhZv1YqmIAKAVq1aZduve/fuKvvRtWtXmfWyZcuqZE+SRDxzVpicdM916tTJ006PHj2ybWvTpo0qrhUKkpLo1CFAa+RqQk3vgweBI0caAKBTwxL/uYCPjxkaNqTTwjExQMWK0XB3p37qKJQlmFlu3XKCnx9gbZ2hNecKkvKpTZsCbAywaSosfpy0cIHwcHozBIBcgsULHT9+AJMm0eWlS4GGDVl1h5N06tRJZj3zNFO/foCu7gPUqKH+8jS6urqM2jMyAqKiZDuD1tbWCtupVKlSDra15WoWL6ayi4oVgU6dvABwuyzNiRPAmDF0efp0qhFkG5EIuHMH2L0buHKlPQDA1BRYuRIwMbmNOnUGsOrfq1fA06c0ennvXu51uC5epM/t27Prh6ahkmawbdu2MDIywvz589GsWTMm/eI0krn9/fv3M/oDkJOmQt12z551wMWL9rC1jcTy5XfkFkurw9eCaL9IxMPy5W3g41Ma1aqF43//uw8+X/GvwLdv32Te+5SUFJmqPDlty28doOXOMo9UKWMj6zZFbTo7O6NJkyZIS8s96TgAvH79Go0aNQIAeHp6Yu/evdLXypQpg2bNmqFly5Y5HisSiZCcnAxCCOLi4mBubg4+n4+oqCj4+vrK3E/Onj2L+fPnIzAwELNmzcLq1aul7Tp27BgcHR1hbW0NHR0dpKWlgcfjQVdXV2YUMSUlBREREVi71gw7dhhi5kxXdOlSDjVr1kSZMmWk+9WvXx/Dhw/H1KlTAQBJSUkQi8UwNDREWloaQkNDkZSUhFq1qFB+5cqVuHv3Lh49eiS9Jm5ubihVqhTq1q2LcuXKSUdZxWIx+Hy+1K63tzd0dXVRs2ZNmJmZgcfjITw8HN7e3vDy8kLdunVhaWkp01lNTU1FTEwMfHx88O7dO8THx6NSpUqoU6cOKlSoAENDQyQnJ+Pnz594//49goOD833/c9qW33pWmwDw4kU1XLhAR4OHD7+EKlU+q/3zr4yvktc9POzg6toZhPDRsOFb9Ov3UHr/U6b9il7DrOsxMcXx7Fl1vH9fHzExtIfF4xE0aPAZnTu7oXjxZEbbr4zvhAA7dgxEQIAl6tf/ggEDbird3py2JSUloWrVqlCWL18ssHJla/D5YqxdewPly8ez8ruqDElJSRgzZoxmagZfv35Nzp49S6ZNm8bElLXGUFg0g79/E2JsTPUVZ88yY1MVCqL9K1bQ9hobU22JshR2zSAhVFPp4EDIggWEPH1KiFBIiI8PIVu3Zt/35s2bBAAZPXo0mTx5MunWrRvh8Xhk/PjxOdqWF6FQSIyNjcn27dtJdHQ0Sc4sQlOSHz8ISU3N+TVHR0eyefNmuW0tX76cODs7q+yTsvz69SvffQpCM/j8OSE6OkICEPLPP8rZlMdXpjSDp05l6KTHjCHk+HHmk27Lsy4W0+9W376ECAREqlssWZKQadMIWbfuWp42lPFVlff/yhXqn65uGgkOVs6GIr4qQno6vV8BhEyenPd5mUCrGcxEw4YN0bdvX2zevJmJfqmWAmblSpqPqV69olGH192dTgsDNPVFDjN9WjJRogS9RmFhQJ8+NO3OX38Bjx/TSOycWLlyJbZt24YrV65gzZo12LNnD4KCgiAWi5GamgpCCGJiYuDh4YGUlBTpcb6+vvj48SOEwow0GSKRCEFBQYiPj4ezszMMDQ2hp6cHoVCI9PR0mfMKhUKkpWXUi01PT0d6ejoIIfD19YWfnx/EYjEAmgpHMuIpEonw8eNH/Pr1K9fr8Pv3b7x79w4/f/5U8AoCaWlpSE1NzfaQ+AIAhBB4enri69evMtuztis4OBienp4ybc88MhEdHQ0PDw9ERkbK2GjcuLHCfivCjx9Ar16AUChAr17AsmVqPZ3KvHxpjcGDqU561CiaRYBfwOr5tDTg6dOKaNQIcHYGzp2j08O2tj9x/DgQHEzLY1paxhWsY3kgEtGawwDg7PwO5cqx609W9u2j+WJLluT+Z5CLKPQVmDt3brbHypUr8fDhQ3X5p0VN+PkBO3fS5TVrCv5mWNAkJtK0OUIhTZI8ZAjbHnGf7duBhARg4ED643TrFhARQZPdlilDUzfkRbNmzUAIgZ+fH9zc3GBgYIAtW7agXLlycHFxwdevX+Hl5YXGjRvD3t4eLi4uqFSpEs6dOwcAuHv3rnQ61snJCWXKlMH79+8xf/589OrVS+ZcO3bsQMNM4s/BgwdjxIgRaNu2LRo0aIDq1avD2dkZcXEZP67v379HrVq14OTkhNq1a2PkyJHZOmPOzs6wtbVFnz59ULVqVTg7OyM4OFjua9ilSxeYmJhIH8bGxjAwMMDXr18BAC9evECtWrXQsGFDNGnSBDVq1JBOOQPAunXr4OTkhHHjxqF69eqoX78+qlWrBh8fH+k+ycnJ+Pvvv2FlZYVu3brB2toa48aNk3asmzRpIre/ivL1K9CiBf3DUKFCNI4e5fa95OxZYPv2ZhCJaELpffsK3l8PD1r3fOfOZnjzBtDXB0aPpvXQJ0w4jcGDwcnAm1OngM+fqX7RxeU12+7IEB1N9aoAzRNZlIomMIVCASShoaF4+vQpevbsCQC4fPkynJ2dcebMGfTv3x+LFi1Sh49a1MA//wDp6VRk27Yt296on5kzaefF0pIKs1VNJCsUCuHq6ipdDwoKklnPaVt+6wDV0ChyjDznVdQmANSrVw/Vq1fH6dNAhw7A4cM0sSwh9EcrLAzIL7D3/v37EAgEqFatGjw9PQEA9+7dQ0hICExMTCAUClG/fn1YWloiIiICRkZGWLFiBQYPHoxGjRqhY8eO8Pb2hqWlJd6+fYvqf+rJnTx5Mu8T/+H06dM4d+4cevTogdDQUNSrVw/79u3DrFmzQAjBoEGD4ODggI8fP0JHRwfTp0/Hp0+fZGysXLkSTk5O0NHRQUxMDPr27YslS5Zg3759OZ7T09MTcXFx0tG4u5LQRtBRyH79+iEwMBC2trZITU1Fr1690LFjR3z48AF8Ph+TJk1C79698fPnT6nO6+3bt+jWrRtiY2ORkpKCdu3a4d9//8XxPwlBFyxYgGfPnsHT0xMVKlTAjx8/0KJFC+zZsweTJk2Crq4uXrx4AX9/fwDMfFZTUlKwZMldbNjQAomJ+rC0jMWwYadx9aqJ0jYldlX9vOf2+X/+vCJ27GgCQvho0cIPbdu+xunTROn2K3MNd+68iMWLOyAqygjFiyeiUydftGnzHSVKpOLzZ/W2XxUbQUFBOHQoDIAF2rb9CD4/lpH7XdZtmWcGFGHpUiAyEqhZExg/XikTWhSZU27Tpg2Jjo6WrkdHR5MuXbqQuLg4Ymdnx+DsNbfRdM3gmzcZeeKypFNT2iYTqKv9M2c+lrb3/n1mbBZ2zeDHjx+ly56ehNSuTcimTYSMGpVtV0JIhmawX79+ZOjQoaRFixYEAJk9ezYhhJCHDx8SAOTTp0/SYz5//kwAyJwrPT2dlCtXjmzcuJEQQkhQUBABQLy8vKT7zJo1i3Tp0kXm/Js3bya1a9eWrvfr14+0a9dOZp/Ro0eTwYMHS9sHgHz//l36elxcHNHX18+mGYyJiSEfPnwgz549I0uWLCEVKlSQvqaIZnDWrFnE2tqaBP8RW924cYPw+XwSEREhcy49PT1y9o+Id9WqVaRMmTJEJBJJ99m+fTupWbMmIYSQtLQ0UrJkSXLmzBmZc61cuZK0aNEiRz+Y+KwOG3ZRmrOxaVNCIiLUl2dPVd/XrVtHjh/P0Ai2bOlLhELFbDChGTx8+BRp3Jj6UKMGIfv2ZRdqs5VnMT8bu3ZdkF6/Hz+Y0UzK46s8fPmSobe8ezf761rNoHwoNDIYHBwMU1NT6bqpqSn8/f2lUx9auA8hwLx5dHnwYCCfdGoaT2gosG8fjXidNQto3ZplhzQEBwcH6bKdHc1F2bUrTcUB5FyBAQAqVKiA4sWLo2nTpti8eTPq1q0r83o1SU040FE0Ho+HGpkKmuro6MDOzk46jaoKNjY2MusmJiYICwsDAHz9+hX6+vqwtbWVvm5sbCwTuSsSiTB58mQcOXIEVapUgampKaKiohCdm2AyD3bt2oW9e/fi2bNnKPdHbOXp6Yly5crBzMxMxscKFSpIR1IBek35meYyJVUKAFqxITo6GhMmTMCUP0ViCSFITk6Wscsku3cDx451ByFAt250+pDLWXXevq2JM2eoRnDMGMDF5RUEAtv8D2QQQoD9+xvh1SuqabtyBXB3T8//QI7w+rUVxGKahivL14pVCKHlU0UioEePojHLpS4U6gzWrFkTY8eOxciRI8Hj8XD48GFUr14dqampEAgE6vJRC4PcuQPcv08F9FzIqaVOCKG1O+PjDeDoCKxYwbZHmoFQCFy6RKfVTU2B+vWBVq1oTkpJ2r9nz57l2BmcM2cOLPIo8Jw5b6CRkREIIUhKSpJJpZCQkJBjImgJfD4/23RSUubEgZn2y0zmRNrFihVDamoq0tLSoK+vL92emJgoXb558yZOnDgBT09PaenBI0eOSDtd8nLz5k3MmDEDly9flulkGxkZISEhIdv+CQkJMmmL8mqHZL+jR4+iadOmMvtlPU5VCAGWLJHcN/j4+2+qO2Yz+XF+HDkCnD7dCYTQkpO7dtGymwXN+vXA06eVIBBQ3WKVKjSgTVN49aoCAKq35hLXr9PfND09eo21KI9CX+ODBw/i33//xeTJk0EIQatWrbBmzRoIBALcvHkzfwNaWEUszhgVnDSJW//w1MH+/TToQVdXiBMndJDpN19lCptm8Ny5c+jbty8A2oEODKSjxm/e0A6AiQmNJBwxgh5jZmYmc4wyODs7Q09PD9euXcOgQYMAQJof73//+1+ux1laWuLChQsghEg7RooGsTk7O0NHRwe3b9+WVkrx8PBASEiIdB9fX19YWlrK1KC+du1annYl0b61/5Ty+fDhA/r374+tW7eiQ4cOMvu2adMGsbGxePr0KZydnQEA7u7uCA0NRVs5hzjKly+PunXr4saNG+jcuXOu+719+1YadKLMZ/XnzyB06OCDu3fpyG6rVm5wcQnC2bPy2yhozeDz5xWwY0czEMJD27bf0KLFG5w+zZxmUl4bHz6Uxdq1LgB4GDLkDX7//gZX14LXTCprIyFBD56eNGBLT+8KXF0TldZMMqkZTE8HZs+my9On0w62FhVgZXJaw9FUzaCkZqiJCdX4MGGTSZi0GRiYkUNx8OB3jNmVUFg1g9++EeLoSEgmiRpJTyfk6lVCqlcnZP58ui0qKkrGhkQzGBoaKt128eJF6bJEMygWi2WOmzVrFjE2Nibr1q0jBw8eJDVr1iT169cnqX8SAeakGfzx4wfR1dUlo0aNIocPHyYDBgwgVapUyaYZHCcpmprpXF27dpWuT5w4kZiZmZHt27eTAwcOkBo1ahBzc3OpZvD9+/dEIBCQWbNmkTNnzpARI0YQW1tbYmxsLLWRn2awevXqpHr16mTLli0yD4lOsH///sTCwoLs2LGD7N69m1haWpKuXbtKr9OqVatIo0aNZGweP36cWFpaStdv3bpF9PX1ybBhw8iJEyfIyZMnyfTp08nixYtz9EnRz2p6OiHOzn5S3e3OnQVbm1cZ369cobVpAUKaNPEgmT926sizmNsxvr40ZyBASKtW3/L1g4uawVOnqP+1auVuUx4/mNYM/vcf9at0aVqDODe0mkH5UGhkUCgU4vz58/D19ZXpwef1L14LN0hNzQi9nz8fUJOciBNIpoTi44EmTYBOnbwB1M33OC2AQEA/K2JxRsoNHR2qF2zSBHB0pPkpS5YsKXNcxYoVMXXqVBgaGkq3Zc4jaGlpKa3qkZm1a9eiYcOGcHV1RUJCAkaOHImxY8dC708iwGLFimHq1KkyWmUbGxvcv38fO3bsgKurK/r27Ytx48bh1atX0n06deqUrTqQs7OzjGZxy5YtcHBwwPnz51GqVCkcPHgQbm5u0rrEjo6OuH79Ovbu3YuPHz+ibdu2mDp1qsxIRsOGDWFsbJzr9ezduzcSExPh6+srs12SO/DYsWM4duwYzp8/D7FYjMWLF2P48OHSEc8GDRrITGMDQPXq1TFq1CjpeocOHeDh4YEDBw5g//790NfXh4ODA/ozMKcnFNLckpIpziNHqNaYy1NyX75YYP166vuQIYCDwz3weHUK3I+UFJp3MToaaNwYGDHiLXg8zRu+unWLPmepUMkqr19n/J6tWcO9kniaiEKdwQEDBiA0NBSNGjXSagQ1jN27AX9/oHx5IIff5ELFkSP0BqavDxw6BHh4KF1xschhY0NzoLVtC6xeTX/EJBI1SYxY5o6ihBo1amDLli0y20imSpdVq1bN9jpAdW1//fUX/vrrrxz9MTExyfG45s2bo3nz5jLbXFxcpMsjR47MdowkJZYEHR0djB8/HuMz5aLImpOvQ4cO2aZ3MwfF5PR6ZlatWpXrawCgp6eH0aNHY/To0Tm+3q5dO7RrJ1sDukGDBmjQoIHMtho1amB9Lj20nEqnyQMhwLRpwIULgK6uCOfPC9Ctm8JmCpSXL4H165sjNRXo2ZN+/9moiSAJGPn4kebkPHcOePJEnP+BHMPHBzhzhi5zpTMYF0dzn0pyxkqkK1pUQ6HO4KdPn+Dl5SUjYNbCfZKSdKTBIsuWcTvyT1XCwmh0GUDbamdHk7xqkQ8ejwaPrFxJI0WNjQEnJ5rE9eFDYOJEOlIYHR2dbXRQUTLXNpaXZ8+ewcnJSaFjYmNjYWJikv+OKuLn5ycTnawORCKRzB/x5ORkmdHYnDh//jyGDRum8LlOnKABIjweMGnSc3Tr1jz/g1gkLAzo3h1ITdVFu3Y0ypmt4JaXL4Hnz20A0M6UlRU7fihLUpIu/vc/mkUgKQmoVSsULi75JBYtICZPpkUTKlak1WO03RFm4JHMf9/zoV27drh+/bp0CqeoEhcXJ03vwGRBaVdXVwwcOJAxexJ69fqMS5fsYWdHy/UwcYNUh69M2Bw6FDh+nJbYe/WKtlUdvq5evVomsCCnouVZt+W3DmRP2aKMjazb8rMZGRmJIUOGyEzFAnS6+MkT4P17+i+8dm06OsDjARcvXpROA+vo6IDH46F8+fJITExEZGQkCCHS8wgEApQuXRqJiYnQ09NDVFSU9HVra2uUK1cOJUuWBI/Hw48fP5CWloa0tDTw+XwQQlChQgUkJycjIiICP3/+hJWVFSwsLFCyZEkkJydDT08PaWlpEIvFiImJQVBQEGrWrAkAiIiIwOfPn1GrVi2Ym5vj5s0aOHXKHC4u7ujcOQBWf36lDQ0NIRQKkZqaCqFQiI8fP6J06dIoW7YsTE1NkZSUBF1dXQiFQojFYnz9+hVmZmYwMzODQCBAdHQ0vLy8ZK5reno6qmRStUdFRaHUn9IIycnJ+PjxIywtLWFpaSntrH779g1CoRBCoRB6enrSaxcdHY34+HiEh4fD0dERurq6iI2NxZcvX2BpaYnixYujXLlyMDQ0RFxcHHg8HsLDw5GQkJDv+5/TNk/PaGzcOBqJifro2/cjGje+k+dnSp7Ppjo+/5m3bdvWDC9eVES5cr+xcuUjGBiI5LKpjK/5tT8uTg9Tp3ZDWpoeZsxwQ8OGQWpvv7y+5mVDLAZu366G8+drIimJ/smwtY3EoEFnUbOmSa425fFDHt8DAgIwf/585MbZs3Q0kM8H3NzoH9X8UNfvKtN21dWvkBtFBIYTJ04kTk5OZMOGDWTHjh3SR1FDkwJIQkII0ddPJwAhFy4wZ5eLASQPHmQk0379mjm7OVGYAkj8/PwIIYT8/EnI8OGEDB5MiLd3NrMK2VTWd3W3v2lT+hk5d04137kSQMHE+591m1hMSMOGgQQgpG5dQtLSuNt+ybbr1+n7yucTsnLlTYVsKuOrPO3v2fMTAQixt6cBWWwm3ZbHRmwsIT160OsIEGJnR78nYrF63n95fM1MUBAhpUpR3xYtynW3fM/BFEU6gCQpKQlVq1aVKdmknTLmNsuXA6mpOmjShGpoCisiEU0vAAATJtDkqFrko1KlSiAE6NWL/tM2NgbGjQP69qVaU3t7YO1aIFM+Zo0lNJQ+55EKschz7hzg7m4NHR3g4MGM3JJcJSVFBwsW0OUZM4BKlRRPCq4OOnf2wsOH9vj8mZ3chooQEmKMxo1p3XE9PWDQoDfYt68BZ3JIxsTQ36+oKDrro41ZZR6F3upDhw6pyw8tauD7d2DvXrq8enXh1lacOEFr5pqa0kLlWhTD3Z0G3EjE9k5OwI0bwNat9NoOHQo8esSmh6pDCNWVAcCfIiBashAeTnOQAsCCBZpRoejSpZoICKAasmXLaHUPLlC8eDpmz6ZRr0uX0nydXOTbN2Dx4vZISqK12y9cAHx9v0FHp0H+BxcA0dFA+/Y056mZGb0fFXGlmlqQSzMoEW3fuHEjx9fzSnZaGNEUzeCAAfQfqaNjMN6/L8+YXYBbmkGxmI5eeXrSTq8ksbaqdvOisGgG7e3t4eDggD17gIAAYNUqej0rVADevaORkEIh7WTHx9M/FOfPn4enpyfjOix1tz8hQRdjx9Ik2YcPn4Genkhp37mimWNCM5p529atzfDyZUWULRuONWseQFdXzOn2p6ToYOLEbkhJMchVm8eGZlCyXqpURUyc2AupqTqYNu0YGjfWyXV/ZdqvjK+ZXxcK+Vi6tC38/MxgaxuJ2bPdYGqaUiCf/5y2ZdUMRkcD7doBb98C5ua0etaffO5yo9UMyok8c8ljxowhhBDi4uKS7dGqVSs1zmJzE03QDL55k6GfW736BmN2JXBJM3jlCm1riRI5Jx/Vagbz9/XGDUJOnKDLiYmEHDyY8Vp0NCEVKyrmp7K+q7P9799LPifJKvvOFc0ck5rBCxfo9REICFmx4maex3Cl/bt2UZ+rVMlIlM500mV5bOZ1TO/e1MeePT/l60dBawbnzqW+FSuWQn7+VN6mPMco+lmNjCSkXr2MxNKfPmU9Wj60mkH5kGuaeN++fQAUL/mkhT0kGppBg4AKFWJY9UXdrF1LnydM0CYfVQZCCDp1ylzvlpakk3DqFP13rukEBtJnM7NEAAas+sI14uP1pCmZ5s4FbG25obvLC0KojAEApkzJnvuSK/TqRade37zhVn6Z27cz7p1///0aVlbcSR0UGUnvOR4eQOnSwIMHdPZHi/pQ+OsTEhKC58+fw83NTfrQwi3u3QPu3qXCb0l+wcLKixfA06dUQ1LYk2mri/v372fbFhERAQBISaFSg4ULC9or5pF0Bs3Nk9h1hIMcO1YPYWFAjRqaI86/f59KQwwM0jmdeLhLF/r865cpvn1j1xcJISGAJPXkxIlAo0a/2HUoExERNOm9hweVqTx8qO0IFgQK5RlcuXIl1q1bB1tbW2niUx6Ph9evX6vNQS4imdvfv39/tpJXqpCTpkJRxGIqBv7xwwwdOnhj+PB3jNjNCldsbtzojDdvrOHi4ouxY3P+HKrD12/fvsm89ykpKTAwkB1tyrotv3Uge7UIZWxk3aaoTYAmN545cyZ0M4WSJiQk4MCBA0hPT8/XJhfbf/VqS7i5NUTTpq/Qu/cTlXzPqaqHor5y5f338amAffv6g8cjmDTpJCpWDNGI9h8/3hUfPtihcWN39O37WOn2K+OrvO3X1zfAo0eNcONGCwDApEknYWMTzEj7lfU1KSkVx44NwffvVBs6deoJiEQJamm/or6HhfHh6joaQUEmMDFJxqJFD2BlFQdVUMf9Xx12k5KSMGbMGG5rBiXY2tqS8PBwtcxXaxJc1gyePk01FsWLExIWxpzdrHDBppcX1UQChHh6MmdXHjRRMyevjcuXCZkx4zFJSsrYFhUVpZBNZX1XZ/t79qSfleHD3VX2nSuaOVXf/+RkQqpWpddl8mT5z8N2+2NiCDEwoH4rqm8sKM3gsWOuZMKEjLx9nTt7ErE4bz8KQjPYt++HPzrBjPumOjWT8voeGEiIuXkkAQixtKT3dybQagblQ6Fp4rJly8Lc3Fw9vVItKpOeDixaRJdnz6ZD7IWZDRvobbZ7d1p2TgszLF0KbNrUAidPZmy7JalWr8F8/06fLSwS2HWEI4jFtLTXt2+AqWkSVqxg2yP5OX+eShhq1OBOXsHMJCYCmzY5Y9cuGoG/ZQswZIgH6+m9Hj0Czp+nc667dnHnvhkcDDRvDkRElIKNDa0uUr06214VLeQKIPn69SsAWpR91qxZGDx4sMzQrqT0kxZ2OXCA/uCVLg3MnMm2N+olMRHSzsqsWez6Upj48YNqdXg8MXr04KgiXwkIAXx96bKFRTy7znAAQmjQxYEDNPBi9Gh3mJi0ZNstuTl2jD4PHcq9/KmxsTQv3rt3VjAwoHnxevcGXF3Z9SskhKYbI4SPkSPpteMCKSk0yCYgADA3j4abW8lCkeBe05CrM9hFooD9w4ULF6TLPB4Pfn5+zHqlRWESE2nCVYAmOTU2ZtcfdXPpEm1z5cr0H6UWZpB8tWvUCIf5/9s767Co0i+Of4cOQQVBREHERCUs7Hbt7ta1Vv2pa661dne7dnet3d2KHZigoCAg3THM+/vj7Ayi5DAz9w68n+eZ596pc89734lzz3uiUO5p0+HvD8TFkeFjZZW3E0gYo2Sr9evJkNqxA9DT8xdarSwTHJxSAL1XL+DOHUHVSQVjwIABwMOHQL58Cbh40RA1awqtFZCYSB2FAgMBO7twrFlTQGiVAND5GjSIzlfBgsDAgUdgZzdYaLXyJNlKIOEQYiw6PW8e8PffQIkSKS2FVCE3PYSW2awZcPFi1ir786LTWZc5ffpv+PixEDp0uIwuXb4rLVNs44+Lq4X58xvBxiYS48ZtUnkhX2V0FWL+GQPWry+LO3cqQyJhGDz4IRo08FZb0WV1jD8wsBqWLq2PIkUisWzZmRwVXVZW1/TG/+pVA+zcWRW6uskYPnw/atbUVfn4lfmsXr/eDVeulIaJSSJGjNgFNzfTbMlQV9Hp3buL4ty5etDRkWHSpOswM3uYqui0KuBFp7NIdgIM27Vrl6XHcjtiSyAJDqaCy0BK4WBVyM0IIWX6+VFDeoCxjx9VJzc7aGMCRWYyfH1TCpWvW3csRzKV1V1d41+zhsbWtq16gvKV0VXT8y+TMTZmTEpCw9atyh9HyPFPnUr69++vnK7qSiCZO/c809cn3Vav1sz8Z+U1HTteUHyvz57VXAJNZvePH0/5LK5fn77cnMITSLJGtoKCfOWFun7ASx6IwxGM+fOByEjqI9q9u9DaqJ99+yj4vXZtWibmqAb5EnHt2kDBgvHCKqNi3ryhrZOTsHoICSUG0f7mzbScqY3cu0dbMSy/ygkPB1atqo2kJIoPHDFCaI2IO3eAEycaA6D/iRYtBFboP169oiV+gOocDhsmrD6cLMYMbt68GZs2bcL79+/h7u6ueDwiIgJlecqPoPj6AuvW0f6CBeKtwq9K9u6lrVgCoHMLR4/StnNnYfVQB3JjUCzZk5rm0CFg9mza79fvEQYNqiqsQkqSlKQDeVnbGjWE1eVH/vc/4Pv3fChRgpJyxJDU4uMDdOoEJCfrokuXX3u2C0VSEtC7N8V8V6gQgJUrbYRWiYMsxgz6+Pjg06dPGDZsGDZs2KB43NzcHC4uLooC1HkFMcUM/v47BYA3aEAte9L6ERI6vk+VMj99AhwdyegNCgIsLVUjN7vktphBU9OS+N//2oMxCdasOYH4+A8aj8NS1/g/fvTCkiXjERVlhLlzL8DQ8GWeihl8+dIP69aNQGSkEdq29UTdumfVFjOn7vFfuGCEnTs7oGDBWKxZcxI6OkzwmMHnz4tg0aIGkEhkmDXrEkqVClXb+LOqu4VFccyc+Ru+fCmAwoUDsWDBDRgZJatl/NmVcfKkEw4ccEO+fAkYN24rypYtqHiNj48PjxkUe8ygVCplvXv3Vt+CtRYhlpjBly9TYucePFCd3KwglMyVK2m8DRqoVm520baYucxkbNhA59XdPWvH0abxT5u2jgH0XYmNzXsxg9WqvWAAY05OjMXHiydmTJnx16jxmQEU+6isrqocf1ISY+XLpxSVzonMrOiaFd337NnPWrUinQoXZmzKlA3ZlqGu+f/4MaVY+I4dWZObU3jMYNbI8qKirq4u/Pz81GeVcrLNlCkUO9epE/DD6n2u5sQJ2rZrJ6weuQ15vGDHjsLqoQ6+fbMCAJQpAxgbC6yMhrl6FfDwcAZAcYKGhgIrlAOio4EnT8jTpAZHj1Js2wZ4egIWFkCHDq+EVgcAsG+fG86cAYyM6PeyYEFx1NVkDBg6lOoKNmqU0huZIw6yFWHWpEkTDBs2DA8fPoSnp6fixtE8Fy8Cp04BenpUViYvEBpKlekBbgyqkuhofVy9SvsdOgirizqQG4MuLgIromHi44E//qD94cMpMUibOX4cSEzUQ8mSQFURhDxGRwPTp9P+jBmAqWmSsAoB2LQJOHuWAmN37gSqVxdYoR+4fdsBly+TkbpxozjiKjkpZKvOYIkSJX4VkAeLTgsdMxgXR39sHz8Co0enZAjmVG52EELm8eNkrDg50dW4quQqQ26KGTx+vAAOHWoBO7twLFp0LkvH0aaYwQULnPHyZUV07foc7dt7qqx2m9hjBk+cKI+DB11hZhaJFSsuwMREqvR4hR6/TAZMntwCX74UQOfOL9Cx42uldVXV+J8+bYdjx5xRuHAUliw5i8DALxqf/x8fCww0xbhxrSGT6aQ6R5qss5jee6Kj9TFmTEvExJigW7fnaNfOM8338JhBLYgZ5KQgdMzg339TzIWtLWNZUSG3xAzKa6QNHapaucqgTTFzmcmsVOkrAxibNSvrx9Gm8RcqFMIAxi5cUF6GWGLmsqq7nx9jpqb0fenR43SW3pOd+5oe/549NBYTkwQWGpq946rjszpt2nrF+T18WDkZqo4ZXLWK9CldOojJZFmXqYyu2Z3/UaOYIm41ISF7cnMKjxnMGlkqLfMjjx49wpUrVyCRSNC4cWNUqVJF9RYqJ13evAEWLaL91asBIS4ghOLWLdrWqyesHrmJ8HDgxQsq7ZAbS8qEhwPBwRYAgLz0UzV5MpXuqFkTqFTpDYBWQqukNImJKcuxbdq8QcGCrsIqBODixVqIiaFl2E6dhNaGuHiRtlWr+kEisRJWmR9ITKQlawBYvjx1dyyOeMhWzODmzZvRsWNHfPv2Df7+/ujYsSO2bNmiLt04P8EYFedMSgJatcqdwf7pQcHjtM97EauOU6eoDln58kD58kJro3rknxkHh6yVIcoNfPxoiV27aH/VKu2Pzdq2DfD2BgoXBpo1eye0OnjzBnj4kJJyliwRx/lNTEzp1+zs/E1QXX7m6lUgIgLInz8Ov/0mtDac9MhWzKCLiwuuXLkCKyu66vj+/TsaN26MFy9eqE1BMSJUzOCOHVRX0MQEeP2a/uBUIVcZNC3z1i3yCBYtCnz9qjq5ypJbYgaXLq2LJ0+KoWPHl+jc+VW6MrQ1ZlAeN+fu7ovRo+8oJSMr41dGV3WMXyrVwV9/NUJAgBXq1fPG0KEPRBEzpuz4P38OwJIlfyAszAT9+j1CxYrXczxXOR3/+vU1cPt2CVSp8hXjxt1S6/iz+lk1MSmJ//2Psr/mzl0FR0drtY0/LZkZvefgQRecOFEB1aq9xJgxrzJ8D48Z1JKYQWdn518ec3FxUdGKtfYgRMzg9++MWVpS3MWiRaqTqyyalrliBY1dmVbYPGYwbZmhoUzRS/X16+zpri3jb92axrd8ufIy0rov1pjBadNovFZWjAUFZU2mMsfR1Pj79fNgAGN2dsrXSFTl+IODGTM0pHN8/75yMjLSQ9mYQZmMsRIlSK/x469nS6YyumZn/nv0IL169nyS6Xt4zKAW1BkEgFKlSmHq1Knw9/fHt2/fMGvWrF+uDjjqYcwYICQEcHam/bzGo0e0zUtxX+rm+HEKObCzC8+VS8QyGXD3Lu1re1mVrPDoEfWfBYD16wEr8YSNKUVcHHl2AaqpKoYaibt2AQkJgK1toKhqu0okQPPmtP/8eRFhlfmJT59oa2UVI6winAzJljG4YcMGeHl5wcXFBS4uLnj79m2q9nQc9XD+PLBnD33ht2wB9PWF1kjzPH5MWzHUF8stHDxI25o1fYRVRE28e0e1KfX1k1CpktDaqJfISKB7dyA5Gahe3TdXJANt3AiEh5vA3h4YMEBobShme+NG2q9R44UoYgV/RG4MPn5cFFkP/lI/nz/T1soqWlA9NElcnNAaZJ9sGYPW1tY4cOAAgoOD8f37d+zfvx/W1taZv5GjNNHRVLUdAP78M+90GvmRqCj6Ywe4Z1BVfP8OXL5M+9Wr+wqrjJq4QyGCsLMLyPUXUFOmAF5eQPHiwMCBD4VWRyXIcxOnThVHBqqHB/0OmZrKM7TFRePGFE8eGmqKbt3ov0NoEhKAgADaL1Qob3gG790D7O2BNWuE1iR7ZCmB5Ka87UM61MtjtT7kgZ5btmyBiYmJyuSmFdi7e3clnDtXDoUKRWPx4nMwMpKqRG5O0aTMN2+sMGdOE1haxmDNmpMqk5sTPnz4kGru4+PjYWRklOo1Pz+W2X0AiImJgampaY5k/PxYWjKfPq2OY8d+Q7FiAfjjjy3Z1j0zPcUw/kOHmsHDwxl16txCu3YPlJKR1fEro6uqxh8aWgwrV/YFYzr444+DKFbsg9rnShPjnzVrGKKjTTF27A4UKRKstO6qGv+NG41w+XItuLi8Q8eOB0Qx/z8/5uFREUeO/AaZTBeFCwejX78TMDH5Ktj8JyVZYPbs4ZBIGGbOnAcTk4yPGxsbi9KlS0OVqOP3Pz25jAFz5jTG27fWaNDAC0OGZP3CLDY2FoMGDRJ3AknVqlV/uVWrVo0VLVqU6ejoqDeqUYRoKoHk/n3GJBIKvj13TnVyVYEmZS5bRuegfXvVys0J2pJAkZ7M+vXpnC5ZInxQfnbkZmf8Tk40xt9/P6q0jPTuiyWBZO/efaxBAxpn585Z01VbEkiMjWlc3t45011V469WjfTZulU885/WYzNmXGRFipCuZmaM9ev3b7ZlqGr+374lPfLnV+63ShVoMoHk5Ekar5ERY1++ZE+eViSQeHh4pLpduHABderUQWJiImbNmqVeazWPkpgIDBpEVxq9e6fEg+RF5PGCfIlYNYSGGit6PHftKqwu6iI8nOrBAYC9vbjqrqmSBw/scP069XtdulRobVRHcnJK3JWZmbC6AEBkpKEiiU3sv8VlywbjyRMqxRUVBeza1U4RMqFpwsNpW6CAMMfXJFIpIK+KM3o0UKyYoOpkm2zFDMbHx2PBggVwcnKCTCaDp6cn/v77b3XplqdZsgR49QooVCjz3sO5HfmPME8eUQ337tmDMcqwtbcXWhv18PC/1ZmSJYF8+bQwmjsLJCYC+/a5AQAmTqR4wdzC9+8p+/nyCaeHnFevbMAY4OoK2NoKrU3m2NhQTHC3bgBjEvzvf8LokZeMwZ07AU9PwMKCvo/aRpZiBmUyGbZs2YI5c+agfv36mDNnDkqUKKEJ/USJuotOv31LPzqJicDu3eQZVIVcVaIpmRERKT8kgYGAMvlKvOh0ikzGgHHjmiAgwAq//+6B3377qJKiy2Ib//PnjbBnT2W4u/uiTZtdShXyFUPR5Yzec/NmCWzYUAMFCsRhxYpTMDRMzpKu2lB0Wl6ouEiRICxbdiVHuqti/Fu2lMDVqzXQuPEHDBz4SBTzn5XXREUZYNiwDpDJdLBq1QlYWcVqdP59fWtizZracHIKxIABuzM9rrYWnY6NBcqUAfz8gGXLgLFjsy9PK4pOOzk5MUdHR7Z79272+vXrX255DXXGDCYnM1a3LsUdtGjBUjUcz4lcVaMpmdeu0bmwt1et3JyiDTFzacn08EiJaQkLU153sY9/yBAa57RpqonDElvMoFTKWNmyNMaFCzPWQ9tiBoOCGDM1pbGNGXMjx7qrYvw1anxmAMUvpyUzKzI0FTP48/3ixb8qYh2VlaHs/G/cSPPYtm3ujhlcsIDGWbw4FUdXBqFjBvWyYjDGxsZCIpFg2rRpkEgkYD84EyUSCby9vdVkquY9Nm+m1mumpsA//4ij76WQ8PqCqmXbNtp27Ji7l27evqVt2bLAt1wYMnj0qLzMSQKGDxdBNWYVsngxEBNDMcJVq/oJrQ4AICCAAhdLlRJYESUoVcoXPj5FceWK5us15oVl4pAQYOFC2p87VxzF0ZUhS8bgZ3nVSI5aCQ01xpQptD9/fu6KAVIW3nlEdcTGAvv20f7vvwuri7qRG4PlyuU+Y1Amoz8dAGjR4h3MzFyEVUiFhIaaY+1a2p8zJ8WYEBLGgMBAClzURmOwdGkfXLlSE5cvU5KDJomIoG3+/Jo9riaZN4/G6eoK9OwptDbKk6WYQU5q1LG2zxhQtepXPHlSDNWrU8FcXV2ViNbqmEEnJ/pjP3dO+Sw+HjNIMuUxZhYW4Vi9+hx0dJTXXcwxg15eQZg27U8AwJYth/Ht27tcFTMoj8MyNk7EpEkbUbp0oQz10JaYwYQEXUyZUhffvhVB2bJBmD79Cvz9VT9X2ZXx5Ut+TJzYEvr6ydi8+QgMDGRaEzMIAO/efcayZWMRHW2IgQMfoly5mxqb/0OHusHDww7duz9DlSqXc13MYJUqPVCxIrX1vHABaNpUeXlaETPISY061vYPHKCYA319xl69UplYxpj2xgzGxTGmo0Pnxc9PdXJVgdhj5tKSWbs2ncuuXZ/lWHcxj3/RojMMYKxgQeVkZuU1QsWM7dq1n5UuTfM4e7ZycVhijBmUyRjr0YPGZWXFmI9P1mQoo2t2ZcjjwVq2TF9mVvQQKmZwyZIlbNUqGoO1NWNbthzKse5ZGf/evftYoUJ03Dt3cmfMYOvWv342lEXomMFslZbhqIfgYGDkSNqfMgWoUEFYfcSCpyctiVlaAkXE1Xtd6/D0TPE216//SWh11EpwMHWGyY1lc27dKoEPHwArK6pllluYMQPYvx/Q0UnGkSPimrtTp2jbpo2weuSEYcMo2zUoCDh5UjN/MP7+5ggOphqYuTHm+8ULG5w+DejpAcuXC61NzuHGoAgYM4bqatnZhStiBjnAy5e0dXbmiTQ5Rd7ntVUroGDB3Fl3T05wsCmA3BdzGxsLHD1aEQBdNIqhGLMqWLeO4gMBoEOHKxBTd9Pnz4G7dwGJRIbWrYXWRnn09al2LQCcO1cWmkgDePvWCgBQs6Y4ekurEqkU2L27MgBgxAhKVNN2eMygEqhybf/sWfqDlkiAWbMuYtq0HAQdpIO2xgxOmEBdFUaMyFnT77weM+jp+QXLl49GbKwBxo+/gcKFPQSPw1Ln+DdvdsS1a9XRtOl79O//WC1xWJqOGWMMWLWqNh4+tIelZQyWLTsNAwNZtmJGczJedY3f0tIew4d3QHy8Prp0eQEXl5Nqn6vsyNiwoTpu3nSEq+tbTJz4VOXj10TMoFwmY8C0aU3h7W2Jfv0eoVmzD0rrmpXxT5tWG15e9ujc+QU6dnydJd21JWZwxQqqJWhpCXz4ABQsmHOZPGZQC1HV2n54OGPFilHMwdixmqmHpE0y5fEY69erVq4qEHPM3K/n8RoDqC5dcrI44rDSe48qxl+r1idF32VlZGblNZqOGVu0iL4LenpSduPGr89nR1cxxQzu20fjcnSkuMHszJVMxpi/P2PTpl1imzcz9tdfjHXvztiQIfdT1WdVdvyBgYwZGMjjMy+kel7bYgbltG+f9m+qquf/4UP555UxX9+s664NMYN+ftTzGWBs82bVyRU6ZjBLpWU46uGvv4CvX6ll1pw5wIkTQmskLt69o21ucMELRWIicOsW1eWZMAGKDOLcTEhI7ooZvHYNmDyZ9vv1e4x69dyFVUiF7NlD2169Mg8FCQsDrl93xIMHtHz74gUQGgoATX56ZXWEhlJoRE5KmmzaRN8fd3egVKkQ5QWJiJD/hmFpqd7jLFpE2549ATs79R5L04wbRz2fS5UKxoABhTJ/g5bAjUGBuHqVfmwAYOtWwMREWH3ERkICIK9lXq6csLpoM3v3AhERZrC1zXlbQ20hJIRiBnODMRgaaozRoymRql8/oFEjLwC5wxgMCzPChQu036tXxq8NDgaqVwe8vaunelxXFyhUKAqVKpmhVCkq+LtyZTKOHNHFkyfAkSPZ1ysyEvD2Loj16+n+qFHZlyFW5MZgITXaMHv3UlF0gC5AcxNXrgAHDtBF9YABj6Cjo2S9MxHCjUEBiIoCBg2i/WHDgPr1hdVHjHh5AcnJFCTPM4mVIykppTL+6NHaWxk/O8THkwEFaL8xmJwMrF1bC0FBVNB2/frcsXoQEkLJDKtXt0ZyMlCtWube/2HD6OLQwiIWffuawNWVzomTE/Dvv6dTxYTlz38ZW7c2g7c31X0bOfLXD35UFPDpE8n09gbOnKmGjRtpNSIgAADoT97GBujSJcW40VYYA9auBd6/p/vK9HjPCpcvpxS0b936DSpWdFLPgQQgIQEYPpz2//c/wMEhTFiFVIxGE0iaNm2KgIAA6OjowMzMDGvWrIGbmxsePXqEkSNHIj4+HvHx8fj999/x119/AQA+fPiA4cOHIygoCFKpFNOnT0e3bt0AADKZDH/++SfOnj0LiUSCsWPHYrh8tgDMnTsX27dvBwD07NkTc+QpawC2bt2KhQsXQiaToXHjxli/fj309LJmG+c00HPIEGo7V7w4ZczKswI10VBbW2T++y+1TKtaFfDwUJ1cVaENCSS3bxfH+vW1YGISgzVrzsLYWJptGendF2sCyevX1pg3rzEKFIjFunUnIJGoNyg/J+PNbPzHjlXAkSMuMDJKwvz552FjE62U7mJJIPnwIRhPnzbE+fNlER+vDwCwsYnE8OH3UKpUaLq6Rka6Yc6cJpBIZBgyYj0KV0jd/lQSZgJWMFZx3yzKFvnzO2DWrN/g55cf5cu/QenSMgQF5UNQkCkCAkwQE5PxUky+fDGwtY1FmzaeqFLFX/AEoozek9lrXrzwx8WL3fDkSTEAgKvrW/z119NUy/KqmP8HD5KwcWMPxMfro0YNH3TocBh2dtnTXcwJJLNmATNn0gXC27fA2bOq/V/JUwkkYWFhiv1///2XVapUiTHGmJubGztx4gRjjLGQkBBmZWXFXr9+zRhjrFatWmz79u2MMcYCAgKYnZ0d+/r1K2OMsZ07d7JGjRoxqVTKQkJCWPHixdmbN28YY4zduHGDlS9fnkVHR7P4+HhWpUoVdv78ecYYY97e3qxIkSIsICCAyWQy1qZNG7Zhw4YsjyMngZ6nT1PgqUTC2PXrqZ/jCSQpMufPp/PUu7dq5aoKMSdQ7Nu3j8lkjLm40Dls3vymUjIyui/W8U+d+uvnRhsTSA4eTCm4vmdPznQXOoEkJISxmTMZMzFJYOSjYszNjbFx426w5OTUMn6Wu2fPfubqSu8ZNoyx6RvGsCnPO6S6/fyY/LjnzjHF8dK6WVoyVrUqY126MNa+/Uu2ezclPoSHCz//2XlPeq+RyegcmJtHMoAxQ0PG1qyhYtA51f1nPT98YMzcPI4BjDVqxFh8vGo+q6pAFb//796lJBMdOKA6uT8idAKJRsPJC/zQrToiIgI6P0Szh//XhDImJgYGBgawsLAAADx//hwtW7YEABQuXBiurq44ePAgAODgwYMYOnQodHV1YWFhga5du+LAgQOK5/r37w9TU1MYGhpiwIAB2L9/PwDgyJEj6NChAwoXLgyJRIKhQ4cqnlMnwcHAwIG0P2YMXx7OCJ48kjMuXqQAe1NToGbN50KrozGuXqVto0bC6pETTp6kGDqZDGjc+EOm8XRiJSzMCBMm0ArIzJlAbKwBKlakJdfHj4EqVfwyTWi6ds0Rz58DBQoAs2fTY8lJevj0wBlXlvfF/j+mw+dDiTTf27w5MG0aUK6cN4YPpzJVx44B8+efQ0QE/R57eACHDgFdu75E7960ZK3tfXQZo5JltWsDLVoAkZFmKFcOePCAynSpumarnx/QrBkQGWmESpVoVSc3haQwRmEKiYk0zq5dhdZIPWg8ZrBv3764du0aAOD8+fMAgO3bt6Ndu3b4+++/8f37d2zatAk2NjYAgGrVqmHPnj0YO3YsvLy8cPfuXZQoQV9+X1/fVEt1Dg4OePTokeK5+j9YWw4ODjjyXzRxWu/z9fVNV+eEhAQkJCQo7kdGRmZ73IxRvEFgIFC+PDW35qTP27e05cZg9mEMmDuX9gcPBkxM4oVVSEOEhwMPH9K+NhqDjAH37rli6lQqaturF9CixWMApYVWLUskJeng2jXg0iWKHXv0qB3kQUguLkD9+newcmXtLGe0JyQAhw+7ACBjslAhOkfbey1C0LsUA9DvaTkMa/0Ypha//i7Png2Ymx/D+PHjFY/t3x8OIVbh1EViog7u3gXu3wfu3QMuXuwA+V+UoSHg7v4I585Vhamp6o/95QvQoAHFXRYuHIVz58xy1bkFKCHm6lXqpLJ+fe5tgCBY0emdO3fi4MGDOHv2LHr16oV27dqha9eu8Pb2RoMGDXDp0iWULVsWPj4+GD9+PD58+ABHR0fo6+ujWLFiWLZsGZydnbFt2zZUq1YNALBu3To8fvwY27ZtQ5s2bdC3b1906dIFAHDmzBksW7YMV69exciRI2Fvb48J/6U6vX79Gm3atIG3t3eaus6cOROzZs365fEtW7bAJItpwHfuFMe6dbWgqyvDrFkX4ej4a/BpWjEVqkAdctUpMz5eD4MHd0Rysi6WLz8FG5tolchVJd7e3jD84fJXKpX+EnP682OZ3QeAuLg4GBsb50iGh0dZHDrUBvr6Sfjrr20wNAzKlsysvCYzPYUY/61blXHyZCPY2ARh3LhdSstUZvzKjPfH+7Gxhjh6tClevKCrH1fXt+jR4wwYS8r2OdTEXP0o08vLDtevV4OXVzEkJaVuNeHg8BWNGj1AuXKfkJycue7RsVGAQTIA4JOXI3ZtGQDTfFEYM2kJdHVliAgpgJVLx0MikaGCy0u8eu4KAOjZbxdKl/svOyJZAuj+8LeWqKuQmebzaT2WyX3dJEOVzr+czOYqPp4hOLgw/PwK4+vXwvj61QbfvlkhOVk3lRxDw0TUqPEM9eo9gr5+iFrmPyHBChs2dENISEFYWIRj0KB9sLKKzbKMtB5LSEiAo6MjVElOfv+jogwwfnwrREUZoWvX52jf3lMlctMiNjYWgwYNEixmULBs4n79+mHo0KEIDAzEv//+i7179wIAHB0dUb16ddy9exdly5ZF8eLFcfjwYcX7mjdvjqZNqUuHvb09Pn/+rDAGfXx8YP9fCqH8OTlZfS4tJk+ejLFjxyruR0ZGws7ODl26dMnSpDGWUkZm+nQdTJ2adjo6TyAhmWfPUialgwMwenSbHF+Jacv4VSE3PDyl7dSsWfqYPPmPPDF+mSzlOzZzpjX++ONHT5C4x3/mDHlwv30DdHVlWLxYB2PGlINEopqaSuoaf/nyPTB5MnDuXMrjhQsDTZoAv/0GNG4MFCtWDECxLMudsXEspDU/AwA+rq4EACjR4DFkbV5BBuDbbXrMssRXtN01C0ljJ+DdlZr4bpMIh5aeacrUu+egkKkqyr7uotJzmpREdRT37j2Fhg3bIDqaMp79/SkDWH778IFe+zPW1tT2rUYNoE4dwN3dAAYG7gDc1TL/69cfx8qV7RESApQoAdy4UQB2dsMzf2MmiO27+vvvNA8VKwJ79rhCX99VJXLTIjIyEoPkZUYEQGPGYGRkJKKjo2FrawsA+Pfff2FpaYlChQrByMgIN27cQP369REcHIz79+8rsokDAwNhbW0NiUSCCxcuwNPTEz179gQAdOnSBRs3bkTHjh0RERGBgwcPKpaeu3TpghEjRmD48OHQ09PDtm3bMPe/tbNOnTqhTp06mD59OqytrbFhwwZ07949Xd0NDQ1TeYGyi0QCXLgAbNwIDB2qtJg8w6VLtG3SJPe65NXF1KnUjL5cOSqOmle4fJn+KM3NM69ZJxbCw6ml1X8FD1CmDNC79yWMHdtMUL0yw8cHWL++Bu7coQtdPT3gjz/oVrGi6r6z3vfoj7dEjReKx4K9qIJxoVJfAAAFigUCAML9CqvmoGkgS9aBTKoLPcM0rLAsEh5OcdDy2/v3VD4rJIQKZ0crFj/aZCqrYEGgShWgcmW6Va9OcZma+q389g2YO7cRvn2jC/Zr13JfYWmAloZ37KDzunkz9XfOzWjMGIyIiECnTp0QFxcHHR0dWFlZ4fTp09DV1cWhQ4cwduxYSKVSJCUlYfz48Qpv36lTp7Bw4ULo6emhSJEiOHv2rMLl3adPH3h4eKBMmTIAgAkTJsDJieoaNWjQAF27doWzszMAoHv37mjenDxyjo6OmDVrFmrXrg2ZTIZGjRphoDyzQ00YGAAjR6r1ELkCxij5ASDvAifrPH4M/PMP7a9fn/uaw2fE2rW07dcPyJdPWF2ywrVrQN++1IFIIiGjcM4c4PjxUKFVS5foaKpbuXQpkJBAMXvdu5PepUqp7jjfXpfEk0PNEOBJQh3cU4zB73Jj0PErAKBgsQAAQPgXm2wfJynOAJGBloj+boH4yHyIjzJFQrQJ4qNMERVoiQh/K0T4WyPiWyHIpPrQM0qAsXk0jAtEobChIc6dozIjhQuTZ04mA+LigNhYICaG5lZu/FHtwswxNk5CgQL6yJePPsdWVhQ3XaYM3cqWpfqZQl0k+/tTPO63b+awt6fP8Q/h97mGuDi6uAEo1r9GDWH10QQaMwbt7OzwUB7d/RNNmjTB48eP03xu0KBB6bpOdXV1sW7dunSPOX36dEyfPj3N5wYPHozBgwdnojVH0xw4AHh6kiHTuLHQ2mgXU6aQMd2rF9CwodDaaI5Xr4BTp2h/eM5XqtQKY9TkfsIEMh5KlSLvQ+3aQmuWPjIZsHs3tcT79o0eK18+ELt2FUaVKqo5RlQUsH8/sHn+GHzzTXEzufc+CbPCKQay3Dv35kJtuPc+haR4WrFJlqaOmfuZ6JD88HnojM/3XeD/uhSiAi0RH2mWLR2l8YaIijdEVJAlgkA1YrODrS0Zc/JbqVJkRFpY0C1/fuDQoSNqCb9QBX5+9Lvy4QNQqFAMrl0zhYOD0Fqph7lzgY8fac7mzxdaG83AO5BwREN0tAGmTqX9v/9Wf//M3MSdO+RR1dMjT01eQp453bmzuFsXxsZS5yF5Fat+/ciDK+ZWlHfvUvcaeeF3R0fyDMbFXUWVKjk3Wp48ofCZffvkS6V20NVPQrnf7qFSlwuwr/wm1evr/HEIH25URcinYjg+cSwSounklazzJNXrEmON4Pu4PD7fd4HPtaoI9LNN8/j6xnEwsw6FcYEoGOaLhZFZDAzzxSKfVRgKFA1CftsgFCgaCAOTOMRH5kNchBliw81R8MVvKFGiBgIDyev3/Tu1xjMxoZuxMXkMfzT+tDnL9utXMgQ/fiRP4JgxV+Do2FZotdTCy5fA4sW0v26dds9bduDGIEc07Nvnhu/fqfTOxIlCa6NdzJhB299/p4DuvMKbN1QnDqALCLHy6RPQoQPw/DkZ7CtXkhdTrDGxvr70HfyvbCvMzOj8/vknlSvJSVnW6GiSu3Ej8F8lMAC0DFrc+QQqjDwGk4JRab43X6FwdFm1ELv6z4P3ncqKx0vV88CXJ+Xw+aELPt13gf/LMpBJU/+9FS7nDYfqL2Bf2RMFigXCrHAIDPPFZnkOjMxjUaBYEACgYoFS6NEjD6wdgsrHNGxIMY7yGMF792KEVkstyGTUIUwqpe9r+/ZCa6Q5uDHIEQXXrwPXr1N7o82b81a8W065dYsaqOvrQ+FZzSvMm0dLr+3bU69aMXLuHC3dh4XRsuDhw0C9ekJrlTaJicCCBRQbGB9PxurAgeR9LZzDHI2gIKoXuGcPLQsD9D3v1Inis+rVA2ZuugFpOoagHBsnb7SZsxr//lcazNAsGlu7rERibOpSLwWKBcCh+guULPgNxXpdS7MOISdjfqwjWKJESozgvXtCa6Yeduygeo1mZsCaNUJro1m4McgRnIiIlObmQ4cCtWoJq482wRjFcgH0p50bg7nTw8srxUM1bZqwuqTHiRO0fC2VAu7uwJEj4s28fPaMlq5f/JevUa8eeTArVcq57Pv3gS5daLkRIC/g4MFA//5UTDq7WJbwQz6rEER/t0RCFGUMGReMgIP7SzhUfwGH6i9R8L9MY717DpBqiSFYs2ZNoVVQ8PkzeQQ/f6bwgGvXKHkltxIeDsjbIs+YAaih5K+o4cYgR3BGjqQfHCuraCxapAWpoCLi338pXtDYWNzLpKqGMTIAZTJquVW5cubv0TRnzpABJJUCPXqQ10GMHu+kJPIGzplDuhYqRNnZXbvmfBnb35+81Tt30pyVKUMZ7w0bKic7OUkPd7d2wJ3NnSGT6sMwXzRq/H4Cpeo8hnUZH0h0BOmhoDIcRJKR4e1Nc+TrS4ku164BxbJeLlIrmTmTYj/Lls2blT+4McgRlAMHKFNRRwcYPvwezM15PZmskpiYEls5fnzeupLduZO8gjo6KfGSYuLCBaBjRzK0unYFdu2iWEGx4eNDsVFPn9L9jh3JWLO2zpnc2Fhg2TJg0SIqswIAffrQ0puyvX8D3zrg1LRRCHrvAAAo0/ABmk/dhHxWv3Zz4qSQP5sn/ONHMgRDQsh4v3aNsmpzM69epZSnWr1anBdt6kaEP0+cvIKvb0oR7qlTgbJlg4VVSMvYuJF+uK2tqVRJXsHTE/jf/2h/9mwquismLl6kGMbERDKu9uwRpyEok1Es49OnVNpk3TqgW7ecewNfvwbatKGkGYA6Y6xYkbN5enmqAc7N+QPSBEMYF4hE00mbUb75HdEm4PzMmitrEBqTcQ3JkY1HwsLUQuXHbtmyZbZeX6oUXSTo6JCnWIyfXVXCGDBqFHW96tAB+K/BWZ4jiy3DORzVkpgI9OxJ8YLu7uKN+RIrAQGAvITmrFkU8JwXePuWloVjY6kouTxeUiy8fk2GYHw80LYteS/F2rlg82YKMciXj7J6u3fPuSEolQItW5IhaGdH479zJ2eG4HevYjj19yhIEwxRsu5jDDn2Jyq00B5DMCEpAeuur4OrnStc7VxhpG+EmadmopBZIcVjW+9shZmh+r/EjDHUXVQXlz0vZ/g6nf8sg9xuCALAsWPk/TQyApYvF1ob4cgDU80RI3/9RX8S5ubA3r3i/cMUKyNGUMBz5cpUuy4vcPcueZxCQ2n5Sh5eIBZiY2lJOC6OCqYfPize5abw8JQY03nzVFeO6Px58vhbWFANQWWSQ34m9DPFP1iX/YSuq+drXVyg13cvNC7XGO0rtQcAbL21FYZ6hhhSdwj09fQRnxSPCrYVoK+n/h9BvzA/3P54G8Ut81CmWQbEx1OIDUD/SSIJ2RQEbgxyNM7588CqVbS/e7dqW1nlBY4epZueHrBtW964ej94kDJdExKoNdSpU6oxNFTJn3/SEraNDRVRFqshCFCpmOBgwMkJGDZMdXK3baOtslnCaSFNoBNpUiBS6wxBAChvWx7reqV0ynri+wQuxVwUxp+RvhHO/XkOAPA19Cv2PNiDh58eIiw2DP1r9Ue/Wv1SyfsQ+AG77+/Gi68vEBEXgRqONbCg4wLF82ExYTjgcQBX315FaEwo6pWuhxltZ+Dqm6tYc5Xqpay4vAI6Eh2MbDQSBU0KYtSBUXj46SH61OiDUY1HITAyEC/9XqJbtW7qPj2CsmYNJS8WLUrGYF5GRNfVnLxAcHBKGZmRI2kpjZN1QkNT4uUmTRJvbT1VwRi1g+renQzBtm2ppqLYDMEDB4AtW2iZde/enCdgqJMPHyhIHqBlMVV55YOCUtoCyr/jqkCaQArqGSSpTqiAPPF9gkr2v9brOehxEK3WtEIlu0o4OuwodHV0EZ8Un+o1a6+uRZ+tfdCsQjP8O/xf2BW0w7fwb4rn73vdR+1FtWFmZIZ9g/bBuagzgqMpFtulmAuKFCiC6iWqY0yTMfiz8Z8oblkcm25uwvTW03Fl7BX4R/jDZrwN6i2phwq2FdR7IgQmJIS84gBtTU2F1UdouDHI0Sj/+x/Fuzk5UaYhJ3uMGwcEBlLbtdxeSiYxkWonygtpjxlD8T1ia9/2/j11LQBoTho1ElafzBg/nrKcW7QAmjdXndw9e1LqKVasqDq50kTyDOoaar8xmCxLxvOvz1HZPnUtJE9/TwzZPQSH/ziMZhWbAQCef0n9uhvvbmDWqVk4MeIEapeqDYlEgmdfnqFycXpNeGw42q1rh+Vdl6N3jd7Q19OnY/33fCGzQvga9hU1S9ZE6cKlUbpwaRjpG2Fqq6kob1seJaxKoE6pOjAzNMPF0RdRsagKJ1GEzJ9PMesuLkDv3kJrIzzcGORojCtXqHWYri4tDxsbZ/4eTgoXL1KtOokE2LqV2oLlVsLCyFjZvp3iAteuJS+Wrq7QmqUmKooSRqKiqEizPKlHrFy+DJw8Sedx2TLVypa3BezbV7VypfFkDOoZJKpWsAC8C3iHuMS4X4zBMQfHYGDtgShjUwYAxfaFxYbBuZgzAEAmk2HUgVGY2HwiCptTK5i4xDh4fvNUyJpzeg7c7NzQvCJZ+IwxPPV9mupYT3yeoJJdaq+k5L9MnIMeBzHqwCicGXVGYUDmVj5/Tikls2iR+H5XhIAbgxyNkJSUUshz+HCgShVh9dE2IiJSvE+jRuXuLi3e3jS+q1cp0/XUqZSlcTHBGC2HvnlDddgOHhR3/KZUSt5VgM6nk5PqZH/5Ajx4QBcqnTqpTi4ASBNpmVjfSPuNwSe+T6Cro6sw8gAgICIAFz0vokOlDorHHnx6gPJFysNI3wgA8OLrC7z4+iLVa574PoGMyeBq5wqZTIbd93enev594HvEJcWhfJHyAICgyCD4hfulaeideHYCg3cNxvHhx1GzpHi6oKiLv/+mlYfGjYFmzYTWRhxwY5CjEdasoT/NQoWoFAone4waRbW/SpSg4P/cyvv3lqhRg0rIFCsG3L5NpUrEyKJFlMijr09bGxuhNcqYLVuouK6FheoLdR87RtvatVV/HuQJJLoaiBlkMgk89raEx96WiAoqqHL5T3yeoIJtBYWRB5C3EAAqFE2J0Tv25Fgqj95r/9cw0DOAo5Wj4rHDjw6jTOEyMDMyQ1hsGL5HfUd52/KpZDgXdVYkqjz1fQpDPUOUsymHRGkiYhKoGviFVxfQe0tvHPrjEBqWa6jyMYuNJ08orheg77C2lChSN9wY5KidgABq9QMACxcCBVX/G5urOXKEOljo6NDyer5c2rHvwgVg3rzG+P6d+uE+eCDeBJnnz20wZQrtr11LGc5iJiQkpZbnrFlkEKqSo0dp27mzauUCP3oGE1Qv/Cdenq6PS4sH4dLiQVjTdDP2DJyFp0d+Q2x4zr500mQpAiMD8fDzQ5QtXBbBUSkF9ksXLg1dHV3se7AP0mQp9j3YhwueF+Bo5YjYhFgAQAXbCkiUJuKS5yUkSZNw0OMgDj8+rDAYC5oURGHzwtj/cD+SZcm4/u46ttzegjKFyyAyjvoyfw37CtsCttDT1cOko5Ow/+F+XH93He3Xt4eOjg6e+j5FVHwUXn59iQ3XN+RovGKFsZSuTT178hWqH5EwxrQvV19gIiMjkT9/fmzZsgUmKoxm9/PzQ1E19BRTh9zsyFy7tibu3nWAo2MIZs++mG5tuNw6/pzIDQ01xqRJLRAdbYh27V6jW7cXOZapClQtkzFg0qQW+PKlACpV8sPIkXdhZCRViWxV6xoYaIopU35DXJwxGjb8iMGDPVQmWx1z9flzAHbu7IV376xRtGgEFiw4Bz29nP3s/6hneLgR/ve/9mBMgjVrTsDSMlYlcuVs314Fly6VQfv2r9C168tsy3zn8xqsYOY6JSYYYN30yYiK+LV9m45OMhzLv0PFak9R1vUVCiVZZjpPtWrVQvHiVM/v0/dPmHlqpuK5MoXLYGqrqYr7J56dwKrLq6Cvq4+/mv+Fi68vIiAyAMPqD0ONknSlsfPuTmy9vRVG+kYYWGcgFp5biD41+mBs07EAgMc+jzH9xHRExkXij/p/IDQmFI99HqONaxt0rtIZfmF+GLZ3GPR09FDBtgJmtZ2FNVfXoFmFZkiWJWPR+UU4//o8WlZsidU9VsPc2JzOS2Iijh07hh9NBW39rX7+3AaLFjWErm4yli07A2vrGJXIVQWxsbEYNGgQIiIiYG5urjK5WYZxsk1ERAQDwCIiIlQqd9++fSqVp065WZV59SpjAGMSCWOPHqlGZnYRcvw5kZuczNhvv9H5q1KFsYSEnMtUFaqW+fQpjVNfX8pCQ1UqWqW6Rkcz5upKurq7MxYfrzLRjDHVn9fkZMZq1vzMAMbMzRl79Uo1cn/Uc/36lPOhSrlyBg4k+fPmKSdz+oYxbMrzDpne6gw9wADGChT9xv562JUNPzuENRy9kxUu68XocoVueobxzN3dh124QOdXE9z7eI/JZDLFfa8gL2Yw1IB5BXlpRoGf0Nbf6vr1aQ5Hj1atXFWgLrsiq/BlYo7aSExMCfwfNoy75LPL2rXApUuUdb1nj7iLGOeU48dpW6mSn2jDCBgDBg8Gnj8HzM3jcfSouDO6GQOmTAHu3SsOPT2K66ughtJx8iViVSeOyIn/r9SekVHGr8sJUYEWuL+jPQCg4ejd0DNMQoGi31Hz9+MYeGg8hhwfiTpDD8KiuB+kCYZ4+NAezZoBZctSVnZIiPp0A4CBOwfi/KvzYIzhY9BH9NnaBzNaz0gVQ8jJmFevgBs3KHN47FihtREf3BjkqI2VKylpxMoqdyc9qANPz5TYlqVLqa5gbubhQ9qWLx8krCIZsHIl9drV0wP+/PM2ihUTWqP0iYujLiDyWp6bN1PmpKoJCQGuX6d9bTYGr6/tCWm8IYq5vUW53+798nyhEn6oN+wg/jgxEgMOjEOzZu9gbg58/Eh1G4sVoxqgUVHq0W9i84k44HEAnTd0xuorq7Gi2wpMaTVFPQfLAh07dlSL3KZNm6pFLgCsX0/bdu2obzYnNdwY5KiFL1+A2bNpf8kSnjSSHRITgV696E+wRQvVtgsTI4wBjx7RfokSocIqkw7XrgETJtD+smWAk9N3YRXKgK9fqebhrl3kBenX7xH691fPsU6cAJKTKdGnZEn1HENuYKmr2Pg3T0e8PEmVwpuM35ZhdqlEAtg4fUK/fk/g7w9s2gS4udF3dflyumg7fJg+08oQHx+f5uN9a/XFzgE7cXTYUazusRruJdxTPb9tG/DuXdoy/f39lVMmAwzV5BK3tLRUi1yZjFpEAuIsUyUGuDHIUQtjxgAxMUCdOqovQpvbmT4dePYMsLSk4tK5vfTBly/A9+/kcStePFxodX7B1xfo1o2Mnt69U+plipG7d4GqVcm4trCgDO1mzT6o7XhHjtBWXV5BgOpOAoCDg+plMwZcWdYfAFCh5U3YOn/M8ntNTSls4MkT4OxZMob9/YGuXeki7vFj+sxkB6P/3J9duwKTJ2ftPXFxwIABtGSdFra2ttlTIhfi7U21Wg0N6UKJ8ysiLpHK0VbOn6c4Il1dcs3ndmNGlbx5Y4XFi2l/82agSBFh9dEEHv8l41asCBgYZPPfU83Ex5OhIy93s3GjeD/PW7ZQQfekJMDZmeIwHR1paVsdhIdTRxNAfcZgYiLw6RPtlymjevletyvD91FF6BkmoMGoPUrJkEjI+Hv5kkpnLVxIRviFCzQf69alfr00WYpLnpfg+c0Tejp6qFi0ImqXqp2q9qC8m0tWyE4np9+3/w7/cH+0cW2DEY1GZP2N//Hvk3/hZueGElYlAACRcZG48PoCfEN9YaBrgPK25VHDsQZMDanR732v+4reyGlRolAJlLIuhUuel355ztzYHM5FnVHQNGVZ6UPgB7z59gZt3bLX1P7ZM9o6O4u7MLyQcM8gR6XExtIPIECFkp2dM349J4WICOCff2qAMbrS79Ah8/fkBuRLxNWqCavHzzBGn2W5l02MfZEBMv5GjCAvVVISGWZ375IhqE5On6bjOTkB5ctn/npl+PSJvGumpuq5MHp3mcq2uHW6hPxF0jdasoKxMdVwfPWKvrtlylCIjBzGGNZcWYM6i+rgtf9rOBd1hrmxOcYeGovC4wqnaRCpmu2/b8fXsK/QkWTvr1+aLMXIfSPxLvAdHAo5AABOPz+NqnOrwj/cHxVtKyKfUT4M2T0ENRakFN38HPIZ887Ow9A9Q3Hzw81Ut6UXl+Lym8uISYyB13cvtF/fHrvu7YJ3sDfeBrzFkgtLUGJyCVx9c1Uhz87CDksuLMHF1xezpb/cGHRzy9bb8hTcRuaolFmz6Afczi4lZpCTOYxRu7ng4HxwdKRkhbyC3DNYtaqwevzMrl0pvZEPHlTPMmVOYQzo04f0A4A5c4CpUzXjvfz3X9qqc4lYHgdXpox6xuTzqCIAoGSdpyqTWbo0XTgwllrniUcn4urbq7g67qqihh8AtHRuCYdJDshnqP5q8rEJsXgb8PaX3siZ8deRvyCVSTGpxSQAQHhsOLpu6opTI06hsVNKZpKxvjFOPDuhuN/dvTvWXVuHphWaYnHnxalk/nngT1QpXgUWphZo59YOow+OxrAGwxRdUMb8NgbWY62x4+4ONHKimE4jfSOMazoOow+Ohudszyzrz43BzOHGIEdlPHpEma8ALY3k1k4Z6mDxYloa0tWVYc8eHZiZCa2RZoiPJy8WQK3MXmS/prZa+PYNGD2a9mfPBpo0EVSddFm4kAxBfX36/LRvr5njymSUVAMArVqp7zhyr7GLi+plJyfpItzPGgBQuOwnlcv/0RB8+OkhllxYgodTHqYyBAGgsHlh9KreCy7FXBARG4FjT6m3XxOnJnji+wQ3399EfuP8mNZ6GiQSCT4GfcQhj0MIiQmBm50betfoDckPBwuOCsYBjwPw+u4Fu4J2GNZgGIwNaC35xVf6grkUc4E0WYrd93dDAgn61eqXSsaPePp7YtOtTfBd5Kt47Nrba4hLjINz0dRLP02cmqQyNGUyGZ5+eYpu1bopHguLCcPbgLdY1X2V4rEnvk8AAG52borHkmXJiE+Kh5lR6h/DCrYV8ObbG3yP+g4rM6s0df6Zx49pW6lSll6eJ+HLxByVkJhIS5syGdCjB9CmjdAaaQ/nz6cEi/ft+xg1c3+feAX37lEAfJEi6ltqzC6MUcZheDjVxpSX+BEbp0+TFxCg3t+aMgQB4MuXAggLows+ddYPvX+ftupo9xcdXBBgOtDRS4KpRYTqD/ADk45OQs2SNVGtRNqxEFv6bYGpoSmkMiliEmIwYMcA/HXkL3j6e8LcyBx77u+BRCLB3NNz0XVjV9QvWx8D6wzEppub0HdbSobeyWcn4T7fHUULFMXIRiPxJuANqs6tikRpIgAyupyKOMHE0ARJyUk4+ewkrr69mq4hCABzTs9BO9d2sDBN6WGY35i6tPTY3AO33t9SdCcpZFYIZWxSgjs/BH1ATEIMHK0cERoTitCYUJx5eQanX5xOdYwnPk9QolCJVPGB2+9sR7IsGUPqDUn1WvkSd2xi1jrdhIUZIyCAPPzcM5g+3DPIUQkLF1IAdaFCwKpVmb+eQ3z8SMYzY8CgQUDDhh8BiCx4To3IExAaNxZPYsaRI7QEqqdHJTvEGHD++DHQvTt9bv74g26a5M0b8qjVrk1eSXUgk1F/akA9xmBUIJUxMbMOhURHfV1Zg6OCce3dNcxtn3mxVct8lihRiJIzRjUehZola0KaLEWV4lVw2fMyZp6aCc9ZngqDq7VLa6y+uhoAEBARgB6be2Bz383oUJkCjntX740tt7YgICIA9pb2eOL7BJXsKyFJmoRpJ6ahQdkGGNV4VLr6JEoTceblGaztsTbV4w3KNsCMNjOw5MIS1FtSD0ULFEWfmn0w7rdxKGRWSPG6Jz5PIJFIsPDcQsVjH4I+/CLvie8TJEgTMGTXEMiYDD4hPrDMZ4k7k+7A1S51g3LfUPJQSpC1HwxvbzIwnZzEGfMrFrhnkJNjXr1KKSq9ejUVmeZkTng4eXPCw+nPbu1a8RhEmkJuDIplGTY8nJIxAOreoY7lyZwSEgK0bk2lm377jbyCmkZuDNavr75jvH0LREbSH3jFiqqXH/mfMWhuk7PEkcx4F0iBjz8vqabHU9+ncLNzQ82StESgp6uH1q6tMefMHNQqWQtlbMogUZqII4+PYOnFpRjRkD6wKy6tgEQiQafKncAYw633tzD64Gi0dW0LOwuqsvzE9wmK5C+ChssagjGGP5v8maFX8J7XPUTFR6Fu6bqpHtfR0cHMtjPht8QPO37fAaciTlh4biHqLamHZFlKRYCnX56inE053PzrpuJWxb4KKtmnXq99+uUp+tTog6mtpmJYg2H4EvYFUfFRqFL8V7fz+8D3MNI3QtGCWesL/OkTeTTFFpMsNkR4zcvRJpKSqNNBUhItDXfvLrRG2kF8PFXCf/2alkjF3tpMHfj7pySP/PabsLrIWbwYCAoiL8IU4Ro8ZMimTUBAANWVO3xYfZ65jPD2pj/Y2rXVd4yXL2nr6qoe72xSLJVyMTSNU73wH5DJZADIqMsKT3yf/GJ8JUoTcefjHdhb2KPuoroIiw1DBdsKWN9rPTpX6QwAuP7+OvR19dF8VXOExYTByswKA+sMxMA6AyGRSJCQlIBXfq9gbkQlW3bc3YHpracjv0n+dHV55f8KxgbGigzinylgUgD9avVDv1r9MOf0HEw/MR2BkYGwLWCrGMvPySrHhh+Dvm7Kh/Zb+DcERASgQdkGKG5ZHMUti2NMkzEYumcoPn3/pChjI+eu1100KNsAujq6WTqfXl5k9PN2qBnDPYOcHLFoES1ZFSwIbNiQ9zxbypCcDPTsCdy8CZibA+fOAXmxLuy//9IyZ82a4hj/t28pWdwLF4rTOJdKgX/+of3Jk4H86f+Pq43ISCAkhOrIqbN01If/amWnV0w5p+gZJgEApInqtaZdirnAQM8AAREBvzznE+KDSrMr4XPwZ8VjT32f/uI5S5YlI1mWjCktp+DmXzfxatYrHPzjILpU7aLw7CVKE9G5SmdcGXsFz2Y8w6WxlzCi0QhF8shr/9dISk7C8f8dx8KOCyGRSLD04tIMdY9LjINjIcdU3sOHnx6i37Z+v7zWKp8VCpoUhFU+WhpijOGJz5NfxmKgZ5BKnjx55MfXtXWlOoJnXp5J9V7GGK69u4ZWzlnLWmIsxRisXj1Lb8mzcGOQozTPn6eUj1mzRhx/6GJHXrvu338BAwNq5+Xqmvn7ciNHj9JWnaVJssOcOZTMUrOmeBOgTp6kji2FClFXFCF4/Zq2trbqbTP5/j1tS5dWj3w9Q0qqkCao1+rPb5IfE5tPxKorq+AfntIazivIC+3XtceQekMUnrfQmFB8Dvn8izfN2MAYNRxr4NHnRwpD6pnvM/Te0lvxmgZlG+CZ7zPFMm1IdAharGqBmIQYAGRkOlo5ooBJAeQ3yY8pLaZgxeUVCIwMTFd3fV19GOgZpHrssc9j3Pl4B5FxkYrHvoR+wbJLyzCn/Rzo65Fx7RPig7DYsEzL2DzxfYKiBYqisHlhxWNFChRB1eJVfzEG5VnMfWtmra2VtzcQHW0IA4O8+zubVfgyMUcppFIdxfJw+/bk6eJkzsyZtMwnkVBniAYNhNZIGL5/B27coH019bzPFh8/UscXgLyCYvVwr/0v7n7IEMDIKOPXqotXr2irjji+H5F7BtVmDBqRMZgUb5DJK3POrLazUMC4AJquaIoi+YtAV0cXBnoGWNltJeqXTQm8/BT8CS7FXFC+yK+p9Tt/34mhe4aizqI6cLB0gL6uPpZ3XZ7qGCP2jUCVuVXgXNQZSclJWNBhgaIbyPfo76k8asMbDsexp8fQdWNXzGk3B/XK/NqnzbmoMwIiAiCTyaCjQ76j8kXKo5xNObjPd4dtflvo6+ojXhqPWW1noYd7DwDA6iurcfzpcVSwrYB5Z+fh5vubmNF2RirZjDF0WN8B3yK+wdrcGi1WtcC2fttQpABVF+9doze23dmGFqta4PAfh2FiYIJ5Z+dhTrs5v5TnSQ95AlKlSuL09IsJbgxylOL48fKK/rl8eThrrF+f4kldv14cRpAQMEYlUWQyCuouUSLz96ib6dNpCbZ5c/H2Ln31imr76eoCQ4cKqwcAVKig3uP4/lfWTl2dVPQMEwAA0gT1G4MSiQRjm47F2KZjUxlWP1OleBU8n/E8zefK2JTB1fFXkSxLTjNeztzYHLsG7oJMJoNEIvklMUReMFqOkb4Rbk+8naHe8ji+c6/OoZULGZL1y9ZXGLDp6TKq8agMs5QBOifH/3c83ef/bPIn/mzyJwAyHKcdnwbnos74o37WU+cfPqStu3uW35Jn4cvEnGzz5Alw/Dj9E6xbBxQunMkbODhyJCVLdcYMYf/MhWbBAvLCSSTA/PlCa0PdCeT9excsEFSVDJFnDbdvTx1+hEKe2KHuVpPR0bQ1z5oTKNvoK5aJ1W8M/kh6hmBWySxxQkdHJ8MM4eygo6ODE/87gf0P025wndUkjpyy98FelLUpi5XdV2ZrbPI6lTxeMHO4Z5CTLRISgH79AJlMB126CBe3pE2cOQP06kUesaFDyRjMq2zZklIoedUqcWQRy7OGe/QQb1Ha4GBg927al19UCAFjdDEIAJWz19Es28T+V1NYXbXh5Akkmlgm1masza2xZ9AeQXXoXaN35i/6CW9vWiaWSBjq1eNLV5nBPYOcbDF7Ni0TmZvHY906obURP2fP0nJwYiLQpUverCUo5+TJlOLIkycDI0cKqw9AGd3nzlHpEjH30l63jpJbKldWb22/zPDyAiIiAH39ZLV2jElMpGV7ADA1Vc8x9ATyDGbElStXVC5z//60vXo54Zq8F6GKOX/+vMpkyWOAXVy+CepJ1xa4McjJMh4eVEoGAAYM8ODFpTPh7FmgQwf6Y+vcGdi7l+K98iJ37pAXWSYDfv8dmDdPaI3IyyVvNTdwIFCqlLD6pEdcHBQXXuPHC3sxIe8jbWcXrtb6hjExKftq8wwaic8YDAoKElqFLBEQ8GuZHFUQFhamEjnbtgErVtB+o0ZeKpGZ25EweVNBTpaJjIxE/vz5sWXLFpio8JfKz88PRYtmraq6puUmJupg6tTm8PPLj5o1fdCx42GV6yrm8WdX5tOnRbBiRV1Ipbpwd/fFiBF3oaeX+VdNCF3VLfPlSxusXFkbcXEGqFTJD2PH3oKubtrnQpO6PnxYDCtX1oWhoRTLl59CwYLxOZaZU9KSe/lyKWzbVg2FCkVjxYrT6Z677MhUlkWL6uP5c1s0aXIXAwb4qETmj8h1DQkxxsiR7aGrK8Pu3QdzJPOdz2uwgr/2sY2NNsHS8dQ66e9146GjK8uyTEmYSZoyc4pZlK3ovv8mJiawsbFBfHw8vn//jqSkJI19/nV0dGBlZQUzMzOEhoYiNDQ0w/cnJelg167KuHKFUtCrVfuCTp0Owd5e9XXPVH0OYmNjMWjQIERERMBcXYGyGcCNQSWQG4OqnrT9+/ejR48eKpOnSrkTJ1J3hsKFqc7YxYuq11XM48+OzOPHyQuWmEg19Pbvz3qXCE3rqm6ZmzcDw4ZRoe369clbmtH1k6Z0TUqibNgPH4Bp07K/RKypz2pyMnVD+fCBCmL/+WfOZSpLUBDVFkxOBpYuPY1x41rnWObPyHV9/56KTefPTy0Cc8KMjWMhrfn5l8eT4gywpMYBAMC4uz1haJr1iwG9ew5pyswpFV93yVXff03K9fOjFZj798l7Pns2xQMfPCg+XdNCXXZFVuHLxJxMuX8fWPpfofqNG6mcDCdtNmwgAzAxkWIFs2MI5iZkMmDSJKqHl5wM9O4NXLggnkbxW7aQgWVlBUyYILQ26XPyJOlZsCAtZQvJ4cM0l1WqALa2UWo9lrqTR4CUBBIAkMbzInTazM2bFE97/z5QoAAl7f39N5DDxO08BT9VnAyJi6PewzIZ0KcP9dPlpM3Ro+QFk8mAwYOBgwfzpiGYmEg9quXxpTNmALt2iafoa3Q0MGsW7U+fDpiZCatPRsgvwoYNA/LlE1aXvXtp26uX+o8ljxlUpzEo0WHQNRBf3CAn6zBGVQkaNSLPtbMz8OgR0KKF0JppH9wY5GTI9OnAu3dAkSL0peOkz7JltP3f/8iDqpdHCzeNGkVeJH19YOdO6roipgzqZcuAwECgZEnyXIqJYsWKKfbfvKGEDQMD4TOvvb2Be/doHjVRTkruGVRXJrGclP7EefTLqsXExZGDYvRo8lh3706f0ZIlhdZMO+HfAE663L2bYuBs3qzePqTazqtX9EOkp0fLE2IyfjTJ5s1kCEskwLFjQGvVh5XliIAAYMkS2p8/nwwtMVG3bl3FvpMTXYjdvw/Y2AioFFKKcjdqpJke5HLPoNqNQYNEJMAUyYki+yBwMiQkhPqH37tHFRqWLqV42rz6u6sKuDHISZPYWFoeZoyKTLdqlelb8jTymlZt2wr/xy0U9+6RVxQA5swRnyEIUFB5TAxQrRrVfRQLt2/TBUWbNsCPCYplytBNSBjT7BIxoJmYQQDQNaBihtLEPBjPIUKsra0V+zIZefzSCrU5dox+bwoUAP79N+/2eFclfJmYkyZ//02B67a2lMXISZ/YWIqJA8S37KgpgoMpcSYpiRJn5F09xMT798CmTbS/eLF4vAj799Ny16lTZKRGRlKLPHkPYKF58YKWrA0NNddPW5OeQQBI5svEoqBGjRoAKHGqeHFqRdigAXD9eurXDRpEF3Z373JDUFVwY5DzC9evpxiAmzfT1RcnfVasoPIXjo7iaK8mBPPnA9++AeXKATt2iMfQ+pEpU8jT0KqVuP5A5swhz+CZM1SQu3VroGdPoHZtui908S95U4hmzajUiyaI+i9ZWd1JM4b54gAAseGaL+XB+RVTU1OEhFDc8Y0bFNvbtStdhAwfntKVRiKhklBOTsLqm5vgxiAnFRERtCzMGGXEtmwptEbiJigoJWt2zpy8WcrA1zelQ8aqVeLMzr1/n7K9dXSAhQuF1iaFyEgyfORxeFIpULMm4OkJfPoEXL0KPH0qrI63b9NWkwa0vBGFuuOUC9r70/F8i6j3QJws8+YNULo0XVybm5MR+Po18Pgx0Lev0NrlXvLgXxcnI0aMoD93R0dg+XKhtRE/s2bRn3mVKpTNlheZOZPKyTRsKE7PKGPAX3/Rfr9+QMWKwurzI2ZmgLExLXstXUrL2PK4PAsLKpUh94YIgUxGrQQB8lRqCnmjCQsL9R7Hovg3AECwd7FMXsnRFOXLA8+fU0ygnCJFgMuXqWzMuXPC6Zab4cYgR8G+fcCePeQ92b1b+LpmYuftW8qcBeiPPC96Bd+8ofIxALBggTiXh588scWtW4CRUfY7jagbiQS4dIli46KiKOb033/JgH33juIc3dyE0+/tW/LSGRsDlSpp7ria8gzaOHkDAPxeCpylw1FgYUGhN61aUcciOWZm5Bl89kww1XI1PGqWAwD4+BEYOpT2p08HatUSVh+xExFhiHbtKAatdWtxxaBpioQE+nGWyYD27YHq1YXW6FeSk4EDB9wAUOmJYiJ0ABUvDqxeTfs+PtS2b906ID6esniFLH/j4UFbd3fNFlAPCaGtuo3BYm5vAIkMId52CHjjqDAOOZrnwwf6TSlfnrzjxsZAjx702zJmDH0WTpxIKcTOUS150JfB+Zn4eArSjYoC6tYFpk4VWiNxExEBLFrUAO/fA/b2wD//CK2RMIweTcs2FhbizTjfuRPw88sPCwtqjycmPn+mrP2RI6mNobc3GYbv3lHSxsePVGpGSD5+pK2mA/UDA2mr7jJNJgWiUaEFBUVeX9NTvQfjpAljFCbRqRMlihQtCmzbRkbg+/fkEezQgcIUBg2iiyWO6uHGIAfjx1OQuqUllbnIq50zskJcHNUS/PzZAlZWtMQnRm+Turl92wEbNtAy5969ZMSIjbg48nIDdIEjpqz4r1+B5s3J62duTpmRJUuSJyQ+nvqs/lByTTDkxqCmuzoEBNBWEzU76w3fDx09KbzvVIbv4/LqPyAnFadOUWmqZ88oLGHIEOrD3b49XWiuXUvJVF+/An/8IbS2uRduDOZxjh5NyQTdvTt1wVtOapKSqFDxzZuAsXEiLlwQviCwELx6BWzZUg0AGVvNmwusUDqsXg34+QGFCsUoimGLhX37yMsxfTowbx5w6xYlIRkbkwdEXnRZaOTGYKlSmjtmcjLw/Tvta8IYLGgXCNcOlwEA11f3FryUT17j0SMKQ9DRodu0abRUHB4OTJ4stHZ5B24M5mE+fgQGDKD9v/7izb0zQiajmm9nztAf9oQJNzQaUC8WIiNpOScxUQ9Nm9IPtxgJCaGEFgDo0uUFDA2F1ednIiIoA1tO8eJkAG7dSobXoUPC6SZHJqM4LkCznsHgYDo2ABQqpJlj1hlyGHpGCfj6rBw+3qyimYNyANDFz9q1KUXWb98mp8ShQ/R9iIgQVr+8Al8QzKPExQGdO9Ofe+3awNy5QmskXhijIqh799IS+pEjQEREsNBqaRzGaPnm/XvAwiIGe/eaQldXaK3SZv58+hNxdQVq1/4MoKbQKqVCXlQ6MpKStfbsISNbIgHq1KElMaF5+pTOYb58VExcU/yYMJOcrJmwFTPrMFTtfhb3d3TAjXU9UaruE0h0uItQEzRrRr+v1atTSbPoaIqZtbGhkjKRkZordp6X4Z7BPMqIEVTLydoaOHhQs5mC2sb06bSULpFQ27m8Woh75UoyhPX1gT//vKMxr012+fyZPA0AFQQXY8mfChUo3ODrVzJcS5emZBKACk27ugqrHwBcvEjbRo00+/uQP39KiSJ5iRlNUOP3f2GYLwZB70rA84IGiyrmQUJDKYxj82byiE+aBHh5UamuN2+AsmXp/yk2Nm/GZAuBCH8mOepm2za66ehQ7BKPE0yfFStSvKbr1lGAf17kzp2Uws3LlgGlS4cIq1AGTJtGS7CNGgFNmwqtTfq4uJBH8P59ihs0NKT4KamUaqwJzaVLtNX0OdTRSfEEadIYNCkQjer9TgAALi4aiM8PRFSdPBfh709ewDt3yPhr2pTCAmxsyEtuZEQdRzp0oCLsYqxdmhvhxmAe4/lzKILpZ88GGjcWVh8xs2MHMHYs7c+dCwwbJqg6ghEURKWHpFLqsjJihNAapc+zZ7ScDwCLF4vvj8TfH2jShDL3e/cGYmJSP1+1KnnkhPZmxsSktKEToquMvPOIJo1BAHDvfRo2Tl6IC8uP/UNn4O7WjmAykX2ItJzx46nm58GD1GUkNJS85D9Stix1GhHzxVxuQ8IYz53KLpGRkcifPz+2bNkCExMTlcn18/NDUTW46eRyY2P1MXVqMwQGmsHV1R8TJtxQ+k9HHbqqe/zZwcOjKFaurAPGdNCq1Rv07PkslWEhJl3VKVMmk2DBggZ4/doGtrYRmDPnIoyNpaId/8KFDfDiRRHUrOmDkSPvqkRmWmRHpq6uLrp27QqAMq+rV6eyGTNmUJjGli30uuRkMgLln7PDhw9DqoJedMqM/+nTIliypAEKFYrBqlUnfzGq1T3/M2Y0wYcPVvjzz9uoXv2LSmRmlcREXWzfXhU3bjgCAKpU+YqhQ+/D1DRJ8Zp3Pq/BCqo+5VsSZqJyuWZRtoL/puTLlw9t2rRBVBRQogRdFMljQ2fNSskiBihmUN79SiaT4dq1awgKCtKYrkLJjY2NxaBBgxAREQFzc3OVyc0q3BhUArkxqOpJ279/P3qoYR1y//796N69Bzp1olZX9vbAkyfknciJTFXrqs7xZ0fulSsUF5iYSNnWW7b86mESi67qljl1KsW0mZoCDx9SyYecysyInMi9coW8bvr6VK/M0THnMtNDGZlfv9LS9bt39HmKjqZizleuUImiAwfIU7JqlUpVVUrXMWMoRnTwYFqqU4XMrCCX27Mn1TxdsoQ8SaqQmR0Yo+/9iBH0O1C2LHVjMTOj52dsHAtpzc85UywN9O45qFxuxdddRPH5B2g5+Ny51GEQ585R2NLhw3SOhwwBHj9WnXdcjL9VaaEuuyKr8GXiPMKKFWQI6utTEkBODMHczMOH5LVJTKRq+Bs3im+pUVOcPk2GIEB/jOVFXI9XJkuJaRw6NMUQFBPe3pQoIv885csHTJhAy9kAsH278B1H5MiTR4RYIgYABwfafv4szPElEjKE79wBbG3JgE/LKOZkDx2dX+NhnZ2Bly+pA1bv3nQxJHSYRF6En/I8wLt3hRR/lCtXAtWqCaqOaHn5kpbxoqMplnLfvrzbjeXTJ6BPH9ofMYJiBcXMwYPk7TYzE2/tw3LlqJzTjwwcSJ6Rhw+pZE/DhsLo9iNfvwKenmQQCRVTLLQxKKdqVYqtBuiCOikp49dzsk/RolRk/I8/qKh/vXpCa5Q34cZgLicoCFi9ujaSkykTNq8mQWTGhw/kBQkLA2rUAI4fh+gKFWuK+HgyWsLDKb5t2TKhNcqYxMSUsix//QVYWQmrT3pYW1Ph8h8xNSUPVLt25BURQ93Gy9SMA1WrpiRyaBq5MfjpkzDH/xH5hZCfH/2ecpTH359q3P6IRELhEt7eFEfLEQZuDOZi5AZgWJgJnJx4mn56+PpSrFlgINV3O3s2JYA5L/LnnykxpYcOpS4CLEY2baI/EhsbinXTNkaMAExMgH79hNaEkC8RC5nJKTcGfXwgeHs4Hx/a5stHRZA5yvH1K3n92rb91SDcupViRHm9W+HIo4tgeYOZM6mAraFhEo4e1c/TBk56BAaSIejrS0HiFy8CBQsKrZUwMEYt3OQXDfv2UbKRmImKAubMof0ZM8jTJnZ+zJYEqOXax490zhMTE2EgoPUtk6V4BoU0BosXp21MDLUWFLLA+bNntHV15bFsyvL1K9CgARWWlsmonMyPibhly9I2MjJSkOQJDvcM5lrOnk0pljx4sAecnITVR4yEhtLS8IcP9Odz6RIt5eVFGKOszalT6f78+dpR42v5clq6K12a4u/EDmMUh9ewIWU8y5F77B8+fCiMYv/x/DnFb+XLR+ESQmFoSIkbgPBLxT8ag5zs8/49tVj08qKyMtevp9/o4JK80jlH43BjMBfy+TPFHwFUYLpWLR9B9REjSUnUC/blS1r6uXwZsLMTWivh2LaNDCuAtpMmCatPVggIAJYupf1587RjienePUoWuXcv7Xi8L19yVlMvp8iXiOvXFz48QCxJJB8+0FbuveJkHV9fuvjx8QFKlSJDMKPVhsTERI3pxkkNNwZzGfLg/7AwyhoWe/C/UPz5J/0w5ctHf4ClSgmtkXB8/gyMHk37CxZoT9zdjBm05Oru/muWrlhZs4a2vXqJ0wt97hxtmzcXVg8gZanYR+BrWbmH0t9fWD20jeBgWl34+pUy6e/cEX/YSV6GG4O5jNGjqWCnpSXVE8yrGbEZ8c8/dJPHxVXMwy1IZTLKcI2OBmrXprp32sDLlymdO5Yu1Y7EKH9/+k4CwMiRwuqSFpGR9IcNAC1aCKsLkGIM+voKq4c8xObNG2H10Caio6lw/7t3tOJy8aI4L344KXBjMBexa1dKkeS9e/lVWFpcvw6MGkX78+aJp8ivUKxbR+fExIR6MYuhtElmMEY9o2Uy8gjWrSu0Rllj40bq71ynDuDmJrQ2v3LlCulXqhRQsqTQ2ojHMygvtu7pKawe2kJCAhXs9/Agp8TFi3k7BEdb4MZgLuHFC+q8ANDyWbNmwuojRgIDqaipVEold7QhLk6deHsDU6bQ/pIl2rNUfvo0xXgaGACLFgmtTdZISCBjEEi5GBEb58/TVgxeQSDlYlZoY1DuGfT2psxmTvowRi08L12iC8wzZ2iJmCN+uDGYCwgPpyuxuDiK9RFrBwYhYYyM5eBgwMWF6lppw9KiukhKAnr2pOWcunVTLiTETnx8SnzjmDHibDuXFgcP0sVIsWLU7lCMyEvKiOVCUm4MCpxTAxsb8uTKZDwGOzPmz0/p3HT8OBWt52gH3BjUcmQyKlbr5UXLKnv28FpYabFnD/046evTcrqxsdAaCcvMmcCDB0CBAtr1mVm+nDw0trYpXUfEDmPUygyg7H4xZj1//kznVVdXPO3A5EuLoaFUb1AoJBL6vgDA6tVUeofzK8eOpXwn160Trq81Rzm05C+Akx6LFgEnT9KS2ZEjFKPBSU1IiIkiYH/mTF4v7OpVyhoGgM2btSe29MsXivMEgMWLtadLzIULVKvOxIRaz4mRq1dp6+5O/Z3FQP78gLz+sNDewbZtgcqVyShdskRYXcTI06cpvcxHjQKGDBFWH0724cagFnPlSsqV2Nq11EuUkxrGgE2b3BERQX90f/0ltEbCEhxMP9qMAYMGaU9JFoDmLjaWsp579hRam6wjN2CHDhXvxdqVK7Rt3FhYPX5G7h0U2hiUSIDZs2l/7VogOkIkFrMICAig3tqxsVRKhi+layfcGNRSfH2pgbq8NMigQUJrJE42bgReviwCIyNaHtbLww0Y5Qagvz8V0F25UmiNss7Vq8CBA/SnvGaN9sR73rwJ3L5Nnvtx44TWJm0YS/EMitUYFLq8DEClUqpXp9jsOxcaCa2OKIiNJa/ply/0m3LwYN7+jdVmuDGohcTFUcJIcDAtXaxbpz1/jprE25tarAHAwoW8g8CGDcCJE2SY7N+vHX18ASAxkWLtAGDYMKBSJWH1yQ5yr+CAASnFi8XGmzfk3TE2BmrWFFqb1IgliQRI7R18dLMWooLyaBPz/5DHq8tLyJw5QzHIHO2EG4NaBmP0hygvLH3sGE+GSIvkZKB/f4rxcXIKFGWRX03y6hXV5gMozlSbDKoVK6iPr7V1Sr9tbcDDg2qs6eqKOzxBvkRcp474itSLyTMIUFJEnTpAslQfd7d0ElodQZk2jeLU9fXpf0gMtSk5ysONQS1j/Xpg507K/jx0KKUwKyc1K1cCt25RksEffzzQmmxZdRAfr4sePagsS4sW1IpPW/jyJcUbs2QJUFCLnDFyr2DPnkCJEsLqkhFyY7CRCFc+xeQZBFJ7B58d+w2RASINAlUzN2+WwPz5tL9li3gy0DnKI2GMMaGV0DYiIyORP39+bNmyBSYmJiqT6+fnh6JFi6b7/Nu3hTBvXmMkJ+ugV6+naNXqrUrkKoOYZX79ao6pU5sjKUkXgwY9RNmyN0Wrq7rlJiXpYN48d7x/XwL588dh4cJzyJ8/IcdyNTX+FSvqwMPDDuXKBWHatCtKhUMI8Vn98iU/Jk5sCYmEYfHisyhaNFIlcpUhI5kymQRDhnREbKwB5sy5gJIlQ3MsMyf8LPf1a2vMm9cYRYpEYtmyMyqRqQr+/rsOvL3t0KLFW/Tp81Rlct/5vAYrGKsyeQAgCTNRqUyfD47Ys3IYkpN10a7da3Tr9kJlssX8v6JuubGxsRg0aBAiIiJgLk+j1yDcGFQCuTGo6knbv38/evTokeZzX79StnBgINCtG8V8ZfWPMSO5yiJWmVIpxT09ekResDNngAMHxKmruuUmJpJX6uhRig+8fBmoUUMlojUy/vPnaQ51dal0hbNzzmWqisxk9upFxXc7dUrpR6wKucqQkUwPD8qyz5+fumtktR2hpj7/Hz8CpUtTKExMjHKx0erQddKka1i0qCHy5SOvpapi5WZsHAtpzc+qEfYfevccVCYz1NcGO3svQlyEGTp3poQRVa66iPV/RRNy1WVXZJU8vHimPcTFAR06kCHo7My7Z2TEwoVkCBYsSMsXefU8hYZSJ4mjRwE9vWQcP646Q1ATxMcDI0bQ/p9/Km8ICsHHj5T5DABTpwqrS2bIl4gbNBBnX+pixWgbF0efabHg4hKAihWpg8+mTUJroxniIvLh0IipiIswg6NjiCJciZM74FMpchijAp6PHgEWFtRFQ1uyQDXNs2fArFm0v3ateLM31c3792T4Xb9OBYTHjbuFJk2E1ip7LF5MXXVsbVO6P2gLc+ZQpmXLluJP1Dl3jrZNmwqrR3oYGVHiECCeJBKALjLlpYJWryYvfG4mOUkPx8ZNQKhPUZjbfMf48TehwggpjgjgxqDIWbKE2oXp6gKHD2tPL1ZNk5BAxZSlUiq7o4ZVAa3g6lWqhfbhAyUX3b0LuLp+E1qtbOHtndIhZfly8XTEyArv39P3FRC/ERsRAdy5Q/stWgirS0bIvYN+fsLq8TM9egBFipBe2QkF0DYYA87PGwIfD2cYmMSh65r5KFAgXmi1OCqGG4Mi5sQJYNIk2l+5UpzZfmJh+nQqn2JtTfX08uLy8JYttDQcHk6ewQcPgIoVhdYqezBG7azi46kActeuQmuUPeRewdatgWrVhNYmYy5dohJM5cqJO9tZHj4lZH/itDA0pK4yABW3z6082NUOz/9tAolOMtovWg7rMj5Cq8RRA9wYFCnPnlEQOmPA8OEp8VOcX7l9O6Vf6KZNgJWVsPpomuRkKq49eDB5Rnv0AK5dAwoXFlqz7PP4cVGcOUO1y7StmPq7d5Q0AojfKwgAZ8/StmVLYfXIDCMj2saL0Bk1cCCt2ty8ScW7cxvvrrrj6gpqOtx4/A6UqvdYYI046oIbgyLk61fyLMTEAE2aaFfbME0THU1V8BmjItPt2gmtkWaJjqbkInk/0FmzgL17U/5AtYnYWGDXrsoAyLjVto4xs2eTV7BdO6BKFaG1yRjGUuIFxbxEDIjbGCxalH6rgdyXSBLwxhEnJ48GmA4qdz2Paj2VK+3D0Q64MShCXrygVnNOThQnqK8vtEbi5cMHMojs7fOm0fzpE8UJGhpSuaHp07XLm/YjHz8CMpkO7O3Fn4X7M0lJwLf/QjO1wSsYGEgdjExNgbp1hdYmYwoVAmxsxPs7+Mcf9J0LDhZaE9Xi97I0kuKNUKLmUzSduEVrf1c4WYO3lBYhLVvSH3yRIrzXY2ZUqkSxgl+/Uq20vIazM9X6srTUrtIxaeHiAixZcgZVq3bRuox5fX0q0/LyJY1D7NjY0PcmOFh8Leh+ZvNmoTXImKZN6aIst3WDqtL1AvIX+Y5ibm+hoycTWh2OmuHGoEipVUtoDbQHK6u8Fyf4I61aCa2B6jA2lmqFMZUWEol2GII/UqiQ0BpoP7q6uc8QlFOq7hOhVeBoCL5MzOFwOBwOh5OH4cYgh8PhcDgcTh6GG4McDofD4XA4eRhuDHI4HA6Hw+HkYbgxyOFwOBwOh5OH4cYgh8PhcDgcTh6GG4McDofD4XA4eRiNGoNNmzaFi4sL3NzcULduXTx79gwA8OjRI9SsWROVKlWCk5MTFi9erHiPl5cXGjduDDc3N5QrVw7jxo2DTEYFMGUyGUaOHImSJUuiVKlSWL9+farjzZ07FyVLlkTJkiUxbdq0VM9t3boVpUuXRsmSJTFkyBBIpVL1Dp7D4XA4HA5HhGjUGDx06BBevHiBZ8+eYdy4cRgwYAAAYPDgwZg8eTKePn2KO3fuYOnSpfD09AQAjB8/Hu3atcOzZ8/w7NkzXLx4EefPnwcA7NmzB56ennj//j0ePnyIxYsX4+3btwCAmzdvYv/+/Xjx4gU8PT1x7tw5XLhwAQDw6dMnTJs2Dbdv38bHjx8REBCArVu3avJUcDgcDofD4YgCjRqDBX7orRYREQEdnZTDh4eHAwBiYmJgYGAACwuLVK8FgLi4OCQlJaFIkSIAgIMHD2Lo0KHQ1dWFhYUFunbtigMHDiie69+/P0xNTWFoaIgBAwZg//79AIAjR46gQ4cOKFy4MCQSCYYOHap4jsPhcDgcDicvofF2dH379sW1a9cAQOHh2759O9q1a4e///4b379/x6ZNm2BjYwMAWLlyJdq0aYN//vkHYWFhmDZtGipVqgQA8PX1RfEf+gA5ODjg0aNHiufq16+f6rkjR46k+z5fX990dU5ISEBCQoLivtw4jYyMVP5EpEFsbKzKZapLrrbIVJfcvK4rHz8fPx+/6sefEJcAaXSSSmUmq0FmXp9/dciVy2KMqUxmtmACsWPHDtaiRQvGGGM9e/ZkBw8eZIwx5uXlxezs7Njbt28ZY4xNnjyZLV68mDHGWGBgIKtQoQK7cuUKY4yxihUrsocPHypkrl27lv3++++MMcZat27NDh06pHju9OnTrGHDhowxxkaMGKGQyRhjr169YiVKlEhX1xkzZjAA/MZv/MZv/MZv/MZvart5eXnl2L5SBo17BuX069cPQ4cORWBgIP7991/s3bsXAODo6Ijq1avj7t27KFu2LFavXg1vb28AgLW1NVq0aIEbN26gUaNGsLe3x+fPn1GtWjUAgI+PD+zt7QFA8ZycrD6XFpMnT8bYsWMV98PDw1G8eHH4+voif/78KjkfHPUQGRkJOzs7fPnyBebm5kKrw8kAPlfaAZ8n7YHPlfYQEREBe3v7VCFyGkVTVmdERATz8/NT3D927BgrWrQok0qlrGDBguz69euMMca+f//OihUrpvD4OTs7sx07djDGGIuOjmaVK1dWePy2b9/OGjduzKRSKQsJCWH29vbM09OTMcbYtWvXWIUKFVh0dDSLj49nVapUYefOnWOMkfexSJEiLCAggMlkMtamTRv2zz//ZGssAFhERETOTwxHrfC50h74XGkHfJ60Bz5X2oPQc6Uxz2BERAQ6deqEuLg46OjowMrKCqdPn4auri4OHTqEsWPHQiqVIikpCePHj1d4+3bu3IkRI0Zg2bJlSEpKQvv27dG5c2cAQJ8+feDh4YEyZcoAACZMmAAnJycAQIMGDdC1a1c4OzsDALp3747mzZsDIO/jrFmzULt2bchkMjRq1AgDBw7U1KngcDgcDofDEQ0SxoSKVtReIiMjkT9/fkRERHDXu8jhc6U98LnSDvg8aQ98rrQHoeeKdyBRAkNDQ8yYMQOGhoZCq8LJBD5X2gOfK+2Az5P2wOdKexB6rrhnkMPhcDgcDicPwz2DHA6Hw+FwOHkYbgxyOBwOh8Ph5GG4McjhcDgcDoeTh8kzxqCDgwPKlSsHNzc3uLm54eDBgwCoBI2jo6Pi8RUrVijeM3XqVDg7O//yHgCQyWQYOXIkSpYsiVKlSmH9+vWpjjd37lyULFkSJUuWxLRp01I9t3XrVpQuXRolS5bEkCFDIJVK1Thy7UOZuZJz/fp16OrqYu3atYrH+FypD2Xmqn///ihWrJjiuQkTJiie43OlPpT9Xq1fvx5OTk6oWLEiXFxcEB8fD4DPlTpRZq46d+6seNzNzQ06Ojo4efIkAD5X6kKZefLy8kLjxo3h5uaGcuXKYdy4cZDJZAAEnidBqhsKQPHixdnLly9/ebx+/frs1KlTab4nLCxMse/n58fMzMxYaGgoY4yxnTt3skaNGikKXhcvXpy9efOGMcbYjRs3WPny5VMVvD5//jxjjDFvb+9fCl5v2LBBxaPVbpSZK8YYi4yMZO7u7qxVq1ZszZo1isf5XKkPZeaqX79+qebnR/hcqQ9l5ur48eOsVq1aLDw8nDFGLUGlUiljjM+VOlH2N1COh4cHs7S0ZPHx8YwxPlfqQpl5at++PVu1ahVjjLG4uDhWsWJFdubMGcaYsPOUZzyDylCgQAHFflRUFCQSicKCP3jwIIYOHQpdXV1YWFiga9euOHDggOK5/v37w9TUFIaGhhgwYAD2798PADhy5Ag6dOiAwoULQyKRYOjQoYrnODlj7NixmDBhAgoVKpTqcT5X2gOfK3GxZMkSzJo1S9F209raGrq6ugD4XImZbdu2oXfv3ooyJXyuxEVERAQAIC4uDklJSShSpAgAYecpTxmDvXr1grOzMwYNGoTv378rHp8wYQKcnZ3RrVs3RR9kOatXr0bZsmVRuXJlbNq0CZaWlgAAX19fFC9eXPE6BwcH+Pr65ug5TgrZnatz584hPDxc0Z3mR/hcqRdlvlfLly+Hi4sLWrdujWfPnike53OlXrI7V56ennj06BFq166NqlWrYvXq1Yrn+FypF2W+VwAQHx+P/fv3p+qqxedKfWR3nlauXInDhw/D1tYWtra26Nu3LypVqgRA2HnKM8bgzZs38fz5czx58gSWlpbo168fAGD37t148+YNXrx4gbp166J169ap3jdq1Ci8e/cOd+/exdy5cxESEqJ4TiKRKPbZT+UalX2Ok/25Cg8Px6RJk7Bu3bp0ZfK5Ug/KfK/mzZuHjx8/4sWLFxg4cCBatGiB6OhoxfN8rtSDMnMllUrh5eWFmzdv4uLFi9i8eTPOnj2reJ7PlXpQ9v8KAI4ePYrSpUsrWrHK4XOlepSZp40bN6JPnz7w9/eHj48P9u3bh6tXryqeF2qe8owxaG9vDwDQ19fH6NGjcevWLQCAnZ0dADqRI0aMgLe3dyqDT46rqyuKFi2K69evK+R9/vxZ8byPj4/iGMo+xyGyO1evXr3Ct2/f4O7uDgcHBxw5cgQzZszAjBkzFPL4XKkHZb5XRYsWhY4O/fR06NAB5ubmePfunUIenyv1oMxc2dvbo0ePHoplqxYtWuDhw4eK5/hcqYec/F9t3bo1lVdQLo/PlepRZp5Wr16tMBqtra3RokUL3LhxQyFPsHnKVoShlhIdHZ0qGWTZsmWsbt26LCkpiQUEBCgeP3LkCLO3t1fc9/T0VOx//PiRWVtbKx7bvn07a9y4sSLQ097eXvHctWvXWIUKFVIFep47d44xxpiXl9cvgZ7//POPOoevVSg7Vz/yc4ICnyv1oOxcffnyRbF/7949ZmlpqUhQ4HOlHpSdq3nz5rEJEyYwxijY3d3dnR07dowxxudKXeTkN9Db25uZmpqyiIiIVI/zuVI9ys6Ts7Mz27Fjh0JG5cqV2aFDhxhjws6TXvZMR+0kMDAQnTp1QnJyMhhjcHR0xK5du5CQkIBWrVohISEBOjo6KFSokCIVHwAmTZqEjx8/Ql9fH3p6eli7di2cnJwAAH369IGHhwfKlCkDgOID5M81aNAAXbt2Vbjpu3fvjubNmwMAHB0dMWvWLNSuXRsymQyNGjX65SouL6PsXGUEnyv1oOxc9e/fH4GBgdDV1YWxsTEOHz6sSFDgc6UelJ2rMWPG4I8//kD58uUhkUjQpUsXdOjQAQCfK3WRk9/Abdu2oVOnTjA3N0/1OJ8r1aPsPO3cuRMjRozAsmXLkJSUhPbt2yti3YWcJ96bmMPhcDgcDicPk2diBjkcDofD4XA4v8KNQQ6Hw+FwOJw8DDcGORwOh8PhcPIw3BjkcDgcDofDycNwY5DD4XA4HA4nD8ONQQ6Hw+FwOJw8DDcGOZws4uDggHLlysHNzU1x8/T0VErW9evXcfHiRcV9f39/NGzYUFWqpknLli3h5eWVrff0798f8+bNU9zfsWMHJBIJvn79qniscePG2LVrF06ePIkJEyaoTN+cMGjQIEU3gKwin9Py5ctDT09Pcb9bt25q0lJcXL9+HRKJBKNHj071eN++fSGRSPDq1SuN6HH8+HFFlxNV4O/vD3d3d8hkMpXJfPbsGQ4dOqQyeXLGjRuH/fv3q1wuh5MZvM4gh5NFHBwccPr0aVSsWDHHsmbOnIno6GgsXbpUBZqpj507d2L37t24fPkyADIO3759ixEjRqB3795ITExEgQIF8Pbt21zTpurz58+oWrUqgoODf3lOKpVCT098tfpVodf169cxdOhQxMfH4/379zAwMEBkZCQqV66M+Ph4nD9/PluffWV16t+/P6pWrYoRI0Zk631yY0/e6lDO8OHDUaNGDfTt2zfbuqTHjh07cPr0aRw5ciTb783ovAQFBaFu3bp48+bNL+PgcNQJ/7RxOCqgd+/eqFq1KlxcXNC6dWsEBQUBAD58+IDatWvD1dUVzs7O+Pvvv/Hs2TNs2LABu3btgpubG2bPno3Pnz+jUKFCCnkSiQSLFi1C9erVUaJECWzfvl3x3K1bt+Ds7AwXFxeMHDkSxYsXz5LXxsHBQfG6Bg0aYOLEiahbty5KliyJoUOHpvmehg0b4u7du0hMTAQA3L17F5MnT1b06H7w4AFsbW1hb2+PHTt2KCrppzVuAEhMTMSECRPg7OwMV1dXRQX95ORkjB8/HhUrVkTFihUxcuRIxTH79++P4cOHo0mTJihTpgw6duyoeO7UqVNwcXGBm5sbKlasiBMnTijGd/r06UzfnxUcHBwwb948NGzYEP369UNAQAAaNmyIKlWqoEKFChg1apSiMfzMmTPRs2dPtGnTBuXLl0ejRo0QGhoKALh//z6qVKmi0PWff/6Br68vrK2tU+nTr18/rF69GgDg4eGBRo0aoWrVqqhcuTKOHj0KAIrPy+zZs1G3bl2sWbMm3XMREBCArl27wt3dHS4uLpg+fXq6Y82XLx8aNWqkeO+BAwfQqVOnVMZLRvJ+PlfpzffLly9Rt25dVK5cGeXLl8eCBQsAAGfPnsXJkyexcOFCuLm5YcuWLQCAxYsXo0KFCnB2dkavXr0QERGhON99+vRBx44d4ebmhm/fvqUaT3x8PA4ePKj4XAL03VqwYAHc3d3h6OiIy5cvY/LkyahUqRIqVKiA169fK167e/duVK9eHZUrV0b9+vXx6tUrBAUFYfr06bh8+TLc3NwU3x1VzJW1tTVKlCiBK1eupDtHHI5ayFbzOg4nD1O8eHFWtmxZ5urqqrglJCQwxhj7/v274nULFixg//vf/xhjjI0aNYrNmzdP8VxISAhjjLEZM2awcePGKR7/9OkTs7S0VNwHwFauXMkYox7Z+fLlY0lJSSw+Pp4VLVqU3bx5kzHG2LFjxxgA9vLlyyzpL39d/fr1WadOnZhUKmWxsbHMwcGB3b17N833OTo6sps3b7LPnz+zWrVqsejoaFauXDnGGGOzZs1igwYNYoxRX81OnTplOO6ZM2eyDh06sPj4eMYYY0FBQYwxxtavX88aNGjA4uPjWVJSEmvRogVbvHgxY4x6TdesWZPFxsYyqVTKatWqxfbt28cYY8zFxYXduXOHMcZYcnKyoldo/fr12alTpzJ9f1r8PBfFixdnQ4YMYTKZjDFGPXqjoqIYY4xJpVLWqlUrdvjwYcYYzaujo6NivN26dWPz589njDHWtm1btnfvXoXc0NBQxhhjv/32m+L9UVFRrGDBgiw4OJiFhYWxSpUqMX9/f8YYfcbs7e3Zt2/f2KdPnxiAVPLSOxdNmzZlN27cYIwxlpSUxJo1a6boL/wj165dY1WqVGG3bt1izZs3Z4wxVr16dfb27dtUn52M5P18rtKb78jISMVjsbGxzM3NjXl4eCjm68fe4mfPnmXlypVTjGfw4MFs+PDhivNdtGhRFhgYmMZMMnbz5k3m7u6e6jEAbO3atYwxxg4dOsRMTEzY6dOnGWOMLVq0iPXo0YMxxtjt27dZy5YtFXrevHmTubi4MMZSf9YZYyqbK8boOzVx4sQ0x8PhqAvxrXdwOCLmyJEjaS6V7d27F7t370ZCQgLi4uJgY2MDAKhXrx4mTJiAmJgY1K9fH02aNMnysXr16gUAcHJygp6eHgICAhAaGgpjY2PUrVsXANChQwcUKFBAqbF0795d0R/Yzc0NXl5eqFmz5i+va9iwIa5fvw47Ozs0aNAApqamKFiwIL58+YLr169j0KBBv7wnvXGfPn0ay5Ytg6GhIQDAysoKAHD58mUMHDhQ8fjgwYOxYcMGRQxix44dYWxsDABwd3dXxD42btwYo0ePRufOndG0aVO4ubmlOdb03p9Vfv/9d0gkEgC0HDlx4kTcvn0bjDEEBQXBzc1N4X1q0aIFLCwsAAA1a9bEy5cvFedx7ty5+PjxIxo1aoQ6deooZMu9qocOHUKjRo1gaWmJs2fPwtvbGy1atFDowRjDu3fvULx4cRgZGaFHjx6K59I6FzExMbh69SoCAwMVr4uOjsbbt2/THWudOnXg4+ODCxcuQE9PD2XLllU8lxV5P56r9OY7Li4Ow4cPx7Nnz6Cjo4MvX77g2bNnqFq16i/6XL58Gb169VJ8zocNG4bu3bsrnm/dujWsra3THMvXr18V38UfkceBVq5cGTo6OmjVqhUAoEqVKjh27BgA4MSJE3j+/DmqV6+ueN/379/T9CrfvXs3x3Mlx8bGBjdv3kxzPByOuuDGIIeTQ27fvo21a9fi7t27sLKywsmTJzF79mwAQKdOnVCrVi1cunQJa9euxcqVK3H27NksyTUyMlLs6+rqQiqVgjGm+KPNKWnJT4uGDRti69atsLe3R8+ePQEA9evXx/nz53H//n3s2bPnl/dkd9xpjevH++npunz5crx+/RrXrl1Dv3790KtXL/z1119KjzU98uXLp9hfvnw5QkJC8ODBAxgZGWHs2LGIj4/P9FijR49G27ZtceXKFUyZMgUVK1bE+vXr0aFDB4waNQoBAQHYvn07Jk+erDgnLi4uaRoGnz9/hqmpaapzlNa5GDZsGCQSCTw8PKCvr5/l8fbt2xe9e/fGwoULUz0uk8kylffjuUqPKVOmoHDhwnj69Cn09PTQsWPHVOfwRzL7bGR0PBMTE8TFxf3yuHyOdHV1FYaq/L58vhhjGDBggOK7nBGqmCv55zY+Pl5x4cLhaAoeM8jh5JCwsDCYm5vDwsICiYmJ2Lhxo+K5Dx8+wNraGn379sXixYtx//59AIC5ubki7ik7lCtXDjExMbhz5w4A8l6Eh4crnp88eTLWrl2bswH9RMOGDXH//n3cvHkTtWvXBkAxeUuWLIG9vT1sbW1/eU96427bti1WrlyJhIQEAORpAYDffvsNO3bsQGJiIqRSKbZu3ZolL+rbt29RoUIFjBgxAsOGDVMcR52EhYXBxsYGRkZGCAwMxOHDh7P0vnfv3sHR0RGDBw/GlClTFLoaGRmhS5cumDFjBry9vdGsWTMAQK1atfDhwwdcvXpVIePZs2fpxjumdS7MzMxQt27dVEadv79/qmzwtBgwYADGjRv3SyZ1duWlN99hYWEoVqwY9PT08O7dO1y6dEnxnp+/G7/99hsOHDiAqKgoAMCmTZuy7GF3dXXN0AuaEW3atMGuXbvw5csXAGQIP3r0KE0dVTFXct68eQNXV1eldOZwlIV7BjmcbNC5c+dUnp81a9agRYsW2LNnD8qVK4dixYqhVq1auHDhAgDg8OHD2Lt3LwwMDMAYw4YNGwDQ8u7u3bvh5uaGjh07ZjnT0dDQEPv27cPQoUNhbGyMhg0bonDhwsifPz8A4MWLF6hSpYpKx2xraws7OztYWFjA1NQUAFC7dm18+vQJAwcOTPM96Y174sSJmDp1KipVqgQDAwPY2tri7NmzGDJkCLy8vFC5cmUAZGyOGjUqU90mT56syHw1MTHBP//8o6JRp8+oUaPQpUsXuLm5oWjRolk2TNasWYNr167BwMAAurq6WLZsmeK533//He7u7pg4cSJ0dXUBAAULFsSpU6cwYcIEjBkzBklJSbC3t8fx48fTlJ/eudi7dy/Gjh0LZ2dnAORJ27BhA4oVK5aurtbW1pg0aVKaz2VHXnrz/ffff6NPnz7Yu3cvHBwc0KhRI8V7+vTpg/79++Pw4cMYMWIEBg0ahJcvX6JmzZqQSCRwcXHB+vXrMzjTKTg4OMDKygqvX79GhQoVsvQeOfXq1cP8+fPRrl07JCcnIykpCa1atULVqlXRuHFjLF26FK6urqhZsyY2bNigkrlijCk8xxyOJuGlZTgcLSMqKgpmZmYAoFhm+vz5MwCKUbt37x4vS8Hh/MehQ4dw48YNrFu3TmhVMuX8+fOK+GMOR5NwzyCHo2UcPXoUK1asgEwmg6GhIfbv368w/h48eCCwdhyOuOjatSsCAwMhk8lEf5EUERGBRYsWCa0GJw/CPYMcDofD4XA4eRhxXyZxOBwOh8PhcNQKNwY5HA6Hw+Fw8jDcGORwOBwOh8PJw3BjkMPhcDgcDicPw41BDofD4XA4nDwMNwY5HA6Hw+Fw8jDcGORwOBwOh8PJw3BjkMPhcDgcDicPw41BDofD4XA4nDzM/wH7s2aknBZprQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoMAAAJRCAYAAAA+mL2qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZXQTWxeG39QFSpFSrLhDgeLuLhfn4g4ffnF3d3fXFoq7u2vx4sVKC9Rdc74fmyQUKkmaZGaa86zV1ZnIznsySWbPOVtkjDEGDofD4XA4HI5RYiK0AA6Hw+FwOByOcHBnkMPhcDgcDseI4c4gh8PhcDgcjhHDnUEOh8PhcDgcI4Y7gxwOh8PhcDhGDHcGORwOh8PhcIwY7gxyOBwOh8PhGDHcGeRwOBwOh8MxYrgzyOFwOBwOh2PEGNQZbNiwIUqVKoUyZcqgRo0aePz4MQDg/v37qFatmvK+S5cuKZ8zadIkODs7o0yZMihTpgz27dunvE8ul2Po0KEoUKAAChYsiLVr1yZ4vdmzZ6NAgQIoUKAApkyZkuC+LVu2oFChQihQoAD69++PuLg4/Q2cw+FwOBwOR6wwAxIYGKjcPnz4MHNxcWFyuZzlzJmTXbp0iTHGmKenJ8uVKxeLiIj46zne3t4sffr0LCAggDHG2I4dO1jdunVZXFwc8/f3Z3ny5GGenp6MMcauXr3KihcvzsLCwlhUVBQrV64cO3PmDGOMsQ8fPrDs2bMzX19fJpfLWYsWLdj69esN8A5wOBwOh8PhiAuDzgza29srt4ODg2FiYgJ/f38EBASgTp06AICiRYvC3t4ep0+f/us5oaGhkMlkkMvlAIB9+/ZhwIABMDU1RaZMmdChQwfs3btXeV/Pnj1ha2sLS0tL9O7dG25ubgCAAwcOoHXr1nB0dIRMJsOAAQOU93E4HA6Hw+EYE2aGfsHu3bvj8uXLAIAzZ84gS5YscHR0xMGDB9G2bVvcvXsXb968wcePH5XPWblyJdasWYOvX79i69atyJw5MwDg8+fPyJMnj/JxefPmxYMHD5T31apVK8F9Bw4cSPJ5nz9/TlJzdHQ0oqOjlftyuRwBAQHInDkzZDJZKt4NDofD4XA4xg5jDKGhociRIwdMTAyfzmFwZ3Dnzp0AgB07dmDMmDE4deoUjh49inHjxmHOnDlwdnZG9erVYW5urnzOsGHDMGzYMDx58gRdu3ZF/fr1lQ7h784YYyzBa2l735/MmzcPM2bM0HCkHA6Hw+FwOOrz5csX5MqVy+Cva3BnUEGPHj0wYMAA+Pv7o1SpUsplYQAoVqwYihcv/tdzSpcujZw5c+LKlSto27YtcufOjY8fP6JChQoAgE+fPiF37twAoLxPgbr3JcaECRMwcuRI5X5wcDBy586NL1++wM7OTqvxJ8b+/fvRvn17ndnTp12p2NSXXWPXysfPx8/Hz8eva4xZa0hICJycnJA+fXqd2dQEgzmDISEhCAsLQ44cOQAAhw8fRubMmZEpUyb4+voiW7ZsAIBNmzbB1tYWdevWBQB4enqiWLFiAID379/Dw8ND6Si2b98eGzZsQJs2bRAcHIx9+/bhzJkzyvuGDBmCQYMGwczMDFu3bsXs2bMBAG3btkX16tUxdepUZM2aFevXr0fHjh2T1G5paQlLS8u/brezs9OpM2hjY6NTe/q0KxWb+rJr7Fr5+Pn4+fj5+HWNsWsFIFjomcGcweDgYLRt2xaRkZEwMTGBg4MDTpw4AZlMhg0bNmDPnj1gjKFYsWI4fPiw8g0ZP3483r17B3Nzc5iZmWH16tVK57Bbt264f/8+ChcuDAAYM2aM8r7atWujQ4cOcHZ2BgB07NgRjRs3BgDkz58fM2bMQLVq1SCXy1G3bl306dPHUG8Fh8PhcDgcjmgwmDPo5OSEe/fuJXrftGnTMG3atETvO3r0aJI2TU1NsWbNmiTvnzp1KqZOnZroff369UO/fv2SUczhcDgcDoeT9uEdSDgcDofD4XCMGO4McjgcDofD4Rgx3BnkcDgcDofDMWK4M8jhcDgcDodjxHBnkMPhcDgcDseI4c4gh8PhcDgcjhHDnUEO5zdS6EzI4XA4nEQwlt/OtDpO7gxyOL/4+BGoXBl4+VJoJZzUsHUrsGgREBcntBJxc/ky0K8fEB4utBLdEBsL9OgBPHoktBLtGDYMuH076baoYubRI6BKFeDrV6GV6JfYWKBNG8DdXWgluoc7gxwOAG9voG5d4N49YODAtHv1l9b5/BkYPhwYOxbYu1doNeLF3x/o1g3YvBmYO1doNbph6VJg506gSRMgKkpoNZqxZw+wahWwenUVvHkjtBrNeP4caNgQuHsXGDdOaDX6Qy4H+vQBjhyh/yEhf7eolTLcGeQYPd+/A/XqAV5eQIECgJsbIFB7SE4qYAz43/+A0FCgalWgc2ehFYkTxoC+fekCqHBhYOJEoRWlnnfvgOnTaXvhQsDKSlA5GvH2LTBgAG23bv0Cv7qrSoJXr+i3098fqFABWLtWaEX6Y9w4YNcuwNQU2LcPsLOLFlqSTuHOIMeoCQgAGjQAXr8GnJyAixeBHDmEVsXRhu3bgTNnAEtLYMsWwIT/uiXKxo00u2FuThc+trZCK0odjJEzFRUF1K8PdO8utCL1iY4GOnYEwsKAWrWANm1eCC1Jbd69o9WUHz8AFxfg7FkgQwahVemHxYvpD6AwlKZNhdWjD/jPJcdo+fGDrmqfPQOyZQMuXQLy5BFaFUcbPnwA/vuPtmfMAIoWFVaPWHn5EhgxgrbnzwfKlhVWjy7YsYMu4qytgfXrpTWrP348xdtlzgzs3g2YmEgjPuXHD1vUrQv4+ADOzsC5c0DGjEKr0g/u7sCYMbS9aJG0LjY0wUxoARyOEHz9SjOCr14BWbMCFy4ABQsKrYqjDTExNLsSGgpUqwaMHi20InESFQV06gRERlKM1/DhQitKPT9+AKNG0fb06RTmIRWOHweWL6ftbduAXLkElaM2X74Ac+bUxc+fdNF1/jyQJYvQqvSDlxeFVAB0EZWWf1v4zCDH6PjwAahRgxxBJyfg+nWgRAmhVXG0ZdIk4P59mplwdaWYHs7fjB0LPH1KFz87dqSNZfThwynUo0wZYORIodWoz9evQK9etD18ONCihaBy1ObbN6BOHeDnz3QoWJBmZB0dhValH+LjKclKcZG5cKHQivRLGvg54HDU5+VLoHp1KiNToAA5glIK2OYk5PTphLE8uaVZmUPvnDhB2aoAxVZmyyaoHJ1w+jTFPJqYUFa0mUTWueLjgS5dKOmibFlarpcCikS79+8BB4cwXLqUtuOr588Hbt4E0qenxBGpfL60hTuDHKPBw4OCtH18aCbw+nUeIyhlvn1Txe8MHQq0aiWoHNESHGyVYBaqSRNB5eiEkBCgf3/aHj4cKFdOUDkaMXs2cO0akC4dlT+ylECFEj8/Ss5RrKZMmnQJTk5Cq9IfDx6ostNXrwby5RNUjkGQMcYrqmlKSEgIMmTIgM2bN8PGxkZndr29vZEzZ06d2dOnXanYVNgNDy+NhQtrISLCAvny+WP8+CtInz4mVTb5sRJu/HK5DHPn1sHLl47IkycQM2acg4WFPFU29aFTDHYXLy6FR49KIHfuQMyadQ7m5om/T5og9Pi3bCmPixcLIWvWUCxYcBqWlvGptqkJ2tr09HTA7Nl1wZgJBg26herVP+nEbnKk1mZYmDnmzq2Ljx8zwd4+AlOnXkR8/GvJfP41tRkVZYpJkxrDx8cOlSt/wtChtxJNStK11oiICPTt2xfBwcGws7PTmV21YRyNCQ4OZgBYcHCwTu26urrq1J4+7UrFJmOMTZhwkdnYMAYwVqMGY7o4bPxYCTv+GTPoeNraMvb6tW5saoLQ41eXq1fpfZLJGLt3T3d2hRz/xYs0JoCxy5d1Y1NTtLH58ydjOXKQ7l69dGc3JVJjMziYsYoVSXPWrIx5eqbeZnKIYfz9+9N4c+ZkzN9fd3ZTQl9+hbqk8VVwjrFz7BiwaFEtxMVRBuXhw4AOJ3M5AnDtGpWPAYB163jMZ1LExQFDhtB2v35UFFjqhIersjsHDgRq1xZUjtowBvTsSaENRYqo4jfFTFgYhRTcu0elby5cSPslm9zdqQ6nTEbdbDJlElqR4eAxgxxJExREX9qjR6ld0J/s3g3ExZmidWtyDLkjKG38/amziFxOfWi7dRNakXjZsYNqaKZLF51mWs5NmkTlPnLnBhYsEFqN+qxYAZw8SfGB+/aJv9B3RARlON+6BdjbU/kYZ2ehVemXd+9UFxrjxlFBbWOCzwxyJMvr10CzZkDx4nTSc3enHp+/s2sXYGHhge3bXdJ8NlhaRzG74u1NsyurVwutSLxERADTptF2q1YvkDmzNKpLZ0imhcXNm8DKlbS9cSNleUqBR4+orA8ALFkClC4trJ6UiIqiZKwrV+g9PnuWOoykZaKigH//pTIy1asDs2YJrcjw8JlBjiSRy6k8w+LFNOP36BFw6hTwKWE8NiwtgWbNXnFHUCI4JzP9sHIllUixtKQszHTpDChMYqxaRU5znjxAgwZvhZajNk2T6PMVEUF1+Rij/40aGViYloSFUaHv2FhysAYNElpR8sTGAu3a0UygrS2V76lYUWhV+mf0aFUnGDe3tF9GJjG4M8iRJB4e1IxeUU4kY0agZk3gRSKtPQXJzOJoRcmSJZO8Ly6OCkovWUJFhjmJExAAzJtH27NnQyfZw4YiLIyO85+YmdHMTZ48wNKlhtelLcOGAW/eADlzUi1EMbfKY4xiS0+epNZ+J09SseW0zv79wJo1tL1rl3Q6wega7gxyJEm5chQP+Du5ctGJEKC6WI8e0XYZ7jlIhhs3KOlh9mzqlvE7o0bRbWKfXRGaefOA4GBajuzcWWg16hMTQy0iXV3/vs/CgpbuXr6kGDYpsHcvtZmTySh8JXNmoRUlz9SpFGdqagocOEA1WdM6b9+q4gTHj08bNTi1hTuDHMmSN2/C/QwZKKEkLAxo2hS4e5duNzc3N7Q0jhYcPQoMGADkz09ZlzVqUBC7t7fqMcWLi3t2RWg+fVJlqs6fL62Wc9u2UVeg7t2pS8fBgzQL/Py56jFSSQD78oU+ywAlvYjdsdq2jS7AAGDDBvr9TOv8+AE0b04FzI01TvB3JPRTwTF2Vq6k0jBJYWdHM4Jt2wKNG1PpCQB4+fKlYQRyUsWWLXQiGjkSWLuWWgbmzk1LwopZXk7yjBsHREdTJqRU4uoUPHqkCvsYMABYvpx6TlepQk6hVGCMZpuCg4FKlVSJPGLl6lXgf/+j7SlTgD59hNVjCEJCaBbwzRv6jXF3N844wd8x8uFzpMLDh8CcOZT15edHsS1/kiEDXd117aqqQwcAPj4+hhPK0RozM+DxY1WcUsaMFMtToQLQvj3g6UnLhZzEuXmTypaYmADLlklvBtXeHrhzh/r1PnkC3L5NS5avXgFVqwIdO1LsndjZvRs4d45imnfsELeT4eUFtGlDiSMdOqhasKVloqKAli3p4sPBgZJlsmcXWpXwiPhjyuGomDuXZgcKFaKp/e/fafnl9xNezZoUI7V2rfROhBw6EdWsSeUsunVTHcOePcm5+fwZKFhQSIXiRS6nHr0AzeyUKiWoHK0YMkSVuZotGzmCABU6dnGhZT2xO4MBARTbCtCMYJEiwupJjthYcrADAoDy5YHt26UVVqANcXE0ZkXZnDNneNF6BdwZ5EiCdevoKk4mA65fpyWw79+pmKuJCV3hligBbNoktFKOtpQqRWWCunShJILJk2lG6PNnigXlV+9Js3s38OABneCkGvvk5EQ17Zo3p5i7+fMp1OPJE4ohlYKDO3Ys8PMn/RYpnEKxMnUqdRext6eEEWtroRXpl7g4urA8epTKUx07RrPQHII7gxzRwhgQGEjLhVmzqm4vWpSWxBo3phpedeoAW7fSElNav7JN69SsSRnDq1bR0nBYGCUNbN4s/q4NQhEcrCpqPHky4OgorB5NiI8nRyQ4mJy9SpUoY3jHDvpOz5tHMzfu7qqZQrFy8SLFvQIU+yrmvLUzZ8jZBugCOk8eYfXom5gYOlccOkSfo337pNPK0FDwUydHNJj+9mv/9Clljjo4kNMXFZXwsblyUY9aT09g4UK62uOOoPSYNIkc+9/JmJFmLXx8KDv282fKKuYkzrRpNEtepIhqqVgKyOV0XHfsoJJCrVtTyai7d4HBgylOODiYkkjE3gotPBzo35+2Bw8Wd30+b29VG8eBA6nIdFomJsYUrVqRI2hhQVnqLVsKrUp88NMnRzQU/dUF/etXOkksW0ZZX+HhwOXLfz/+5Uu6/9w5voQoRZ4/V5Wx6NKFjvufZMpESzqcxHn2TNWWb9UqaSXYPHxImc8nT1J/8Y8fyaFq3156iQxTpgAfPtBSt6LgtxiJi6O4aj8/ytKXUgFvbQgNBRYurIXTp2mF4cQJ7ggmBXcGOaIh56/o8HHjgIkTaUbQ1paWiXbsAP75h04cCvz86GqPJxVIk337KCv89Wty+IoVU2WMA8D69dQ8npM4jFHSRXw8lVNq0EBoRZoRGUkna8Zo39KSSso8fkzO4cGDgspTmzt3qAwOQBc3Yu6ZPGsWraikS0dL71ZWQivSH4GBQMOGwMuXjsoey1L7jhgS7gxyRENMTAwAYMwYVa2rS5do5q95c3IGO3WigHKAapLxAGDp0r07zQRly0bxYZcu0ZV78eKUET5vXsJYUU5C9uyhE7u1tTRneKpUofitAQMShoHkzk3H/tgx4bSpS3AwzWozRiWtxNzB4sEDutgCyGktVEhYPfrk50+qtXnnDpAuXTQuXaLC0pyk4c4gRzQ8+lVZuEwZVW2uoCCqA9W1KxVybd+enAaO9ClUCMiXT7VfoQLFD86cCYwYQbUieVvpxPn+XRUfOHkyOVBSw9ycisi/fUut8/btU/Ul9vQU/5gYo2LNHz5QAoai84sYiYkBevemWeSOHaXVplBTvL2p48vjx3QxOXnyRZQvL7Qq8cOdQY5oCAkJ+eu2Nm1o+RCgHzIPDwoy50iXly8pHlQxw/s7JiZAlix0QdC9u8GlSYYhQwB/f8rAHT1aaDWaERRE4R3v39Os8MWLlA09YwbFiBYsSLeNHCm00uTZvJkcWDMz6kMs5p7Jc+ZQfKmDA3VySqt8/EgVCTw9Kcnw+nUgd+5goWVJAu4MciRBfDzw33/kGNasKbQajrZcuULLN7du0XF89uzvxwQE0CwLzw5PnAMH6M/UlHrKSilpxNubHP2FC+n/zZt0nPv0AV68oAuFw4fpc5Ixo8Bik+HLlwwYNoy258wBKlcWVk9yfPxoj7lzaXv1anII0yJv3lA/8w8fqL/59eu8oLQm8DqDHFGxcyeVkXBxUd0WH08Zp9myqep4caRHXBwljJw8SbO7y5ZRksiXL7ScM38+zQqm5SWs1OLnR6VLAGD8eOnFzA4dSroHDKBC2Tt3kkMrk1FGbu7cNKMjZsLDgZUrqyEqiorfi3lmNi4O2LixEuLiqHRP+/ZCK9IPT59ScsiPH1SH9sIF8XerERsyxhS5XBx1CQkJQYYMGbB582bY2NjozK63t7cyo1aX6MOurm0yBuzenROnT9dEhgyRmDfvDOzto9CoUSNkypQJYWGUAQcAnz9/xq1bt6DuR1cK49enXaFtFipUCOXLl8eZM5QYokgMGDWK+s+OGUPLbZ8+0T4AfP/+HU+ePIG/v79BtQppUx27q1dXwa1beZErVxDmzDkLc3N5qm1qgyY2HRwcUL9+ffj6UtLI+/c0G7h9OzmAU6dScsPp0xQ/aGkJXLx4ET9+/DC4VnVYv74Srl3LD3v7CMybdwYZMkTrzLautR4/XhRubi6wsYnBokUnkTFjVMpPUgMx/f69f58J8+fXRni4JfLkCcSECZdhZ6c6JmLSmhwRERHo27cvgoODYSdEsDTjaExwcDADwIKDg3Vq19XVVaf29GlXlzbj4hgbMoQxcgkZGzeOMblcZ+ZFP3592xWLzQ8fGLt6lbbDwhgrXJgxPz/aj4lhzMqKbtc1Yhl/au0ePUrfDxMTxu7d041NbdHG5ufPjK1dS9tyOWMuLgnHUaIEY/fv60jgb+hy/Nu30zGQyeLZ5cs6M6tEl1rfvWPM2pr0btmiM7OMMfH8/l27xlj69DTGKlUYCwxMvU110bVdffkV6sKXiTmCEhVF1fAPHKD95cspNpCT9siXT5U9bGtLCSSKOme+vrRUrMOJ9jTF9++qDhejR1PmtdRwcqKOFwAtC587R2EBAC1nBgfTY8TKy5fAoEG03bbtc9SuLd5myYpM58hIoEQJX/TqlU1oSTrn4kVqThAZSS1Jjx1TrR5xNIeHaHMEIziYCksfOEBlJoYMuckdQSNC4QgyBkyYAAwbRk4CJyGMUVmQ79+BkiWl150jKRSOIEB176pVE29f5YgIoEMH+l+/PtCq1UuhJSXLjh3kLFlZAX373k9z36sLF6j2bGQk1XY8eZI7gqmFO4McQfj2jbJJr16liv2nTwNVq34WWhZHAGbNogxifiGQONu3A6dOUSzd3r1UZDotceYMrQgouniIkaFDKds5WzZKfDExEW+o/ffvqrI8M2YAjo5hwgrSMefP04xgVBQ5hIcPp73vhBBwZ5BjcF6/BqpWpQwwR0dyCOvVE1oVxxD4+Pzdg3jMGPpBNzMDPnz4IIwwkfL1KxXgBqgYd4kSwupJLRERVPrjdxo0oMShbNmAoKAgQXQlx+7d1CHHxARwdRXv7KWCYcOoFZuLi/hrNWrKuXPUiSoqihzCAwd473JdwZ1BjkG5c4eWgz59og4Ut28nLCPDSdsMGUKlH/bvV91mba36Qb93754wwkQIYxQnGBwMVKpE2ddSZ/ZscmjXrVPdZmqqWjK+cuWKILqS4tUrKoMDUNZznTrC6kmJY8eo57CpKRXFNktDWQEXLwItW5Ij+M8/3BHUNdwZ5BiMI0eo4LC/v6r12O/tyDhpm5MnqfNEVBQ5hInBeKUrJTt2UPiEpSXV4jM1FVpR6nj1Cli8mI5/jhyJPyYyMtKwopIhOpriBMPD6Xdr8mShFSVPYKAqwWXUKOnVoEwOb2+qkahwBPfvl1axdSnAnUGOQVi4kFrLKQJ+L19Ou5XwOX8THEzZjQD11HV2FlSO6PnxQzUTOGOGqiWjlBk5EoiNpTivli2FVpMy8+apWrjt2SNuZ1yRZOTtTe380kqSkYKpU8nZLVeOZj65I6h7uDPI0TvLlgHjxtEP1uDBtJRhayu0Ko4hGTVKdaKaOVNoNeJn5EhKqildOm3EfZ09S7Oc5ubA0qVCq0mZFy+QoIVbNpFXZlm1ilZeLCzSXpLR8+eURAXQOPnSsH7gziBHr7i7q05mc+bQD2taimPhpMzJk9RGUCajQHxeSzB5zp6lmSgTE2DTJnKgpEx0NM0GAxQzWqiQoHJSJD4e6NuXZjFbtBB/C7cHD1Qt8RYvptmztMT48YBcDrRtSx1sOPqBO4McvXH9OhWUBugkMGGCsHo4hsfPD+jTh7aHD6dG8pykiY42VRZmHjZMmsWl/2TWLIoXzJqV2s+JnbVrKdEtfXraFnONvqAg4N9/yXFt04Z+Z9MSV67QxaSpqWqmlqMfuDPI0Qs/flDwdUwMNUhfvlzcP6oc/TBoENU9K16c/5irg7t7KXh5USeOWbOEVpN6PD2BBQtoe80aIGNGYfWkhJ+fymFdsADIlUtYPckRG0u/sR8+AHnzqmbf0wqMARMn0nb//kDhwsLqSetwZ5Cjc+RyoEcPajFWvDjV6RJz8DVHP+zbR1l/ZmbAzp2qjiOcxLlzBzhzpggA6sgh9Y4KjFGx5rg4Shpp105oRSkzdiwlO5UurWr/J0YU7+358xR2cegQYG8vtCrdcvYslR6zspLGjLLU4c4gR+esWEFdBaysyCHgMWLGh4+PqszFpElpL45J10RHUzYoYzJ060YZ91Jn/36qDWdpSb8JYufaNSrhA1AdRDFfwC5ZQhcMMhkVwk5rtVoZowxigJIOs2cXVo8xwJ1Bjk55+pQCfgHKIi5ZUlg9HMOjKJYcEEAnqUmThFYkfmbPpiXVDBkiRd2WTV1CQ1WdUyZMAPLnF1ZPSsTEqIpL9+8v7kSFgwepaw9AmdlSKNOjKcePA/fvU9WJsWOFVmMccGeQozOiooAuXeiHtUULVV05jnGxfj1w4gSVudi5U/rZsPrm8WNg/nza7tXrATJlElSOTpg1i/qP588vjZP5kiXkjDs4qI6FGLl7F+jalbYHD06b/bzlctWs4LBhlHjE0T/cGeTojAkTqCZU1qzUCiktBTNz1OPBA1UZkXnz+MxwSsTG0vJwXByVzqhY8WvKTxI5jx7RqgAArFwp/pp3Hz6oal8uXSreJBcvL1Vf3qZN025S3qFDwJMnlM2dFlowSgXuDHJ0wvnzUC5vbdvGr+aMkcBAqskWE0NLV4plQk7SLFoEeHgAmTJRtq3UiYgAOndWObfNmgmtKHkUhfCjooB69WhlQ4wEBtJ7+eMHUKYMxWKnxXqtcrkM06bR9ogRQObMwuoxJrgzyEk1/v5Az560PWgQXbVyjAvGgF69gI8fqd/09u1pc9ZCl3h6Uqs5gC6kHB0FlaMTRo0CXr+m3sMbNgitJmX27qVkNwsL8dYUjI4GWrWiz0uuXBSCIfVM86S4cyc3Xr6kzGh+MWlYuDPISRWMUWzgt29A0aI008ExPpYuBY4epZPq/v1pr8yFromPp2LcMTF08aSIA5Myx45RvChAsaJin9Xx8lIljUyaJM46dnI5XWRdu0bLpidPAjlzCq1KP3z/DuzbVwoAdVThvyGGRcYYY0KLkBohISHIkCEDNm/eDBsd1k3x9vZGTj180/VhV2Hz6tV82LChMkxN5Zg58xzy5QtMtU1do8/x6xqpaP3d5ps3WTBzZj3I5Sbo1es+GjR4pxO7ukKMNk+fLoJdu8rC2joWCxeeQubMETqxmxiGsBkYaIXx45sgNNQKzZp5okuXxzqxqwsSsxkXJ8PMmfXx7l0WFC78E1OmXISpqfqnQkN9//fuLY1jx4rD1FSOsWOvwtnZN9U2dYGubX79aodVq6rhyxd7ZMkShgULTsPaOk4ntqXyWx0REYG+ffsiODgYdnZ2OrOrNoyjMcHBwQwACw4O1qldV1dXndrTp11XV1f27h1j6dIxBjA2b55ubOoDfY1fH0hFq8JmSAhj+fLRZ6BTJ8bkct3Y1SVis/n+PWM2NvSerV+vO7tJoW+b8fGMNWxI4ylThrGoKN3Y1RWJ2Rw3jvTa2zP28aNubOqC3+1u2EAaAca2bdONTV2hK5uhoYyNGcOYmZnieESwt291YlqJVH6r9eVXqEsaDEHlGIL4eCqOGxYG1KypqnvFMS5Gj6bltjx5aIlQjDFXYoIxoG9fSrSoUwfo109oRaln1Srg3DkqMu/qSkWmxcy5c6oWeVu20GdXbHh5qfoMT5+uislOKzAGHDhAcYHe3nRbixZA/frnUbDgP8KKM1J4zCBHK44eLY7btwE7O4oPEnO1fo5+OHMG2LiRtrdto88CJ3k2bQIuX6ZyK5s2ASYS/wV+9gwYN462lywBihUTVk9KfP8OdO9O2wMGAG3aCKsnKWbOpLJD9eqpau6lFV6/Bho1or7K3t6UcHb8OMWcOjiECy3PaJH4TxFHCO7eBQ4dogJya9aI88qao19iY02UMxfDhtEsFyd5vnyhmVQAmDMHKFBAWD2pJTKSyshER1Pv4YEDhVaUPIpZ2e/fgRIlKOlJrJw6Rf8nT047s+3h4VSL1tmZSpFZWpKj++IFfX44wsKXiTkaERZGmY9yuQk6dhRvXS6Ofjl1qijev6eeobNnC61G/DBGM1GhoUDlyuRAS53x41VF5rdsEb/TsnmzqjOOm5t4i2FHRFA9QQAoXVpYLbri3DlyxL98of1mzaggudjbFGpLXJz06kDymUGORowYAbx7B2TKFC7aulwc/fL1K3DkSAkAwMKFVPKCkzx79tBsj4UFsHWr9MMqHj/OjpUraXv7dvEXmX//XlW3bu5cmp0SK58+0X87u7RRXmXrViqf9OULrSIdPUpOeVp1BE+eBEqVos42UoI7gxy1OXJE1WZu0KA7om3bxNEv48YB0dFmqFqVzwyrg4+PqofstGnij6tLie/fgQ0bKgEAhg4FmjQRWFAKyOUy9OhBy5S1aom/mLGXF/3Pl0/6F9tz51I9zfh4oEcP4OVLaqmXVrl3j7oweXpSYpWU4M4gRy0+f6YeqgBlDhcv/kNYQRxBOHWKMkZlMoZVq6R/stI3jAH9+wMBAUDZstLPuvfxofjQ4GBrlCihysoVM+fPF8TNmzSDvWOH+JN2rl2j/1KfOVuzhop5A8DEiZRkpsOyvKLj61dqwxkZCTRuTKsmUkLkXwuOGIiNBTp2pP6YFSoAs2YJrYgjBAEBFPcDAI0bv0bZssLqkQLbtqni1HbsAMzNhVakPZ8/UxkpT08gU6YIHDok3rg7Bd++Ae7uFHi3YIH4k90iIsyxbh1tK7KepcjRo6q42JkzKWEqLV84RkZSy0BfXwpBcHeX3nedO4OcFJk8Gbh9G8iQgRqkW1gIrYgjBEOG0MxQ0aLAv/8+FVqO6Pn0CRg+nLZnzQJKlhRUTqp4/x6oUYPihfPmBaZOvSDK9m1/MnIkEBlpjkqVqG2m2Dl/vhBCQoDixaW7nPrhA2WZy+VUR3PyZKEV6RfGaCn84UMgSxYqkSPFOGruDHKS5dQp1XT31q0Ux8IxPvbvpwxMU1Oa4bKwiBdakqiRyymsIjQUqFoVGDVKaEXa4+lJjuDnz9S/9/p1IGtW8deDO3uWLl5lMjnWrRP/8nBEBLUpBKgEi9j1JoZcTo5RRATFZxpDkuGCBfTbaGZGhbTz5hVakXZI8OPGMRRXrgCdOtH2kCHiLdDK0S+fPlFZFIBOUhUrCqtHCmzcCFy6RDFSO3ZIN3v4xw+gbl2aES5ZkuLZcuUSWlXKxMZScgsANG78Bi4uwupRh+nTgZAQK+TNS2E5UmTPHjpv2NjQ5IHUyqtoyrlzFA8JUMJIrVrC6kkN3BnkJMqhQ1QlPiQEqF0bWLxYaEUcIYiJoey4gACgfHlgyhShFYkfb2+qwQcA8+YBBQsKq0dbGKNlPl9fCg24fBlwdBRalXps2gS8fUslb9q1eya0nBTZtQtYtIi2Fy2SphMVH0+xgQAtDUs9ASYlAgOt0bWr6nuiuGCWKtwZ5PzFxo3kAMTEAK1bA6dPi7/fKEc/TJwI3L8PZMpESyA8XjR5FPFDwcGUbDV4sNCKtGfzZop/srAA9u6leCgpEBoKzJhB29OmAdbWccIKSoE7d1SJWf/88wLt2gmrR1sOHqRWcxkzqvoqp1Xi4oDVq6vg50+qKbhihdCKUg93BjkJWLmSAq3lciqJsX8/NaDnGB9nzlC/WYAKC4s9E1MMbNhAsWpWVtJeHn77VpX8MneutDphLFlCy9sFC9KMjZj5+pUuuGNiqCxJhw7STMySy1WdiIYPl2YChSbMnAl4ejoiXTrKHBZ7Vr06cGeQo+TgQdUJYOJEYP166Z7MOKnj508qEgtQ7FWLFsLqkQLv3qkSRebNk3Zx6f79KQmgTh3xF2n+nYAAVUjL3LniLu8REUEOoK8vxWPu2iXNpBGAyic9e0ZOoCJWM61y+bLK8d2wAShSRFg9ukKiHz2Orrlxg7pJMAYMGkQf9rSeBcZJmsGDaXalZEnpFU81BOnSpUuwr+iwEBFBMbZS7j0cGEhJAAAlAUjJQTlxgjqNlCgBUS+3MkbZ5o8eSbscCUBjUdSeHTwYabozVUQELekzBtSp8w6dOwutSHdI6GvO0RevXlFNq+houlJduZI7gsbM/v30pygjw8ME/qbFH1OlJ04At27RCX37dmk5UH9y/z79L1BAemUyTpyg/61bi/s3bM4cKntjZkYrMlIu2XXuHPDgAS2VjhwptBr9Mns21VHMlQvo2tVDaDk6RYI5Sxxd4uNDrXMCA4HKlanVGF8aNl5+/lQlPUyYAN5l5A+8vIAvX4AqVRIuQbZsSSf3+Hjpx1bevUv/pVZCKCaG4jUBoHlzYbUkx+HDqqz8tWupq4tU+X1W8H//AxwchNWjT549U2V8r14NRESIOzFJU7gzaMQwRvWsPn0CChUCjh9P270jOcnDGC2B/PxJy8NpvXOApri50cyHhQXg5ARcvZrwwqlDB+G06RKFM1ipkrA6NOXWLSqF5eBAmdxi5OlToFs32h46VPwJLilx5Qpw8yZ9J6Tedzs55HJyduPiaNa5ZUv6PUhLyBhjTGgRUiMkJAQZMmTA5s2bYaND78nb2xs5c+bUmb2U7F69mg8bNlSGpWUc5s07jWzZwlJtMzUYevxis6kvu+ravHixALZsqQgzs3jMnHkOefMGpdqmpojtWGXJkgUNGjRAUBDVWbx9m2KiGjUC/vsP8PCg25s1o8dfu3YN3t7egmjVhU3GgIEDWyMkxArTp59D4cL+qbapCamxe/BgSRw86IwqVT5h6NBbOrGZFNrYDA62xJQpjeDnZ4uSJX0xbtwVmJomPP2KRas6NjNkyIeJExvBzy8d6td/i969H+jErhjH/+hRDixeXAtWVrFYtOgkMmeO1LnWiIgI9O3bF8HBwbCzs9OZXbVhHI0JDg5mAFhwcLBO7bq6uurUXnJ2/f0Zy5KFMYCxBQt0YzO1GHL8YrSpL7vq2PT0ZMzamj4PS5boxqY2iPVYHTvGWPv2qv0OHRirVYuxceMYc3RkbNGiVL8EY0z48Xt50WfA3JyxyEjd2NSE1NitV4+0r1mjO5tJoanN6GjGqlcnfQUL0u+vLuyqgz5s7t7typo3p/EUKMBYUJBu7Ip1/IpjN3asbu3+jr78CnXhy8RGyoQJgJ8fZd1JqXQER/fExFAmeWQkUL++qrwQR0WBAlR3cfNmyii8fx948YKC5lu3pvdv9GihVaaeGzfof5ky0kocio2lWVuA+iiLCbmcloNv3ADs7CgcJ1MmoVWljhMniuHECWpGcOAAkCGD0Ir0x40b9GdhkbZ/GyWc88bRljt3qMsIAKxbJ+5aXBz9M3UqlbjIlImyh6WcCasvihenvqunTlEtu2LFVIVmzc2l0a9XHS5fpv+1awsqQ2M8PMhJz5iRLnDFgiLWbOdO+l7t3Uut/aTMhQuAu3spANSPt0wZYfXomwUL6H/PnkD27IJK0St8ZtDIiIsDBg6k7Z49xXcVzTEsly6p6ghu3gzkyCGsHjHTogX9RUZSAsmaNRQv+N9/1PYsLaCoLyg1Z/DaNfpfvbp4LmbkcupXu3kzadq1C2jSRGhVqePUKaBtW0AuN0G3bqo2emmVZ8+oXJFMljZm/pNDJF8bjqFYswZ4/JiuoHkxYePG1xfo3FmVRdy6tdCKxEVEBHXiSJeOWpuNGkVlZaytqQXVzp2Ujd+7t/RP8gDw+TPVUDM1ld5F4vXr9F8suuVyuujetIkcwZ07IfkCxfv3UxZtVBRQtuxXbNwo7lqOukBxjmzblipupGX4zKAR8e2bqr7V/PlpuyYUJ3ni4oBOnYDv36mMzPLlQisSH3PmUEzUp0/Uam7NGlouXrKEYsAUJVjSCopZwfLlpdUNQy5XxTqKwRlkDBgyhEJxTEwo9KJLF6FVpY6tW+kzL5fT70aTJjdgZdVRaFl65eNHVfmY8eMFlWIQ+MygETFyJBAaSvXD0vr0Pid5pk6lk3+6dBQAbmsrtCLxcf8+0LUrkDkzfWd27qRuC/PmAUuXCq1O90g1XtDTk+I4bWzEUSR96VKKxZbJqBtN165CK0odK1cCffqoEmF27QLMzNJ+RbrFi6mIfIMGQLlyQqvRP9wZNBKuXKEOCSYm9EMllrgajuE5dYocGoDimdJKo3Vd4+ysOiEoqFKF4ixnzqRs/LQCYzQuAKhTR1gtmnLxIv2vXJkyPoXk2TNg7FjaXr5cVWBaqixYQDGxAE0mbNhgHB2qfvwAtmyhbWOYFQS4M2gUMAZMnEjb//sf4OIirB6OcHz5AnTvTtuDBwP//iusHjEzaxa1n2vcmOLpFOTLRzGE4eHCadM1z57RGK2sKAlDKjCmqozwzz/CagEou1YuJy1DhwqtJnXMmqVyhKZNowujtB4jqGDpUoqNrFBBehdH2sJjBo2AR49y4PZtCnxXxAxyjI/YWIr38fenZY8lS4RWJG5sbCgxYfRoKgfSpQvQsCHw6hVgZgbkzi20Qt1x5Aj9b9hQWiEDV65QvUdbW6qOICSBgcDu3bQ9erR0HSfGyPlT9ByeO5fq0hoLAQEUHwzQ+VKqx1FT+MxgGkcuB9zdSwMAhg1L23WSOMkzZQr1EbWzo2xYS0uhFYmPmzdpeThfPuDwYbqAWrOGZs4yZ6ZkgB8/aKk9LZ0kFM5gq1ZCqtCc1avpf/fuwhc+3raNyg6VKiWt2dXfUawiKRzBRYuMyxEEKEYyLAwoXRpo3lxoNYaDzwymcdzdgS9f7JEhgyqWhWN8nD6tKp66dSuQP7+wesTIt280c7p6NZ0UR44E6tWjmUAXF8rAT4t8/EhFm01MpHXy8/JSObGDBwsqBXK5ajZpyBDpXijMnKn6nC9frooXNBYCA8kZBIBJk6R7HLWBzwymYRhT1UkaOVL6LZA42hEQYK2MExwyhGpmcf5m+XJyKv75h+qp2dnRcnr79uQMfvumeuz9+/cF06lrFBcJdepIp9wUYxSTJ5dTtqfQXUeuXKEajXZ20q0nuHo1MH06ba9YYXyOIEAzooGB9Hlq00ZoNYaFO4NpmBs36Irf3DxO8CtnjjDExwNr11aBnx85NIsXC61IvNy7p8r+vHWLEkTu3KEZqNKlVUuSAPDu3TthROoYLy/KKAeo3JBU2LsXOHmSsofFUCNz2zb637GjtGIuFezdS2FEADmEim1j4s0bSgACKIHEGLKmf4c7g2kYxY9k9eofkTmzoFI4AjF3LvDypSNsbekHn8cJJs25c6p2fDExVCMuc2ZaPq1WLW1lDyuYOpUKkDdsCNSsKbQa9fDzUzkrkyZRIXAhCQ4GDh6k7V69hNWiDefOUcwlYzQzLqWLAl0yahR9F5o1o++DscGdwTTKhw+qeJomTV4LqoUjDNevq5Z91q8HChcWVI7o+b1GXe3aQNWqtM0Y4OoqveSKlPDwUGW/zp0rrBZNGDGCHMKSJcVRA87dnRJHihal4uRS4v59akMZG0tlplauNK44OQXnz1MPYjMz462ywJ3BNEh8PHUYkcvpCidXrhChJXEMjL8/JUPI5UCNGl6S74IgFIxRUL29vfQ6cyQHY8CYMbTdubN0OiycOUMOrExGy9tCF5kGqJg/QKVtpORIffoEtGhBPbgbNqQOO8bYjCAuji4wAJoZNdYi/AY99A0bNkSpUqVQpkwZ1KhRA48fPwZAwdjVqlVT3ndJUQofwMSJE1GsWDGULl0aFStWTHCfXC7H0KFDUaBAARQsWBBr165N8HqzZ89GgQIFUKBAAUz5o8Deli1bUKhQIRQoUAD9+/dHXFyc/gZuYObModZStraqzCiO8cAYnZi8vWk2sFevB0JLkiyBgVRmwtVVWif6lDh3jjp3WFjQ74UUCA2lovkAMHy4OGbhgoOBq1dpW0oJB8HBlDn+/TuVwjlwQByOtRBs2kS1KjNlovqKxopBnUF3d3c8ffoUjx8/xqhRo9C7d28wxtC6dWvMnj0bT58+xd69e9GjRw9ERkYCAGrUqIFHjx7hyZMn2LRpE9q2bYuoqCgAwO7du/Hy5Uu8efMG9+7dw8KFC/Hq1SsAwLVr1+Dm5oanT5/i5cuXOH36NM6ePQsA8PLywpQpU3Djxg28e/cOvr6+2KLoPSNxrl4FZsyg7XXrjPcqx5hZuZKWPCwsaNbCyirtXOjok+hoyiS+cEF1W6ZMVGvNzk44XbomPl5VZmrIECBvXkHlqM3EidQlJV8+VR08oTl7lmaWihQBChUSWo16xMZShvzz51R39uRJIH16oVUJQ2CgqhHDzJlAxozC6hESgzqD9vb2yu3g4GCYmJjA398fAQEBqPOr50vRokVhb2+P06dPAwCaNGkCa2trAICzszPi4+Ph96sp6L59+zBgwACYmpoiU6ZM6NChA/bu3au8r2fPnrC1tYWlpSV69+4NNzc3AMCBAwfQunVrODo6QiaTYcCAAcr7pMzPn7TkI5fTzJDU+2JyNOfhQ9Xy35IlQJkygsqRFIsWAcePA1270tJZWmXPHuDpU1r6njRJaDXqcfGiKpt7wwbxZOweP07/W7QQVoe6MEYXAOfPU4edEyeAXLmEViUco0dTSE2xYqpZZ2PF4BEC3bt3h5OTEyZPnowdO3YgS5YscHR0xMFf6Vh3797Fmzdv8PHjx7+eu23bNhQoUAC5fn16P3/+jDx58ijvz5s3Lz7/aiKq7X2JER0djZCQkAR/YuPHD4r7+PaNApl/L4PBMQ5CQ6m0RWws1cnj5YTU5907YPZs2l62jE6UaZHISGDyZNqeMEEatUeDg4HevWl7wACqKygG4uOpmDsgHWdw0SLq5SyTAW5uQNmyQisSjjNnqAC/TEYXGGZG3oLD4MPfuXMnAGDHjh0YM2YMTp06haNHj2LcuHGYM2cOnJ2dUb16dZibmyd43sWLFzFjxgycP38+we2y3wJ5GGM6ue9P5s2bhxmKtdff2L9/P2x0eNbw9vbWaobS398Gc+fWgY+PHezsotC790UcO6ZyWLW1mxxSsakvu2LTyhjVE3z3Li8yZw5Hs2ZnsHdvTKps6kOnEHZTsskYMH9+bURHZ0fJkr5g7DJSkiDV8R8/XgxfvpRB5szhcHQ8CTe3+FTb1CWJ2V2/vhI+f86PrFlDUbHiGbi5aRb2oK/3dPbs8/D3bwBb22h8/nwYbm7Jn0fUtauv43/rVh6sXk0p8l27PkR4+JsUP+cp2dQ1hvr+R0SYY+zYJgBs0bDha3z9+kjj90LXWiOEXo5gAmJlZcX8/Pz+ur1o0aLswoULyv0rV64wJycn9vjx4wSPa9q0KXN3d1fujxkzhk2bNo0xxtigQYPYwoULlfetWbOG9ejRgzHG2MKFC9mgQYOU9508eZLVqlUrSZ1RUVEsODhY+fflyxcGgAUHB2sy3BRxdXXV+Dlv3jCWOzdjAGNOToy9fq0buykhFZv6sis2rdu20WfA1JSxGzd0YzM5xDb+1Nh0c6P3ztKSvk+6sKkt+hx/YCBj9vY01h07dGNT1/xp98gR0iuT/f251tamLnB1dWUTJ5K2jh11a1fXuLq6skuXGDM3J70jRujGpj4w1Pe/b196LwoUYCwsTHd2U0NwcLBe/Ap1MdgycUhICL791s/p8OHDyJw5MzJlygRfX1/l7Zs2bYKtrS3q1q0LgBJBunXrhqNHj6J06dIJbLZv3x4bNmxAfHw8AgICsG/fPvz777/K+3bs2IHw8HBER0dj69at6NixIwCgbdu2OHz4ML5//w7GGNavX6+8LzEsLS1hZ2eX4E8MPH0K1KhBQdWFC1PHEV5Lzvjw9FQtCc+cSQWSOeoRFESZqQAlKEglCUAbli6l8ZYoAXTpIrSalPnxA+jXj7bHjBHf5/rkSfrftKmwOlLi8+cMaNVKlThi7F2Izp6lskQyGXWOEUv8qdAYbJk4ODgYbdu2RWRkJExMTODg4IATJ05AJpNhw4YN2LNnDxhjKFasGA4fPqxcxu3Tpw+io6PR67fS7rt27YKzszO6deuG+/fvo/AvD2jMmDEoVqwYAKB27dro0KEDnJ2dAQAdO3ZE48aNAQD58+fHjBkzUK1aNcjlctStWxd9+vQx1FuhE1xdgf79qStCmTL0Ac+aVWhVHEMTGUlxghERQL16wLhxQiuSFhMmUHmNwoXT9nsXEECxkABdMIi91RZjFB/48ycVl545U2hFCfH3t8aTJ+RQ/DqtiJLPn4GFC2sjJIQmDoy1lqCC4GDVBcbQofSecAiDOYNOTk64d+9eovdNmzYN05Io8PP27dskbZqammLNmjVJ3j916lRMTaK3Tr9+/dBP8amQENHRVCBz3Trar1uXWiH9lqjNMSJGj6YZYgcHYNcu8Z/kxcTVq9SZBaAA8rTcqm/NGqqXWLo0dZwQO7t3A4cPA+bm9LkW27F58oT6FlaqRN89MfLzJyUVBgTYoFgx6khlZSW0KmEZMwb48gXIn19aXXcMgRFfI0gPLy9aKlm3jq5Ip0yh4rHcETRODh4EFHXWd+2immEc9YiIoC49AJWUSEvdRf4kOtpUWXx+3DjxF8/+8oXKnwDUTlGM5ZE8PMgZbNZMYCFJEBpKy9evXwOZM4fj7FlpZI7rkwsXqMA0QFnEfHk4IUaeTC0dnj4F6tSh5Z7MmenKWczLExz98uwZ1ZIEqIBwo0aCypEc06dTOZmcOYEFC4RWo1+uXs0PPz8q1ty+vdBqkkcuB3r1AkJCgMqVVcWxxUR0NPD8uSMAccYLRkdTN5QHD+hcMX78ZTg5NRdalqCEhgKKSLAhQ4BatYTVI0a4MygBPn+m2loBAUD58sChQ4CTk9CqOEIREECdMsLCKExAUR+Pox4PHqia0a9bB2TIIKwefRIXB5w8WRQAMGqU+GupnT9fCBcvAtbWwI4d4tR79SoQHW2O7NkBFxeh1SRE4UxfuEAzX6dOAe/fhwotS1AYo9AqRfeaefOEViRO+DKxyGGMlrN+/KB4n/PnuSNo7AwaBHz8CBQoAOzfT3FVHPWIiaECxnI5Jd5IpViwthw/Dvz8mQ6ZM5OTIGa+fgX27aOKEQsWiLcygiLO9J9/xLfkPmMGFZM2N6dJg4oVhVYkPGfOFMaWLXSsNm8G0qUTWpE44c6gyNm8mRxAKyvA3Z3HBxo7bm7Ub9jUlLaNPQ5IUxYupCX2zJmhjKNLyyjy6/r1E39XlWHDgKgoc1SuLN7uOa9eUSIGQHrFxJ49qqzrDRsoecTYOX4c2L2b2qwsXEgrKZzE4c6giPn8mZZ2AMp8EuuVMscwfPlCs4IAJQ9VqCCsHqnx8iUwaxZtr1wp3ixQXeHpST19ZTI5BgwQWk3yHDtG2cOmpnJs3Cje8ieLFtFqTblyX1G8uNBqVNy8qWrZN3as+GeBDcHDhzT7z5gM//uf6lzKSRyRfuU4cjktD4eGAlWriu8qlGNY5HL6sQ8KoqWfiROFViQt4uPp/YuJAZo3Bzp1ElqR/lHMCpYr543fWrGLjrAwVfZw06av8Ks0rOjw9qasfQBo0cJTWDG/8fEjlQuKiQFateIxcQDw6ROFgEREAM7OPli1SnxL+mKDO4MiZeZM1fLwtm28fpyxs2gRBYVbW1PhWB4nqBkrVwJ37wJ2dhTzldZPDBER9DkBgAYNkq7VKgbmzaNZ77x5gTZtngstJ0nGj6cuHtWrA4UL+wktBwDNUvbuTTUFXVyoyoRYZ1UNxbt3QM2agI8PFSz/77+b/PdSDYz8YyNO3N0pEBigOnJ8edi4uXEDmDSJtlesAIoUEVaP1Pj+PZ3y/Vu0iMrJpHUOHaJVhXz5gBIlvgstJ0k+fVJldi9bBlhaxgsrKAnOniVHSyYTVzu3HTuAy5fpInH/fl4778WLhC1aT58GbGxihZYlCbRyBuPjxfmFTQs8eqSqHzdyJI/9MHZ+/qS4l/h46ierKJTMUQ/GgE2bKiIykup0SrDpkFZs307/e/QQ90zRxIlUF692baBlS6HVJE54OJQxl8OGUdcRMfDzpyoObto0qi5gzDx6RPUDfX0BZ2fg2jUgVy6hVUkHtX8mrl27hq5duyJ79uywsLCAlZUVKlasiAULFiAgIECfGo2GwEArtGxJ/WYbN6bsJ47xIpcD3bpRrFKRIsaxvKlrNm0CXr50hLU1bRvD+/fpE3DpEm336CGsluS4e5d6rMtkNDso1mMzdSrF5eXOLZ6annFxQNeuVHO0VCmaODBmbt6kiz1/f0qsu3IFcHQUWpW0UMsZbNasGZYuXYoWLVrg3r17iIqKws+fP7F69WpER0ejXr16OHPmjL61pmmiooBly2rg61egaFFg714eJ2jsTJ5My1OKJSBeH0szfvygXqQAMGeO8cyc7NhBM6J16lAcnlhRZHb36AGULSuslqR49AhYvpy2160Tx3dQLqcZ7nPnqFyQsccQX7hAZXRCQihW8OJFXnJLG9Sq7z5v3jyUKlUqwW3m5uaoWLEiKlasiAkTJsDLy0svAo0BuZyWht+9y4KMGak2UlruisBJmd27VVmBGzZAtBmWYmb+fDpB5M0bgGHDjOPsIJerlojFHGISG0uxbgB1hxAjcXEUlqEoUC6G1nNyOS1Zb99OkwW7d1MzAmPl2DFqsRgTQy05Dx0Sfz1NsaLWzOCfjiAAMMYQGkptbszNzVGYZzloBWPAf/8pCgnH48ABoGBBoVVxhOTJE6B/f9qeNImWijma4e1NyVcA8O+/T4xmlv3aNcDLC0ifHmjbVmg1SfPgAWU8Z8pEGZ9iZNkywMMDyJhRNTsoJIxRCZ5NmygOdNcuKiljrLi6Ug/mmBh6H44e5Y5gatAotLhPnz4ICgpCTEwMypQpA0dHR6xV/OJytGLWLGD1aoqXGTjwLq+QbuSEhZmjTRtV3Kgiq5yjGbNnU2JCjRpAqVK+QssxGFu30v+OHcV9Yrx6lf7XqiXOBJf37ylWEACWLhVH/NmYMbRULZPRzKAx1MpMijVrKGYyPp7+u7sDlpZCq5I2Gn0NHz58CHt7e5w9exYuLi7w9fXFhg0b9KUtzbNiBWWBKbarVv0krCCOoDAGbNhQGR8+UKzXnj08blQbPnygNo4AOYViTUzQNYGBwIEDtK3oRiFGGANOnKDt2rUFlZIo8fG0PBwVBdSrJ44knDVrVCV4Nm823tUCxug7PWSIaqZ0xw7ATK2AN05yyBhjTN0Hly5dGk+ePMGYMWNQqVIltGvXDi4uLvDw8NCnRtEREhKCDBkyYPPmzbDR8vL75Mmi2LPHBQDQuvVztG//DN7e3siphyJo+rArFZv6svvhwwdY/nYpGhcXB7M/fpH+vC2l/YcPi2Hv3mYwNY3DkCGuyJXrh8Y2ErstMjIS1tbWqbKhqU1txq+N1sRs7NnTGI8fl0Thwl7o1++gQcavjVZdj//06eq4dKkysmX7gZEjdyqdYH0cq9SM/9mzgti5sxVMTeMxbtwWZMwYovX4tdGako0zZ6rh4sUqsLCIwYgRO5ElS5Cgx9/LKz82b24HudwEjRpdQf36D/Q6fm1sajveP2+Ljo5G/vz5kRhyObBnjwtOny4KgM6b7do9S/FiTyrnlYiICPTt2xfBwcGws7PTmV21YRrQsGFD9r///Y/lyZOHBQYGspiYGObs7KyJiTRBcHAwA8CCg4O1ev78+YzRdQ1jkyczJpfT7a6urjpUqUIfdqViU192Fy1alOJr/Hlbcvs+PoxlzEifidmztbOR1G0padVGu67Hr63WP/efPmVMJpMzgLEHD7Szqc5j/rSpjVZdjt/HhzEbG/r8jBhxVSOb2mjVdvxhYYw5OZHOli2f/2VD6M/qyZOq3+Y9e9S3qY4ObY7/smXHlL8L3boxtmePOL6ruhi/unYZYywmhrHu3VXHZvnyRB+WKFI5r6TWr0gtGi0T79mzB0WLFsXevXthb28Pb29vjDT2AkcaMmcOtTUCaIl45kzjWcbiJE5MDMV4BQYCOXN+x9ixQiuSLpMmUWP69u2BcuWEVmM45syhhIxKlYDy5b2FlpMks2ZR67k8eYBWrV4ILScBXl4UfwYADRq8QefOwuoJCQEWL66JwEDqR75xo3GeKyIiKEFk504Km9m+nZIuObpF7ZX2+Ph4dOrUCefPn1feljdvXvRUtMvgJAtj5PhNn077s2erWoxxjBfGqKvB1auUAdqp0ymYm4u4JoiIuXSJyjKZmMgxa5YIsxL0hJcXlR8CgLlzge8i7T7n7W2njHtbuRIIDxdPJ6vYWBO0b08XZJUqAV27egAQrkIGY4qC8xmQIwdw5Aj1qTc2/P2BFi2A27ep3qq7O9C8udCq0iYaxQzWr18f586dg4kY078MiCJmUJO1/enTVZmh8+cD48b9/Rg3Nzd00kOKmD7sSsWmvuzOnz8fefLkUe4nFj/y522J7T9/Xhs7dpSHTMYwevQ12NldR4HfqiOrYyOl133//r1GNtV5TEo2tdWuqVbFfnCwJSZMaIygIBtUrvwYw4Z5GnT82oxXV+M/cKAD7t7NjZIlfTFx4mWDHCtNxy+XA5Mn18DHj7ng4uKNMWOu6WT82mhNzMbatYVx40Y5pEsXjblzzyA6+q2gx//KlfzYuLESzMziMG3aRRQoEKDX8ev7+Kv7up8+fcL4X0tn798DTZoAb98C9vbAyZNA1arQGKmcV7TxK3SKJmvKkyZNYs2bN2f79u1jJ0+eVP4ZG9qs7R87xpi5OWNLliT9GKnENkjJpr7s6iIOZ8KEi8zUlGJgFi5Uzy6PGfx7Pz6esQYN6H0sXpyxrVv3pcqmOo8RS8zglCnnGcCYiQljT56op1WImLG1a+n42Noy9ulT0jr0cayW/xFg9uHDhwT7Z8+qYtEUpzMhj7+3N2MZMpCezp0fpfictBgzeOcOYw4O9B7kzs3Yixd/PVVtpHJeETpmUKOE7Js3bwIA1q1bp7xNJpOhqRhKs4ucFi2AV6+AJBKlOEbG27fAihXVER8PdO8OjB4ttCLpMm8ecP68ahnp6VPxLD/qk/h4YOdOCozs35961IqRr19VKyHz5lGPX0PSVREI+It8+fIl2K9RA6hX7y3KlCkkeJcRxoCBA4HgYOqx26TJawAuwooyMEeOAJ07U61VFxeaEcyeXWhVaR+NnMHLiv5BHK3gjiAHoDiY5s2BiAgLVK5M8V7GGBiuCzw9HTBnDm2vXQuUKAE8fSqsJkOxZQvw6VNG2NtTPLIYYQwYPBgIDQUKFvTDoEFZDK4hc+bM+PwZmDgR8PGhdm7t26vut7YG+vR5gI4dCxlc2588eVIEx45Rr+GtW4Fnz9SO4koT3LjhgrFj6XPTtCl15hJDP2hjQKPgv/j4eKxYsQJDhw4FQHEDly5d0oswDictEh8PdOkCvHkDZMkSjsOHjTMwXBf4+QGrV1eFXE6FgY0ply0kBJg8mbanTwccHASVkySnTkHp3PTrd0+QIurh4RR7VqgQOYEDBqg6oCho0aKF4BdkX74Ahw7VB0DJhWJt06cv5swBjh6tB8boGB09yh1BQ6JRAsmgQYMQGxuLGzduwNPTE0FBQWjQoAHu37+vT42iQ1+BnlIJdJWSTX3Z1TaB5M6dRjh40BkWFnEYMmQ3ypdP2ENJ2wSK5F43LSaQyOXAkiU14eGRE9mzh2DOnDOwsooXbPzajDc149+/3xmHD5eEg0MAliw5BzMzluRzhEog+PzZBytW9IWPjx2aNfNE7dondZ5Ak9xjypUrh8KFC2PjRuqFvHEj3b9lCzmpBw/SPmOqmfmLFy/ix48fBj/+crkMs2fXxatXWZE/vz+mT78AMzO5aL+rukwgyZ49J9zcyuDkyWIAaJZ78mTdrZZI5bwiqQSS0qVLM8YYK1OmjPK2UqVK6TCEURroK9BTKoGuUrKpL7vaBGWPH3+JyWQUFL1zp36KLid2W1pMIFEUbjc3j2MeHsm/blpLIPm9wPTw4ddS1CFUAkGPHvcZQIkAQUH6SaBR5zHt2zN25IhqPyyMNEVH037v3oxd++NtNPTxnzmTjqelZTR7+1Z9G9poFVMCyc6dbgmKSTdvfvmvx6QWqZxXhE4g0WiZ2OqP9az4+HjI5XIduqYcTtrkyxda0mQM+N//jLe3qC64dk1Vo7NHj4coU0ZQOQZnxgwqxFu5MlChwleh5SRKQABw4IAzAJrpyZBBOC0zZyYsQG5rC5QtC9y4Ady5Q3+VKwun7/ZtVdmx1q0voGBB4bQYkogIYNmyGgmKSdeq9SDF53H0g0bOYKlSpbBnzx4wxvDx40cMGjQINWvW1Jc2DidNEBMDdOgAhIVZomxZYPlyoRVJl+BgK3TsSLGXXbsCdeq8F1qSQfH1TYdNm2h74ULxJh7NnAmEh1uiZEmgb1/DvnahQgkTQYoWBXLlSviYRo2A06epk8XSpRTTKATBwRRDrIglLlfupTBCDMyHD0DNmoCHR05YW1MGcY8eQqsybjSKGQwLC8OoUaNw5MgRAMA///yDZcuWIZ2RRXnymEHp2NSXXU1iBnftoubq1tZRmDfvHLJmDU/yOTxmMGm78fEyTJ9eFe/f50bOnMGYNesc/P0/iWL82oxXm+O/eHEpPHpUAmXKeGPs2MQLNwsdM+btnR7jxjWFXG6CCRMuw9nZV2fjT0l75syZ0bBhQzBGZYZcXYGsWYF//gGaNQMU/RJevqTZwQYNqGsNABw7dgzh4Yl/N/V1/I8caYebN/PCwSEM8+adgY/PK0l8V7Udv6NjLpw6VRQHD5ZEbKwZbGwiMGbMTRQp4gcgYdFpXSGV84qkYgZ//vyp1m1pHR4zKB2b+rKrbhzOkSOqeJiRI6+m+BweM5i03XHj6H1Ml44xT0/1XzetxAy+esWYTBbPAMbu31dfu6Fjxpo2peNUtuwXjWyqo1Ud7Ywxtn07Y9WqMebuztjcuYzly8eYszNTxpfK5Yx168bY69e0/+KPqsaGOP6DBt1iAGOmpozdupW4XbF+V7UZ//TpZ1nJkqrfw7p1GVux4miKdlOLVM4rkooZbNiwoVq3cTgc4McPW2W5k5EjgfLlvQXVI2WOHQMWLKDtLVto6c/YmDkTYMwE//wDlC8vtJrEOXeOMnXNzIAuXR4LpuPAAWDRIiolM2EClXLq3h2oVQs4e5aW13fuBAr/aj/84sULg+r78AHYto0O4vTpQJUqBn15gxIRAQwdCsyY0QDPnwNZstB7f+EC4OAQLrQ8zi/Ucgbj4uIQEREBuVyOyMhIREREICIiAj4+PoiIiNC3Rg5HckRGAitXVkNQEDW+nzdPaEXS5cMHVTxRo0av0aGDsHqE4PlzwM2NtqdPF1RKksTHyzBqFG0PHgxkzx4qmBY7O3L6FJiZUZefgwfJKQz9Q1pcXJzBtMXFUXxgZKQ5atQgZzWt8vgxLcevXg0wJkOvXtSJq1s38ca76oLISKEVaI5aMYMzZszAjBkzIJPJ8PvD7ezsMGrUKEyZMkWvIsUGjxmUjk192U0uZpAxYM2aKrh1Ky/SpYvGnDln4OAQoZeYqbQeM+jl9QPr1/fAly/2KFjQD3367ESePNmTtZEWYwaXLKmBhw9zoVSp1xg//pFOx6+N1sTGv29fVhw9Wg/p0kVj6dITCA720ludxT+158qVC/ny5UOlSpUAAJ8+0ezpkCHUeeT3BJFKlYBdu2hW8Pz58/Dz8zNonb3Dh0tg//5SsLKKxoIF9NuQ2vGLLWaQMWD/fgecPFkHsbGmyJgxAm3bnkTdunFJPgdIGzGDhw4Bw4dT0WwXDToJSipmcMCAAXpZq5YaPGZQOjb1ZTe5OJwpU9ivWKB4dulS0jp4zGDy45fLGatc+SMDGMuWjbGvX8U7fnWeo+3xv3mTKWPLFi8+rrF2Q8SM+foyZm0dzQDG1q/XzqY6WhN7jru7+1+3MUZxpS4ujBUvTnU9v39n7MYNih+MiEj4WEPV2XvwgDEzMzqegwbd+suGVL6ryY0/NJSxdu1+rx3ImJ+fdp9VXWDI88r9+4xZW9O4R43SzJ6kYgbXrVuHx48fw9XVFQAQFBQEHx8fPbioHI402bABmDWLtnv1eoA6dYTVI2UWLgTu3MkDc3OKAftjMsMoYEy1jNirF5Ajh3BLr8kxYQIQGWmBsmUNX0qmQoUKAIDAQGDsWKBfP1qKLFqUagiOHw+sWwcULEg1PvfsoX7EhiYmxhRdu9Iycbt2QLVqHw0vQs98/QrUqEHfV1PTeCxbRvG+mTMLrUz/fP1KWeuRkdT+cP58oRVphkbO4Pr169GjRw/lsrC/vz+6dOmiF2EcjtQ4cgQYNIi2p00D6tY1rhp4uuTsWZUTtHIlUK2asHqE4unT7Lh2DbC0pM+UGLlzB9i2jbZXr4bB+w/nzZsXsbF0Ag4OBmxsgDZt6D4LC4pPu3WL+jk/fy5cssbevaXx6hWQPTuwfn3ai5l7+zYzKlakOMGsWYEpUy5i+PC0N87ECAsDWrQAfHyop/TevRSnKiU0qjPo4uKCW7duoWrVqvDw8AAAlCxZEs+fP9ebQDGiWNvfvHkzbGxsdGY3sVgOsdqVik192X379m2CY//iRXbs2vUv4uPNUKnSE7Rtex7R0VEJuvZERSW/DwDh4eGwtbVV+zmJ2fjzNk1tqvOYlGxqqz08PBwREbmwalUXREZaoVw5D/z770XlCUWs49dmvCkdf8aA5cu74Nu37KhZ8wFatLiil/Fro1VhMz5ehpUru+LbN0e4uDxB587ndTZ+dZ7TqFEjODs7Y8sW4OJFqisIkMOXNStw6RJlFK9dCyie5unpievXryMkJCTV41f3PfTyyol16zqCMRn69DmIokW9dDJ+bbTq8vgD9Dm9fr0cTp6sCbncFNmy/UTv3odhbf1DY+0RERF/FQ1PLfo+r8jlMixbVh0PH+aCnV0UZs06p1WWdEREBPr27SuNmMGKFSsyxhL2Jlb0KzYmeMygdGzqy+7vsS03bzJmaRnLAMbatGEsNjbx1+Uxgym/7syZK1iRIhRzU6UKYzt27E21dqnGDB46pKqr+OOH9tr1GTO2fDlpzJiRsXXrDqbKpjpak/ou16nD2O3btP39O+k5cYKx9+8Zq1qVsVmzkrehz5jBqCjGihal96l37+R1SOW7qrApl1NsnCI+sEMHxkJCtNcuxZjBuXMVfaVVn0FtkFTMoIODA968eQPZr8v0Xbt2wcnJSQ8uKocjDZ4+pc4G0dFmaNSIZiaktjwgFuLjAVfX5nj9mtqHHToEmJsbZ+9zuRyYOpW2hw8HHBwElZMo3t7A5Mm0vWABkCFDtGBaVq4EfoUO4to1Kr/TrBmQPz8wYADVGRSKBQsohjFDhkgsXiycDl3DGMVoLllC+127PsLevUD69MLqMiS3bwOKYirr1gnb4zq1aHTaWr58OTp37ozXr18jb968sLGxwXFFLx8Ox8h4/x5o2BAICgIKF/6JgwcdYGkptCrpMmEC8OpVflhbU1mGbNmEViQcbm4U32ZjE4ORIy2ElpMow4dTrFSVKkCfPsC+fcLoiI6ORsmSqi9eu3YJ7795E6ha1cCifvHmDTBnDm136/YIGTOmjeBXRWKTwrlduxawt38NmayssMIMSHi4OTp1oovYTp2gbDAgVTSaGSxYsCDu3LmDBw8e4NSpU3j27NlftYY4HGMgIsIKTZoA378DpUoBY8ZcxR8hRBwN2LaNOkYAwPbtVKjWWImJUc02tGjhiYwZhdWTGJ6e+X9ljFIyhIlGZxLd8ueERGxsrHL7xg3g/HlKIjE0jAHDhtHxbNwYqFLls+FF6Ilr18orOwKtXg0MHCisHiFwcyuDT5+AfPnSRkKQRgkkAAU5fv36NUHF9uLFi+tcmJjhRaelY1MfdmNjgWLFPuL9+7zIkiUcM2eeQ3j4e70UXTaGotOvXjlgzpw6iI83Re3a19G//1fJjV8brUkd/3fvGmPHjvKwt4/EmDEbkS9fVr2OX1OtUVFmGDGiIYKDM6B5c0907vxYp+NP7bEyMTHBv//+i9BQWipevpwuLn78+IGLFy8apOgyAFy4YIGtW9vCzCweixadQlzca4OMX9/H//79XFi+vDoYk6FzZw80b/5KYxtJ3SaVotOPHgHlyzMwJsPVq0DNmqm3Kami00uXLmXp0qVjuXPnZnnz5mV58+Zl+fLl0080o4jhCSTSsakPuwMGqAL7nzxJ+jV4AknK2j98YCxLFno/27VjbMECaY5fG62Jve6sWcuZgwO9H+vWGWb8mmodOZL05c3LWFiYdjaS0qHtsQoPJ10/fjB28ODBvx6jjg1N9lM6/jExjGXPHswAxsaOVX8sYv6uMsbYo0eM2dgoimZTAommNjTRqgt0/fsvl1NSEsBY5866syupBJJVq1bh9evX+PTpE7y8vODl5YUPHz7ox0vlcETI5s2KJQEGV1daIuZoR0SEGVq0APz8gHLlgB07hF1uFAPXr5fHz59UILlPH6HV/I2HB820ARQnJpbQiOnTgaVLKYY3KiphIsvXr18Tf5IeWbcO8PGxQ9aswKRJBn95vfDtG9XSi4gAChf2wooV0l8a1YY9e6hupaVlLBYuFFqN7tDop9fJyQk5cuTQlxYOR9Q8fgwMHkzbjRrdQIsWgsqRNHFxwOrVVfHiBRXhPXqUigUbM35+wNWr5QEAs2cn7KcrBuLjqYOHXA6ULv0KTZoIrYj48CGTMqN15sy/HZS9e/caVE9QEDmnAB1HIVb8dE1cnAxt21IGebFiQNeux42yasKPH8CYMbTdqtXLNNUVSaOYwStXrmD37t1o2rRpgkKRTZs21Ys4scJjBqVjU1d2IyJo9urVK2o5VKnSfOTLl0d5vy7ikADjiRncsaMszp4tAnPzOEyZchEFCwZIevzaaP1z39W1DE6cKIa8eQMwe/ZZmJgYZvzqan3ypC527y4LG5sYDBmyFmXKOOp0/Opo/XM/Ls4EY8fWha+vA6pW/YghQ27rPWYuMZu/P+bgwZI4eNAZjo5+WLLkAkxMmN7Gr41WbWxs2ZIXFy9WgY1NDObMOYuwsCep/vwndpuYYwblcupyc+4cOcTjx+9D9+7/6kAhIamYwf/++49lzZqV1ahRg9WuXZvVrl2b1alTRz8L2CKGxwxKx6au7A4cSDEi2bMz9vOn/oouG0PMoKJQMcDY/v0JnyPV8Wuj9fd9Hx9Vg/uTJ7W3qY5Wbca7fPlRZazYxo2GKbqtznOmTydNDg70vUzsMfosuvznYwIDGcuQgTQNG3ZdI5vqaBUiZvDqVcZkMjkDGNu3L3Gb6uiQesygori0tTVjz57p/nwldMygRhO9R48excePH2EtRJdvDkcgjh2jGCCA4tqyZBFWj5Q5cgQYMYK2O3XyQLt2LoLqEQtz5lCD+zx5vNGkibjWnhgDtmypgIgIoFYtimVculRoVcCzZ7QMC1B5EzF8L1eupP7IxYsDFSt+EVpOqvH3B7p0ARiToWdPoEMHoRUJw/XrqgLrq1dT/+Fnz4TVpGs0ihksUKAAzMUWyMLh6JGPH1WB/KNGAQ0aCCpH0rx/nwmdO5Nz8b//QVmSwtjx8gI2bKDtJk1uiC4of+dO4Nmz7LC0BDZtEkeST2ws0KsXxZ6WL/8F7dsLrQiIiDDHsmW0PW2aON6n1MAYFVL++hXIli0EK1cKrUgYvn0DOnakZeKuXelzlxbRKGZw4MCBePHiBVq1apUgZnDQoEF6ESdWeMygdGymxu6PH0D16sDbt0CZMsCdO1B2GJk/fz7y5OExg+ra+P49HSZProfwcBuULv0No0dfg6/v1zQzfm20KvY3bqyIK1cKwNnZBx06bDH4+JOzGxBgjbFjmyIiwgIdOz7GP/946nz8v6PusTp0qAQOHCgFG5sYjBq1BcWK2etl/OraBIBdu3Li9OmayJkzGAsWnIKPjzB1FnU1/qdP62DXrnIwN4/H4MG7UbGiRZI21dEhxZjByEg6Bzx6BBQtCty/D6RLl3q7iSGpmMGePXv+9derVy/9LGCLGB4zKB2b2toNDmasbFmKEcmTh7GvXxPez2MG1R+/nx9jhQrRe1m2bNKN7LXRKpbxa6PV1dWVeXkxZmZG782tW8KMPym7cjljzZqRtvz5/VhsbNI2tdGq7fF/+FD1nu3ZY9g6e0nZjIhgzM4ukgGM7dypnU11tBoqZnDu3NPMwoLe49Wr9fP5V0erLtD2vCKXM9a9O70HWbIw9v69buwmhaRiBrdt26Yfj5TDERFRUUCrVnQ16OBA2WNpqYSAIYmOpvfy7VsgS5YwnDyZzqga2afE/Pm01Fm/PvX4vXlTaEUqdu4ETp4ELCyAAQPuwMysmdCSEBNjgu7d6T1r25Z6whq4ckyibNsGhIRYIU8eWlKUMmFhwMqVVRETQ9/dQYPE8R4bmrVr6TtgYkJ9t/PnF1qRflErquHu3bvJ3h8ZGYmXL1/qRBCHIyTx8RQwffkykD49cPo0ULiw0KqkiVwO9O5N/WEzZADGjr2KbNmEViUe/P1tsHUrbU+bJqyWPwkMtMbw4bQ9YwaQK1eIoHoUHDhQCi9eAFmzUlKXGOIr4+JUfbVHjxZffUhNGTIE8PW1Q65cwJYt4niPDc3Nm1B+/hcuBOrWFVSOQVArZrBt27YIDg5Gly5dULVqVWTLlg2RkZF49eoVTp06hTNnzmD58uWoawzvGHjMoJRsamKXMcp0XbGCZkPOnAHq1En8sTxmMOU4pI0bC+DKlYowNZVj3LgryJjxUZodvzZa16wpgps3y6J48e+YPPmSYOP/8zbGgJkzK+P163zIn98fM2ac/yu+U4iYwVevHDBrVj0wJsPIkddQvry3Wnb1HTN4/XperFtXBba2EVi9+gQsLeP1Mn5ttWsy/ocPc2LJkpqQyeSYMuUSihb9qZZNbccrxpjBsDDA2ZmSBzt2BFxdE3eIjTZm8N69e6xPnz6sQIECzNLSkmXKlInVrl2brVq1ioWGhupvIVuE8JhB6djUxO7s2ar6d3v2JP9YHjOYvM0VK1Tv5fbt6r+uVMevqVYfH8bMzeMYwNilS9pr1UfM4IYNdNwsLRl78UI9m9po1eT4BwdTL2SAsZ49NXtdfcYMxsUxVrgw6erY0SNVNtXRqs+YwaAgxnLkoLG0aPFCI5vq6JBKzOCgQapYcUV8sy7spoRkYgYrVKiAChUq6M8r5XAEZP16VR2p5cuBzp0FlSNpDh1SLbHMmQP06CGoHFGyZAkQG2uKqlWB2rWFVqPiwwdg5EjanjeP6uWJgWHDaKbGwSEMK1akE1qOEnd34M0bIFMmoEGDtwDKCC1Ja8aOpTIqhQoBbds+ByCSg29Atm2jWEEA2LoVRhXfLPFKSBxO6tm/n4KkAWoq/99/wuqRMvfvUy0uxoD69d9iwgShFYmPnz9VJ5xJk8QTkyWXUw218HCgWLHvovkeHDhAxd5NTICBA2+LptevXA7MmkXbI0cC1tZxwgpKBS9fZsXGjbS9aRNgYREvrCABOHsW6N+ftidONI44wd/hziDHqDl7VlFhnwohK37cOZrj5QW0aEG1uZo0AXr0eCgaR0dMrFhBva7z5fNHkyZCq1GxfDlw7Rpgawv87393RVE02d/fWnmCHj8eKFrUT1hBv3HwIODpCdjbU9KFVPn5E1i/vhIA+g2sVUtgQQLg4QG0a0fJQF27qjrbGBMaFZ3mEIpAz82bN8PGxkZndhMLsBWrXanYTM7uzZt5sH59JcTHm6Jixc8YNuyWsql8Srx9+zbBsY+KikpQiD2x21LaB4Dw8HDY2tqmysaft2lqU53H/GkzIADYsqUXfvzIjOzZf2DQIDcAoUYzfnW1ymTpMWfO/xAZaYWOHfejXLlPgo8fAD5+tMP69b0RH2+GNm3OwcXlnl7Gr8nxl8tlWLeuHT5+zINcuXwxeLAr4uIiUn2sdPFdDQ0Nx8aNg+Dr64AGDW6hYcNbOh+/us9Jzfjj402waVM7vH+fG1myBGLYsF2wto7R2+c/Je0REREoVKgQdElK55WfP20xbVoDBAVZo0QJX4wbdxVmZvJU29WUiIgI9O3bV/wJJHFxcWz58uX6i16UEDyBRDo2E7MrlzO2aJEqwaFDB8aiojSzyRNIVDYjIxkrWvQ7AxhzcmLM21t77VIcvyZaly2jz1zhwozt3u32lw0hxh8ZyZiTU+CvxAH6fug7gSYp7b/bVSR02doy9uZN0s8RIoGke/fDDGDMzo6xgADtbIghgWTYMHqPraxi2PPn2ttU5zliTCDx9masaFF6D5ydGQsK0o1dbRA6gUTthQBTU1McPHhQf14ph2MA5HKK7xkzhvaHDwfc3FRt5jiawRj1bn71Kivs7IBTp4AcOYRWJU7i4mTK3rWjR0PtWWh9M3Ei8OWLPbJmBTZvFkcM461bqtqLa9ZQUoNYYAy4cKEKAEpsyZhRYEFasnUrlP2GBw68jRIlhNVjaC5coDajr14BuXLRb1eGDEKrEg6NokIaNGiAffv26UsLh6NXFAHyy5fT/uLFwLJl0m8oLyQzZ1IdLlNTOQ4dAkqWFFqReLlzJzc+fwYcHYFu3YRWQ5w7B6WDunUrFXMWmsBAyuaPjweqVv2I7t2FVpSQ48eBb98ckS6dKmteaty7BwwcSNszZgAVKngLK8jArFgBNGxI8ZKlS1OTgVy5hFYlLBrFDDo4OMDf3x/W1tawtbUFYwwymQw/fvzQp0bRwYtOS8fm73YnTqRyGWZmlJ2YmvIxvOj0e/j41MXatVUBAO3anUWbNgFGNX5Niu4yBowZUxffvjmiQ4cnaNXqpeDjDw62wrhxTRASYoUqVTwwdOgrvY1fXe3v3r3HiRPdce9ebmTNGoqhQ7ehQAEHjcarz6LTcjkwaVJjfPqUEf/88xIdOz7R6fgN8Vl9+9Yfq1b1hJ9fOlSo8AX//XcDPj7aF91OzXgNXXRaLqcSOkuW0H19+gCrVgHW1qmzqwskU3SaMcY+fvyY6J+xwWMGpWNTYXfjxr+LIKcGY48ZHDjQVdnIfuxY4xu/pjFTFy/Se2Vjw5i/f9Kva6jxx8cz1qiRKlZq+/Z9Gr2OvmIG27Q5xwDGzM0Zu3/fsEWX1dnfu1cRYxfF/Py0s5GcDn1/VuVyxsqV+8IAxgoUUMXIaapVijGDcjljffuqzgPz59NtqbWrKyQTMwgAefLkQdasWeHr64vv378ja9asCWZHOBwx8vRpNuWSyNSpvAhyann7FtixoxViYoC2bWm2lZM8ipmInj2pQLHQLFtGZZWsrYG9e8VRV+7pU+DYMer/OH8+UL68wIL+IC4OmDKFtmvWvI/MmYXVow1LlgAPH+aChQUVzDaWGDnGgFGjKCbWxATYuRMYN04c8bFiQe0OJABw69YttGvXDo6OjmCM4efPnzhw4ACqVKmiL30cTqp48gRYsaI64uOpftT06UIrkjaBgUDz5kBEhDUqVqQfVR5zmTyPH1NwukzGMHy48GefDx8yYcYM2l6+nLqMPHmS7FP0Tng49YGNizND06bCx+IVK1bsr9t27KALoSxZgBo1HgKobnhhqeDWLarVCNBxL1tWUDkGZeZMVWzsli3iidkVExrFDFauXBlLlixBtWrVAJBzOHLkSNy5c0dvAsUIjxmUhs0PH4Bq1QBfX6BmTQqW11XWsDHGDDo65sKCBbXx4kU2ZMgQjPnzLyFDhiijGb+2MVPLl1fDvXu5UaaMJ8aOfSzo+ENCLDB+fAMEBdmhYsXP+O+/m5DJNH8dXcYMMgasW1cZN27kQ/r0oVi06Dzs7KK1Hq+2MYNFihRBtWrVkOmPqduQkBDcu3cPT55Ew82tNIoV+4EiRU7pJWZSn5/VmTPr4dWrrChTxhNjxjxOMCsmxPFP7DZ9xAx27eqBPXtcAFD29NChurFr1DGDpUuXVuu2tA6PGRS/TR8fxvLnp9iQ3LkDWGCgzkwzxowvZnDPHlfWvz+9n+nSMTZixDaNbUh5/NrGTD1/ropRWrjwRIqvq8/x/x4nWLBgwppqQsSMKfbXrydNpqaMDRzoptZzUqM1MRv79+9Xbvv5MbZjB2NHj6pqCP4O1SnVf51FdZ+jzvhv3GDKWMzVqw+nWrtUYgYVny2AsTlzdGrauGMGbWxscOHCBeX+lStXdNqBg8PRBUFBQOPGNDOYPz8wbtwV2NsLrUranDlTBBs3UoyNqyuQI4d42oKJGUU8ZZs2QK5cIYJqWbiQ4gQtLOJw6JA44sUePKBafQC9V/nzfxVEh6LrxevXQKVKwMmTwIIFgJMTMHgw/aYokGKc2fz59L9HDyBTpkhhxRiIXbtU5XMmTKB6mpyk0cgZXLlyJfr06YPChQujSJEi6NmzJ1YqqlZyOCIgMhL45x+KgXJ0pKXhjBmjhJYlaU6eBHbvLgOAajO2aCGsHqng45MObm60PXmysFpu3lRp6NnzIZydhdUDAGFhFmjXDoiJAVq2pELcQpElSxYAFFc2ZQqwbx+9Zw8fAj4+gLOz8HGV2uLjkwUnTpATqyi2n9Y5dIiStRgDGjZ8gzlzhFYkfjRKIClfvjzevXuH169fgzGGokWLwtzcXF/aOByNiI4GWrcGrl8H7OyAM2eAAgWowCpHO54+pcB+xkzQty8wYoTQiqTD0aMlIJcDTZsCLi7U6UAIoqIs0KULFXHu0gWoVesDgErCiPmFXA6sXVsZnz7Rd3T7dmFn3ExNTQEAYWHkQCgoUoQci/XryWF9/hxIlw5wdHQUSKnm3LpVBgBl/hcuTA5uWubUKfrNksvJIaxf/yFkssJCyxI9GiWQtGrVCkeOHEnxtrQOTyARn82YGKBdO+oOYGNDy2HVq6feblIYQwKJrW0BTJnSEP7+tihY8BOmTr2jbOCuy0K+Yh1/agLov31LjzFjmoIxE8yadRYFCgQINv5Fi4rDw6M0HBzCMH/+aQQEfEr1sUptAsGhQyVw4EApmJvHYcaM88ibN0ir8WujNTEb1atXh5OTE65doyX9Q4co6ex3GjYEJk0CatUCDhw4gNjYWK3Hn5QOXY8/Pl6GAQNaIDzcFuPHX0apUr46+a6KNYHk4kWgWTOaGOjQgUJa3N2lcV6VVAKJi4vLX7eVLFlSN9GLEoInkIjLZmwsY23bKorBMnbhgm7sJkdaTyDZvn0fq1iR3tPChRnbuHF/gvvT+vhTG0DfqRO9dy1aaPa6uh7/4cOkQyZj7Pp19Z6jzn5qEgiOHlUF9W/dmtCGIY5VSr8Hrq6MZchABYrfvqXbIiIYK1GCsTdvaP/3hBN1dQiRQHL+PL3PWbLQ76Q2NhLbF2MCyfHjVNQdYKxlS8ZiYpJ+XV1glAkkmzZtQoUKFfDmzRtUrFhR+VekSBHky5dPv94qh5MM8fFA9+7AwYOAhQVw+DBQr57QqqSNXA6sX18J9+5RgeQTJ4B06WJTfiIHAC2t791L2zNnCqcjIADo35+2x45VzZQLycuXVO8ToFiuXr2E1aMgMBB48QIIDQU6daLakIxR39oiRYBChWim6VeeCb59+yaoXnXZt4/+t21LbTjTKhs20DJ+RATQpAmNm0ewaYZaH4+GDRuiUKFCGDhwIBYtWqS83c7ODqVKldKbOA4nOeRyoG9fwM2NfugOHKAsYk7qmDIFuHMnD8zNabmsUCHK+uSkDGNUx4wxoHLlTyhTRrgOTTNmAD9/Ao6OfpgxI4tgOhSEhlqgZUtyuGrXBrp2fQRA+FiuY8eAAQMAW1vgyxeKO544kbpVLFtGVQnSp6fKBApiYmKEE6wmoaF0kQyQI5sWiYqiAuUbNtB+r160zR1BzdEoZpBD8JhB4W3GxdGsx7ZtgKkpXQm2bZt6u+qSVmMGL1/Oj02bKLmgf/87qF3bSyubUh2/uo9JKmbq7dvq2LixMiwt4zBq1BaULGmntk1djt/MrDBGj26G+HhT9Oy5Bw0bmqT4HH3GjMXFyTBjRlW8f58bDg5hmDXrHEJDPxi06PLv9+fLlw9t27ZFXBw5edevA3nyAN++AStWAGvXUuvK37Nv4+Li8ODBA3h5eem06La+xn/sWDHs3VsGmTP7Y8WK8zAxYVq/h2KMGfz4kRz3x48p+WjGDMqY/zMRSSrnVUnFDP78+ZMNGTKE1ahRg1WoUEH5Z2zwmEFhbYaGMta0KcWGmJhQjI8u7GpCWoyZO3eOCv8CjLVp8zRVNrXVLuWYwfXrD7DMmen9W7RI2PF36UI6GjbUz7HSJGZMLmcJCpY/e5a0DkPHDIaEMJYtG2NxcQltvnjBWL58jG3a9NfLJWpTHR2GjBkMCWHKz2LHjie1spHcvtAxgw8f0nFTxEOeOZP0Y6VyXpVEzKCC3r17I1euXPD19cWUKVOQNWtWNGrUSD9eKoeTCN+/A3XqUPkAa2uKEdTDRZ/R8eIFZWMreji3bftcaEmSw9XVBf7+QKlSwH//Cafj40d7uLrStqLYsJAsXoxfBcsZ3NyAkiWFVqQiXToqtzJ2LIWdKChenMJOli+n/ejoaEH0acuaNYC/P4V4lCnjKbQcnXLmDGV6+/pS/cdHjwDuhqQejZzBz58/Y9y4cbCyskKLFi1w6NAh3Lp1S1/aOJwEvHkDVK1K8WtZsgCXLlGBaU7qCAy0QrNmQEgIUKMGxUpJscuCkJw/D1y7lh8ymfAxS+7upcAY1VpzcRFOB0AO1dixtN216yM0by6sHgBwcnJSbstkFGJy9iw5GL/HxtrY0AUnADAJRVNFRZlh8WLanjoVMDWVjvaU2LIFaN4cCA+nRMHr16lLDCf1aBQzWLFiRdy7dw8VKlTA2bNnYW9vj2LFiuH169f61Cg6FGv7mzdv1mk7vsRiKsRq19A2Hz7MgfXrKyM83BJZs4Zi3LgryJ49LNV2teXt27cJjn1UVBSsrKwSPObP21LaB4Dw8HDY2tqmysaftyVnMyrKHGvXdoCPT3ZkyRKAIUNcYWsbleLrpKRTKuPXVvvvNoOC0mP58m4ID7dBlSoeaNPmomDj9/XNgiVLekImk2Ps2K3IkiVIL8fqT5uJPebNmyzYtq0r4uLMUK3aIzRufErn49dUa6lSpdCwYcNfj6N4Y3Nz2p49G1i9mmYKS5YkR2PhQopLe/XqFU6cOKHR+A1x/BO77dKlUjh9uiGyZAnE6NFbERUVJsjx10Z7RESEsjXgnxw+XAL791PCavXqXujf/56y7mlySOW8GhERgb59+0ojZrBr167M39+fLV++nBUqVIiVL1+e/fvvv3pZvxYzPGbQcDajoxkbMUJVl6xiRcZ8fVNvN7WkhZi5mBjGGjWi9zVrVsbevVP/ddLC+DWxkZTNsDDGXFzoPcyb159FRKROe2rH36sXaWnXTn2b2rxOSjFj794xlj59JAMY++cfiskTos5eUloXLmTMzIyxjBkpVlZBWBhjR44wtnYtxQ0qOH36dIo2xRAzGB3NWKZMYQxgbONG9Wxqo9XQMYMzZ6rOAZMmURyqukjlvCp0zKBGlYd27doFAPjvv/9Qvnx5BAYGokmTJnpwUTkcKunw77+qpZsRIygGysJCWF1pAcaoifvZs4ClZRxOnDDDH8mBnBSQyym+0sMDcHAARoy4AWtr4eIWvnwB9uyh7ZEjBZMBPz9qwRcaaoVy5agLxK9ub6Lg/Hlg1y7Ay4vizRYvpuXid++o+0jLln8/JzAw0PBCtcDVFQgIsEX27FR/NS0waxYtdwP0+z9unLB60ioaxQzev38foaGhAIBq1aqhZs2a8PDw0IswjnFz9izFOz14AGTMCBw9Cixdyh1BXTF7NsXfmJgAQ4bcRIUKQiuSFowBo0cDR47QZ/LIEcDBIVwwPf7+1C4tJgYoVOgnqlQRRkdoKDmCb94AWbKE4/hxqt8nJhYtosSQXLkoGe3mTWDePPqNKVuWystIEbmclrUBqr1naSmoHJ0wZw53BA2FRjGDZcuWxf3795VNvePi4lCpUiU8TOudr/+A1xnUr809e6jBeFwcJYy4uQG5c6feri6Rcp3Bw4czYv9+qs7dq9d9FC9+VS/9XsU6/tTWrouLk2HZsmLw8CgNABg06BaqV/8kSJ05b29v5MiRE0uW1MCjR7mQKVM4+vVzRenS6dS2qY3WxOrMeXl9x+7dneDp6Yh06aIxcOAeuLhY63X86motXLgwOnToALkcqFwZuHOHLoSWLaPZwZ07aXawc2egQgVahfD09MTjx4/VHr/QdQbv38+JZctqwsoqGqtXH4eNTaxaNrXRaog6g0uW0AUXkDpHUCrnVUnVGSxduvRft5UqVUo3C9YSgscM6s/msmWq2JDOnSkGRhd2dY1UY+aOHWNMJotnAGMTJmivXarj19aGYj8ggLF69ejzaWqqisvSRquuxr9yJemxsGDMw8Mwx+pPm1FRjJUu7c0AxtKnZ+zePWHr7CVnMz5etX3jBmM+Pqr9wYMZW7/+r5fQS8ycLscvlzNWoYKiL+9zjWxqo1XfMYN79qjOA3Pm/PU0jZDKeVXomEGNloktLCzw/v175f67d+9gzvu+cHQAY8DevaUxYgTtDx9OcT18WVh33L5NMZiMmaBnT1qC4ajP27c0q3TxImBhEYNjx4B+/YTV9PFjRuXsyeLFQJkyhtcQF0e1Pp88yQFra6oBKuawA5lMtRhWrRqQLRttBwXRcn+bNoLIShUXLwL371MpnMaNpV3d49o1KHtWjxxJrQE5+kcjZ3DatGmoXr06+vbti759+6JWrVqYPXu2vrRxjIS4ODqpHjtWHADF7yxdSss4HN3w6hXV54qMBMqU8f5VBFhoVdLh2TNHVKpEsXBOTsDgwW5o2lRYTWFhwKpVVRETQ/U2hwwxvIboaLrAOHwYMDOLx9GjQPXqhtehCQcOHPjrtpAQoH17YNgwSgaKiIgQQJn2zJ1L//v1AzJkkFaB7N/58SMjWrWi2Ne2bSm+k2MY1D7dMsZQtmxZXLt2DWXLllVuN27cWJ/6OGmciAi6Et+yBZDJ5Ni0CRg/njsquiQoKB0aNQICAoCKFYFhw27yRu5qEhEBDB0KzJtXF4GBNDN47x6QI8dPQXV5eQG1awM+PnbImRPYutXw35mICKBVK+DQIZrBHz78Bho0MKwGbQgNBX7+cfjMzCi7XtGL+MHv1adFzps3mXH5Mo1BMUssRaKjgV27/lF+z3btkuaEwM+fdFHh5ye0Es1QO4GEMQYXFxdlQK0xwxNIdGPT3x9o0YKWLy0tgUGDrmHp0po6UqjCmBNIwsLMMXlyTfz4kRXZs4dg2rQLCA39oJOg/LSeQBIbWxKrV1fBt28ZAAB1675D9+4PYWEhFzSBwNe3Itatq4yICAvY2ERg3LgbKFTIX+vxa6P1xYsvOHiwJ169ygpLyziMHHkdmTI9FDSBQt3xL19eAq9eFcagQbdRuvR3VKlSJcF3+enTpzh37pzeEyh0Nf5ZsyrC07MAatd+j/797xnk+OsjgcTNrTSOHy+OrFmBp08BR0foBEOfV/v1oy5OdevS8r26SCqBpE2bNszPz08fsYuSgieQpN7mp0+MFStGAcL29oxdvy6t8UshgSI8nLFq1eg9zpGDMS8vzW0ktS+F8WtrMz6esc6dHzFzc3rvsmdnbPz4S8na1EarpuOPiWGsefOXysD6ypUZW7XqSIo6dH2s/P0Zc3L6xgDG7OwoCUNTG0np0HcCybFj9N7JZIxdvap6zKVLCY+vIRIodDF+Dw8aj4kJY2/eqKdVjAkkFy/SMQGo6LcuMeR55e5d1TgU3wt1ETqBRKOi07a2tnBxcUHz5s2RLp2qdMFCRXEjDkcNnj8HGjcGvL2p1teZM0CJElRChqMbYmMpluvmTcDaOgpnzlghb16hVYkfHx8qJH3pEjX1bd0a2LgROH/eVzBNYWG0ZLZ6NfDyZTEAlGC1YAFw8KBhY9u8vIBmzYAvX7Ijc2aqB1qunEElaM2PH0DfvrQ9ahT1Ilbg6yvc8U0NiljBf/8FkujiJnp8fKikD2NAxYpP0bJlKaElaYVcDgweTOPo3p2Sk6SERs5ggQIF/poa5nA04epVijMKCgKKFydHkDca1y2MAf37AydOAFZWQK9eh+HsrPtlkrTG4cP0vvn5UVeW1avN0KePsPGrUVGmqFwZePGC9q2tY7BrlwXatjW8lps3yTn++RPIkCEUV6+mR4kShtehLQMHkkPo5BSEWbPshZaTal69AhS5MFLNuI2Pl6FTJ+D7d8DZGWjZ8hIAaTqD27ZRkwQ7O7pQkxoaFZ3mEDxmUDub7u5At26UKVatGnDsGJApk3516suumGMGN23Kj8uXK8HERI4RI67D3v663uOwxDR+TbW+e+eH8+eb4/r1fACAPHkC0aHDIbi42KhtUxut6ox/2bKSuH/fGXZ2UWjZ8gUKFbqFggWz6HT86mg7diwDDhxohLg4U+TNG4D27XfBxSWr3sevq8+qn19trFhRHaamcgwdugsVK1poZEOMMYNr11bGjRv5UKLEW0ya9CDJ54g5ZnD9+oK4dq0CrK1jMWvWWcTGPlcWndYVhjivhIfTzKyPD5V4GjVKc3uSihn8+vUra9myJStbtixjjDEPDw+2bNky3S9eixweM6i5zWXLVLEUbdowFhGRepvqYkwxg78X7d66VTub6jxGrOPXVOvly4xlzhymjLuaMIEKKIshZszNTRXfdvmy+jZ0eawiIxkbPVr1mWrdmrGwMPHEzKnzmOnTV7GsWUn/lCniiZlLzfjfv6ei5wBjs2ef0UirWMbv7q76XB08mLTd1GKI88qMGTSOfPno90MbhI4Z1Chx+3//+x/atWuHuLg4AEDJkiWxZcsWPbionLRCXBzVPxsxgr72Q4bQDKG1dcrP5WiGmxuURbvnzlUVbuX8TXw8MG0aZfz5+9uiYEHg+nV638TQ0zUoCPjf/2h78mQqI2NoLl6kpbvFi2l/wgRalhRbr+GUOH68Dn78oLCUSZOEVqMbFi6kz3CjRkD+/AFCy9EYT0/V79PYsdIs9K3A11fVE3rePHH8fmiDRs6gr68vunbtCpNfxX/MzMxgZqZR2CHHiAgOpmDzNWso7mrhQmDlSuBXa2uODjl3DujRg7YbNXoNHa+0pCkCA61Rrx4wcyZdoNSu/R6PH1MfbLFw6RIVQnZ0DMXUqYZ97bAwYOPGiqhfH3j3DsieHRgx4jrmzpVe3bezZ4GHD0tAJqNaplI9Uf/Ot28UnwbQhYLUiIoCOnSgpdXixb9LvhPS9Ok0looVaVxSRaOYwcqVK+P27dsoW7YsPDw8EBgYiNq1a+PJkyf61Cg6eMxgyjY/fKAagi9fAjY2wJ49lDhiaJ36siummMHIyFKYM6cOoqPNUaXKJ7RqtR9OTqmvs5cWYwafPXPEqlWVEBZmCyurWPTpcx95895K9fi10Zrc+LduLY8LFwqhalUPDBnySmfjT+45OXLkxP37ueDmVgbfv6eHTMbQoMFbdOjwFIGBH0UXM5fSY+LiZBg3ril8fOzQuPFrdO/+SGMbSe0LOf6bNxvjyJGSKFLkB6ZNuyjIdzU149+zpwxOniwGO7soDB++FUWLZlQ+5tOnT5KKGSxTphOcnWmW9urVhBnqmiKpmMHFixez/v37swIFCrBt27axChUqsBUrVqj9/AYNGjBnZ2dWunRpVr16debh4cEYY+zevXusatWqyvsuXryofM6WLVtYyZIlmampKVu1alUCe/Hx8WzIkCEsf/78rECBAmzNmjUJ7p81axbLnz8/y58/P5s8eXKC+zZv3swKFizI8ufPz/r168diY2PVHgePGUze5tWrjGXJoqpv9/Bh6m2mhrQcM7ho0QmWOTO91w0bMhYdnfo6e+q9rjjGr27MXFQUYyNHqmKUSpVi7PVr7bXrM2ZMLqfYI4CxUaOuaGxD02MllzM2duxlVras6v3JlCmMXbmS9HOEjplT5zGK+Flb23AWFKSZjTNnNIvDU0frkT8K6J0+ffovGymNf/v2vcrfVkWcnRDfVXXGn9h7eOWKKnb82DH17KYWfZ5XWrSgsbRsmXp7QscMarTGO2rUKLi5uSEoKAinTp3CsGHD0LVrV7Wf7+7uDnt7ewDAkSNH0Lt3bzx8+BCtW7fGrl27UKdOHbx69QoNGjTAmzdvYG1tjXLlysHd3R3z5s37y97u3bvx8uVLvHnzBsHBwShbtizq1q2LokWL4tq1a3Bzc8PTp09hZmaGatWqoXr16mjUqBG8vLwwZcoUeHh4IGvWrGjZsiW2bNmC/ymCdDhawRgtCY8YQbGCZctSxvAfF6EcHfHlCzB/fm34+9MSxcGD1BaMkxBf38yoWJG6GgBAvXpvcfx4IdHGrb57R/X8zM2BEiV+6O11GKPwgtmzgRs3agMA0qWj72+ePKdRq1Y7vb22vvHzA2bMoO0mTa4jQ4ZGyvsqV6781+Or/hEj0KhRowT7Jlqsj5ctWzbBfsuWLRPsa9PK9fbtPPDzA3Lnpn7U6jD6jx515cuX1/h1teHP99DZuRxat6bPXZ8+tHJkiNqyDfTUI9HT0wHHj1PYkxRLyfyJxp/wTp06Yd++fXB3d9fIEQSgdAQBIDg4GCYmJvD390dAQADq1KkDAChatCjs7e1x+vRpAEDp0qVRrFixRL+M+/btw4ABA2BqaopMmTKhQ4cO2Lt3r/K+nj17wtbWFpaWlujduzfcfn3yDhw4gNatW8PR0REymQwDBgxQ3pcY0dHRCAkJSfDHSUhUFNC7N/VxjYsDOnWigHzuCOoHf38KHvf3t0XRosDJk3Qi56hgjAo1r1jRDU+fAg4OdHHSp88D0TqCAMW5AVR+ycoqTuf2GaOaii4uVPz9xg3A3DwOo0ZReMfMmYCNTazOX9eQTJ1KSTilSwMVKjxPcF++fPn+evzvIR+JUaqU5rXvihQpovFzkovBZww4e7YwAGDQIOpFnBh/LgH/SSGBqlOXLFkY3boBefMCy5Yl/piKFSvq/HWzZMmS8oM0RC4H9uyhwvT9+wNaHGrRoVbM4NixY5O9X5MOJN27d8fly5cBAGfOnEGJEiWQL18+LF68GG3btsXdu3dRs2ZNzJs3DyNHjlQ+r2fPnihfvjyGDBmivM3Z2RlbtmxRfoDWrl2LBw8eYOvWrWjRogW6deuGDr8iOk+dOoXFixfj0qVLGDp0KJycnJTjevnyJZo3b44PHz4kqnn69OmYobjM/I3NmzfDxsYmkWdoR2KxHGK1+7vNgABrLF1aAx8+ZIZMJkfnzk/QtOkrjYv1Smn8b9++TXDso6KiYGVlleAxf96W0j4AhIeHw/a3dM3EnmNikh4bNrTH5885YGcXgiFD3JAxY2iSz1HHpqbaU7Kpz/Gro10ut4e7eyO8eEEnvqJFP6B9+zOws4vQy/i10ZrU+N3du+Dly4Jo0uQaqla9ptX4k9L67ZsDDh6si8+fqdK7hUUMKlZ8hipVbiBr1tgkbRhy/Kn9rH75YoPVqwdALjfBgAH78O+/jqidynTs2NhYrFixIlGdMpkMZmZmCAsLQ7p06dCrVy+tY74uX76Mhw8fKvd/H9vHjzmxbVsnxMTEYvLkDbC1jfrrMdWqVUOVKlU0es09e/bAy8sLVlZWMDc3R3x8PCIiIpQ2ZTIZYmNjEziqfx4nc3Nz2NjYoF+/fsm+VlAQw8SJ+5A//9e/tDds2FArp9uQHDt2DOHh4bh+PS/WrasCK6tYLFt2AhkyRKXadkREBPr27SvumEGZTMYqVqzIpk6dyqZPn/7XnzZs376dNWnShDHG2JMnT1jjxo2Zi4sL6969O6tbty5buXJlgsf36NHjr5jBkiVLsnv37in3V69ezXr16sUYY6x58+bM3d1ded+JEydYnTp1GGOMDRkyhC1cuFB53/Pnz1m+fPmS1BoVFcWCg4OVf1++fOExg79senkxljevIs6IsXPnUm9T16SlmMGdO/eyRo1U7/fChSdSfF1jixmcOvUcc3Ki98jCgrGWLS8wuVwzG0LFDM6bt4SlS0faHz3SXcwkY9S7NlMmsm1tzdikSdRnWButYo4ZrFz5IwMYa978r4cyxhiLjo1mRz2OsgWnF7Bl55ex8y/Os8iYSOX93TZ3Y/WW1GOrL61O3ABjbP369Une9ztPvjxh/Xb0Yy1Xt2SDdg9i0bHR7KPfRzbMbRhrtboV672tN/MN9k3y+QcOHEjxNZL7fYuOjWZHPI6w+afms2Xnl7ELLy8kGGuSz4uOTvb+5cuXp2ijw/oOrN6Semzj1Y1JPiYp7XK5nO25s4d9DfiqvC0gLIC53nFlC04vYCsurGAXXl5g4VHhyvuvvb7GjnocTfLP85snC4sKS/S+q6+vssDwwAQann55yk4/+zuuMzSU+pUDjM2fn+LboDZCxwyqtUx84cIFFC5cGK6uroiJiUHXrl0xbdo05Z829OjRA5cvX4a/vz9KlSqF06dP49GjR9ixYwe+ffuG4sWLp2gjd+7c+Pjxo3L/06dPyJ07d6ruSwxLS0vY2dkl+OPQklKtWsDHj0DBgtSKR0/hGRzQ0sT69ZVw9ixlaJ88CeTKxUMWFMjlVCdw9ux6+PKFPpN37gDVq3sI2lJOEz59yoGwMFrSLl1ad3YDAqjMU0AAkD+/P969o1jB3zsApQU8PIA7d2jJd9GihPfJ5XIsPrsYtRbVgpefF8rmLgt7a3uMcB8Bx1GOuPL6CgBgZ5+d+BLwBeam5km+jjrx5W+/v0W9JfUwpO4Q7Ou/Dx5fPBAeHY5q86uhUYlGODjwID4FfIKlWdL1btqq0XdQlsiHWy6XY+GZhai9uDY++X9CuTzlkME6A4a5DUO2Udlw/c31ZG1apBB8/N9//6Woa9//9uHdj3fJji8xomOj0X9Xf/iH+SOHfQ6ydX8fqsyvgsCIQJTNXRbprdKj9/beqLukrvJ5nwI+YcbxGRi+bzhuvb+V4G/h2YW4+e4mwqLD8MHvA1quaYkDDw/gc8BnvPvxDvNPz0f+Cflx891Npb0CDgUw4/gMXHtzLYG+deuo04ijYyiGD9doaKJGrQSSunXrom7duggJCYGbmxu6dOkCa2trzJ8/H5UqVVLrhUJCQhAWFoYcOejgHj58GJkzZ0amTJng6+uLbNmyAQA2bdoEW1tb1K1bNzlzAID27dtjw4YNaNOmDYKDg7Fv3z6cOXNGed+QIUMwaNAgmJmZYevWrZg9ezYA+oJVr14dU6dORdasWbF+/Xp07NhRrXFwCF/fdKhVC/j6FShcGLh8Gfh1aDl6gDFg5Ejg1q28MDOjZJHKlSnRgEO117p3p0LJgAm6dKEf7fTpFbdJgzdv8gIAGjbUXU2/uDgTtGsHvH1LiQejR19DjhytdWNcZCjq7nXqBBQtmvC+YXuHweOzBy6MvABbS9USZ4PiDZB3Ql7YWdFFfkhkCN58f4OyuRMmgGjK1ptbUSFvBZTKRUuft8bfwpbrW2BjYYOmzk0BABdGXkjVawCJx9kNdh2M597PcWHEBdhYqsJZGhSjsWawyZDq100J/zB/fPL/hLJ5kn4fMyVyNTLEbQgy2mTE0HpDAQDfQ76j65auuDnuJirmU41VLpfj9ofbyv2ulbtiybklaF6qOea3nZ/AZv+d/VE2T1k42jmifrH6AIChdYeiQr4Kym37/+yx6/YuVCtYDQBgY2mDoXWHYqT7SDyYrGr39/79r9fr6gFLy1TUkhEZGmUT29nZ4Z9//kFAQABWrlyJV69eqe0MBgcHo23btoiMjISJiQkcHBxw4sQJyGQybNiwAXv27AFjDMWKFcPhw4eVVzu7d+/G+PHjERgYiKNHj2L+/Pk4fvw4XFxc0K1bN9y/fx+FC1NQ7ZgxY1CsWDEAQO3atdGhQwc4OzsDADp27KjM3sqfPz9mzJiBatWqQS6Xo27duujTp48mb4VR4+cHzJtXBz9/AsWKUYHcX748R0/MnQsoQpa2b6fAfw5x9ChlJ/r704xp1653sX59JcnMBipgDHjxoiAA3c2wBwcDW7e2wdu3lGB0/Djw4kXq45vEyL17wKlTgImJHHPnJvSkr725hjWX1+DptKcJHEEAyJkxJ7pV7oYSOUoAAJ58eQJTE1PktM+JRWcXwT/MH+3Lt0e5POX+es2X317i6OOj+Bb0DTkz5sT4JuMhl8ux9eZWHHt8DLkz58bm65tRKV8lvPj2Arvv7kZ6q/TYfH0zimUvhmoFq4ExhgcfH+DI4yOIio1C3aJ10axUswSv8+HnB+y7vw/fQ76jRI4S6F29N0xNqHp//vz5Ezz2kuclrL+6Hi9mvEjgCAJArky50K1yNxTLVgx+oX448vgIAKCpc1Ncf3sdt9/fRtb0WTGx2UTl+PY/2I+gyCBUyFsBnSp2SjAT6RPkg7339+Kj/0fkzZwXA2sPhJU5xQB6fPaAlbkVimYrisiYSOy5uwdmJmboWa2n8vl/Jnfc97qP/Q/24+vCr8rbzr88j7j4OOXxUdCidAvUKVpHuR8dG43n357jv3qqWcufoT/h5eeFjd03Km979OkRTE1M4ZzLWXlbTHwMYuJjYGedcNWvePbiePjpIcKiwpDOijL0cucGmjYFypb1RlpCrQSS+Ph4HDt2DFu2bIGXlxe6deuGHj16IHv27IbQKDqMueh0TAydqK5dAwoUAG7eBBwddWJaEuNXYMii056etbB1K13B/vPPJXTs+F2j102rRaejo02xcWNh3L5dBgCQJ08ghg69CcZeGXz82oz3z/0nT7JhwYI6sLKKxapVR2FrG5uqotvx8TJMmdIQHz9mgqVlLEaOvAFnZ1/Biw4npz01x2rZsuq4f98J5co9x4YN0ShXTuW8VZlXBTYWNrg4KuVp4hUXVmDR2UVoUboFyucpj+NPj+PSq0vwW+YHCzNaPg2PDkfv7b1hIjPBsHrDcPv9bbjdc8P9yfcRFRuFIx5H0HVLV0xoMgHOOZ1RIW8FPP7yGINdB6NZqWZoUKwBimUvhmLZi6HX9l4IigjC3NZzERUbhc6bO6Nn1Z6Y1Ix65y09txTbbm3D2s5rkS1DNgxxHQJzU3OcGHYiUf0VZldARtuMODfiXLLj/B7yHa53XTHSfSS6Vu6K0rlKIygiCKeen8LDyQ8x4dAEXH1zFSs7roSNhQ167+iN0rlKKx2rvff2YvKRyVjVaRWKZiuKacem4enXp3g05RFMTEyw8MxCHHx0EHcn3kVoVCg6bOiA/FnyY02XNUoNb9++TZDd3GJVC+Swz4EN3TYobzvx5ARarG6BhsUbYkrzKahWsFqiS+MPPz1E+dnlcXHkRaWjd+DhAQRFBGFC0wnKxw3fOxyXXl3C0+lPlbctPrsY049Px6PJj1A4W2Hl7U++PEGZmWXwc+lPZElPjuvy5UDz5sD9+7o9r0ii6LSjoyOrUKECW7duHXvx4sVff8aGsRadlssZ69NHEYAezV6+1IlZJWIf/+8YKoFi2LDryiKtU6bop+iwFBNInj1jrEQJVZHk0aNVDeKFGL86z0lpv359Gsvw4drb+P22K1fInpVVFHv0SL3nqLsvtgSSly9Vn4U/k6q8A70Z+oItObvkr+cmRo8tPVjxKcVZTGwMY4yxG29vMPQF8w/zVz6m7dq2rP/O/sr98QfHs347+in3X/u8ZugL5h3orbwtMiaSmf3PjF19fVV52/Lzy1nWEVlZSGSI8rbuW7qz+kvqM8YYu/3uNkNfsMefHyvvX3t5LUs3OF2i2j/5fWLoC7b8fMoJHowxtu/ePmbSz0RpPzImkp17cY4dfnSYWQ6wZJ/9PysfO+XIFFZoYiHGGGMf/T4yiwEW7NjjY8r7Tz49meB96rihIxuwawCLjIlkg/cMZpuubfrr9b9+VSWIhEWFMYsBFuzAg4RJM3HxcWz8wfHMepA1Q1+wXGNysYmHJrKAsIAEj9t4dSMz+58Zq72otvLPcaTjX0kgNRbUYLnH5ma9t/VmPbb0YLUW1mLdt3Rnz74++0vfscfH/jr24b9yVnR9XhE6gUStZWIrKyv8/PkTCxYswMKFC8F+m0yUyWRJlmThpC1WrKD+niYmwNCht1CsWG2hJaVpzp0D1qypAsaAgQOpiO6vMppGC2MUCzhyJNW2tLePhLu7teQTl548AS5coCXO//7TTbDg0aP0v0SJd3BxKZH8gyWOIlmkZcu/k6o8fTwBACVzllTL1qPPj9C9SneYm1ECybegb8hkmwkZbaht2oWXF3DB80KCpcxHnx6htUvrBDYc7RyRPYNq9ey593PExcehjFMZAEC8PB5zT81Fm7JtkN4qPUIiQ7Dz9k7svb8X7v9zBwDMPjkbZZzKoLRTacTGxeLks5OYdWIWhtYdmqj2V76vNB5rtYLVUNqJspWszK3QoHgDlJtVDnWL1oVTJidExUbh4MODWHlxJWa3orj7hWcWIr1VejR1bgq5XI7Lry9j9P7R6FKpCzLZZlLabl+uPaovqI6mzk3Rt0bfv17/9/I0V15fQUxcDGoUqpHgMaYmppjXZh7GNhqLo4+PYtedXZh7ai5OPz+Nh5MfKmcJPb54wMXJBZdHX1Y+t/ai2nDJ7aLcl8vlePzlMcY0GoOeVXvie8h3tF/fHg7pHRJ9z958f4OMNhmVxx6gUJS0iFrO4O+Ztxzj5Nw5YNQo2l68GMiWzUdYQWmce/eANm2A+HhT/PsvsGoVJBcDp2sCAoDly6vj/n3ab9oU+Oef02jQoI2wwlJJbCygaBJRqtRr5M1bLNU2f/4E9u2j7RIl3gFIu85gYKAVdu+m7fHj/06qkjM5AChj7JIjMiYSL31eKpMIAODxl8dwye2idDrWXF6DZs7NlDFkcrkcjz4/wqxWs5TP8fjskeA5itsKZi2ojEt75fMKP0J/4Prb66i+oDpCIkNQOX9lnBt+DrWK1AJjDFffXIW9jT1qLqyJoIggFM1WFEs7LEWH8h0S1a8Yq5mJeukAjz4/QvWC1RPcFhIZgkefH6GAQwHUWFADQZFBKONUBrv67ELzUs0BQJl5XW9JPQRGBCJ3ptwYUX8EelTtobTx5vsbPPz8EGWcymDjtY0Y13jcX/Ga6X6rlP/c+zmypMuCrHZZE9Wa0TYjelbriZ7VemLioYmYd3oeQiJDlMkwjz49+ivp58LICzAzVb0X73++R2hUKOoUqQOnTE5wyuSEYfWGYaT7SPgG+yJbhoTB77fe30K9YvUSXZZOa2iUQMIxTj58ADp2pNIdvXoBw4fzGaq4uLgEXWu8vb3/6mLz520p7QNUhHXJkhOYMaM+wsOtULiwF5o1uwd3d7naNv68LSoqSmMdKT0mJZupGX9ij3n3LjNWrqwGPz8nmJrGo1OnJ2jc+DV8fMQxfm3G6+3tDVdXN2zYUAnXruWHuXkcatS4Cje3x1rbBIB3735i4sQAfPuWCVmyhCNPHk+4uUWkarz6Gr+6xz+555w964jYWKBgQT94eZ2Ht7c3Pn78iLx58wIAXJxcYGpiiu8h3/Enb7+/Rbv17XBq2CnkzJgTz7yfQc7kypkygBym352MB58eYEyjMcr9+x/vIzAiEM45nRM85/fM18TsRMdFAwA2d9+MygX+bpEHALHxsRjVcBT+q/efWg5J2dxlYSIzgW+I71/3vfJ5hX83/osz/51BdvvsYIzB47MH+tVIWCg6Np6Kj89pPQf/Vvg30deJiY9Bt8rdsLTD0kR1KZJwDg08hPDocOx/uB8rL65MELsHJOy4EhkbifwOfyfD7H+4H+u6rktweybbTMieITvSW6UHAMTFx+HJ1yfoXb13QvumCV2cR58fQSaTJTi+Lcu0xEj3kTj9/DR6VeulvD1eHo+rb65iUTtVjSLGVBflac5BFGRxWuIYU8xgeDhjpUtTLE6FCoxFRqbeZlKIcfxJoa+YucmT17I8eVTv99at7sk+J63HDO7Z48pWrGDM3JzeE0fHEPbwoWavK+aYwXHjaFympowdO5b6otsREYwVLfqdAYw5ODDm6amfYyWmmMFChX4wgLEVK5J+zLgD41jZmWXZt8Bvyts8v3myktNKsm03tilvW3d5HSsyuYhyXy6XM4cRDsz1jspm+VnlWZdNXZhcLmdhUWGswdIGrOS0kgmek3l45r9i3yrNqcTmn1JVKY6MiWSOIx0TxPftf7CfTTkyRbnfeHlj1nFDRyb/VTXd85sna7O2jXKfMcYCAhLGzo12H83KzyrPfIJ8lLe98H7BSkwtwXbc3KG87bP/Z4a+YO++v0vwfLlczkpNL8VG7B2hvO3m25usz/Y+yv3+O/uz6vOrs9i4WMYYY77BvqzRskYsKoYCd5efX85KTS+lfPys47OY/TD7v+L8fmf2idms+vzqCW5beGYhKzG1RIKYyrff3zKnsU5s+83tytuefX3G0Bfs3od7LDnG7h+b4PgqKD6lOGuztk2C2449PsZyjcnFIqIjlLc9esRYyC8p51LTYSERJBEzyDFOGAP69aN4JgcHqm33Rycojg4JDga2bGkLHx+gUCEqKn3hgu5700qFkBBg5cpquHuX9tu1Axo3PoOyZdsLK0xHnDpVRLm8uXEj0KIF8Pq19vZiY4H27YFXr7LCzo56HBctCpxIPOk0TfD5M/D2rQNkMvp8JMXc1nOROV1mNFzeEI52jjAzMYONhQ02dN2AqgWrKh/nH+6PZs6qsi4B4QHIZpcNG69vROFshVEuTzms7rwaPbb1QNlZZVG9YHXUKlwLRzyOYMqRKZjVaha+BHyBf5h/glg1xczVzJYzlbdZmVvh4MCDGLFvBE48PQGH9A7IZpcNc1rPUT5mQ9cNGLhnICrPq4yCDgVhamKKlR1XJpiVunfvHho1aqTcX9B2ARadXYQGyxrA0c4RpjJTpLNK99cM5Ee/j6iYryLyZUnYq1kmk8G1rysGuQ5CzYU14ZTRCbaWtljYTtV2dn6b+RjsOhjlZ5dH8RzFIWdyLPt3GSzNqcB0YESgspYiAAyvPxwnn51E67WtsbDdwr9mTQGgdK7S2HpzKxhjyvG5OLngSuYrqDCnArLZZYOlmSVi42Ox4t8VaF2WYjQXnF6A089PwzmnMyYenoj6xepjXJNxCWzHxcfhn9X/wD/cH+ks06Hx8sZw6+eGjLYUC9ijag/svb8XTVY0wbHBxyCTyTD31FzMazMP1haqRubPnwMlf4UWRkdH/zUGKcOdQU6SrFwJuLoCpqbA/v2Ak5PQitIu0dFAq1aAj09WZMtGJ3IHB6FVCce7d9Qx482b3DA3pzjVoUOBvXul7xwzBqxZA+zeTUuG8+YBvXun8CQ1GD6cLiAsLOJw4oQZXFxSfIrkcac8C9SsmXzRexMTE4xpNAZjGo1J4Gz8iaKci4LM6TInKEECAJXyV8KrWa8S2Pn9eXe97iJ7huwJnKxn3s8QL4//ywmqVrAa7k26B7lcDpNEqoznzpwbJ4edTPJ+AAgICPhrrOOajMO4JuOSHWuNwjVwd+LdRO8rkbMEro65muTrZrTNCNd+rkneP/2f6Qn201mlw+0Jt/963O80KtEIGawz4MrrK8r6gfWL10f94lQkOqnXUow1OcxMzXDqv1NJ3j+28ViMbTxW+Tqj9o9C/WL10bVy1wSP69ZNtR0aGoq0hFp1BhV4e3tj8ODB+PLlCx4+fIjHjx/jypUrGJ6WerKogTHUGbxzB6hRA4iLo7pKf3Yf0odWMY0/JXRZZ1AuB9asqYrbt/PA0jIa06ZdQt68QRrZSO51pVZnkLEKWLSoFkJDrWBvH4IRI+6gUCF/UY9f3fHa2BTApk0V8fgx3d6o0Wt07/5IGYekqVbFPmNA797tER1thi5djqNZszC1x6/J6/yfvfMOa2LpwvibhK4ICooKKGJDBbE3ULH3Xq69X3vv5fqp13LtvfeOvfcudlGxUxQElCa9tyTz/TEmEGrKht1Afs+TJ7ub3bNnNslmMvOec1RtP9N5BiW5BQcPfocuXbyz7ePg4AB7e/kia5kgISUB3bZ3Q2eHzlJdYbowHWOOjoGBroFM/jyVz5WQgFu3bsHf3x+WlpaoXbs2atVSPlAoNTUV6enpMkEd6ub+/fto06aNdD04JhiLLy3GgREHCsyHrOx/sh8ljUqiT/28SwEy/buiEXkGJXTp0oUcO3aM1K5NtQDp6enE3t4+n6MKH4VdMxgRQYi1NdUy9e9P8wuqalMeuNJ+eWBShzV7Nr3WOjqE/P33aaVs5LVNkzSDo0adJ0ZG9HrUr0/Irl0XVPadK5rB6dPdiJkZbZu+PiGDB78lIpGsDWU1g1FRGXn2Dh+W/QwVZs1g48a0zRcu5L7PhQuyn6GcCA8Pz3cfeZh0YhI59uKYjKZv6eWlZNv9bSQ1PVVm37CwsFztzJlDyK1b8p0za3vz+13y9PTMti2r7rCgUNc9PzNJSUn576QEhS3PoEIJrUJDQzFkyBDpUK2Ojo5MNJAWzUcspjVef/6kurV9+7QpTdTJ1q10ChQADh4EqlULZNchFtm/Hzh8uCeSkoAOHYBHjwATE80vnRYeDgwZAmze3ByRkUCdOsDbt0CXLt6M1R/+9Sflnbk5oKcnYsaoBhD0pyJYlgFGGXwlxWT/8P79+2z73L17V2b9woULMuuPHz+WWb99+3aO59o+aDuGNBkiMzW7pPsSTG49WVq9RML9HIpmb99+B3p6wIYNQMWK+fuRE9evX5dZz9o2Dw+PbMfcunVLZv3SpUsy648ePZJZ37p1azYbFy5cwIMHVE7Upw9w+7ZbnjYKisuShJu5YGVF/0YVdRS6Feno6MgknI6OjoZYLGbcKS3ssWYNre9pYEB1gmyMVhcVXr+2gkRhsWqVrB6lKCEWAwsX0mAlsZiP4cNpDd0CnK1SG2fO0PrdJ04APJ4YCxcCr14BKszm5YikM2hlxaxdLiMSASF/0p3m1RnMiqenZ777ZA0OCA4Olln/9OmT/CdUgJ07KyM9HRg0iAb/5OeHPHz48EHhY5KTk2XWQyQX+g9paWnZjklNTcWuXfSzWLYsEBUlW7s3q42CguTT07O3p0nsRVn+Q0VEAEVJAaeQZnDDhg3w8fHB/fv38c8//2Dnzp0YMmQIpk6dqk4fOUdh1QzeuQN06kR/nPftA8ZkTxivsE1FYLv9iqCqZtDLyxyrVrWCUKiDtm2/YeTIN+DxlNeM5XVeLmsGzcwqYNeupnB3p9FJLVo8xbhxP6Wj0ZrS/pz2OXOmNC5douJ3a+sY9Ox5DU2bCnLdXxlfJes0Mrke6tf/hQEDTqld38kFzWBkpCGmTOkJPl+MI0fOQCAgcvnKdPuLFSuGRo0aoWzZjITFkZGREAgEMDU1lW4LCQmBj4+PtEOX1eavXyUwd24X8HhirF9/HeXKJXDqu5rf++/r+xtLl06GSCTA6tU3IRB8Udj3mJgYTJgwAUyS3/0/PBwYPJgm+ndxAUaPppH9bm50hDa3gcUirRkkhM6T9+/fn/Tr148cO3aM6WlrjaAwagZ//CCkVCmqvxkzhhmbilJUNINfvxJSsiS91j16ECIUym+Xq5o5ZWzs2HGR1K9Pr4OeHiHHjmlu+7Pus2FDhoZv2jRC0tLUo5mTrLdvT8+1YUPB6Du5oBm8fZu2uVy52DyPKaj2nzmjWE7QrOszZ9L2dO8u/zHK+Kqu9s+a9YgAhNjaKu97TnZVJafzRkcTcuoUkclZ+vMnIRIZp1hM9fKb8yjxXNg0gwoL/gYOHIiBAweCEIKEhIT8D9DCeZKTaemzqCigYUNa+kyLeggOBjp2BKKjacWEkyfNIci/Slahw8MDWLy4HaKiqM7t4kXA2TlDP6mpCIV0yknyHVq4EFixQr2628REqq8EaIm+HCRhhZLPn+mztXUMAPb1LEKh8mmP0tKAo0fp8ujRDDlUwHz+TEdGuV4n/Pt3OgJYuTL9rvzzDzB3rqzEYscO+r2aNIk1NwschTSDo0ePRkxMDNLS0lCnTh1YWFhg586d6vJNSwFACDB+PP1SaBNLq5ekJF106kQT5VarBsye/bjQFj3PDUKAXbuApk2BqKhisLOjaYycnfM/luskJOihU6eMjuBff33AypXqD8B68IB2JmxsgOrV1XsuLiGpUV2hQgyrfjDBjRtUo2ZsnIDOnfPfn4toSmdw1CiaLu3xY/oZWrWKJvzPzMSJwKVLQFGKj1WoM/j27VuYmpri9u3bqFu3LkJDQ7FnD3N5k7QUPDt30n+kfD4tbK9NLK0eUlNpTrSPHwELC+DWLaBEiewi7MJMWpoAw4bRG21qKlC3bhCeP6f/0DWd0FBg2bK2uHcPMDKif6p69PhaIOe+eJE+d+5ctCL/nz+nz9Wrh7PrCAMcPkyf69b11MgOyO/fQFCQCXg8oFUrtr3JnR8/6He1z58UgtWr01FCycg6IYC/P/091MT3QRUUCiBxdHTEhw8fMGfOHDRu3Bh9+/ZF3bp1cwxVL8xIhJ779++HEYNDOzkJbNVp98sXC/z3nwvEYj4GDfJA165eKttUhYJuvyp8+/ZN5r1PSUmBQZYhVck2sRhwde2C9+9rQF8/DePHn4KV1e8cj0lMTESxYsVytZvfek7bFLUpzz752cy6LSamOA4f7o6goPLg88Xo3PkxGjV6BkNDzW9/TIwx9u7th/DwUihRIh6jR19A+fLhSvmuqK/h4QJs2DAFIpEOJk48iUqVglV+rxRtv7I2VG3/smUTkJBQDBMn7kWlSnFy+8q19oeFmWH9+pEAgIkTd6BSpWS5bSjjqzraHxxcGps2DUfx4olYsmSX0r4nJMWDWDBb2cM4vjwaNGgAFxcXBAcDp05RKYeEbdtoKrW1a2l6q+vX6R8sQghOnTqVq12mf1eSkpIwZswYzQggad++PRk3bhypWLEiiY6OJmlpacTBwUEdWkZOUxgCSHx9MwJGBg/OObG0ojZVpTAGkIjFhIwfT6+zQCAimWubMxlAkNc2tgNI3r8npGxZeg3MzAi5fz/3YzSt/V+/EmJlRdtmbp5Avn9XzXdFfe3Z8xMBCGnaNH9f8zqvJgaQ2NrS67506W2FfOVa+4cNo+3o1Yv976qyNt3caBuqVlXN9yX/LSILP/Ri9JHf/f/tW0KaNSMkKIgWWwgIyHP3PNujCmwHkCg0TXzixAnY2dnh1KlTMDU1RVBQEGZm7mJr0Qji4oDu3TMCRrSJpdXHggXA7t30+k6Y8JLzehqmefyY1o0NDaVCf3d3oHVrtr1iBonW8dcvmhPuf/+7V6BT3omJwL17VQEAs2cX3Hm5gmRgPi1Nc+fz/P1pDkqA3is0FYnmzsSEXT+UoXZtwMsLGDsWmD8fqFCBbY/YQe7OoEgkwsCBAzF9+nQ0adIEAGBjY4MRI0aoyzctakAspsmNv3wBypWjw+GGhmx7VTi5erUG1qyhy7t3A82aBbDrUAHz9m15dOhA/3w0b047S5Uqse0VM3h62qJNG/qHqnFj4MkTwNw8qUB9OHoUSEjQR+XKQI8eBXpqTiDpDKamam44/tq1NNlxu3b0j7mmogmdQZEIuHAhe7URHR3AwYG2Yfx4dnzjAgppBtu2bYs7d+5Iy9EVVTQ56fTChcB//wH6+jSpZqNGqttkisKUdPrJExvs2tUUAKR6TKaT7uZmgwtJp58/r4idO5tALOajfv1fmDLlOcLDAwtF++/fr4xDhxpALObD0TEY06Y9hYGBqMCTLq9Z0xIfPpTPpvdlK+lwQbd/+fLW8PS0wJAhV9G5c0Kux3C1/R8/JmDdutEQifhYvPgeatQI53SC+LxsPn1aETt3NkOtWqFYtOih0r57+31FercvYBL7L/0wcOBAuLkBLVvSYgr79snuExhI00LZ2spvt0gnnV60aBHp2rUrOX36NLl+/br0UdTQVM3giRMZiXBPnGDGJpMUFs3gtWuE6OjQ6zxrVu5+FAbNXE6vHztGCI9H2z9kCCHp6fKfl8vtT0sjZNKkjO/Q8OE0mbSyvqrS/vR0QoyNqR/v3uXtO9c1c4r4mnm9Qwfa/vHjnyvkK1fa7+zsRwCaMFxeX7mqGbx2jb4X9eur5rs6NYNTp2Z8b5mgsGkGFRJbPHv2DACwa9cu6TYej4fOmpoYqQjh7p6RzHTePFr7Ugvz3LxJE3gLhUCzZv5Yu9aGbZcKlDNngOHDaXepTZtvOHKkKgrDREJcnB46dAAe0kEPdOjwFIcOObOmtX3/HoiPB4yM0lC7th47TrCMJAg1PV3zpok/fQKePbMBQPPcaTqSqnsxMWx6kTuE0CligN6ftWRHoc7gQ8mdUItGER1tgJ49gZQUoGtXYOVKtj0qnNy/D/TqRRMA9+kD9OjxEny+DdtuFRiXLtE/GWIx/ePRqtUb8PlV2XZLZT5+BBYv7oDwcKB4ceD4ceDbt5fg8djLlP34MX2uXj0cAgHz6Zg0AYnWWRM7g+vWAYTw0LcvUL8+296ojqQzGB3Nqhu58uYNDfQqVoz7SbHZQiHNoEgkwvbt2/H9+3ds27YNvr6+CAgIQOvCEh4oJ5qkGRQKAQeH3/DyKoOaNYEXLwAmXNZqBmU1g2/fpmLnzkFITtZDgwY/MXXqM4SF/VKrZio3G2xoBh880MHhw70hFArg7PwD48e/QkiI5rf/0aNKOHy4AdLSdGBhEY9Zs9xgZRXHqmauXDlLzJvXGUFBJujW7SEGDgxVqf3K+MoFzeC6dS3g4WGJnj3voX//8FyP4Vr7xWIe/v67N5KT9bB06V1UqxaRq13vgC8gJTMCk3jRRjLrOW3Ltv7bGKRMvGo2sqzrhpeS8TMsrBhmzOgOPT0hDh8+K9f1yGmbujSD7u4DsWkT0K8fnb1ggiKtGZwwYQIZM2YMsbOzI4QQEh0dTRo0aKCG2Wtuo0mawfnzqU7C2JgQb2/m7Go1gxmamdBQQszN4wlASPPmhKSk5HxeTdfM5Wbz2TNC9PTSCUBInz7yawS53P6DB0+T4cMz9IGOjkEkMjJ3m8r4qmz7T52iPpmYELJv39l8/eCqZk6V918sJqRMGUmewTt5HsO19r99S/02NEwlQqGsjax2/7d7hoz+Let6TtuyrmfV4SljI+t6Vj8/fKBtKlNG/uuR0zZ1aAaPHXOVflauXMnmgtIUac3g8+fP8f79e9StWxcAYGpqirS0olVSS5O4fh1YvZou799P6+FqYRbJlHBERHFUqUJT9ejrs+1VwREYCPTsSXO9deoEnDyp+WWcPD2B//2vPX79omWpli8HKlZ8jFKlmB+1VhSxmIcVK+jyzJlAsWLp7DrEEgEBtASajg5gY8PRuclcKIxT/FxOLfPxY1n8/g2YmwMdO7LtDXdRSNqdtZSMSCSCWCxm1CEtzBAQQPMJAkCHDt7o359dfworM2YAz55RIf/164CZGdseFRyJiTS/XXg4ULFiNM6eBfQ0OJaBEODIEZrv7dcvU5QtS3WgCxeCM0EwL19a4+tXqtGaNo1tb9jj1Sv6LBQCuroidp1REDc3+mxnF573jhpE3J9qgGzMbubHkyc0uemgQYCuLsvOcBiFbnG1a9fGiRMnQAiBv78/Jk6ciBYtWqjLNy1KIhIBgwdTMW/DhsCgQe/ZdqlQsmkTsHMnXZ448UWRGnklhCZoff8eKFMGmDXLDVlKtWoUMTH0x2LECNrJrVUrFO/f0yL2XOHrV+DIERptMHMmN0dhCoofPzKWDx1qwJ4jCkIITVAOAHZ2v9l1hkEkgSNc6wwmxRTH27dWADIGR7TkjEIBJAkJCZg1axYuXboEAOjevTs2b96crWB3YYfrASSrV9PSRsbGwIcPwMuXmhHsoUkBJAMHXsapU7Tsw4AB71G//j2VRekA9wIocls/c8YYly51BY8nxj//PECJEu81tv1PnwJnznRDRERx8Pli9O37CfXr34O1dXm5bSrjqyLt9/cvidWrXRAXZwBb20j8888DGBgIGWm/Mr7K0/5Ra5+BaZYPtoGlpSWiogxx/HhdvHxJg7gmTHiB5s395fKVzQASPr86Zs3qBl1dEf79dwsqViwnY8P7u1eewR7G8eVZSTqdNZAlawDJpUs1ceaMI1q08MP48a/kspnjeRgOIHl1pDvubxyBunWBt2+ZLbtapANItFC4HEDy7h0hurpULHv4MHN2s6IpNtVh9+5dQgQCIQEImTKFitmZEKUTwp0Airz2+fiREB2dNAIQsmqVcjZyO6Yg2y8SEbJ8OSE8nogAhNjaEvLypXznKcgAigcPMhJMV6wYRSIi8rbBlQAKgzqTGH9kPcfSpfS6GBkR8ukTt9qf0/qRI9TfZs1y9iO/YA+2kk7nF0AyerQkmEd+mzltYzKAZIFHb1LSOpgAhOzbl+3UKlPYAkgUmiauX78+du7ciRiuZpYs4iQnA0OGAOnpNLHmsGFse1T4OH2a5moUiQTo3x/YvJnZf5tcJy4O6NsXEAp10akTTWCuiURHA927A4sXA4TwMWwYnfJu3Jhtz2R59coaHTvSBNMuLsDixfeLlC41P/75B3BwCEFSEv1cxsfnfwybvHhBn5s0YdcPppFM2ytSzk3d+D2vg+if5WBklAY1TDgVOhTqDG7YsAGvX79G5cqVMWDAANy+fRtE/llmLWpm4UKqK7KwAPbsKVqdFHWTlgbMng0MGACkpgI1a37H0aPcCSwoKCZOBHx8AFPTOI1t/9u3lnBwoNH2BgbA2LEvceQIlVVwiePHga1bnZCWRv/c3bwJGBkVzejh3BAIgEmTXsDKCvD2BtasYdujvJEEvjRtyq4fTEIIvfYAUKkSu75kxuNcewBAy5Z+Gq1nLigU0gxKSEhIwJkzZ3Do0CEEBAQgMDBQHb5xFi5qBu/dy8isfv06kLlCoKbo+7iqGfTzo51Ad3e6PmsWUKrUGlSqVEG6DxM6JIDbmsHQ0EbYsKEFeDwxxow5glatDBS2wWb7fXzMcflyTXh40NcsLOIxbdoz6Op+VlmHpYyvebX/0SNb7NvXCITw0KrVd4we/QZ8PlHL+6+Mr8poBqPdt0NRSjacnO8+ywfb4NWr9jh3rjZatvRD164XONH+rOte/l/w39LFSE/Tx8Sl/6G0fmL25M9ZEkRn1QgykSCeCc1gZj9/eFfBsU0ToauXillrl0DPgKabyy9xdY77RBRjRDOYnqyHTS2PQJiqj9Wrb2LevE4q28xKYdMMKpURLCkpCdHR0YiJiYFJUQ5p4wjR0TQKEqARntpS0czx8iXNTRUbC5QsCRw6RNOprF8vkLkR5HRjyLotv3UAWL9+vULHyHNeRW3mtG3fvnPYuJFmDpgzh4/SpSMxcOBszrefEGDMmAu4c6e3NIqTzxdj7lw+/vc/YxgadoSra7TCvmf1Uxlfc2t/VNRA7N1L19u0+YY7d6qCz6+iVPtz8pWJ90qe9qsjgCQnLC0tYWNTGwBQv74tLC0tOdH+rOuz1v0P6Wn6AE+M4l08QN5aQdjUX8aG7o2aMtssvzRU2Xcm2r9kz0wZvzL76XZgJADAsckb8Fv5QPhnH50XNjLHZF3PaZvujZpgAv9XtSFM1YdJ+d+wto5hxGZhR6FJnosXL6Jbt26wt7eHr68vDh48iE+fPqnLNy1yMmkSEBQEVK0KrF/PtjeFh+fPgfbtaUewSROqKevRg22v2OH48XoICaGJy5cuZdsb+XB3p3VfDx6kHUE9PeDvv4F1627gv/8yattyiUePGmLyn8Gw6dOBUaPeaORUfEEjSW1SqhS7fuRFTAQVe5awiISOnjCfvTWDwHc1EODuAL5OOpw63mfbHSnf3Gi6oSot3mjlUnKi0G1m586dGDRoEH7+/ImdO3eiYcOG6vJLi5y4utKHQAAcOwatNoIhnjwBOnSggvRWreg0fIUK+R9XGLl2DXBzswWPBxw8yM1OVGYIAVatoh14Dw9AXz8Nc+ZQkfvevUC5ctyKMvD3B3bton88rl9vCQBYtAjYuFGr+5UXSWcwS10EThH9pzNoahXGsifMQAjwZOcAAIBjzwcwKRXDrkN/IAT4/qczWLWlO8veaA5KaQYBIDY2Fj9//oS9vT3TPnEeydz+/v37YWRkxJjdnLQceREZaYR58zohKUkPvXt/Qt++nxmxKw+aYlMZu56epbF2bUukpuqiVq1QzJ7tBn192SoH3759k3nvU1JSslXoybotv3UASExMlMnbqYyNrNsUtZl5W2SkCbZsGYLkZEM0b/4G3bs/kssmW+0Xi3k4d84F7u40OXPdul/Rtu11lCnDk9uGPPtk9VMRX9PSdPDjhxW+fLGGr28V/P4tGx7cseMTtGnzSi6bi0/4oyBY1Keswu3P6psymsGs5KQhXNSnLO7d64DHjxvCwCAFI0ceg61tbK6+MvFZVeb9f/7SBhfP94V1xQCMGr8POkIDlT//yvjKVPt9fevg2LEe0NERYu7cgzA0/K3yvSohKR7EQrU/a7FRptiy8H/g80WYv2U+dBP0s2kVmSAnDaQqpCanYs2MnZqhGezYsSNOnToFHR0dODo6AgCGDRuGf//9Vy3OcZ1+/fqxFkCSlkYDRpKSgEaNgFOnHKCr66CyXXnRFJuK2r1/HxgzhkYMt2sHXL5cFoaG2Wv5rV+/HrNnq0czl5ddZTVjitiUbOvRYyCcnGjKosqVI3D3bgPo6zfgbPuTk2kVEXd3OqK2dSsweXJNrF9/Q6n256fDymwzv2MCA4H5898jPLwOnjyhny8JAgHQrBnVpkZHH8K6dSMBNJfLj8Un8g+wYILKlSsr3P6C9G3GjIbo2BF4+tQAJ08Owfv3hrCxydlXpjSDirz/ADBp2X/AeSAktCxS2nnD0ae3yp9/ZXxlov2rVm3Bw4dUM7NwoQ6WLRvLyL1q6ep/sukKFeX3C9o3KVkxBGjhC5KDVpEJctJAqoIwgd1MAQpNE4eFhcHU1BQ3btxAjx498O3bN2k1Ei0FBxXF0xqXxsZ0elhbc1F1rl8HunShHewOHYDLl7k/JaouCAEmTKA6ydKlgenTn0Jfn22vcicmhr5nly7RWrVnz0KqvWObt2+B2rUBV9c6uHePdgStrQEXF1+cOwdERNDv8sKFgIVFJNvuaiTFitHvr6MjEBtriE6dMqaOuYJZmQgYlIiHMFUfv79VZNsdlbh3rwl+/QJsbID589n2RpZIf1o5yMwmiGVPNAuFOoPp6bTn6ubmhnbt2kFXVxd8rbq5wFm6lHYABQLg7FkUqZq46uL8eaBXL/pD3aNH0e4IAsC9e1WkeQRPnQLMzJLZdilXwsNpQuYnT2i93vnzH6JPH7a9onh70xHm2FjAxiYKW7cCXl5AQAAwduxr9OkDmJqy7WXhoEQJ2iEsVSoRXl5Az56AWMy2Vxnw+ATl7b8DAII+au5N29sbcPujyduyhXv3ycgfVBKk7QwqhkKawQEDBiAmJgZeXl74+vUrAKBZs2Z4//69uvzjJGzmGTx8GBhJI/mxbx8dIWTCrqJoik157J44AQwfDohENJ/g0aP5j7SuXr0aFStm/LvXhDx78tr48aMk/ve/thCJdDBwoAe6dfMqkNx1yvgaEBCKQ4eGwMenNExNkzFv3iPo6HxRe21mefPMPXjQFTdv2sHWNhLBJZZAUSS1eCXIk66FCW1eVuTN96eIr0z5mdW3ia0bYNu2IUhP18F//92EUPiWE3kGg4KCpPkQa9YMw8iRx1T+/Cvjq6rtP3SoPu7erYY6dYIwZ46bNMiJiXsVE7WJT45bAv+XjuiybDscez5gfDpXAtN2UxPSscHpmmZoBg8fPoxbt27B0dERRkZGCAoKwurVq9Xlm5Ys3L9PU2MAwIIF8nUEteTN4cPAqFF0WnTECGD/fjrimh86OjqFMs9gbCxNxyIS0XJtJ07UBY9Xt0By1ynqKyFAixY/4ONTGiYmwPPnhqhRoxNcXWOUbr+8+8ibZ65ECTsAwJQpZlhwBAqTNWdeQeXuUwau+NqggT7KltXBz59A27ad8OjRF07kGXR1dcXGjbVx6RLw9asFUlIcMHBgBxkbBfFZVaX9YjFNug8A//1niY4dmb1XLV39D1RFOjJY6ZfKtooSCs3xGhgYoGfPnqj0p+aMpaUlOnbsqBbHtMjy9SvQpw8gFAIDBwIrVrDtkeZz9SowenSGPu7AAfk6goUVQuj18PUFzM0TcOgQt1Ob/Pcf8PRpJalcokYNtj3KTng4fS5dml0/ihqiP8H/XPs+W1vTICcAuHqVgx/YfHj9GggJAfT1U9GqFdveZCctyQDxYeYAADObYJa90SwU6gzeunULdnZ20NPTg0AgAJ/Ph4Br37ZCSHg40LUrHbVxdqZVMLRSTdV4/hzo359qikaOBHbs0F7TLVuodlJXF5g69RmnE/iePUtz8QE0alhSipFraDuD7MDVziAAzJ1Ln93dreHjw64viiKJF7Wz+8HJgLKoABo8YlgyFoYmCSx7o1ko9PM3depUbNmyBREREYiLi0N8fDzi4uLU5ZsW0M7KkCE0Ya6tLXDxIjj5JdQkfv6kQSIpKTR6eO9ebo+AFQSfPgFz5tDlTZuAKlWi2HUoD3x8MsovdujgjYkTWXUnV75+LSP9sS9bll1fihoSJTyXAkgk1KpF/9wTwsPatWx7oxhXr9Jne/tv7DqSC9Ip4oraUUFFUSiApEGDBnjz5o06/dEICjKAZNs2YOpUmln/zRt6I2HCrqpois2sdlNTgRYt6HRH3bo0AlWZqi2FKYDk589g7NkzAn5+Zqhf/xdmznyC4OCCFaXLazcwMAR79w6Hn58ZatUKxbBhJ2BtXV6l9qsjgOTDh7LYcvu8zOvKBEzkF7ihjmARZZEnyCQz6gogWT7YBnv2jMD37+aYNOk5ypZ9wJkAEsm6l1dp/PtvW+jrC7FjxyUYGaXnaJdLASTGxrYYP743AGDBgg1wcMj7e8dGAMmDTUPx8nAv1Ot/Cx0X0QLf2gAS+VAogKRLly64du0aunbtqi5/tGTi69eMKYV165TrCGqRZdo02hEsWZJOiSpbvq8wBZAMGfIOfn5mMDEBrlyxQvnyAwtUlK5I+3v3/gw/PzOYmgK3bpXFkyflGQ2gkXefvAIIbt2io6v8mrKdQS0Fg6WlJTp0MMf374C+fjMYGDznTABJ5uCnAwdiERRkgtTUvhg9Ome7XAogMTCgHcGaNYFSpQgj33emA0jCvG0AABbVf6hkpyiicG3i7t27o0SJEihTpgxKly6NMmXKqMu3Ik1aGp0eTkmhyXQnTWLbI83n0CFgzx46JXzyJPAnDqpI4+cHnD1bGwCwfj1Qvnw+B7DIixfApUs1AQC7dwNWViw7lAMPHtB8lWlpbHtStKlPqxHi3Tt2/cgNHg9o3ZrmHNyzJ2Nam8s8eUKfmzdn14/cIAQI87IFoO0MKoNCI4PaKeKCY8ECwMMDKFUKOHhQq2lTldevacQwACxbRkt/FXUIAcaOBdLSdNCqFaSjE1wkJQUYNgwghI8hQ4C//mLbo+wkJOhi7Fjqa7duwN2fbHtUdMncGezQgYNRJACaN/fH2bP18fEjrfRTty7bHuXN06f0uXlzGlHMNRIjSiIp2gQ8vgilqwSy7Y7GoZBmUAtF3ZrBo0dpEmQAuHCBjjQwYZdJNMUmAOzYcQkrV/ZESAj9kb50SfXI4cKgGXz40Bb79jWGrm461qy5hbJlE3K1wbZm8MKFWjh3rjZKlIjHxo23pRordSTdVqb9APD8uRjbtw+GqWkyNm++gvGbn8i8ziV9X2Emq4awQ8VO+OuvjEBHLmgGJeubN/+NoCATLFz4APb2YZzVDAYGhuCff6ZBKBRg06arSEj4oHL7c9qmimbQ52FDnJu+AOaVAzH2wnTpdq1mUD4UGhn09fXF9OnT8eHDB6SkpEi3//79m3HHiiqvX9PRGoCmzlC1I1jUSUoCNm5sjpAQqrk8fpyZFDKarhls2XKgdKS0f//PmDGjm0K+F6RmsGnTgRg1iq4PG/YRo0f3Vbn96tAMfv78AABgZWWI4cP/ytYZ1MIOT5444eRJUxgZ0XUuaAYl68nJJgCAQYNao1Yt7moG1669AaFQAGNjYOrUbti40ZtzmkFJiT8rR2+lbRRlFPpZHDNmDIYMGQJjY2Pcv38fPXv2xPTp09XkWtEjOtpAWh+3e3fg33/Z9kizIYRWF/HzM4OZGXDlCq1fqgWYPJnmrWzQAOjYkds3z5kz6dSriwvQtCl3p39SU+l/a2WDkrSoh6goUwwdyr00M+npfET9yeDE9dRDAQGmAIDatbmbjzXoY3UAQHkHDUveyBEUeltjY2Px119/gc/nw8HBAXv27MHdu3fV5VuRIiUF2LSpOYKDabTWsWPc/dJpCitXAqdPAwKBGOfP0zyNWoDXr61w8SKgoyOpusJdpcjHj2Vx8SJNHrxtG7e1s5LOoIGBanaePv2Fls4nYKi7Ho3rH0H7NqfQtOFR1K51AEcPf8K7t6Fwbnochrrr4ePN3XyQObFz+zt4vAsr0HMKBEJcuABwrXJqXBz9oOjq0uwGXCYggDpYpw67fuSGWMhHyOcqAADL2trOoDIopBls3LgxXr16hWbNmsHV1RUWFhaoWbMm/Pz81Okj51CHZnDSJGDnTnpTcHcHssgxVEJT9H1M2rx4EehNMyFgzJjX2LevESN2JWiqZjApSQczZ3ZEXJwxevb8jP79P7Gauyyv9guFPMye3Q6/f5uhUycvDB3qoZY8i0xpBh8/5mPPnr8gEIixZMk9rLpwReZ1RTSDL54HoXVLV3zxGgPbyqYAgHVrXuF//zzBS/dhCAtLxMD+lxEePQ18Pod7yJkQCsUwN92CS1f7wKVVBbWdJ6tmsFW57rh5sz1sbSOxYsUdzmgGX79Ox+bNw2BqmoSdOy/naJcrmsF//20MLy9bjB79Gm3a+DLS/py2KasZDPOywYG/NkKvWBJmPhkGviBjGFirGZQPhTSDLVu2RFRUFCZPnowGDRpAX18f/fr1U5dvRYanT2lHEABcXZntCBZFPn0Chg6ly1OmAE2b+gJgtjOoqZrB6dOBuDj6GXN1tYeBgT2rucvyav/WrcDv34C5OXDypB1MTe3UkmeRKc0gIa6IigLOnuXjwIH2QEnZzqAifP4UjhIl9FDJ1kS6rUFDOpfo7x8LH58o2DuU1piOIAB884lCaqoINWuZFeh5zc2TAQDlyplh4MDsOTQBdjSDX77c/+OXkXQ7VzWDM2fSAJzBgxuhVatGjLQ/p23KagYlesHyDt9kOoJa5EfuziAhBDNmzECpUqUwaNAgNG/eHLGxsbC3t1enf4WetDRg3Di67OLiiw4dtD1BVYiIoHrLxESgTRtg40Zax1YLDU7ato0u79yp+nSmOomMBJYupcsrVwKmpmx6Ix88HrBvH/D2Lc3faKDC1N+XzxFwqF0GvEzz4m/fhkJHh4+mzcrj/DlvODrK5nh99DAQq1e9QFqaGFFRyWjUqBy272oPPb2M1Crnz3nj8MFPSE8X4cP739i0tS0GDKwBALhw3hu7d3qAz+chNiYVLVtVwOq1LtJjv3+LxupVL/DrVzx+/oxHtWolcfFKH4SEJGDooGt49vQXNm5ujY8fwvH6dTCKF9fDmfM9YWFRDFevfMfC+Y9hZKSDIQNpTbNVq1uiQcNyyl8kOREKmZm+Z5qkJF0AgIlJPjuyjFAIhIcXBwBUrcqyM7kQ9Il2Bi1rs69/Fgv58LjQDhUbfoaZTRCnpS2ZUWhksFOnTnj//j0AwNraGtbW1urwqUixdi2tNFK6NDBo0HsA2s6gsqSnA337Av7+dOTrzBmqi9NCr82YMVRE7+Tkj/btbdh2KU+WLQOio4EKFaIxejTHBVWZMDGhnzsnJ9XsfPoUDsc6GZ29Vy+DsXGdO+YtaIwyZYrh44ffmDylvvT1hw8CMHTQNdy62x/2DqURH5+GqpX2oKVLBQweWguEEEyZeBehoYk4eqIrSpY0QLXKe1C+PI12ef0qBHNnP8Lb9yNgYqKPH34x6NLprLQzeP+ePyZNuINDR7qgaTNLLF/2DIEBdLSoXLni2LWnPWrXOoiAgDjs3NMe6eliVK64G+fOeGPSlHro1r0KXr8KxnuP37h6IyMavCAQCmlnmGudweRkPQDc/6Pj7w+IRHwYGnI3Kb1kZJALesFQT1vcXjkOBsYJmP54BHgaMlKpkGawT58+2Lt3L8zMCnaYn2tINIP79++HkSRfgRIkJelg0qSeSE3VxaRJz2Fj8zybpoIJctJqFEabhw7Vx9271WBomI5ly+7AyiqOEbs58e3bN5n3PiUlBQZZfm2ybstvHQASExNRLFM4qjI2sm5LTEzEq1etcPNmCxgZJWHq1N0wMxMrZCMnm3n5qUr7k5IssX79SIjFAowYcRy1aoWq3H5Frqky7c+6z6tXDjh3rgOMjJKxbNkOAMDiE/4y++elISxXehvKWBSDhYUR0tPFKFFCD8NHOqB3n+pITk5H6ZJb8eDxIDRqXA5CoRjVKu/FiJH2+N9SZwBAaqoQVmV3YMOm1hg2wgF7dnlg4wZ3vH0/AsWL6yE6OgXly2xHUNgklCpliJXLn+P0KU+8dB8GIyM6YvX6VQgaNS6H4OAE1Hc8hP2HOqNLV/pntV/vi3Bubo1pMxoAAC5d9MGwwdcQGDwRpqb0GlSrvAczZzXC+Ik0m3Kv7udhV8MM/61xybXdTJBVM9jGshOuX+8Ce3sfDB9+hZHPan7vvzzrDx7Uxs2b7VGnjicGD76eo111fFYVteHnZ4kDB/qgVKlYzJp1hLH257QtKSkJVRUcfkxI0MPYsX0AAHv2nIexsWz5H3Xc//Oye+VKDZw6VQf16//CrFnyp5dKSkrCmDFjWNMMgsiBj48PIYSQoUOHEmtrazJhwgQyZ84c6aOoERsbSwCQ2NhYlezs2kUIQIidHSFiMSEnT55kyENZ1GGXazb37KHXkscj5MoV5uzmxrp16/I9R9Zt+a3LY1ceG1m3LViwlxga0utz5IhyNrKuq7P9/ftTXzt1Yqb9il5TefbJajPrPm/e0DaUL5/xukGdSTKP5HSS48PbN5YA68iT58E5vu72LJjw+etJZGwaSU4n5NrNHwRYR168DiUJKSLy4PEv0tLlFHF0PEJ+R6WS+GQRKVd+F9myzUNq4/a9AFLecpd0/emLEGJispWYmW0n4ybcJe8+hEtfmzHrEWnQ8JiMDxUq7iHXb/lL1xcveUaaOZ2UrsclCYmOzgZy5bqfdJul1W5y4NDnXNvN1CPrde7V6y4BCOnTR/n3W9H3X5717t2/EICQadNyt8vWd9XDw0Nm/ePHjyQ1NXeb8vihzHdVHm7epN+1atVyfr2gf1fbtaP+bN2qmD2m+hXKItck2l9//YV3796hcuXK2SKItCgHIbS+KkA1g5qiK+AiT55k1G5evpxWGdFCIQS4eLENkpOBVq1oYM2pU2x7lTs/f1rgzBn6ffjvPyqh0EQk5brKKSGJ+/I5HDweYFcj5xmYjx9+o2q1ktIRPPfXIRAIeJg98yHEYoIKFUpg6DB79PvLDnp6Arx6GYyQ4AR07ppx7373LgwODqWl6/UblIW371icOPYFe/e8x4F9H3HzTj84N7fG9Wu+GDiohnTfiIgkBAbEwd7BPMPnLxGonUnD6O0VBaFQjFr29BzR0SkI+hUP+0znLOrExNARMQsLlh3JgTpZcsg4ODjIrOvq6hagN3nz4gV9btKEXT8AmiNYUravdWt2fVEUuTqD5M9M8pIlS9TqTFHi9WvgwweqYxk2jG1vNJfAQKBPHypy7t8fWLiQbY+4xblzgJeXLfT0gF27uP2ngxDgxo0WAIAhQwBHR83tDIb+mdlWJpnw508RsLI2RvHiejm+/uljuEzHS6DDR4kS+rj3cECO+/t4R8HERB9WVsbSbXdu/UC9+tS5yMhkeHlGwsnZChMn18Pf4xxRzXYvXr4MRjMnK3zziULNWhkdv7u3/WFhYYQyZTKmCb9+iUCrVhmplr58iYCZmSHKl6eBB18+h0NHhw+7GmYQCsVISxNJO7NFldhY2hnkWsLpFy+o1rphQ7r+/Dng4QHY2ADt2gF6ekCHDh1Y9TEzL1/SZy50Bl+9ApKTgTJlaL5gTUKutMZxcXG4efMmbty4keNDi+JIRgX79wdKlWLXF00lKYmW6wsPp8lQDx7kdmenoImLo6lkAGD+fKB6dVbdyZfHj4Hv3ytCT0+zq+8IhTRFFKCc4P7z53DUyGVUEAA+fPiN2o4ZI2zt2tkgOjoFr1/R4cj0dBH69LyAx49otZaKNiWQkJCGoKB4AMC1q9/xxO2XdJTu6ZNfWL/2ldReYEAc4uPT0KVLZfD5PFhXKAHvP8mtIyKSsH7dK5kRvrQ0Eb5/i0Et+0wjhZ8jZEYOg4ISYG5uCD09ATase429e94rfmGURH5VfMESE2MIgHsjg4sW0c8wQEfn+/YFHjwAZs2io13p6YCdnR27Tv5BLKYdMIAbncFHj+hzq1aa91skVwCJsbExGjZsiJx25fF4ePDggVqc4yqqJp2OjqY/EikpwLNnQLNmdLs6Ejmryy7bNgkBBg+mP7qlS9NE3ZlyQCttV140Iem0JKCmVKkobNx4F3p6YoVt5LaujqTTGzY0x9u3VmjT5htGj36jcvvl9ZWppNNBQUEoV84Se/c2hpubLQQCEf755wGqV48AAIxa+0xm/6wBJL9+xWPU8Ov4+CEchoY6qFqtJM6c7ykNyADoLI2F2TZYWhXHP/9zQp++tIe/b897bFj/GlZWJVCsmA6GjXCQvgYAixY8xuVL31CtWil07GSLRQseo3Llkjh0tDPS0sRYsvgJIiOTYWysBz6fhznzGqOlC00M7fY4EFMm3UOZMkawszNDXHwq3B79xPSZDTFtRgN8+hiORvWPICxyCkqU0AcA9O11EW/cQzB2fB0s/KcZAvxj0aPbeZiZGaJc+eLYf7ATDAzUE+qfPYCkK65f74jGjQMxbdozTiSdFouBkSP7Ij1dF+vXX0P58vE52i3I7+qsWbPA4/FgbQ18/EhLd1auDLx5Q3N9ikR0Fmb4cPon/N27d/D29s7VrjK+BwQEYP78+ZCXb9+AatXoDFt8fM7ZIwryd7V7d+DqVWDLFmDqVMXsqaOYhULIIyysU6eOGmWLmoeqQs/Nm6nA1MGBBo5I0AaQyG9zzRp6DXV0CHn8mDm78sL1AJKnT+n1AQgZN+6UUjbyWme6/d++0eAfgBAvL+VsKOsrUwEkJ06cJJMn0zYIBITMmOEm87q8ASTaB7MBJN273ycAIX/9pfz7zXQASWBgxv0rLS13u2x8V7t1I+TyZUJSUmhQRubfqKVLCdm7N9vhcvmhjgCSEyfodWzaNPd9CvJ31cqK+vPkieL2NCKARAtzEALs2UOXx4/XvKFkLnDjBp32BGiVihYt2PWHa6Sn8zFmDF0ePRqoUuUnuw7JwY4d9LthZ+eH6tU1s4j0mTO1cZlWFcPhw4BA8ItVf7RQCKE3WYEgnx0LEC8v+lylCq1NzCXmz6cjXBMm0Cns2bOBQYNoNaATJ4A7d9j2MIM3dAIBDRqw6wdA5Uq/ftHfdEdHtr1RHLk0g927d1e3H0UGNzfA0xMoVoyK5LUoho8PvTERAowdSzvUWmS5fLkmvLzojXzdOra9yZ/UVOAITV+GZs082HVGSc6cAS5frgWAVnfRfre5g6QzyJfr165gkHQGOSK9k6FZM5qh4fdvOg27bRtNor5mDZ3+tLGheQa5gLs7feZCZ/DdO/pctSpgbJz3vlxEoaTTWiiqzO1LNAVjx2aMEErQagbzthkXBzRuTG+kTk5U1KyXc8ClQnaVgauaweBgY8yb1xEikQ6mTn2KJk1+sqpDksf3z58tsGpVa5iaJmPGjI2oWtVWYRt5nbcg2n/wYAPcu1dVRu+Yn0ZQi3rIqhlsadETt2+3hbPzD0yc+JITmkGJnrdbt68YOPBDrnYL8rtarVo1uQd+jh49mi29TEFrBhMTgZIlaUCLj0/upfIK6nd18WJgxQr6R/DYMcXtaYRmUIssys7tf/2akRg5sy5KglYzmLtNkYhqWQBCLC0JCQlhxq6ycFEzKBYT0qpVRsJmidaHCzqkvNZnz6Y+Dx+unqTbBdH+oUNpGzJv1moEuaEZ7Nz5sfTzpez7zbRmsH17+nnZv1/WBlvf1VOnMnTFsbGEnDpFyIoVhKxcScjJk4TEx+ftpzx+MK0ZvHaNXsNKlWR1jfmdgymy2nV2zvk9lRe2NYMcGjgv/KxfT5979OB+mg+usXQpHVHV1wcuXuRebi4ucPQo8PAhoKcnxI4dmqNHvX2bPnfsyK4fqpCQQJ+LF1fd1tOnv9DS+QQMddejcf0jWLv6pULHBwXFo22rUzDUXY97d/1Vd0jDkcx9cWma+Ns3+qxg5TW1ISkBFxQE1KpFZRuPHtHRruXLgQoVgO2ZBraLM/FBVxGJdrFdO/bvdUlJGSluWrVi1xdl4dDXo3ATEgIcP06X58xh1xdN48IFekMCgL17M5KhaskgJCQjp2Dv3p9RqRKr7shNUBDw6RO9mbdrx7Y3ysNkZ9DZ2Upav/e4azfMna9YAjVLS2Ps2EUvpmOdMvnsXXRgu8MgIS0NCAigy1zpDJb7Uypn1Sr6x/vGDeDuXVqtqGVLmnh68+aM6hpcyDMo6QxyIf/18+d0utraGhpz782KQtHE7969w8KFC+Hn5wehJCslAD8/P8YdK2ysWUNvAk5OGXkFteTP588ZFVqmT+dOtRahUAhXSWZhUO1L5vWctuW3DtDC7YocI1nftMkZMTHWsLGJQp069+Hq6qm0TXn2yc+mvL5v2vQYQEtUqBCNO3duKd3+vM5bEO3/8aMdAHO8e+cGgSAIqvLlM801WLlKSaWO//AhHJZWxihd2khlXzSd9HQRAMDPzxeurq8Z+a5mff8VsREUZAyxuCv09dPw8OF5mU4qW99VZ2dnADQitkZG5UHUq0cDouzsgHnzaEUjZ2fAwsKCkftd1m2Z+xV58eYN1Y7r6nKj7NvFi/S5TRvu/OlQGEXmlO3t7cnu3bvJhw8fyOfPn6WPooaic/tCISENGlA9wZ07ue+n1QzK2oyKIqRyZXrdWrcmJD2dGbtMwCXN4NmzGTnL3r9nRzOnbPt376a+d++unK9c0Qza2dF2PHyYsU0VzeDYcXdIvXpH89znxm1/0qnzeeLS6jQpXXo7+XflS+lrs+c+Jl27XSDJ6YTcvBNArCvsJn8NuCZz/M07AaSlyynStNlJUt3uABk67AaJTRSyrvljWjPYsaMbAQgZM0b595tJzeDFixKtW0Q2G2x9V319fQkhhOzaRX+r7t0j5NUrQnr1IuTff+k+hw8TMnkyXfb29lbYDyY1g8OG0Ws4eHD++6r7dzU5mZCSJak/d+8qb49tzaBCI4MCgQDjxo1TT6+0ECMQUD3B3btA27Zse6MZiEQ0hYyvL60scvp0ztnlizoJCXr45x+6PH++5tXzDaEV1PBnlkpjiY2lz6amzNj7/DlCprxbVtb89xI3rvvixKnusLIyRrvWp1DWIqNW8McPv9GoMa2Fl54ugr19aWza2kb6+sMHARg66Bpu3e0Pe4fSiI9PQ9VKe9DSpQIGD63FTCM4gljMrdQykqId5crFA8i97GBB4uvrC1tbW4wdC0RF0RyDiYlU3z5vHt3n8WNaeQQAwsPDUa1aNVZ8/f2bTl8DwJQprLggw9WrtKqYlZXm6gUBBTWDTk5O8PDQzDxgbMPnU22Dxg4hFzD//APcugUYGgKXLtFySFqyc/x4Xfz+Tad2JJ1CTaKwdAajaOlexjqDXz5HoJZ96Rxfu3XTD5s2uOPkadoRBIDPn8Jl6gV//BiOOnUtcOTQJ7ie8ITrme4oWZKWtRMKxRg98ibGjneUHqOnx4dIJIZIJGamAZyC3nS5cu+V5BgsXz6OXUcyEfXnA8znAwsX0lQtQUF0iliSvuvgQaBbN7rsJWkEC+zbRyVXDRvSVGNsc/gwfR4+nFuJzRVFobGW58+fY//+/ahevToMDDLqZb5+/Zpxx7QUXc6cAVavpssHDgB16rDqDme5cwdwc7MFj0evk74+2x4pzs8/xVHKl2fXD1U4eJAmzubxxChVSvXhp4CAWMTGpuY6Mrji3+cY/XdtWFrSjmCAfyzi49NQoyYdZQoPT0JoSCKuX/2Ow4c+4dzFXtDXz7jVP34UiJDgBHTvURUikRivX4Vg2ZKnqFy5JHr1KXxpDiTRxNrOYO7Ur18fAK2Z/PYtrfVrb5/7NYuOji5A7zJITwd27aLLXBgVDAmhgxYAd/TsyqJQZ3Dz5s1qckOLFsrHj8DIkXR59mxADblCGYHtAJLERF3Mm9cJQDG0b+8Nf/938PfP+RguB5C8eJEEwAjBwXfh6hqhcQEkz55VxM6dTQHw0KLFG1y/7gtV+fI5AgBy7AyGhibi7ZtQrFnnIt327l0YqlYrCQMDejv/8P43dHT4cHK2QlhYItateYXOXTKSDru/DoFAwMPsmQ8hFhNUqFACQ4fZo99fdtDT0+ChjVyQBCV8//4Nrq5vWA0gOXnSFR8+9AWgC13db3B1lS0VycZ3tXjx4ujWrRvEYqBrV+D1ayrT6diRppiRjAz26gWcP09HD3k8HisBJJcu0RHLMmWA/v3z3FXt8Hg8xMTQGb+EBIClWXPmYEWpqOGoS+hZ1ANI9uw5RypVokLcdu2UDxjJSkEEkFy7di3f80ZHR8usZ070KmHDhg152pCsS5IcW1jEZUsIq6iAPKtfeZ1XXpvy2Nix44I0CXtCgnx2uRRAcu4cIQIBfR8mTCDkxAnZfZQNIFm2/AUxM9uebfu+A5/IrbsBBFhHQsKTpdtHjLxF+va/Il1fufoVcXJ2JcnphDx6EkSAdeTO/UDp6/+ufElKltzGeqBHQQWQtGv3VPoeKft+MxVA4u9PPy+6uoQcPZr9+89WAAkhhNy6RUizZoSkpNDvY58+NFBDLKbbLCwy9s16n5LHDyYCSCSJnRcvznO3fM/LBL9//5Yup6Wpbo/tABK55jTm/VGQ9uvXD/3798/20KJFVYRCYPv2Zvjxg+ZpOnVKswJGunTpkm0bL8sci2kWQdlff/2V7ZgZM2bke67z52m5Iz4fmDDhhcq57bL6VVD4+9O0KXZ2tFa3JuHpaYuBA+kIysiRNCEvU9OQnz6F5zgq+OB+IEqWNACPB3h7UY3X2zehOHvGCw6Z9YLvw1GrFp0ybtykPFxaVcC6Na+kr7drZ4Po6BS8fkUFm+npIvTpeQGPHwUy0wAtufL5M32uXh3Q0eGWPvPDBzoyqK9Pv48nTwK/fgFr19Lp0MxSDrG44H1//57mOdTRYacmfXAwzcG4fj0NGCldOuM7l6Uyn0Yi18+tJAdR165d1eqMlqLLf/8Bnz6Vg5ERnQooVYptj1SnfBYhXEBAACwtLaGTRy83awdSL0vx5fh4I5no4WrVIvO1kRUjo4zcc2lpaRAKhTLblCG/c+aEvz99k+vVy9iW17XhCrGxwLFj3ZCeTmUM+/YxE6n682ccBg+4Ci/PSOjrC9DC6YTM636+Mdi9rwPWrGuFUSNuoHJlUzRzsoR1BWOcPPEVjRrTjt+nT78xdlwd6XHzFjRBp/Zn0K71KVy+1gd16lpg6/a2GDbkKqysSqBYMR0MG+GAli4VVG8EB4mIoH86uKAZlHQG7e3Z9SMnSpbM8A+g08NnzwJNm9LOT5aywgXOtm30uU+fgtcYx8TQ/MAtW9JO4ZEjgLs71VYWFniESOS1ikEIQUJCAoyNjZn2ifNICkrv379f5R/RzORUyJurdpm0GRpaHPPmdUZ6ugATJz6Hs3MAI3YlqKP93759g5GREWrVqoVOnToBAA4dOoSQkBAsXLgQAPDs2TOULVtWWiS+VKlS2LdvH/r06YO0tDS8ePECDRo0QLFMw2Kenp7g8/monqle4cePH0EIQZUqVVCsWDEIhcCnT+kIC3uEoKBAODs7w9LSMtcSUWlpadDT04NYLMbv378RHR2NGn8yy65fvx6nT5+Gu7s7AJpY/sGDByhRogRatmyJMmXKgMfjgRAi0+FLSEhAUFAQ0tLSULNmTZiZ0ZGomJgYeHl54fPnz3B0dESlSpVgniUUPC4uDj4+Ppg50xhPnlTHwoUfMHy4ISpWrAh9fX2kp6fj169feP/+Pb58+SITrJaSkpLnek7bEhMTZa6xMjYyr4eGmmPDhhEwNEzGkiW7IBDQUZLFJ/xlbES7b4eWgqdkw8ky6ynv6fswevQ52Nn5K/x+57Se9TMlr40LF3rDw6MmOnZ8Aienx9n8YPqzKo/NqlWrokePHvD1pZ2cf/8FRCIRwsLCUL58eXh6Ak2a0D8+u3cD379/x4kTJ5Rqf36+JyUlSUvjZSY+Xg+TJ/dAeroOli69i2rVIrLtkxuq3P+bNWuGihUr4t9/aZDYypU0IKlXL8DFJaPq08OHNLq5eHHg/v37+P37t8LnSkpKwpgxYxAbG4sSJUoo5a9KKDKnPGrUKBIdHU1SU1NJ7dq1iaGhIdmxY4caZq+5jVYzyJxNsTijaHvt2sF5FhxXloLQDBJCyJgxY4izs7N0/evXrzKvL126lHz8+JEQQkhYWBgBQD59+iSzz5AhQ8jIkSMZ9zc31q1bRxo0aJBte0pKitrPHRkpIi9f5r2Pv7+/zDoXNIOvXtHPa4UKsseokmRa+1CfZhAgZM0a5d9veT5T8tpwcKCfnatXmUk6r4yvOdlITk6WWQ8PD5dZ9/Ag5PXr3G3K44cqmsHVq+l1q1ePKPwbwcT9v317Qp4/z1j/8oWQKlUIEYkIiYsjpHx5QmJiVDuHRmgGJbx9+xampqa4ffs26tati9DQUOzZs0ctnVQtRYOzZ2mKFH19YMSIN5yYylEXEyZMkP7rlfxzjIiIQFhYGKKjoxEfH4/k5GQkJycjLCwMYWFhSE9Plx4fFxeHx48f49OnTyBZBvQlxwuFQri7u+Pjx48A6Aj+9+/f8fDhQ+kIozzo/8lTEx0dLfUl8yOzXyKRCK9evcKzZ8+QlpYmYycxMRGRkXQq28fHBy9evEB8fDwAoFQpvkyesODgYDx69Ag/fvyQbqtYsaJc/hYkycn02dCQXT+0yEflyoGcqAcvFPLh+adKpIMDu75k5e7duzLrTyVFiP9Qpw57NeGFQprvEKDpZNj4jahSBcg8CVqzJi2GcOsW1W/36AGYmBS8X0yikEBH8kPi5uaGrl27okSJEuBzJa27Fo0jLg6QxEssWACULZvArkNqpmbNmtizZw/69OmDDn+qqw8YMAB6enpwcnJCjRo1cOPGDfB4PDx79gwAcOvWLdSsWRPr16/Hv//+CwsLC/z+/RtVqlTB2bNnYWtrK7VTunRpvHnzBgkJCWjSpAnOnTuHxo0bIyAgAOXLl0dAQAAsLCxw5cqVHKdicmLChAl49OiRdD0tLQ3R0dFwd3dHgwYN4ObmhmHDhiElJQW6urpIT0/H7t270bNnTwDA3r17cfDgQdSpUwf37t2DSETrxEr+UAK0w/j333/jypUrsLGxQUBAANq3b4/jx4/DkIM9Lm1nULNo2/YFeDz29ZDBwcYQCoESJYAKFYDnz9n2KIOEBNl776FD1fDlCzBiBNUKvn79Go0aNWLFt6tXgcBAwMwMyCHmrkDYsSP7tokTaeCYvz8d1NB0FOoMli1bFuPHj8etW7ewaNEipKenS2/uWrQoypIlVIxbpQoteSQp9q0JSPIM2traonEuafDj4+Nz1at4eHjAwsIC9+7dg30mNfm3b9+gq6uLgwcPSre9evUKc+bMwZkzZ9CvXz8kJCSgc+fOGDVqlExH7cyZM7hz5w5cXFyk0X579+6Fo6MjeDweUlJSMGjQICxevBinJPWcsuDt7Y2IiAg4OTkBgMx+IpEIPXr0QEREBGrVqoW0tDT069cP3bt3x549e8Dj8fDPP/9g0KBB+Pnzp1RH+PnzZwwZMgRHjx6FUChE9+7dsWTJEly5cgUAsGjRInz69Anfv39H2bJlER4ejhYtWmDTpk1S/aW7uzu+f//OiTyDt29XhUGdw/ACYFg345iC0Ahm1cPJQ2HXLma9JssH2+DHj2bYubMZKlSIhqXlDsZzgiqTZ/D9ezp0VK7cb5w6dV+lPKOKnFfRnKCpqQLcuNEbV64AenrXYWUVh6CgIPj6+uZqUx4/lM0zuHEjfR47lp0/YCIRTXatpycbKNa9OzBtGs0vWKswVHBUZE45PDycbNq0ibx48YIQQsiPHz/IoUOHmJ665jxazaDqNj08COHzqQ7k9m1mbOYGVzSDZmZm5Ny5c4QQxTSDM2fOJA0bNpTZdv/+fQKABAcHE0IIad++PenVq1eOvgYHBxM3Nzdy/fp1snDhQmJubi7Tjpw0gzE5CGCmTJlCbGxsSGhoKCGEkDt37hAAMvqi5ORkYmxsTA4fPkwIIWTjxo2kVKlSRCQSSfc5ePAgsbGxIYQQkp6eTszMzIirq6vMuTZv3kzq1auXzQcuaAZ79MiuSysojWBO583vwbaGr6CvycmTJ8nff9N7y6xZzOTEZEIz2KmTJwEImTIldz/Y0gxm3nb1Kr12FStm6POY0kzmd0xWuy9eZORl/HOrUxhV7v/XrhFSujQh+vqEmJkRMny4rHbSzY2Qp0+VNi8D25pBhUYGzc3NMV0SPgPAxsYGI0aMYK5nqqVIIBbTQuhiMc0i37492x6ph5IlSzJix8fHRya6GIB0/fv37yj3p7CvZMpYglgsxogRI3Dx4kXUqVMHJUuWREREBGJjY/M9p7u7O9q2bStd37p1K44ePYrnz5/DwsJC6pe5ublMtLCBgQEqVqwIHx8f6TYrKysZOUmJEiWkusGQkBBERkZi+PDhGDlypFSKIhKJskUhs4WHhweq/SkvcOAAcPkyYFCHXZ+05M3jx/S5ZUvA25tdXyQEBND7Qd26+ezIMjdu0OfOndlPx7N+PX0eMqTg65dHRgJTpwJv3tBzHz5MRwIvXAAWL6YVspo3L1if1IlCgr93796hU6dOqFatGmxtbaUPLVoUYf9+4OVLKsjdtIltb9RH2bJlGbFTokSJbB04yXrm1E5Zc/TdunULFy5cgI+PD548eYIrV65g8mT5phmbNGkiXb5y5Qrmzp2L8+fPo2bNmjJ+xcXFZUtAGxsbK+NXXjkIJelwrly5gsTERCQlJSEpKQmpqakICgrK10+HHJT45bL8amRNgaEoAwcORMOGDTFq1ChUqRKCP5mEtHCU6GgD+PjQjgxXfqwJyUiyzuXOICHA9et0OYc8+gXK9++04wUAs2YV/Pnd3WmOxQoVaFLpv/8GnJyA27dpih2Jb4UFhUYGhw8fjsmTJ6Np06YQCApfDUst6ickBJg7ly7/+2/BJw9lCnk0g3kh6SxJRsgybw8PD5fZ1q5dO0yZMgVRUVEo9Scb97lz52BhYYHatWvneo5fv37BzMxM2iklhOBCPncwb29vpKamSu2+ffsWAwcOxM6dO9GmTRuZfdu0aYO0tDTcuHFDmpD+9evX+PnzJ9rLOdxbsmRJtGzZEkeOHJEG1UggmSKfP3z4gK9fvyIoKAheXl7o0aMH0tLSULx48Rwf169fl1k/fvw4ihcvDkNDQ5QtWxavXr2CgYEB9PX1Ua9ePQQGBkIkEkEoFEIoFKJChQrw8PBAmTJWiImJASEER48ehaurKxYsWICN/ScjICAAUVFRGW3Jol0rCK3e8sE22TSpo9Y+k1lnwy822bKlDgCgUqVI3Lx5h7E62qpoBiMijJCU1AMCgQifPp2Dp6eYk5pBP7+SCAzsCB2ddISHX4Srq4iR9svre2bN4M6dtHPaqRM7mjxbW+DuXeDrVxo9HBcH/PhBE4avXw+cOUMTYBcWFOoMCgQCjBs3Tl2+aCkCTJlCKzg0aADIOUjFSXR0dDBw4MBs2728vDB48GCZbfXq1cOsLH9tDQ0N0bhxY0yePBkuLi6oXr06xo4dCxcXFwwfPhzjxo2DiYkJpk+fjn79+mH9+vVwcXHBmDFj4O/vj61bt2LHjh15RvO3bt0aU6dOxciRI+Hs7Iw7d+7g69evebYr63T0kCFDULZsWQQFBWH58uXS7aNHj0b58uUxYcIEDB48GHPmzIG+vj7Wr1+Pnj17SiOF5WH16tVo164dunTpgs6dO0MgEMDd3R3FixfHli1bAACOjo5wdHSEq6srKlWqhMmTJyMkJAQJCQkyj8jISCQmJmbbnl/5LIFAIO04FitWTLq8ePFiJCUlAaBT1yKRCMuWLcOOHTuwfft2mc9A1k5YQWBpaZntc8iGH1zCx6cSjIyAU6fM0LDhQKxfv17mGrm6uma7Zlm35bee1WZ+x0imXmvUEGDo0L9y9SM/X5XxXZH2z55N1+vXD8GIEf1zPUbR9svr+/o/88IpKTQBNsDe70S1ajSwsUEDoHZt4OdPum5sDAgEtKNamFCoM+jk5AQPDw+FbvRatEi4dInW1RUI6FSxBlQeU4iuXbtmm6IEMqYtZ8+eDTs7O+n2W7du4dy5cwgKCpKWnevXrx/Mzc3h7u6OxMRE8Pl8FCtWDM+fP8ehQ4fw+PFjlCpVCo8fP5ZG/ALA4MGDs01LV6lSBW5ubti7dy/u3LmDVq1aYfny5TIRwk2bNs21cgkAjBo1CvHx8TJ5BYGMUbvt27ejffv2OHv2LIRCITZt2oR+/fpJp4YbN24szVkowc7ODrMlvzqgU9Kenp44duwY7t+/Dz09Pdjb2+dYuxmgORCnTJkCAHjw4AFat24t8/qnT59kpo99fHxgbW0t7ST+/v0bYrEY8fHxMh3HnDqRxYoVQ7Ikl8wfJJVcVq1ahX79+uV67bSwA58vxtmzfNby4uUEl8vQSRCLgdOn6XKzZgEA2EvHc+ECEBUFWFsDWSYMCpSZM2k6m9evadYLBwd6nbZto9PGhQmFfo6fP3+O/fv3o3r16jIlZF6/fs24Y1oKF7GxwKRJdHnuXMDRkV1/1EGPHj3Qo0ePXF+fP3++zLqpqSnGjBkjs43H46F169bZOjglSpTAtGnTMG3atBxtDxs2LMftjRo1ypYfbMmSJdJlJycnmU5lVubkk62Xz+ejZ8+e0ryCWWnWrBmaNWsms61WrVqolWXex8rKCgsWLMjzXDkRFhaWbdvnz59lOoNXrlzB7NmzYWhoCHNzc7x48UJmNOLs2bMYMmSIdD0pCZgyJRYpKSYwMkqTTl0JBAKIRCJUqlQJs2fPxvDhwxX2V4v6GTPGHZ07Ky7dUCdfvtBnLqcgefoU+PWL5kF0dAxm1Ze9e+nzmDF08KAgIYSmOXv7FujYkepOe/XKeD0oiAYmFbb/gQp1Bjdv3qwmN7QUdubOpTkFq1alkViFDbFYrHACdqFQmC3oQ1EiIyOl+fwkPHv2LM8OnjwEBgaiQgXVRgayti8yMhLGxmb4MwgqF6GhoYwF4uRG1txm27YBBw+aoFQpYPPmjFFBJycnzJ49G126dMHRo0dVDkzRoh5cXPwAaDuDinLiBH3u3RvQ08tbVqFOAgNpNDifD4waVfDnX7cOOHQIaNGC5hLcv19WG2htDfzzT8H7pW54hCg+8x0WFgYej4cyZcqowyfOExcXBxMTE8YLSuekqeCqXUVsurnRf1IALejt4qK6TUVQh93Vq1fLlEoLDw+Hvb29TIdQ0lEjhCAtLQ0JCQkoUaIEIiMjQQhBWFgY7OzsoKtrgDNnauPixVJISkrA1q2vULEiHYkKDAyErq4udHV1Ua5cOQiFQhQvXhyRkZGIjIxEUFAQbG1tUbJkSRBCEBkZiYCAAGlQgbm5OYRCIcqWLYvExESkp6cjKioKenp6SE5ORqlSpRATEwOBQICUlBSp70FBQahatSpM/tRYytrp/P79u3R6WZJqxtTUFHFxcQgNDYVYLEZYWBjs7e2ho6ODmJgYfP/+HS9fdkRwsD2aNQtF9epXpTb09fVRtmxZqU8JCQmIiIiAr6+vTIBE1iTeOSX1zrrN19cXlStXltvGgQMNcP9+VfTu/Qn/+58YHh4eqGBbFS88Y7H3zBP8jorHoj5lZWwC2bV68gRq6PCB9+/ewN7BARDo57v/9s3rVW5/QWkK1RGoklPS7ant62Lt2tEwNEzDgQPnFX7/c9qW33pWm/kdM3ZsbyQk6GP16huoUCE2Vz8U/awq42tONn78CMOKFZOQnKyLRYvuw9TUg9H2y+s7rZI0H6NGAc2aAc8Y+Kgqcv+Pjwfs7IBPn4BSpej5Bw4EfH1pRHFYGB0ZrFdPdb+yoq5+hdwokpTw69evxN7enpiamhJTU1Pi4OBAPD09mc18qAFok07LbzM1lZAaNWji0LFjmbGpKAWRdFrZRLZiMSGjRtHrU6wYIdOmHVHYRn7n5UIiW8m6szNt6/79zCTdVUf7+/enPm7enLHNpNE0mcTGOSXdVTTZc0xsPBkyZAgBQM6dOydXgmUm2q9M4mquJLvO6TwbNlwlACElSij3/ue0jcmk03Fx9PMEEJL5J4NLSacnTHhOAEJsbQkRidSTdFvez+qQIfRaLVqUbXelUOT+//AhIV27ym7r0YOQ06fp8uLFhCxbRpd//vzJiH8S2E46rdC81sSJE7FgwQJER0cjOjoaCxcuxIQJE9TSSdVSOFi/HvD0BEqXBlavZtsb7vHff8DBg3RK5PRpwMrqN9suqY3UVAEk8uLcRoe5QHQ0ff6TxQcAkJqWvUyWsvB5gNfnD6hfrw5OnjwJADKjsloUhdthnQEB9Ll48VSwMeAjD48f03zBI0fKllwraAihs0cAkEU2XSAYGdFAkcxMmUJrEKem0sTTY8fS7f7+/gXtnlpR6G2Pjo7GoEGDpOsDBgxATEwM0z5pKST4+QGSbCQbNwIMFeQoNLi7W2HRIrq8dSv7SV7Vzffv5khLo4XvuZyrXtIZVMfnVcAjOLB3Fxo1agh/f39pypu8EnNryZuYGFqwlqupPiR9BnPzRFb9yA0/P+DrVwvweADbMVHh4SURFATo69OEzwVNo0YZtZAltG4N/P4N/O9/NJhEImH+9etXwTuoRhTSDNavXx/Hjh2TViHw9vbGoEGD8PbtW7mOb9++PUJDQ8Hn82FsbIxt27ahTp06cHd3x/Tp0xEfHw8+n4+NGzdKoymTkpIwevRouLu7g8/nY/Xq1ejduzcAKtqfNm0abty4AR6Ph5kzZ2LixInS861YsQKHDh0CAAwaNEgmT9qBAwewevVqiMVitGnTBjt37pRbzK/VDOZvkxBazujWLfpluncv/9JGmtT+rJpBRbU8YWHFsWBBe6Sk6KNjR28MG/YOgOKaIXVo5uTZRxkd1oEDNrh/vymcnPwxadILRjRT6mj/9Old8fu3MZYuvYtq1SIAyKezy08jJ+ABf48egSOSBGqZcHV1Rc++A7Jtz6qRy5pkmon257SNCc2cMhrK/MhJM6j/YxViY0ugfv1fmDXrCWfaL1m/etUOrq514ejohXnzPPL0g43v6qVLNXHmjCPs7UOxcOFDxtuviO/Hjlng5s3WaNuWJnxmAibu/1u2ANOnA8+fZ3RSmf5d0SjN4M2bN4m5uTlp164dad++PSlTpgy5ffu23MdHR0dLly9evEjq1q1LxGIxsbS0JA8ePCCEEOLp6UmsrKxIUlISIYSQZcuWkeHDhxNCCPHz8yMWFhYkKiqKEELIkSNHSOvWrYlQKCSRkZGkYsWKUg3j48ePSc2aNUlCQgJJSUkh9evXJ7du3ZLaKVeuHAkNDSVisZh069aN7N69W+52aDWD+ds8fZrqPvT0CPH2ZsamsnBNM5iUREidOvT6ODkRkpYmv11N1gxWq/ZbqhfM7RgutN/EhL43Xl4Z25jQyKUJxaRLly4EABEIBAR0fpMAIKdOnZJLI6eO9stzTZTRjKlDQ5jTdQcIsbMj5M/PAmfaL1kfOpR+nvr1+5CvHwX9XRWLCalZk/p38KDyNuU5Rh7fK1X6SQBCtm/PtqvSKHr//9P1kCE+npBNm+j1UtZufmiUZrBjx474+vUrpk6dismTJ+PLly9yl50CaLShhNjYWPD5fERGRiIqKgqtWrUCQBPSmpqa4ubNmwCA06dPY9KfBHWVKlVCixYtcPnyZelr48ePh0AgQKlSpdC/f39pQt3Tp09jxIgRKFasGPT19TFq1Chp2Ztz586hV69esLCwAI/Hw/jx47OVydGiPLGx9F8UACxYQDO5a6EQAkyYALx/D5QokYJTp2iUWmEnMRHw9aUivD9fdU4iFNLPLwBkydijMiLCw8XLV3H37j00aNAAAKTR54qmJdKSQYkSKbhxg7sylE+f6LO1dQyrfuTEp0+03JqOjkgmlx4b/P4N+PvTUcLu3dnxQSikI39jxmTIRQCgeHH6m1aY1RwK3YHc3d1hYGCArl27olu3btDT08ObN28UOuGwYcNgbW2Nf/75B0eOHIG5uTksLCxw/vx5AMCrV6/g4+MjFWcGBgbKTMfZ2NggMDBQba/lRGpqKuLi4mQeWnJnyRJag7hqVSBLnuUiz549tMwSnw9MmfIcVlZse1QwPHsGiEQCWFsDlSqx7U3uZCo1jEz/XRlDRHgwMSmBPn364Pr169JqTsWLGzN/siLChAkvOPuZEgppAB3Azc6gpFS5o2OIWj7vinD1KkAID/Xq0Vx+bLBjB/DhA006LRKx4wNbKKQZrFevHtzd3SH4kxJcKBSicePGcmsGM3PkyBGcPn0aN27cwMePHzFv3jyEhYXBwcEBv379Qs+ePTFlyhQYGxvDz88PpUuXBkArIhgbG+N///sfHBwccPDgQTT8U3dox44dePv2LQ4ePIhu3bph2LBh0nJR169fx4YNG/DgwQNMmTIFFSpUkFZX+PLlC7p16wY/P78cfV26dCmWLVuWbfv+/fthZGSkcNtzIydNBVft5mYzMNAECxd2hFjMx/z5D1G7dqjKNlVFHXa/ffsm896npKTIVOXJaZuvb0ns2zccIpEOOnd+jKZNn2Q7JjExUSaZcVYb+a3ntE1Rm/Lsk5/NrNtu3nTGgwdNUL/+FwwYcDPXY9huf0iIOTZuHAFDwyT8++/OXI9ZfMIf+ZGTRk6HD3Tu2B4hISF46/EBPB4PPl6eqFrdDuIc/ptn1cgt6lOW8fbntE3R9z+nfbJeI3k0gzlpAjOzqE9ZCIUlsXPnQISHl0LFikEYPfoQDA2Z+6zKsy5P+1NSUpCQYIE1a/6Gjk46Fi9eAyOjvN+7gv6ubtw4DCEhZdCr11U0a+bNePvl9Z0QYNMm6kv//h/Qs2feNdQVQd77f3S0AWbP7oLkZD2MHv0abdr4MmJXXpKSkjBmzBjN0Aw6Ojpm21a7dm2l56gNDAxIREREtu12dnbk3r17hBBCatasSV6/fi19rV+/fuTQoUOEEEI6d+5Mzpw5I31tzpw5ZMmSJYQQQiZOnEjWrl0rfW3Hjh1S7eHatWvJxIkTpa9dv36dtGzZMlc/U1JSSGxsrPTx8+dPrWYwB5tiMSEtW1L9Se/ezNhkAi5oBqOiCCldOp4AhPTsSa8VVzVz8uyjaPubNs1fl6SMr0y3/8wZ6mfFilF5HqOshvDxYzcCgJw9e46kKKGRK+yawfyu6YEDZ0iDBvQ9srYm5OdP9eXEVLX9J0+eJHfvEqmmUZ73riC/q97e1DcdHUL27j2nkk15jsnL9+vXJRrzVBIZmW03lZD3/i/Jb9iwIc21yJRdedEozaCenh58fTN6y9+/f4eunIKnuLg4BAdn1Du8ePEizMzMUKpUKYSGZowe7du3D8WKFZNGE/fr1w87duwAAPz48QOPHz9G9z+Cgn79+mHPnj0QiUSIiorC6dOnpcXt+/XrhyNHjiAxMRGpqak4ePAgBgyg0Xp9+vTBxYsXERYWBkIIdu/eLX0tJ/T19VGiRAmZh5bsnD5NywgZGGQPzy/KiMXAiBFAeHhx2NrSUkeFWXuSlYQEwN2dLksq0XCVnX8GA2vVyl7zWFV0+MDSpUvg6OiI7j17cTw7HjfZtKk53ryhes47d8B5mcWPH/SZi9PYZ8/S5zZtgOLF01jzgxBg5Uq63KTJB5n8ngWFmxtw/Di9L+/YwW6uRbZQqDDqkiVL4OzsjC5duoAQglu3buHAgQNyHRsbG4s+ffogOTkZfD4fpUuXxrVr18Dj8bBnzx6cOHEChBDUqFEDFy9elObdmjNnDkaNGoUqVaqAz+djx44dKPXn0zJ06FC4u7uj2p8IhTlz5qBGjRoAABcXF/Tv319asH7AgAHo2LEjAMDW1hbLli2Dk5MTxGIxWrdujdGjRytyKbRkISEBmD2bLi9cCGSSZBZ5Vq8GrlyhIu2zZwWsa3MKGjc3qp0qXToBlSoVZ9udXHn9Gnj0CNDRATp18gZgx6h9t0cP8fDhQ1y8eCnHKWEt+fP5c1kUKwbcuEHLhnEdTegM/lFSscaTJzRli74+0LLlGwANC/T8QiEw+Y864e+/gYYFe3rOoHBt4m/fvuHunwRAHTp0yJZrqCigzTOY3eb+/fSLVKkSjU7LIg1RyiZTsJlnMCamLlatagVC+Ojb9zZ6947K8xgu5NmTZx9FcrcdO1YXN2/aoVGjj5g+/Qtn2797d2O4udmiefMf6N79PKN59pZP6Y4rh1cgMTERY+ZsxMw1ZyEP+eUV5HKewfzyDsrD8sE2KFfOCkuXtsX37+bQ0RFi9uwnMlpkdeTEZKr9x44NxseP5TBkyDs4Oj7I970rqO8qUANz5nQBny/Gzp0XER//Q+3vf26+u7oOwLt3VmjT5hvatj2P+QxHHeZ3/5fkECxVCvDxkT+LQJHOM5iamipd9vX1JVevXiVCoZDJaWuNQJtnMLvNbt2o3mL5cuZsMgVbmsGdOy8QCwt6XUaOVI9mSBM0g3Z29BpMm/Yk32PYan9yMq1tCxDy5AmzmjnrVvPI1WvXCQBy4eIlUrn9Irnr+xZE++Wxy4RmTJn6xidPniTr1hFp7eG1a68pfF622r9793kiEFDfvb25pRmcM4f61b27fDbUpRnctOky4fEyrlFOdlUlr/t/aGjG937PHubsKoNGaQadnJwQHx+PyMhING/eHP/99580B6CWoktyMq0wAgDdurHrC1cQiYDt25shLAywt6e1LYsi/v6AlxcgEAD29vJHlhc0N24AcXE0pUWzZszanjG8Lf5btRKNGjVCUKIxgn7HMHuCQkxQkDH++Ycub9wIWFlpTlqvV6+sIRIBDRpwK9eqUMjD0aN0eeRIdn25e7caCAE6dGDnGq1fT7/3DRoARV0pplBnUCgUwtjYGNevX8fw4cPx7NkzPH/+XF2+adEQ7t+nHUJra6B2bba94Qb//kvrfRYrRrU5DGYg0ihu3aLPTZsCxYqls+tMHpw8SZ8HDGBWPF7WvAQql0rB8+fPsXDRP9hw+B5zxosAe/c2Rmoq7SyMGsW2N4rx7JkNAGDQIHb9yMqHD+UQFgaULs1uPfTERODRI1qkfMqUgj9/dDSwezddXraM/mEtyih020tNTQUAPHr0SBrtq82cr+XiRfrcrVvRipLNjUePAEkZ7D17NEPori7+FBLCn9gtThIfr4dr1+gy0z/cM4e3xcoVy9G0aVP4xxohNEJzRra4wLdvpVGiBLBvn2bdW378AHx8SoPHA/4kuOAMjx5Rrd+QIexWPzp+HEhK0kPlykCnTgV//v37aeCjgwM75+caCgWQTJ48GQ8ePIBQKMSXL1+QkJCAdu3aKVyFRNPRBpBk2IyPB8qVk/zLUy11iCa1P7cAkqQkXcyb1wmRkcXQsOEnzJjxOds+ua0DhSuAxN8/FMuWTUFqqg5WrboFXd3PnGz/kSPWuH3bGTY2UVi58jZ4PGYE9LGxsShfvjx69OiBW7duwdfXFyUz1UzjSvuVOQ8TAQT5tf/AgQa4f78qOnXywtChHkr7zkb7z52zx4ULDrC3D8XChQ+Var+8xyjia3i4EaZP7wZC+Fi37josLePU0v781gkB5s3rhF+/TDFkyDt07kwTXgcEBBRYAEm9eoCHBx0dHDeOObvKxYMagQAAtGJJREFUolEBJGKxmHh4eEgFjuHh4eTdu3dqkDJyG20ASYbN/fup+LZqVdki3qrYZJqCDCCRJC61tSXk4MEzOe6Tl1+FKYBk3rwHBCCkfPmck2xzof3JyYSYmCQRgJATJ+Q/jzwCei8vL1KvXj3SvHlzIhaLOdl+Zc/DRABBfu2vXZt+l86fV833gm6/SESIjQ1R+DMlj6+qtn/uXOpXmzaK2WD6/b9/n/qhr59GYmLytqsqOV0zHx96foGAkPBw5uyqAtsBJHLlGUxNTYW+vj6Sk5OlOf2SkpJgZGSE6tWrq7GrqoXr7N9Pn8eM0axpHHVw5gyd+uDz6bO/v5Btl1jl/fvyAIDOnbn72Th5EoiNNYSVFfP51r5+/Yp3797h4cOH0rypWuQjNhb49IkuN23Kri+K8vQpDZwyNExHz54szsNmIT4e2LuXLrOh0cuMJLl78+b+MDGpWuDnP32aPrdtC5ibF/jpOYlcgr+mf76NxYsXh7GxcbZnLUWTDx+Aly9pkt5hw9j2hl2iow0xfjxdXrhQ837AmIYQwMODdgbZFKnnx5499HnKFGb1U2KxGMuWLUOrVq3g4uLCnOEiwtOn9DNUpkw8ypVj2xvFOHKEPjdq9JNTgWP79gExMUDZsnGsZn0IDQUuX6bLbdt+K/DzEwKcOkWXuabnZBOFk05r0WoGJTaPHRuImzfpF0ry5VLVpqa0P7NmkBBg+fLG8PKyRaVKkVi27C50dIjKmil5juGqZvDXrxKYO7cLdHRE2Lv3AgwMhJxrv79/SSxc2BECgQjbt1+BiUmK0u3PvE+xYsWQlpaGfv364cGDB4iKikJaWhrn2p/XMWxrBrdvb4rnz23QtOl7TJniqZLvBdl+I6PKmDatO4RCASZMcEXz5vKfQx5flW1/uXJ2mD69GxIS9LMlv2ey/fLYuHSpJs6ccUS1auH4++8jMvsUhGbwxQuaPsrAAAgJgdIVoYqkZrBNmzZkxYoV5Pnz50UyyXRWtJpBQhYsuC8tcv7tGzM2Nan9mbUtEt2kvj4hX77kfl6uasbUocP67z96TTp1Uuy8Bdn+ceOoj02a+OdrQzHNmIjY29uTtm3bKuy7VjO4jkRG0u8SQMiKFTdV9r0g2z97NvW7WTNCTpxQ//dfXl8XLaJ+Va9OyLFjrgrbYOr9FwoJqVCB+nLsmHx2VSXrOYYNo+cfMYJZu6rCtmZQrmniESNG4MePHxg6dChMTU3RsWNHrFmzBq9fv4ZYLFZvb1UL5xCLgZMn6wIAJk4EqlRh2SEW+fkTmDmTLq9YAdSsya4/XOHqVfrcvTu7fuRGfDxw4gRdbtv2O6O2z507h8+fP+MfSbZkLQpx4gSQmgo4OgKVKkWz7Y7cJCToSfPWLVzIHZ1sbGwxbNxIl//7DxAI2JsMvHEDCAykJd/69i3480dFZegFJbIeLRS5OoNDhgzB/v378f37d3h6emLw4MHw9vZG//79UapUKXX7qIVjHD8OBASUhIkJsHgx296wh0hEA2fi4oAqVSIwYwbbHnGD37/pVAwAdO3Kri+5ceIEzTFWvTpQo8ZvxuyKRCIsXboUHTt21N4blUAspto2QPOC0u7cqYqEBJp4v3Nntr3J4O7dZkhOplOjPXuy68uuXfR55Ejl6terypEj9I9GnTpAo0YFf34uo5BmUCgU4tWrV3j48CEePnwIf39/NGrUCK6urur0kXMUZc1gcjL9Af35E1izBpg7lxGzADSj/RJWr16Nx4974dat6tDVFWH69COoW9dQZp+iqhl8+NAW+/Y1hqVlKNate8jJ9u/dOxzfvpXG4MHvUKfOA5XbDwCJiYkwMDDA0KFD8fTpU7x9+xalS5fmZPu5qhk8etQct261g76+ENu2XUJsrL/a9a1MtD8tTYBJk7oiMdEIkyc/Q7NmgQXy/c9vn5CQ4pgzpwvEYj7+97+7sLOLYO39f/cuBevXjwSPR7BhwzWULZuQbR91agYJoQmmv3yhnVJVRwaLpGZw1apVpF27dqRatWpk8ODBZO/evcTb21u9E9gcpihrBletonoLc/MEkpzMmFlCiGa0X0K3bjSHHkDIqVPM6JAIKRyawa5d6XXp2/eDwuctiPZv3XqJAITweIQEBTHTfkII8fHxIdWqVSNdu3ZV2veirBn08CBEIEgnACG7d8t3jDK+qqP9e/bQz3zFioSkpytnUx5fFfV98GDqV+fOytvIaV2Z979FC18CENK7t2J2VUVyDnd3ei0MDIhMbkNV7TIF25pBufIM/vvvv6hbty7mzZuHli1bZvtHoKVoEB5ONScA0L//BxgYNGPXIZY4dw64ds0FALBuHY2mLmKD47kSHw/cvUuXGzb8BYB7xapfvaoAAGjeHChfnjm7z58/h4+PD05KCh1rkZukJGDgQEAk0kGPHsDYsWx7JD9iMaSavOnTaaotLuDllVFzW1Ieky1+/syo1TxvHjs+HD5Mn3v1AkxM2PGBy8j1sY2NjcWLFy/w6NEjjBkzBr9+/ULjxo3h4uKCli1bomrVgk8aqaXgWbaM/tjXqwc0axYAoOh1Bl+9AoYOBQjhYfJkYNYstj3iFrduUU1OlSqAlVUs2+7kyIsXtDPIZI4xoVCI5cuXo0ePHqhfvz5zhosIM2fSzkuJEgnYv7+4RmkFb9wAvL0BQ8M0jBqlx7Y7UlasoHMXtWp9Q7167P5Gb9oEiER8uLiwo9VLTc34wz5iRMGfXxOQK4BET08PLVu2xJIlS/Dw4UN8+fIFHTp0wLp162BnZ6duH7VwAB+fjAS969fTKhtFjbg4oH9/ICUFqFnzOzZv1iyBe0Fw8SJ97tWLm9cmMBDw8zMDnw/06cOc3WPHjsHX1xdLly5lzmgRYd8+em/h8YABA25oXEWIDRvoc5s2vmBD6pUT3t4ZnZ+2bV+w6ktEREblE7ZGBa9do5HElpZAmzbs+MB15A4gCQ4OxqNHj/Dw4UM8evQIISEhcHJyQqtWrRgXfHIdidBz//79MGIwxXxOwl6u2N20yRnu7taoWzcIc+a4qcVXLrcfAPbubYRHjyqjdOkE/P33dpQsmTGwnpKSAoMs4XFZt+W3DtAghGLFiqlkI+s2RW3Ks09ONgWCYli2bBJSU/UwZcpxlCnjz7n2P39eBxcvtkWlSr8wceIpRtrfsWNHdO/eHfXq1cPkyZPx5s0bpX1n4/1X5jxZbSpjIyUlBYGB1XDgQF+IxXy0a/cMTk73CuSzylT7Q0LMsXHjCPD5YsycuR0WFmlK25THV3l9P3++D96/r4GaNb+jf/8TrL7/N28648GDJihfPgTTp5+Q+ZOY9ZikpCTGZxqDgoJw8uRAeHhYonv3rxgw4ANjdpn8vUpKSsKYMWO4HUBStWpVYmRkRFq3bk2WL19Onj59StIlKtkiSFELIHFzo8JbPj8jqbI6fOVq+wkh5No1Ig06cHNTjyidEM0OILl8mV4ja2tCxGJutr9TJ+rj6tWK2cjL5r59+wiPxyPu7u4q+16UAkjWrr1GTEzo+zF4MP3MsJEgXRnfJTbHjqX+9+mjegCNPL7K4/vatdcIj0f98vBg9/2PjCTE2Jj6MmPG43yPUUcAya5dF4hAQH3w9GTObpEMINm3bx+aNm0KPT3u6CG0FAyEAHPm0OUxY4pmUuXISNp2gGqbmjen2kEtspw7R5/79uXmFDEhwPPndLldO2ZspqWlYfny5ejXrx/4RVE7oSS/fwPr1rVEbCzg7AwcOMDNz0xeREfTnKsArW0dHMyuPxLOn3cAIVQGUacOcO8ee75s2UJ15rVrA/XrB7Hiw9OnFSESAU2aAFpVW+7Idfdq2bKltiNYRLl8mXZ8ihWjASRFkalTaXH1GjWoKFtLdtLT+bhyhS6zUVlAHoKDgdhYgM8Xo1YtZmwePHgQP3/+xJIlS/D9O7OVTAorIhEwYAAQHl4ctrZUZ6qvz7ZXinPgAI2CdnAAWrRg2xvKu3c0Wp7HA9iWryYk6GHLFrq8eDE7OnNCADc3WwDA8OEFf35NQqGk01ooRSnptLMz8OwZsGABsGoVMzZzg4vtv3yZZu3n84GXL4GGDen21atXo2LFitL9mEjkCmhu0uk7dwxw+HAvlCqVhK1bL4PP5177v30zw5Il7VGyZCx27LihcvsHDBiAVq1aoUWLFpgxYwYePXqkctLlopB0+sqVGjh1qg709NKwcuUdWFrGK91+ZXxlov3e3j+wbdt0REUZ4e+/X6FVKz9Gkm6r0n5CgOXL28DLqwyaNfPH5Mkv1NZ+ed7/PXsq4/HjRrC2jsF//91ESEj+52U66fS7d0D9+vTPRkgIULIkY6aLZtJpLbIUFc3gy5dUZ6GrS0hwMDM284Jr7Y+IIMTCgl6DuXNlX9NqBmVtNmv2448uSDXf1dn+Cxfoe1mlSrjCNrKuHz16lGzbto3w+Xzi5eWllK9cef+VOY+ymsE3bwjR0aHvw9ixL7PZ0BTN4F9/XScAIWXLEpKSopwNpjWDly7R66qnl04CA+W3qYyv+b3/P38SoqtLE4hfuyb/eZnWDE6dSq/JX38xapYQUkQ1g1qKJpJEqoMGAeXKsesLG0yZAoSFUZ1kUZ0il4ekJODtW/rvnsncfUwTEkKfTU2TVbZVv359tGvXDkOGDEH16tVVtlcUSEkRYNAgQCikUoKWLf0ANGbbLYUhBHj8mE4RTJ/OjSlukQhYuJAud+zoDWtrhnQQSrJ0KZCeroPmzdmr05yWRmuQA9opYnlQqDPo7++PNWvWwNfXF0KhULr9wYMHjDumhV38/TMCAmbOZNUVVrh0iebpEgho5no2iqprCjduAKmpurCx4Xbx99BQ+mxqmqKyrbt37yIsLAyLFy9W2VZR4dixevDxobne9uwBbt9m2yPlOH8eCA0tjeLFgXHj2PaGcvw48PUrnQbt1s0TAHudwa9fgUOH6PKaNewFBt24QYP/TE2T0K4dcyngCisKaQYbNWqENm3aoGnTphAIBNLtXbp0UYtzXKUoaAZnzAA2bwbats0oL6aqzfzgSvuTkmiwSGAgMH9+Rgm+zGg1gxk2N292wuvXFdC1qycGDXrP2fYfPlwfd+5UQ5s2LzB6tL/S7W/UqBGcnJzQuXNnjB8/Hr6+vkr5ypX3X5nzKKoZfPvWEhs2tACPR7Bw4UPUqhXGuGauINrv718Sy5a1QWqqLrp3/4IBAz4qbCMvP5Rpf0BAKDZsGIuIiGIYOPA96tW7x9r7X768JVavdsGnT+Vgb++DhQvfKnReJjWDU6YA27cDHTp449Yt5kfvi7Rm0MHBQT2T1RpGYdcMRkcTUrw41Vrcvs2MTXngSvsXL6Ztr1CBkMTEnPfRagapzdhYQvT1M3Kaqeq7Ots/Zgz1s3//9wrbyLy+fv16oqOjQ3x9fVXylSvvvzLnUUQzmJBAtXUAIbNn5+0HlzWDAQGElCsn0Z36k9RUxW3k54cy7R869A0BCClfnpCkJHbf/wzdIiGbNl1R+LxMagYbNaK+TJ78lDGbmSlsmkGFgr3t7e3x69cv9fRKtXCGvXuBhASaMoGpfGyagq8vsHYtXd64EWCwwEyh5OJFWvezfPlYODqy7U3epPyZHdbVFSltIzExEWvWrMHIkSNha2vLkGeFm02b6BR9mTLxGpuaKSlJF126UN2pvT0wbNhlcCHbWnw8cPkynRJeuhQwNGTPl7Q0vlRSNGsWYGGRwJovqanA+/d0uXLlSNb80CQU0gxGRUWhdu3acHZ2likhc+bMGcYd08IOaWmQ5oaaPVvzEsGqglgM/P03vZG0bQv07s22R9xHUv+0WbMA8Hi12XUmH5L/xI3o6SnfGdyxYwdiYmIwefJkhrwq3ISHZ/y56t//I/T1ndh1SAl+/gTWr28BLy8aSHfjBnD6dFr+BxYAmzYBcXEGqFoVGDmSXV9u3rSDnx9QvjwNZrl6lT1fPn6kv2VmZkCZMonsOaJBKKQZPHLkSI7bhxexUJ3CrBk8cQIYMoR+oX/8QK7/fgujZnDzZqqVNDKiN5MskhgZtJpBX5QuXRMTJ/aEWMzH3Ln7UadOMU63X6Jt7N79AQYMCFO4/b169ULjxo3Rr18/dOzYEUlJSSq1lyvvvzLnkVcz+PhxF1y7VgM2NlGYMOEgrK3Vl2dPHe338THD+vUtkZCgDwODdPzvf/dhYxOtUp5FptqfkiLAlCk9kJiojylTnqFp00DG25/belab4eHFMHt2J6Sn62LChBdo3txfqfeOKc3g0aM0grhNG2D0aPZ/V+VBozSDWiiFVTMoFhNSpw7VWSxfzoxNRWCz/R8/Zmjfdu3K36ZWM7iO7N5Nr1f9+prR/nnzqL/t2nkrbOPevXtk5cqVRE9PjwQGBpL169fnewzX2q/IMUxoBnftOk+MjIg015y68+zJ66u8Nq5cIcTQkPpvYxNJ3r3L3aY8fjDd/p07qW8WFnFEKMz9GHW//2IxIV27Ul9atKDr8tiQx1dl2baN+tOvH/u/q/LCtmZQrmniLVu2YNq0aZg7d26Or6+VzANo0Wju3aM6CyMjYOJEtr0pOFJSgMGD6fRwly7cSRfBdU6fps/9+7Prh7xI0gEGByv+r7tChQro168fxo4dC2traxBt4aZ8uXatBpKSaLqhzp2BU6fY9kh+Hj60xYEDVDrSuTPQt+891K3LnQ86IcDWrXS5fXsfCAT1WfPl0iXg2jVAIBBh924BJ6RF8X+K2hQvzq4fmoRcASQSfWCxYsVyfGgpHEj69H//DZQqxa4vBck//wCfPgGlS9N6o1y4mXGduDgjPH5MlzWlMygpUh8SYqzwsXFxcTAzM2O0VFZhJjQUuHu3KgAa2KAp3yla0g3Yt68xxGJgxAja2TEwUF5nqg7u3gW8vABjY0nybnaIi6MpXACga1cv1KjBmisySDqDxop/1Yssco0MjvszVLJkyRK1OqOFPd69oyODAgHVzRUVHjwANmygywcOABYW7PqjKXz6VB1iMR31sbEBXrxg26P8qVaNPkdFFUNysmKRl3FxcfDx8QFPU3o1LLNjB5CWpoPGjYGOHdn2Rn6WLgX+/ZcuL1pEO4ZcessJoQmmJfFLI0cCRkbCvA9SIwsWAEFBQJUqQK9eX8BmsuvMhIfTZ21nUH4UCiDRQimMASQDBtBpv8GD6c2GCZuKUtDtj44GatcGfv0Cxo6lVRHkpagHkMyb54yfP60xdOg7dOrkrRHtF4uBIUPo52DXrgswMUlVuv1cCCBQtP2KHKNK+8ViYNq07oiMLJZnYAPXAkjevWsLV9c6AIBu3R5i4MBQpdqv7Hp+vsbG6mPHDnt8/kz/1djaRmLu3MeIj/crsKTbmW2mpjbFihVtAACLFj2Aqek7lT+rTAWQVKsGfPsGXL4MJCZqA0jkghWlooZT2AJIfH0J4fOp4PbDB2ZsKkNBtl8sJqR/f9rmqlVpYlxFKMoBJH5+9LrxeIQEBdFtDx48yGbj8uXLCp83q68XLlyQWQ8JCVHY98w2DQyo7z9+5G3DI0sG7az7bNq0KdsxV67knWSXq++/MufJK4Di2DF6jY2MUklysmK+sxVAMny4O6HjboSsWsVMAA1T779QSMj27YSYmlL/dHQIWbGCkPR0+eyq4/1fuXIzsbWl/owbp5wNeXxVBsn9SUeHJsXXBpDIh0JJp7UUTjZupELpjh3pSFlR4Phx4MwZQEeHptPRSl9lyWs69M0bKhZv1YqmIAKAVq1aZduve/fuKvvRtWtXmfWyZcuqZE+SRDxzVpicdM916tTJ006PHj2ybWvTpo0qrhUKkpLo1CFAa+RqQk3vgweBI0caAKBTwxL/uYCPjxkaNqTTwjExQMWK0XB3p37qKJQlmFlu3XKCnx9gbZ2hNecKkvKpTZsCbAywaSosfpy0cIHwcHozBIBcgsULHT9+AJMm0eWlS4GGDVl1h5N06tRJZj3zNFO/foCu7gPUqKH+8jS6urqM2jMyAqKiZDuD1tbWCtupVKlSDra15WoWL6ayi4oVgU6dvABwuyzNiRPAmDF0efp0qhFkG5EIuHMH2L0buHKlPQDA1BRYuRIwMbmNOnUGsOrfq1fA06c0ennvXu51uC5epM/t27Prh6ahkmawbdu2MDIywvz589GsWTMm/eI0krn9/fv3M/oDkJOmQt12z551wMWL9rC1jcTy5XfkFkurw9eCaL9IxMPy5W3g41Ma1aqF43//uw8+X/GvwLdv32Te+5SUFJmqPDlty28doOXOMo9UKWMj6zZFbTo7O6NJkyZIS8s96TgAvH79Go0aNQIAeHp6Yu/evdLXypQpg2bNmqFly5Y5HisSiZCcnAxCCOLi4mBubg4+n4+oqCj4+vrK3E/Onj2L+fPnIzAwELNmzcLq1aul7Tp27BgcHR1hbW0NHR0dpKWlgcfjQVdXV2YUMSUlBREREVi71gw7dhhi5kxXdOlSDjVr1kSZMmWk+9WvXx/Dhw/H1KlTAQBJSUkQi8UwNDREWloaQkNDkZSUhFq1qFB+5cqVuHv3Lh49eiS9Jm5ubihVqhTq1q2LcuXKSUdZxWIx+Hy+1K63tzd0dXVRs2ZNmJmZgcfjITw8HN7e3vDy8kLdunVhaWkp01lNTU1FTEwMfHx88O7dO8THx6NSpUqoU6cOKlSoAENDQyQnJ+Pnz594//49goOD833/c9qW33pWmwDw4kU1XLhAR4OHD7+EKlU+q/3zr4yvktc9POzg6toZhPDRsOFb9Ov3UHr/U6b9il7DrOsxMcXx7Fl1vH9fHzExtIfF4xE0aPAZnTu7oXjxZEbbr4zvhAA7dgxEQIAl6tf/ggEDbird3py2JSUloWrVqlCWL18ssHJla/D5YqxdewPly8ez8ruqDElJSRgzZoxmagZfv35Nzp49S6ZNm8bElLXGUFg0g79/E2JsTPUVZ88yY1MVCqL9K1bQ9hobU22JshR2zSAhVFPp4EDIggWEPH1KiFBIiI8PIVu3Zt/35s2bBAAZPXo0mTx5MunWrRvh8Xhk/PjxOdqWF6FQSIyNjcn27dtJdHQ0Sc4sQlOSHz8ISU3N+TVHR0eyefNmuW0tX76cODs7q+yTsvz69SvffQpCM/j8OSE6OkICEPLPP8rZlMdXpjSDp05l6KTHjCHk+HHmk27Lsy4W0+9W376ECAREqlssWZKQadMIWbfuWp42lPFVlff/yhXqn65uGgkOVs6GIr4qQno6vV8BhEyenPd5mUCrGcxEw4YN0bdvX2zevJmJfqmWAmblSpqPqV69olGH192dTgsDNPVFDjN9WjJRogS9RmFhQJ8+NO3OX38Bjx/TSOycWLlyJbZt24YrV65gzZo12LNnD4KCgiAWi5GamgpCCGJiYuDh4YGUlBTpcb6+vvj48SOEwow0GSKRCEFBQYiPj4ezszMMDQ2hp6cHoVCI9PR0mfMKhUKkpWXUi01PT0d6ejoIIfD19YWfnx/EYjEAmgpHMuIpEonw8eNH/Pr1K9fr8Pv3b7x79w4/f/5U8AoCaWlpSE1NzfaQ+AIAhBB4enri69evMtuztis4OBienp4ybc88MhEdHQ0PDw9ERkbK2GjcuLHCfivCjx9Ar16AUChAr17AsmVqPZ3KvHxpjcGDqU561CiaRYBfwOr5tDTg6dOKaNQIcHYGzp2j08O2tj9x/DgQHEzLY1paxhWsY3kgEtGawwDg7PwO5cqx609W9u2j+WJLluT+Z5CLKPQVmDt3brbHypUr8fDhQ3X5p0VN+PkBO3fS5TVrCv5mWNAkJtK0OUIhTZI8ZAjbHnGf7duBhARg4ED643TrFhARQZPdlilDUzfkRbNmzUAIgZ+fH9zc3GBgYIAtW7agXLlycHFxwdevX+Hl5YXGjRvD3t4eLi4uqFSpEs6dOwcAuHv3rnQ61snJCWXKlMH79+8xf/589OrVS+ZcO3bsQMNM4s/BgwdjxIgRaNu2LRo0aIDq1avD2dkZcXEZP67v379HrVq14OTkhNq1a2PkyJHZOmPOzs6wtbVFnz59ULVqVTg7OyM4OFjua9ilSxeYmJhIH8bGxjAwMMDXr18BAC9evECtWrXQsGFDNGnSBDVq1JBOOQPAunXr4OTkhHHjxqF69eqoX78+qlWrBh8fH+k+ycnJ+Pvvv2FlZYVu3brB2toa48aNk3asmzRpIre/ivL1K9CiBf3DUKFCNI4e5fa95OxZYPv2ZhCJaELpffsK3l8PD1r3fOfOZnjzBtDXB0aPpvXQJ0w4jcGDwcnAm1OngM+fqX7RxeU12+7IEB1N9aoAzRNZlIomMIVCASShoaF4+vQpevbsCQC4fPkynJ2dcebMGfTv3x+LFi1Sh49a1MA//wDp6VRk27Yt296on5kzaefF0pIKs1VNJCsUCuHq6ipdDwoKklnPaVt+6wDV0ChyjDznVdQmANSrVw/Vq1fH6dNAhw7A4cM0sSwh9EcrLAzIL7D3/v37EAgEqFatGjw9PQEA9+7dQ0hICExMTCAUClG/fn1YWloiIiICRkZGWLFiBQYPHoxGjRqhY8eO8Pb2hqWlJd6+fYvqf+rJnTx5Mu8T/+H06dM4d+4cevTogdDQUNSrVw/79u3DrFmzQAjBoEGD4ODggI8fP0JHRwfTp0/Hp0+fZGysXLkSTk5O0NHRQUxMDPr27YslS5Zg3759OZ7T09MTcXFx0tG4u5LQRtBRyH79+iEwMBC2trZITU1Fr1690LFjR3z48AF8Ph+TJk1C79698fPnT6nO6+3bt+jWrRtiY2ORkpKCdu3a4d9//8XxPwlBFyxYgGfPnsHT0xMVKlTAjx8/0KJFC+zZsweTJk2Crq4uXrx4AX9/fwDMfFZTUlKwZMldbNjQAomJ+rC0jMWwYadx9aqJ0jYldlX9vOf2+X/+vCJ27GgCQvho0cIPbdu+xunTROn2K3MNd+68iMWLOyAqygjFiyeiUydftGnzHSVKpOLzZ/W2XxUbQUFBOHQoDIAF2rb9CD4/lpH7XdZtmWcGFGHpUiAyEqhZExg/XikTWhSZU27Tpg2Jjo6WrkdHR5MuXbqQuLg4Ymdnx+DsNbfRdM3gmzcZeeKypFNT2iYTqKv9M2c+lrb3/n1mbBZ2zeDHjx+ly56ehNSuTcimTYSMGpVtV0JIhmawX79+ZOjQoaRFixYEAJk9ezYhhJCHDx8SAOTTp0/SYz5//kwAyJwrPT2dlCtXjmzcuJEQQkhQUBABQLy8vKT7zJo1i3Tp0kXm/Js3bya1a9eWrvfr14+0a9dOZp/Ro0eTwYMHS9sHgHz//l36elxcHNHX18+mGYyJiSEfPnwgz549I0uWLCEVKlSQvqaIZnDWrFnE2tqaBP8RW924cYPw+XwSEREhcy49PT1y9o+Id9WqVaRMmTJEJBJJ99m+fTupWbMmIYSQtLQ0UrJkSXLmzBmZc61cuZK0aNEiRz+Y+KwOG3ZRmrOxaVNCIiLUl2dPVd/XrVtHjh/P0Ai2bOlLhELFbDChGTx8+BRp3Jj6UKMGIfv2ZRdqs5VnMT8bu3ZdkF6/Hz+Y0UzK46s8fPmSobe8ezf761rNoHwoNDIYHBwMU1NT6bqpqSn8/f2lUx9auA8hwLx5dHnwYCCfdGoaT2gosG8fjXidNQto3ZplhzQEBwcH6bKdHc1F2bUrTcUB5FyBAQAqVKiA4sWLo2nTpti8eTPq1q0r83o1SU040FE0Ho+HGpkKmuro6MDOzk46jaoKNjY2MusmJiYICwsDAHz9+hX6+vqwtbWVvm5sbCwTuSsSiTB58mQcOXIEVapUgampKaKiohCdm2AyD3bt2oW9e/fi2bNnKPdHbOXp6Yly5crBzMxMxscKFSpIR1IBek35meYyJVUKAFqxITo6GhMmTMCUP0ViCSFITk6Wscsku3cDx451ByFAt250+pDLWXXevq2JM2eoRnDMGMDF5RUEAtv8D2QQQoD9+xvh1SuqabtyBXB3T8//QI7w+rUVxGKahivL14pVCKHlU0UioEePojHLpS4U6gzWrFkTY8eOxciRI8Hj8XD48GFUr14dqampEAgE6vJRC4PcuQPcv08F9FzIqaVOCKG1O+PjDeDoCKxYwbZHmoFQCFy6RKfVTU2B+vWBVq1oTkpJ2r9nz57l2BmcM2cOLPIo8Jw5b6CRkREIIUhKSpJJpZCQkJBjImgJfD4/23RSUubEgZn2y0zmRNrFihVDamoq0tLSoK+vL92emJgoXb558yZOnDgBT09PaenBI0eOSDtd8nLz5k3MmDEDly9flulkGxkZISEhIdv+CQkJMmmL8mqHZL+jR4+iadOmMvtlPU5VCAGWLJHcN/j4+2+qO2Yz+XF+HDkCnD7dCYTQkpO7dtGymwXN+vXA06eVIBBQ3WKVKjSgTVN49aoCAKq35hLXr9PfND09eo21KI9CX+ODBw/i33//xeTJk0EIQatWrbBmzRoIBALcvHkzfwNaWEUszhgVnDSJW//w1MH+/TToQVdXiBMndJDpN19lCptm8Ny5c+jbty8A2oEODKSjxm/e0A6AiQmNJBwxgh5jZmYmc4wyODs7Q09PD9euXcOgQYMAQJof73//+1+ux1laWuLChQsghEg7RooGsTk7O0NHRwe3b9+WVkrx8PBASEiIdB9fX19YWlrK1KC+du1annYl0b61/5Ty+fDhA/r374+tW7eiQ4cOMvu2adMGsbGxePr0KZydnQEA7u7uCA0NRVs5hzjKly+PunXr4saNG+jcuXOu+719+1YadKLMZ/XnzyB06OCDu3fpyG6rVm5wcQnC2bPy2yhozeDz5xWwY0czEMJD27bf0KLFG5w+zZxmUl4bHz6Uxdq1LgB4GDLkDX7//gZX14LXTCprIyFBD56eNGBLT+8KXF0TldZMMqkZTE8HZs+my9On0w62FhVgZXJaw9FUzaCkZqiJCdX4MGGTSZi0GRiYkUNx8OB3jNmVUFg1g9++EeLoSEgmiRpJTyfk6lVCqlcnZP58ui0qKkrGhkQzGBoaKt128eJF6bJEMygWi2WOmzVrFjE2Nibr1q0jBw8eJDVr1iT169cnqX8SAeakGfzx4wfR1dUlo0aNIocPHyYDBgwgVapUyaYZHCcpmprpXF27dpWuT5w4kZiZmZHt27eTAwcOkBo1ahBzc3OpZvD9+/dEIBCQWbNmkTNnzpARI0YQW1tbYmxsLLWRn2awevXqpHr16mTLli0yD4lOsH///sTCwoLs2LGD7N69m1haWpKuXbtKr9OqVatIo0aNZGweP36cWFpaStdv3bpF9PX1ybBhw8iJEyfIyZMnyfTp08nixYtz9EnRz2p6OiHOzn5S3e3OnQVbm1cZ369cobVpAUKaNPEgmT926sizmNsxvr40ZyBASKtW3/L1g4uawVOnqP+1auVuUx4/mNYM/vcf9at0aVqDODe0mkH5UGhkUCgU4vz58/D19ZXpwef1L14LN0hNzQi9nz8fUJOciBNIpoTi44EmTYBOnbwB1M33OC2AQEA/K2JxRsoNHR2qF2zSBHB0pPkpS5YsKXNcxYoVMXXqVBgaGkq3Zc4jaGlpKa3qkZm1a9eiYcOGcHV1RUJCAkaOHImxY8dC708iwGLFimHq1KkyWmUbGxvcv38fO3bsgKurK/r27Ytx48bh1atX0n06deqUrTqQs7OzjGZxy5YtcHBwwPnz51GqVCkcPHgQbm5u0rrEjo6OuH79Ovbu3YuPHz+ibdu2mDp1qsxIRsOGDWFsbJzr9ezduzcSExPh6+srs12SO/DYsWM4duwYzp8/D7FYjMWLF2P48OHSEc8GDRrITGMDQPXq1TFq1CjpeocOHeDh4YEDBw5g//790NfXh4ODA/ozMKcnFNLckpIpziNHqNaYy1NyX75YYP166vuQIYCDwz3weHUK3I+UFJp3MToaaNwYGDHiLXg8zRu+unWLPmepUMkqr19n/J6tWcO9kniaiEKdwQEDBiA0NBSNGjXSagQ1jN27AX9/oHx5IIff5ELFkSP0BqavDxw6BHh4KF1xschhY0NzoLVtC6xeTX/EJBI1SYxY5o6ihBo1amDLli0y20imSpdVq1bN9jpAdW1//fUX/vrrrxz9MTExyfG45s2bo3nz5jLbXFxcpMsjR47MdowkJZYEHR0djB8/HuMz5aLImpOvQ4cO2aZ3MwfF5PR6ZlatWpXrawCgp6eH0aNHY/To0Tm+3q5dO7RrJ1sDukGDBmjQoIHMtho1amB9Lj20nEqnyQMhwLRpwIULgK6uCOfPC9Ctm8JmCpSXL4H165sjNRXo2ZN+/9moiSAJGPn4kebkPHcOePJEnP+BHMPHBzhzhi5zpTMYF0dzn0pyxkqkK1pUQ6HO4KdPn+Dl5SUjYNbCfZKSdKTBIsuWcTvyT1XCwmh0GUDbamdHk7xqkQ8ejwaPrFxJI0WNjQEnJ5rE9eFDYOJEOlIYHR2dbXRQUTLXNpaXZ8+ewcnJSaFjYmNjYWJikv+OKuLn5ycTnawORCKRzB/x5ORkmdHYnDh//jyGDRum8LlOnKABIjweMGnSc3Tr1jz/g1gkLAzo3h1ITdVFu3Y0ypmt4JaXL4Hnz20A0M6UlRU7fihLUpIu/vc/mkUgKQmoVSsULi75JBYtICZPpkUTKlak1WO03RFm4JHMf9/zoV27drh+/bp0CqeoEhcXJ03vwGRBaVdXVwwcOJAxexJ69fqMS5fsYWdHy/UwcYNUh69M2Bw6FDh+nJbYe/WKtlUdvq5evVomsCCnouVZt+W3DmRP2aKMjazb8rMZGRmJIUOGyEzFAnS6+MkT4P17+i+8dm06OsDjARcvXpROA+vo6IDH46F8+fJITExEZGQkCCHS8wgEApQuXRqJiYnQ09NDVFSU9HVra2uUK1cOJUuWBI/Hw48fP5CWloa0tDTw+XwQQlChQgUkJycjIiICP3/+hJWVFSwsLFCyZEkkJydDT08PaWlpEIvFiImJQVBQEGrWrAkAiIiIwOfPn1GrVi2Ym5vj5s0aOHXKHC4u7ujcOQBWf36lDQ0NIRQKkZqaCqFQiI8fP6J06dIoW7YsTE1NkZSUBF1dXQiFQojFYnz9+hVmZmYwMzODQCBAdHQ0vLy8ZK5reno6qmRStUdFRaHUn9IIycnJ+PjxIywtLWFpaSntrH779g1CoRBCoRB6enrSaxcdHY34+HiEh4fD0dERurq6iI2NxZcvX2BpaYnixYujXLlyMDQ0RFxcHHg8HsLDw5GQkJDv+5/TNk/PaGzcOBqJifro2/cjGje+k+dnSp7Ppjo+/5m3bdvWDC9eVES5cr+xcuUjGBiI5LKpjK/5tT8uTg9Tp3ZDWpoeZsxwQ8OGQWpvv7y+5mVDLAZu366G8+drIimJ/smwtY3EoEFnUbOmSa425fFDHt8DAgIwf/585MbZs3Q0kM8H3NzoH9X8UNfvKtN21dWvkBtFBIYTJ04kTk5OZMOGDWTHjh3SR1FDkwJIQkII0ddPJwAhFy4wZ5eLASQPHmQk0379mjm7OVGYAkj8/PwIIYT8/EnI8OGEDB5MiLd3NrMK2VTWd3W3v2lT+hk5d04137kSQMHE+591m1hMSMOGgQQgpG5dQtLSuNt+ybbr1+n7yucTsnLlTYVsKuOrPO3v2fMTAQixt6cBWWwm3ZbHRmwsIT160OsIEGJnR78nYrF63n95fM1MUBAhpUpR3xYtynW3fM/BFEU6gCQpKQlVq1aVKdmknTLmNsuXA6mpOmjShGpoCisiEU0vAAATJtDkqFrko1KlSiAE6NWL/tM2NgbGjQP69qVaU3t7YO1aIFM+Zo0lNJQ+55EKschz7hzg7m4NHR3g4MGM3JJcJSVFBwsW0OUZM4BKlRRPCq4OOnf2wsOH9vj8mZ3chooQEmKMxo1p3XE9PWDQoDfYt68BZ3JIxsTQ36+oKDrro41ZZR6F3upDhw6pyw8tauD7d2DvXrq8enXh1lacOEFr5pqa0kLlWhTD3Z0G3EjE9k5OwI0bwNat9NoOHQo8esSmh6pDCNWVAcCfIiBashAeTnOQAsCCBZpRoejSpZoICKAasmXLaHUPLlC8eDpmz6ZRr0uX0nydXOTbN2Dx4vZISqK12y9cAHx9v0FHp0H+BxcA0dFA+/Y056mZGb0fFXGlmlqQSzMoEW3fuHEjx9fzSnZaGNEUzeCAAfQfqaNjMN6/L8+YXYBbmkGxmI5eeXrSTq8ksbaqdvOisGgG7e3t4eDggD17gIAAYNUqej0rVADevaORkEIh7WTHx9M/FOfPn4enpyfjOix1tz8hQRdjx9Ik2YcPn4Genkhp37mimWNCM5p529atzfDyZUWULRuONWseQFdXzOn2p6ToYOLEbkhJMchVm8eGZlCyXqpURUyc2AupqTqYNu0YGjfWyXV/ZdqvjK+ZXxcK+Vi6tC38/MxgaxuJ2bPdYGqaUiCf/5y2ZdUMRkcD7doBb98C5ua0etaffO5yo9UMyok8c8ljxowhhBDi4uKS7dGqVSs1zmJzE03QDL55k6GfW736BmN2JXBJM3jlCm1riRI5Jx/Vagbz9/XGDUJOnKDLiYmEHDyY8Vp0NCEVKyrmp7K+q7P9799LPifJKvvOFc0ck5rBCxfo9REICFmx4maex3Cl/bt2UZ+rVMlIlM500mV5bOZ1TO/e1MeePT/l60dBawbnzqW+FSuWQn7+VN6mPMco+lmNjCSkXr2MxNKfPmU9Wj60mkH5kGuaeN++fQAUL/mkhT0kGppBg4AKFWJY9UXdrF1LnydM0CYfVQZCCDp1ylzvlpakk3DqFP13rukEBtJnM7NEAAas+sI14uP1pCmZ5s4FbG25obvLC0KojAEApkzJnvuSK/TqRade37zhVn6Z27cz7p1///0aVlbcSR0UGUnvOR4eQOnSwIMHdPZHi/pQ+OsTEhKC58+fw83NTfrQwi3u3QPu3qXCb0l+wcLKixfA06dUQ1LYk2mri/v372fbFhERAQBISaFSg4ULC9or5pF0Bs3Nk9h1hIMcO1YPYWFAjRqaI86/f59KQwwM0jmdeLhLF/r865cpvn1j1xcJISGAJPXkxIlAo0a/2HUoExERNOm9hweVqTx8qO0IFgQK5RlcuXIl1q1bB1tbW2niUx6Ph9evX6vNQS4imdvfv39/tpJXqpCTpkJRxGIqBv7xwwwdOnhj+PB3jNjNCldsbtzojDdvrOHi4ouxY3P+HKrD12/fvsm89ykpKTAwkB1tyrotv3Uge7UIZWxk3aaoTYAmN545cyZ0M4WSJiQk4MCBA0hPT8/XJhfbf/VqS7i5NUTTpq/Qu/cTlXzPqaqHor5y5f338amAffv6g8cjmDTpJCpWDNGI9h8/3hUfPtihcWN39O37WOn2K+OrvO3X1zfAo0eNcONGCwDApEknYWMTzEj7lfU1KSkVx44NwffvVBs6deoJiEQJamm/or6HhfHh6joaQUEmMDFJxqJFD2BlFQdVUMf9Xx12k5KSMGbMGG5rBiXY2tqS8PBwtcxXaxJc1gyePk01FsWLExIWxpzdrHDBppcX1UQChHh6MmdXHjRRMyevjcuXCZkx4zFJSsrYFhUVpZBNZX1XZ/t79qSfleHD3VX2nSuaOVXf/+RkQqpWpddl8mT5z8N2+2NiCDEwoH4rqm8sKM3gsWOuZMKEjLx9nTt7ErE4bz8KQjPYt++HPzrBjPumOjWT8voeGEiIuXkkAQixtKT3dybQagblQ6Fp4rJly8Lc3Fw9vVItKpOeDixaRJdnz6ZD7IWZDRvobbZ7d1p2TgszLF0KbNrUAidPZmy7JalWr8F8/06fLSwS2HWEI4jFtLTXt2+AqWkSVqxg2yP5OX+eShhq1OBOXsHMJCYCmzY5Y9cuGoG/ZQswZIgH6+m9Hj0Czp+nc667dnHnvhkcDDRvDkRElIKNDa0uUr06214VLeQKIPn69SsAWpR91qxZGDx4sMzQrqT0kxZ2OXCA/uCVLg3MnMm2N+olMRHSzsqsWez6Upj48YNqdXg8MXr04KgiXwkIAXx96bKFRTy7znAAQmjQxYEDNPBi9Gh3mJi0ZNstuTl2jD4PHcq9/KmxsTQv3rt3VjAwoHnxevcGXF3Z9SskhKYbI4SPkSPpteMCKSk0yCYgADA3j4abW8lCkeBe05CrM9hFooD9w4ULF6TLPB4Pfn5+zHqlRWESE2nCVYAmOTU2ZtcfdXPpEm1z5cr0H6UWZpB8tWvUCIf5/9s767Co0i+Of4cORUVAREHERCUs7Hbt7ta1Vv2pa661dne7dnet3d2KHZggoCAg3THM+/vj7Ayi5DAz9w68n+eZ596pc89734lzz3vCIve06fD3B+LiyPCxtMzbCSSMUbLVhg1kSO3cCejp+QutVpYJDk4pgN67N3D3rqDqpIIxYOBA4NEjIF++BFy6ZIhatYTWCkhMpI5CgYGArW041q4tKLRKAOh8DR5M56tQIWDQoKOwtR0itFp5kmwlkHAIMRadnj8f+PtvoGTJlJZCqpCbHkLLbN4cuHQpa5X9edHprMucMeM3fPpkgY4dr6Br1+9KyxTb+OPiamPBgsawto7E+PGbVV7IVxldhZh/xoANG8rh7t0qkEgYhgx5hIYNvdRWdFkd4w8MrI5lyxqgaNFILF9+NkdFl5XVNb3xv37dELt2VYOubjJGjDiAWrV0VT5+ZT6rN250x9WrZWBikoiRI3fD1dU0WzLUVXR6z55iOH++PnR0ZJg8+Qby53+Uqui0KuBFp7NIdgIM27dvn6XHcjtiSyAJDqaCy0BK4WBVyM0IIWX6+VFDeoCxT59UJzc7aGMCRWYyfH1TCpWvX388RzKV1V1d41+7lsbWrp16gvKV0VXT8y+TMTZ2bEpCw7Ztyh9HyPFPm0b6DxignK7qSiCZN+8C09cn3das0cz8Z+U1nTpdVHyvz53TXAJNZvdPnEj5LG7YkL7cnMITSLJGtoKCfOWFun7AUx6IwxGMBQuAyEjqI9qjh9DaqJ/9+yn4vU4dWibmqAb5EnGdOkChQvHCKqNi3r6lraOjsHoICSUG0f6WLbScqY3cv09bMSy/ygkPB1avroOkJIoPHDlSaI2Iu3eBkyebAKD/iZYtBVboP16/piV+gOocDh8urD6cLMYMbtmyBZs3b8aHDx/g5uameDwiIgLleMqPoPj6AuvX0/7CheKtwq9K9u2jrVgCoHMLx47RtksXYfVQB3JjUCzZk5rm8GFgzhza79//MQYPriasQkqSlKQDeVnbmjWF1eVH/vc/4Pv3fChZkpJyxJDU4uMDdO4MJCfromvXX3u2C0VSEtCnD8V8V6wYgFWrrIVWiYMsxgz6+Pjg8+fPGD58ODZu3Kh43MzMDM7OzooC1HkFMcUM/v47BYA3bEgte9L6ERI6vk+VMj9/BhwcyOgNCgIKF1aN3OyS22IGTU1L4X//6wDGJFi79iTi4z9qPA5LXeP/9MkTS5dOQFSUEebNuwhDw1d5Kmbw1Ss/rF8/EpGRRmjXzgP16p1TW8ycusd/8aIRdu3qiEKFYrF27Sno6DDBYwZfvCiKxYsbQiKRYfbsyyhdOlRt48+q7ubmJTBr1m/48qUgihQJxMKFN2FklKyW8WdXxqlTjjh40BX58iVg/PhtKFeukOI1Pj4+PGZQ7DGDUqmU9enTR30L1lqEWGIGX71KiZ17+FB1crOCUDJXraLxNmyoWrnZRdti5jKTsXEjnVc3t6wdR5vGP336egbQdyU2Nu/FDFav/pIBjDk6MhYfL56YMWXGX7OmNwMo9lFZXVU5/qQkxipUSCkqnROZWdE1K7rv3XuAtW5NOhUpwtjUqRuzLUNd8//pU0qx8J07syY3p/CYwayR5UVFXV1d+Pn5qc8q5WSbqVMpdq5zZ+CH1ftczcmTtG3fXlg9chvyeMFOnYTVQx18+2YJAChbFjA2FlgZDXPtGuDu7gSA4gQNDQVWKAdERwNPn5KnSQ2OHqXYvh3w8ADMzYGOHV8LrQ4AYP9+V5w9CxgZ0e9loULiqKvJGDBsGNUVbNw4pTcyRxxkK8KsadOmGD58OB49egQPDw/FjaN5Ll0CTp8G9PSorExeIDSUKtMD3BhUJdHR+rh2jfY7dhRWF3UgNwadnQVWRMPExwN//EH7I0ZQYpA2c+IEkJioh1KlgGoiCHmMjgZmzKD9mTMBU9MkYRUCsHkzcO4cBcbu2gXUqCGwQj9w5449rlwhI3XTJnHEVXJSyFadwZIlS/4qIA8WnRY6ZjAujv7YPn0CxoxJyRDMqdzsIITMEyfIWHF0pKtxVclVhtwUM3jiREEcPtwStrbhWLz4fJaOo00xgwsXOuHVq0ro1u0FOnTwUFntNrHHDJ48WQGHDrkgf/5IrFx5ESYmUqXHK/T4ZTJgypSW+PKlILp0eYlOnd4orauqxv/sWXscP+6EIkWisHTpOQQGftH4/P/4WGCgKcaPbwOZTCfVOdJkncX03hMdrY+xY1shJsYE3bu/QPv2Hmm+h8cMakHMICcFoWMG//6bYi5sbBjLigq5JWZQXiNt2DDVylUGbYqZy0xm5cpfGcDY7NlZP442jd/CIoQBjF28qLwMscTMZVV3Pz/GTE3p+9Kz55ksvSc79zU9/r17aSwmJgksNDR7x1XHZ3X69A2K83vkiHIyVB0zuHo16VOmTBCTybIuUxldszv/o0czRdxqQkL25OYUHjOYNbJUWuZHHj9+jKtXr0IikaBJkyaoWrWq6i1UTrq8fQssXkz7a9YAQlxACMXt27StX19YPXIT4eHAy5dU2iE3lpQJDweCg80BAHnpp2rKFCrdUasWULnyWwCthVZJaRITU5Zj27Z9i0KFXIRVCMClS7URE0PLsJ07C60NcekSbatV84NEYimsMj+QmEhL1gCwYkXq7lgc8ZCtmMEtW7agU6dO+PbtG/z9/dGpUyds3bpVXbpxfoIxKs6ZlAS0bp07g/3Tg4LHaZ/3IlYdp09THbIKFYAKFYTWRvXIPzP29lkrQ5Qb+PSpMHbvpv3Vq7U/Nmv7dsDLCyhSBGje/L3Q6uDtW+DRI0rKWbpUHOc3MTGlX7OT0zdBdfmZa9eAiAigQIE4/Pab0Npw0iNbMYPOzs64evUqLC3pquP79+9o0qQJXr58qTYFxYhQMYM7d1JdQRMT4M0b+oNThVxl0LTM27fJI1isGPD1q+rkKktuiRlctqwenj4tjk6dXqFLl9fpytDWmEF53Jybmy/GjLmrlIysjF8ZXdUxfqlUB3/91RgBAZaoX98Lw4Y9FEXMmLLj9/YOwNKlfyAszAT9+z9GpUo3cjxXOR3/hg01cedOSVSt+hXjx99W6/iz+lk1MSmF//2Psr/mzVsNBwcrtY0/LZkZvefQIWecPFkR1au/wtixrzN8D48Z1JKYQScnp18ec3Z2VtGKtfYgRMzg9++MFS5McReLF6tOrrJoWubKlTR2ZVph85jBtGWGhjJFL9U3b7Knu7aMv00bGt+KFcrLSOu+WGMGp0+n8VpaMhYUlDWZyhxHU+Pv39+dAYzZ2ipfI1GV4w8OZszQkM7xgwfKychID2VjBmUyxkqWJL0mTLiRLZnK6Jqd+e/Zk/Tq1etppu/hMYNaUGcQAEqXLo1p06bB398f3759w+zZs3+5OuCoh7FjgZAQwMmJ9vMajx/TNi/FfambEyco5MDWNjxXLhHLZMC9e7Sv7WVVssLjx9R/FgA2bAAsxRM2phRxceTZBaimqhhqJO7eDSQkADY2gaKq7SqRAC1a0P6LF0WFVeYnPn+mraVljLCKcDIkW8bgxo0b4enpCWdnZzg7O+Pdu3ep2tNx1MOFC8DevfSF37oV0NcXWiPN8+QJbcVQXyy3cOgQbWvV8hFWETXx/j3VptTXT0LlykJro14iI4EePYDkZKBGDd9ckQy0aRMQHm4COztg4EChtaGY7U2baL9mzZeiiBX8Ebkx+ORJMWQ9+Ev9eHvT1tIyWlA9NElcnNAaZJ9sGYNWVlY4ePAggoOD8f37dxw4cABWVlaZv5GjNNHRVLUdAP78M+90GvmRqCj6Ywe4Z1BVfP8OXLlC+zVq+AqrjJq4SyGCsLUNyPUXUFOnAp6eQIkSwKBBj4RWRyXIcxOnTRNHBqq7O/0OmZrKM7TFRZMmFE8eGmqK7t3pv0NoEhKAgADat7DIG57B+/cBOztg7VqhNckeWUoguSVv+5AO9fNYrQ95oOfWrVthYmKiMrlpBfbu2VMZ58+Xh4VFNJYsOQ8jI6lK5OYUTcp8+9YSc+c2ReHCMVi79pTK5OaEjx8/ppr7+Ph4GBkZpXrNz49ldh8AYmJiYGpqmiMZPz+Wlsxnz2rg+PHfULx4AP74Y2u2dc9MTzGM//Dh5nB3d0LdurfRvv1DpWRkdfzK6Kqq8YeGFseqVf3AmA7++OMQihf/qPa50sT4Z88ejuhoU4wbtxNFiwYrrbuqxn/zZmNcuVIbzs7v0anTQVHM/8+PubtXwtGjv0Em00WRIsHo3/8kTEy+Cjb/SUnmmDNnBCQShlmz5sPEJOPjxsbGokyZMlAl6vj9T08uY8DcuU3w7p0VGjb0xNChWb8wi42NxeDBg8WdQFKtWrVfbtWrV2fFihVjOjo66o1qFCGaSiB58IAxiYSCb8+fV51cVaBJmcuX0zno0EG1cnOCtiRQpCezQQM6p0uXCh+Unx252Rm/oyON8fffjyktI737Ykkg2bdvP2vYkMbZpUvWdNWWBBJjYxqXl1fOdFfV+KtXJ322bRPP/Kf12MyZl1jRoqRr/vyM9e//b7ZlqGr+370jPQoUUO63ShVoMoHk1Ckar5ERY1++ZE+eViSQuLu7p7pdvHgRdevWRWJiImbPnq1eazWPkpgIDB5MVxp9+qTEg+RF5PGCfIlYNYSGGit6PHfrJqwu6iI8nOrBAYCdnbjqrqmShw9tceMG9XtdtkxobVRHcnJK3FX+/MLqAgCRkYaKJDax/xaXKxeMp0+pFFdUFLB7d3tFyISmCQ+nbcGCwhxfk0ilgLwqzpgxQPHigqqTbbIVMxgfH4+FCxfC0dERMpkMHh4e+Pvvv9WlW55m6VLg9WvAwiLz3sO5HfmPME8eUQ3379uBMcqwtbMTWhv18Oi/1ZlSpYB8+bQwmjsLJCYC+/e7AgAmTaJ4wdzC9+8p+/nyCaeHnNevrcEY4OIC2NgIrU3mWFtTTHD37gBjEvzvf8LokZeMwV27AA8PwNycvo/aRpZiBmUyGbZu3Yq5c+eiQYMGmDt3LkqWLKkJ/USJuotOv3tHPzqJicCePeQZVIVcVaIpmRERKT8kgYGAMvlKvOh0ikzGgPHjmyIgwBK//+6O3377pJKiy2Ib/4sXjbF3bxW4ufmibdvdShXyFUPR5Yzec+tWSWzcWBMFC8Zh5crTMDRMzpKu2lB0Wl6ouGjRICxffjVHuqti/Fu3lsS1azXRpMlHDBr0WBTzn5XXREUZYPjwjpDJdLB69UlYWsZqdP59fWth7do6cHQMxMCBezI9rrYWnY6NBcqWBfz8gOXLgXHjsi9PK4pOOzo6MgcHB7Znzx725s2bX255DXXGDCYnM1avHsUdtGzJUjUcz4lcVaMpmdev07mws1Ot3JyiDTFzacl0d0+JaQkLU153sY9/6FAa5/TpqonDElvMoFTKWLlyNMZFizLWQ9tiBoOCGDM1pbGNHXszx7qrYvw1a3ozgOKX05KZFRmaihn8+X6JEl8VsY7KylB2/jdtonls1y53xwwuXEjjLFGCiqMrg9Axg3pZMRhjY2MhkUgwffp0SCQSsB+ciRKJBF5eXmoyVfMeW7ZQ6zVTU+Cff8TR91JIeH1B1bJ9O207dcrdSzfv3tG2XDngWy4MGTx2TF7mJAEjRoigGrMKWbIEiImhGOFq1fyEVgcAEBBAgYulSwusiBKULu0LH59iuHpV8/Ua88IycUgIsGgR7c+bJ47i6MqQJWPQW141kqNWQkONMXUq7S9YkLtigJSFdx5RHbGxwP79tP/778Lqom7kxmD58rnPGJTJ6E8HAFq2fI/8+Z2FVUiFhIaaYd062p87N8WYEBLGgMBAClzURmOwTBkfXL1aC1euUJKDJomIoG2BApo9riaZP5/G6eIC9OoltDbKk6WYQU5q1LG2zxhQrdpXPH1aHDVqUMFcXV2ViNbqmEFHR/pjP39e+Sw+HjNIMuUxZubm4Viz5jx0dJTXXcwxg56eQZg+/U8AwNatR/Dt2/tcFTMoj8MyNk7E5MmbUKaMRYZ6aEvMYEKCLqZOrYdv34qiXLkgzJhxFf7+qp+r7Mr48qUAJk1qBX39ZGzZchQGBjKtiRkEgPfvvbF8+ThERxti0KBHKF/+lsbm//Dh7nB3t0WPHs9RteqVXBczWLVqT1SqRG09L14EmjVTXp5WxAxyUqOOtf2DBynmQF+fsdevVSaWMaa9MYNxcYzp6NB58fNTnVxVIPaYubRk1qlD57Jbt+c51l3M41+8+CwDGCtUSDmZWXmNUDFju3cfYGXK0DzOmaNcHJYYYwZlMsZ69qRxWVoy5uOTNRnK6JpdGfJ4sFat0peZFT2EihlcunQpW72axmBlxdjWrYdzrHtWxr9v335mYUHHvXs3d8YMtmnz62dDWYSOGcxWaRmOeggOBkaNov2pU4GKFYXVRyx4eNCSWOHCQFFx9V7XOjw8UrzNDRp8FlodtRIcTJ1hcmPZnNu3S+LjR8DSkmqZ5RZmzgQOHAB0dJJx9Ki45u70adq2bSusHjlh+HDKdg0KAk6d0swfjL+/GYKDqQZmboz5fvnSGmfOAHp6wIoVQmuTc7gxKALGjqW6Wra24YqYQQ7w6hVtnZx4Ik1Okfd5bd0aKFQod9bdkxMcbAog98XcxsYCx45VAkAXjWIoxqwK1q+n+EAA6NjxKsTU3fTFC+DePUAikaFNG6G1UR59fapdCwDnz5eDJtIA3r2zBADUqiWO3tKqRCoF9uypAgAYOZIS1bQdHjOoBKpc2z93jv6gJRJg9uxLmD49B0EH6aCtMYMTJ1JXhZEjc9b0O6/HDHp4fMGKFWMQG2uACRNuokgRd8HjsNQ5/i1bHHD9eg00a/YBAwY8UUsclqZjxhgDVq+ug0eP7FC4cAyWLz8DAwNZtmJGczJedY2/cGE7jBjREfHx+uja9SWcnU+pfa6yI2Pjxhq4dcsBLi7vMGnSM5WPXxMxg3KZjAHTpzeDl1dh9O//GM2bf1Ra16yMf/r0OvD0tEOXLi/RqdObLOmuLTGDK1dSLcHChYGPH4FChXIuk8cMaiGqWtsPD2eseHGKORg3TjP1kLRJpjweY8MG1cpVBWKOmfv1PF5nANWlS04WRxxWeu9Rxfhr1/6s6LusjMysvEbTMWOLF9N3QU9Pym7e/PX57OgqppjB/ftpXA4OFDeYnbmSyRjz92ds+vTLbMsWxv76i7EePRgbOvRBqvqsyo4/MJAxAwN5fObFVM9rW8ygnA4d0v5NVfX8P3ok/7wy5uubdd21IWbQz496PgOMbdmiOrlCxwxmqbQMRz389Rfw9Su1zJo7Fzh5UmiNxMX797TNDS54oUhMBG7fpro8EydCkUGcmwkJyV0xg9evA1Om0H7//k9Qv76bsAqpkL17adu7d+ahIGFhwI0bDnj4kJZvX74EQkMBoOlPr6yB0FAKjchJSZPNm+n74+YGlC4dorwgERHy3zAKF1bvcRYvpm2vXoCtrXqPpWnGj6eez6VLB2PgQIvM36AlcGNQIK5dox8bANi2DTAxEVYfsZGQAMhrmZcvL6wu2sy+fUBERH7Y2OS8raG2EBJCMYO5wRgMDTXGmDGUSNW/P9C4sSeA3GEMhoUZ4eJF2u/dO+PXBgcDNWoAXl41Uj2uqwtYWEShcuX8KF2aCv6uWpWMo0d18fQpcPRo9vWKjAS8vAphwwa6P3p09mWIFbkxaKFGG2bfPiqKDtAFaG7i6lXg4EG6qB448DF0dJSsdyZCuDEoAFFRwODBtD98ONCggbD6iBFPTyA5mYLkeSaxciQlpVTGHzNGeyvjZ4f4eDKgAO03BpOTgXXraiMoiArabtiQO1YPQkIomWHNmjZITgaqV8/c+z98OF0cmpvHol8/E7i40DlxdAT+/fdMqpiwAgWuYNu25vDyorpvo0b9+sGPigI+fyaZXl7A2bPVsWkTrUYEBAAA/clbWwNdu6YYN9oKY8C6dcCHD3RfmR7vWeHKlZSC9m3avEWlSo7qOZAAJCQAI0bQ/v/+B9jbhwmrkIrRaAJJs2bNEBAQAB0dHeTPnx9r166Fq6srHj9+jFGjRiE+Ph7x8fH4/fff8ddffwEAPn78iBEjRiAoKAhSqRQzZsxA9+7dAQAymQx//vknzp07B4lEgnHjxmGEfLYAzJs3Dzt27AAA9OrVC3PlKWsAtm3bhkWLFkEmk6FJkybYsGED9PSyZhvnNNBz6FBqO1eiBGXMyrMCNdFQW1tk/vsvtUyrVg1wd1edXFWhDQkkd+6UwIYNtWFiEoO1a8/B2FiabRnp3RdrAsmbN1aYP78JChaMxfr1JyGRqDcoPyfjzWz8x49XxNGjzjAySsKCBRdgbR2tlO5iSSD5+DEYz541woUL5RAfrw8AsLaOxIgR91G6dGi6ukZGumLu3KaQSGQYOnIDilRM3f5UEmYCVihWcT9/lA0KFLDH7Nm/wc+vACpUeIsyZWQICsqHoCBTBASYICYm46WYfPliYGMTi7ZtPVC1qr/gCUQZvSez17x86Y9Ll7rj6dPiAAAXl3f4669nqZblVTH/Dx8mYdOmnoiP10fNmj7o2PEIbG2zp7uYE0hmzwZmzaILhHfvgHPnVPu/kqcSSMLCwhT7//77L6tcuTJjjDFXV1d28uRJxhhjISEhzNLSkr1584Yxxljt2rXZjh07GGOMBQQEMFtbW/b161fGGGO7du1ijRs3ZlKplIWEhLASJUqwt2/fMsYYu3nzJqtQoQKLjo5m8fHxrGrVquzChQuMMca8vLxY0aJFWUBAAJPJZKxt27Zs48aNWR5HTgI9z5yhwFOJhLEbN1I/xxNIUmQuWEDnqU8f1cpVFWJOoNi/fz+TyRhzdqZz2KLFLaVkZHRfrOOfNu3Xz402JpAcOpRScH3v3pzpLnQCSUgIY7NmMWZiksDIR8WYqytj48ffZMnJqWX8LHfv3gPMxYXeM3w4YzM2jmVTX3RMdfv5Mflxz59niuOldStcmLFq1Rjr2pWxDh1esT17KPEhPFz4+c/Oe9J7jUxG58DMLJIBjBkaMrZ2LRWDzqnuP+v58SNjZmZxDGCscWPG4uNV81lVBar4/X//PiWZ6OBB1cn9EaETSDQaTl7wh27VERER0Pkhmj38vyaUMTExMDAwgLm5OQDgxYsXaNWqFQCgSJEicHFxwaFDhwAAhw4dwrBhw6Crqwtzc3N069YNBw8eVDw3YMAAmJqawtDQEAMHDsSBAwcAAEePHkXHjh1RpEgRSCQSDBs2TPGcOgkOBgYNov2xY/nycEbw5JGccekSBdibmgK1ar0QWh2Nce0abRs3FlaPnHDqFMXQyWRAkyYfM42nEythYUaYOJFWQGbNAmJjDVCpEi25PnkCVK3ql2lC0/XrDnjxAihYEJgzhx5LTtLD54dOuLqiHw78MQM+H0um+d4WLYDp04Hy5b0wYgSVqTp+HFiw4DwiIuj32N0dOHwY6NbtFfr0oSVrbe+jyxiVLKtTB2jZEoiMzI/y5YGHD6lMl6prtvr5Ac2bA5GRRqhcmVZ1clNICmMUppCYSOPs1k1ojdSDxmMG+/Xrh+vXrwMALly4AADYsWMH2rdvj7///hvfv3/H5s2bYW1tDQCoXr069u7di3HjxsHT0xP37t1DyZL05ff19U21VGdvb4/Hjx8rnmvwg7Vlb2+Po/9FE6f1Pl9f33R1TkhIQEJCguJ+ZGRktsfNGMUbBAYCFSpQc2tO+rx7R1tuDGYfxoB582h/yBDAxCReWIU0RHg48OgR7WujMcgYcP++C6ZNo6K2vXsDLVs+AVBGaNWyRFKSDq5fBy5fptixx4/bQx6E5OwMNGhwF6tW1clyRntCAnDkiDMAMiYtLOgc7ei9GEHvUwxAv2flMbzNE5ia//q7PGcOYGZ2HBMmTFA8duBAOIRYhVMXiYk6uHcPePAAuH8fuHSpI+R/UYaGgJvbY5w/Xw2mpqo/9pcvQMOGFHdZpEgUzp/Pn6vOLUAJMdeuUSeVDRtybwMEwYpO79q1C4cOHcK5c+fQu3dvtG/fHt26dYOXlxcaNmyIy5cvo1y5cvDx8cGECRPw8eNHODg4QF9fH8WLF8fy5cvh5OSE7du3o3r16gCA9evX48mTJ9i+fTvatm2Lfv36oWvXrgCAs2fPYvny5bh27RpGjRoFOzs7TPwv1enNmzdo27YtvLy80tR11qxZmD179i+Pb926FSZZTAO+e7cE1q+vDV1dGWbPvgQHh1+DT9OKqVAF6pCrTpnx8XoYMqQTkpN1sWLFaVhbR6tErirx8vKC4Q+Xv1Kp9JeY058fy+w+AMTFxcHY2DhHMtzdy+Hw4bbQ10/CX39th6FhULZkZuU1mekpxPhv366CU6caw9o6COPH71ZapjLjV2a8P96PjTXEsWPN8PIlXf24uLxDz55nwVhSts+hJubqR5menra4caM6PD2LIykpdasJe/uvaNz4IcqX/4zk5Mx1j46NAgySAQCfPR2we+tAmOaLwtjJS6GrK0NESEGsWjYBEokMFZ1f4fULFwBAr/67Uab8f9kRyRJA94e/tURdhcw0n0/rsUzu6yYZqnT+5WQ2V/HxDMHBReDnVwRfvxbB16/W+PbNEsnJuqnkGBomombN56hf/zH09UPUMv8JCZbYuLE7QkIKwdw8HIMH74elZWyWZaT1WEJCAhwcHKBKcvL7HxVlgAkTWiMqygjdur1Ahw4eKpGbFrGxsRg8eLBgMYOCZRP3798fw4YNQ2BgIP7991/s27cPAODg4IAaNWrg3r17KFeuHEqUKIEjR44o3teiRQs0a0ZdOuzs7ODt7a0wBn18fGD3Xwqh/Dk5WX0uLaZMmYJx48Yp7kdGRsLW1hZdu3bN0qQxllJGZsYMHUyblnY6Ok8gIZnnzlEmpb09MGZM2xxfiWnL+FUhNzw8pe3U7Nn6mDLljzwxfpks5Ts2a5YV/vjjR0+QuMd/9ix5cL99A3R1ZViyRAdjx5aHRKKamkrqGn+FCj0xZQpw/nzK40WKAE2bAr/9BjRpAhQvXhxA8SzLnblpHKS1vAEAn9ZUBgCUbPgEsravIQPw7Q49VrjkV7TbPRtJ4ybi/dVa+G6dCPtWHmnK1Ltvr5CpKsq96arSc5qURHUU9+07jUaN2iI6mjKe/f0pA1h++/iRXvszVlbU9q1mTaBuXcDNzQAGBm4A3NQy/xs2nMCqVR0QEgKULAncvFkQtrYjMn9jJojtu/r77zQPlSoBe/e6QF/fRSVy0yIyMhKD5WVGBEBjxmBkZCSio6NhY2MDAPj3339RuHBhWFhYwMjICDdv3kSDBg0QHByMBw8eKLKJAwMDYWVlBYlEgosXL8LDwwO9evUCAHTt2hWbNm1Cp06dEBERgUOHDimWnrt27YqRI0dixIgR0NPTw/bt2zHvv7Wzzp07o27dupgxYwasrKywceNG9OjRI13dDQ0NU3mBsotEAly8CGzaBAwbprSYPMPly7Rt2jT3uuTVxbRp1Iy+fHkqjppXuHKF/ijNzDKvWScWwsOppdV/BQ9QtizQp89ljBvXXFC9MsPHB9iwoSbu3qULXT094I8/6Fapkuq+s1736Y+3ZM2XiseCPamCsUXpLwCAgsUDAQDhfkVUc9A0kCXrQCbVhZ5hGlZYFgkPpzho+e3DByqfFRJChbOjFYsfbTOVVagQULUqUKUK3WrUoLhMTf1WfvsGzJvXGN++0QX79eu5r7A0QEvDO3fSed2yhfo752Y0ZgxGRESgc+fOiIuLg46ODiwtLXHmzBno6uri8OHDGDduHKRSKZKSkjBhwgSFt+/06dNYtGgR9PT0ULRoUZw7d07h8u7bty/c3d1RtmxZAMDEiRPh6Eh1jRo2bIhu3brByckJANCjRw+0aEEeOQcHB8yePRt16tSBTCZD48aNMUie2aEmDAyAUaPUeohcAWOU/ACQd4GTdZ48Af75h/Y3bMh9zeEzYt062vbvD+TLJ6wuWeH6daBfP+pAJJGQUTh3LnDiRKjQqqVLdDTVrVy2DEhIoJi9Hj1I79KlVXecb29K4enh5gjwIKH2binG4He5MejwFQBQqHgAACD8i3W2j5MUZ4DIwMKI/m6O+Mh8iI8yRUK0CeKjTBEVWBgR/paI8LdCxDcLyKT60DNKgLFZNIwLRqGIoSHOn6cyI0WKkGdOJgPi4oDYWCAmhuZWbvxR7cLMMTZOQsGC+siXjz7HlpYUN122LN3KlaP6mUJdJPv7Uzzut29msLOjz/EP4fe5hrg4urgBKNa/Zk1h9dEEGjMGbW1t8Uge3f0TTZs2xZMnT9J8bvDgwem6TnV1dbF+/fp0jzljxgzMmDEjzeeGDBmCIUOGZKI1R9McPAh4eJAh06SJ0NpoF1OnkjHduzfQqJHQ2miO16+B06dpf0TOV6rUCmPU5H7iRDIeSpcm70OdOkJrlj4yGbBnD7XE+/aNHqtQIRC7dxdB1aqqOUZUFHDgALBlwVh8801xM7n1OYX8RVIMZLl37u3FOnDrcxpJ8bRikyxNHTP3M9EhBeDzyAneD5zh/6Y0ogILIz4yf7Z0lMYbIireEFFBhREEqhGbHWxsyJiT30qXJiPS3JxuBQoAhw8fVUv4hSrw86PflY8fAQuLGFy/bgp7e6G1Ug/z5gGfPtGcLVggtDaagXcg4YiG6GgDTJtG+3//rf7+mbmJu3fJo6qnR56avIQ8c7pLF3G3LoyNpc5D8ipW/fuTB1fMrSjv3aPuNfLC7w4O5BmMi7uGqlVzbrQ8fUrhM/v3y5dKbaGrn4Tyv91H5a4XYVflbarX1/3jMD7erIaQz8VxYtI4JETTyStV92mq1yXGGsH3SQV4P3CGz/VqCPSzSfP4+sZxyG8VCuOCUTDMFwuj/DEwzBeLfJZhKFgsCAVsglCwWCAMTOIQH5kPcRH5ERtuhkIvf0PJkjURGEhev+/fqTWeiQndjI3JY/ij8afNWbZfv5Ih+OkTeQLHjr0KB4d2QqulFl69ApYsof3167V73rIDNwY5omH/fld8/06ldyZNElob7WLmTNr+/jsFdOcV3r6lOnEAXUCIlc+fgY4dgRcvyGBftYq8mGKNifX1pe/gf2VbkT8/nd8//6RyJTkpyxodTXI3bQL+qwQGgJZBSzidRMVRx2FSKCrN9+azCEfX1Yuwe8B8eN2toni8TP3H+PK0PLwfOePzA2f4vyoLmTT131uR8l6wr/ESdlU8ULB4IPIXCYFhvtgsz4GRWSwKFg8CAFQqWBo9e+aBtUNQ+ZhGjSjGUR4jeP9+jNBqqQWZjDqESaX0fe3QQWiNNAc3Bjmi4MYN4MYNam+0ZUveinfLKbdvUwN1fX0oPKt5hfnzaem1QwfqVStGzp+npfuwMFoWPHIEqF9faK3SJjERWLiQYgPj48lYHTSIvK9FcpijERRE9QL37qVlYYC+5507U3xW/frArM03IU3HEJRj7eiFtnPX4N//SoMBwNauK5EYm7rUS8HiAbCv8RKlCn1D8d7X06xDyMmYH+sIliyZEiN4/77QmqmHnTupXmP+/MDatUJro1m4McgRnIiIlObmw4YBtWsLq482wRjFcgH0p50bg7nTw9MzxUM1fbqwuqTHyZO0fC2VAm5uwNGj4s28fP6clq5f/pevUb8+eTArV8657AcPgK5dabkRIC/gkCHAgAFUTDq7FC7pl+p+YqwxjAtFwN7tFexrvIR9jVco9F+msd59e0i1xBCsVauW0Coo8PYmj6C3N4UHXL9OySu5lfBwQN4WeeZMQA0lf0UNNwY5gjNqFP3gWFpGY/FiLUgFFRH//kvxgsbG4l4mVTWMkQEok1HLrSpVMn+Ppjl7lgwgqRTo2ZO8DmL0eCclkTdw7lzS1cKCsrO7dcv5Mra/P3mrd+2iOStbljLeGzVSTnZykh7ubeuIu1u6AAB09ZNQd9hhlK77BFZlfSDREaSHgsqwF0lGhpcXzZGvLyW6XL8OFM96uUitZNYsiv0sVy5vVv7gxiBHUA4epExFHR1gxIj7MDPj9WSySmJiSmzlhAl560p21y7yCuropMRLiomLF4FOncjQ6tYN2L2bYgXFho8PxUY9e0b3O3UiY83KKmdyY2OB5cuBxYupzAoA9O1LS2/K9v4NfGeP09NHI+iDPQCgbKOHaDFtM/JZ/trNiZNCgWye8E+fyBAMCSHj/fp1yqrNzbx+nVKeas0acV60qRsR/jxx8gq+vilFuKdNA8qVCxZWIS1j0yb64bayolIleQUPD+B//6P9OXOo6K6YuHSJYhgTE8m42rtXnIagTEaxjM+eUWmT9euB7t1z7g188wZo25aSZgDqjLFyZc7m6dXphjg/9w9IEwxhXDASzSZvQYUWd0WbgPMza6+uRWhMxjUkRzUZBXNTc5Ufu1WrVtl6fenSdJGgo0OeYjF+dlUJY8Do0dT1qmNH4L8GZ3mOLLYM53BUS2Ii0KsXxQu6uYk35kusBAQA8hKas2dTwHNe4N07WhaOjaWi5PJ4SbHw5g0ZgvHxQLt25L0Ua+eCLVsoxCBfPsrq7dEj54agVAq0akWGoK0tjf/u3ZwZgt89i+P036MhTTBEqXpPMPT4n6jYUnsMwYSkBKy/sR4uti5wsXWBkb4RZp2eBYv8ForHtt3dhvyG6v8SM8ZQb3E9XPG4kuHrdP6zDHK7IQgAx4+T99PICFixQmhthCMPTDVHjPz1F/1JmJkB+/aJ9w9TrIwcSQHPVapQ7bq8wL175HEKDaXlK3l4gViIjaUl4bg4Kph+5Ih4l5vCw1NiTOfPV105ogsXyONvbk41BJVJDvmZUG+Kf7Aq9xnd1izQurhAz++eaFK+CTpU7gAA2HZ7Gwz1DDG03lDo6+kjPikeFW0qQl9P/T+CfmF+uPPpDkoUzkOZZhkQH08hNgD9J4kkZFMQuDHI0TgXLgCrV9P+nj2qbWWVFzh2jG56esD27Xnj6v3QIcp0TUig1lCnT6vG0FAlf/5JS9jW1lREWayGIEClYoKDAUdHYPhw1cndvp22ymYJp4U0gU6kScFIrTMEAaCCTQWs753SKeup71M4F3dWGH9G+kY4/+d5AMDX0K/Y+3AvHn1+hLDYMAyoPQD9a/dPJe9j4EfsebAHL7++RERcBGo61MTCTgsVz4fFhOGg+0Fce3cNoTGhqF+mPma2m4lrb69h7TWql7LyykroSHQwqvEoFDIphNEHR+PR50foW7MvRjcZjcDIQLzye4Xu1bur+/QIytq1lLxYrBgZg3kZEV1Xc/ICwcEpZWRGjaKlNE7WCQ1NiZebPFm8tfVUBWPUDqpHDzIE27WjmopiMwQPHgS2bqVl1n37cp6AoU4+fqQgeYCWxVTllQ8KSmkLKP+OqwJpAimoZ5CkOqEC8tT3KSrb/Vqv55D7IbRe2xqVbSvj2PBj0NXRRXxSfKrXrLu2Dn239UXzis3x74h/YVvIFt/Cvymef+D5AHUW10F+o/zYP3g/nIo5ITiaYrGdizujaMGiqFGyBsY2HYs/m/yJEoVLYPOtzZjRZgaujrsK/wh/WE+wRv2l9VHRpqJ6T4TAhISQVxygrampsPoIDTcGORrlf/+jeDdHR8o05GSP8eOBwEBqu5bbS8kkJlLtRHkh7bFjKb5HbO3bPnygrgUAzUnjxsLqkxkTJlCWc8uWQIsWqpO7d29KPcVKlVQnV5pInkFdQ+03BpNlyXjx9QWq2KWuheTh74Ghe4biyB9H0LxScwDAiy+pX3fz/U3MPj0bJ0eeRJ3SdSCRSPD8y3NUKUGvCY8NR/v17bGi2wr0qdkH+nr6dKz/nrfIb4GvYV9Rq1QtlClSBmWKlIGRvhGmtZ6GCjYVUNKyJOqWrov8hvlxacwlVCqmwkkUIQsWUMy6szPQp4/Q2ggPNwY5GuPqVWodpqtLy8PGxpm/h5PCpUtUq04iAbZto7ZguZWwMDJWduyguMB168iLpasrtGapiYqihJGoKCrSLE/qEStXrgCnTtF5XL5ctbLlbQH79VOtXGk8GYN6BomqFSwA7wPeIy4x7hdjcOyhsRhUZxDKWpcFQLF9YbFhcCruBACQyWQYfXA0JrWYhCJm1AomLjEOHt88FLLmnpkLV1tXtKhEFj5jDM98n6U61lOfp6hsm9orKfkvE+eQ+yGMPjgaZ0efVRiQuRVv75RSMosXi+93RQi4McjRCElJKYU8R4wAqlYVVh9tIyIixfs0enTu7tLi5UXju3aNMl1Pn05ZGhcTjNFy6Nu3VIft0CFxx29KpeRdBeh8OjqqTvaXL8DDh3Sh0rmz6uQCgDSRlon1jbTfGHzq+xS6OroKIw8AAiICcMnjEjpW7qh47OHnh6hQtAKM9I0AAC+/vsTLry9Tveap71PImAwuti6QyWTY82BPquc/BH5AXFIcKhStAAAIigyCX7hfmobeyecnMWT3EJwYcQK1SomnC4q6+PtvWnlo0gRo3lxobcQBNwY5GmHtWvrTtLCgUiic7DF6NNX+KlmSgv9zKx8+FEbNmlRCpnhx4M4dKlUiRhYvpkQefX3aWlsLrVHGbN1KxXXNzVVfqPv4cdrWqaP68yBPINHVQMwgk0ngvq8V3Pe1QlRQIZXLf+rzFBVtKiqMPIC8hQBQsVhKjN7xp8dTefTe+L+BgZ4BHCwdFI8deXwEZYuURX6j/AiLDcP3qO+oYFMhlQynYk6KRJVnvs9gqGeI8tblkShNREwCVQO/+Poi+mztg8N/HEaj8o1UPmax8fQpxfUC9B3WlhJF6oYbgxy1ExBArX4AYNEioJDqf2NzNUePUgcLHR1aXs+XSzv2XbwIzJ/fBN+/Uz/chw/FmyDz4oU1pk6l/XXrKMNZzISEpNTynD2bDEJVcuwYbbt0Ua1c4EfPYILqhf/EqzMNcHnJYFxeMhhrm23B3kGz8ezob4gNz9mXTposRWBkIB55P0K5IuUQHJVSYL9MkTLQ1dHF/of7IU2WYv/D/bjocREOlg6ITYgFAFS0qYhEaSIue1xGkjQJh9wP4ciTIwqDsZBJIRQxK4IDjw4gWZaMG+9vYOudrShbpCwi46gv89ewr7ApaAM9XT1MPjYZBx4dwI33N9BhQwfo6Ojgme8zRMVH4dXXV9h4Y2OOxitWGEvp2tSrF1+h+hEJY0z7cvUFJjIyEgUKFMDWrVthosJodj8/PxRTQ08xdcjNjsx162rh3j17ODiEYM6cS+nWhsut48+J3NBQY0ye3BLR0YZo3/4Nund/mWOZqkDVMhkDJk9uiS9fCqJyZT+MGnUPRkZSlchWta6BgaaYOvU3xMUZo1GjTxgyxF1lstUxV97eAdi1qzfev7dCsWIRWLjwPPT0cvaz/6Oe4eFG+N//OoAxCdauPYnChWNVIlfOjh1VcflyWXTo8Brdur3Ktsz3Pm/ACmWuU2KCAdbPmIKoiF/bt+noJMOhwntUqv4M5VxewyKpcKbzVLt2bZQoQfX8Pn//jFmnZymeK1ukLKa1nqa4f/L5Say+shr6uvr4q8VfuPTmEgIiAzC8wXDULEVXGrvu7cK2O9tgpG+EQXUHYdH5Rehbsy/GNRsHAHji8wQzTs5AZFwk/mjwB0JjQvHE5wnaurRFl6pd4Bfmh+H7hkNPRw8VbSpidrvZWHttLZpXbI5kWTIWX1iMC28uoFWlVljTcw3MjM3ovCQm4vjx4/jRVNDW3+oXL6yxeHEj6OomY/nys7CyilGJXFUQGxuLwYMHIyIiAmZmZiqTm2UYJ9tEREQwACwiIkKlcvfv369SeeqUm1WZ164xBjAmkTD2+LFqZGYXIcefE7nJyYz99hudv6pVGUtIyLlMVaFqmc+e0Tj19aUsNFSlolWqa3Q0Yy4upKubG2Px8SoTzRhT/XlNTmasVi1vBjBmZsbY69eqkfujnhs2pJwPVcqVM2gQyZ8/XzmZMzaOZVNfdMz0VnfYQQYwVrDYN/bXo25sxLmhrNGYXaxIOU9Glyt00zOMZ25uPuziRTq/muD+p/tMJpMp7nsGeTKDYQbMM8hTMwr8hLb+VjdoQHM4Zoxq5aoCddkVWYUvE3PURmJiSuD/8OHcJZ9d1q0DLl+mrOu9e8VdxDinnDhB28qV/UQbRsAYMGQI8OIFYGYWj2PHxJ3RzRgwdSpw/34J6OlRXF9FNZSOky8RqzpxRE78f6X2jIwyfl1OiAo0x4OdHQAAjcbsgZ5hEgoW+45av5/AoMMTMPTEKNQddgjmJfwgTTDEo0d2aN4cKFeOsrJDQtSnGwAM2jUIF15fAGMMn4I+oe+2vpjZZmaqGEJOxrx+Ddy8SZnD48YJrY344MYgR22sWkVJI5aWuTvpQR14eKTEtixbRnUFczOPHtG2QoUgYRXJgFWrqNeunh7w5593ULy40BqlT1wcdQGR1/LcsoUyJ1VNSAhw4wbta7MxeGNdL0jjDVHc9R3K/3b/l+ctSvqh/vBD+OPkKAw8OB7Nm7+HmRnw6RPVbSxenGqARkWpR79JLSbhoPtBdNnYBWuursHK7isxtfVU9RwsC3Tq1Ektcps1a6YWuQCwYQNt27envtmc1HBjkKMWvnwB5syh/aVLedJIdkhMBHr3pj/Bli1V2y5MjDAGPH5M+yVLhgqrTDpcvw5MnEj7y5cDjo7fhVUoA75+pZqHu3eTF6R//8cYMEA9xzp5EkhOpkSfUqXUcwy5gaWuYuPfPBzw6hRVCm86YXuG2aUSCWDt+Bn9+z+Fvz+weTPg6krf1RUr6KLtyBH6TCtDfHx8mo/3q90PuwbuwrHhx7Cm5xq4lXRL9fz27cD792nL9Pf3V06ZDDBUk0u8cOHCapErk1GLSECcZarEADcGOWph7FggJgaoW1f1RWhzOzNmAM+fA4ULU3Hp3F764MsX4Pt38riVKBEutDq/4OsLdO9ORk+fPin1MsXIvXtAtWpkXJubU4Z28+Yf1Xa8o0dpqy6vIEB1JwHA3l71shkDri4fAACo2OoWbJw+Zfm9pqYUNvD0KXDuHBnD/v5At250EffkCX1msoPRf+7Pbt2AKVOy9p64OGDgQFqyTgsbG5vsKZEL8fKiWq2GhnShxPkVEZdI5WgrFy5QHJGuLrnmc7sxo0revrXEkiW0v2ULULSosPpoAvf/knErVQIMDLL576lm4uPJ0JGXu9m0Sbyf561bqaB7UhLg5ERxmA4OtLStDsLDqaMJoD5jMDER+PyZ9suWVb18zztV4Pu4EvQME9Bw9F6lZEgkZPy9ekWlsxYtIiP84kWaj/XrU79emizFZY/L8PjmAT0dPVQqVgl1StdJVXtQ3s0lK2Snk9PvO36Hf7g/2rq0xcjGI7P+xv/49+m/cLV1RUnLkgCAyLhIXHxzEb6hvjDQNUAFmwqo6VATpobU6PeB5wNFb+S0KGlREqWtSuOyx+VfnjMzNoNTMScUMk1ZVvoY+BFvv71FO9fsNbV//py2Tk7iLgwvJNwzyFEpsbH0AwhQoWQnp4xfz0khIgL455+aYIyu9Dt2zPw9uQH5EnH16sLq8TOM0WdZ7mUTY19kgIy/kSPJS5WURIbZvXtkCKqTM2foeI6OQIUKmb9eGT5/Ju+aqal6LozeX6GyLa6dL6NA0fSNlqxgbEw1HF+/pu9u2bIUIiOHMYa1V9ei7uK6eOP/Bk7FnGBmbIZxh8ehyPgiaRpEqmbH7zvwNewrdCTZ++uXJksxav8ovA98D3sLewDAmRdnUG1eNfiH+6OSTSXkM8qHoXuGoubClKKb3iHemH9uPobtHYZbH2+lui27tAxX3l5BTGIMPL97osOGDth9fze8gr3wLuAdll5cipJTSuLa22sKebbmtlh6cSkuvbmULf3lxqCra7belqfgNjJHpcyeTT/gtrYpMYOczGGM2s0FB+eDgwMlK+QV5J7BatWE1eNndu9O6Y186JB6lilzCmNA376kHwDMnQtMm6YZ7+W//9JWnUvE8ji4smXVMyafx5UAAKXqPlOZzDJl6MKBsdQ6Tzo2CdfeXcO18dcUNfwAoJVTK9hPtkc+Q/VXk49NiMW7gHe/9EbOjL+O/gWpTIrJLScDAMJjw9FtczecHnkaTRxTMpOM9Y1x8vlJxf0ebj2w/vp6NKvYDEu6LEkl88+Df6JqiaowNzVHe9f2GHNoDIY3HK7ogjL2t7GwGmeFnfd2orEjxXQa6RthfLPxGHNoDDzmeGRZf24MZg43Bjkq4/FjynwFaGkkt3bKUAdLltDSkK6uDHv36iB/fqE10gzx8eTFAqiV2cvs19RWC9++AWPG0P6cOUDTpoKqky6LFpEhqK9Pn58OHTRzXJmMkmoAoHVr9R1H7jV2dla97OQkXYT7WQEAipT7rHL5PxqCjz4/wtKLS/Fo6qNUhiAAFDErgt41esO5uDMiYiNw/Bn19mvq2BRPfZ/i1odbKGBcANPbTIdEIsGnoE847H4YITEhcLV1RZ+afSD54WDBUcE46H4Qnt89YVvIFsMbDoexAa0lv/xKXzDn4s6QJkux58EeSCBB/9r9U8n4EQ9/D2y+vRm+i30Vj11/dx1xiXFwKpZ66aepY9NUhqZMJsOzL8/QvXp3xWNhMWF4F/AOq3usVjz21PcpAMDV1lXxWLIsGfFJ8chvlPrHsKJNRbz99hbfo77DMr9lmjr/zJMntK1cOUsvz5PwZWKOSkhMpKVNmQzo2RNo21ZojbSHCxdSgsX79XuCWrm/T7yC+/cpAL5oUfUtNWYXxijjMDycamPKS/yIjTNnyAsIUO9vTRmCAPDlS0GEhdEFnzrrhz54QFt1tPuLDi4EMB3o6CXB1DxC9Qf4gcnHJqNWqVqoXjLtWIit/bfC1NAUUpkUMQkxGLhzIP46+hc8/D1gZmSGvQ/2QiKRYN6Zeei2qRsalGuAQXUHYfOtzei3PSVD79TzU3Bb4IZiBYthVONReBvwFtXmVUOiNBEAGV2ORR1hYmiCpOQknHp+CtfeXUvXEASAuWfmor1Le5ibpvQwLGBMXVp6bumJ2x9uK7qTWOS3QFnrlODOj0EfEZMQAwdLB4TGhCI0JhRnX53FmZdnUh3jqc9TlLQomSo+cMfdHUiWJWNo/aGpXitf4o5NzFqnm7AwYwQEkIefewbTh3sGOSph0SIKoLawAFavzvz1HOLTJzKeGQMGDwYaNfoEQGTBc2pEnoDQpIl4EjOOHqUlUD09KtkhxoDzJ0+AHj3oc/PHH3TTJG/fkketTh3ySqoDmYz6UwPqMQajAqmMSX6rUEh01NeVNTgqGNffX8e8DpkXWy2crzBKWlByxugmo1GrVC1Ik6WoWqIqrnhcwazTs+Ax20NhcLVxboM119YAAAIiAtBzS09s6bcFHatQwHGfGn2w9fZWBEQEwK6wHZ76PkVlu8pIkiZh+snpaFiuIUY3GZ2uPonSRJx9dRbreq5L9XjDcg0xs+1MLL24FPWX1kexgsXQt1ZfjP9tPCzyWyhe99TnKSQSCRadX6R47GPQx1/kPfV9igRpAobuHgoZk8EnxAeF8xXG3cl34WKbukG5byh5KCXI2g+GlxcZmI6O4oz5FQvcM8jJMa9fpxSVXrOGikxzMic8nLw54eH0Z7dunXgMIk0hNwbFsgwbHk7JGAB171DH8mROCQkB2rSh0k2//UZeQU0jNwYbNFDfMd69AyIj6Q+8UiXVy4/8zxg0s85Z4khmvA+kwMefl1TT45nvM7jauqJWKVoi0NPVQxuXNph7di5ql6qNstZlkShNxNEnR7Hs0jKMbEQf2JWXV0IikaBzlc5gjOH2h9sYc2gM2rm0g605VVl+6vsURQsURaPljcAYw59N/8zQK3jf8z6i4qNQr0y9VI/r6OhgVrtZ8Fvqh52/74RjUUcsOr8I9ZfWR7IspSLAsy/PUN66PG79dUtxq2pXFZXtUq/XPvvyDH1r9sW01tMwvOFwfAn7gqj4KFQt8avb+UPgBxjpG6FYoaz1Bf78mTyaYotJFhsivOblaBNJSdTpICmJloZ79BBaI+0gPp4q4b95Q0ukYm9tpg78/VOSR377TVhd5CxZAgQFkRdhqnANHjJk82YgIIDqyh05oj7PXEZ4edEfbJ066jvGq1e0dXFRj3c2KZZKuRiaxqle+A/IZDIAZNRlhae+T38xvhKlibj76S7szO1Qb3E9hMWGoaJNRWzovQFdqnYBANz4cAP6uvposboFwmLCYJnfEoPqDsKguoMgkUiQkJSA136vYWZEJVt23tuJGW1moIBJgXR1ee3/GsYGxooM4p8paFIQ/Wv3R//a/TH3zFzMODkDgZGBsClooxjLz8kqx0cch75uyof2W/g3BEQEoGG5hihRuARKFC6BsU3HYtjeYfj8/bOijI2ce5730LBcQ+jq6GbpfHp6ktHP26FmDPcMcnLE4sW0ZFWoELBxY97zbClDcjLQqxdw6xZgZgacPw/kxbqw//5Ly5y1aolj/N++pWRxL1okTuNcKgX++Yf2p0wBCqT/P642IiOBkBCqI6fO0lEf/6uVnV4x5ZyiZ5gEAJAmqteadi7uDAM9AwREBPzynE+IDyrPqQzvYG/FY898n/3iOUuWJSNZloyprabi1l+38Hr2axz64xC6Vuuq8OwlShPRpWoXXB13Fc9nPsflcZcxsvFIRfLIG/83SEpOwon/ncCiTosgkUiw7NKyDHWPS4yDg4VDKu/ho8+P0H97/19ea5nPEoVMCsEyHy0NMcbw1OfpL2Mx0DNIJU+ePPLj69q5UB3Bs6/OpnovYwzX319Ha6esZS0xlmIM1qiRpbfkWbgxyFGaFy9SysesXSuOP3SxI69d9++/gIEBtfNyccn8fbmRY8doq87SJNlh7lxKZqlVS7wJUKdOUccWCwvqiiIEb97Q1sZGvW0mP3ygbZky6pGvZ0hJFdIE9Vr9BUwKYFKLSVh9dTX8w1Naw3kGeaLD+g4YWn+owvMWGhMK7xDvX7xpxgbGqOlQE4+9HysMqee+z9Fnax/FaxqWa4jnvs8Vy7Qh0SFoubolYhJiAJCR6WDpgIImBVHApACmtpyKlVdWIjAyMF3d9XX1YaBnkOqxJz5PcPfTXUTGRSoe+xL6BcsvL8fcDnOhr0fGtU+ID8JiwzItY/PU9ymKFSyGImZFFI8VLVgU1UpU+8UYlGcx96uVtbZWXl5AdLQhDAzy7u9sVuHLxBylkEp1FMvDHTqQp4uTObNm0TKfREKdIRo2FFojYfj+Hbh5k/bV1PM+W3z6RB1fAPIKitXDve6/uPuhQwEjo4xfqy5ev6atOuL4fkTuGVSbMWhExmBSvEEmr8w5s9vNRkHjgmi2shmKFigKXR1dGOgZYFX3VWhQLiXw8nPwZzgXd0aFor+m1u/6fReG7R2Guovrwr6wPfR19bGi24pUxxi5fySqzqsKp2JOSEpOwsKOCxXdQL5Hf0/lURvRaASOPzuObpu6YW77uahf9tc+bU7FnBAQEQCZTAYdHfIdVShaAeWty8NtgRtsCthAX1cf8dJ4zG43Gz3degIA1lxdgxPPTqCiTUXMPzcftz7cwsx2M1PJZoyh44aO+BbxDVZmVmi5uiW299+OogWpunifmn2w/e52tFzdEkf+OAITAxPMPzcfc9vP/aU8T3rIE5AqVxanp19McGOQoxQnTlRQ9M/ly8NZY8OGFE/qhg3iMIKEgDEqiSKTUVB3yZKZv0fdzJhBS7AtWoi3d+nr11TbT1cXGDZMWD0AoGJF9R7H97+ydurqpKJnmAAAkCao3xiUSCQY12wcxjUbl8qw+pmqJarixcwXaT5X1rosrk24hmRZcprxcmbGZtg9aDdkMhkkEskviSHygtFyjPSNcGfSnQz1lsfxnX99Hq2dyZBsUK6BwoBNT5fRTUZnmKUM0Dk58b8T6T7/Z9M/8WfTPwGQ4Tj9xHQ4FXPCHw2ynjr/6BFt3dyy/JY8C18m5mSbp0+BEyfon2D9eqBIkUzewMHRoylZqjNnCvtnLjQLF5IXTiIBFiwQWhvqTiDv37twoaCqZIg8a7hDB+rwIxTyxA51t5qMjqatWdacQNlGX7FMrH5j8EfSMwSzSmaJEzo6OhlmCGcHHR0dnPzfSRx4lHaD66wmceSUfQ/3oZx1OazqsSpbY5PXqeTxgpnDPYOcbJGQAPTvD8hkOujaVbi4JW3i7Fmgd2/yiA0bRsZgXmXr1pRCyatXiyOLWJ413LOneIvSBgcDe/bQvvyiQggYo4tBAKiSvY5m2Sb2v5rC6qoNJ08g0cQysTZjZWaFvYP3CqpDn5p9Mn/RT3h50TKxRMJQvz5fusoM7hnkZIs5c2iZyMwsHuvXC62N+Dl3jpaDExOBrl3zZi1BOadOpRRHnjIFGDVKWH0Ayug+f55Kl4i5l/b69ZTcUqWKemv7ZYanJxARAejrJ6u1Y0xiIi3bA4CpqXqOoSeQZzAjrl69qnKZBw6k7dXLCdflvQhVzIULF1QmSx4D7Oz8TVBPurbAjUFOlnF3p1IyADBwoDsvLp0J584BHTvSH1uXLsC+fRTvlRe5e5e8yDIZ8PvvwPz5QmtEXi55q7lBg4DSpYXVJz3i4qC48JowQdiLCXkfaVvbcLXWN4yJSdlXm2fQSHzGYFBQkNAqZImAgF/L5KiCsLAwlcjZvh1YuZL2Gzf2VInM3I6EyZsKcrJMZGQkChQogK1bt8JEhb9Ufn5+KFYsa1XVNS03MVEH06a1gJ9fAdSq5YNOnY6oXFcxjz+7Mp89K4qVK+tBKtWFm5svRo68Bz29zL9qQuiqbpmvXllj1ao6iIszQOXKfhg37jZ0ddM+F5rU9dGj4li1qh4MDaVYseI0ChWKz7HMnJKW3CtXSmP79uqwsIjGypVn0j132ZGpLIsXN8CLFzZo2vQeBg70UYnMH5HrGhJijFGjOkBXV4Y9ew7lSOZ7nzdghX7tYxsbbYJlE6h10t/rJ0BHV5ZlmZIwkzRl5pT8UTai+/6bmJjA2toa8fHx+P79O5KSkjT2+dfR0YGlpSXy58+P0NBQhIaGZvj+pCQd7N5dBVevUgp69epf0LnzYdjZqb7umarPQWxsLAYPHoyIiAiYqStQNgO4MagEcmNQ1ZN24MAB9OzZU2XyVCl30iTqzlCkCNUZu3RJ9bqKefzZkXniBHnBEhOpht6BA1nvEqFpXdUtc8sWYPhwKrTdoAF5SzO6ftKUrklJlA378SMwfXr2l4g19VlNTqZuKB8/UkHsP//MuUxlCQqi2oLJycCyZWcwfnybHMv8GbmuHz5QsekCBahFYE6YuWkcpLW8f3k8Kc4AS2seBACMv9cLhqZZvxjQu2+fpsycUulN11z1/dekXD8/WoF58IC853PmUDzwoUPi0zUt1GVXZBW+TMzJlAcPgGX/FarftInKyXDSZuNGMgATEylWMDuGYG5CJgMmT6Z6eMnJQJ8+wMWL4mkUv3UrGViWlsDEiUJrkz6nTpGehQrRUraQHDlCc1m1KmBjE6XWY6k7eQRISSABAGk8L0Knzdy6RfG0Dx4ABQtS0t7ffwM5TNzOU/BTxcmQuDjqPSyTAX37Uj9dTtocO0ZeMJkMGDIEOHQobxqCiYnUo1oeXzpzJrB7t3iKvkZHA7Nn0/6MGUD+/MLqkxHyi7Dhw4F8+YTVZd8+2vburf5jyWMG1WkMSnQYdA3EFzfIyTqMUVWCxo3Jc+3kBDx+DLRsKbRm2gc3BjkZMmMG8P49ULQofek46bN8OW3/9z/yoOrl0cJNo0eTF0lfH9i1i7quiCmDevlyIDAQKFWKPJdionjx4or9t28pYcPAQPjMay8v4P59mkdNlJOSewbVlUksJ6U/cR79smoxcXHkoBgzhjzWPXrQZ7RUKaE10074N4CTLvfupRg4W7aotw+ptvP6Nf0Q6enR8oSYjB9NsmULGcISCXD8ONBG9WFlOSIgAFi6lPYXLCBDS0zUq1dPse/oSBdiDx4A1tYCKoWUotyNG2umB7ncM6h2Y9AgEQkwRXKiyD4InAwJCaH+4ffvU4WGZcsonjav/u6qAm4MctIkNpaWhxmjItOtW2f6ljyNvKZVu3bC/3ELxf375BUFgLlzxWcIAhRUHhMDVK9OdR/Fwp07dEHRti3wY4Ji2bJ0ExLGNLtEDGgmZhAAdA2omKE0MQ/Gc4gQKysrxb5MRh6/tEJtjh+n35uCBYF//827Pd5VCV8m5qTJ339T4LqNDWUxctInNpZi4gDxLTtqiuBgSpxJSqLEGXlXDzHx4QOweTPtL1kiHi/CgQO03HX6NBmpkZHUIk/eA1hoXr6kJWtDQ83109akZxAAkvkysSioWbMmAEqcKlGCWhE2bAjcuJH6dYMH04XdvXvcEFQV3Bjk/MKNGykG4JYtdPXFSZ+VK6n8hYODONqrCcGCBcC3b0D58sDOneIxtH5k6lTyNLRuLa4/kLlzyTN49iwV5G7TBujVC6hTh+4LXfxL3hSieXMq9aIJov5LVlZ30oxhvjgAQGy45kt5cH7F1NQUISEUd3zzJsX2dutGFyEjRqR0pZFIqCSUo6Ow+uYmuDHISUVEBC0LM0YZsa1aCa2RuAkKSsmanTs3b5Yy8PVN6ZCxerU4s3MfPKBsbx0dYNEiobVJITKSDB95HJ5UCtSqBXh4AJ8/A9euAc+eCavjnTu01aQBLW9Eoe445UJ2/nQ836LqPRAny7x9C5QpQxfXZmZkBL55Azx5AvTrJ7R2uZc8+NfFyYiRI+nP3cEBWLFCaG3Ez+zZ9GdetSpls+VFZs2icjKNGonTM8oY8NdftN+/P1CpkrD6/Ej+/ICxMS17LVtGy9jyuDxzcyqVIfeGCIFMRq0EAfJUagp5owlzc/Uex7zENwBAsFfxTF7J0RQVKgAvXlBMoJyiRYErV6hszPnzwumWm+HGIEfB/v3A3r3kPdmzR/i6ZmLn3TvKnAXojzwvegXfvqXyMQCwcKE4l4efPrXB7duAkVH2O42oG4kEuHyZYuOioijm9N9/yYB9/57iHF1dhdPv3Tvy0hkbA5Ura+64mvIMWjt6AQD8XgmcpcNRYG5OoTetW1PHIjn585Nn8PlzwVTL1fCoWQ4A4NMnYNgw2p8xA6hdW1h9xE5EhCHat6cYtDZtxBWDpikSEujHWSYDOnQAatQQWqNfSU4GDh50BUClJ4qL0AFUogSwZg3t+/hQ277164H4eMriFbL8jbs7bd3cNFtAPSSEtuo2Bou7vgUkMoR42SLgrYPCOORono8f6TelQgXyjhsbAz170m/L2LH0WTh5MqUQO0e15EFfBudn4uMpSDcqCqhXD5g2TWiNxE1EBLB4cUN8+ADY2QH//CO0RsIwZgwt25ibizfjfNcuwM+vAMzNqT2emPD2pqz9UaOojaGXFxmG799T0sanT1RqRkg+faKtpgP1AwNpq+4yTSYFo1GxJQVF3ljbS70H46QJYxQm0bkzJYoUKwZs305G4IcP5BHs2JHCFAYPposljurhxiAHEyZQkHrhwlTmIq92zsgKcXFUS9Db2xyWlrTEJ0Zvk7q5c8ceGzfSMue+fWTEiI24OPJyA3SBI6as+K9fgRYtyOtnZkaZkaVKkSckPp76rP5Qck0w5Magprs6BATQVhM1O+uPOAAdPSm87laB75MK6j8gJxWnT1NpqufPKSxh6FDqw92hA11orltHyVRfvwJ//CG0trkXbgzmcY4dS8kE3bMndcFbTmqSkqhQ8a1bgLFxIi5eFL4gsBC8fg1s3VodABlbLVoIrFA6rFkD+PkBFhYximLYYmH/fvJyzJgBzJ8P3L5NSUjGxuQBkRddFhq5MVi6tOaOmZwMfP9O+5owBgvZBsKl4xUAwI01fQQv5ZPXePyYwhB0dOg2fTotFYeHA1OmCK1d3oEbg3mYT5+AgQNp/6+/eHPvjJDJqObb2bP0hz1x4k2NBtSLhchIWs5JTNRDs2b0wy1GQkIooQUAunZ9CUNDYfX5mYgIysCWU6IEGYDbtpHhdfiwcLrJkckojgvQrGcwOJiODQAWFpo5Zt2hR6BnlICvz8vj062qmjkoBwBd/Kxbl1Jk/c4dckocPkzfh4gIYfXLK/AFwTxKXBzQpQv9udepA8ybJ7RG4oUxKoK6bx8toR89CkREBAutlsZhjJZvPnwAzM1jsG+fKXR1hdYqbRYsoD8RFxegTh1vALWEVikV8qLSkZGUrLV3LxnZEglQty4tiQnNs2d0DvPlo2LimuLHhJnkZM2EreS3CkO1HufwYGdH3FzfC6XrPYVEh7sINUHz5vT7WqMGlTSLjqaYWWtrKikTGam5Yud5Ge4ZzKOMHEm1nKysgEOHNJspqG3MmEFL6RIJtZ3Lq4W4V60iQ1hfH/jzz7sa89pkF29v8jQAVBBcjCV/KlakcIOvX8lwLVOGkkkAKjTt4iKsfgBw6RJtGzfW7O9DgQIpJYrkJWY0Qc3f/4VhvhgEvS8Jj4saLKqYBwkNpTCOLVvIIz55MuDpSaW63r4FypWj/6fY2LwZky0EIvyZ5Kib7dvppqNDsUs8TjB9Vq5M8ZquX08B/nmRu3dTCjcvXw6UKRMirEIZMH06LcE2bgw0aya0Nunj7EwewQcPKG7Q0JDip6RSqrEmNJcv01bT51BHJ8UTpElj0KRgNGr0PwkAuLR4ELwfiqg6eS7C35+8gHfvkvHXrBmFBVhbk5fcyIg6jnTsSEXYxVi7NDfCjcE8xosXUATTz5kDNGkirD5iZudOYNw42p83Dxg+XFB1BCMoiEoPSaXUZWXkSKE1Sp/nz2k5HwCWLBHfH4m/P9C0KWXu9+kDxMSkfr5aNfLICe3NjIlJaUMnRFcZeecRTRqDAODW5wysHT0RF1YAB4bNxL1tncBkIvsQaTkTJlDNz0OHqMtIaCh5yX+kXDnqNCLmi7nchoQxnjuVXSIjI1GgQAFs3boVJiYmKpPr5+eHYmpw08nlxsbqY9q05ggMzA8XF39MnHhT6T8ddeiq7vFnB3f3Yli1qi4Y00Hr1m/Rq9fzVIaFmHRVp0yZTIKFCxvizRtr2NhEYO7cSzA2lop2/IsWNcTLl0VRq5YPRo26pxKZaZEdmbq6uujWrRsAyryuUYPKZsycSWEaW7fS65KTyQiUf86OHDkCqQp60Skz/mfPimLp0oawsIjB6tWnfjGq1T3/M2c2xcePlvjzzzuoUeOLSmRmlcREXezYUQ03bzoAAKpW/Yphwx7A1DRJ8Zr3Pm/ACqk+5VsSZqJyufmjbAT/TcmXLx/atm2LqCigZEm6KJLHhs6enZJFDFDMoLz7lUwmw/Xr1xEUFKQxXYWSGxsbi8GDByMiIgJmZmYqk5tVuDGoBHJjUNWTduDAAfRUwzrkgQMH0KNHT3TuTK2u7OyAp0/JO5ETmarWVZ3jz47cq1cpLjAxkbKtt2791cMkFl3VLXPaNIppMzUFHj2ikg85lZkROZF79Sp53fT1qV6Zg0POZaaHMjK/fqWl6/fv6fMUHU3FnK9epRJFBw+Sp2T1apWqqpSuY8dSjOiQIbRUpwqZWUEut1cvqnm6dCl5klQhMzswRt/7kSPpd6BcOerGkj8/PT9z0zhIa3nnTLE00Ltvr3K5ld50FcXnH6Dl4PPnU4dBnD9PYUtHjtA5HjoUePJEdd5xMf5WpYW67IqswpeJ8wgrV5IhqK9PSQA5MQRzM48ekdcmMZGq4W/aJL6lRk1x5gwZggD9MVYQcT1emSwlpnHYsBRDUEx4eVGiiPzzlC8fMHEiLWcDwI4dwncckSNPHhFiiRgA7O1p6+0tzPElEjKE794FbGzIgE/LKOZkDx2dX+NhnZyAV6+oA1afPnQxJHSYRF6En/I8wPv3Foo/ylWrgOrVBVVHtLx6Rct40dEUS7l/f97txvL5M9C3L+2PHEmxgmLm0CHydufPL97ah+XLUzmnHxk0iDwjjx5RyZ5GjYTR7Ue+fgU8PMggEiqmWGhjUE61ahRbDdAFdVJSxq/nZJ9ixajI+B9/UFH/+vWF1ihvwo3BXE5QELBmTR0kJ1MmbF5NgsiMjx/JCxIWBtSsCZw4AdEVKtYU8fFktISHU3zb8uVCa5QxiYkpZVn++guwtBRWn/SwsqLC5T9iakoeqPbtySsihrqNV6gZB6pVS0nk0DRyY/DzZ2GO/yPyCyE/P/o95SiPvz/VuP0RiYTCJby8KI6WIwzcGMzFyA3AsDATODryNP308PWlWLPAQKrvdu5cSgBzXuTPP1NiSg8fTl0EWIxs3kx/JNbWFOumbYwcCZiYAP37C60JIV8iFjKTU24M+vhA8PZwPj60zZePiiBzlOPrV/L6tWv3q0G4bRvFiPJ6t8KRRxfB8gazZlEBW0PDJBw7pp+nDZz0CAwkQ9DXl4LEL10CChUSWithYIxauMkvGvbvp2QjMRMVBcydS/szZ5KnTez8mC0JUMu1T5/onCcmJsJAQOtbJkvxDAppDJYoQduYGGotKGSB8+fPaeviwmPZlOXrV6BhQyosLZNROZkfE3HLlaNtZGSkIMkTHO4ZzLWcO5dSLHnIEHc4OgqrjxgJDaWl4Y8f6c/n8mVaysuLMEZZm9Om0f0FC7SjxteKFbR0V6YMxd+JHcYoDq9RI8p4liP32D969EgYxf7jxQuK38qXj8IlhMLQkBI3AOGXin80BjnZ58MHarHo6UllZW7cSL/RwWV5pXOOxuHGYC7E25vijwAqMF27to+g+oiRpCTqBfvqFS39XLkC2NoKrZVwbN9OhhVA28mThdUnKwQEAMuW0f78+dqxxHT/PiWL3L+fdjzely85q6mXU+RLxA0aCB8eIJYkko8faSv3XnGyjq8vXfz4+AClS5MhmNFqQ2JiosZ046SGG4O5DHnwf1gYZQ2LPfhfKP78k36Y8uWjP8DSpYXWSDi8vYExY2h/4ULtibubOZOWXN3cfs3SFStr19K2d29xeqHPn6dtixbC6gGkLBX7CHwtK/dQ+vsLq4e2ERxMqwtfv1Im/d274g87yctwYzCXMWYMFewsXJjqCebVjNiM+Ocfusnj4irl4RakMhlluEZHA3XqUN07beDVq5TOHcuWaUdilL8/fScBYNQoYXVJi8hI+sMGgJYthdUFSDEGfX2F1UMeYvP2rbB6aBPR0VS4//17WnG5dEmcFz+cFLgxmIvYvTulSPK+ffwqLC1u3ABGj6b9+fPFU+RXKNavp3NiYkK9mMVQ2iQzGKOe0TIZeQTr1RNao6yxaRP1d65bF3B1FVqbX7l6lfQrXRooVUpobcTjGZQXW/fwEFYPbSEhgQr2u7uTU+LSpbwdgqMtcGMwl/DyJXVeAGj5rHlzYfURI4GBVNRUKqWSO9oQF6dOvLyAqVNpf+lS7VkqP3OGYjwNDIDFi4XWJmskJJAxCKRcjIiNCxdoKwavIJByMSu0MSj3DHp5UWYzJ30Yoxaely/TBebZs7REzBE/3BjMBYSH05VYXBzF+oi1A4OQMEbGcnAw4OxMda20YWlRXSQlAb160XJOvXopFxJiJz4+Jb5x7Fhxtp1Li0OH6GKkeHFqdyhG5CVlxHIhKTcGBc6pgbU1eXJlMh6DnRkLFqR0bjpxgorWc7QDbgxqOTIZFav19KRllb17eS2stNi7l36c9PVpOd3YWGiNhGXWLODhQ6BgQe36zKxYQR4aG5uUriNihzFqZQZQdr8Ys569vem86uqKpx2YfGkxNJTqDQqFRELfFwBYs4ZK73B+5fjxlO/k+vXC9bXmKIeW/AVw0mPxYuDUKVoyO3qUYjQ4qQkJMVEE7M+axeuFXbtGWcMAsGWL9sSWfvlCcZ4AsGSJ9nSJuXiRatWZmFDrOTFy7Rpt3dyov7MYKFAAkNcfFto72K4dUKUKGaVLlwqrixh59iyll/no0cDQocLqw8k+3BjUYq5eTbkSW7eOeolyUsMYsHmzGyIi6I/ur7+E1khYgoPpR5sxYPBg7SnJAtDcxcZS1nOvXkJrk3XkBuywYeK9WLt6lbZNmgirx8/IvYNCG4MSCTBnDu2vWwdER4jEYhYBAQHUWzs2lkrJ8KV07YQbg1qKry81UJeXBhk8WGiNxMmmTcCrV0VhZETLw3p5uAGj3AD096cCuqtWCa1R1rl2DTh4kP6U167VnnjPW7eAO3fIcz9+vNDapA1jKZ5BsRqDQpeXAahUSo0aFJt992JjodURBbGx5DX98oV+Uw4dytu/sdoMNwa1kLg4ShgJDqali/XrtefPUZN4eVGLNQBYtIh3ENi4ETh5kgyTAwe0o48vACQmUqwdAAwfDlSuLKw+2UHuFRw4MKV4sdh4+5a8O8bGQK1aQmuTGrEkkQCpvYOPb9VGVFAebWL+H/J4dXkJmbNnKQaZo51wY1DLYIz+EOWFpY8f58kQaZGcDAwYQDE+jo6Boizyq0lev6bafADFmWqTQbVyJfXxtbJK6betDbi7U401XV1xhyfIl4jr1hVfkXoxeQYBSoqoWxdIlurj3tbOQqsjKNOnU5y6vj79D4mhNiVHebgxqGVs2ADs2kXZn4cPpxRm5aRm1Srg9m1KMvjjj4daky2rDuLjddGzJ5VladmSWvFpC1++pHhjli4FCmmRM0buFezVCyhZUlhdMkJuDDYW4cqnmDyDQGrv4PPjvyEyQKRBoGrm1q2SWLCA9rduFU8GOkd5JIwxJrQS2kZkZCQKFCiArVu3wsTERGVy/fz8UKxYsXSff/fOAvPnN0Fysg56936G1q3fqUSuMohZ5tevZpg2rQWSknQxePAjlCt3S7S6qltuUpIO5s93w4cPJVGgQBwWLTqPAgUScixXU+NfubIu3N1tUb58EKZPv6pUOIQQn9UvXwpg0qRWkEgYliw5h2LFIlUiVxkykimTSTB0aCfExhpg7tyLKFUqNMcyc8LPct+8scL8+U1QtGgkli8/qxKZquDvv+vCy8sWLVu+Q9++z1Qm973PG7BCsSqTBwCSMBOVyvT56IC9q4YjOVkX7du/QffuL1UmW8z/K+qWGxsbi8GDByMiIgJm8jR6DcKNQSWQG4OqnrQDBw6gZ8+eaT739StlCwcGAt27U8xXVv8YM5KrLGKVKZVS3NPjx+QFO3sWOHhQnLqqW25iInmljh2j+MArV4CaNVUiWiPjv3CB5lBXl0pXODnlXKaqyExm795UfLdz55R+xKqQqwwZyXR3pyz7AgWou0ZW2xFq6vP/6RNQpgyFwsTEKBcbrQ5dJ0++jsWLGyFfPvJaqipWbuamcZDW8laNsP/Qu2+vMpmhvtbY1Wcx4iLyo0sXShhR5aqLWP9XNCFXXXZFVsnDi2faQ1wc0LEjGYJOTrx7RkYsWkSGYKFCtHyRV89TaCh1kjh2DNDTS8aJE6ozBDVBfDwwciTt//mn8oagEHz6RJnPADBtmrC6ZIZ8ibhhQ3H2pS5enLZxcfSZFgvOzgGoVIk6+GzeLLQ2miEuIh8Oj5yGuIj8cHAIUYQrcXIHfCpFDmNUwPPxY8DcnLpoaEsWqKZ5/hyYPZv2160Tb/amuvnwgQy/GzeogPD48bfRtKnQWmWPJUuoq46NTUr3B21h7lzKtGzVSvyJOufP07ZZM2H1SA8jI0ocAsSTRALQRaa8VNCaNeSFz80kJ+nh+PiJCPUpBjPr75gw4RZUGCHFEQHcGBQ5S5dSuzBdXeDIEe3pxappEhKomLJUSmV31LAqoBVcu0a10D5+pOSie/cAF5dvQquVLby8UjqkrFghno4YWeHDB/q+AuI3YiMigLt3ab9lS2F1yQi5d9DPT1g9fqZnT6BoUdIrO6EA2gZjwIX5Q+Hj7gQDkzh0W7sABQvGC60WR8VwY1DEnDwJTJ5M+6tWiTPbTyzMmEHlU6ysqJ5eXlwe3rqVlobDw8kz+PAhUKmS0FplD8aonVV8PBVA7tZNaI2yh9wr2KYNUL260NpkzOXLVIKpfHlxZzvLw6eE7E+cFoaG1FUGoOL2uZWHu9vjxb9NIdFJRofFK2BV1kdolThqgBuDIuX5cwpCZwwYMSIlforzK3fupPQL3bwZsLQUVh9Nk5xMxbWHDCHPaM+ewPXrQJEiQmuWfZ48KYazZ6l2mbYVU3//npJGAPF7BQHg3DnatmolrB6ZYWRE23gROqMGDaJVm1u3qHh3buP9NTdcW0lNh5tM2InS9Z8IrBFHXXBjUIR8/UqehZgYoGlT7Wobpmmio6kKPmNUZLp9e6E10izR0ZRcJO8HOns2sG9fyh+oNhEbC+zeXQUAGbfa1jFmzhzyCrZvD1StKrQ2GcNYSrygmJeIAXEbg8WK0W81kPsSSQLeOuDUlDEA00GVbhdQvZdypX042gE3BkXIy5fUas7RkeIE9fWF1ki8fPxIBpGdXd40mj9/pjhBQ0MqNzRjhnZ5037k0ydAJtOBnZ34s3B/JikJ+PZfaKY2eAUDA6mDkakpUK+e0NpkjIUFYG0t3t/BP/6g71xwsNCaqBa/V2WQFG+EkrWeodmkrVr7u8LJGryltAhp1Yr+4IsW5b0eM6NyZYoV/PqVaqXlNZycqNZX4cLaVTomLZydgaVLz6Jata5alzGvr09lWl69onGIHWtr+t4EB4uvBd3PbNkitAYZ06wZXZTltm5QVbtdRIGi31Hc9R109GRCq8NRM9wYFCm1awutgfZgaZn34gR/pHVroTVQHcbGUq0wptJCItEOQ/BHLCyE1kD70dXNfYagnNL1ngqtAkdD8GViDofD4XA4nDwMNwY5HA6Hw+Fw8jDcGORwOBwOh8PJw3BjkMPhcDgcDicPw41BDofD4XA4nDwMNwY5HA6Hw+Fw8jDcGORwOBwOh8PJw2jUGGzWrBmcnZ3h6uqKevXq4fnz5wCAx48fo1atWqhcuTIcHR2xZMkSxXs8PT3RpEkTuLq6onz58hg/fjxkMiqAKZPJMGrUKJQqVQqlS5fGhg0bUh1v3rx5KFWqFEqVKoXp06enem7btm0oU6YMSpUqhaFDh0Iqlap38BwOh8PhcDgiRKPG4OHDh/Hy5Us8f/4c48ePx8CBAwEAQ4YMwZQpU/Ds2TPcvXsXy5Ytg4eHBwBgwoQJaN++PZ4/f47nz5/j0qVLuHDhAgBg79698PDwwIcPH/Do0SMsWbIE7969AwDcunULBw4cwMuXL+Hh4YHz58/j4sWLAIDPnz9j+vTpuHPnDj59+oSAgABs27ZNk6eCw+FwOBwORxRo1Bgs+ENvtYiICOjopBw+PDwcABATEwMDAwOYm5unei0AxMXFISkpCUWLFgUAHDp0CMOGDYOuri7Mzc3RrVs3HDx4UPHcgAEDYGpqCkNDQwwcOBAHDhwAABw9ehQdO3ZEkSJFIJFIMGzYMMVzHA6Hw+FwOHkJjbej69evH65fvw4ACg/fjh070L59e/z999/4/v07Nm/eDGtrawDAqlWr0LZtW/zzzz8ICwvD9OnTUblyZQCAr68vSvzQB8je3h6PHz9WPNegQYNUzx09ejTd9/n6+qarc0JCAhISEhT35cZpZGSk8iciDWJjY1UuU11ytUWmuuTmdV35+Pn4+fhVP/6EuARIo5NUKjNZDTLz+vyrQ65cFmNMZTKzBROInTt3spYtWzLGGOvVqxc7dOgQY4wxT09PZmtry969e8cYY2zKlClsyZIljDHGAgMDWcWKFdnVq1cZY4xVqlSJPXr0SCFz3bp17Pfff2eMMdamTRt2+PBhxXNnzpxhjRo1YowxNnLkSIVMxhh7/fo1K1myZLq6zpw5kwHgN37jN37jN37jN35T283T0zPH9pUyaNwzKKd///4YNmwYAgMD8e+//2Lfvn0AAAcHB9SoUQP37t1DuXLlsGbNGnh5eQEArKys0LJlS9y8eRONGzeGnZ0dvL29Ub16dQCAj48P7OzsAEDxnJysPpcWU6ZMwbhx4xT3w8PDUaJECfj6+qJAgQIqOR8c9RAZGQlbW1t8+fIFZmZmQqvDyQA+V9oBnyftgc+V9hAREQE7O7tUIXIaRVNWZ0REBPPz81PcP378OCtWrBiTSqWsUKFC7MaNG4wxxr5//86KFy+u8Pg5OTmxnTt3MsYYi46OZlWqVFF4/Hbs2MGaNGnCpFIpCwkJYXZ2dszDw4Mxxtj169dZxYoVWXR0NIuPj2dVq1Zl58+fZ4yR97Fo0aIsICCAyWQy1rZtW/bPP/9kaywAWERERM5PDEet8LnSHvhcaQd8nrQHPlfag9BzpTHPYEREBDp37oy4uDjo6OjA0tISZ86cga6uLg4fPoxx48ZBKpUiKSkJEyZMUHj7du3ahZEjR2L58uVISkpChw4d0KVLFwBA37594e7ujrJlywIAJk6cCEdHRwBAw4YN0a1bNzg5OQEAevTogRYtWgAg7+Ps2bNRp04dyGQyNG7cGIMGDdLUqeBwOBwOh8MRDRLGhIpW1F4iIyNRoEABREREcNe7yOFzpT3wudIO+DxpD3yutAeh54p3IFECQ0NDzJw5E4aGhkKrwskEPlfaA58r7YDPk/bA50p7EHquuGeQw+FwOBwOJw/DPYMcDofD4XA4eRhuDHI4HA6Hw+HkYbgxyOFwOBwOh5OHyTPGoL29PcqXLw9XV1e4urri0KFDAKgEjYODg+LxlStXKt4zbdo0ODk5/fIeAJDJZBg1ahRKlSqF0qVLY8OGDamON2/ePJQqVQqlSpXC9OnTUz23bds2lClTBqVKlcLQoUMhlUrVOHLtQ5m5knPjxg3o6upi3bp1isf4XKkPZeZqwIABKF68uOK5iRMnKp7jc6U+lP1ebdiwAY6OjqhUqRKcnZ0RHx8PgM+VOlFmrrp06aJ43NXVFTo6Ojh16hQAPlfqQpl58vT0RJMmTeDq6ory5ctj/PjxkMlkAASeJ0GqGwpAiRIl2KtXr355vEGDBuz06dNpvicsLEyx7+fnx/Lnz89CQ0MZY4zt2rWLNW7cWFHwukSJEuzt27eMMcZu3rzJKlSokKrg9YULFxhjjHl5ef1S8Hrjxo0qHq12o8xcMcZYZGQkc3NzY61bt2Zr165VPM7nSn0oM1f9+/dPNT8/wudKfSgzVydOnGC1a9dm4eHhjDFqCSqVShljfK7UibK/gXLc3d1Z4cKFWXx8PGOMz5W6UGaeOnTowFavXs0YYywuLo5VqlSJnT17ljEm7DzlGc+gMhQsWFCxHxUVBYlEorDgDx06hGHDhkFXVxfm5ubo1q0bDh48qHhuwIABMDU1haGhIQYOHIgDBw4AAI4ePYqOHTuiSJEikEgkGDZsmOI5Ts4YN24cJk6cCAsLi1SP87nSHvhciYulS5di9uzZirabVlZW0NXVBcDnSsxs374dffr0UZQp4XMlLiIiIgAAcXFxSEpKQtGiRQEIO095yhjs3bs3nJycMHjwYHz//l3x+MSJE+Hk5ITu3bsr+iDLWbNmDcqVK4cqVapg8+bNKFy4MADA19cXJUqUULzO3t4evr6+OXqOk0J25+r8+fMIDw9XdKf5ET5X6kWZ79WKFSvg7OyMNm3a4Pnz54rH+Vypl+zOlYeHBx4/fow6deqgWrVqWLNmjeI5PlfqRZnvFQDEx8fjwIEDqbpq8blSH9mdp1WrVuHIkSOwsbGBjY0N+vXrh8qVKwMQdp7yjDF469YtvHjxAk+fPkXhwoXRv39/AMCePXvw9u1bvHz5EvXq1UObNm1SvW/06NF4//497t27h3nz5iEkJETxnEQiUeyzn8o1KvscJ/tzFR4ejsmTJ2P9+vXpyuRzpR6U+V7Nnz8fnz59wsuXLzFo0CC0bNkS0dHRiuf5XKkHZeZKKpXC09MTt27dwqVLl7BlyxacO3dO8TyfK/Wg7P8VABw7dgxlypRRtGKVw+dK9SgzT5s2bULfvn3h7+8PHx8f7N+/H9euXVM8L9Q85Rlj0M7ODgCgr6+PMWPG4Pbt2wAAW1tbAHQiR44cCS8vr1QGnxwXFxcUK1YMN27cUMjz9vZWPO/j46M4hrLPcYjsztXr16/x7ds3uLm5wd7eHkePHsXMmTMxc+ZMhTw+V+pBme9VsWLFoKNDPz0dO3aEmZkZ3r9/r5DH50o9KDNXdnZ26Nmzp2LZqmXLlnj06JHiOT5X6iEn/1fbtm1L5RWUy+NzpXqUmac1a9YojEYrKyu0bNkSN2/eVMgTbJ6yFWGopURHR6dKBlm+fDmrV68eS0pKYgEBAYrHjx49yuzs7BT3PTw8FPufPn1iVlZWisd27NjBmjRpogj0tLOzUzx3/fp1VrFixVSBnufPn2eMMebp6flLoOc///yjzuFrFcrO1Y/8nKDA50o9KDtXX758Uezfv3+fFS5cWJGgwOdKPSg7V/Pnz2cTJ05kjFGwu5ubGzt+/DhjjM+VusjJb6CXlxczNTVlERERqR7nc6V6lJ0nJycntnPnToWMKlWqsMOHDzPGhJ0nveyZjtpJYGAgOnfujOTkZDDG4ODggN27dyMhIQGtW7dGQkICdHR0YGFhoUjFB4DJkyfj06dP0NfXh56eHtatWwdHR0cAQN++feHu7o6yZcsCoPgA+XMNGzZEt27dFG76Hj16oEWLFgAABwcHzJ49G3Xq1IFMJkPjxo1/uYrLyyg7VxnB50o9KDtXAwYMQGBgIHR1dWFsbIwjR44oEhT4XKkHZedq7Nix+OOPP1ChQgVIJBJ07doVHTt2BMDnSl3k5Ddw+/bt6Ny5M8zMzFI9zudK9Sg7T7t27cLIkSOxfPlyJCUloUOHDopYdyHnifcm5nA4HA6Hw8nD5JmYQQ6Hw+FwOBzOr3BjkMPhcDgcDicPw41BDofD4XA4nDwMNwY5HA6Hw+Fw8jDcGORwOBwOh8PJw3BjkMPhcDgcDicPw41BDieL2Nvbo3z58nB1dVXcPDw8lJJ148YNXLp0SXHf398fjRo1UpWqadKqVSt4enpm6z0DBgzA/PnzFfd37twJiUSCr1+/Kh5r0qQJdu/ejVOnTmHixIkq0zcnDB48WNENIKvI57RChQrQ09NT3O/evbuatBQXN27cgEQiwZgxY1I93q9fP0gkErx+/Vojepw4cULR5UQV+Pv7w83NDTKZTGUynz9/jsOHD6tMnpzx48fjwIEDKpfL4WQGrzPI4WQRe3t7nDlzBpUqVcqxrFmzZiE6OhrLli1TgWbqY9euXdizZw+uXLkCgIzDd+/eYeTIkejTpw8SExNRsGBBvHv3Lte0qfL29ka1atUQHBz8y3NSqRR6euKr1a8KvW7cuIFhw4YhPj4eHz58gIGBASIjI1GlShXEx8fjwoUL2frsK6vTgAEDUK1aNYwcOTJb75Mbe/JWh3JGjBiBmjVrol+/ftnWJT127tyJM2fO4OjRo9l+b0bnJSgoCPXq1cPbt29/GQeHo074p43DUQF9+vRBtWrV4OzsjDZt2iAoKAgA8PHjR9SpUwcuLi5wcnLC33//jefPn2Pjxo3YvXs3XF1dMWfOHHh7e8PCwkIhTyKRYPHixahRowZKliyJHTt2KJ67ffs2nJyc4OzsjFGjRqFEiRJZ8trY29srXtewYUNMmjQJ9erVQ6lSpTBs2LA039OoUSPcu3cPiYmJAIB79+5hypQpih7dDx8+hI2NDezs7LBz505FJf20xg0AiYmJmDhxIpycnODi4qKooJ+cnIwJEyagUqVKqFSpEkaNGqU45oABAzBixAg0bdoUZcuWRadOnRTPnT59Gs7OznB1dUWlSpVw8uRJxfjOnDmT6fuzgr29PebPn49GjRqhf//+CAgIQKNGjVC1alVUrFgRo0ePVjSGnzVrFnr16oW2bduiQoUKaNy4MUJDQwEADx48QNWqVRW6/vPPP/D19YWVlVUqffr37481a9YAANzd3dG4cWNUq1YNVapUwbFjxwBA8XmZM2cO6tWrh7Vr16Z7LgICAtCtWze4ubnB2dkZM2bMSHes+fLlQ+PGjRXvPXjwIDp37pzKeMlI3s/nKr35fvXqFerVq4cqVaqgQoUKWLhwIQDg3LlzOHXqFBYtWgRXV1ds3boVALBkyRJUrFgRTk5O6N27NyIiIhTnu2/fvujUqRNcXV3x7du3VOOJj4/HoUOHFJ9LgL5bCxcuhJubGxwcHHDlyhVMmTIFlStXRsWKFfHmzRvFa/fs2YMaNWqgSpUqaNCgAV6/fo2goCDMmDEDV65cgaurq+K7o4q5srKyQsmSJXH16tV054jDUQvZal7H4eRhSpQowcqVK8dcXFwUt4SEBMYYY9+/f1e8buHChex///sfY4yx0aNHs/nz5yueCwkJYYwxNnPmTDZ+/HjF458/f2aFCxdW3AfAVq1axRijHtn58uVjSUlJLD4+nhUrVozdunWLMcbY8ePHGQD26tWrLOkvf12DBg1Y586dmVQqZbGxscze3p7du3cvzfc5ODiwW7duMW9vb1a7dm0WHR3NypcvzxhjbPbs2Wzw4MGMMeqr2blz5wzHPWvWLNaxY0cWHx/PGGMsKCiIMcbYhg0bWMOGDVl8fDxLSkpiLVu2ZEuWLGGMUa/pWrVqsdjYWCaVSlnt2rXZ/v37GWOMOTs7s7t37zLGGEtOTlb0Cm3QoAE7ffp0pu9Pi5/nokSJEmzo0KFMJpMxxqhHb1RUFGOMMalUylq3bs2OHDnCGKN5dXBwUIy3e/fubMGCBYwxxtq1a8f27dunkBsaGsoYY+y3335TvD8qKooVKlSIBQcHs7CwMFa5cmXm7+/PGKPPmJ2dHfv27Rv7/PkzA5BKXnrnolmzZuzmzZuMMcaSkpJY8+bNFf2Ff+T69eusatWq7Pbt26xFixaMMcZq1KjB3r17l+qzk5G8n89VevMdGRmpeCw2Npa5uroyd3d3xXz92Fv83LlzrHz58orxDBkyhI0YMUJxvosVK8YCAwPTmEnGbt26xdzc3FI9BoCtW7eOMcbY4cOHmYmJCTtz5gxjjLHFixeznj17MsYYu3PnDmvVqpVCz1u3bjFnZ2fGWOrPOmNMZXPFGH2nJk2alOZ4OBx1Ib71Dg5HxBw9ejTNpbJ9+/Zhz549SEhIQFxcHKytrQEA9evXx8SJExETE4MGDRqgadOmWT5W7969AQCOjo7Q09NDQEAAQkNDYWxsjHr16gEAOnbsiIIFCyo1lh49eij6A7u6usLT0xO1atX65XWNGjXCjRs3YGtri4YNG8LU1BSFChXCly9fcOPGDQwePPiX96Q37jNnzmD58uUwNDQEAFhaWgIArly5gkGDBikeHzJkCDZu3KiIQezUqROMjY0BAG5uborYxyZNmmDMmDHo0qULmjVrBldX1zTHmt77s8rvv/8OiUQCgJYjJ02ahDt37oAxhqCgILi6uiq8Ty1btoS5uTkAoFatWnj16pXiPM6bNw+fPn1C48aNUbduXYVsuVf18OHDaNy4MQoXLoxz587By8sLLVu2VOjBGMP79+9RokQJGBkZoWfPnorn0joXMTExuHbtGgIDAxWvi46Oxrt379Ida926deHj44OLFy9CT08P5cqVUzyXFXk/nqv05jsuLg4jRozA8+fPoaOjgy9fvuD58+eoVq3aL/pcuXIFvXv3VnzOhw8fjh49eiieb9OmDaysrNIcy9evXxXfxR+Rx4FWqVIFOjo6aN26NQCgatWqOH78OADg5MmTePHiBWrUqKF43/fv39P0Kt+7dy/HcyXH2toat27dSnM8HI664MYgh5ND7ty5g3Xr1uHevXuwtLTEqVOnMGfOHABA586dUbt2bVy+fBnr1q3DqlWrcO7cuSzJNTIyUuzr6upCKpWCMab4o80paclPi0aNGmHbtm2ws7NDr169AAANGjTAhQsX8ODBA+zdu/eX92R33GmN68f76em6YsUKvHnzBtevX0f//v3Ru3dv/PXXX0qPNT3y5cun2F+xYgVCQkLw8OFDGBkZYdy4cYiPj8/0WGPGjEG7du1w9epVTJ06FZUqVcKGDRvQsWNHjB49GgEBAdixYwemTJmiOCfOzs5pGgbe3t4wNTVNdY7SOhfDhw+HRCKBu7s79PX1szzefv36oU+fPli0aFGqx2UyWabyfjxX6TF16lQUKVIEz549g56eHjp16pTqHP5IZp+NjI5nYmKCuLi4Xx6Xz5Gurq7CUJXfl88XYwwDBw5UfJczQhVzJf/cxsfHKy5cOBxNwWMGOZwcEhYWBjMzM5ibmyMxMRGbNm1SPPfx40dYWVmhX79+WLJkCR48eAAAMDMzU8Q9ZYfy5csjJiYGd+/eBUDei/DwcMXzU6ZMwbp163I2oJ9o1KgRHjx4gFu3bqFOnToAKCZv6dKlsLOzg42NzS/vSW/c7dq1w6pVq5CQkACAPC0A8Ntvv2Hnzp1ITEyEVCrFtm3bsuRFfffuHSpWrIiRI0di+PDhiuOok7CwMFhbW8PIyAiBgYE4cuRIlt73/v17ODg4YMiQIZg6dapCVyMjI3Tt2hUzZ86El5cXmjdvDgCoXbs2Pn78iGvXrilkPH/+PN14x7TORf78+VGvXr1URp2/v3+qbPC0GDhwIMaPH/9LJnV25aU332FhYShevDj09PTw/v17XL58WfGen78bv/32Gw4ePIioqCgAwObNm7PsYXdxccnQC5oRbdu2xe7du/HlyxcAZAg/fvw4TR1VMVdy3r59CxcXF6V05nCUhXsGOZxs0KVLl1Sen7Vr16Jly5bYu3cvypcvj+LFi6N27dq4ePEiAODIkSPYt28fDAwMwBjDxo0bAdDy7p49e+Dq6opOnTplOdPR0NAQ+/fvx7Bhw2BsbIxGjRqhSJEiKFCgAADg5cuXqFq1qkrHbGNjA1tbW5ibm8PU1BQAUKdOHXz+/BmDBg1K8z3pjXvSpEmYNm0aKleuDAMDA9jY2ODcuXMYOnQoPD09UaVKFQBkbI4ePTpT3aZMmaLIfDUxMcE///yjolGnz+jRo9G1a1e4urqiWLFiWTZM1q5di+vXr8PAwAC6urpYvny54rnff/8dbm5umDRpEnR1dQEAhQoVwunTpzFx4kSMHTsWSUlJsLOzw4kTJ9KUn9652LdvH8aNGwcnJycA5EnbuHEjihcvnq6uVlZWmDx5cprPZUdeevP9999/o2/fvti3bx/s7e3RuHFjxXv69u2LAQMG4MiRIxg5ciQGDx6MV69eoVatWpBIJHB2dsaGDRsyONMp2Nvbw9LSEm/evEHFihWz9B459evXx4IFC9C+fXskJycjKSkJrVu3RrVq1dCkSRMsW7YMLi4uqFWrFjZu3KiSuWKMKTzHHI4m4aVlOBwtIyoqCvnz5wcAxTKTt7c3AIpRu3//Pi9LweH8x+HDh3Hz5k2sX79eaFUy5cKFC4r4Yw5Hk3DPIIejZRw7dgwrV66ETCaDoaEhDhw4oDD+Hj58KLB2HI646NatGwIDAyGTyUR/kRQREYHFixcLrQYnD8I9gxwOh8PhcDh5GHFfJnE4HA6Hw+Fw1Ao3BjkcDofD4XDyMNwY5HA4HA6Hw8nDcGOQw+FwOBwOJw/DjUEOh8PhcDicPAw3BjkcDofD4XDyMNwY5HA4HA6Hw8nDcGOQw+FwOBwOJw/DjUEOh8PhcDicPMz/AZ79YJ5FgNDKAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -978,10 +978,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:22.774176Z", - "iopub.status.busy": "2023-08-22T13:45:22.773987Z", - "iopub.status.idle": "2023-08-22T13:45:57.065647Z", - "shell.execute_reply": "2023-08-22T13:45:57.065082Z" + "iopub.execute_input": "2023-09-21T16:08:14.544308Z", + "iopub.status.busy": "2023-09-21T16:08:14.543741Z", + "iopub.status.idle": "2023-09-21T16:08:55.872178Z", + "shell.execute_reply": "2023-09-21T16:08:55.871554Z" } }, "outputs": [ @@ -1104,7 +1104,7 @@ "skipped, not implemented yet\n", "\n", "obs_2 package...\n", - "skipped, not implemented yet\n", + "writing postproc/plsnt_lgr_parent/shps/obs2_stress_period_data.shp... Done\n", "creating postproc/plsnt_lgr_inset/pdfs...\n", "creating postproc/plsnt_lgr_inset/shps...\n", "creating postproc/plsnt_lgr_inset/rasters...\n", @@ -1206,7 +1206,7 @@ "skipped, not implemented yet\n", "\n", "obs_1 package...\n", - "skipped, not implemented yet\n" + "writing postproc/plsnt_lgr_inset/shps/obs1_stress_period_data.shp... Done\n" ] } ], @@ -1227,10 +1227,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-08-22T13:45:57.068727Z", - "iopub.status.busy": "2023-08-22T13:45:57.068334Z", - "iopub.status.idle": "2023-08-22T13:45:58.499712Z", - "shell.execute_reply": "2023-08-22T13:45:58.499245Z" + "iopub.execute_input": "2023-09-21T16:08:55.876414Z", + "iopub.status.busy": "2023-09-21T16:08:55.875073Z", + "iopub.status.idle": "2023-09-21T16:08:57.604737Z", + "shell.execute_reply": "2023-09-21T16:08:57.604000Z" } }, "outputs": [ @@ -1241,9 +1241,7 @@ "summarizing plsnt_lgr_parent input...\n", "skipped, not implemented yet\n", "skipped, not implemented yet\n", - "skipped, not implemented yet\n", "summarizing plsnt_lgr_inset input...\n", - "skipped, not implemented yet\n", "skipped, not implemented yet\n" ] } @@ -1270,7 +1268,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.4" + "version": "3.11.5" } }, "nbformat": 4, diff --git a/latest/_static/documentation_options.js b/latest/_static/documentation_options.js index 433f6ec2..e770d34f 100644 --- a/latest/_static/documentation_options.js +++ b/latest/_static/documentation_options.js @@ -1,6 +1,6 @@ var DOCUMENTATION_OPTIONS = { URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), - VERSION: '0.3.0.post11+g3a6ec42', + VERSION: '0.3.0.post15+gdb03604', LANGUAGE: 'en', COLLAPSE_INDEX: false, BUILDER: 'html', diff --git a/latest/api/index.html b/latest/api/index.html index 65f2b4af..974b3c0b 100644 --- a/latest/api/index.html +++ b/latest/api/index.html @@ -4,7 +4,7 @@ - Code Reference — modflow-setup 0.3.0.post11+g3a6ec42 documentation + Code Reference — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
diff --git a/latest/api/mfsetup.discretization.html b/latest/api/mfsetup.discretization.html index a2989c7a..116a46cb 100644 --- a/latest/api/mfsetup.discretization.html +++ b/latest/api/mfsetup.discretization.html @@ -4,7 +4,7 @@ - mfsetup.discretization module — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.discretization module — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -579,7 +579,7 @@

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/api/mfsetup.fileio.html b/latest/api/mfsetup.fileio.html index 9c7dd3ae..8249b1cc 100644 --- a/latest/api/mfsetup.fileio.html +++ b/latest/api/mfsetup.fileio.html @@ -4,7 +4,7 @@ - mfsetup.fileio module — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.fileio module — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -368,7 +368,7 @@

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/api/mfsetup.grid.html b/latest/api/mfsetup.grid.html index 0928746f..37169fd1 100644 --- a/latest/api/mfsetup.grid.html +++ b/latest/api/mfsetup.grid.html @@ -4,7 +4,7 @@ - mfsetup.grid module — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.grid module — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -177,7 +177,7 @@
wktstr, optional

Well-known text string describing model CRS.

crsobj, optional

A Python int, dict, str, or pyproj.crs.CRS instance -passed to pyproj.crs.CRS.from_user_input() +passed to pyproj.crs.CRS.from_user_input() Can be any of:

    @@ -190,7 +190,7 @@
  • An EPSG integer code [i.e. 4326]

  • A tuple of (“auth_name”: “auth_code”) [i.e (‘epsg’, ‘4326’)]

  • An object with a to_wkt method.

  • -
  • A pyproj.crs.CRS class

  • +
  • A pyproj.crs.CRS class

@@ -615,7 +615,7 @@
gridgrid.StructuredGrid instance
crsobj

A Python int, dict, str, or pyproj.crs.CRS instance -passed to pyproj.crs.CRS.from_user_input() +passed to pyproj.crs.CRS.from_user_input() Can be any of:

    @@ -628,7 +628,7 @@
  • An EPSG integer code [i.e. 4326]

  • A tuple of (“auth_name”: “auth_code”) [i.e (‘epsg’, ‘4326’)]

  • An object with a to_wkt method.

  • -
  • A pyproj.crs.CRS class

  • +
  • A pyproj.crs.CRS class

@@ -668,7 +668,7 @@

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/api/mfsetup.interpolate.html b/latest/api/mfsetup.interpolate.html index e705dd58..5e562dcc 100644 --- a/latest/api/mfsetup.interpolate.html +++ b/latest/api/mfsetup.interpolate.html @@ -4,7 +4,7 @@ - mfsetup.interpolate module — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.interpolate module — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -340,7 +340,7 @@

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/api/mfsetup.mf6model.html b/latest/api/mfsetup.mf6model.html index 0c38fbd5..4b442bfe 100644 --- a/latest/api/mfsetup.mf6model.html +++ b/latest/api/mfsetup.mf6model.html @@ -4,7 +4,7 @@ - MF6model class — modflow-setup 0.3.0.post11+g3a6ec42 documentation + MF6model class — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -334,7 +334,7 @@

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/api/mfsetup.mfmodel.html b/latest/api/mfsetup.mfmodel.html index e6fb6b6f..eda57c5c 100644 --- a/latest/api/mfsetup.mfmodel.html +++ b/latest/api/mfsetup.mfmodel.html @@ -4,7 +4,7 @@ - MFsetupMixin class — modflow-setup 0.3.0.post11+g3a6ec42 documentation + MFsetupMixin class — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -423,7 +423,7 @@

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/api/mfsetup.mfnwtmodel.html b/latest/api/mfsetup.mfnwtmodel.html index 2d2a240a..e1d5bd71 100644 --- a/latest/api/mfsetup.mfnwtmodel.html +++ b/latest/api/mfsetup.mfnwtmodel.html @@ -4,7 +4,7 @@ - MFnwtModel class — modflow-setup 0.3.0.post11+g3a6ec42 documentation + MFnwtModel class — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -235,7 +235,7 @@

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/api/mfsetup.tdis.html b/latest/api/mfsetup.tdis.html index ee1cae1e..cda55d62 100644 --- a/latest/api/mfsetup.tdis.html +++ b/latest/api/mfsetup.tdis.html @@ -4,7 +4,7 @@ - mfsetup.tdis module — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.tdis module — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -345,14 +345,14 @@

Sets up time discretization for a model; outputs a DataFrame with stress period dates/times and properties. Stress periods can be established by explicitly specifying perlen as a list of period lengths in -model units. Or, stress periods can be generated via pandas.date_range(), +model units. Or, stress periods can be generated via pandas.date_range(), using three of the start_date_time, end_date_time, nper, and freq arguments.

Parameters
-
start_date_timestr or datetime-like

Left bound for generating stress period dates. See pandas.date_range().

+
start_date_timestr or datetime-like

Left bound for generating stress period dates. See pandas.date_range().

-
end_date_timestr or datetime-like, optional

Right bound for generating stress period dates. See pandas.date_range().

+
end_date_timestr or datetime-like, optional

Right bound for generating stress period dates. See pandas.date_range().

nperint, optional

Number of stress periods. Only used if perlen is None, or in combination with freq if an end_date_time isn’t specified.

@@ -473,7 +473,7 @@

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/api/mfsetup.tmr.html b/latest/api/mfsetup.tmr.html index 868837d4..30dd8f73 100644 --- a/latest/api/mfsetup.tmr.html +++ b/latest/api/mfsetup.tmr.html @@ -4,7 +4,7 @@ - mfsetup.tmr module — modflow-setup 0.3.0.post11+g3a6ec42 documentation + mfsetup.tmr module — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -215,7 +215,7 @@

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/concepts/index.html b/latest/concepts/index.html index 9eb2b765..8202c364 100644 --- a/latest/concepts/index.html +++ b/latest/concepts/index.html @@ -4,7 +4,7 @@ - Modflow-setup concepts and methods — modflow-setup 0.3.0.post11+g3a6ec42 documentation + Modflow-setup concepts and methods — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
diff --git a/latest/concepts/perimeter-bcs.html b/latest/concepts/perimeter-bcs.html index 8ccdc7d6..ceab9e77 100644 --- a/latest/concepts/perimeter-bcs.html +++ b/latest/concepts/perimeter-bcs.html @@ -4,7 +4,7 @@ - Specifying perimeter boundary conditions from another model — modflow-setup 0.3.0.post11+g3a6ec42 documentation + Specifying perimeter boundary conditions from another model — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
diff --git a/latest/config-file-defaults.html b/latest/config-file-defaults.html index 16d3ed37..e9ab2cb0 100644 --- a/latest/config-file-defaults.html +++ b/latest/config-file-defaults.html @@ -4,7 +4,7 @@ - Configuration defaults — modflow-setup 0.3.0.post11+g3a6ec42 documentation + Configuration defaults — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -256,146 +256,147 @@

MODFLOW-6 configuration defaults142 littoral_zone_buffer_width: 20 143 output_files: 144 lookup_file: '{}_lak_lookup.csv' # output file that maps lake ids to source polygon feature ids -145 connections_lookup_file: '{}_lak_connections_lookup.csv' # output file that maps lake/gw connections to zones -146 -147mvr: -148 options: -149 print_flows: True -150 -151chd: -152 options: -153 print_input: False -154 print_flows: False -155 save_flows: True -156 boundnames: True -157 source_data: -158 shapefile: -159 all_touched: True -160 head: -161 stat: 'min' -162 mfsetup_options: -163 external_files: True # option to write stress_period_data to external files -164 external_filename_fmt: "chd_{:03d}.dat" -165 -166drn: -167 options: -168 print_input: False -169 print_flows: False -170 save_flows: True -171 boundnames: True -172 source_data: -173 shapefile: -174 all_touched: True -175 elev: -176 stat: 'min' -177 cond: -178 stat: 'mean' -179 mfsetup_options: -180 external_files: True # option to write stress_period_data to external files -181 external_filename_fmt: "drn_{:03d}.dat" -182 -183ghb: -184 options: -185 print_input: False -186 print_flows: False -187 save_flows: True -188 boundnames: True -189 source_data: -190 shapefile: -191 all_touched: True -192 bhead: -193 stat: 'min' -194 cond: -195 stat: 'mean' -196 mfsetup_options: -197 external_files: True # option to write stress_period_data to external files -198 external_filename_fmt: "ghb_{:03d}.dat" -199 -200riv: -201 options: -202 print_input: True -203 print_flows: True -204 save_flows: True -205 boundnames: True -206 source_data: -207 shapefile: -208 all_touched: True -209 stage: -210 stat: 'min' -211 cond: -212 stat: 'mean' -213 output_files: -214 rivdata_file: '{}_rivdata.csv' # table with auxillary information on river reaches (routing, source hydrography IDs, etc.) -215 mfsetup_options: -216 default_rbot_thickness: 1. -217 external_files: True # option to write stress_period_data to external files -218 external_filename_fmt: "riv_{:03d}.dat" -219 -220wel: -221 options: -222 print_input: True -223 print_flows: True -224 save_flows: True -225 boundnames: True -226 output_files: -227 lookup_file: '{}_wel_lookup.csv' # output file that maps wel package data to site numbers -228 dropped_wells_file: '{}_dropped_wells.csv' # output file that records wells that were dropped during model setup -229 mfsetup_options: -230 minimum_layer_thickness: 2. -231 external_files: True # option to write stress_period_data to external files -232 external_filename_fmt: "wel_{:03d}.dat" -233 +145 lak_polygons_shapefile: '{}_lak_polygons.shp' +146 connections_lookup_file: '{}_lak_connections_lookup.csv' # output file that maps lake/gw connections to zones +147 connections_shapefile: '{}_lak_cells.shp' +148mvr: +149 options: +150 print_flows: True +151 +152chd: +153 options: +154 print_input: False +155 print_flows: False +156 save_flows: True +157 boundnames: True +158 source_data: +159 shapefile: +160 all_touched: True +161 head: +162 stat: 'min' +163 mfsetup_options: +164 external_files: True # option to write stress_period_data to external files +165 external_filename_fmt: "chd_{:03d}.dat" +166 +167drn: +168 options: +169 print_input: False +170 print_flows: False +171 save_flows: True +172 boundnames: True +173 source_data: +174 shapefile: +175 all_touched: True +176 elev: +177 stat: 'min' +178 cond: +179 stat: 'mean' +180 mfsetup_options: +181 external_files: True # option to write stress_period_data to external files +182 external_filename_fmt: "drn_{:03d}.dat" +183 +184ghb: +185 options: +186 print_input: False +187 print_flows: False +188 save_flows: True +189 boundnames: True +190 source_data: +191 shapefile: +192 all_touched: True +193 bhead: +194 stat: 'min' +195 cond: +196 stat: 'mean' +197 mfsetup_options: +198 external_files: True # option to write stress_period_data to external files +199 external_filename_fmt: "ghb_{:03d}.dat" +200 +201riv: +202 options: +203 print_input: True +204 print_flows: True +205 save_flows: True +206 boundnames: True +207 source_data: +208 shapefile: +209 all_touched: True +210 stage: +211 stat: 'min' +212 cond: +213 stat: 'mean' +214 output_files: +215 rivdata_file: '{}_rivdata.csv' # table with auxillary information on river reaches (routing, source hydrography IDs, etc.) +216 mfsetup_options: +217 default_rbot_thickness: 1. +218 external_files: True # option to write stress_period_data to external files +219 external_filename_fmt: "riv_{:03d}.dat" +220 +221wel: +222 options: +223 print_input: True +224 print_flows: True +225 save_flows: True +226 boundnames: True +227 output_files: +228 lookup_file: '{}_wel_lookup.csv' # output file that maps wel package data to site numbers +229 dropped_wells_file: '{}_dropped_wells.csv' # output file that records wells that were dropped during model setup +230 mfsetup_options: +231 minimum_layer_thickness: 2. +232 external_files: True # option to write stress_period_data to external files +233 external_filename_fmt: "wel_{:03d}.dat" 234 235 -236oc: -237 head_fileout_fmt: '{}.hds' -238 budget_fileout_fmt: '{}.cbc' -239 # example of using MODFLOW 6-style text input -240 period_options: {0: ['save head last', -241 'save budget last'] -242 } -243 -244obs: -245 options: -246 digits: 10 -247 print_input: True -248 source_data: -249 column_mappings: -250 hydlbl: ['obsprefix', 'obsnme', 'common_name'] -251 x_location_col: 'x' # x coordinates in wtm -252 y_location_col: 'y' # y coordinates in wtm -253 mfsetup_options: -254 allow_obs_in_bc_cells: False -255 obsname_character_limit: 40 # modflow 6 limit -256 filename_fmt: '{}.head.obs' # only head obs supported at this point -257 -258ims: -259 options: -260 print_option: 'all' -261 csv_outer_output: 'solver_outer_out.csv' -262 nonlinear: -263 outer_dvclose: 1.e-1 -264 outer_maximum: 200 -265 under_relaxation: 'dbd' -266 under_relaxation_theta: 0.7 -267 under_relaxation_kappa: 0.1 -268 under_relaxation_gamma: 0.0 -269 under_relaxation_momentum: 0.0 -270 backtracking_number: 0 -271 linear: -272 inner_maximum: 100 -273 inner_dvclose: 1.e-2 -274 rcloserecord: [0.0001, 'relative_rclose'] -275 linear_acceleration: 'bicgstab' -276 relaxation_factor: 0.0 # either ILU(0) or ILUT preconditioning -277 preconditioner_levels: 7 -278 preconditioner_drop_tolerance: 0.001 -279 number_orthogonalizations: 0 -280 scaling_method: None -281 reordering_method: None -282 -283mfsetup_options: -284 keep_original_arrays: False +236 +237oc: +238 head_fileout_fmt: '{}.hds' +239 budget_fileout_fmt: '{}.cbc' +240 # example of using MODFLOW 6-style text input +241 period_options: {0: ['save head last', +242 'save budget last'] +243 } +244 +245obs: +246 options: +247 digits: 10 +248 print_input: True +249 source_data: +250 column_mappings: +251 hydlbl: ['obsprefix', 'obsnme', 'common_name'] +252 x_location_col: 'x' # x coordinates in wtm +253 y_location_col: 'y' # y coordinates in wtm +254 mfsetup_options: +255 allow_obs_in_bc_cells: False +256 obsname_character_limit: 40 # modflow 6 limit +257 filename_fmt: '{}.head.obs' # only head obs supported at this point +258 +259ims: +260 options: +261 print_option: 'all' +262 csv_outer_output: 'solver_outer_out.csv' +263 nonlinear: +264 outer_dvclose: 1.e-1 +265 outer_maximum: 200 +266 under_relaxation: 'dbd' +267 under_relaxation_theta: 0.7 +268 under_relaxation_kappa: 0.1 +269 under_relaxation_gamma: 0.0 +270 under_relaxation_momentum: 0.0 +271 backtracking_number: 0 +272 linear: +273 inner_maximum: 100 +274 inner_dvclose: 1.e-2 +275 rcloserecord: [0.0001, 'relative_rclose'] +276 linear_acceleration: 'bicgstab' +277 relaxation_factor: 0.0 # either ILU(0) or ILUT preconditioning +278 preconditioner_levels: 7 +279 preconditioner_drop_tolerance: 0.001 +280 number_orthogonalizations: 0 +281 scaling_method: None +282 reordering_method: None +283 +284mfsetup_options: +285 keep_original_arrays: False

@@ -495,137 +496,140 @@

MODFLOW-NWT configuration defaults 92 source_data: 93 littoral_zone_buffer_width: 20 94 output_files: - 95 lookup_file: 'lak_lookup.csv' - 96 - 97sfr: - 98 - 99chd: -100 options: -101 source_data: -102 shapefile: -103 all_touched: True -104 shead: -105 stat: 'min' -106 ehead: -107 stat: 'min' -108 mfsetup_options: -109 external_files: True # option to write stress_period_data to external files -110 external_filename_fmt: "chd_{:03d}.dat" -111 -112drn: -113 options: -114 source_data: -115 shapefile: -116 all_touched: True -117 elev: -118 stat: 'min' -119 cond: -120 stat: 'mean' -121 mfsetup_options: -122 external_files: True # option to write stress_period_data to external files -123 external_filename_fmt: "drn_{:03d}.dat" -124 -125ghb: -126 options: -127 source_data: -128 shapefile: -129 all_touched: True -130 bhead: -131 stat: 'min' -132 cond: -133 stat: 'mean' -134 mfsetup_options: -135 external_files: False # option to write stress_period_data to external files -136 external_filename_fmt: "ghb_{:03d}.dat" -137 -138riv: -139 source_data: -140 shapefile: -141 all_touched: True -142 stage: -143 stat: 'min' -144 cond: -145 stat: 'mean' -146 output_files: -147 rivdata_file: '{}_rivdata.csv' # table with auxillary information on river reaches (routing, source hydrography IDs, etc.) -148 mfsetup_options: -149 default_rbot_thickness: 1. -150 external_files: True # option to write stress_period_data to external files -151 external_filename_fmt: "riv_{:03d}.dat" -152 -153wel: -154 options: ['SPECIFY', '0.01'] -155 output_files: -156 lookup_file: '{}_wel_lookup.csv' # output file that maps wel package data to site numbers -157 dropped_wells_file: '{}_dropped_wells.csv' # output file that records wells that were dropped during model setup -158 mfsetup_options: -159 minimum_layer_thickness: 2. -160 external_files: True # option to write stress_period_data to external files -161 external_filename_fmt: "wel_{:03d}.dat" -162 -163mnw: -164 defaults: {losstype: 'skin', -165 pumploc: -1, -166 rw: 0.1, # well radius, m -167 rskin: 0.1524, # radius to outer limit of skin -168 kskin: 50 # m/day -169 } -170 -171oc: -172 head_fileout_fmt: '{}.hds' -173 budget_fileout_fmt: '{}.cbc' -174 period_options: {0: ['save head last', -175 'save budget last'] -176 } -177 -178hyd: -179 hydnoh: -999 -180 source_data: -181 column_mappings: -182 hydlbl: ['obsprefix', 'obsnme', 'common_name'] -183 x_location_col: 'x' # x coordinates in wtm -184 y_location_col: 'y' # y coordinates in wtm -185 mfsetup_options: -186 allow_obs_in_bc_cells: False -187 obsname_character_limit: 14 # hydmod limit -188 -189gag: -190 starting_unit_number: 250 -191 lak_outtype: 1 # see gage package documentation for Data Set 2a outtype -192 sfr_outtype: 0 # see gage package documentation for Data Set 2b outtype -193 column_mappings: -194 x_location_col: ['x_utm', 'X'] -195 y_location_col: ['y_utm', 'Y'] -196 -197nwt: -198 headtol: 1.e-6 -199 fluxtol: 6000 -200 maxiterout: 1000 -201 thickfact: 0.00001 -202 linmeth: 2 -203 iprnwt: 1 -204 ibotav: 1 -205 options: 'SPECIFIED' -206 Continue: True -207 dbdtheta: 0.9 -208 dbdkappa: 0.00001 -209 dbdgamma: 0 -210 momfact: 0 -211 backflag: 0 -212 iacl: 2 -213 norder: 0 -214 level: 7 -215 north: 0 -216 iredsys: 0 -217 rrctols: 0 -218 idroptol: 1 -219 epsrn: 0.01 -220 hclosexmd: 1.e-5 -221 mxiterxmd: 85 -222 use_existing_file: -223 -224mfsetup_options: -225 keep_original_arrays: False + 95 lookup_file: '{}_lak_lookup.csv' # output file that maps lake ids to source polygon feature ids + 96 lak_polygons_shapefile: '{}_lak_polygons.shp' + 97 connections_lookup_file: '{}_lak_connections_lookup.csv' # output file that maps lake/gw connections to zones + 98 connections_shapefile: '{}_lak_cells.shp' + 99 +100sfr: +101 +102chd: +103 options: +104 source_data: +105 shapefile: +106 all_touched: True +107 shead: +108 stat: 'min' +109 ehead: +110 stat: 'min' +111 mfsetup_options: +112 external_files: True # option to write stress_period_data to external files +113 external_filename_fmt: "chd_{:03d}.dat" +114 +115drn: +116 options: +117 source_data: +118 shapefile: +119 all_touched: True +120 elev: +121 stat: 'min' +122 cond: +123 stat: 'mean' +124 mfsetup_options: +125 external_files: True # option to write stress_period_data to external files +126 external_filename_fmt: "drn_{:03d}.dat" +127 +128ghb: +129 options: +130 source_data: +131 shapefile: +132 all_touched: True +133 bhead: +134 stat: 'min' +135 cond: +136 stat: 'mean' +137 mfsetup_options: +138 external_files: False # option to write stress_period_data to external files +139 external_filename_fmt: "ghb_{:03d}.dat" +140 +141riv: +142 source_data: +143 shapefile: +144 all_touched: True +145 stage: +146 stat: 'min' +147 cond: +148 stat: 'mean' +149 output_files: +150 rivdata_file: '{}_rivdata.csv' # table with auxillary information on river reaches (routing, source hydrography IDs, etc.) +151 mfsetup_options: +152 default_rbot_thickness: 1. +153 external_files: True # option to write stress_period_data to external files +154 external_filename_fmt: "riv_{:03d}.dat" +155 +156wel: +157 options: ['SPECIFY', '0.01'] +158 output_files: +159 lookup_file: '{}_wel_lookup.csv' # output file that maps wel package data to site numbers +160 dropped_wells_file: '{}_dropped_wells.csv' # output file that records wells that were dropped during model setup +161 mfsetup_options: +162 minimum_layer_thickness: 2. +163 external_files: True # option to write stress_period_data to external files +164 external_filename_fmt: "wel_{:03d}.dat" +165 +166mnw: +167 defaults: {losstype: 'skin', +168 pumploc: -1, +169 rw: 0.1, # well radius, m +170 rskin: 0.1524, # radius to outer limit of skin +171 kskin: 50 # m/day +172 } +173 +174oc: +175 head_fileout_fmt: '{}.hds' +176 budget_fileout_fmt: '{}.cbc' +177 period_options: {0: ['save head last', +178 'save budget last'] +179 } +180 +181hyd: +182 hydnoh: -999 +183 source_data: +184 column_mappings: +185 hydlbl: ['obsprefix', 'obsnme', 'common_name'] +186 x_location_col: 'x' # x coordinates in wtm +187 y_location_col: 'y' # y coordinates in wtm +188 mfsetup_options: +189 allow_obs_in_bc_cells: False +190 obsname_character_limit: 14 # hydmod limit +191 +192gag: +193 starting_unit_number: 250 +194 lak_outtype: 1 # see gage package documentation for Data Set 2a outtype +195 sfr_outtype: 0 # see gage package documentation for Data Set 2b outtype +196 column_mappings: +197 x_location_col: ['x_utm', 'X'] +198 y_location_col: ['y_utm', 'Y'] +199 +200nwt: +201 headtol: 1.e-6 +202 fluxtol: 6000 +203 maxiterout: 1000 +204 thickfact: 0.00001 +205 linmeth: 2 +206 iprnwt: 1 +207 ibotav: 1 +208 options: 'SPECIFIED' +209 Continue: True +210 dbdtheta: 0.9 +211 dbdkappa: 0.00001 +212 dbdgamma: 0 +213 momfact: 0 +214 backflag: 0 +215 iacl: 2 +216 norder: 0 +217 level: 7 +218 north: 0 +219 iredsys: 0 +220 rrctols: 0 +221 idroptol: 1 +222 epsrn: 0.01 +223 hclosexmd: 1.e-5 +224 mxiterxmd: 85 +225 use_existing_file: +226 +227mfsetup_options: +228 keep_original_arrays: False

@@ -643,7 +647,7 @@

MODFLOW-NWT configuration defaults

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/config-file-gallery.html b/latest/config-file-gallery.html index 36234965..60870193 100644 --- a/latest/config-file-gallery.html +++ b/latest/config-file-gallery.html @@ -4,7 +4,7 @@ - Configuration File Gallery — modflow-setup 0.3.0.post11+g3a6ec42 documentation + Configuration File Gallery — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -1501,34 +1501,35 @@

Plainfield Lakes MODFLOW-NWT test case167 filename: 'plainfieldlakes/source_data/all_lakes.shp' 168 id_column: 'HYDROID' 169 include_ids: [600054357, 600054355, 600054434, 600054319] # list of WDNR HYDROIDs -170 bathymetry_raster: -171 filename: 'plainfieldlakes/source_data/pfl_bathymetry.tif' -172 length_units: 'meters' -173 stage_area_volume_file: -174 filename: 'plainfieldlakes/source_data/all_lakes_stage_area_volume.csv' #'../../bcs/lakes/area_stage_vol_Long.csv' -175 length_units: 'meters' -176 id_column: 'hydroid' -177 column_mappings: -178 volume_m3: 'volume' -179 output_files: -180 lookup_file: 'lak_lookup.csv' -181 -182nwt: -183 headtol: 1.e-6 # read remaining parameters from default cfg -184 -185hyd: -186 source_data: -187 filenames: ['plainfieldlakes/source_data/nwis_heads_info_file.csv', -188 'plainfieldlakes/source_data/lake_sites.csv', -189 'plainfieldlakes/source_data/wdnr_gw_sites.csv', -190 'plainfieldlakes/source_data/uwsp_heads.csv' -191 ] -192 x_location_col: 'x_utm' # x coordinates in wtm -193 y_location_col: 'y_utm' # y coordinates in wtm -194 -195chd: -196 perimeter_boundary: -197 parent_head_file: 'plainfieldlakes/pfl.hds' +170 name_column: 'Name' +171 bathymetry_raster: +172 filename: 'plainfieldlakes/source_data/pfl_bathymetry.tif' +173 length_units: 'meters' +174 stage_area_volume_file: +175 filename: 'plainfieldlakes/source_data/all_lakes_stage_area_volume.csv' #'../../bcs/lakes/area_stage_vol_Long.csv' +176 length_units: 'meters' +177 id_column: 'hydroid' +178 column_mappings: +179 volume_m3: 'volume' +180 output_files: +181 lookup_file: 'lak_lookup.csv' +182 +183nwt: +184 headtol: 1.e-6 # read remaining parameters from default cfg +185 +186hyd: +187 source_data: +188 filenames: ['plainfieldlakes/source_data/nwis_heads_info_file.csv', +189 'plainfieldlakes/source_data/lake_sites.csv', +190 'plainfieldlakes/source_data/wdnr_gw_sites.csv', +191 'plainfieldlakes/source_data/uwsp_heads.csv' +192 ] +193 x_location_col: 'x_utm' # x coordinates in wtm +194 y_location_col: 'y_utm' # y coordinates in wtm +195 +196chd: +197 perimeter_boundary: +198 parent_head_file: 'plainfieldlakes/pfl.hds'

@@ -1546,7 +1547,7 @@

Plainfield Lakes MODFLOW-NWT test case

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/config-file.html b/latest/config-file.html index 56ac240b..6d015b7f 100644 --- a/latest/config-file.html +++ b/latest/config-file.html @@ -4,7 +4,7 @@ - The configuration file — modflow-setup 0.3.0.post11+g3a6ec42 documentation + The configuration file — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
diff --git a/latest/contributing.html b/latest/contributing.html index b7b9eb16..dfe2edf4 100644 --- a/latest/contributing.html +++ b/latest/contributing.html @@ -4,7 +4,7 @@ - Contributing to modflow-setup — modflow-setup 0.3.0.post11+g3a6ec42 documentation + Contributing to modflow-setup — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
diff --git a/latest/examples.html b/latest/examples.html index 8945002d..a2f23277 100644 --- a/latest/examples.html +++ b/latest/examples.html @@ -4,7 +4,7 @@ - Examples — modflow-setup 0.3.0.post11+g3a6ec42 documentation + Examples — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
diff --git a/latest/genindex.html b/latest/genindex.html index d9bed468..5b3ed617 100644 --- a/latest/genindex.html +++ b/latest/genindex.html @@ -3,7 +3,7 @@ - Index — modflow-setup 0.3.0.post11+g3a6ec42 documentation + Index — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -38,7 +38,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -716,7 +716,7 @@

Y

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/index.html b/latest/index.html index 3ccb2696..8c9781c3 100644 --- a/latest/index.html +++ b/latest/index.html @@ -4,7 +4,7 @@ - modflow-setup 0.3.0.post11+g3a6ec42 — modflow-setup 0.3.0.post11+g3a6ec42 documentation + modflow-setup 0.3.0.post15+gdb03604 — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -40,7 +40,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -92,7 +92,7 @@
diff --git a/latest/py-modindex.html b/latest/py-modindex.html index a840d2fd..d0cedb86 100644 --- a/latest/py-modindex.html +++ b/latest/py-modindex.html @@ -3,7 +3,7 @@ - Python Module Index — modflow-setup 0.3.0.post11+g3a6ec42 documentation + Python Module Index — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -175,7 +175,7 @@

Python Module Index

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/references.html b/latest/references.html index b0b426c2..3959bd0e 100644 --- a/latest/references.html +++ b/latest/references.html @@ -4,7 +4,7 @@ - References — modflow-setup 0.3.0.post11+g3a6ec42 documentation + References — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -40,7 +40,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
diff --git a/latest/release-history.html b/latest/release-history.html index afcf5d34..2989b26a 100644 --- a/latest/release-history.html +++ b/latest/release-history.html @@ -4,7 +4,7 @@ - Release History — modflow-setup 0.3.0.post11+g3a6ec42 documentation + Release History — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
diff --git a/latest/search.html b/latest/search.html index 105181f8..7fe76f77 100644 --- a/latest/search.html +++ b/latest/search.html @@ -3,7 +3,7 @@ - Search — modflow-setup 0.3.0.post11+g3a6ec42 documentation + Search — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
@@ -123,7 +123,7 @@

© Copyright 2019-2023, Modflow-setup developers |. - Last updated on Aug 22, 2023. + Last updated on Sep 21, 2023.

diff --git a/latest/searchindex.js b/latest/searchindex.js index aa809499..9a038b52 100644 --- a/latest/searchindex.js +++ b/latest/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["10min", "api/index", "api/mfsetup.discretization", "api/mfsetup.fileio", "api/mfsetup.grid", "api/mfsetup.interpolate", "api/mfsetup.mf6model", "api/mfsetup.mfmodel", "api/mfsetup.mfnwtmodel", "api/mfsetup.tdis", "api/mfsetup.tmr", "concepts/index", "concepts/perimeter-bcs", "config-file", "config-file-defaults", "config-file-gallery", "contributing", "examples", "index", "input/basic-stress", "input/dis", "input/ic", "input/index", "input/lak", "input/obs", "input/oc", "input/props", "input/sfr", "installation", "notebooks/Pleasant_lake_lgr_example", "philosophy", "references", "release-history", "structure", "troubleshooting"], "filenames": ["10min.rst", "api/index.rst", "api/mfsetup.discretization.rst", "api/mfsetup.fileio.rst", "api/mfsetup.grid.rst", "api/mfsetup.interpolate.rst", "api/mfsetup.mf6model.rst", "api/mfsetup.mfmodel.rst", "api/mfsetup.mfnwtmodel.rst", "api/mfsetup.tdis.rst", "api/mfsetup.tmr.rst", "concepts/index.rst", "concepts/perimeter-bcs.rst", "config-file.rst", "config-file-defaults.rst", "config-file-gallery.rst", "contributing.rst", "examples.rst", "index.rst", "input/basic-stress.rst", "input/dis.rst", "input/ic.rst", "input/index.rst", "input/lak.rst", "input/obs.rst", "input/oc.rst", "input/props.rst", "input/sfr.rst", "installation.rst", "notebooks/Pleasant_lake_lgr_example.ipynb", "philosophy.rst", "references.rst", "release-history.rst", "structure.rst", "troubleshooting.rst"], "titles": ["10 Minutes to Modflow-setup", "Code Reference", "mfsetup.discretization module", "mfsetup.fileio module", "mfsetup.grid module", "mfsetup.interpolate module", "MF6model class", "MFsetupMixin class", "MFnwtModel class", "mfsetup.tdis module", "mfsetup.tmr module", "Modflow-setup concepts and methods", "Specifying perimeter boundary conditions from another model", "The configuration file", "Configuration defaults", "Configuration File Gallery", "Contributing to modflow-setup", "Examples", "modflow-setup 0.3.0.post11+g3a6ec42", "Specifying boundary conditions with the \u2018basic\u2019 MODFLOW stress packages", "The Discretization Package", "Specifying Initial Conditions", "Input instructions by package", "The Lake (LAK) Package", "Head observations", "MODFLOW Output Control", "Specifying Aquifer Properties", "The Streamflow Routing (SFR) Package", "Installation", "Pleasant Lake Example", "Philosophy", "References", "Release History", "Basic program structure and usage", "Troubleshooting"], "terms": {"thi": [0, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 19, 20, 21, 23, 24, 25, 26, 27, 29, 30, 33], "i": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34], "short": [0, 16], "introduct": 0, "help": [0, 12, 16], "you": [0, 16, 29, 34], "up": [0, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 29, 30, 32, 34], "run": [0, 2, 18, 28], "A": [0, 2, 4, 9, 16, 19, 28, 29, 30, 31, 33], "complet": [0, 15, 16, 28, 30], "workflow": [0, 15, 28, 29, 30, 33], "can": [0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 25, 28, 30, 32, 33, 34], "found": [0, 15, 28, 29, 30], "pleasant": [0, 12, 17, 18], "lake": [0, 6, 7, 14, 16, 17, 18, 22, 30, 31, 32], "exampl": [0, 2, 3, 4, 6, 9, 12, 13, 14, 15, 16, 18, 19, 25, 28, 30, 32, 34], "addit": [0, 2, 12, 16, 18, 19, 28], "galleri": [0, 18, 19, 30, 32], "depend": [0, 6, 8, 13, 18, 30, 33, 34], "problem": [0, 16, 28], "might": [0, 8, 15, 30, 34], "simpli": [0, 5, 15, 19, 28, 30, 33], "box": [0, 4, 15, 29, 32], "enclos": [0, 13], "featur": [0, 4, 13, 14, 15, 16, 19, 28, 29, 30, 32], "interest": [0, 12, 15, 16, 29], "ani": [0, 2, 3, 4, 6, 8, 9, 15, 16, 19, 25, 28, 29], "relev": [0, 12, 19], "hydrolog": [0, 15, 29], "boundari": [0, 2, 6, 7, 8, 11, 15, 18, 29, 30, 32], "an": [0, 2, 3, 4, 9, 10, 12, 14, 15, 16, 18, 19, 29, 30, 32, 33], "irregular": [0, 5, 12, 32], "shape": [0, 2, 3, 4, 5, 10, 29], "surround": [0, 7], "watersh": 0, "other": [0, 2, 6, 9, 10, 12, 14, 15, 16, 18, 19, 28, 29, 30, 31, 32, 33], "In": [0, 2, 4, 9, 12, 13, 15, 16, 19, 28, 29, 30, 33], "either": [0, 2, 12, 13, 14, 15, 16, 28, 29], "case": [0, 4, 9, 12, 16, 18, 19, 28, 29, 33, 34], "mai": [0, 9, 12, 16, 19, 28, 30], "download": [0, 15, 29], "hydrographi": [0, 14, 15], "first": [0, 2, 7, 9, 12, 15, 16, 19, 25, 28], "ensur": [0, 3], "includ": [0, 2, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 18, 19, 25, 28, 29, 30, 32], "all": [0, 2, 4, 6, 9, 12, 14, 15, 16, 19, 25, 28, 30, 32, 33], "import": [0, 16, 28, 29, 33], "The": [0, 2, 5, 7, 9, 12, 14, 15, 16, 18, 19, 22, 25, 28, 29, 30, 31, 32, 33], "should": [0, 2, 12, 16, 19, 28, 32, 34], "referenc": [0, 19, 29], "project": [0, 4, 14, 15, 16, 19, 28, 29, 30], "cr": [0, 1, 4, 15, 19, 29, 32], "ideal": [0, 28], "length": [0, 2, 4, 5, 6, 8, 9, 12, 15, 19, 29, 32], "unit": [0, 2, 4, 7, 9, 12, 13, 14, 15, 19, 25, 29, 32], "meter": [0, 12, 13, 14, 15, 19, 29], "author": [0, 4, 29], "code": [0, 3, 4, 8, 18, 19, 29, 30, 31, 32, 34], "epsg": [0, 4, 15, 29, 32], "unambigu": 0, "provid": [0, 5, 10, 12, 15, 16, 28, 29, 33], "two": [0, 2, 5, 12, 14, 15, 16, 19, 28, 29, 33, 34], "wai": [0, 12, 15, 16, 28, 29, 30], "grid": [0, 1, 2, 5, 6, 7, 10, 12, 13, 15, 18, 30, 31, 32, 33], "x": [0, 2, 4, 5, 12, 14, 15, 19, 29, 31], "y": [0, 4, 5, 12, 14, 15, 19, 29], "origin": [0, 15, 16, 28, 29], "lower": [0, 4, 13, 15, 19], "left": [0, 4, 9, 15, 29], "upper": [0, 4, 13, 15, 32], "corner": [0, 4, 15], "space": [0, 4, 13, 15, 16, 19, 28, 32], "number": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 19, 25, 28, 29], "row": [0, 2, 4, 5, 7, 9, 10, 19, 29], "column": [0, 2, 4, 5, 6, 7, 8, 9, 10, 15, 19, 29], "rotat": [0, 1, 4, 14, 15, 29], "As": [0, 16, 19, 25, 30], "rectangular": 0, "specifi": [0, 2, 3, 4, 7, 9, 11, 14, 15, 18, 22, 25, 28, 29, 30, 32, 33], "discret": [0, 1, 3, 4, 5, 6, 7, 8, 9, 13, 15, 18, 19, 22, 29, 30, 33], "polygon": [0, 1, 4, 12, 14, 15, 19, 29, 32], "shapefil": [0, 4, 7, 12, 13, 14, 15, 18, 19, 30, 32], "trace": 0, "hand": 0, "some": [0, 3, 12, 15, 16, 18, 20, 21, 23, 24, 26, 27, 28, 29, 30, 32], "mean": [0, 5, 6, 9, 12, 13, 14, 15, 19, 28, 30, 34], "buffer": [0, 4, 7, 12, 15, 29], "distanc": [0, 15, 29], "subsequ": [0, 2, 9, 15, 19, 28], "di": [0, 2, 3, 7, 9, 10, 12, 13, 14, 15, 18, 19, 22, 29, 32], "packag": [0, 2, 3, 6, 7, 8, 12, 14, 15, 16, 18, 30, 32, 34], "don": [0, 13, 16, 28], "t": [0, 9, 13, 16, 18, 19, 28, 29, 31, 32], "forget": [0, 16, 28], "about": [0, 4, 16, 28, 33], "farfield": [0, 29], "usual": [0, 3, 7, 9, 33], "advis": 0, "compet": 0, "sink": 0, "outsid": [0, 5, 15], "immedi": 0, "nearfield": 0, "so": [0, 2, 3, 6, 8, 15, 16, 28], "solut": [0, 2, 12, 14, 15, 19, 28, 29, 30, 32, 34], "over": [0, 4, 30], "perimet": [0, 7, 11, 15, 18, 19, 29, 32], "condit": [0, 9, 11, 15, 18, 22, 29, 30, 32], "recogn": 0, "surfac": [0, 2, 12, 15, 19], "doesn": [0, 9, 18], "alwai": [0, 12, 16, 28], "coincid": [0, 2, 12], "exactli": [0, 19], "groundwatersh": 0, "see": [0, 4, 7, 9, 13, 14, 15, 16, 19, 25, 28, 32], "haitjema": [0, 31], "1995": [0, 31], "anderson": [0, 14, 15, 31], "2015": [0, 15, 31], "more": [0, 13, 16, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34], "info": [0, 3, 9, 15, 16, 28], "need": [0, 2, 6, 8, 9, 10, 12, 13, 15, 16, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 33, 34], "state": [0, 6, 8, 9, 15, 19, 31], "dataset": [0, 15, 29, 32], "delini": 0, "variou": [0, 4, 13, 29, 33, 34], "scale": [0, 29, 30, 31], "desir": [0, 2, 16, 18, 30], "requir": [0, 4, 8, 10, 12, 15, 19, 28, 29, 30, 32], "iter": [0, 14, 15], "we": [0, 12, 16, 29], "start": [0, 6, 7, 8, 9, 12, 14, 15, 19, 29, 32, 34], "correspond": [0, 6, 7, 8, 9, 15, 16, 19], "initi": [0, 9, 15, 16, 18, 19, 22], "from": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18, 19, 25, 29, 30, 32, 33, 34], "mfsetup": [0, 1, 6, 7, 8, 12, 15, 16, 19, 28, 29, 32, 33], "mf6model": [0, 1, 2, 3, 5, 7, 8, 13, 14, 15, 16, 29, 33], "def": 0, "setup_grid": [0, 1, 7, 14, 15, 29, 32], "cfg_file": 0, "just": [0, 4, 15, 19, 28], "set": [0, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 25, 28, 29, 30, 32], "For": [0, 2, 3, 4, 7, 9, 12, 13, 15, 16, 19, 25, 28, 30, 34], "try": [0, 12, 15, 16, 28], "differ": [0, 2, 3, 12, 13, 15, 18, 19, 25, 28, 29, 30], "m": [0, 3, 4, 6, 7, 9, 10, 14, 15, 16, 28, 29, 31], "cfg": [0, 3, 6, 7, 8, 13, 15, 29, 33], "modelgrid": [0, 4, 5, 7, 10, 32], "write_shapefil": [0, 1, 4, 29], "postproc": [0, 14, 29], "shp": [0, 4, 12, 13, 14, 15, 19, 29], "__name__": 0, "__main__": 0, "initial_config_poli": 0, "yaml": [0, 3, 6, 7, 14, 15, 16, 18, 28], "initial_grid_setup": 0, "py": [0, 9, 16], "around": [0, 5, 15, 29, 30], "pre": [0, 16, 28, 33], "simul": [0, 2, 3, 6, 8, 9, 13, 14, 15, 19, 29, 31, 32], "sim_nam": [0, 13, 14, 15], "shellmound": [0, 12, 13, 16, 18, 19], "mf6": [0, 3, 5, 6, 7, 8, 10, 13, 14, 15, 25, 29, 32, 33], "sim_w": [0, 13, 14, 15], "modelnam": [0, 6, 8, 13, 14, 15], "option": [0, 2, 3, 4, 9, 10, 12, 13, 14, 15, 16, 18, 19, 25, 28, 29, 30, 32], "print_input": [0, 13, 14, 15, 19], "true": [0, 2, 3, 4, 7, 9, 10, 12, 13, 14, 15, 19, 29], "save_flow": [0, 13, 14, 15, 19], "newton": [0, 13, 14, 15, 31], "source_data": [0, 14, 15, 19, 29, 32], "features_shapefil": [0, 4, 15], "filenam": [0, 3, 4, 6, 7, 13, 15, 19, 29], "test": [0, 3, 18, 19, 28, 29, 30, 32], "data": [0, 2, 3, 5, 7, 9, 12, 13, 14, 15, 18, 19, 28, 29, 30, 31, 32, 33], "tmr_parent": [0, 12, 15, 19], "gi": [0, 4, 12, 15, 19, 28], "irregular_boundari": [0, 12, 15, 19], "0": [0, 2, 4, 7, 9, 10, 12, 13, 14, 15, 19, 25, 28, 29, 31, 34], "dxy": [0, 4, 15], "1000": [0, 4, 13, 14, 15], "uniform": [0, 2, 9, 19, 32], "5070": [0, 15, 19], "nad83": 0, "conu": 0, "alber": 0, "snap_to_nhg": [0, 4, 14, 15], "snap": [0, 15], "usg": [0, 15, 18, 29], "nation": [0, 4, 15, 31], "hydrogeolog": [0, 4, 15, 31], "To": [0, 2, 16, 28, 29], "us": [0, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15, 18, 19, 30, 31, 32, 33, 34], "dimens": [0, 2, 4, 5, 9, 13, 14, 15, 29], "block": [0, 3, 9, 12, 14, 15, 19, 25, 29, 30, 32], "like": [0, 6, 9, 16, 19, 29, 30], "one": [0, 4, 5, 8, 9, 15, 16, 19, 29, 30, 32], "could": [0, 2, 15, 19, 25, 29, 30], "substitu": 0, "abov": [0, 2, 9, 13, 15, 16, 19, 25, 28, 33], "xoff": [0, 4, 14, 15], "501405": [0, 15], "yoff": [0, 4, 14, 15], "1175835": [0, 15], "nrow": [0, 2, 4, 10, 13, 15, 29], "30": [0, 13, 15, 28], "ncol": [0, 2, 4, 10, 13, 15, 29], "35": [0, 13, 15], "now": [0, 32], "initial_setup_script": 0, "repeatedli": 0, "explor": 0, "next": [0, 2, 12, 15, 16], "let": 0, "": [0, 2, 3, 7, 9, 12, 15, 16, 19, 29, 31, 32], "accept": [0, 16], "linestr": [0, 15, 19], "ha": [0, 4, 7, 9, 14, 15, 16, 28, 29, 30, 33, 34], "rout": [0, 14, 15, 18, 22, 28, 29], "indic": [0, 2, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19, 28], "how": [0, 7, 15, 19, 25, 28], "line": [0, 13, 15, 16, 19, 28, 30, 32], "connect": [0, 4, 10, 14, 15, 16], "anoth": [0, 4, 5, 9, 15, 16], "obtain": [0, 16], "plu": [0, 2], "There": [0, 16, 28], "ar": [0, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 25, 29, 30, 32, 33, 34], "type": [0, 13, 15, 16, 28], "map": [0, 7, 12, 13, 14, 15, 18, 19, 29, 30], "100": [0, 14, 15], "000": 0, "therefor": [0, 9, 15, 16, 33], "suitabl": [0, 28], "larger": [0, 12, 13], "region": [0, 15, 29, 30, 31], "cell": [0, 2, 4, 6, 7, 8, 10, 13, 14, 15, 19, 25, 29, 30, 32], "size": [0, 1, 2, 4, 5, 7, 29], "1km": 0, "best": [0, 4, 18, 29], "choic": [0, 28, 30], "greater": [0, 2, 9, 29], "than": [0, 2, 9, 15, 16, 19, 28, 29, 30, 34], "approx": [0, 14, 15], "km": 0, "where": [0, 2, 3, 5, 7, 9, 12, 13, 15, 16, 19, 25, 28, 32], "have": [0, 2, 3, 7, 8, 9, 10, 12, 15, 16, 19, 28, 29, 32], "too": 0, "mani": [0, 16, 19, 28, 30], "epa": 0, "high": [0, 7, 14, 15, 30, 31], "resolut": [0, 29], "finer": 0, "24": [0, 32], "better": [0, 28, 32], "smaller": [0, 9, 28, 29], "less": [0, 2, 13, 15, 29, 30], "align": [0, 12, 15, 32], "between": [0, 2, 4, 5, 6, 7, 9, 12, 13, 15, 16, 28, 29, 30, 32, 33], "channel": [0, 28], "manag": [0, 28, 29, 33], "won": [0, 28], "prohibit": 0, "access": 0, "via": [0, 9, 12, 13, 15, 16, 19, 28, 29, 32], "current": [0, 12, 15, 16, 19, 28, 29, 30, 31, 34], "which": [0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 15, 16, 19, 28, 29, 30, 32, 33, 34], "come": [0, 28], "geodatabas": 0, "gdb": 0, "must": [0, 2, 4, 5, 9, 10, 12, 13, 15, 16, 19, 25, 28], "input": [0, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 18, 30, 32], "sfrmaker": [0, 15, 19, 29, 32], "network": [0, 15, 30], "multipl": [0, 5, 9, 12, 19, 28, 29], "combin": [0, 2, 9, 16, 19], "undesir": 0, "storm": 0, "sewer": 0, "cull": [0, 15], "document": [0, 9, 14, 25, 28, 29, 31, 32], "read": [0, 3, 6, 9, 12, 13, 14, 15, 18, 28, 29, 30], "applic": [0, 16, 28, 29], "reason": [0, 16], "larg": [0, 19, 28, 29], "time": [0, 6, 8, 9, 10, 13, 15, 16, 19, 28, 29, 30, 34], "drainag": 0, "basin": [0, 15], "slow": 0, "being": [0, 12, 28, 29, 32], "top": [0, 1, 2, 3, 4, 6, 7, 10, 13, 14, 15, 16, 29, 33], "rel": [0, 3, 7, 13, 14, 15, 16], "coars": 0, "sampl": [0, 6, 15, 18, 19, 30], "fine": [0, 29], "dure": [0, 14, 15, 19], "dens": 0, "contain": [0, 2, 4, 13, 14, 16, 19, 28, 29, 33], "sfr": [0, 2, 6, 7, 13, 14, 15, 18, 19, 22, 29, 30, 32], "reach": [0, 2, 14, 15, 19, 29], "especi": [0, 13, 16, 28, 34], "eastern": 0, "u": [0, 29, 30, 31], "ephemer": 0, "diverg": 0, "distributari": 0, "downstream": [0, 15, 19, 29], "confluenc": 0, "modul": [0, 16, 33], "resolv": [0, 16, 28], "issu": [0, 16, 32], "produc": [0, 2, 7, 9, 10, 12, 16, 28, 30], "singl": [0, 3, 4, 7, 9, 12, 15, 18, 19, 28, 29, 30], "width": 0, "elev": [0, 2, 4, 10, 13, 14, 15, 19, 29, 30], "inform": [0, 6, 7, 8, 9, 13, 14, 15, 16, 19, 28, 29, 32, 33], "remov": [0, 2, 3, 28, 30, 32], "function": [0, 2, 3, 4, 5, 7, 9, 16, 29, 32, 33], "avail": [0, 28, 31], "typic": [0, 2, 19], "degre": [0, 4], "tile": 0, "If": [0, 2, 4, 5, 7, 9, 10, 16, 19], "uget": 0, "link": [0, 28, 29], "site": [0, 9, 14, 15, 19, 28, 30], "autom": [0, 6, 16, 18, 30, 33], "altern": [0, 10, 12, 13, 15, 28, 29, 30, 33], "follow": [0, 4, 10, 12, 13, 14, 16, 19, 28, 29, 34], "consist": [0, 19, 25, 29, 32], "format": [0, 3, 4, 6, 7, 10, 14, 15, 16, 18, 19, 28, 30, 32], "amen": 0, "manual": [0, 6], "locat": [0, 2, 3, 4, 5, 6, 7, 9, 13, 15, 16, 18, 19, 28, 30], "88": 0, "87": 0, "west": 0, "43": 0, "44": [0, 31], "north": [0, 14, 29], "http": [0, 3, 4, 5, 7, 14, 15, 16, 19, 28, 31, 34], "prd": 0, "tnm": 0, "s3": 0, "amazonaw": 0, "com": [0, 3, 5, 7, 14, 15, 16, 28, 34], "stagedproduct": 0, "13": [0, 13, 15, 29], "tiff": 0, "n44w088": 0, "usgs_13_n44w088": 0, "tif": [0, 13, 15, 19, 29], "onc": [0, 5, 7, 16, 28], "made": [0, 6, 8, 15, 16, 28, 29, 30], "allow": [0, 2, 3, 4, 12, 13, 15, 16, 29, 30, 32], "them": [0, 3, 5, 7, 15, 16, 25, 30], "treat": 0, "without": [0, 10, 13, 16, 28], "modif": 0, "qgi": 0, "load": [0, 1, 3, 6, 7, 8, 13, 14, 15, 18, 30], "verifi": [0, 2, 16], "thei": [0, 2, 3, 4, 7, 12, 13, 14, 15, 16, 19, 30], "correct": [0, 3, 16], "cover": 0, "whole": [0, 4, 13], "menu": [0, 28], "select": [0, 16, 28], "miscellan": 0, "vrt": [0, 32], "extens": [0, 16, 28, 32], "point": [0, 4, 5, 13, 14, 15, 16, 19, 28, 29], "geotiff": [0, 13, 15, 19, 32], "continu": [0, 9, 14, 15, 16, 19, 28, 29], "perhap": [0, 28], "water": [0, 6, 12, 14, 15, 19, 29, 31, 32], "fill": [0, 2, 5, 25], "out": [0, 12, 14, 15, 16, 25, 28, 30, 34], "rest": 0, "later": [0, 30], "detail": [0, 7, 13, 14, 15, 16, 25, 28, 32], "layer": [0, 2, 3, 4, 7, 10, 12, 13, 14, 15, 19, 30, 32], "well": [0, 4, 6, 7, 8, 9, 12, 14, 15, 28, 29, 30, 33], "observ": [0, 6, 15, 18, 22, 29, 32], "ad": [0, 2, 19, 28, 29, 30, 32], "stepwis": 0, "approach": [0, 16, 30], "ic": [0, 6, 13, 14, 15, 18, 22, 29, 32], "np": [0, 2, 4, 29], "oc": [0, 6, 8, 9, 13, 14, 15, 18, 22, 25, 29, 32], "sto": [0, 6, 9, 13, 14, 15, 18, 22, 29], "rch": [0, 6, 13, 14, 15, 18, 22, 29, 32], "wel": [0, 12, 13, 14, 15, 18, 22, 29, 32], "remake_top": [0, 13, 14, 15, 29], "length_unit": [0, 1, 4, 12, 13, 14, 15, 19, 29], "nlai": [0, 2, 4, 10, 13, 15, 29], "meras_100m_dem": [0, 13, 15, 19], "elevation_unit": [0, 13, 15, 19, 29], "feet": [0, 13, 15, 19], "botm": [0, 1, 2, 3, 4, 7, 13, 15, 29], "mdwy_surf": [0, 13, 15], "idomain": [0, 1, 2, 4, 6, 12, 13, 15, 29, 32], "tdi": [0, 1, 6, 14, 15, 18, 19, 22, 29, 32], "time_unit": [0, 9, 12, 14, 15, 19], "dai": [0, 6, 8, 9, 12, 14, 15, 19], "start_date_tim": [0, 9, 12, 14, 15], "2020": 0, "01": [0, 2, 3, 9, 12, 14, 15, 19, 29], "perioddata": [0, 1, 6, 8, 9, 14, 15, 29], "group": [0, 9, 13, 15, 16], "perlen": [0, 6, 8, 9, 14, 15, 29], "nper": [0, 9, 15], "nstp": [0, 6, 8, 9, 15, 25, 29], "steadi": [0, 6, 8, 9, 15, 19, 29], "npf": [0, 6, 13, 14, 15, 18, 22, 29, 32], "rewet": 0, "griddata": [0, 5, 12, 13, 14, 15, 29], "icelltyp": [0, 14, 15, 29], "k": [0, 2, 4, 7, 14, 15, 29, 31], "k33": [0, 15, 29], "iconvert": [0, 14, 15, 29], "convert": [0, 2, 3, 4, 5, 9, 13, 15, 19, 29], "sy": [0, 14, 15, 29], "ss": [0, 14, 15, 29], "e": [0, 3, 4, 5, 7, 9, 12, 13, 14, 15, 16, 19, 28, 31, 34], "6": [0, 2, 3, 4, 6, 9, 10, 12, 13, 15, 19, 25, 29, 30, 31, 32, 33], "print_flow": [0, 14, 15, 19], "fals": [0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19, 29], "readasarrai": [0, 14, 15, 19], "recharg": [0, 2, 7, 12, 15, 29], "00025": 0, "d": [0, 2, 5, 7, 15, 28, 31], "inch": [0, 15, 19], "year": [0, 9, 15, 19, 28, 34], "id_column": [0, 4, 7, 9, 15, 19, 32], "comid": [0, 15, 19], "argument": [0, 4, 9, 13, 15, 19, 29, 32], "from_shapefil": [0, 15, 19], "routing_column": [0, 15, 19], "tocomid": [0, 15, 19], "width1_column": [0, 15, 19], "width1": [0, 15, 19], "width2_column": [0, 15, 19], "width2": [0, 15, 19], "up_elevation_column": [0, 15, 19], "elevupsmo": [0, 15, 19], "dn_elevation_column": [0, 15, 19], "elevdnsmo": [0, 15, 19], "name_column": [0, 15, 19], "gnis_nam": [0, 15, 19], "width_unit": [0, 15, 19], "sfrmaker_opt": [0, 15, 19], "one_reach_per_cel": [0, 15], "consolid": [0, 15], "per": [0, 6, 8, 9, 12, 15, 29, 32], "j": [0, 2, 4, 7, 15, 29, 31], "to_riv": [0, 15, 19], "riv": [0, 7, 14, 15, 18, 22, 29, 32], "18047206": [0, 15], "period_opt": [0, 14, 15, 25], "save": [0, 3, 9, 14, 15, 25, 28], "head": [0, 6, 7, 8, 9, 10, 12, 14, 15, 18, 22, 25, 32], "last": [0, 2, 9, 12, 14, 15, 19, 25, 29], "budget": [0, 4, 8, 9, 10, 12, 14, 15, 25, 30, 31], "im": [0, 6, 13, 14, 15, 29, 32], "print_opt": [0, 14, 15], "complex": [0, 15, 30], "csv_output_filerecord": 0, "solver_out": [0, 15], "csv": [0, 9, 13, 14, 15, 19, 29, 32], "nonlinear": [0, 14, 15], "outer_dvclos": [0, 14, 15], "m3": [0, 15], "outer_maximum": [0, 14, 15], "50": [0, 14, 15, 31], "linear": [0, 5, 7, 12, 13, 14, 15, 19, 30], "inner_maximum": [0, 14, 15], "inner_dvclos": [0, 14, 15], "rcloserecord": [0, 14, 15], "001": [0, 14, 15, 19], "relative_rclos": [0, 14, 15], "initial_config_ful": 0, "further": 0, "custom": [0, 15, 19], "step": [0, 10, 25, 28, 29, 30], "o": [0, 29, 30], "cwd": 0, "getcwd": [0, 29], "chang": [0, 6, 7, 8, 14, 15, 19, 28, 30, 32], "directori": [0, 16, 28], "workspac": [0, 13, 14, 15, 29], "back": [0, 3], "chdir": [0, 29], "setup_model": 0, "setup_from_yaml": [0, 1, 3, 7, 8, 15, 16, 29, 33], "write_input": [0, 1, 6, 8, 29], "return": [0, 2, 3, 4, 5, 6, 7, 9, 10, 16, 29], "initial_model_setup": 0, "get_flopy_external_file_input": [1, 6], "get_package_list": [1, 6], "get_raster_statistics_for_cel": [1, 6], "get_raster_values_at_cell_cent": [1, 6], "load_from_config": [1, 6], "setup_chd": [1, 6, 8], "setup_drn": [1, 6, 8], "setup_ghb": [1, 6, 8], "setup_": [1, 6], "setup_im": [1, 6], "setup_lak": [1, 6], "setup_npf": [1, 6], "setup_ob": [1, 6], "setup_oc": [1, 6], "setup_rch": [1, 6], "setup_riv": [1, 6, 8], "setup_simulation_mov": [1, 6], "setup_sto": [1, 6], "setup_tdi": [1, 6, 8], "setup_wel": [1, 6, 8], "mfnwtmodel": [1, 2, 3, 5, 7, 13, 14, 33], "ibound": [1, 2, 8, 25, 32], "ipakcb": [1, 8, 14, 15], "setup_hyd": [1, 8], "setup_upw": [1, 8], "mfsetupmixin": [1, 6, 8, 13, 33], "get_boundary_cel": [1, 7], "high_k_lake_recharg": [1, 7], "interp_weight": [1, 5, 7], "isbc": [1, 7], "lakarr": [1, 7, 29], "lake_bathymetri": [1, 7], "load_cfg": [1, 3, 7], "load_featur": [1, 7], "load_grid": [1, 7], "model_vers": [1, 7], "package_list": [1, 7], "parent_lay": [1, 7], "parent_mask": [1, 7], "parent_stress_period": [1, 7, 9], "perimeter_bc_typ": [1, 7], "regrid_from_par": [1, 7], "setup_external_filepath": [1, 3, 7], "setup_from_cfg": [1, 7], "source_path": [1, 7], "modflowgwfdi": [1, 2, 13], "thick": [1, 2, 7, 14, 15, 19], "adjust_lay": [1, 2], "cellids_to_kij": [1, 2, 29], "create_vertical_pass_through_cel": [1, 2], "deactivate_idomain_abov": [1, 2], "fill_cells_vert": [1, 2], "fill_empty_lay": [1, 2], "find_remove_isolated_cel": [1, 2], "fix_model_layer_conflict": [1, 2], "get_highest_active_lay": [1, 2], "get_lay": [1, 2], "get_layer_thick": [1, 2], "make_ibound": [1, 2], "make_idomain": [1, 2], "make_irch": [1, 2], "make_lgr_idomain": [1, 2], "populate_valu": [1, 2], "verify_minimum_layer_thick": [1, 2], "voxels_to_lay": [1, 2], "weighted_average_between_lay": [1, 2], "fileio": 1, "add_version_to_filehead": [1, 3], "append_csv": [1, 3], "check_source_fil": [1, 3], "dump": [1, 3], "dump_json": [1, 3], "dump_yml": [1, 3], "exe_exist": [1, 3], "flopy_mf2005_load": [1, 3], "flopy_mf6model_load": [1, 3], "flopy_mfsimulation_load": [1, 3], "load_arrai": [1, 3], "load_json": [1, 3], "load_modelgrid": [1, 3], "load_yml": [1, 3], "read_ggofil": [1, 3], "read_lak_ggo": [1, 3], "read_mf6_block": [1, 3], "remove_file_head": [1, 3], "save_arrai": [1, 3], "set_cfg_paths_to_absolut": [1, 3], "mfsetupgrid": [1, 3, 4, 5, 10, 29], "bbox": [1, 4], "bound": [1, 4, 9, 15, 29, 32], "datafram": [1, 2, 3, 4, 6, 8, 9, 10], "get_datafram": [1, 4], "get_intercell_connect": [1, 4], "get_vertic": [1, 4], "intercell_connect": [1, 4, 10], "length_multipli": [1, 4], "proj_str": [1, 4], "transform": [1, 4], "vertic": [1, 2, 4, 15, 19, 29], "wkt": [1, 4], "write_bbox_shapefil": [1, 4], "xul": [1, 4], "yul": [1, 4], "get_cellface_midpoint": [1, 4], "get_cr": [1, 4], "get_crs_length_unit": [1, 4], "get_grid_bounding_box": [1, 4], "get_ij": [1, 4], "get_kij_from_node3d": [1, 4], "get_nearest_point_on_grid": [1, 4], "get_point_on_national_hydrogeologic_grid": [1, 4], "get_transform": [1, 4], "raster": [1, 4, 6, 13, 14, 15, 18, 19, 30, 32], "setup_structured_grid": [1, 4], "interpol": [1, 2, 7, 12, 13, 29], "source_values_mask": [1, 5], "get_source_dest_model_xi": [1, 5], "regrid": [1, 5, 15], "regrid3d": [1, 5], "add_date_comments_to_tdi": [1, 9], "aggregate_dataframe_to_stress_period": [1, 9, 15, 19], "aggregate_xarray_to_stress_period": [1, 9], "concat_periodata_group": [1, 9], "convert_freq_to_period_start": [1, 9], "get_parent_stress_period": [1, 9], "parse_perioddata_group": [1, 9], "setup_perioddata": [1, 9], "setup_perioddata_group": [1, 9], "tmr": [1, 12, 18, 29, 32], "get_qx_qy_qz": [1, 10], "relat": [2, 9, 29], "class": [2, 4, 5, 13, 16, 29, 33], "arg": 2, "kwarg": [2, 3, 4, 6, 8, 9, 13], "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 19, 29, 30, 32, 33, 34], "base": [2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 18, 28, 29, 30], "properti": [2, 4, 5, 6, 7, 8, 9, 12, 15, 18, 19, 22, 29, 33], "minimum_thick": 2, "1": [2, 5, 7, 9, 12, 13, 14, 15, 18, 19, 25, 29, 34], "adjust": [2, 14, 30], "bottom": [2, 4, 10, 13, 14, 15, 19], "maintain": [2, 28], "minimum": [2, 15, 16, 18, 19, 28], "paramet": [2, 3, 4, 5, 6, 7, 9, 10, 15, 16, 30], "flopi": [2, 3, 4, 5, 6, 7, 9, 10, 13, 15, 16, 18, 19, 25, 29, 30, 31, 32, 33], "modflow": [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 31, 32, 33], "modflowdi": [2, 15], "instanc": [2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 18, 28, 29, 30, 33], "new_layer_elev": 2, "ndarrai": [2, 4, 5, 7], "new": [2, 16, 28, 32], "cellid": [2, 29], "drop_inact": 2, "unpack": 2, "tupl": [2, 4, 5, 10], "list": [2, 3, 4, 6, 7, 9, 13, 14, 15, 16, 28, 29, 30, 34], "valu": [2, 4, 5, 6, 7, 9, 12, 13, 14, 15, 16, 19, 29, 30, 32], "ignor": 2, "none": [2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 19], "unconnect": 2, "sequenc": [2, 4, 9, 13], "bool": [2, 4, 7, 9, 10], "drop": [2, 7, 14, 15, 19], "distribut": [2, 15, 19], "1d": [2, 4, 5, 7, 10], "numpi": [2, 4, 5, 7, 10, 16, 19, 28, 29, 30, 32, 34], "arrai": [2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 18, 19, 29, 30, 32, 33], "integ": [2, 4, 5, 9, 13, 32], "replac": [2, 3], "inact": [2, 5, 30, 32], "pass": [2, 3, 4, 5, 9, 15, 16, 25, 29, 32], "through": [2, 15, 19, 25, 28, 29, 30], "activ": [2, 5, 12, 13, 16, 18, 28, 29, 32], "below": [2, 4, 13, 15, 16, 19, 28, 29], "2": [2, 5, 7, 9, 10, 12, 13, 14, 15, 18, 19, 28, 29, 31], "3": [2, 5, 7, 9, 12, 13, 15, 19, 28, 29, 34], "2d": [2, 4, 5, 10], "revis": [2, 29, 32], "were": [2, 14, 15, 19, 29, 30], "previou": [2, 29], "packagedata": [2, 14], "mflist": 2, "recarrai": 2, "note": [2, 3, 5, 9, 15, 16, 18, 19, 28, 29], "routin": [2, 30], "updat": [2, 3, 6, 8, 30, 32], "model": [2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 18, 19, 25, 30, 31, 32], "modflowbas6": 2, "bas6": [2, 14, 15, 18, 22, 32], "file": [2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 25, 30, 32, 33, 34], "write": [2, 3, 4, 6, 7, 8, 14, 15, 19, 30, 32], "exclud": [2, 15], "howev": [2, 12, 15, 16, 28], "overli": [2, 28], "comput": [2, 5, 6, 30], "given": [2, 3, 4, 7, 9, 15, 19], "3d": [2, 4, 5, 6, 7, 8, 10, 29], "nan": [2, 5], "10": [2, 9, 13, 14, 15, 18, 19, 25, 28, 29, 31], "8": [2, 13, 15, 16, 19, 29, 34], "5": [2, 7, 9, 13, 14, 15, 18, 29], "make": [2, 7, 18, 28, 30, 33], "9": [2, 13, 14, 15, 25, 29, 34], "zero": [2, 3, 4, 7, 9, 10, 12, 15, 29], "valid": [2, 9, 15, 19, 25, 28, 30, 32], "algorithm": 2, "get": [2, 3, 4, 5, 7, 10, 12, 29, 32], "account": [2, 12, 16, 28], "nodata": [2, 3, 29], "take": [2, 28, 30], "cumul": [2, 9], "sum": [2, 5, 9], "along": [2, 4, 7, 12, 16, 29, 32], "0th": 2, "depth": [2, 14, 15], "axi": [2, 4, 29], "go": [2, 16, 28], "backward": [2, 28], "posit": [2, 4, 5, 15], "sens": 2, "add": [2, 3, 7, 9, 15, 16, 28, 32], "repres": [2, 3, 4, 5, 6, 7, 8, 9, 13, 15, 18, 19, 29, 30], "append": [2, 3, 7, 14, 15, 29], "empti": 2, "linearli": [2, 12], "defin": [2, 5, 9, 12, 15, 16, 18, 19], "would": [2, 9, 13, 15, 19, 25, 29], "creat": [2, 3, 4, 7, 15, 18, 30, 33, 34], "equal": [2, 9], "same": [2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 19, 29, 30], "minimum_cluster_s": 2, "identifi": [2, 4, 9, 15, 19], "cluster": 2, "isol": 2, "binari": [2, 4, 10, 12, 15, 29, 32], "top_arrai": 2, "botm_arrai": 2, "ibound_arrai": 2, "compar": [2, 16], "downward": 2, "necessari": [2, 16], "scalar": [2, 4, 15, 19], "enforc": [2, 16], "new_botm_arrai": 2, "null_valu": 2, "9999": [2, 3, 14, 15], "highest": 2, "each": [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 19, 25, 29], "scaler": 2, "index": [2, 4, 5, 28], "pair": 2, "assign": [2, 4, 9, 12, 15, 19, 32], "second": [2, 9, 12, 28, 29, 31], "expect": [2, 16], "design": 2, "fake": 2, "7": [2, 13, 14, 15, 28, 29, 34], "onli": [2, 4, 5, 7, 8, 9, 10, 12, 14, 15, 16, 19, 28, 29, 30], "reshap": 2, "4": [2, 7, 14, 15, 18, 29, 32], "transpos": 2, "result": [2, 9, 12, 16, 19, 25, 28, 30], "diff": [2, 29], "except": [2, 9, 13, 19, 32], "direct": [2, 4, 12, 28, 29], "12": [2, 9, 13, 15, 19, 29], "minimum_layer_thick": [2, 14, 15, 19, 29], "drop_thin_cel": [2, 14, 15, 29], "tol": 2, "0001": [2, 14, 15, 29], "int": [2, 3, 4, 5, 7, 9, 15], "appli": [2, 3, 5, 7, 9, 12, 15, 19, 31], "word": [2, 4, 9], "toler": 2, "irch": [2, 14, 29], "parent_modelgrid": 2, "inset_modelgrid": 2, "inactiv": 2, "area": [2, 5, 12, 13, 15, 18, 19, 29, 32], "values_dict": 2, "array_shap": 2, "dictionari": [2, 3, 4, 7, 9, 12, 13, 15, 25, 29, 33], "non": [2, 4, 7, 12, 29], "consecut": [2, 4], "kei": [2, 6, 7, 9, 13, 15, 16, 19, 25, 29], "isact": 2, "voxel_arrai": 2, "z_edg": 2, "model_top": [2, 10], "model_botm": 2, "no_data_valu": 2, "extend_top": 2, "extend_botm": 2, "minimum_frac_active_cel": 2, "voxel": 2, "land": [2, 29], "form": [2, 15, 19], "place": [2, 12, 13, 16, 19], "lowest": 2, "prioriti": 2, "reset": 2, "effect": [2, 16, 28, 29], "give": 2, "underli": 2, "also": [2, 6, 7, 9, 13, 15, 16, 19, 25, 28, 32, 33, 34], "beyond": 2, "flow": [2, 4, 7, 10, 12, 15, 19, 29, 30, 31, 33], "investig": 2, "airborn": 2, "electromagnet": 2, "survei": [2, 29, 31], "aquif": [2, 13, 15, 18, 19, 22], "electr": 2, "resisit": 2, "extent": [2, 7, 12, 15, 19, 29, 32, 33], "span": [2, 19], "higher": 2, "extend": [2, 4, 19, 30, 33], "edg": [2, 4, 12, 28, 29], "extent_top": 2, "similarli": [2, 13, 29], "gap": 2, "zone": [2, 14, 15, 29], "actual": [2, 16, 28, 29], "mark": 2, "assum": [2, 3, 4, 10, 12, 14, 15, 19, 29], "horizont": [2, 15], "similar": [2, 5, 9, 10, 12, 15, 16, 19, 25, 28], "default": [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 18, 19, 28, 29, 30], "float": [2, 4, 5, 9, 13, 15], "consid": [2, 16, 29], "regardless": [2, 6, 13, 15, 16, 25, 28], "fraction": [2, 4, 5], "retain": [2, 9], "rais": [2, 4, 9], "valueerror": [2, 4, 9], "arr0": 2, "arr1": 2, "weight0": 2, "stuff": 3, "disk": [3, 28], "work": [3, 4, 7, 8, 15, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 30, 32, 33], "path": [3, 4, 6, 7, 10, 13, 15, 19, 28, 29], "model_info": 3, "setup": [3, 6, 7, 8, 9, 12, 13, 14, 15, 19, 25, 29, 32, 33], "version": [3, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 19, 25, 29, 30, 31, 33, 34], "exist": [3, 15, 16, 19, 28, 33], "header": [3, 9, 15, 32], "denot": [3, 5, 13, 19], "comment": [3, 9, 13, 15, 16, 28, 30], "charact": 3, "df": [3, 4], "fileslist": 3, "check": [3, 8, 12, 16, 28, 29, 34], "configur": [3, 6, 7, 8, 9, 12, 16, 18, 19, 28, 29, 30, 32, 33], "jsonfil": 3, "json": [3, 4, 7, 13, 14, 15], "yml_file": 3, "exe_nam": [3, 6, 8, 14, 15, 29], "load_onli": [3, 6, 8, 15], "forgiv": [3, 8], "execut": [3, 29], "strict": 3, "model_rel_path": 3, "mfmodel": [3, 5, 7], "load_bas": 3, "sim": 3, "verify_data": 3, "mfsimul": 3, "cfgfile": 3, "verbos": [3, 7, 8], "default_fil": 3, "method": [3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 28, 29, 31, 33], "absolut": [3, 7, 9, 16], "str": [3, 4, 5, 6, 7, 9, 10], "dict": [3, 4, 6, 7, 9, 29], "classmethod": [3, 6, 7, 8], "befor": [3, 16, 28, 29, 34], "constructor": [3, 13, 19, 25, 29], "conveni": [3, 16], "escap": 3, "config": [3, 8, 15, 28], "gagefil": 3, "start_datetim": [3, 6, 8, 9, 15, 19, 29], "1970": [3, 9, 14], "keep_only_last_timestep": 3, "f": [3, 16, 28, 29], "blocknam": 3, "comparison": 3, "betwe": 3, "otherwis": [3, 4, 7, 9, 15, 19], "arr": [3, 5], "print": [3, 29], "wa": [3, 15, 16, 19, 28, 29, 34], "written": [3, 7, 12, 15, 18, 25, 29, 30, 32], "config_file_loc": 3, "variable_nam": [3, 7], "filename_format": [3, 7], "file_numb": [3, 7], "relative_external_path": [3, 7], "extern": [3, 6, 7, 8, 13, 14, 15, 18, 19, 28, 29, 30], "variabl": [3, 4, 7, 13, 15, 19, 28, 29, 32], "intermedi": [3, 6, 7, 29], "process": [3, 7, 15, 16, 30], "suppli": [3, 4, 7, 12, 13, 15, 19, 25, 32], "when": [3, 6, 7, 8, 13, 14, 15, 16, 30], "put": [3, 7, 12, 15, 19, 29, 32], "under": [3, 7, 15, 19, 28, 33], "respect": [3, 7], "attribut": [3, 4, 5, 7, 9, 15, 19, 33], "three": [3, 7, 9, 19, 29, 33], "letter": [3, 7, 19], "abrevi": [3, 7], "g": [3, 7, 9, 12, 14, 15, 16, 19, 28, 31, 34], "name": [3, 4, 6, 7, 9, 13, 15, 16, 19, 25, 28, 29, 32], "string": [3, 4, 7, 9, 13, 15, 19, 25], "dat": [3, 7, 14, 15, 19, 29], "stress": [3, 6, 7, 8, 9, 10, 12, 13, 15, 18, 22, 29, 32], "period": [3, 6, 7, 8, 9, 10, 12, 13, 15, 19, 28, 29], "botm0": [3, 7, 15, 29], "botm1": [3, 7, 15, 29], "filepath": [3, 4, 7], "intermediate_data": [3, 6, 7, 29], "program": [3, 18], "stackoverflow": [3, 5, 7, 16], "question": [3, 5, 7, 30], "377017": 3, "python": [3, 4, 7, 13, 14, 15, 16, 18, 19, 30, 31, 33], "regular": [4, 18, 30], "structur": [4, 5, 10, 14, 15, 16, 18, 19, 29, 30, 32], "focu": 4, "represent": 4, "cartesian": 4, "plane": 4, "involv": 4, "delc": [4, 13, 15, 29], "delr": [4, 13, 15, 29], "laycbd": 4, "lenuni": [4, 14, 15], "binary_grid_fil": [4, 10], "prj": [4, 32], "angrot": 4, "structuredgrid": [4, 5, 29, 32], "facilit": [4, 16, 29, 30], "oper": [4, 16, 28, 30], "real": [4, 9, 30], "coordin": [4, 14, 15, 18, 19, 32], "refer": [4, 7, 9, 13, 14, 15, 19, 32], "system": [4, 12, 15, 16, 18, 19, 28, 29, 32], "len": 4, "2005": [4, 9, 10, 15, 19, 25, 31], "earlier": 4, "style": [4, 7, 10, 14, 15, 19, 25, 28], "flag": [4, 13, 15], "whether": [4, 9, 13, 19], "quasi": 4, "confin": [4, 13, 15], "bed": 4, "onlin": [4, 13, 14, 15], "guid": [4, 13], "proj": 4, "gener": [4, 6, 8, 9, 12, 13, 15, 16, 28, 30, 33], "spatial": [4, 15, 19, 32], "id": [4, 7, 9, 14, 15, 28], "known": 4, "text": [4, 14, 15, 19, 28, 29], "prefer": [4, 19], "esri": 4, "describ": [4, 9, 13, 19, 28], "obj": 4, "pyproj": [4, 19], "from_user_input": 4, "keyword": [4, 13], "4326": 4, "auth_nam": 4, "auth_cod": 4, "object": [4, 5, 7, 10, 13, 15, 29, 32], "to_wkt": 4, "offset": [4, 15], "counter": 4, "clockwis": 4, "support": [4, 9, 12, 14, 16, 19, 28, 30, 31, 32, 34], "By": [4, 8, 9, 10, 12, 16, 19], "org": [4, 15, 31], "faq": 4, "html": [4, 15, 16, 19], "what": [4, 7, 16, 18, 28], "order": [4, 29], "panda": [4, 9, 15, 16, 29, 30, 32], "geometri": 4, "_summary_": 4, "pathlik": [4, 6, 10], "intercel": 4, "n": [4, 5, 10, 14, 15, 28, 31], "node": [4, 9, 10, 15, 19, 31], "kn": [4, 10], "jn": [4, 10], "_description_": [4, 9], "rasterio": [4, 13, 15, 19, 28], "affin": 4, "grid_bbox": 4, "midpoint": [4, 9, 19], "face": [4, 10, 12], "within": [4, 5, 6, 13, 15, 16, 19, 28, 29], "right": [4, 9, 28, 29], "halfwai": [4, 13], "potenti": [4, 16, 29], "local": [4, 15, 16, 28, 29, 32], "world": 4, "qidx": 4, "node3d": 4, "major": [4, 12], "dx": 4, "dy": 4, "center": [4, 12, 15, 19, 29], "op": 4, "alreadi": [4, 8, 9, 15, 16, 28], "incorpor": [4, 28, 29, 34], "pixel": [4, 6], "round": 4, "floor": 4, "ceil": 4, "x_nearest": 4, "y_nearest": 4, "nearest": [4, 5, 7, 19], "include_id": [4, 7, 15, 19], "names_column": 4, "onto": [4, 5, 7, 13, 29], "intersect": [4, 13, 15, 19], "uniqu": [4, 19], "output": [4, 6, 7, 8, 9, 10, 12, 14, 15, 18, 22, 28, 29, 32], "subset": [4, 7], "sequenti": [4, 29], "readthedoc": 4, "io": [4, 15, 19], "en": 4, "stabl": [4, 15, 16], "api": [4, 15, 19], "parent_model": [4, 9], "snap_to_par": [4, 14], "model_length_unit": 4, "grid_fil": [4, 14, 15, 29], "bbox_shapefil": [4, 14], "outshp": 4, "xyz": 5, "uvw": 5, "speed": [5, 7, 30], "barycentr": [5, 12], "scipi": [5, 12, 13, 29], "weight": [5, 7], "re": [5, 7, 30], "success": [5, 30], "destin": [5, 7, 28], "z": [5, 12, 29], "ndim": 5, "etc": [5, 9, 12, 13, 14, 15, 16, 19, 28, 32], "boolean": [5, 7, 9], "source_valu": 5, "emploi": 5, "stack": [5, 28], "overflow": 5, "post": [5, 7, 14, 15, 31], "20915502": 5, "speedup": 5, "calcul": [5, 7], "attach": [5, 7, 13, 15, 29, 33], "With": 5, "triangular": [5, 12], "mesh": [5, 15, 29, 32], "influenc": 5, "source_model": 5, "dest_model": 5, "source_mask": 5, "modeflow": 5, "mask": [5, 7, 29], "v": [5, 9, 16, 28, 29, 31], "flatten": 5, "across": [5, 10, 12, 13, 15, 19, 30], "vtx": 5, "wt": 5, "fill_valu": 5, "request": 5, "convex": 5, "hull": 5, "those": [5, 7, 15, 30], "least": [5, 9, 19, 28], "neg": [5, 14, 15], "grid2": 5, "mask1": 5, "mask2": 5, "categor": 5, "cubic": [5, 15, 19], "parent": [6, 7, 8, 9, 12, 14, 19, 32], "lgr": [6, 12, 29, 32], "modflowgwf": [6, 15, 29, 33], "var": 6, "repath": 6, "copi": [6, 13, 15, 28, 29], "becaus": [6, 19, 28], "self": [6, 16], "modflow6": 6, "replic": 6, "stat": [6, 14, 15, 19], "zonal": [6, 15, 19], "static": [6, 15, 19, 32], "out_of_bounds_error": 6, "coerc": 6, "centroid": 6, "easili": [6, 8, 16, 30], "yamlfil": [6, 7, 8], "abbrevi": [6, 19], "subpackag": 6, "seri": [6, 9, 15, 19], "maw": [6, 29], "gwf6": [6, 29], "summar": [6, 8, 9, 18, 29, 30], "date": [6, 8, 9, 15, 19, 29, 34], "end_datetim": [6, 8, 9, 15, 19, 29], "end": [6, 8, 9, 12, 15, 19, 29], "elaps": [6, 8, 9, 28, 29], "timestep": [6, 8, 9, 12, 25], "tsmult": [6, 8, 9, 15], "multipli": [6, 8, 9, 15, 19], "transient": [6, 8, 9, 15, 19, 32], "control": [6, 8, 9, 15, 16, 18, 22, 28, 30], "parent_sp": [6, 8, 9], "chd": [6, 8, 12, 14, 15, 18, 22, 29, 32], "drain": [6, 8, 15], "ob": [6, 13, 14, 15, 18, 22, 29, 32], "util": [6, 10, 15, 29], "rivdata": [6, 8], "river": [6, 8, 14, 15], "mover": [6, 14, 32], "level": [6, 13, 14, 16, 28, 29, 30, 32, 33], "inset": [6, 7, 9, 12, 18, 19, 32], "todo": [6, 8], "mixin": [7, 33], "share": 7, "meant": 7, "inherit": [7, 15], "both": [7, 16, 28, 29, 30, 33, 34], "call": [7, 8, 10, 25, 28, 33], "directli": [7, 15, 16, 19, 25, 28], "533631": 7, "why": [7, 16], "exclude_inact": 7, "pfl_nwt": [7, 15], "lak": [7, 14, 15, 18, 22, 29, 32], "ghb": [7, 14, 15, 18, 22, 29, 32], "bc_number": 7, "attibut": 7, "bathymetri": [7, 15, 29], "logic": 7, "here": [7, 8, 9, 15, 16, 19, 28, 29], "instead": [7, 10, 13, 16, 28, 30], "specif": [7, 8, 10, 12, 13, 16, 19, 28, 29, 32, 33], "bbox_filt": 7, "cach": 7, "vector": [7, 10], "_featur": 7, "gridfil": 7, "yml": [7, 16, 28, 29, 32, 33], "semant": 7, "hack": 7, "report": [7, 14, 15, 19, 31, 32, 34], "git": [7, 14, 15, 28, 34], "tag": [7, 14, 15], "repositori": [7, 14, 15, 28], "start_vers": [7, 14, 15], "remain": [7, 14, 15], "pep440": [7, 14, 15], "most": [7, 14, 15, 19, 28, 29, 30, 32], "recent": [7, 14, 15, 34], "commit": [7, 14, 15, 16, 28, 34], "hash": [7, 14, 15, 34], "dirti": [7, 14, 15], "uncommit": [7, 14, 15, 16], "github": [7, 14, 15, 16, 19, 28, 34], "warner": [7, 14, 15], "blob": [7, 14, 15], "master": [7, 14, 15, 16, 28], "md": [7, 14, 15], "definit": 7, "namefil": [7, 12, 15], "look": [7, 16, 29], "window": [7, 16, 19], "encompass": 7, "domain": [7, 29], "dictat": 7, "constant": [7, 12, 15], "flux": [7, 10, 12, 15, 19, 29, 32], "parent_arrai": 7, "model_w": [7, 8, 12, 14, 15], "scratch": [7, 30, 32], "home": [7, 16, 28, 29], "runner": [7, 29], "mfnwt": [8, 10, 12, 14, 15], "external_path": [8, 13, 14, 15], "nwt": [8, 12, 13, 18, 19, 29, 30, 31, 32, 33], "everyth": [8, 28, 30], "still": [8, 12, 16, 19, 28], "adapt": [8, 32], "parallel": 8, "hydmod": [8, 14, 15], "_set_perioddata": 8, "establish": [8, 9], "purpos": [8, 29], "conform": 8, "syntax": [8, 16], "tempor": [9, 15, 19], "tdis_fil": 9, "start_dat": [9, 15], "end_dat": [9, 15], "data_column": [9, 15, 19], "datetime_column": [9, 15, 19], "datetim": [9, 15, 19], "end_datetime_column": [9, 15, 19], "category_column": [9, 15], "period_stat": [9, 15, 19], "resolve_duplicates_with": 9, "error": [9, 16], "aggreg": [9, 15, 19], "downsampl": 9, "longer": 9, "interv": [9, 15, 19], "yyyi": [9, 29], "mm": [9, 15, 29], "dd": [9, 29], "timestamp": 9, "upsampl": [9, 15, 19], "nonetyp": [9, 13], "groupbi": 9, "statist": [9, 15, 19], "month": [9, 15, 19], "august": [9, 15, 19], "2014": 9, "averag": [9, 15, 19], "januari": 9, "basic": [9, 16, 18, 22, 28, 32], "slice": 9, "03": [9, 15, 29], "31": [9, 15, 19, 29], "reduc": [9, 29], "duplic": 9, "measur": [9, 19], "estim": [9, 29, 30, 31], "categori": [9, 15, 19], "encount": [9, 28, 29], "oppos": [9, 15], "datetime_coords_nam": 9, "perioddata_group": 9, "concaten": 9, "sort": [9, 16], "increment": [9, 30], "accordingli": [9, 13, 15], "freq": [9, 15], "frequenc": [9, 25], "perioddata_dict": 9, "reorgan": 9, "tdis_perioddata_config": 9, "default_start_datetim": 9, "oc_saverecord": [9, 15], "_type_": 9, "modeltim": 9, "miss": [9, 13, 15, 16], "entri": [9, 15, 19], "func": 9, "record": [9, 14, 15, 19], "tabl": [9, 12, 14, 15, 19, 30], "copy_stress_period": [9, 12, 15], "item": [9, 13, 15, 19, 32], "stress_period_data": [9, 14, 25, 29], "folder": [9, 12, 16, 28, 30, 32, 34], "footnot": 9, "end_date_tim": [9, 14, 15], "model_time_unit": 9, "explicitli": [9, 12, 13, 15, 16, 25, 29], "Or": [9, 19, 28], "date_rang": [9, 15], "isn": [9, 16, 19, 28], "dateoffset": 9, "6m": [9, 15], "alias": [9, 15], "until": 9, "perrioddata": 9, "automat": [9, 15, 16, 19, 28, 29, 32], "latter": [9, 19, 33], "assumpt": [9, 29], "invari": 9, "anywai": 9, "intend": [9, 13, 15, 28, 29, 33], "cannot": 9, "acut": 9, "after": [9, 13, 16, 28, 30], "2019": 9, "2018": [9, 15, 19, 29, 31], "00": [9, 28, 29], "cell_budget_fil": 10, "cell_connections_df": 10, "kstpkper": [10, 29], "specific_discharg": 10, "headfil": [10, 29], "binaryfil": [10, 15, 29], "cellbudgetfil": 10, "pointer": 10, "grb": [10, 12, 15, 19], "Not": [10, 19], "bindary_grid_fil": 10, "avoid": [10, 13, 15, 28], "meth": 10, "model_bottom_arrai": 10, "discharg": [10, 14, 15], "compon": [10, 31], "volumetr": 10, "qx": 10, "qy": 10, "qz": 10, "often": [12, 16, 19, 28, 30], "part": [12, 16, 19, 29], "groundwat": [12, 18, 29, 30, 31, 33], "mismatch": 12, "abrupt": 12, "gradient": 12, "suffici": [12, 29], "far": 12, "awai": 12, "do": [12, 13, 15, 16, 18, 28, 29], "appreci": 12, "impact": [12, 29], "capabl": 12, "colinear": 12, "opposit": 12, "side": 12, "distinct": 12, "matter": 12, "subdivid": [12, 15, 29], "hydraul": [12, 14, 15, 30, 31], "conduct": [12, 14, 15, 19, 29, 30, 31], "nam": [12, 15, 29], "2012": [12, 15, 19, 29, 31], "perimeter_boundari": [12, 15, 19], "sub": [12, 19, 29, 30, 32], "parent_head_fil": [12, 15, 19], "hd": [12, 14, 15, 19, 25, 29], "parent_cell_budget_fil": [12, 15, 19], "cbc": [12, 14, 15, 19, 25], "parent_binary_grid_fil": [12, 15, 19], "primari": [12, 13], "tmrnew": 12, "get_inset_boundary_cel": 12, "visual": 12, "environ": 12, "boundary_cel": 12, "No": [12, 29], "by_lay": 12, "bc": [12, 15, 19, 32], "maximum": 12, "areal": [12, 19], "footprint": [12, 15, 28], "insid": [12, 15, 16, 19], "max": [12, 19, 29], "recommend": [12, 16, 28, 31], "lead": [12, 16, 28], "interior": [12, 15], "pinch": [12, 15], "user": [12, 13, 14, 16], "carefulli": 12, "inspect": [12, 28, 32], "open": [12, 15, 16, 19, 28], "polylin": 12, "determin": [12, 15, 19], "sobel": 12, "detect": 12, "filter": [12, 25], "thought": 13, "serial": 13, "abil": [13, 30], "curli": 13, "bracket": 13, "white": [13, 31], "indent": 13, "enter": [13, 15, 19, 28], "quot": [13, 28], "pars": [13, 15, 30, 32], "decim": 13, "squar": 13, "cast": 13, "symbol": 13, "pyyaml": [13, 15], "dictonari": 13, "aspect": [13, 15, 16, 30], "pattern": [13, 19], "individu": [13, 15, 18, 19], "close": [13, 19], "possibl": [13, 16, 28, 30, 34], "conflict": [13, 16], "convent": [13, 16], "divid": 13, "organ": [13, 16], "mfsim": [13, 14, 15, 29], "tmp": [13, 15], "fed": [13, 29], "nest": [13, 29], "newton_under_relax": [13, 14, 15], "relative_external_filepath": [13, 14, 15], "instruct": [13, 14, 15, 16, 18, 19, 25, 28, 34], "broken": [13, 15, 16, 28], "appropri": [13, 16], "subblock": [13, 15], "_unit": [13, 15], "suffix": [13, 15, 33], "evenli": [13, 15, 29], "final": [13, 29, 30], "limit": [13, 14, 15, 29, 30], "dem": [13, 15, 18], "script": [13, 15, 18, 29, 30, 31], "vkbg_surf": [13, 15], "vicksburg": [13, 15], "jackson": [13, 15], "ucaq_surf": [13, 15], "claiborn": [13, 15], "mccu_surf": [13, 15], "middl": [13, 15], "mcaq_surf": [13, 15], "lccu_surf": [13, 15], "lcaq_surf": [13, 15], "mwaq_surf": [13, 15], "wilcox": [13, 15], "lwaq_surf": [13, 15], "midwai": [13, 15], "active_area": [13, 15], "special": [13, 16], "null": 13, "exponenti": 13, "sign": [13, 16], "expon": 13, "1e5": 13, "e5": 13, "popul": [14, 33], "metadata": [14, 15, 29], "longnam": [14, 15], "list_filename_fmt": [14, 15], "hiklakes_valu": [14, 15], "e4": [14, 15], "default_lake_depth": 14, "achiev": 14, "postprocess": [14, 29], "output_fold": 14, "pdf": 14, "variable_map": 14, "xll": [14, 29], "yll": [14, 29], "output_fil": [14, 15, 29], "_grid": 14, "_bbox": 14, "top_filename_fmt": [14, 29], "botm_filename_fmt": [14, 29], "botm_": [14, 29], "03d": [14, 15, 19, 29], "idomain_filename_fmt": [14, 29], "idomain_": [14, 29], "strt": [14, 15, 29], "resample_method": [14, 15, 19], "strt_filename_fmt": [14, 15], "strt_": [14, 15], "write_fmt": 14, "2f": 14, "k_filename_fmt": [14, 15], "k_": [14, 15], "k33_filename_fmt": [14, 15], "k33_": [14, 15], "sy_filename_fmt": 14, "sy_": 14, "ss_filename_fmt": 14, "ss_": 14, "recharge_filename_fmt": 14, "rch_": 14, "irch_filename_fmt": 14, "budget_fileout": 14, "bin": [14, 29], "stage_fileout": 14, "stage": [14, 15, 19, 29], "obs6_filein_fmt": 14, "external_fil": [14, 15, 19, 29], "2002": [14, 15, 31], "high_k_lak": [14, 15, 29], "simulate_high_k_lak": [14, 15], "high_k_valu": [14, 15], "compress": [14, 15], "pa": [14, 15], "m2": [14, 15], "lake_out": 14, "lake_stag": 14, "obs6": 14, "boundnam": [14, 15, 19, 29], "lakarr_filename_fmt": 14, "lakarr_": 14, "lakzones_filename_fmt": 14, "lakzon": 14, "lakeb": [14, 15, 29], "leakanc": [14, 15, 29], "horizontal_connect": 14, "connectiondata_filename_fmt": 14, "lake_connectiondata": 14, "connectiondata": [14, 15, 29], "littoral_zone_buffer_width": [14, 15], "20": [14, 15, 29], "lookup_fil": [14, 15], "_lak_lookup": 14, "connections_lookup_fil": 14, "_lak_connections_lookup": 14, "gw": [14, 15], "mvr": [14, 29, 32], "all_touch": [14, 15, 19], "min": [14, 15, 19], "mfsetup_opt": [14, 15, 19, 29, 32], "external_filename_fmt": [14, 19], "chd_": 14, "drn": [14, 15, 18, 22, 29, 32], "cond": [14, 15, 19], "drn_": 14, "bhead": [14, 15, 19], "ghb_": 14, "rivdata_fil": 14, "_rivdata": 14, "auxillari": 14, "default_rbot_thick": [14, 15, 19], "riv_": 14, "_wel_lookup": 14, "dropped_wells_fil": 14, "_dropped_wel": [14, 19], "wel_": 14, "head_fileout_fmt": [14, 15, 25], "budget_fileout_fmt": [14, 15, 25], "digit": 14, "column_map": [14, 15], "hydlbl": [14, 15], "obsprefix": [14, 15], "obsnm": [14, 15], "common_nam": [14, 15], "x_location_col": [14, 15], "wtm": [14, 15], "y_location_col": [14, 15], "allow_obs_in_bc_cel": [14, 32], "obsname_character_limit": 14, "40": [14, 15, 29, 31], "filename_fmt": 14, "csv_outer_output": 14, "solver_outer_out": 14, "200": [14, 15, 29], "under_relax": [14, 15], "dbd": [14, 15], "under_relaxation_theta": [14, 15], "under_relaxation_kappa": [14, 15], "under_relaxation_gamma": [14, 15], "under_relaxation_momentum": [14, 15], "backtracking_numb": [14, 15], "linear_acceler": [14, 15], "bicgstab": [14, 15], "relaxation_factor": [14, 15], "ilu": [14, 15], "ilut": [14, 15], "precondit": [14, 15], "preconditioner_level": [14, 15], "preconditioner_drop_toler": [14, 15], "number_orthogon": [14, 15], "scaling_method": [14, 15], "reordering_method": [14, 15], "keep_original_arrai": 14, "itmuni": [14, 15], "hnoflo": 14, "ibound_filename_fmt": 14, "ibound_": 14, "strt_write_fmt": 14, "upw": [14, 15, 18, 22, 32], "hk_filename_fmt": 14, "hk_": 14, "vka_filename_fmt": 14, "vka_": 14, "53": [14, 15, 25], "hdry": [14, 15], "laytyp": 14, "layvka": 14, "remake_arrai": 14, "rech_mult": 14, "rech_filename_fmt": 14, "finf_": 14, "bdlknc_filename_fmt": 14, "bdlknc_": 14, "theta": [14, 15], "semi": [14, 15], "implicit": [14, 15], "surfdep": [14, 15], "nssitr": [14, 15], "800": [14, 15], "sscncr": [14, 15], "0000001": [14, 15], "converg": [14, 15], "criterion": [14, 15], "undul": [14, 15], "affect": [14, 15], "rang": [14, 15], "trout": [14, 15], "lak_lookup": [14, 15], "shead": 14, "ehead": 14, "mnw": [14, 15], "losstyp": 14, "skin": [14, 15], "pumploc": 14, "rw": [14, 15], "radiu": [14, 15], "rskin": [14, 15], "1524": [14, 15], "outer": [14, 15, 32], "kskin": [14, 15], "hyd": [14, 15, 18, 22, 32], "hydnoh": 14, "999": 14, "14": [14, 25, 29], "gag": [14, 15], "starting_unit_numb": 14, "250": 14, "lak_outtyp": 14, "gage": [14, 15, 18, 22, 32], "2a": 14, "outtyp": 14, "sfr_outtyp": 14, "2b": 14, "x_utm": [14, 15], "y_utm": [14, 15], "headtol": [14, 15], "fluxtol": 14, "6000": 14, "maxiterout": 14, "thickfact": 14, "00001": 14, "linmeth": 14, "iprnwt": 14, "ibotav": 14, "dbdtheta": 14, "dbdkappa": 14, "dbdgamma": 14, "momfact": 14, "backflag": 14, "iacl": 14, "norder": 14, "iredsi": 14, "rrctol": 14, "idroptol": 14, "epsrn": 14, "hclosexmd": [14, 15], "mxiterxmd": 14, "85": 14, "use_existing_fil": [14, 15], "suit": [15, 30], "netcdf": [15, 19, 29, 30, 32], "newli": 15, "subclass": [15, 29], "becom": [15, 16, 30], "__init__": 15, "clariti": 15, "store": [15, 16, 29, 33], "own": [15, 16], "signatur": 15, "contrast": [15, 19, 30], "_column": 15, "field": [15, 19], "build": [15, 16, 18, 28, 30, 33], "built": [15, 29, 30, 33], "event": 15, "context": [15, 16, 29], "clark": [15, 31], "1998": [15, 19], "04": 15, "global": [15, 19, 28, 32], "long": [15, 19, 28], "spin": 15, "pump": [15, 19, 29], "2007": 15, "midnight": 15, "09": 15, "pydata": 15, "doc": [15, 16], "user_guid": 15, "timeseri": [15, 19], "strt_001": 15, "sat": 15, "k0": 15, "k1": 15, "k2": 15, "k3": 15, "k4": 15, "k5": 15, "k6": 15, "k10": 15, "11": [15, 28, 29, 32], "k12": 15, "k330": [15, 19], "k331": 15, "k332": 15, "k333": 15, "k334": 15, "k335": 15, "k336": 15, "k3310": 15, "k3312": 15, "storag": 15, "25": [15, 29], "resampl": [15, 19, 29], "net_infiltration__2000": [15, 19], "01_to_2017": [15, 19], "31__414_by_394": [15, 19], "nc": [15, 19], "net_infiltr": [15, 19], "rate": [15, 19], "2000": [15, 19, 32], "2017": [15, 19, 31], "streamflow": [15, 18, 22], "flowlin": [15, 18, 19], "inflow": 15, "add_to_perioddata": 15, "line_id_column": 15, "line_id": 15, "flow_m3d": 15, "skip": [15, 16, 28, 29], "add_observ": 15, "obstyp": 15, "x_location_column": 15, "y_location_column": 15, "obsname_column": 15, "site_no": 15, "runoff": 15, "been": [15, 16, 30, 34], "reprocess": 15, "swb_runoff_by_nhdplus_comid_m3d": 15, "runoff_m3d": 15, "clip": 15, "preprocess": 15, "associ": [15, 19, 28, 32, 34], "flowline_rout": 15, "fromcomid": 15, "to_sfr": 15, "doi": [15, 31], "set_streambed_top_elevations_from_dem": 15, "shellmound_tmr": 15, "add_outlet": 15, "17955371": 15, "17956213": 15, "outlet": 15, "minimum_slop": 15, "waterbodi": [15, 19], "18046162": [15, 19], "boundname_column": [15, 19, 32], "csvfile": [15, 19, 32], "chd_head": [15, 19], "head_column": [15, 19], "p": [15, 19, 31], "omit": [15, 19], "18047154": [15, 19], "18046236": [15, 19], "18046230": [15, 19], "touch": [15, 16, 19], "mix": [15, 19, 28, 32], "vari": [15, 19, 29, 32], "bhead_column": [15, 19], "17953939": [15, 19], "2007_avg_pumping_from_meras21_m3": [15, 19], "iwum_m3_6m": [15, 19], "sp69_pumping_from_meras21_m3": [15, 19], "volume_unit": [15, 19], "flux_m3": [15, 19], "aleaf": [15, 19, 28, 34], "vertical_flux_distribut": [15, 19], "across_lay": [15, 19], "thickest": [15, 19], "transmiss": [15, 19], "distribute_bi": [15, 19], "shellmound_dropped_wel": [15, 19], "saverecord": 15, "preprocessed_head_obs_info": 15, "obsnam": 15, "moder": 15, "csv_output": 15, "fileout": 15, "telescop": [15, 29, 32], "refin": [15, 29, 32], "spatialrefer": 15, "overrid": 15, "sm_tmr": 15, "shellmound_tmr_inset": 15, "argment": 15, "default_source_data": [15, 19], "pull": [15, 28, 34], "inset_layer_map": 15, "500955": 15, "1175285": 15, "from_par": [15, 29], "18047212": [15, 19], "satur": [15, 19], "itself": [15, 29], "construct": [15, 16, 18, 29, 30, 32, 33], "nhdplu": [15, 29], "v2": [15, 29], "websit": [15, 29], "volum": [15, 19, 29], "climat": [15, 19, 29], "prism": [15, 29], "pleasant_lgr": [15, 29], "plsnt_lgr_parent": [15, 29], "extract": 15, "geo": [15, 18, 30], "namfil": 15, "unfortun": 15, "dot": 15, "exp": 15, "notat": 15, "remak": [15, 33], "553000": [15, 29], "388000": [15, 29], "3070": [15, 29], "wisconsin": [15, 29, 31], "transvers": [15, 29], "mercat": [15, 29], "tandem": 15, "layer_refin": 15, "develop": [15, 18, 29, 30, 31, 34], "dem40m": [15, 29], "botm2": [15, 29], "botm3": [15, 29], "monthli": [15, 19], "2013": [15, 29], "1m": 15, "stress_period": 15, "unspecifi": 15, "nhdplus_path": 15, "streamb": [15, 29], "stream": [15, 18, 30], "screen": [15, 28], "nwis_heads_info_fil": 15, "lake_sit": 15, "wdnr_gw_site": 15, "uwsp_head": 15, "wgnhs_head_target": 15, "drop_observ": 15, "10019209_lk": 15, "monitor": 15, "plsnt_lgr_inset": [15, 29], "pleast_lgr_par": 15, "all_lak": 15, "hydroid": 15, "600059060": 15, "sinc": [15, 28, 29, 34], "thin": 15, "littoral_leak": 15, "045": 15, "profundal_leak": 15, "025": 15, "lakes_shapefil": 15, "precipit": 15, "evapor": 15, "prism_ppt_tmean_stable_4km_189501_201901_43": 15, "9850_": 15, "89": 15, "5522": 15, "precip": 15, "evap": 15, "daili": 15, "subtract": 15, "off": [15, 25, 28], "bathymetry_rast": 15, "pleasant_bathymetri": 15, "relationship": [15, 29], "stage_area_volume_fil": 15, "area_stage_vol_pleas": 15, "volume_m3": 15, "pleasant_lgr_par": [15, 16, 29], "pleasant_nwt": 15, "features_fil": 15, "half": 15, "wdnr_dataset": [15, 19], "water_us": [15, 19], "master_wu": [15, 19], "wdnr": [15, 19, 29, 31], "water_use_point": [15, 19], "csls_sources_wu_pt": [15, 19], "600059161": 15, "pond": 15, "buffer_dist": 15, "rgn_rjh_3_23_18": 15, "mnw2": [15, 32], "pfl": [15, 19], "pfl_inset": 15, "plainfieldlak": [15, 19], "350": 15, "600054357": 15, "600054319": 15, "2011": [15, 29, 31], "dem10m": 15, "hk": 15, "vka": 15, "lieu": [15, 19], "infiltr": [15, 29, 31], "source_dara": 15, "rech": [15, 19], "net_infiltration__2012": [15, 19], "31__1066_by_1145__sum__inches_per_year": [15, 19], "mult": [15, 19], "805": [15, 19], "q": [15, 29], "well1": 15, "563343": 15, "92": 15, "414988": 15, "wu_point": [15, 19], "monthnam": [15, 19], "wel_lookup": 15, "added_wel": 15, "002276": 15, "32": 15, "yr": 15, "lpr": 15, "003646": 15, "45": [15, 29], "001649": 15, "23": 15, "ballpark": 15, "00338": 15, "38": 15, "sparkl": 15, "lenter": 15, "600054355": 15, "600054434": 15, "pfl_bathymetri": 15, "all_lakes_stage_area_volum": 15, "area_stage_vol_long": 15, "much": [16, 28], "page": [16, 19, 20, 21, 23, 24, 26, 27, 28], "crib": 16, "geopanda": 16, "guidelin": [16, 28, 34], "xarrai": 16, "fix": [16, 28, 32, 34], "improv": [16, 30], "idea": 16, "welcom": 16, "tab": 16, "reproduc": [16, 28], "insight": 16, "articl": 16, "blogpost": 16, "tip": 16, "good": [16, 28], "worthwhil": 16, "exercis": 16, "confirm": 16, "It": [16, 28, 29, 34], "worth": 16, "search": 16, "snippet": 16, "content": 16, "your": [16, 28], "full": [16, 18, 28, 29, 30], "traceback": [16, 28], "nice": 16, "flavor": 16, "markdown": 16, "past": [16, 19], "__version__": [16, 28], "conda": [16, 18, 34], "explain": 16, "behavior": [16, 25], "wrong": 16, "visibl": [16, 28], "implement": [16, 19, 29, 33], "encourag": 16, "awar": 16, "discuss": 16, "address": [16, 29], "quickli": [16, 19, 29], "particular": [16, 28, 30], "pleas": [16, 28], "sure": [16, 28], "action": 16, "statu": 16, "docstr": 16, "standalon": 16, "summari": 16, "admittedli": 16, "few": [16, 28, 30], "pep": 16, "messag": 16, "explicit": 16, "mainten": 16, "task": [16, 28, 30, 33], "standard": [16, 19, 32], "librari": [16, 28], "3rd": 16, "parti": 16, "third": [16, 33], "alphabet": 16, "isort": 16, "hook": 16, "daunt": 16, "veri": [16, 19, 28], "overwhelm": 16, "stick": [16, 28], "keep": [16, 19], "straightforward": 16, "mostli": [16, 28, 34], "troubl": [16, 28], "free": 16, "difficulti": [16, 30], "feel": 16, "ask": 16, "host": 16, "peopl": 16, "togeth": 16, "great": [16, 30], "resourc": [16, 31], "learn": [16, 30], "softwar": [16, 28, 29], "carpentri": 16, "tutori": 16, "atlassian": 16, "matthew": 16, "brett": 16, "pydagogu": 16, "ssh": 16, "seamlessli": 16, "hit": 16, "button": 16, "want": [16, 28, 29], "clone": [16, 28, 34], "machin": 16, "yournam": 16, "cd": [16, 28], "remot": 16, "upstream": 16, "main": 16, "travi": 16, "ci": 16, "wish": 16, "prior": [16, 25, 32], "reflect": 16, "product": 16, "readi": 16, "shini": 16, "checkout": 16, "simplifi": [16, 29], "b": [16, 29, 31], "clear": 16, "bring": 16, "switch": 16, "command": [16, 28], "retriev": [16, 28], "fetch": [16, 28], "rebas": 16, "replai": 16, "latest": [16, 34], "merg": 16, "move": 16, "slowli": 16, "while": [16, 19, 28, 30], "pai": 16, "attent": 16, "spiral": 16, "confus": [16, 28, 29], "mess": 16, "stash": 16, "reappli": 16, "virtual": [16, 32], "independ": [16, 18, 32], "easi": 16, "break": [16, 32], "plai": 16, "anaconda": [16, 28], "miniconda": [16, 28], "tell": [16, 25, 28], "setup_dev": 16, "env": [16, 28], "dev": 16, "nor": [16, 29], "mac": 16, "linux": [16, 28], "view": [16, 29], "root": [16, 28, 34], "deactiv": [16, 28], "At": [16, 28, 29, 30], "section": [16, 28, 32, 33], "navig": 16, "pip": [16, 34], "seriou": 16, "strongli": 16, "contributor": 16, "embrac": 16, "driven": 16, "tdd": 16, "reli": 16, "repetit": 16, "cycl": 16, "fail": [16, 28], "amount": 16, "taken": 16, "push": [16, 34], "habit": 16, "ahead": 16, "never": 16, "pytest": 16, "suggest": 16, "inspir": 16, "aim": [16, 28, 30], "test_lak": 16, "test_mf6_shellmound": 16, "easiest": [16, 28], "resid": [16, 29], "modifi": 16, "restructuredtext": 16, "sphinx": 16, "c": [16, 28, 31], "practic": [16, 18, 29, 30], "rebuild": [16, 28, 30], "stai": 16, "mistak": 16, "preview": 16, "render": 16, "ve": 16, "integr": 16, "find": [16, 28, 31], "pr": 16, "tri": 16, "pep8": 16, "am": 16, "black": 16, "complient": 16, "editor": [16, 28], "perform": [16, 19, 28, 30, 33], "doe": [16, 18], "statement": [16, 19], "And": 16, "done": [16, 28, 29, 30], "Then": [16, 19], "nativ": [18, 25, 30], "finit": [18, 30], "philosophi": 18, "motiv": 18, "instal": [18, 34], "ipython": 18, "kernel": 18, "jupyt": 18, "notebook": 18, "consider": 18, "minut": [18, 30], "plainfield": 18, "usag": 18, "concept": 18, "troubleshoot": [18, 30], "my": 18, "releas": [18, 28, 29, 30, 31, 34], "histori": [18, 30], "contribut": [18, 28], "cite": 18, "evt": 19, "broadli": 19, "phenomena": 19, "even": [19, 28, 30], "tabular": 19, "paradigm": 19, "langevin": [19, 31], "abbrievi": 19, "turn": [19, 25, 30], "boundname_col": [19, 32], "One": 19, "x_col": 19, "y_col": 19, "convers": 19, "gallon": 19, "l": [19, 29], "_col": 19, "head_col": 19, "cond_col": 19, "fall": 19, "aggregr": 19, "arbitrari": 19, "term": 19, "reproject": [19, 32], "coorind": 19, "yet": [19, 29], "due": 19, "lack": 19, "handl": [19, 30, 32], "_": [19, 29], "wel_000": 19, "wel_001": 19, "wel_002": 19, "vare": 19, "riverb": 19, "rbot": 19, "translat": [19, 32], "simpl": [19, 28, 30], "inject": 19, "earli": 19, "thinner": 19, "reloc": 19, "thickess": 19, "thicker": 19, "forecast": 19, "cf": 19, "compliant": 19, "from_cf": 19, "crs_wkt": 19, "proj4_str": 19, "soil": [19, 29, 31, 32], "balanc": [19, 29, 31, 32], "intern": [19, 28, 29], "progress": [20, 21, 23, 24, 26, 27, 30], "15": [25, 29], "besid": 25, "head_filerecord": 25, "budget_filerecord": 25, "modflowgwfoc": 25, "modflowoc": 25, "unitnumb": 25, "51": 25, "52": 25, "drawdown": 25, "invalid": 25, "popular": 28, "scienc": [28, 29], "scientif": 28, "minim": [28, 32], "dedic": 28, "mambaforg": 28, "forg": 28, "stuck": 28, "solv": [28, 29], "usernam": 28, "seem": 28, "fiona": 28, "gdal": 28, "clean": 28, "uninstal": 28, "admin": 28, "privileg": 28, "me": 28, "sai": 28, "someth": 28, "click": 28, "geospati": 28, "raw": 28, "web": 28, "browser": 28, "preconfigur": 28, "inc": [28, 31], "luck": 28, "exclus": 28, "commun": 28, "hassl": 28, "bad": 28, "solver": 28, "excess": 28, "prompt": 28, "termin": [28, 29], "osx": 28, "probabl": 28, "somehow": 28, "panel": 28, "googl": 28, "reinstal": [28, 34], "minor": [28, 34], "occasion": 28, "compat": [28, 32], "shorter": 28, "timefram": 28, "eventu": 28, "delet": 28, "everi": 28, "sever": 28, "simplest": 28, "upgrad": [28, 34], "situat": 28, "session": 28, "bleed": 28, "bug": [28, 32, 34], "branch": 28, "frequent": 28, "slightli": 28, "advantag": 28, "debug": 28, "interact": 28, "pycharm": 28, "addition": 28, "ll": 28, "ipykernel": 28, "displai": [28, 29], "appear": 28, "NOT": 28, "edit": [28, 30, 31], "mayb": 28, "fulli": 28, "thing": 28, "dll": 28, "downgrad": 28, "pretti": 28, "wast": 28, "lot": 28, "hoc": [28, 30], "scan": 28, "correctli": 28, "strictli": 28, "yield": 28, "pack": 28, "rather": 28, "guarante": 28, "verif": 28, "caus": [28, 29], "persist": 28, "On": 28, "appdata": 28, "ini": 28, "roam": 28, "conf": 28, "els": 28, "cert": 28, "doirootca2": 28, "cer": 28, "ssl_verifi": 28, "condarc": 28, "possibli": [28, 34], "common": [28, 30], "incorrectli": 28, "IT": 28, "person": 28, "mention": 28, "handshak": 28, "certificate_verify_fail": 28, "condahttperror": 28, "500": 28, "url": 28, "repo": 28, "pkg": 28, "msys2": 28, "win": 28, "64": [28, 29, 32], "m2w64": 28, "gettext": 28, "19": [28, 29], "tar": 28, "bz2": 28, "647993": 28, "occur": 28, "intermitt": 28, "retri": 28, "normal": [28, 29], "wouldn": 28, "publish": 29, "fienen": [29, 31], "et": 29, "al": 29, "2021": [29, 31], "goal": [29, 33], "central": [29, 31], "sand": [29, 31], "studi": [29, 31], "abstract": 29, "ecolog": 29, "usa": 29, "figur": 29, "accur": 29, "chiefli": 29, "irrig": 29, "agricultur": 29, "delin": 29, "distant": 29, "adopt": 29, "enough": 29, "throughout": 29, "mitig": 29, "niswong": [29, 31], "coupl": [29, 32], "dynam": [29, 32], "feedback": 29, "swb": [29, 31], "westenbroek": [29, 31], "net": [29, 31], "convei": 29, "show": 29, "illustr": 29, "adequ": 29, "binder": 29, "captur": 29, "pd": 29, "matplotlib": 29, "pyplot": 29, "plt": 29, "patheffect": 29, "bf": 29, "gisutil": 29, "df2shp": 29, "mfexport": 29, "get_water_t": 29, "wd": 29, "oftentim": 29, "attempt": 29, "suppress": 29, "stdout": 29, "pleasant_lgr_inset": 29, "simulatan": 29, "558000": 29, "393000": 29, "70": 29, "80": 29, "554200": 29, "389000": 29, "557400": 29, "391800": 29, "flat": 29, "39": 29, "creation": 29, "plsnt_lgr_parent_grid": 29, "plsnt_lgr_inset_grid": 29, "finish": 29, "post11": 29, "g3a6ec42": 29, "rcha_0": 29, "chd_0": 29, "obs_0": 29, "sfr_0": 29, "wel_0": 29, "obs_1": 29, "obs_2": 29, "02": 29, "29": 29, "dict_kei": 29, "defaultdict": 29, "plsnt_lgr_parent_top": 29, "plsnt_lgr_parent_botm_000": 29, "plsnt_lgr_parent_botm_001": 29, "plsnt_lgr_parent_botm_002": 29, "plsnt_lgr_parent_botm_003": 29, "plsnt_lgr_parent_botm_004": 29, "plsnt_lgr_parent_idomain_000": 29, "plsnt_lgr_parent_idomain_001": 29, "plsnt_lgr_parent_idomain_002": 29, "plsnt_lgr_parent_idomain_003": 29, "plsnt_lgr_parent_idomain_004": 29, "lak_0": 29, "r": [29, 31], "fig": 29, "ax": 29, "subplot": 29, "figsiz": 29, "parent_mv": 29, "plotmapview": 29, "inset_mv": 29, "vconn": 29, "claktyp": 29, "lakeconnect": 29, "ma": 29, "masked_arrai": 29, "qmi": 29, "plot_arrai": 29, "plot_bc": 29, "color": 29, "navi": 29, "red": 29, "lcp": 29, "plot_grid": 29, "lw": 29, "lci": 29, "set_ylim": 29, "set_xlim": 29, "set_aspect": 29, "colorbar": 29, "lt": 29, "0x7fefccaa6dd0": 29, "gt": 29, "ims_": 29, "gwfgwf": 29, "maxbound": 29, "240": 29, "dev0": [29, 34], "diagnost": 29, "segment": 29, "increas": 29, "circular": 29, "proxim": 29, "adjac": 29, "isfropt": 29, "strtop": 29, "15000": 29, "segment_data": 29, "rise": 29, "elevup": 29, "elevdn": 29, "nstrm": 29, "reach_data": 29, "iseg": 29, "ireach": 29, "strtopdn": 29, "d_strtop": 29, "reachid": 29, "16": 29, "290": 29, "3638610839844": 29, "294": 29, "76507568359375": 29, "401214599609375": 29, "17": 29, "293": 29, "5867614746094": 29, "222900390625": 29, "21": 29, "292": 29, "6883850097656": 29, "32452392578125": 29, "inconsist": 29, "slope": 29, "wrote": 29, "plsnt_lgr_parent_sfr": 29, "chk": 29, "plsnt_lgr_parent_packagedata": 29, "run_simul": 29, "geolog": [29, 31], "modular": 29, "candid": 29, "08": 29, "2022": 29, "mode": 29, "compil": 29, "mar": 29, "intel": 29, "fortran": 29, "classic": 29, "20211109_000000": 29, "preliminari": 29, "provision": 29, "subject": 29, "meet": 29, "receiv": 29, "approv": 29, "warranti": 29, "express": 29, "impli": 29, "govern": 29, "materi": 29, "shall": 29, "fact": 29, "constitut": 29, "neither": 29, "held": 29, "liabl": 29, "damag": 29, "unauthor": 29, "hh": 29, "2023": 29, "22": 29, "lst": 29, "457": 29, "tmr_parent_headsobj": 29, "lgr_parent_headsobj": 29, "lgr_inset_headsobj": 29, "kper": 29, "lgr_parent_hd": 29, "get_data": 29, "lgr_inset_hd": 29, "inset_wt": 29, "1e30": 29, "parent_wt": 29, "lake_result": 29, "read_csv": 29, "lake1": 29, "nicer": 29, "xi": 29, "arang": 29, "yi": 29, "meshgrid": 29, "xcellcent": 29, "ycellcent": 29, "contour": 29, "green": 29, "18": 29, "rcparam": 29, "labels": 29, "xtick": 29, "ytick": 29, "inset_bc": 29, "_isbc2d": 29, "parent_bc": 29, "vmin": 29, "vmax": 29, "bdlknc_valu": 29, "bedleak": 29, "conn": 29, "bdlknc": 29, "cmap": 29, "blue": 29, "zorder": 29, "315": 29, "ctr": 29, "label": 29, "clabel": 29, "inlin": 29, "fontsiz": 29, "inline_spac": 29, "setp": 29, "path_effect": 29, "withstrok": 29, "linewidth": 29, "foreground": 29, "w": [29, 31], "set_ylabel": 29, "set_xlabel": 29, "east": 29, "555600": 29, "390450": 29, "nlake": 29, "va": 29, "darkblu": 29, "fontstyl": 29, "ital": 29, "famili": 29, "serif": 29, "202": 29, "txt": 29, "556400": 29, "391000": 29, "chaffe": 29, "creek": 29, "darkgreen": 29, "set_path_effect": 29, "556700": 29, "388900": 29, "tagatz": 29, "ncreek": 29, "annot": 29, "littor": 29, "xy": 29, "555450": 29, "390100": 29, "xycoord": 29, "xytext": 29, "555050": 29, "textcoord": 29, "arrowprop": 29, "arrowstyl": 29, "connectionstyl": 29, "arc3": 29, "fc": 29, "203": 29, "arrow_patch": 29, "stroke": 29, "profund": 29, "555800": 29, "389500": 29, "tight_layout": 29, "savefig": 29, "figure_2": 29, "output_path": 29, "thickness_lay0": 29, "thickness_lay1": 29, "thickness_lay2": 29, "thickness_lay3": 29, "thickness_lay4": 29, "botm_lay0": 29, "botm_lay1": 29, "botm_lay2": 29, "botm_lay3": 29, "botm_lay4": 29, "idomain_lay0": 29, "idomain_lay1": 29, "idomain_lay2": 29, "idomain_lay3": 29, "idomain_lay4": 29, "strt_lay0": 29, "strt_lay1": 29, "strt_lay2": 29, "strt_lay3": 29, "strt_lay4": 29, "icelltype_lay0": 29, "icelltype_lay1": 29, "icelltype_lay2": 29, "icelltype_lay3": 29, "icelltype_lay4": 29, "k_lay0": 29, "k_lay1": 29, "k_lay2": 29, "k_lay3": 29, "k_lay4": 29, "k33_lay0": 29, "k33_lay1": 29, "k33_lay2": 29, "k33_lay3": 29, "k33_lay4": 29, "iconvert_lay0": 29, "iconvert_lay1": 29, "iconvert_lay2": 29, "iconvert_lay3": 29, "iconvert_lay4": 29, "ss_lay0": 29, "ss_lay1": 29, "ss_lay2": 29, "ss_lay3": 29, "ss_lay4": 29, "sy_lay0": 29, "sy_lay1": 29, "sy_lay2": 29, "sy_lay3": 29, "sy_lay4": 29, "irch_per0": 29, "recharge_per0": 29, "recharge_per1": 29, "recharge_per2": 29, "recharge_per3": 29, "recharge_per4": 29, "recharge_per5": 29, "recharge_per6": 29, "recharge_per7": 29, "recharge_per8": 29, "recharge_per9": 29, "recharge_per10": 29, "recharge_per11": 29, "recharge_per12": 29, "chd0_stress_period_data": 29, "warn": 29, "transientlist": 29, "wel0_stress_period_data": 29, "lak0": 29, "effici": 29, "dispar": 30, "cumbersom": 30, "labor": 30, "intens": 30, "numer": 30, "late": 30, "optim": 30, "answer": 30, "inher": 30, "difficult": 30, "revisit": 30, "respons": 30, "carri": 30, "conceptu": 30, "seldom": 30, "feasibl": [30, 33], "cognit": 30, "consum": 30, "tediou": 30, "mung": 30, "leav": 30, "room": 30, "hydrosens": 30, "languag": 30, "propos": 30, "challeng": 30, "easier": 30, "said": 30, "interdepend": 30, "fundament": 30, "principl": 30, "overcom": 30, "obstacl": 30, "extrem": 30, "disciplin": 30, "care": 30, "experi": 30, "shown": 30, "entropi": 30, "increasingli": 30, "collect": [30, 32, 33], "harden": 30, "collabor": 30, "memori": 30, "succinctli": 30, "assembl": 30, "wise": 30, "distil": 30, "codebas": 30, "reus": 30, "reliabl": 30, "datatyp": 30, "inter": 30, "focus": 30, "comprehens": 30, "tool": 30, "ground": 30, "somewhat": 30, "faster": 30, "favor": [30, 32], "entir": 30, "repeat": 30, "unstructur": 30, "futur": 30, "hunt": 31, "krohelski": 31, "chung": 31, "seepag": 31, "117": 31, "122": 31, "1111": 31, "1745": 31, "6584": 31, "tb02496": 31, "woessner": 31, "620": 31, "san": 31, "diego": 31, "academ": 31, "press": 31, "bakker": 31, "hugh": 31, "starn": 31, "2016": 31, "54": 31, "733": 31, "739": 31, "gwat": 31, "12413": 31, "barlow": 31, "peterson": 31, "reev": 31, "h": 31, "viger": 31, "databas": 31, "5066": 31, "f7p84b24": 31, "haserodt": 31, "leaf": 31, "2021a": 31, "appendix": 31, "technic": 31, "depart": 31, "natur": 31, "5281": 31, "zenodo": 31, "5708719": 31, "analyt": 31, "element": 31, "zheng": 31, "330": 31, "333": 31, "00936": 31, "banta": 31, "pandai": 31, "sorab": 31, "provost": 31, "techniqu": 31, "book": 31, "chap": 31, "a55": 31, "197": 31, "3133": 31, "tm6a55": 31, "ibaraki": 31, "formul": 31, "a37": 31, "tm6a45": 31, "engott": 31, "kelson": 31, "a59": 31, "118": 31, "tm6a59": 31, "legislatur": 31, "5708791": 31, "wasn": 32, "assign_lay": 32, "problemat": 32, "bit": 32, "dtype": 32, "match": [32, 34], "inner": 32, "remap": 32, "refactor": 32, "previous": 32, "interfac": 32, "attributeerror": 32, "relax": 32, "mf2k": 32, "blank": 32, "arc": 32, "ascii": 32, "sfr2": 32, "rcha": 32, "configu": 32, "boiler": 33, "plate": 33, "These": 33, "agnost": 33, "config_fil": 33, "setup_di": 33, "fresh": 34, "post250": 34, "g9af1c61": 34, "9af1c61": 34}, "objects": {"mfsetup": [[2, 0, 0, "-", "discretization"], [3, 0, 0, "-", "fileio"], [4, 0, 0, "-", "grid"], [5, 0, 0, "-", "interpolate"], [6, 0, 0, "-", "mf6model"], [7, 0, 0, "-", "mfmodel"], [8, 0, 0, "-", "mfnwtmodel"], [9, 0, 0, "-", "tdis"], [10, 0, 0, "-", "tmr"]], "mfsetup.discretization": [[2, 1, 1, "", "ModflowGwfdis"], [2, 3, 1, "", "adjust_layers"], [2, 3, 1, "", "cellids_to_kij"], [2, 3, 1, "", "create_vertical_pass_through_cells"], [2, 3, 1, "", "deactivate_idomain_above"], [2, 3, 1, "", "fill_cells_vertically"], [2, 3, 1, "", "fill_empty_layers"], [2, 3, 1, "", "find_remove_isolated_cells"], [2, 3, 1, "", "fix_model_layer_conflicts"], [2, 3, 1, "", "get_highest_active_layer"], [2, 3, 1, "", "get_layer"], [2, 3, 1, "", "get_layer_thicknesses"], [2, 3, 1, "", "make_ibound"], [2, 3, 1, "", "make_idomain"], [2, 3, 1, "", "make_irch"], [2, 3, 1, "", "make_lgr_idomain"], [2, 3, 1, "", "populate_values"], [2, 3, 1, "", "verify_minimum_layer_thickness"], [2, 3, 1, "", "voxels_to_layers"], [2, 3, 1, "", "weighted_average_between_layers"]], "mfsetup.discretization.ModflowGwfdis": [[2, 2, 1, "", "thickness"]], "mfsetup.fileio": [[3, 3, 1, "", "add_version_to_fileheader"], [3, 3, 1, "", "append_csv"], [3, 3, 1, "", "check_source_files"], [3, 3, 1, "", "dump"], [3, 3, 1, "", "dump_json"], [3, 3, 1, "", "dump_yml"], [3, 3, 1, "", "exe_exists"], [3, 3, 1, "", "flopy_mf2005_load"], [3, 3, 1, "", "flopy_mf6model_load"], [3, 3, 1, "", "flopy_mfsimulation_load"], [3, 3, 1, "", "load"], [3, 3, 1, "", "load_array"], [3, 3, 1, "", "load_cfg"], [3, 3, 1, "", "load_json"], [3, 3, 1, "", "load_modelgrid"], [3, 3, 1, "", "load_yml"], [3, 3, 1, "", "read_ggofile"], [3, 3, 1, "", "read_lak_ggo"], [3, 3, 1, "", "read_mf6_block"], [3, 3, 1, "", "remove_file_header"], [3, 3, 1, "", "save_array"], [3, 3, 1, "", "set_cfg_paths_to_absolute"], [3, 3, 1, "", "setup_external_filepaths"], [3, 3, 1, "", "which"]], "mfsetup.grid": [[4, 1, 1, "", "MFsetupGrid"], [4, 3, 1, "", "get_cellface_midpoint"], [4, 3, 1, "", "get_crs"], [4, 3, 1, "", "get_crs_length_units"], [4, 3, 1, "", "get_grid_bounding_box"], [4, 3, 1, "", "get_ij"], [4, 3, 1, "", "get_intercell_connections"], [4, 3, 1, "", "get_kij_from_node3d"], [4, 3, 1, "", "get_nearest_point_on_grid"], [4, 3, 1, "", "get_point_on_national_hydrogeologic_grid"], [4, 3, 1, "", "get_transform"], [4, 3, 1, "", "rasterize"], [4, 3, 1, "", "setup_structured_grid"], [4, 3, 1, "", "write_bbox_shapefile"]], "mfsetup.grid.MFsetupGrid": [[4, 2, 1, "", "bbox"], [4, 2, 1, "", "botm"], [4, 2, 1, "", "bounds"], [4, 2, 1, "", "crs"], [4, 2, 1, "", "dataframe"], [4, 4, 1, "", "get_dataframe"], [4, 4, 1, "", "get_intercell_connections"], [4, 4, 1, "", "get_vertices"], [4, 2, 1, "", "intercell_connections"], [4, 2, 1, "", "length_multiplier"], [4, 2, 1, "", "length_units"], [4, 2, 1, "", "polygons"], [4, 2, 1, "", "proj_str"], [4, 2, 1, "", "rotation"], [4, 2, 1, "", "size"], [4, 2, 1, "", "top"], [4, 2, 1, "", "transform"], [4, 2, 1, "", "vertices"], [4, 2, 1, "", "wkt"], [4, 4, 1, "", "write_bbox_shapefile"], [4, 4, 1, "", "write_shapefile"], [4, 2, 1, "", "xul"], [4, 2, 1, "", "yul"]], "mfsetup.interpolate": [[5, 1, 1, "", "Interpolator"], [5, 3, 1, "", "get_source_dest_model_xys"], [5, 3, 1, "", "interp_weights"], [5, 3, 1, "", "interpolate"], [5, 3, 1, "", "regrid"], [5, 3, 1, "", "regrid3d"]], "mfsetup.interpolate.Interpolator": [[5, 2, 1, "", "interp_weights"], [5, 4, 1, "", "interpolate"], [5, 2, 1, "", "source_values_mask"]], "mfsetup.mf6model": [[6, 1, 1, "", "MF6model"]], "mfsetup.mf6model.MF6model": [[6, 4, 1, "", "get_flopy_external_file_input"], [6, 4, 1, "", "get_package_list"], [6, 4, 1, "", "get_raster_statistics_for_cells"], [6, 4, 1, "", "get_raster_values_at_cell_centers"], [6, 2, 1, "", "idomain"], [6, 4, 1, "", "load_from_config"], [6, 2, 1, "", "perioddata"], [6, 4, 1, "", "setup_chd"], [6, 4, 1, "", "setup_drn"], [6, 4, 1, "", "setup_ghb"], [6, 4, 1, "", "setup_ic"], [6, 4, 1, "", "setup_ims"], [6, 4, 1, "", "setup_lak"], [6, 4, 1, "", "setup_npf"], [6, 4, 1, "", "setup_obs"], [6, 4, 1, "", "setup_oc"], [6, 4, 1, "", "setup_rch"], [6, 4, 1, "", "setup_riv"], [6, 4, 1, "", "setup_simulation_mover"], [6, 4, 1, "", "setup_sto"], [6, 4, 1, "", "setup_tdis"], [6, 4, 1, "", "setup_wel"], [6, 4, 1, "", "write_input"]], "mfsetup.mfmodel": [[7, 1, 1, "", "MFsetupMixin"]], "mfsetup.mfmodel.MFsetupMixin": [[7, 4, 1, "", "get_boundary_cells"], [7, 2, 1, "", "high_k_lake_recharge"], [7, 2, 1, "", "interp_weights"], [7, 2, 1, "", "isbc"], [7, 2, 1, "", "lakarr"], [7, 2, 1, "", "lake_bathymetry"], [7, 4, 1, "", "load_cfg"], [7, 4, 1, "", "load_features"], [7, 4, 1, "", "load_grid"], [7, 2, 1, "", "model_version"], [7, 2, 1, "", "package_list"], [7, 2, 1, "", "parent_layers"], [7, 2, 1, "", "parent_mask"], [7, 2, 1, "", "parent_stress_periods"], [7, 2, 1, "", "perimeter_bc_type"], [7, 4, 1, "", "regrid_from_parent"], [7, 4, 1, "", "setup_external_filepaths"], [7, 4, 1, "", "setup_from_cfg"], [7, 4, 1, "", "setup_from_yaml"], [7, 4, 1, "", "setup_grid"], [7, 5, 1, "", "source_path"]], "mfsetup.mfnwtmodel": [[8, 1, 1, "", "MFnwtModel"]], "mfsetup.mfnwtmodel.MFnwtModel": [[8, 2, 1, "", "ibound"], [8, 2, 1, "", "ipakcb"], [8, 4, 1, "", "load"], [8, 2, 1, "", "perioddata"], [8, 4, 1, "", "setup_chd"], [8, 4, 1, "", "setup_drn"], [8, 4, 1, "", "setup_ghb"], [8, 4, 1, "", "setup_hyd"], [8, 4, 1, "", "setup_riv"], [8, 4, 1, "", "setup_tdis"], [8, 4, 1, "", "setup_upw"], [8, 4, 1, "", "setup_wel"], [8, 4, 1, "", "write_input"]], "mfsetup.tdis": [[9, 3, 1, "", "add_date_comments_to_tdis"], [9, 3, 1, "", "aggregate_dataframe_to_stress_period"], [9, 3, 1, "", "aggregate_xarray_to_stress_period"], [9, 3, 1, "", "concat_periodata_groups"], [9, 3, 1, "", "convert_freq_to_period_start"], [9, 3, 1, "", "get_parent_stress_periods"], [9, 3, 1, "", "parse_perioddata_groups"], [9, 3, 1, "", "setup_perioddata"], [9, 3, 1, "", "setup_perioddata_group"]], "mfsetup.tmr": [[10, 3, 1, "", "get_qx_qy_qz"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:property", "3": "py:function", "4": "py:method", "5": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "property", "Python property"], "3": ["py", "function", "Python function"], "4": ["py", "method", "Python method"], "5": ["py", "attribute", "Python attribute"]}, "titleterms": {"10": 0, "minut": 0, "modflow": [0, 11, 13, 14, 15, 16, 18, 19, 25, 28, 29, 30, 34], "setup": [0, 11, 16, 18, 28, 30, 34], "1": [0, 16, 32], "defin": 0, "model": [0, 1, 12, 15, 29, 33], "activ": 0, "area": 0, "coordin": 0, "refer": [0, 1, 18, 31], "system": 0, "2": [0, 16, 32], "creat": [0, 16, 28, 29], "script": [0, 34], "configur": [0, 13, 14, 15], "file": [0, 13, 15, 28, 29], "3": [0, 16, 18, 32], "develop": [0, 16, 28], "flowlin": 0, "repres": 0, "stream": 0, "preprocess": 0, "nhdplu": 0, "hr": 0, "version": [0, 28, 32], "4": [0, 16], "get": [0, 16, 18, 28], "dem": 0, "make": [0, 16, 29], "virtual": 0, "raster": [0, 29], "5": [0, 16], "minimum": 0, "work": [0, 29], "build": [0, 29], "code": [1, 16, 28], "class": [1, 6, 7, 8], "support": 1, "modul": [1, 2, 3, 4, 5, 9, 10], "mfsetup": [2, 3, 4, 5, 9, 10], "discret": [2, 12, 20], "fileio": 3, "grid": [4, 19, 29], "interpol": 5, "mf6model": 6, "mfsetupmixin": 7, "mfnwtmodel": 8, "tdi": 9, "tmr": [10, 15], "concept": 11, "method": 11, "specifi": [12, 13, 19, 21, 26], "perimet": 12, "boundari": [12, 19], "condit": [12, 19, 21], "from": [12, 28], "anoth": 12, "featur": 12, "limit": 12, "input": [12, 13, 19, 22, 25, 29], "time": 12, "locat": [12, 29], "cell": 12, "The": [13, 20, 23, 27], "yaml": 13, "format": [13, 25], "structur": [13, 33], "packag": [13, 19, 20, 22, 23, 27, 28, 29, 33], "block": 13, "sub": 13, "directli": 13, "source_data": 13, "some": 13, "addit": 13, "note": 13, "default": 14, "6": [14, 16], "nwt": [14, 15], "galleri": 15, "shellmound": 15, "test": [15, 16], "case": 15, "inset": [15, 29], "pleasant": [15, 29], "lake": [15, 23, 29], "lgr": 15, "parent": [15, 29], "pleasant_lgr_inset": 15, "yml": 15, "plainfield": 15, "contribut": 16, "start": [16, 18], "bug": 16, "report": 16, "enhanc": 16, "request": 16, "seven": 16, "step": 16, "fork": 16, "repositori": 16, "us": [16, 28, 29], "git": 16, "branch": 16, "environ": [16, 28, 34], "requir": 16, "depend": [16, 28], "instal": [16, 28], "sourc": [16, 28], "chang": [16, 29], "write": [16, 29], "run": [16, 29, 34], "suit": 16, "updat": [16, 28, 34], "document": 16, "7": 16, "submit": 16, "pull": 16, "style": 16, "guid": [16, 18], "lint": 16, "exampl": [17, 29], "problem": 17, "0": [18, 32], "post11": 18, "g3a6ec42": 18, "user": [18, 28], "bibliographi": 18, "basic": [19, 33], "stress": [19, 25], "list": 19, "base": 19, "constant": 19, "head": [19, 24, 29], "chd": 19, "drain": 19, "drn": 19, "gener": 19, "ghb": 19, "river": 19, "riv": 19, "well": 19, "wel": 19, "recharg": 19, "rch": 19, "direct": 19, "independ": 19, "initi": [21, 32], "instruct": 22, "lak": 23, "observ": 24, "output": 25, "control": 25, "period": 25, "filenam": 25, "other": 25, "argument": 25, "altern": 25, "aquif": 26, "properti": 26, "streamflow": 27, "rout": 27, "sfr": 27, "python": [28, 34], "conda": 28, "download": 28, "distribut": 28, "like": 28, "an": 28, "mamba": 28, "keep": 28, "up": [28, 33], "date": 28, "pypi": 28, "latest": 28, "place": 28, "ipython": 28, "kernel": 28, "jupyt": 28, "notebook": [28, 29], "best": 28, "practic": 28, "consider": 28, "usg": 28, "doi": 28, "ssl": 28, "certif": 28, "pip": 28, "troubleshoot": [28, 34], "issu": 28, "network": 28, "relat": 28, "error": 28, "messag": 28, "when": 28, "If": 28, "you": 28, "ar": 28, "window": 28, "thi": 28, "detail": 29, "just": 29, "directori": 29, "gottcha": 29, "shapefil": 29, "modelgrid": 29, "back": 29, "whole": 29, "plot": 29, "connect": 29, "layer": 29, "result": 29, "first": 29, "combin": 29, "export": 29, "pdf": 29, "can": 29, "also": 29, "summari": 29, "tabl": 29, "philosophi": 30, "motiv": 30, "what": 30, "doe": 30, "doesn": [30, 34], "t": [30, 34], "do": 30, "releas": 32, "histori": 32, "2023": 32, "08": 32, "17": 32, "07": 32, "25": 32, "02": 32, "06": 32, "2022": 32, "09": 32, "30": 32, "program": 33, "usag": 33, "set": 33, "full": 33, "load": 33, "individu": 33, "my": 34, "your": 34}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 57}, "alltitles": {"10 Minutes to Modflow-setup": [[0, "minutes-to-modflow-setup"]], "1) Define the model active area and coordinate reference system": [[0, "define-the-model-active-area-and-coordinate-reference-system"]], "2) Create a setup script and configuration file": [[0, "create-a-setup-script-and-configuration-file"]], "3) Develop flowlines to represent streams": [[0, "develop-flowlines-to-represent-streams"]], "Preprocessing NHDPlus HR": [[0, "preprocessing-nhdplus-hr"]], "Preprocessing NHDPlus version 2": [[0, "preprocessing-nhdplus-version-2"]], "4) Get a DEM": [[0, "get-a-dem"]], "Making a virtual raster": [[0, "making-a-virtual-raster"]], "5) Make a minimum working configuration file and model build script": [[0, "make-a-minimum-working-configuration-file-and-model-build-script"]], "Code Reference": [[1, "code-reference"]], "Model classes": [[1, "model-classes"]], "Supporting modules": [[1, "supporting-modules"]], "mfsetup.discretization module": [[2, "module-mfsetup.discretization"]], "mfsetup.fileio module": [[3, "module-mfsetup.fileio"]], "mfsetup.grid module": [[4, "module-mfsetup.grid"]], "mfsetup.interpolate module": [[5, "module-mfsetup.interpolate"]], "MF6model class": [[6, "module-mfsetup.mf6model"]], "MFsetupMixin class": [[7, "module-mfsetup.mfmodel"]], "MFnwtModel class": [[8, "module-mfsetup.mfnwtmodel"]], "mfsetup.tdis module": [[9, "module-mfsetup.tdis"]], "mfsetup.tmr module": [[10, "module-mfsetup.tmr"]], "Modflow-setup concepts and methods": [[11, "modflow-setup-concepts-and-methods"]], "Specifying perimeter boundary conditions from another model": [[12, "specifying-perimeter-boundary-conditions-from-another-model"]], "Features and Limitations": [[12, "features-and-limitations"]], "Input": [[12, "input"]], "Time discretization": [[12, "time-discretization"]], "Specifying the locations of perimeter boundary cells": [[12, "specifying-the-locations-of-perimeter-boundary-cells"]], "The configuration file": [[13, "the-configuration-file"]], "The YAML format": [[13, "the-yaml-format"]], "Configuration file structure": [[13, "configuration-file-structure"]], "Package blocks": [[13, "package-blocks"]], "Sub-blocks": [[13, "sub-blocks"]], "Directly specifying MODFLOW input": [[13, "directly-specifying-modflow-input"]], "Source_data sub-blocks": [[13, "source-data-sub-blocks"]], "Some additional notes on YAML": [[13, "some-additional-notes-on-yaml"]], "Configuration defaults": [[14, "configuration-defaults"]], "MODFLOW-6 configuration defaults": [[14, "modflow-6-configuration-defaults"]], "MODFLOW-NWT configuration defaults": [[14, "modflow-nwt-configuration-defaults"]], "Configuration File Gallery": [[15, "configuration-file-gallery"]], "Shellmound test case": [[15, "shellmound-test-case"]], "Shellmound TMR inset test case": [[15, "shellmound-tmr-inset-test-case"]], "Pleasant Lake test case": [[15, "pleasant-lake-test-case"]], "LGR parent model configuration": [[15, "lgr-parent-model-configuration"]], "pleasant_lgr_inset.yml": [[15, "pleasant-lgr-inset-yml"]], "Pleasant Lake MODFLOW-NWT test case": [[15, "pleasant-lake-modflow-nwt-test-case"]], "Plainfield Lakes MODFLOW-NWT test case": [[15, "plainfield-lakes-modflow-nwt-test-case"]], "Contributing to modflow-setup": [[16, "contributing-to-modflow-setup"]], "Getting started": [[16, "getting-started"]], "Bug reports and enhancement requests": [[16, "bug-reports-and-enhancement-requests"]], "Code contributions": [[16, "code-contributions"]], "Seven Steps for Contributing": [[16, "seven-steps-for-contributing"]], "1) Forking the modflow-setup repository using Git": [[16, "forking-the-modflow-setup-repository-using-git"]], "Getting started with Git": [[16, "getting-started-with-git"]], "Forking": [[16, "forking"]], "Creating a branch": [[16, "creating-a-branch"]], "2 & 3) Creating a development environment with the required dependencies": [[16, "creating-a-development-environment-with-the-required-dependencies"]], "4) Installing the modflow-setup source code": [[16, "installing-the-modflow-setup-source-code"]], "5) Making changes and writing tests": [[16, "making-changes-and-writing-tests"]], "Writing tests": [[16, "writing-tests"]], "Running the test suite": [[16, "running-the-test-suite"]], "6) Updating the Documentation": [[16, "updating-the-documentation"]], "7) Submitting a Pull Request": [[16, "submitting-a-pull-request"]], "Style Guide & Linting": [[16, "style-guide-linting"]], "Examples": [[17, "examples"]], "Example problems": [[17, null]], "modflow-setup 0.3.0.post11+g3a6ec42": [[18, "modflow-setup-version"]], "Getting Started": [[18, null]], "User Guide": [[18, null]], "Reference": [[18, null]], "Bibliography": [[18, null]], "Specifying boundary conditions with the \u2018basic\u2019 MODFLOW stress packages": [[19, "specifying-boundary-conditions-with-the-basic-modflow-stress-packages"]], "List-based basic stress packages": [[19, "list-based-basic-stress-packages"]], "Constant Head (CHD) Package": [[19, "constant-head-chd-package"]], "Drain DRN Package": [[19, "drain-drn-package"]], "General Head Boundary (GHB) Package": [[19, "general-head-boundary-ghb-package"]], "River (RIV) package": [[19, "river-riv-package"]], "Well (WEL) Package": [[19, "well-wel-package"]], "Grid-based basic stress packages": [[19, "grid-based-basic-stress-packages"]], "Recharge (RCH) Package": [[19, "recharge-rch-package"]], "Direct input": [[19, "direct-input"]], "Grid-independent input": [[19, "grid-independent-input"]], "The Discretization Package": [[20, "the-discretization-package"]], "Specifying Initial Conditions": [[21, "specifying-initial-conditions"]], "Input instructions by package": [[22, "input-instructions-by-package"]], "The Lake (LAK) Package": [[23, "the-lake-lak-package"]], "Head observations": [[24, "head-observations"]], "MODFLOW Output Control": [[25, "modflow-output-control"]], "Stress period input format": [[25, "stress-period-input-format"]], "Output filenames and other arguments": [[25, "output-filenames-and-other-arguments"]], "Alternative stress period input formats": [[25, "alternative-stress-period-input-formats"]], "Specifying Aquifer Properties": [[26, "specifying-aquifer-properties"]], "The Streamflow Routing (SFR) Package": [[27, "the-streamflow-routing-sfr-package"]], "Installation": [[28, "installation"]], "Installing python dependencies with Conda": [[28, "installing-python-dependencies-with-conda"]], "Download and install a python distribution and Conda-like package installer": [[28, "download-and-install-a-python-distribution-and-conda-like-package-installer"]], "Download an environment file": [[28, "download-an-environment-file"]], "Creating a Conda environment using Mamba": [[28, "creating-a-conda-environment-using-mamba"]], "Keeping the Conda environment up to date": [[28, "keeping-the-conda-environment-up-to-date"]], "Installing Modflow-setup": [[28, "installing-modflow-setup"]], "Installing and updating Modflow-setup from PyPI": [[28, "installing-and-updating-modflow-setup-from-pypi"]], "Installing the latest develop version of Modflow-setup": [[28, "installing-the-latest-develop-version-of-modflow-setup"]], "Installing the Modflow-setup source code in-place": [[28, "installing-the-modflow-setup-source-code-in-place"]], "Installing the IPython kernel to use Modflow-setup in Jupyter Notebooks": [[28, "installing-the-ipython-kernel-to-use-modflow-setup-in-jupyter-notebooks"]], "Best practices": [[28, "best-practices"]], "Considerations for USGS Users": [[28, "id4"]], "Installing the DOI SSL certificate for use with pip": [[28, "id5"]], "Installing the DOI SSL certificate for use with conda": [[28, "installing-the-doi-ssl-certificate-for-use-with-conda"]], "Troubleshooting issues with the USGS network": [[28, "troubleshooting-issues-with-the-usgs-network"]], "SSL-related error messages when using conda": [[28, "ssl-related-error-messages-when-using-conda"]], "SSL-related error messages when using pip": [[28, "ssl-related-error-messages-when-using-pip"]], "If you are on the USGS network, using Windows, and you get this error message:": [[28, "if-you-are-on-the-usgs-network-using-windows-and-you-get-this-error-message"]], "Pleasant Lake Example": [[29, "Pleasant-Lake-Example"]], "Model details": [[29, "Model-details"]], "Just make a model grid": [[29, "Just-make-a-model-grid"]], "Working directory gottcha": [[29, "Working-directory-gottcha"]], "Write shapefiles of the inset and parent modelgrids": [[29, "Write-shapefiles-of-the-inset-and-parent-modelgrids"]], "Change the working directory back to the notebook location": [[29, "Change-the-working-directory-back-to-the-notebook-location"]], "Build the whole model": [[29, "Build-the-whole-model"]], "Plot the inset and parent model grids with Lake Package connections by layer": [[29, "Plot-the-inset-and-parent-model-grids-with-Lake-Package-connections-by-layer"]], "write the MODFLOW input files": [[29, "write-the-MODFLOW-input-files"]], "Run the model": [[29, "Run-the-model"]], "Plot the head results": [[29, "Plot-the-head-results"]], "First combine the parent and inset model head results": [[29, "First-combine-the-parent-and-inset-model-head-results"]], "Make the plot": [[29, "Make-the-plot"]], "Use Modflow-export to export the modflow input to PDFs, rasters and shapefiles": [[29, "Use-Modflow-export-to-export-the-modflow-input-to-PDFs,-rasters-and-shapefiles"]], "Modflow-export can also create a summary table of the model inputs": [[29, "Modflow-export-can-also-create-a-summary-table-of-the-model-inputs"]], "Philosophy": [[30, "philosophy"]], "Motivation": [[30, "motivation"]], "What modflow-setup does": [[30, "what-modflow-setup-does"]], "What modflow-setup doesn\u2019t do": [[30, "what-modflow-setup-doesnt-do"]], "References": [[31, "references"]], "Release History": [[32, "release-history"]], "Version 0.3.1 (2023-08-17)": [[32, "version-0-3-1-2023-08-17"]], "Version 0.3.0 (2023-07-25)": [[32, "version-0-3-0-2023-07-25"]], "Version 0.2.0 (2023-02-06)": [[32, "version-0-2-0-2023-02-06"]], "Version 0.1.0 Initial release (2022-09-30)": [[32, "version-0-1-0-initial-release-2022-09-30"]], "Basic program structure and usage": [[33, "basic-program-structure-and-usage"]], "Setting up a full model": [[33, "setting-up-a-full-model"]], "Loading a model": [[33, "loading-a-model"]], "Setting up individual packages": [[33, "setting-up-individual-packages"]], "Troubleshooting": [[34, "troubleshooting"]], "My script doesn\u2019t run": [[34, "my-script-doesn-t-run"]], "Updating your python environment": [[34, "updating-your-python-environment"]], "Updating Modflow-setup": [[34, "updating-modflow-setup"]]}, "indexentries": {"modflowgwfdis (class in mfsetup.discretization)": [[2, "mfsetup.discretization.ModflowGwfdis"]], "adjust_layers() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.adjust_layers"]], "cellids_to_kij() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.cellids_to_kij"]], "create_vertical_pass_through_cells() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.create_vertical_pass_through_cells"]], "deactivate_idomain_above() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.deactivate_idomain_above"]], "fill_cells_vertically() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.fill_cells_vertically"]], "fill_empty_layers() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.fill_empty_layers"]], "find_remove_isolated_cells() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.find_remove_isolated_cells"]], "fix_model_layer_conflicts() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.fix_model_layer_conflicts"]], "get_highest_active_layer() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.get_highest_active_layer"]], "get_layer() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.get_layer"]], "get_layer_thicknesses() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.get_layer_thicknesses"]], "make_ibound() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.make_ibound"]], "make_idomain() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.make_idomain"]], "make_irch() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.make_irch"]], "make_lgr_idomain() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.make_lgr_idomain"]], "mfsetup.discretization": [[2, "module-mfsetup.discretization"]], "module": [[2, "module-mfsetup.discretization"], [3, "module-mfsetup.fileio"], [4, "module-mfsetup.grid"], [5, "module-mfsetup.interpolate"], [6, "module-mfsetup.mf6model"], [7, "module-mfsetup.mfmodel"], [8, "module-mfsetup.mfnwtmodel"], [9, "module-mfsetup.tdis"], [10, "module-mfsetup.tmr"]], "populate_values() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.populate_values"]], "thickness (mfsetup.discretization.modflowgwfdis property)": [[2, "mfsetup.discretization.ModflowGwfdis.thickness"]], "verify_minimum_layer_thickness() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.verify_minimum_layer_thickness"]], "voxels_to_layers() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.voxels_to_layers"]], "weighted_average_between_layers() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.weighted_average_between_layers"]], "add_version_to_fileheader() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.add_version_to_fileheader"]], "append_csv() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.append_csv"]], "check_source_files() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.check_source_files"]], "dump() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.dump"]], "dump_json() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.dump_json"]], "dump_yml() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.dump_yml"]], "exe_exists() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.exe_exists"]], "flopy_mf2005_load() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.flopy_mf2005_load"]], "flopy_mf6model_load() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.flopy_mf6model_load"]], "flopy_mfsimulation_load() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.flopy_mfsimulation_load"]], "load() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.load"]], "load_array() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.load_array"]], "load_cfg() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.load_cfg"]], "load_json() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.load_json"]], "load_modelgrid() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.load_modelgrid"]], "load_yml() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.load_yml"]], "mfsetup.fileio": [[3, "module-mfsetup.fileio"]], "read_ggofile() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.read_ggofile"]], "read_lak_ggo() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.read_lak_ggo"]], "read_mf6_block() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.read_mf6_block"]], "remove_file_header() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.remove_file_header"]], "save_array() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.save_array"]], "set_cfg_paths_to_absolute() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.set_cfg_paths_to_absolute"]], "setup_external_filepaths() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.setup_external_filepaths"]], "which() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.which"]], "mfsetupgrid (class in mfsetup.grid)": [[4, "mfsetup.grid.MFsetupGrid"]], "bbox (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.bbox"]], "botm (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.botm"]], "bounds (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.bounds"]], "crs (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.crs"]], "dataframe (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.dataframe"]], "get_cellface_midpoint() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_cellface_midpoint"]], "get_crs() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_crs"]], "get_crs_length_units() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_crs_length_units"]], "get_dataframe() (mfsetup.grid.mfsetupgrid method)": [[4, "mfsetup.grid.MFsetupGrid.get_dataframe"]], "get_grid_bounding_box() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_grid_bounding_box"]], "get_ij() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_ij"]], "get_intercell_connections() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_intercell_connections"]], "get_intercell_connections() (mfsetup.grid.mfsetupgrid method)": [[4, "mfsetup.grid.MFsetupGrid.get_intercell_connections"]], "get_kij_from_node3d() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_kij_from_node3d"]], "get_nearest_point_on_grid() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_nearest_point_on_grid"]], "get_point_on_national_hydrogeologic_grid() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_point_on_national_hydrogeologic_grid"]], "get_transform() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_transform"]], "get_vertices() (mfsetup.grid.mfsetupgrid method)": [[4, "mfsetup.grid.MFsetupGrid.get_vertices"]], "intercell_connections (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.intercell_connections"]], "length_multiplier (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.length_multiplier"]], "length_units (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.length_units"]], "mfsetup.grid": [[4, "module-mfsetup.grid"]], "polygons (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.polygons"]], "proj_str (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.proj_str"]], "rasterize() (in module mfsetup.grid)": [[4, "mfsetup.grid.rasterize"]], "rotation (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.rotation"]], "setup_structured_grid() (in module mfsetup.grid)": [[4, "mfsetup.grid.setup_structured_grid"]], "size (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.size"]], "top (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.top"]], "transform (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.transform"]], "vertices (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.vertices"]], "wkt (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.wkt"]], "write_bbox_shapefile() (in module mfsetup.grid)": [[4, "mfsetup.grid.write_bbox_shapefile"]], "write_bbox_shapefile() (mfsetup.grid.mfsetupgrid method)": [[4, "mfsetup.grid.MFsetupGrid.write_bbox_shapefile"]], "write_shapefile() (mfsetup.grid.mfsetupgrid method)": [[4, "mfsetup.grid.MFsetupGrid.write_shapefile"]], "xul (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.xul"]], "yul (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.yul"]], "interpolator (class in mfsetup.interpolate)": [[5, "mfsetup.interpolate.Interpolator"]], "get_source_dest_model_xys() (in module mfsetup.interpolate)": [[5, "mfsetup.interpolate.get_source_dest_model_xys"]], "interp_weights (mfsetup.interpolate.interpolator property)": [[5, "mfsetup.interpolate.Interpolator.interp_weights"]], "interp_weights() (in module mfsetup.interpolate)": [[5, "mfsetup.interpolate.interp_weights"]], "interpolate() (in module mfsetup.interpolate)": [[5, "mfsetup.interpolate.interpolate"]], "interpolate() (mfsetup.interpolate.interpolator method)": [[5, "mfsetup.interpolate.Interpolator.interpolate"]], "mfsetup.interpolate": [[5, "module-mfsetup.interpolate"]], "regrid() (in module mfsetup.interpolate)": [[5, "mfsetup.interpolate.regrid"]], "regrid3d() (in module mfsetup.interpolate)": [[5, "mfsetup.interpolate.regrid3d"]], "source_values_mask (mfsetup.interpolate.interpolator property)": [[5, "mfsetup.interpolate.Interpolator.source_values_mask"]], "mf6model (class in mfsetup.mf6model)": [[6, "mfsetup.mf6model.MF6model"]], "get_flopy_external_file_input() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.get_flopy_external_file_input"]], "get_package_list() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.get_package_list"]], "get_raster_statistics_for_cells() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.get_raster_statistics_for_cells"]], "get_raster_values_at_cell_centers() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.get_raster_values_at_cell_centers"]], "idomain (mfsetup.mf6model.mf6model property)": [[6, "mfsetup.mf6model.MF6model.idomain"]], "load_from_config() (mfsetup.mf6model.mf6model class method)": [[6, "mfsetup.mf6model.MF6model.load_from_config"]], "mfsetup.mf6model": [[6, "module-mfsetup.mf6model"]], "perioddata (mfsetup.mf6model.mf6model property)": [[6, "mfsetup.mf6model.MF6model.perioddata"]], "setup_chd() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_chd"]], "setup_drn() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_drn"]], "setup_ghb() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_ghb"]], "setup_ic() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_ic"]], "setup_ims() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_ims"]], "setup_lak() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_lak"]], "setup_npf() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_npf"]], "setup_obs() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_obs"]], "setup_oc() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_oc"]], "setup_rch() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_rch"]], "setup_riv() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_riv"]], "setup_simulation_mover() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_simulation_mover"]], "setup_sto() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_sto"]], "setup_tdis() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_tdis"]], "setup_wel() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_wel"]], "write_input() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.write_input"]], "mfsetupmixin (class in mfsetup.mfmodel)": [[7, "mfsetup.mfmodel.MFsetupMixin"]], "get_boundary_cells() (mfsetup.mfmodel.mfsetupmixin method)": [[7, "mfsetup.mfmodel.MFsetupMixin.get_boundary_cells"]], "high_k_lake_recharge (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.high_k_lake_recharge"]], "interp_weights (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.interp_weights"]], "isbc (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.isbc"]], "lakarr (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.lakarr"]], "lake_bathymetry (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.lake_bathymetry"]], "load_cfg() (mfsetup.mfmodel.mfsetupmixin class method)": [[7, "mfsetup.mfmodel.MFsetupMixin.load_cfg"]], "load_features() (mfsetup.mfmodel.mfsetupmixin method)": [[7, "mfsetup.mfmodel.MFsetupMixin.load_features"]], "load_grid() (mfsetup.mfmodel.mfsetupmixin method)": [[7, "mfsetup.mfmodel.MFsetupMixin.load_grid"]], "mfsetup.mfmodel": [[7, "module-mfsetup.mfmodel"]], "model_version (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.model_version"]], "package_list (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.package_list"]], "parent_layers (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.parent_layers"]], "parent_mask (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.parent_mask"]], "parent_stress_periods (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.parent_stress_periods"]], "perimeter_bc_type (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.perimeter_bc_type"]], "regrid_from_parent() (mfsetup.mfmodel.mfsetupmixin method)": [[7, "mfsetup.mfmodel.MFsetupMixin.regrid_from_parent"]], "setup_external_filepaths() (mfsetup.mfmodel.mfsetupmixin method)": [[7, "mfsetup.mfmodel.MFsetupMixin.setup_external_filepaths"]], "setup_from_cfg() (mfsetup.mfmodel.mfsetupmixin class method)": [[7, "mfsetup.mfmodel.MFsetupMixin.setup_from_cfg"]], "setup_from_yaml() (mfsetup.mfmodel.mfsetupmixin class method)": [[7, "mfsetup.mfmodel.MFsetupMixin.setup_from_yaml"]], "setup_grid() (mfsetup.mfmodel.mfsetupmixin method)": [[7, "mfsetup.mfmodel.MFsetupMixin.setup_grid"]], "source_path (mfsetup.mfmodel.mfsetupmixin attribute)": [[7, "mfsetup.mfmodel.MFsetupMixin.source_path"]], "mfnwtmodel (class in mfsetup.mfnwtmodel)": [[8, "mfsetup.mfnwtmodel.MFnwtModel"]], "ibound (mfsetup.mfnwtmodel.mfnwtmodel property)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.ibound"]], "ipakcb (mfsetup.mfnwtmodel.mfnwtmodel property)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.ipakcb"]], "load() (mfsetup.mfnwtmodel.mfnwtmodel class method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.load"]], "mfsetup.mfnwtmodel": [[8, "module-mfsetup.mfnwtmodel"]], "perioddata (mfsetup.mfnwtmodel.mfnwtmodel property)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.perioddata"]], "setup_chd() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_chd"]], "setup_drn() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_drn"]], "setup_ghb() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_ghb"]], "setup_hyd() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_hyd"]], "setup_riv() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_riv"]], "setup_tdis() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_tdis"]], "setup_upw() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_upw"]], "setup_wel() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_wel"]], "write_input() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.write_input"]], "add_date_comments_to_tdis() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.add_date_comments_to_tdis"]], "aggregate_dataframe_to_stress_period() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.aggregate_dataframe_to_stress_period"]], "aggregate_xarray_to_stress_period() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.aggregate_xarray_to_stress_period"]], "concat_periodata_groups() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.concat_periodata_groups"]], "convert_freq_to_period_start() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.convert_freq_to_period_start"]], "get_parent_stress_periods() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.get_parent_stress_periods"]], "mfsetup.tdis": [[9, "module-mfsetup.tdis"]], "parse_perioddata_groups() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.parse_perioddata_groups"]], "setup_perioddata() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.setup_perioddata"]], "setup_perioddata_group() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.setup_perioddata_group"]], "get_qx_qy_qz() (in module mfsetup.tmr)": [[10, "mfsetup.tmr.get_qx_qy_qz"]], "mfsetup.tmr": [[10, "module-mfsetup.tmr"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["10min", "api/index", "api/mfsetup.discretization", "api/mfsetup.fileio", "api/mfsetup.grid", "api/mfsetup.interpolate", "api/mfsetup.mf6model", "api/mfsetup.mfmodel", "api/mfsetup.mfnwtmodel", "api/mfsetup.tdis", "api/mfsetup.tmr", "concepts/index", "concepts/perimeter-bcs", "config-file", "config-file-defaults", "config-file-gallery", "contributing", "examples", "index", "input/basic-stress", "input/dis", "input/ic", "input/index", "input/lak", "input/obs", "input/oc", "input/props", "input/sfr", "installation", "notebooks/Pleasant_lake_lgr_example", "philosophy", "references", "release-history", "structure", "troubleshooting"], "filenames": ["10min.rst", "api/index.rst", "api/mfsetup.discretization.rst", "api/mfsetup.fileio.rst", "api/mfsetup.grid.rst", "api/mfsetup.interpolate.rst", "api/mfsetup.mf6model.rst", "api/mfsetup.mfmodel.rst", "api/mfsetup.mfnwtmodel.rst", "api/mfsetup.tdis.rst", "api/mfsetup.tmr.rst", "concepts/index.rst", "concepts/perimeter-bcs.rst", "config-file.rst", "config-file-defaults.rst", "config-file-gallery.rst", "contributing.rst", "examples.rst", "index.rst", "input/basic-stress.rst", "input/dis.rst", "input/ic.rst", "input/index.rst", "input/lak.rst", "input/obs.rst", "input/oc.rst", "input/props.rst", "input/sfr.rst", "installation.rst", "notebooks/Pleasant_lake_lgr_example.ipynb", "philosophy.rst", "references.rst", "release-history.rst", "structure.rst", "troubleshooting.rst"], "titles": ["10 Minutes to Modflow-setup", "Code Reference", "mfsetup.discretization module", "mfsetup.fileio module", "mfsetup.grid module", "mfsetup.interpolate module", "MF6model class", "MFsetupMixin class", "MFnwtModel class", "mfsetup.tdis module", "mfsetup.tmr module", "Modflow-setup concepts and methods", "Specifying perimeter boundary conditions from another model", "The configuration file", "Configuration defaults", "Configuration File Gallery", "Contributing to modflow-setup", "Examples", "modflow-setup 0.3.0.post15+gdb03604", "Specifying boundary conditions with the \u2018basic\u2019 MODFLOW stress packages", "The Discretization Package", "Specifying Initial Conditions", "Input instructions by package", "The Lake (LAK) Package", "Head observations", "MODFLOW Output Control", "Specifying Aquifer Properties", "The Streamflow Routing (SFR) Package", "Installation", "Pleasant Lake Example", "Philosophy", "References", "Release History", "Basic program structure and usage", "Troubleshooting"], "terms": {"thi": [0, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 19, 20, 21, 23, 24, 25, 26, 27, 29, 30, 33], "i": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34], "short": [0, 16], "introduct": 0, "help": [0, 12, 16], "you": [0, 16, 29, 34], "up": [0, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 29, 30, 32, 34], "run": [0, 2, 18, 28], "A": [0, 2, 4, 9, 16, 19, 28, 29, 30, 31, 33], "complet": [0, 15, 16, 28, 30], "workflow": [0, 15, 28, 29, 30, 33], "can": [0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 25, 28, 30, 32, 33, 34], "found": [0, 15, 28, 29, 30], "pleasant": [0, 12, 17, 18], "lake": [0, 6, 7, 14, 16, 17, 18, 22, 30, 31, 32], "exampl": [0, 2, 3, 4, 6, 9, 12, 13, 14, 15, 16, 18, 19, 25, 28, 30, 32, 34], "addit": [0, 2, 12, 16, 18, 19, 28], "galleri": [0, 18, 19, 30, 32], "depend": [0, 6, 8, 13, 18, 30, 33, 34], "problem": [0, 16, 28], "might": [0, 8, 15, 30, 34], "simpli": [0, 5, 15, 19, 28, 30, 33], "box": [0, 4, 15, 29, 32], "enclos": [0, 13], "featur": [0, 4, 13, 14, 15, 16, 19, 28, 29, 30, 32], "interest": [0, 12, 15, 16, 29], "ani": [0, 2, 3, 4, 6, 8, 9, 15, 16, 19, 25, 28, 29], "relev": [0, 12, 19], "hydrolog": [0, 15, 29], "boundari": [0, 2, 6, 7, 8, 11, 15, 18, 29, 30, 32], "an": [0, 2, 3, 4, 9, 10, 12, 14, 15, 16, 18, 19, 29, 30, 32, 33], "irregular": [0, 5, 12, 32], "shape": [0, 2, 3, 4, 5, 10, 29], "surround": [0, 7], "watersh": 0, "other": [0, 2, 6, 9, 10, 12, 14, 15, 16, 18, 19, 28, 29, 30, 31, 32, 33], "In": [0, 2, 4, 9, 12, 13, 15, 16, 19, 28, 29, 30, 33], "either": [0, 2, 12, 13, 14, 15, 16, 28, 29], "case": [0, 4, 9, 12, 16, 18, 19, 28, 29, 33, 34], "mai": [0, 9, 12, 16, 19, 28, 30], "download": [0, 15, 29], "hydrographi": [0, 14, 15], "first": [0, 2, 7, 9, 12, 15, 16, 19, 25, 28], "ensur": [0, 3], "includ": [0, 2, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 18, 19, 25, 28, 29, 30, 32], "all": [0, 2, 4, 6, 9, 12, 14, 15, 16, 19, 25, 28, 30, 32, 33], "import": [0, 16, 28, 29, 33], "The": [0, 2, 5, 7, 9, 12, 14, 15, 16, 18, 19, 22, 25, 28, 29, 30, 31, 32, 33], "should": [0, 2, 12, 16, 19, 28, 32, 34], "referenc": [0, 19, 29], "project": [0, 4, 14, 15, 16, 19, 28, 29, 30], "cr": [0, 1, 4, 15, 19, 29, 32], "ideal": [0, 28], "length": [0, 2, 4, 5, 6, 8, 9, 12, 15, 19, 29, 32], "unit": [0, 2, 4, 7, 9, 12, 13, 14, 15, 19, 25, 29, 32], "meter": [0, 12, 13, 14, 15, 19, 29], "author": [0, 4, 29], "code": [0, 3, 4, 8, 18, 19, 29, 30, 31, 32, 34], "epsg": [0, 4, 15, 29, 32], "unambigu": 0, "provid": [0, 5, 10, 12, 15, 16, 28, 29, 33], "two": [0, 2, 5, 12, 14, 15, 16, 19, 28, 29, 33, 34], "wai": [0, 12, 15, 16, 28, 29, 30], "grid": [0, 1, 2, 5, 6, 7, 10, 12, 13, 15, 18, 30, 31, 32, 33], "x": [0, 2, 4, 5, 12, 14, 15, 19, 29, 31], "y": [0, 4, 5, 12, 14, 15, 19, 29], "origin": [0, 15, 16, 28, 29], "lower": [0, 4, 13, 15, 19], "left": [0, 4, 9, 15, 29], "upper": [0, 4, 13, 15, 32], "corner": [0, 4, 15], "space": [0, 4, 13, 15, 16, 19, 28, 32], "number": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 19, 25, 28, 29], "row": [0, 2, 4, 5, 7, 9, 10, 19, 29], "column": [0, 2, 4, 5, 6, 7, 8, 9, 10, 15, 19, 29], "rotat": [0, 1, 4, 14, 15, 29], "As": [0, 16, 19, 25, 30], "rectangular": 0, "specifi": [0, 2, 3, 4, 7, 9, 11, 14, 15, 18, 22, 25, 28, 29, 30, 32, 33], "discret": [0, 1, 3, 4, 5, 6, 7, 8, 9, 13, 15, 18, 19, 22, 29, 30, 33], "polygon": [0, 1, 4, 12, 14, 15, 19, 29, 32], "shapefil": [0, 4, 7, 12, 13, 14, 15, 18, 19, 30, 32], "trace": 0, "hand": 0, "some": [0, 3, 12, 15, 16, 18, 20, 21, 23, 24, 26, 27, 28, 29, 30, 32], "mean": [0, 5, 6, 9, 12, 13, 14, 15, 19, 28, 30, 34], "buffer": [0, 4, 7, 12, 15, 29], "distanc": [0, 15, 29], "subsequ": [0, 2, 9, 15, 19, 28], "di": [0, 2, 3, 7, 9, 10, 12, 13, 14, 15, 18, 19, 22, 29, 32], "packag": [0, 2, 3, 6, 7, 8, 12, 14, 15, 16, 18, 30, 32, 34], "don": [0, 13, 16, 28], "t": [0, 9, 13, 16, 18, 19, 28, 29, 31, 32], "forget": [0, 16, 28], "about": [0, 4, 16, 28, 33], "farfield": [0, 29], "usual": [0, 3, 7, 9, 33], "advis": 0, "compet": 0, "sink": 0, "outsid": [0, 5, 15], "immedi": 0, "nearfield": 0, "so": [0, 2, 3, 6, 8, 15, 16, 28], "solut": [0, 2, 12, 14, 15, 19, 28, 29, 30, 32, 34], "over": [0, 4, 30], "perimet": [0, 7, 11, 15, 18, 19, 29, 32], "condit": [0, 9, 11, 15, 18, 22, 29, 30, 32], "recogn": 0, "surfac": [0, 2, 12, 15, 19], "doesn": [0, 9, 18], "alwai": [0, 12, 16, 28], "coincid": [0, 2, 12], "exactli": [0, 19], "groundwatersh": 0, "see": [0, 4, 7, 9, 13, 14, 15, 16, 19, 25, 28, 32], "haitjema": [0, 31], "1995": [0, 31], "anderson": [0, 14, 15, 31], "2015": [0, 15, 31], "more": [0, 13, 16, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34], "info": [0, 3, 9, 15, 16, 28], "need": [0, 2, 6, 8, 9, 10, 12, 13, 15, 16, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 33, 34], "state": [0, 6, 8, 9, 15, 19, 31], "dataset": [0, 15, 29, 32], "delini": 0, "variou": [0, 4, 13, 29, 33, 34], "scale": [0, 29, 30, 31], "desir": [0, 2, 16, 18, 30], "requir": [0, 4, 8, 10, 12, 15, 19, 28, 29, 30, 32], "iter": [0, 14, 15], "we": [0, 12, 16, 29], "start": [0, 6, 7, 8, 9, 12, 14, 15, 19, 29, 32, 34], "correspond": [0, 6, 7, 8, 9, 15, 16, 19], "initi": [0, 9, 15, 16, 18, 19, 22], "from": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18, 19, 25, 29, 30, 32, 33, 34], "mfsetup": [0, 1, 6, 7, 8, 12, 15, 16, 19, 28, 29, 32, 33], "mf6model": [0, 1, 2, 3, 5, 7, 8, 13, 14, 15, 16, 29, 33], "def": 0, "setup_grid": [0, 1, 7, 14, 15, 29, 32], "cfg_file": 0, "just": [0, 4, 15, 19, 28], "set": [0, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 25, 28, 29, 30, 32], "For": [0, 2, 3, 4, 7, 9, 12, 13, 15, 16, 19, 25, 28, 30, 34], "try": [0, 12, 15, 16, 28], "differ": [0, 2, 3, 12, 13, 15, 18, 19, 25, 28, 29, 30], "m": [0, 3, 4, 6, 7, 9, 10, 14, 15, 16, 28, 29, 31], "cfg": [0, 3, 6, 7, 8, 13, 15, 29, 33], "modelgrid": [0, 4, 5, 7, 10, 32], "write_shapefil": [0, 1, 4, 29], "postproc": [0, 14, 29], "shp": [0, 4, 12, 13, 14, 15, 19, 29], "__name__": 0, "__main__": 0, "initial_config_poli": 0, "yaml": [0, 3, 6, 7, 14, 15, 16, 18, 28], "initial_grid_setup": 0, "py": [0, 9, 16], "around": [0, 5, 15, 29, 30], "pre": [0, 16, 28, 33], "simul": [0, 2, 3, 6, 8, 9, 13, 14, 15, 19, 29, 31, 32], "sim_nam": [0, 13, 14, 15], "shellmound": [0, 12, 13, 16, 18, 19], "mf6": [0, 3, 5, 6, 7, 8, 10, 13, 14, 15, 25, 29, 32, 33], "sim_w": [0, 13, 14, 15], "modelnam": [0, 6, 8, 13, 14, 15], "option": [0, 2, 3, 4, 9, 10, 12, 13, 14, 15, 16, 18, 19, 25, 28, 29, 30, 32], "print_input": [0, 13, 14, 15, 19], "true": [0, 2, 3, 4, 7, 9, 10, 12, 13, 14, 15, 19, 29], "save_flow": [0, 13, 14, 15, 19], "newton": [0, 13, 14, 15, 31], "source_data": [0, 14, 15, 19, 29, 32], "features_shapefil": [0, 4, 15], "filenam": [0, 3, 4, 6, 7, 13, 15, 19, 29], "test": [0, 3, 18, 19, 28, 29, 30, 32], "data": [0, 2, 3, 5, 7, 9, 12, 13, 14, 15, 18, 19, 28, 29, 30, 31, 32, 33], "tmr_parent": [0, 12, 15, 19], "gi": [0, 4, 12, 15, 19, 28], "irregular_boundari": [0, 12, 15, 19], "0": [0, 2, 4, 7, 9, 10, 12, 13, 14, 15, 19, 25, 28, 29, 31, 34], "dxy": [0, 4, 15], "1000": [0, 4, 13, 14, 15], "uniform": [0, 2, 9, 19, 32], "5070": [0, 15, 19], "nad83": 0, "conu": 0, "alber": 0, "snap_to_nhg": [0, 4, 14, 15], "snap": [0, 15], "usg": [0, 15, 18, 29], "nation": [0, 4, 15, 31], "hydrogeolog": [0, 4, 15, 31], "To": [0, 2, 16, 28, 29], "us": [0, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 15, 18, 19, 30, 31, 32, 33, 34], "dimens": [0, 2, 4, 5, 9, 13, 14, 15, 29], "block": [0, 3, 9, 12, 14, 15, 19, 25, 29, 30, 32], "like": [0, 6, 9, 16, 19, 29, 30], "one": [0, 4, 5, 8, 9, 15, 16, 19, 29, 30, 32], "could": [0, 2, 15, 19, 25, 29, 30], "substitu": 0, "abov": [0, 2, 9, 13, 15, 16, 19, 25, 28, 33], "xoff": [0, 4, 14, 15], "501405": [0, 15], "yoff": [0, 4, 14, 15], "1175835": [0, 15], "nrow": [0, 2, 4, 10, 13, 15, 29], "30": [0, 13, 15, 28], "ncol": [0, 2, 4, 10, 13, 15, 29], "35": [0, 13, 15], "now": [0, 32], "initial_setup_script": 0, "repeatedli": 0, "explor": 0, "next": [0, 2, 12, 15, 16], "let": 0, "": [0, 2, 3, 7, 9, 12, 15, 16, 19, 29, 31, 32], "accept": [0, 16], "linestr": [0, 15, 19], "ha": [0, 4, 7, 9, 14, 15, 16, 28, 29, 30, 33, 34], "rout": [0, 14, 15, 18, 22, 28, 29], "indic": [0, 2, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19, 28], "how": [0, 7, 15, 19, 25, 28], "line": [0, 13, 15, 16, 19, 28, 30, 32], "connect": [0, 4, 10, 14, 15, 16], "anoth": [0, 4, 5, 9, 15, 16], "obtain": [0, 16], "plu": [0, 2], "There": [0, 16, 28], "ar": [0, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 25, 29, 30, 32, 33, 34], "type": [0, 13, 15, 16, 28], "map": [0, 7, 12, 13, 14, 15, 18, 19, 29, 30], "100": [0, 14, 15], "000": 0, "therefor": [0, 9, 15, 16, 33], "suitabl": [0, 28], "larger": [0, 12, 13], "region": [0, 15, 29, 30, 31], "cell": [0, 2, 4, 6, 7, 8, 10, 13, 14, 15, 19, 25, 29, 30, 32], "size": [0, 1, 2, 4, 5, 7, 29], "1km": 0, "best": [0, 4, 18, 29], "choic": [0, 28, 30], "greater": [0, 2, 9, 29], "than": [0, 2, 9, 15, 16, 19, 28, 29, 30, 34], "approx": [0, 14, 15], "km": 0, "where": [0, 2, 3, 5, 7, 9, 12, 13, 15, 16, 19, 25, 28, 32], "have": [0, 2, 3, 7, 8, 9, 10, 12, 15, 16, 19, 28, 29, 32], "too": 0, "mani": [0, 16, 19, 28, 30], "epa": 0, "high": [0, 7, 14, 15, 30, 31], "resolut": [0, 29], "finer": 0, "24": [0, 32], "better": [0, 28, 32], "smaller": [0, 9, 28, 29], "less": [0, 2, 13, 15, 29, 30], "align": [0, 12, 15, 32], "between": [0, 2, 4, 5, 6, 7, 9, 12, 13, 15, 16, 28, 29, 30, 32, 33], "channel": [0, 28], "manag": [0, 28, 29, 33], "won": [0, 28], "prohibit": 0, "access": 0, "via": [0, 9, 12, 13, 15, 16, 19, 28, 29, 32], "current": [0, 12, 15, 16, 19, 28, 29, 30, 31, 34], "which": [0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 15, 16, 19, 28, 29, 30, 32, 33, 34], "come": [0, 28], "geodatabas": 0, "gdb": 0, "must": [0, 2, 4, 5, 9, 10, 12, 13, 15, 16, 19, 25, 28], "input": [0, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 18, 30, 32], "sfrmaker": [0, 15, 19, 29, 32], "network": [0, 15, 30], "multipl": [0, 5, 9, 12, 19, 28, 29], "combin": [0, 2, 9, 16, 19], "undesir": 0, "storm": 0, "sewer": 0, "cull": [0, 15], "document": [0, 9, 14, 25, 28, 29, 31, 32], "read": [0, 3, 6, 9, 12, 13, 14, 15, 18, 28, 29, 30], "applic": [0, 16, 28, 29], "reason": [0, 16], "larg": [0, 19, 28, 29], "time": [0, 6, 8, 9, 10, 13, 15, 16, 19, 28, 29, 30, 34], "drainag": 0, "basin": [0, 15], "slow": 0, "being": [0, 12, 28, 29, 32], "top": [0, 1, 2, 3, 4, 6, 7, 10, 13, 14, 15, 16, 29, 33], "rel": [0, 3, 7, 13, 14, 15, 16], "coars": 0, "sampl": [0, 6, 15, 18, 19, 30], "fine": [0, 29], "dure": [0, 14, 15, 19], "dens": 0, "contain": [0, 2, 4, 13, 14, 16, 19, 28, 29, 33], "sfr": [0, 2, 6, 7, 13, 14, 15, 18, 19, 22, 29, 30, 32], "reach": [0, 2, 14, 15, 19, 29], "especi": [0, 13, 16, 28, 34], "eastern": 0, "u": [0, 29, 30, 31], "ephemer": 0, "diverg": 0, "distributari": 0, "downstream": [0, 15, 19, 29], "confluenc": 0, "modul": [0, 16, 33], "resolv": [0, 16, 28], "issu": [0, 16, 32], "produc": [0, 2, 7, 9, 10, 12, 16, 28, 30], "singl": [0, 3, 4, 7, 9, 12, 15, 18, 19, 28, 29, 30], "width": 0, "elev": [0, 2, 4, 10, 13, 14, 15, 19, 29, 30], "inform": [0, 6, 7, 8, 9, 13, 14, 15, 16, 19, 28, 29, 32, 33], "remov": [0, 2, 3, 28, 30, 32], "function": [0, 2, 3, 4, 5, 7, 9, 16, 29, 32, 33], "avail": [0, 28, 31], "typic": [0, 2, 19], "degre": [0, 4], "tile": 0, "If": [0, 2, 4, 5, 7, 9, 10, 16, 19], "uget": 0, "link": [0, 28, 29], "site": [0, 9, 14, 15, 19, 28, 30], "autom": [0, 6, 16, 18, 30, 33], "altern": [0, 10, 12, 13, 15, 28, 29, 30, 33], "follow": [0, 4, 10, 12, 13, 14, 16, 19, 28, 29, 34], "consist": [0, 19, 25, 29, 32], "format": [0, 3, 4, 6, 7, 10, 14, 15, 16, 18, 19, 28, 30, 32], "amen": 0, "manual": [0, 6], "locat": [0, 2, 3, 4, 5, 6, 7, 9, 13, 15, 16, 18, 19, 28, 30], "88": 0, "87": 0, "west": 0, "43": 0, "44": [0, 31], "north": [0, 14, 29], "http": [0, 3, 4, 5, 7, 14, 15, 16, 19, 28, 31, 34], "prd": 0, "tnm": 0, "s3": 0, "amazonaw": 0, "com": [0, 3, 5, 7, 14, 15, 16, 28, 34], "stagedproduct": 0, "13": [0, 13, 15, 29], "tiff": 0, "n44w088": 0, "usgs_13_n44w088": 0, "tif": [0, 13, 15, 19, 29], "onc": [0, 5, 7, 16, 28], "made": [0, 6, 8, 15, 16, 28, 29, 30], "allow": [0, 2, 3, 4, 12, 13, 15, 16, 29, 30, 32], "them": [0, 3, 5, 7, 15, 16, 25, 30], "treat": 0, "without": [0, 10, 13, 16, 28], "modif": 0, "qgi": 0, "load": [0, 1, 3, 6, 7, 8, 13, 14, 15, 18, 30], "verifi": [0, 2, 16], "thei": [0, 2, 3, 4, 7, 12, 13, 14, 15, 16, 19, 30], "correct": [0, 3, 16], "cover": 0, "whole": [0, 4, 13], "menu": [0, 28], "select": [0, 16, 28], "miscellan": 0, "vrt": [0, 32], "extens": [0, 16, 28, 32], "point": [0, 4, 5, 13, 14, 15, 16, 19, 28, 29], "geotiff": [0, 13, 15, 19, 32], "continu": [0, 9, 14, 15, 16, 19, 28, 29], "perhap": [0, 28], "water": [0, 6, 12, 14, 15, 19, 29, 31, 32], "fill": [0, 2, 5, 25], "out": [0, 12, 14, 15, 16, 25, 28, 30, 34], "rest": 0, "later": [0, 30], "detail": [0, 7, 13, 14, 15, 16, 25, 28, 32], "layer": [0, 2, 3, 4, 7, 10, 12, 13, 14, 15, 19, 30, 32], "well": [0, 4, 6, 7, 8, 9, 12, 14, 15, 28, 29, 30, 33], "observ": [0, 6, 15, 18, 22, 29, 32], "ad": [0, 2, 19, 28, 29, 30, 32], "stepwis": 0, "approach": [0, 16, 30], "ic": [0, 6, 13, 14, 15, 18, 22, 29, 32], "np": [0, 2, 4, 29], "oc": [0, 6, 8, 9, 13, 14, 15, 18, 22, 25, 29, 32], "sto": [0, 6, 9, 13, 14, 15, 18, 22, 29], "rch": [0, 6, 13, 14, 15, 18, 22, 29, 32], "wel": [0, 12, 13, 14, 15, 18, 22, 29, 32], "remake_top": [0, 13, 14, 15, 29], "length_unit": [0, 1, 4, 12, 13, 14, 15, 19, 29], "nlai": [0, 2, 4, 10, 13, 15, 29], "meras_100m_dem": [0, 13, 15, 19], "elevation_unit": [0, 13, 15, 19, 29], "feet": [0, 13, 15, 19], "botm": [0, 1, 2, 3, 4, 7, 13, 15, 29], "mdwy_surf": [0, 13, 15], "idomain": [0, 1, 2, 4, 6, 12, 13, 15, 29, 32], "tdi": [0, 1, 6, 14, 15, 18, 19, 22, 29, 32], "time_unit": [0, 9, 12, 14, 15, 19], "dai": [0, 6, 8, 9, 12, 14, 15, 19], "start_date_tim": [0, 9, 12, 14, 15], "2020": 0, "01": [0, 2, 3, 9, 12, 14, 15, 19, 29], "perioddata": [0, 1, 6, 8, 9, 14, 15, 29], "group": [0, 9, 13, 15, 16], "perlen": [0, 6, 8, 9, 14, 15, 29], "nper": [0, 9, 15], "nstp": [0, 6, 8, 9, 15, 25, 29], "steadi": [0, 6, 8, 9, 15, 19, 29], "npf": [0, 6, 13, 14, 15, 18, 22, 29, 32], "rewet": 0, "griddata": [0, 5, 12, 13, 14, 15, 29], "icelltyp": [0, 14, 15, 29], "k": [0, 2, 4, 7, 14, 15, 29, 31], "k33": [0, 15, 29], "iconvert": [0, 14, 15, 29], "convert": [0, 2, 3, 4, 5, 9, 13, 15, 19, 29], "sy": [0, 14, 15, 29], "ss": [0, 14, 15, 29], "e": [0, 3, 4, 5, 7, 9, 12, 13, 14, 15, 16, 19, 28, 31, 34], "6": [0, 2, 3, 4, 6, 9, 10, 12, 13, 15, 19, 25, 29, 30, 31, 32, 33], "print_flow": [0, 14, 15, 19], "fals": [0, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19, 29], "readasarrai": [0, 14, 15, 19], "recharg": [0, 2, 7, 12, 15, 29], "00025": 0, "d": [0, 2, 5, 7, 15, 28, 31], "inch": [0, 15, 19], "year": [0, 9, 15, 19, 28, 34], "id_column": [0, 4, 7, 9, 15, 19, 32], "comid": [0, 15, 19], "argument": [0, 4, 9, 13, 15, 19, 29, 32], "from_shapefil": [0, 15, 19], "routing_column": [0, 15, 19], "tocomid": [0, 15, 19], "width1_column": [0, 15, 19], "width1": [0, 15, 19], "width2_column": [0, 15, 19], "width2": [0, 15, 19], "up_elevation_column": [0, 15, 19], "elevupsmo": [0, 15, 19], "dn_elevation_column": [0, 15, 19], "elevdnsmo": [0, 15, 19], "name_column": [0, 15, 19], "gnis_nam": [0, 15, 19], "width_unit": [0, 15, 19], "sfrmaker_opt": [0, 15, 19], "one_reach_per_cel": [0, 15], "consolid": [0, 15], "per": [0, 6, 8, 9, 12, 15, 29, 32], "j": [0, 2, 4, 7, 15, 29, 31], "to_riv": [0, 15, 19], "riv": [0, 7, 14, 15, 18, 22, 29, 32], "18047206": [0, 15], "period_opt": [0, 14, 15, 25], "save": [0, 3, 9, 14, 15, 25, 28], "head": [0, 6, 7, 8, 9, 10, 12, 14, 15, 18, 22, 25, 32], "last": [0, 2, 9, 12, 14, 15, 19, 25, 29], "budget": [0, 4, 8, 9, 10, 12, 14, 15, 25, 30, 31], "im": [0, 6, 13, 14, 15, 29, 32], "print_opt": [0, 14, 15], "complex": [0, 15, 30], "csv_output_filerecord": 0, "solver_out": [0, 15], "csv": [0, 9, 13, 14, 15, 19, 29, 32], "nonlinear": [0, 14, 15], "outer_dvclos": [0, 14, 15], "m3": [0, 15], "outer_maximum": [0, 14, 15], "50": [0, 14, 15, 31], "linear": [0, 5, 7, 12, 13, 14, 15, 19, 30], "inner_maximum": [0, 14, 15], "inner_dvclos": [0, 14, 15], "rcloserecord": [0, 14, 15], "001": [0, 14, 15, 19], "relative_rclos": [0, 14, 15], "initial_config_ful": 0, "further": 0, "custom": [0, 15, 19], "step": [0, 10, 25, 28, 29, 30], "o": [0, 29, 30], "cwd": 0, "getcwd": [0, 29], "chang": [0, 6, 7, 8, 14, 15, 19, 28, 30, 32], "directori": [0, 16, 28], "workspac": [0, 13, 14, 15, 29], "back": [0, 3], "chdir": [0, 29], "setup_model": 0, "setup_from_yaml": [0, 1, 3, 7, 8, 15, 16, 29, 33], "write_input": [0, 1, 6, 8, 29], "return": [0, 2, 3, 4, 5, 6, 7, 9, 10, 16, 29], "initial_model_setup": 0, "get_flopy_external_file_input": [1, 6], "get_package_list": [1, 6], "get_raster_statistics_for_cel": [1, 6], "get_raster_values_at_cell_cent": [1, 6], "load_from_config": [1, 6], "setup_chd": [1, 6, 8], "setup_drn": [1, 6, 8], "setup_ghb": [1, 6, 8], "setup_": [1, 6], "setup_im": [1, 6], "setup_lak": [1, 6], "setup_npf": [1, 6], "setup_ob": [1, 6], "setup_oc": [1, 6], "setup_rch": [1, 6], "setup_riv": [1, 6, 8], "setup_simulation_mov": [1, 6], "setup_sto": [1, 6], "setup_tdi": [1, 6, 8], "setup_wel": [1, 6, 8], "mfnwtmodel": [1, 2, 3, 5, 7, 13, 14, 33], "ibound": [1, 2, 8, 25, 32], "ipakcb": [1, 8, 14, 15], "setup_hyd": [1, 8], "setup_upw": [1, 8], "mfsetupmixin": [1, 6, 8, 13, 33], "get_boundary_cel": [1, 7], "high_k_lake_recharg": [1, 7], "interp_weight": [1, 5, 7], "isbc": [1, 7], "lakarr": [1, 7, 29], "lake_bathymetri": [1, 7], "load_cfg": [1, 3, 7], "load_featur": [1, 7], "load_grid": [1, 7], "model_vers": [1, 7], "package_list": [1, 7], "parent_lay": [1, 7], "parent_mask": [1, 7], "parent_stress_period": [1, 7, 9], "perimeter_bc_typ": [1, 7], "regrid_from_par": [1, 7], "setup_external_filepath": [1, 3, 7], "setup_from_cfg": [1, 7], "source_path": [1, 7], "modflowgwfdi": [1, 2, 13], "thick": [1, 2, 7, 14, 15, 19], "adjust_lay": [1, 2], "cellids_to_kij": [1, 2, 29], "create_vertical_pass_through_cel": [1, 2], "deactivate_idomain_abov": [1, 2], "fill_cells_vert": [1, 2], "fill_empty_lay": [1, 2], "find_remove_isolated_cel": [1, 2], "fix_model_layer_conflict": [1, 2], "get_highest_active_lay": [1, 2], "get_lay": [1, 2], "get_layer_thick": [1, 2], "make_ibound": [1, 2], "make_idomain": [1, 2], "make_irch": [1, 2], "make_lgr_idomain": [1, 2], "populate_valu": [1, 2], "verify_minimum_layer_thick": [1, 2], "voxels_to_lay": [1, 2], "weighted_average_between_lay": [1, 2], "fileio": 1, "add_version_to_filehead": [1, 3], "append_csv": [1, 3], "check_source_fil": [1, 3], "dump": [1, 3], "dump_json": [1, 3], "dump_yml": [1, 3], "exe_exist": [1, 3], "flopy_mf2005_load": [1, 3], "flopy_mf6model_load": [1, 3], "flopy_mfsimulation_load": [1, 3], "load_arrai": [1, 3], "load_json": [1, 3], "load_modelgrid": [1, 3], "load_yml": [1, 3], "read_ggofil": [1, 3], "read_lak_ggo": [1, 3], "read_mf6_block": [1, 3], "remove_file_head": [1, 3], "save_arrai": [1, 3], "set_cfg_paths_to_absolut": [1, 3], "mfsetupgrid": [1, 3, 4, 5, 10, 29], "bbox": [1, 4], "bound": [1, 4, 9, 15, 29, 32], "datafram": [1, 2, 3, 4, 6, 8, 9, 10], "get_datafram": [1, 4], "get_intercell_connect": [1, 4], "get_vertic": [1, 4], "intercell_connect": [1, 4, 10], "length_multipli": [1, 4], "proj_str": [1, 4], "transform": [1, 4], "vertic": [1, 2, 4, 15, 19, 29], "wkt": [1, 4], "write_bbox_shapefil": [1, 4], "xul": [1, 4], "yul": [1, 4], "get_cellface_midpoint": [1, 4], "get_cr": [1, 4], "get_crs_length_unit": [1, 4], "get_grid_bounding_box": [1, 4], "get_ij": [1, 4], "get_kij_from_node3d": [1, 4], "get_nearest_point_on_grid": [1, 4], "get_point_on_national_hydrogeologic_grid": [1, 4], "get_transform": [1, 4], "raster": [1, 4, 6, 13, 14, 15, 18, 19, 30, 32], "setup_structured_grid": [1, 4], "interpol": [1, 2, 7, 12, 13, 29], "source_values_mask": [1, 5], "get_source_dest_model_xi": [1, 5], "regrid": [1, 5, 15], "regrid3d": [1, 5], "add_date_comments_to_tdi": [1, 9], "aggregate_dataframe_to_stress_period": [1, 9, 15, 19], "aggregate_xarray_to_stress_period": [1, 9], "concat_periodata_group": [1, 9], "convert_freq_to_period_start": [1, 9], "get_parent_stress_period": [1, 9], "parse_perioddata_group": [1, 9], "setup_perioddata": [1, 9], "setup_perioddata_group": [1, 9], "tmr": [1, 12, 18, 29, 32], "get_qx_qy_qz": [1, 10], "relat": [2, 9, 29], "class": [2, 4, 5, 13, 16, 29, 33], "arg": 2, "kwarg": [2, 3, 4, 6, 8, 9, 13], "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 19, 29, 30, 32, 33, 34], "base": [2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 18, 28, 29, 30], "properti": [2, 4, 5, 6, 7, 8, 9, 12, 15, 18, 19, 22, 29, 33], "minimum_thick": 2, "1": [2, 5, 7, 9, 12, 13, 14, 15, 18, 19, 25, 29, 34], "adjust": [2, 14, 30], "bottom": [2, 4, 10, 13, 14, 15, 19], "maintain": [2, 28], "minimum": [2, 15, 16, 18, 19, 28], "paramet": [2, 3, 4, 5, 6, 7, 9, 10, 15, 16, 30], "flopi": [2, 3, 4, 5, 6, 7, 9, 10, 13, 15, 16, 18, 19, 25, 29, 30, 31, 32, 33], "modflow": [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 31, 32, 33], "modflowdi": [2, 15], "instanc": [2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 18, 28, 29, 30, 33], "new_layer_elev": 2, "ndarrai": [2, 4, 5, 7], "new": [2, 16, 28, 32], "cellid": [2, 29], "drop_inact": 2, "unpack": 2, "tupl": [2, 4, 5, 10], "list": [2, 3, 4, 6, 7, 9, 13, 14, 15, 16, 28, 29, 30, 34], "valu": [2, 4, 5, 6, 7, 9, 12, 13, 14, 15, 16, 19, 29, 30, 32], "ignor": 2, "none": [2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 19], "unconnect": 2, "sequenc": [2, 4, 9, 13], "bool": [2, 4, 7, 9, 10], "drop": [2, 7, 14, 15, 19], "distribut": [2, 15, 19], "1d": [2, 4, 5, 7, 10], "numpi": [2, 4, 5, 7, 10, 16, 19, 28, 29, 30, 32, 34], "arrai": [2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 18, 19, 29, 30, 32, 33], "integ": [2, 4, 5, 9, 13, 32], "replac": [2, 3], "inact": [2, 5, 30, 32], "pass": [2, 3, 4, 5, 9, 15, 16, 25, 29, 32], "through": [2, 15, 19, 25, 28, 29, 30], "activ": [2, 5, 12, 13, 16, 18, 28, 29, 32], "below": [2, 4, 13, 15, 16, 19, 28, 29], "2": [2, 5, 7, 9, 10, 12, 13, 14, 15, 18, 19, 28, 29, 31], "3": [2, 5, 7, 9, 12, 13, 15, 19, 28, 29, 34], "2d": [2, 4, 5, 10], "revis": [2, 29, 32], "were": [2, 14, 15, 19, 29, 30], "previou": [2, 29], "packagedata": [2, 14], "mflist": 2, "recarrai": 2, "note": [2, 3, 5, 9, 15, 16, 18, 19, 28, 29], "routin": [2, 30], "updat": [2, 3, 6, 8, 30, 32], "model": [2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 18, 19, 25, 30, 31, 32], "modflowbas6": 2, "bas6": [2, 14, 15, 18, 22, 32], "file": [2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 25, 30, 32, 33, 34], "write": [2, 3, 4, 6, 7, 8, 14, 15, 19, 30, 32], "exclud": [2, 15], "howev": [2, 12, 15, 16, 28], "overli": [2, 28], "comput": [2, 5, 6, 30], "given": [2, 3, 4, 7, 9, 15, 19], "3d": [2, 4, 5, 6, 7, 8, 10, 29], "nan": [2, 5], "10": [2, 9, 13, 14, 15, 18, 19, 25, 28, 29, 31], "8": [2, 13, 15, 16, 19, 29, 34], "5": [2, 7, 9, 13, 14, 15, 18, 29], "make": [2, 7, 18, 28, 30, 33], "9": [2, 13, 14, 15, 25, 29, 34], "zero": [2, 3, 4, 7, 9, 10, 12, 15, 29], "valid": [2, 9, 15, 19, 25, 28, 30, 32], "algorithm": 2, "get": [2, 3, 4, 5, 7, 10, 12, 29, 32], "account": [2, 12, 16, 28], "nodata": [2, 3, 29], "take": [2, 28, 30], "cumul": [2, 9], "sum": [2, 5, 9], "along": [2, 4, 7, 12, 16, 29, 32], "0th": 2, "depth": [2, 14, 15], "axi": [2, 4, 29], "go": [2, 16, 28], "backward": [2, 28], "posit": [2, 4, 5, 15], "sens": 2, "add": [2, 3, 7, 9, 15, 16, 28, 32], "repres": [2, 3, 4, 5, 6, 7, 8, 9, 13, 15, 18, 19, 29, 30], "append": [2, 3, 7, 14, 15, 29], "empti": 2, "linearli": [2, 12], "defin": [2, 5, 9, 12, 15, 16, 18, 19], "would": [2, 9, 13, 15, 19, 25, 29], "creat": [2, 3, 4, 7, 15, 18, 30, 33, 34], "equal": [2, 9], "same": [2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 19, 29, 30], "minimum_cluster_s": 2, "identifi": [2, 4, 9, 15, 19], "cluster": 2, "isol": 2, "binari": [2, 4, 10, 12, 15, 29, 32], "top_arrai": 2, "botm_arrai": 2, "ibound_arrai": 2, "compar": [2, 16], "downward": 2, "necessari": [2, 16], "scalar": [2, 4, 15, 19], "enforc": [2, 16], "new_botm_arrai": 2, "null_valu": 2, "9999": [2, 3, 14, 15], "highest": 2, "each": [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 19, 25, 29], "scaler": 2, "index": [2, 4, 5, 28], "pair": 2, "assign": [2, 4, 9, 12, 15, 19, 32], "second": [2, 9, 12, 28, 29, 31], "expect": [2, 16], "design": 2, "fake": 2, "7": [2, 13, 14, 15, 28, 29, 34], "onli": [2, 4, 5, 7, 8, 9, 10, 12, 14, 15, 16, 19, 28, 29, 30], "reshap": 2, "4": [2, 7, 14, 15, 18, 29, 32], "transpos": 2, "result": [2, 9, 12, 16, 19, 25, 28, 30], "diff": [2, 29], "except": [2, 9, 13, 19, 32], "direct": [2, 4, 12, 28, 29], "12": [2, 9, 13, 15, 19, 29], "minimum_layer_thick": [2, 14, 15, 19, 29], "drop_thin_cel": [2, 14, 15, 29], "tol": 2, "0001": [2, 14, 15, 29], "int": [2, 3, 4, 5, 7, 9, 15], "appli": [2, 3, 5, 7, 9, 12, 15, 19, 31], "word": [2, 4, 9], "toler": 2, "irch": [2, 14, 29], "parent_modelgrid": 2, "inset_modelgrid": 2, "inactiv": 2, "area": [2, 5, 12, 13, 15, 18, 19, 29, 32], "values_dict": 2, "array_shap": 2, "dictionari": [2, 3, 4, 7, 9, 12, 13, 15, 25, 29, 33], "non": [2, 4, 7, 12, 29], "consecut": [2, 4], "kei": [2, 6, 7, 9, 13, 15, 16, 19, 25, 29], "isact": 2, "voxel_arrai": 2, "z_edg": 2, "model_top": [2, 10], "model_botm": 2, "no_data_valu": 2, "extend_top": 2, "extend_botm": 2, "minimum_frac_active_cel": 2, "voxel": 2, "land": [2, 29], "form": [2, 15, 19], "place": [2, 12, 13, 16, 19], "lowest": 2, "prioriti": 2, "reset": 2, "effect": [2, 16, 28, 29], "give": 2, "underli": 2, "also": [2, 6, 7, 9, 13, 15, 16, 19, 25, 28, 32, 33, 34], "beyond": 2, "flow": [2, 4, 7, 10, 12, 15, 19, 29, 30, 31, 33], "investig": 2, "airborn": 2, "electromagnet": 2, "survei": [2, 29, 31], "aquif": [2, 13, 15, 18, 19, 22], "electr": 2, "resisit": 2, "extent": [2, 7, 12, 15, 19, 29, 32, 33], "span": [2, 19], "higher": 2, "extend": [2, 4, 19, 30, 33], "edg": [2, 4, 12, 28, 29], "extent_top": 2, "similarli": [2, 13, 29], "gap": 2, "zone": [2, 14, 15, 29], "actual": [2, 16, 28, 29], "mark": 2, "assum": [2, 3, 4, 10, 12, 14, 15, 19, 29], "horizont": [2, 15], "similar": [2, 5, 9, 10, 12, 15, 16, 19, 25, 28], "default": [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 18, 19, 28, 29, 30], "float": [2, 4, 5, 9, 13, 15], "consid": [2, 16, 29], "regardless": [2, 6, 13, 15, 16, 25, 28], "fraction": [2, 4, 5], "retain": [2, 9], "rais": [2, 4, 9], "valueerror": [2, 4, 9], "arr0": 2, "arr1": 2, "weight0": 2, "stuff": 3, "disk": [3, 28], "work": [3, 4, 7, 8, 15, 16, 18, 19, 20, 21, 23, 24, 26, 27, 28, 30, 32, 33], "path": [3, 4, 6, 7, 10, 13, 15, 19, 28, 29], "model_info": 3, "setup": [3, 6, 7, 8, 9, 12, 13, 14, 15, 19, 25, 29, 32, 33], "version": [3, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 19, 25, 29, 30, 31, 33, 34], "exist": [3, 15, 16, 19, 28, 33], "header": [3, 9, 15, 32], "denot": [3, 5, 13, 19], "comment": [3, 9, 13, 15, 16, 28, 30], "charact": 3, "df": [3, 4], "fileslist": 3, "check": [3, 8, 12, 16, 28, 29, 34], "configur": [3, 6, 7, 8, 9, 12, 16, 18, 19, 28, 29, 30, 32, 33], "jsonfil": 3, "json": [3, 4, 7, 13, 14, 15], "yml_file": 3, "exe_nam": [3, 6, 8, 14, 15, 29], "load_onli": [3, 6, 8, 15], "forgiv": [3, 8], "execut": [3, 29], "strict": 3, "model_rel_path": 3, "mfmodel": [3, 5, 7], "load_bas": 3, "sim": 3, "verify_data": 3, "mfsimul": 3, "cfgfile": 3, "verbos": [3, 7, 8], "default_fil": 3, "method": [3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 28, 29, 31, 33], "absolut": [3, 7, 9, 16], "str": [3, 4, 5, 6, 7, 9, 10], "dict": [3, 4, 6, 7, 9, 29], "classmethod": [3, 6, 7, 8], "befor": [3, 16, 28, 29, 34], "constructor": [3, 13, 19, 25, 29], "conveni": [3, 16], "escap": 3, "config": [3, 8, 15, 28], "gagefil": 3, "start_datetim": [3, 6, 8, 9, 15, 19, 29], "1970": [3, 9, 14], "keep_only_last_timestep": 3, "f": [3, 16, 28, 29], "blocknam": 3, "comparison": 3, "betwe": 3, "otherwis": [3, 4, 7, 9, 15, 19], "arr": [3, 5], "print": [3, 29], "wa": [3, 15, 16, 19, 28, 29, 34], "written": [3, 7, 12, 15, 18, 25, 29, 30, 32], "config_file_loc": 3, "variable_nam": [3, 7], "filename_format": [3, 7], "file_numb": [3, 7], "relative_external_path": [3, 7], "extern": [3, 6, 7, 8, 13, 14, 15, 18, 19, 28, 29, 30], "variabl": [3, 4, 7, 13, 15, 19, 28, 29, 32], "intermedi": [3, 6, 7, 29], "process": [3, 7, 15, 16, 30], "suppli": [3, 4, 7, 12, 13, 15, 19, 25, 32], "when": [3, 6, 7, 8, 13, 14, 15, 16, 30], "put": [3, 7, 12, 15, 19, 29, 32], "under": [3, 7, 15, 19, 28, 33], "respect": [3, 7], "attribut": [3, 4, 5, 7, 9, 15, 19, 33], "three": [3, 7, 9, 19, 29, 33], "letter": [3, 7, 19], "abrevi": [3, 7], "g": [3, 7, 9, 12, 14, 15, 16, 19, 28, 31, 34], "name": [3, 4, 6, 7, 9, 13, 15, 16, 19, 25, 28, 29, 32], "string": [3, 4, 7, 9, 13, 15, 19, 25], "dat": [3, 7, 14, 15, 19, 29], "stress": [3, 6, 7, 8, 9, 10, 12, 13, 15, 18, 22, 29, 32], "period": [3, 6, 7, 8, 9, 10, 12, 13, 15, 19, 28, 29], "botm0": [3, 7, 15, 29], "botm1": [3, 7, 15, 29], "filepath": [3, 4, 7], "intermediate_data": [3, 6, 7, 29], "program": [3, 18], "stackoverflow": [3, 5, 7, 16], "question": [3, 5, 7, 30], "377017": 3, "python": [3, 4, 7, 13, 14, 15, 16, 18, 19, 30, 31, 33], "regular": [4, 18, 30], "structur": [4, 5, 10, 14, 15, 16, 18, 19, 29, 30, 32], "focu": 4, "represent": 4, "cartesian": 4, "plane": 4, "involv": 4, "delc": [4, 13, 15, 29], "delr": [4, 13, 15, 29], "laycbd": 4, "lenuni": [4, 14, 15], "binary_grid_fil": [4, 10], "prj": [4, 32], "angrot": 4, "structuredgrid": [4, 5, 29, 32], "facilit": [4, 16, 29, 30], "oper": [4, 16, 28, 30], "real": [4, 9, 30], "coordin": [4, 14, 15, 18, 19, 32], "refer": [4, 7, 9, 13, 14, 15, 19, 32], "system": [4, 12, 15, 16, 18, 19, 28, 29, 32], "len": 4, "2005": [4, 9, 10, 15, 19, 25, 31], "earlier": 4, "style": [4, 7, 10, 14, 15, 19, 25, 28], "flag": [4, 13, 15], "whether": [4, 9, 13, 19], "quasi": 4, "confin": [4, 13, 15], "bed": 4, "onlin": [4, 13, 14, 15], "guid": [4, 13], "proj": 4, "gener": [4, 6, 8, 9, 12, 13, 15, 16, 28, 30, 33], "spatial": [4, 15, 19, 32], "id": [4, 7, 9, 14, 15, 28], "known": 4, "text": [4, 14, 15, 19, 28, 29], "prefer": [4, 19], "esri": 4, "describ": [4, 9, 13, 19, 28], "obj": 4, "pyproj": [4, 19], "from_user_input": 4, "keyword": [4, 13], "4326": 4, "auth_nam": 4, "auth_cod": 4, "object": [4, 5, 7, 10, 13, 15, 29, 32], "to_wkt": 4, "offset": [4, 15], "counter": 4, "clockwis": 4, "support": [4, 9, 12, 14, 16, 19, 28, 30, 31, 32, 34], "By": [4, 8, 9, 10, 12, 16, 19], "org": [4, 15, 31], "faq": 4, "html": [4, 15, 16, 19], "what": [4, 7, 16, 18, 28], "order": [4, 29], "panda": [4, 9, 15, 16, 29, 30, 32], "geometri": 4, "_summary_": 4, "pathlik": [4, 6, 10], "intercel": 4, "n": [4, 5, 10, 14, 15, 28, 31], "node": [4, 9, 10, 15, 19, 31], "kn": [4, 10], "jn": [4, 10], "_description_": [4, 9], "rasterio": [4, 13, 15, 19, 28], "affin": 4, "grid_bbox": 4, "midpoint": [4, 9, 19], "face": [4, 10, 12], "within": [4, 5, 6, 13, 15, 16, 19, 28, 29], "right": [4, 9, 28, 29], "halfwai": [4, 13], "potenti": [4, 16, 29], "local": [4, 15, 16, 28, 29, 32], "world": 4, "qidx": 4, "node3d": 4, "major": [4, 12], "dx": 4, "dy": 4, "center": [4, 12, 15, 19, 29], "op": 4, "alreadi": [4, 8, 9, 15, 16, 28], "incorpor": [4, 28, 29, 34], "pixel": [4, 6], "round": 4, "floor": 4, "ceil": 4, "x_nearest": 4, "y_nearest": 4, "nearest": [4, 5, 7, 19], "include_id": [4, 7, 15, 19], "names_column": 4, "onto": [4, 5, 7, 13, 29], "intersect": [4, 13, 15, 19], "uniqu": [4, 19], "output": [4, 6, 7, 8, 9, 10, 12, 14, 15, 18, 22, 28, 29, 32], "subset": [4, 7], "sequenti": [4, 29], "readthedoc": 4, "io": [4, 15, 19], "en": 4, "stabl": [4, 15, 16], "api": [4, 15, 19], "parent_model": [4, 9], "snap_to_par": [4, 14], "model_length_unit": 4, "grid_fil": [4, 14, 15, 29], "bbox_shapefil": [4, 14], "outshp": 4, "xyz": 5, "uvw": 5, "speed": [5, 7, 30], "barycentr": [5, 12], "scipi": [5, 12, 13, 29], "weight": [5, 7], "re": [5, 7, 30], "success": [5, 30], "destin": [5, 7, 28], "z": [5, 12, 29], "ndim": 5, "etc": [5, 9, 12, 13, 14, 15, 16, 19, 28, 32], "boolean": [5, 7, 9], "source_valu": 5, "emploi": 5, "stack": [5, 28], "overflow": 5, "post": [5, 7, 14, 15, 31], "20915502": 5, "speedup": 5, "calcul": [5, 7], "attach": [5, 7, 13, 15, 29, 33], "With": 5, "triangular": [5, 12], "mesh": [5, 15, 29, 32], "influenc": 5, "source_model": 5, "dest_model": 5, "source_mask": 5, "modeflow": 5, "mask": [5, 7, 29], "v": [5, 9, 16, 28, 29, 31], "flatten": 5, "across": [5, 10, 12, 13, 15, 19, 30], "vtx": 5, "wt": 5, "fill_valu": 5, "request": 5, "convex": 5, "hull": 5, "those": [5, 7, 15, 30], "least": [5, 9, 19, 28], "neg": [5, 14, 15], "grid2": 5, "mask1": 5, "mask2": 5, "categor": 5, "cubic": [5, 15, 19], "parent": [6, 7, 8, 9, 12, 14, 19, 32], "lgr": [6, 12, 29, 32], "modflowgwf": [6, 15, 29, 33], "var": 6, "repath": 6, "copi": [6, 13, 15, 28, 29], "becaus": [6, 19, 28], "self": [6, 16], "modflow6": 6, "replic": 6, "stat": [6, 14, 15, 19], "zonal": [6, 15, 19], "static": [6, 15, 19, 32], "out_of_bounds_error": 6, "coerc": 6, "centroid": 6, "easili": [6, 8, 16, 30], "yamlfil": [6, 7, 8], "abbrevi": [6, 19], "subpackag": 6, "seri": [6, 9, 15, 19], "maw": [6, 29], "gwf6": [6, 29], "summar": [6, 8, 9, 18, 29, 30], "date": [6, 8, 9, 15, 19, 29, 34], "end_datetim": [6, 8, 9, 15, 19, 29], "end": [6, 8, 9, 12, 15, 19, 29], "elaps": [6, 8, 9, 28, 29], "timestep": [6, 8, 9, 12, 25], "tsmult": [6, 8, 9, 15], "multipli": [6, 8, 9, 15, 19], "transient": [6, 8, 9, 15, 19, 32], "control": [6, 8, 9, 15, 16, 18, 22, 28, 30], "parent_sp": [6, 8, 9], "chd": [6, 8, 12, 14, 15, 18, 22, 29, 32], "drain": [6, 8, 15], "ob": [6, 13, 14, 15, 18, 22, 29, 32], "util": [6, 10, 15, 29], "rivdata": [6, 8], "river": [6, 8, 14, 15], "mover": [6, 14, 32], "level": [6, 13, 14, 16, 28, 29, 30, 32, 33], "inset": [6, 7, 9, 12, 18, 19, 32], "todo": [6, 8], "mixin": [7, 33], "share": 7, "meant": 7, "inherit": [7, 15], "both": [7, 16, 28, 29, 30, 33, 34], "call": [7, 8, 10, 25, 28, 33], "directli": [7, 15, 16, 19, 25, 28], "533631": 7, "why": [7, 16], "exclude_inact": 7, "pfl_nwt": [7, 15], "lak": [7, 14, 15, 18, 22, 29, 32], "ghb": [7, 14, 15, 18, 22, 29, 32], "bc_number": 7, "attibut": 7, "bathymetri": [7, 15, 29], "logic": 7, "here": [7, 8, 9, 15, 16, 19, 28, 29], "instead": [7, 10, 13, 16, 28, 30], "specif": [7, 8, 10, 12, 13, 16, 19, 28, 29, 32, 33], "bbox_filt": 7, "cach": 7, "vector": [7, 10], "_featur": 7, "gridfil": 7, "yml": [7, 16, 28, 29, 32, 33], "semant": 7, "hack": 7, "report": [7, 14, 15, 19, 31, 32, 34], "git": [7, 14, 15, 28, 34], "tag": [7, 14, 15], "repositori": [7, 14, 15, 28], "start_vers": [7, 14, 15], "remain": [7, 14, 15], "pep440": [7, 14, 15], "most": [7, 14, 15, 19, 28, 29, 30, 32], "recent": [7, 14, 15, 34], "commit": [7, 14, 15, 16, 28, 34], "hash": [7, 14, 15, 34], "dirti": [7, 14, 15], "uncommit": [7, 14, 15, 16], "github": [7, 14, 15, 16, 19, 28, 34], "warner": [7, 14, 15], "blob": [7, 14, 15], "master": [7, 14, 15, 16, 28], "md": [7, 14, 15], "definit": 7, "namefil": [7, 12, 15], "look": [7, 16, 29], "window": [7, 16, 19], "encompass": 7, "domain": [7, 29], "dictat": 7, "constant": [7, 12, 15], "flux": [7, 10, 12, 15, 19, 29, 32], "parent_arrai": 7, "model_w": [7, 8, 12, 14, 15], "scratch": [7, 30, 32], "home": [7, 16, 28, 29], "runner": [7, 29], "mfnwt": [8, 10, 12, 14, 15], "external_path": [8, 13, 14, 15], "nwt": [8, 12, 13, 18, 19, 29, 30, 31, 32, 33], "everyth": [8, 28, 30], "still": [8, 12, 16, 19, 28], "adapt": [8, 32], "parallel": 8, "hydmod": [8, 14, 15], "_set_perioddata": 8, "establish": [8, 9], "purpos": [8, 29], "conform": 8, "syntax": [8, 16], "tempor": [9, 15, 19], "tdis_fil": 9, "start_dat": [9, 15], "end_dat": [9, 15], "data_column": [9, 15, 19], "datetime_column": [9, 15, 19], "datetim": [9, 15, 19], "end_datetime_column": [9, 15, 19], "category_column": [9, 15], "period_stat": [9, 15, 19], "resolve_duplicates_with": 9, "error": [9, 16], "aggreg": [9, 15, 19], "downsampl": 9, "longer": 9, "interv": [9, 15, 19], "yyyi": [9, 29], "mm": [9, 15, 29], "dd": [9, 29], "timestamp": 9, "upsampl": [9, 15, 19], "nonetyp": [9, 13], "groupbi": 9, "statist": [9, 15, 19], "month": [9, 15, 19], "august": [9, 15, 19], "2014": 9, "averag": [9, 15, 19], "januari": 9, "basic": [9, 16, 18, 22, 28, 32], "slice": 9, "03": [9, 15, 29], "31": [9, 15, 19, 29], "reduc": [9, 29], "duplic": 9, "measur": [9, 19], "estim": [9, 29, 30, 31], "categori": [9, 15, 19], "encount": [9, 28, 29], "oppos": [9, 15], "datetime_coords_nam": 9, "perioddata_group": 9, "concaten": 9, "sort": [9, 16], "increment": [9, 30], "accordingli": [9, 13, 15], "freq": [9, 15], "frequenc": [9, 25], "perioddata_dict": 9, "reorgan": 9, "tdis_perioddata_config": 9, "default_start_datetim": 9, "oc_saverecord": [9, 15], "_type_": 9, "modeltim": 9, "miss": [9, 13, 15, 16], "entri": [9, 15, 19], "func": 9, "record": [9, 14, 15, 19], "tabl": [9, 12, 14, 15, 19, 30], "copy_stress_period": [9, 12, 15], "item": [9, 13, 15, 19, 32], "stress_period_data": [9, 14, 25, 29], "folder": [9, 12, 16, 28, 30, 32, 34], "footnot": 9, "end_date_tim": [9, 14, 15], "model_time_unit": 9, "explicitli": [9, 12, 13, 15, 16, 25, 29], "Or": [9, 19, 28], "date_rang": [9, 15], "isn": [9, 16, 19, 28], "dateoffset": 9, "6m": [9, 15], "alias": [9, 15], "until": 9, "perrioddata": 9, "automat": [9, 15, 16, 19, 28, 29, 32], "latter": [9, 19, 33], "assumpt": [9, 29], "invari": 9, "anywai": 9, "intend": [9, 13, 15, 28, 29, 33], "cannot": 9, "acut": 9, "after": [9, 13, 16, 28, 30], "2019": 9, "2018": [9, 15, 19, 29, 31], "00": [9, 28, 29], "cell_budget_fil": 10, "cell_connections_df": 10, "kstpkper": [10, 29], "specific_discharg": 10, "headfil": [10, 29], "binaryfil": [10, 15, 29], "cellbudgetfil": 10, "pointer": 10, "grb": [10, 12, 15, 19], "Not": [10, 19], "bindary_grid_fil": 10, "avoid": [10, 13, 15, 28], "meth": 10, "model_bottom_arrai": 10, "discharg": [10, 14, 15], "compon": [10, 31], "volumetr": 10, "qx": 10, "qy": 10, "qz": 10, "often": [12, 16, 19, 28, 30], "part": [12, 16, 19, 29], "groundwat": [12, 18, 29, 30, 31, 33], "mismatch": 12, "abrupt": 12, "gradient": 12, "suffici": [12, 29], "far": 12, "awai": 12, "do": [12, 13, 15, 16, 18, 28, 29], "appreci": 12, "impact": [12, 29], "capabl": 12, "colinear": 12, "opposit": 12, "side": 12, "distinct": 12, "matter": 12, "subdivid": [12, 15, 29], "hydraul": [12, 14, 15, 30, 31], "conduct": [12, 14, 15, 19, 29, 30, 31], "nam": [12, 15, 29], "2012": [12, 15, 19, 29, 31], "perimeter_boundari": [12, 15, 19], "sub": [12, 19, 29, 30, 32], "parent_head_fil": [12, 15, 19], "hd": [12, 14, 15, 19, 25, 29], "parent_cell_budget_fil": [12, 15, 19], "cbc": [12, 14, 15, 19, 25], "parent_binary_grid_fil": [12, 15, 19], "primari": [12, 13], "tmrnew": 12, "get_inset_boundary_cel": 12, "visual": 12, "environ": 12, "boundary_cel": 12, "No": [12, 29], "by_lay": 12, "bc": [12, 15, 19, 32], "maximum": 12, "areal": [12, 19], "footprint": [12, 15, 28], "insid": [12, 15, 16, 19], "max": [12, 19, 29], "recommend": [12, 16, 28, 31], "lead": [12, 16, 28], "interior": [12, 15], "pinch": [12, 15], "user": [12, 13, 14, 16], "carefulli": 12, "inspect": [12, 28, 32], "open": [12, 15, 16, 19, 28], "polylin": 12, "determin": [12, 15, 19], "sobel": 12, "detect": 12, "filter": [12, 25], "thought": 13, "serial": 13, "abil": [13, 30], "curli": 13, "bracket": 13, "white": [13, 31], "indent": 13, "enter": [13, 15, 19, 28], "quot": [13, 28], "pars": [13, 15, 30, 32], "decim": 13, "squar": 13, "cast": 13, "symbol": 13, "pyyaml": [13, 15], "dictonari": 13, "aspect": [13, 15, 16, 30], "pattern": [13, 19], "individu": [13, 15, 18, 19], "close": [13, 19], "possibl": [13, 16, 28, 30, 34], "conflict": [13, 16], "convent": [13, 16], "divid": 13, "organ": [13, 16], "mfsim": [13, 14, 15, 29], "tmp": [13, 15], "fed": [13, 29], "nest": [13, 29], "newton_under_relax": [13, 14, 15], "relative_external_filepath": [13, 14, 15], "instruct": [13, 14, 15, 16, 18, 19, 25, 28, 34], "broken": [13, 15, 16, 28], "appropri": [13, 16], "subblock": [13, 15], "_unit": [13, 15], "suffix": [13, 15, 33], "evenli": [13, 15, 29], "final": [13, 29, 30], "limit": [13, 14, 15, 29, 30], "dem": [13, 15, 18], "script": [13, 15, 18, 29, 30, 31], "vkbg_surf": [13, 15], "vicksburg": [13, 15], "jackson": [13, 15], "ucaq_surf": [13, 15], "claiborn": [13, 15], "mccu_surf": [13, 15], "middl": [13, 15], "mcaq_surf": [13, 15], "lccu_surf": [13, 15], "lcaq_surf": [13, 15], "mwaq_surf": [13, 15], "wilcox": [13, 15], "lwaq_surf": [13, 15], "midwai": [13, 15], "active_area": [13, 15], "special": [13, 16], "null": 13, "exponenti": 13, "sign": [13, 16], "expon": 13, "1e5": 13, "e5": 13, "popul": [14, 33], "metadata": [14, 15, 29], "longnam": [14, 15], "list_filename_fmt": [14, 15], "hiklakes_valu": [14, 15], "e4": [14, 15], "default_lake_depth": 14, "achiev": 14, "postprocess": [14, 29], "output_fold": 14, "pdf": 14, "variable_map": 14, "xll": [14, 29], "yll": [14, 29], "output_fil": [14, 15, 29], "_grid": 14, "_bbox": 14, "top_filename_fmt": [14, 29], "botm_filename_fmt": [14, 29], "botm_": [14, 29], "03d": [14, 15, 19, 29], "idomain_filename_fmt": [14, 29], "idomain_": [14, 29], "strt": [14, 15, 29], "resample_method": [14, 15, 19], "strt_filename_fmt": [14, 15], "strt_": [14, 15], "write_fmt": 14, "2f": 14, "k_filename_fmt": [14, 15], "k_": [14, 15], "k33_filename_fmt": [14, 15], "k33_": [14, 15], "sy_filename_fmt": 14, "sy_": 14, "ss_filename_fmt": 14, "ss_": 14, "recharge_filename_fmt": 14, "rch_": 14, "irch_filename_fmt": 14, "budget_fileout": 14, "bin": [14, 29], "stage_fileout": 14, "stage": [14, 15, 19, 29], "obs6_filein_fmt": 14, "external_fil": [14, 15, 19, 29], "2002": [14, 15, 31], "high_k_lak": [14, 15, 29], "simulate_high_k_lak": [14, 15], "high_k_valu": [14, 15], "compress": [14, 15], "pa": [14, 15], "m2": [14, 15], "lake_out": 14, "lake_stag": 14, "obs6": 14, "boundnam": [14, 15, 19, 29], "lakarr_filename_fmt": 14, "lakarr_": 14, "lakzones_filename_fmt": 14, "lakzon": 14, "lakeb": [14, 15, 29], "leakanc": [14, 15, 29], "horizontal_connect": 14, "connectiondata_filename_fmt": 14, "lake_connectiondata": 14, "connectiondata": [14, 15, 29], "littoral_zone_buffer_width": [14, 15], "20": [14, 15, 29], "lookup_fil": [14, 15], "_lak_lookup": 14, "lak_polygons_shapefil": 14, "_lak_polygon": 14, "connections_lookup_fil": 14, "_lak_connections_lookup": 14, "gw": [14, 15], "connections_shapefil": 14, "_lak_cel": 14, "mvr": [14, 29, 32], "all_touch": [14, 15, 19], "min": [14, 15, 19], "mfsetup_opt": [14, 15, 19, 29, 32], "external_filename_fmt": [14, 19], "chd_": 14, "drn": [14, 15, 18, 22, 29, 32], "cond": [14, 15, 19], "drn_": 14, "bhead": [14, 15, 19], "ghb_": 14, "rivdata_fil": 14, "_rivdata": 14, "auxillari": 14, "default_rbot_thick": [14, 15, 19], "riv_": 14, "_wel_lookup": 14, "dropped_wells_fil": 14, "_dropped_wel": [14, 19], "wel_": 14, "head_fileout_fmt": [14, 15, 25], "budget_fileout_fmt": [14, 15, 25], "digit": 14, "column_map": [14, 15], "hydlbl": [14, 15], "obsprefix": [14, 15], "obsnm": [14, 15], "common_nam": [14, 15], "x_location_col": [14, 15], "wtm": [14, 15], "y_location_col": [14, 15], "allow_obs_in_bc_cel": [14, 32], "obsname_character_limit": 14, "40": [14, 15, 29, 31], "filename_fmt": 14, "csv_outer_output": 14, "solver_outer_out": 14, "200": [14, 15, 29], "under_relax": [14, 15], "dbd": [14, 15], "under_relaxation_theta": [14, 15], "under_relaxation_kappa": [14, 15], "under_relaxation_gamma": [14, 15], "under_relaxation_momentum": [14, 15], "backtracking_numb": [14, 15], "linear_acceler": [14, 15], "bicgstab": [14, 15], "relaxation_factor": [14, 15], "ilu": [14, 15], "ilut": [14, 15], "precondit": [14, 15], "preconditioner_level": [14, 15], "preconditioner_drop_toler": [14, 15], "number_orthogon": [14, 15], "scaling_method": [14, 15], "reordering_method": [14, 15], "keep_original_arrai": 14, "itmuni": [14, 15], "hnoflo": 14, "ibound_filename_fmt": 14, "ibound_": 14, "strt_write_fmt": 14, "upw": [14, 15, 18, 22, 32], "hk_filename_fmt": 14, "hk_": 14, "vka_filename_fmt": 14, "vka_": 14, "53": [14, 15, 25], "hdry": [14, 15], "laytyp": 14, "layvka": 14, "remake_arrai": 14, "rech_mult": 14, "rech_filename_fmt": 14, "finf_": 14, "bdlknc_filename_fmt": 14, "bdlknc_": 14, "theta": [14, 15], "semi": [14, 15], "implicit": [14, 15], "surfdep": [14, 15], "nssitr": [14, 15], "800": [14, 15], "sscncr": [14, 15], "0000001": [14, 15], "converg": [14, 15], "criterion": [14, 15], "undul": [14, 15], "affect": [14, 15], "rang": [14, 15], "trout": [14, 15], "shead": 14, "ehead": 14, "mnw": [14, 15], "losstyp": 14, "skin": [14, 15], "pumploc": 14, "rw": [14, 15], "radiu": [14, 15], "rskin": [14, 15], "1524": [14, 15], "outer": [14, 15, 32], "kskin": [14, 15], "hyd": [14, 15, 18, 22, 32], "hydnoh": 14, "999": 14, "14": [14, 25, 29], "gag": [14, 15], "starting_unit_numb": 14, "250": 14, "lak_outtyp": 14, "gage": [14, 15, 18, 22, 32], "2a": 14, "outtyp": 14, "sfr_outtyp": 14, "2b": 14, "x_utm": [14, 15], "y_utm": [14, 15], "headtol": [14, 15], "fluxtol": 14, "6000": 14, "maxiterout": 14, "thickfact": 14, "00001": 14, "linmeth": 14, "iprnwt": 14, "ibotav": 14, "dbdtheta": 14, "dbdkappa": 14, "dbdgamma": 14, "momfact": 14, "backflag": 14, "iacl": 14, "norder": 14, "iredsi": 14, "rrctol": 14, "idroptol": 14, "epsrn": 14, "hclosexmd": [14, 15], "mxiterxmd": 14, "85": 14, "use_existing_fil": [14, 15], "suit": [15, 30], "netcdf": [15, 19, 29, 30, 32], "newli": 15, "subclass": [15, 29], "becom": [15, 16, 30], "__init__": 15, "clariti": 15, "store": [15, 16, 29, 33], "own": [15, 16], "signatur": 15, "contrast": [15, 19, 30], "_column": 15, "field": [15, 19], "build": [15, 16, 18, 28, 30, 33], "built": [15, 29, 30, 33], "event": 15, "context": [15, 16, 29], "clark": [15, 31], "1998": [15, 19], "04": 15, "global": [15, 19, 28, 32], "long": [15, 19, 28], "spin": 15, "pump": [15, 19, 29], "2007": 15, "midnight": 15, "09": [15, 29], "pydata": 15, "doc": [15, 16], "user_guid": 15, "timeseri": [15, 19], "strt_001": 15, "sat": 15, "k0": 15, "k1": 15, "k2": 15, "k3": 15, "k4": 15, "k5": 15, "k6": 15, "k10": 15, "11": [15, 28, 29, 32], "k12": 15, "k330": [15, 19], "k331": 15, "k332": 15, "k333": 15, "k334": 15, "k335": 15, "k336": 15, "k3310": 15, "k3312": 15, "storag": 15, "25": [15, 29], "resampl": [15, 19, 29], "net_infiltration__2000": [15, 19], "01_to_2017": [15, 19], "31__414_by_394": [15, 19], "nc": [15, 19], "net_infiltr": [15, 19], "rate": [15, 19], "2000": [15, 19, 32], "2017": [15, 19, 31], "streamflow": [15, 18, 22], "flowlin": [15, 18, 19], "inflow": 15, "add_to_perioddata": 15, "line_id_column": 15, "line_id": 15, "flow_m3d": 15, "skip": [15, 16, 28, 29], "add_observ": 15, "obstyp": 15, "x_location_column": 15, "y_location_column": 15, "obsname_column": 15, "site_no": 15, "runoff": 15, "been": [15, 16, 30, 34], "reprocess": 15, "swb_runoff_by_nhdplus_comid_m3d": 15, "runoff_m3d": 15, "clip": 15, "preprocess": 15, "associ": [15, 19, 28, 32, 34], "flowline_rout": 15, "fromcomid": 15, "to_sfr": 15, "doi": [15, 31], "set_streambed_top_elevations_from_dem": 15, "shellmound_tmr": 15, "add_outlet": 15, "17955371": 15, "17956213": 15, "outlet": 15, "minimum_slop": 15, "waterbodi": [15, 19], "18046162": [15, 19], "boundname_column": [15, 19, 32], "csvfile": [15, 19, 32], "chd_head": [15, 19], "head_column": [15, 19], "p": [15, 19, 31], "omit": [15, 19], "18047154": [15, 19], "18046236": [15, 19], "18046230": [15, 19], "touch": [15, 16, 19], "mix": [15, 19, 28, 32], "vari": [15, 19, 29, 32], "bhead_column": [15, 19], "17953939": [15, 19], "2007_avg_pumping_from_meras21_m3": [15, 19], "iwum_m3_6m": [15, 19], "sp69_pumping_from_meras21_m3": [15, 19], "volume_unit": [15, 19], "flux_m3": [15, 19], "aleaf": [15, 19, 28, 34], "vertical_flux_distribut": [15, 19], "across_lay": [15, 19], "thickest": [15, 19], "transmiss": [15, 19], "distribute_bi": [15, 19], "shellmound_dropped_wel": [15, 19], "saverecord": 15, "preprocessed_head_obs_info": 15, "obsnam": 15, "moder": 15, "csv_output": 15, "fileout": 15, "telescop": [15, 29, 32], "refin": [15, 29, 32], "spatialrefer": 15, "overrid": 15, "sm_tmr": 15, "shellmound_tmr_inset": 15, "argment": 15, "default_source_data": [15, 19], "pull": [15, 28, 34], "inset_layer_map": 15, "500955": 15, "1175285": 15, "from_par": [15, 29], "18047212": [15, 19], "satur": [15, 19], "itself": [15, 29], "construct": [15, 16, 18, 29, 30, 32, 33], "nhdplu": [15, 29], "v2": [15, 29], "websit": [15, 29], "volum": [15, 19, 29], "climat": [15, 19, 29], "prism": [15, 29], "pleasant_lgr": [15, 29], "plsnt_lgr_parent": [15, 29], "extract": 15, "geo": [15, 18, 30], "namfil": 15, "unfortun": 15, "dot": 15, "exp": 15, "notat": 15, "remak": [15, 33], "553000": [15, 29], "388000": [15, 29], "3070": [15, 29], "wisconsin": [15, 29, 31], "transvers": [15, 29], "mercat": [15, 29], "tandem": 15, "layer_refin": 15, "develop": [15, 18, 29, 30, 31, 34], "dem40m": [15, 29], "botm2": [15, 29], "botm3": [15, 29], "monthli": [15, 19], "2013": [15, 29], "1m": 15, "stress_period": 15, "unspecifi": 15, "nhdplus_path": 15, "streamb": [15, 29], "stream": [15, 18, 30], "screen": [15, 28], "nwis_heads_info_fil": 15, "lake_sit": 15, "wdnr_gw_site": 15, "uwsp_head": 15, "wgnhs_head_target": 15, "drop_observ": 15, "10019209_lk": 15, "monitor": 15, "plsnt_lgr_inset": [15, 29], "pleast_lgr_par": 15, "all_lak": 15, "hydroid": 15, "600059060": 15, "sinc": [15, 28, 29, 34], "thin": 15, "littoral_leak": 15, "045": 15, "profundal_leak": 15, "025": 15, "lakes_shapefil": 15, "precipit": 15, "evapor": 15, "prism_ppt_tmean_stable_4km_189501_201901_43": 15, "9850_": 15, "89": 15, "5522": 15, "precip": 15, "evap": 15, "daili": 15, "subtract": 15, "off": [15, 25, 28], "bathymetry_rast": 15, "pleasant_bathymetri": 15, "relationship": [15, 29], "stage_area_volume_fil": 15, "area_stage_vol_pleas": 15, "volume_m3": 15, "pleasant_lgr_par": [15, 16, 29], "pleasant_nwt": 15, "features_fil": 15, "half": 15, "wdnr_dataset": [15, 19], "water_us": [15, 19], "master_wu": [15, 19], "wdnr": [15, 19, 29, 31], "water_use_point": [15, 19], "csls_sources_wu_pt": [15, 19], "600059161": 15, "pond": 15, "lak_lookup": 15, "buffer_dist": 15, "rgn_rjh_3_23_18": 15, "mnw2": [15, 32], "pfl": [15, 19], "pfl_inset": 15, "plainfieldlak": [15, 19], "350": 15, "600054357": 15, "600054319": 15, "2011": [15, 29, 31], "dem10m": 15, "hk": 15, "vka": 15, "lieu": [15, 19], "infiltr": [15, 29, 31], "source_dara": 15, "rech": [15, 19], "net_infiltration__2012": [15, 19], "31__1066_by_1145__sum__inches_per_year": [15, 19], "mult": [15, 19], "805": [15, 19], "q": [15, 29], "well1": 15, "563343": 15, "92": 15, "414988": 15, "wu_point": [15, 19], "monthnam": [15, 19], "wel_lookup": 15, "added_wel": 15, "002276": 15, "32": 15, "yr": 15, "lpr": 15, "003646": 15, "45": 15, "001649": 15, "23": 15, "ballpark": 15, "00338": 15, "38": 15, "sparkl": 15, "lenter": 15, "600054355": 15, "600054434": 15, "pfl_bathymetri": 15, "all_lakes_stage_area_volum": 15, "area_stage_vol_long": 15, "much": [16, 28], "page": [16, 19, 20, 21, 23, 24, 26, 27, 28], "crib": 16, "geopanda": 16, "guidelin": [16, 28, 34], "xarrai": 16, "fix": [16, 28, 32, 34], "improv": [16, 30], "idea": 16, "welcom": 16, "tab": 16, "reproduc": [16, 28], "insight": 16, "articl": 16, "blogpost": 16, "tip": 16, "good": [16, 28], "worthwhil": 16, "exercis": 16, "confirm": 16, "It": [16, 28, 29, 34], "worth": 16, "search": 16, "snippet": 16, "content": 16, "your": [16, 28], "full": [16, 18, 28, 29, 30], "traceback": [16, 28], "nice": 16, "flavor": 16, "markdown": 16, "past": [16, 19], "__version__": [16, 28], "conda": [16, 18, 34], "explain": 16, "behavior": [16, 25], "wrong": 16, "visibl": [16, 28], "implement": [16, 19, 29, 33], "encourag": 16, "awar": 16, "discuss": 16, "address": [16, 29], "quickli": [16, 19, 29], "particular": [16, 28, 30], "pleas": [16, 28], "sure": [16, 28], "action": 16, "statu": 16, "docstr": 16, "standalon": 16, "summari": 16, "admittedli": 16, "few": [16, 28, 30], "pep": 16, "messag": 16, "explicit": 16, "mainten": 16, "task": [16, 28, 30, 33], "standard": [16, 19, 32], "librari": [16, 28], "3rd": 16, "parti": 16, "third": [16, 33], "alphabet": 16, "isort": 16, "hook": 16, "daunt": 16, "veri": [16, 19, 28], "overwhelm": 16, "stick": [16, 28], "keep": [16, 19], "straightforward": 16, "mostli": [16, 28, 34], "troubl": [16, 28], "free": 16, "difficulti": [16, 30], "feel": 16, "ask": 16, "host": 16, "peopl": 16, "togeth": 16, "great": [16, 30], "resourc": [16, 31], "learn": [16, 30], "softwar": [16, 28, 29], "carpentri": 16, "tutori": 16, "atlassian": 16, "matthew": 16, "brett": 16, "pydagogu": 16, "ssh": 16, "seamlessli": 16, "hit": 16, "button": 16, "want": [16, 28, 29], "clone": [16, 28, 34], "machin": 16, "yournam": 16, "cd": [16, 28], "remot": 16, "upstream": 16, "main": 16, "travi": 16, "ci": 16, "wish": 16, "prior": [16, 25, 32], "reflect": 16, "product": 16, "readi": 16, "shini": 16, "checkout": 16, "simplifi": [16, 29], "b": [16, 29, 31], "clear": 16, "bring": 16, "switch": 16, "command": [16, 28], "retriev": [16, 28], "fetch": [16, 28], "rebas": 16, "replai": 16, "latest": [16, 34], "merg": 16, "move": 16, "slowli": 16, "while": [16, 19, 28, 30], "pai": 16, "attent": 16, "spiral": 16, "confus": [16, 28, 29], "mess": 16, "stash": 16, "reappli": 16, "virtual": [16, 32], "independ": [16, 18, 32], "easi": 16, "break": [16, 32], "plai": 16, "anaconda": [16, 28], "miniconda": [16, 28], "tell": [16, 25, 28], "setup_dev": 16, "env": [16, 28], "dev": 16, "nor": [16, 29], "mac": 16, "linux": [16, 28], "view": [16, 29], "root": [16, 28, 34], "deactiv": [16, 28], "At": [16, 28, 29, 30], "section": [16, 28, 32, 33], "navig": 16, "pip": [16, 34], "seriou": 16, "strongli": 16, "contributor": 16, "embrac": 16, "driven": 16, "tdd": 16, "reli": 16, "repetit": 16, "cycl": 16, "fail": [16, 28], "amount": 16, "taken": 16, "push": [16, 34], "habit": 16, "ahead": 16, "never": 16, "pytest": 16, "suggest": 16, "inspir": 16, "aim": [16, 28, 30], "test_lak": 16, "test_mf6_shellmound": 16, "easiest": [16, 28], "resid": [16, 29], "modifi": 16, "restructuredtext": 16, "sphinx": 16, "c": [16, 28, 31], "practic": [16, 18, 29, 30], "rebuild": [16, 28, 30], "stai": 16, "mistak": 16, "preview": 16, "render": 16, "ve": 16, "integr": 16, "find": [16, 28, 31], "pr": 16, "tri": 16, "pep8": 16, "am": 16, "black": 16, "complient": 16, "editor": [16, 28], "perform": [16, 19, 28, 30, 33], "doe": [16, 18], "statement": [16, 19], "And": 16, "done": [16, 28, 29, 30], "Then": [16, 19], "nativ": [18, 25, 30], "finit": [18, 30], "philosophi": 18, "motiv": 18, "instal": [18, 34], "ipython": 18, "kernel": 18, "jupyt": 18, "notebook": 18, "consider": 18, "minut": [18, 30], "plainfield": 18, "usag": 18, "concept": 18, "troubleshoot": [18, 30], "my": 18, "releas": [18, 28, 29, 30, 31, 34], "histori": [18, 30], "contribut": [18, 28], "cite": 18, "evt": 19, "broadli": 19, "phenomena": 19, "even": [19, 28, 30], "tabular": 19, "paradigm": 19, "langevin": [19, 31], "abbrievi": 19, "turn": [19, 25, 30], "boundname_col": [19, 32], "One": 19, "x_col": 19, "y_col": 19, "convers": 19, "gallon": 19, "l": [19, 29], "_col": 19, "head_col": 19, "cond_col": 19, "fall": 19, "aggregr": 19, "arbitrari": 19, "term": 19, "reproject": [19, 32], "coorind": 19, "yet": [19, 29], "due": 19, "lack": 19, "handl": [19, 30, 32], "_": [19, 29], "wel_000": 19, "wel_001": 19, "wel_002": 19, "vare": 19, "riverb": 19, "rbot": 19, "translat": [19, 32], "simpl": [19, 28, 30], "inject": 19, "earli": 19, "thinner": 19, "reloc": 19, "thickess": 19, "thicker": 19, "forecast": 19, "cf": 19, "compliant": 19, "from_cf": 19, "crs_wkt": 19, "proj4_str": 19, "soil": [19, 29, 31, 32], "balanc": [19, 29, 31, 32], "intern": [19, 28, 29], "progress": [20, 21, 23, 24, 26, 27, 30], "15": [25, 29], "besid": 25, "head_filerecord": 25, "budget_filerecord": 25, "modflowgwfoc": 25, "modflowoc": 25, "unitnumb": 25, "51": 25, "52": 25, "drawdown": 25, "invalid": 25, "popular": 28, "scienc": [28, 29], "scientif": 28, "minim": [28, 32], "dedic": 28, "mambaforg": 28, "forg": 28, "stuck": 28, "solv": [28, 29], "usernam": 28, "seem": 28, "fiona": 28, "gdal": 28, "clean": 28, "uninstal": 28, "admin": 28, "privileg": 28, "me": 28, "sai": 28, "someth": 28, "click": 28, "geospati": 28, "raw": 28, "web": 28, "browser": 28, "preconfigur": 28, "inc": [28, 31], "luck": 28, "exclus": 28, "commun": 28, "hassl": 28, "bad": 28, "solver": 28, "excess": 28, "prompt": 28, "termin": [28, 29], "osx": 28, "probabl": 28, "somehow": 28, "panel": 28, "googl": 28, "reinstal": [28, 34], "minor": [28, 34], "occasion": 28, "compat": [28, 32], "shorter": 28, "timefram": 28, "eventu": 28, "delet": 28, "everi": 28, "sever": 28, "simplest": 28, "upgrad": [28, 34], "situat": 28, "session": 28, "bleed": 28, "bug": [28, 32, 34], "branch": 28, "frequent": 28, "slightli": 28, "advantag": 28, "debug": 28, "interact": 28, "pycharm": 28, "addition": 28, "ll": 28, "ipykernel": 28, "displai": [28, 29], "appear": 28, "NOT": 28, "edit": [28, 30, 31], "mayb": 28, "fulli": 28, "thing": 28, "dll": 28, "downgrad": 28, "pretti": 28, "wast": 28, "lot": 28, "hoc": [28, 30], "scan": 28, "correctli": 28, "strictli": 28, "yield": 28, "pack": 28, "rather": 28, "guarante": 28, "verif": 28, "caus": [28, 29], "persist": 28, "On": 28, "appdata": 28, "ini": 28, "roam": 28, "conf": 28, "els": 28, "cert": 28, "doirootca2": 28, "cer": 28, "ssl_verifi": 28, "condarc": 28, "possibli": [28, 34], "common": [28, 30], "incorrectli": 28, "IT": 28, "person": 28, "mention": 28, "handshak": 28, "certificate_verify_fail": 28, "condahttperror": 28, "500": 28, "url": 28, "repo": 28, "pkg": 28, "msys2": 28, "win": 28, "64": [28, 29, 32], "m2w64": 28, "gettext": 28, "19": [28, 29], "tar": 28, "bz2": 28, "647993": 28, "occur": 28, "intermitt": 28, "retri": 28, "normal": [28, 29], "wouldn": 28, "publish": 29, "fienen": [29, 31], "et": 29, "al": 29, "2021": [29, 31], "goal": [29, 33], "central": [29, 31], "sand": [29, 31], "studi": [29, 31], "abstract": 29, "ecolog": 29, "usa": 29, "figur": 29, "accur": 29, "chiefli": 29, "irrig": 29, "agricultur": 29, "delin": 29, "distant": 29, "adopt": 29, "enough": 29, "throughout": 29, "mitig": 29, "niswong": [29, 31], "coupl": [29, 32], "dynam": [29, 32], "feedback": 29, "swb": [29, 31], "westenbroek": [29, 31], "net": [29, 31], "convei": 29, "show": 29, "illustr": 29, "adequ": 29, "binder": 29, "captur": 29, "pd": 29, "matplotlib": 29, "pyplot": 29, "plt": 29, "patheffect": 29, "bf": 29, "gisutil": 29, "df2shp": 29, "mfexport": 29, "get_water_t": 29, "wd": 29, "oftentim": 29, "attempt": 29, "suppress": 29, "stdout": 29, "pleasant_lgr_inset": 29, "simulatan": 29, "558000": 29, "393000": 29, "70": 29, "80": 29, "554200": 29, "389000": 29, "557400": 29, "391800": 29, "flat": 29, "39": 29, "creation": 29, "plsnt_lgr_parent_grid": 29, "plsnt_lgr_inset_grid": 29, "finish": 29, "02": 29, "post15": 29, "gdb03604": 29, "rcha_0": 29, "chd_0": 29, "obs_0": 29, "sfr_0": 29, "wel_0": 29, "obs_1": 29, "obs_2": 29, "29": 29, "dict_kei": 29, "defaultdict": 29, "plsnt_lgr_parent_top": 29, "plsnt_lgr_parent_botm_000": 29, "plsnt_lgr_parent_botm_001": 29, "plsnt_lgr_parent_botm_002": 29, "plsnt_lgr_parent_botm_003": 29, "plsnt_lgr_parent_botm_004": 29, "plsnt_lgr_parent_idomain_000": 29, "plsnt_lgr_parent_idomain_001": 29, "plsnt_lgr_parent_idomain_002": 29, "plsnt_lgr_parent_idomain_003": 29, "plsnt_lgr_parent_idomain_004": 29, "lak_0": 29, "r": [29, 31], "fig": 29, "ax": 29, "subplot": 29, "figsiz": 29, "parent_mv": 29, "plotmapview": 29, "inset_mv": 29, "vconn": 29, "claktyp": 29, "lakeconnect": 29, "ma": 29, "masked_arrai": 29, "qmi": 29, "plot_arrai": 29, "plot_bc": 29, "color": 29, "navi": 29, "red": 29, "lcp": 29, "plot_grid": 29, "lw": 29, "lci": 29, "set_ylim": 29, "set_xlim": 29, "set_aspect": 29, "colorbar": 29, "lt": 29, "0x7f580d8c1d50": 29, "gt": 29, "ims_": 29, "gwfgwf": 29, "maxbound": 29, "240": 29, "dev0": [29, 34], "diagnost": 29, "segment": 29, "increas": 29, "circular": 29, "proxim": 29, "adjac": 29, "isfropt": 29, "strtop": 29, "15000": 29, "segment_data": 29, "rise": 29, "elevup": 29, "elevdn": 29, "nstrm": 29, "reach_data": 29, "iseg": 29, "ireach": 29, "strtopdn": 29, "d_strtop": 29, "reachid": 29, "16": 29, "290": 29, "3638610839844": 29, "294": 29, "76507568359375": 29, "401214599609375": 29, "17": 29, "293": 29, "5867614746094": 29, "222900390625": 29, "21": 29, "292": 29, "6883850097656": 29, "32452392578125": 29, "inconsist": 29, "slope": 29, "wrote": 29, "plsnt_lgr_parent_sfr": 29, "chk": 29, "plsnt_lgr_parent_packagedata": 29, "run_simul": 29, "geolog": [29, 31], "modular": 29, "candid": 29, "08": 29, "2022": 29, "mode": 29, "compil": 29, "mar": 29, "intel": 29, "fortran": 29, "classic": 29, "20211109_000000": 29, "preliminari": 29, "provision": 29, "subject": 29, "meet": 29, "receiv": 29, "approv": 29, "warranti": 29, "express": 29, "impli": 29, "govern": 29, "materi": 29, "shall": 29, "fact": 29, "constitut": 29, "neither": 29, "held": 29, "liabl": 29, "damag": 29, "unauthor": 29, "hh": 29, "2023": 29, "lst": 29, "106": 29, "tmr_parent_headsobj": 29, "lgr_parent_headsobj": 29, "lgr_inset_headsobj": 29, "kper": 29, "lgr_parent_hd": 29, "get_data": 29, "lgr_inset_hd": 29, "inset_wt": 29, "1e30": 29, "parent_wt": 29, "lake_result": 29, "read_csv": 29, "lake1": 29, "nicer": 29, "xi": 29, "arang": 29, "yi": 29, "meshgrid": 29, "xcellcent": 29, "ycellcent": 29, "contour": 29, "green": 29, "18": 29, "rcparam": 29, "labels": 29, "xtick": 29, "ytick": 29, "inset_bc": 29, "_isbc2d": 29, "parent_bc": 29, "vmin": 29, "vmax": 29, "bdlknc_valu": 29, "bedleak": 29, "conn": 29, "bdlknc": 29, "cmap": 29, "blue": 29, "zorder": 29, "315": 29, "ctr": 29, "label": 29, "clabel": 29, "inlin": 29, "fontsiz": 29, "inline_spac": 29, "setp": 29, "path_effect": 29, "withstrok": 29, "linewidth": 29, "foreground": 29, "w": [29, 31], "set_ylabel": 29, "set_xlabel": 29, "east": 29, "555600": 29, "390450": 29, "nlake": 29, "va": 29, "darkblu": 29, "fontstyl": 29, "ital": 29, "famili": 29, "serif": 29, "202": 29, "txt": 29, "556400": 29, "391000": 29, "chaffe": 29, "creek": 29, "darkgreen": 29, "set_path_effect": 29, "556700": 29, "388900": 29, "tagatz": 29, "ncreek": 29, "annot": 29, "littor": 29, "xy": 29, "555450": 29, "390100": 29, "xycoord": 29, "xytext": 29, "555050": 29, "textcoord": 29, "arrowprop": 29, "arrowstyl": 29, "connectionstyl": 29, "arc3": 29, "fc": 29, "203": 29, "arrow_patch": 29, "stroke": 29, "profund": 29, "555800": 29, "389500": 29, "tight_layout": 29, "savefig": 29, "figure_2": 29, "output_path": 29, "thickness_lay0": 29, "thickness_lay1": 29, "thickness_lay2": 29, "thickness_lay3": 29, "thickness_lay4": 29, "botm_lay0": 29, "botm_lay1": 29, "botm_lay2": 29, "botm_lay3": 29, "botm_lay4": 29, "idomain_lay0": 29, "idomain_lay1": 29, "idomain_lay2": 29, "idomain_lay3": 29, "idomain_lay4": 29, "strt_lay0": 29, "strt_lay1": 29, "strt_lay2": 29, "strt_lay3": 29, "strt_lay4": 29, "icelltype_lay0": 29, "icelltype_lay1": 29, "icelltype_lay2": 29, "icelltype_lay3": 29, "icelltype_lay4": 29, "k_lay0": 29, "k_lay1": 29, "k_lay2": 29, "k_lay3": 29, "k_lay4": 29, "k33_lay0": 29, "k33_lay1": 29, "k33_lay2": 29, "k33_lay3": 29, "k33_lay4": 29, "iconvert_lay0": 29, "iconvert_lay1": 29, "iconvert_lay2": 29, "iconvert_lay3": 29, "iconvert_lay4": 29, "ss_lay0": 29, "ss_lay1": 29, "ss_lay2": 29, "ss_lay3": 29, "ss_lay4": 29, "sy_lay0": 29, "sy_lay1": 29, "sy_lay2": 29, "sy_lay3": 29, "sy_lay4": 29, "irch_per0": 29, "recharge_per0": 29, "recharge_per1": 29, "recharge_per2": 29, "recharge_per3": 29, "recharge_per4": 29, "recharge_per5": 29, "recharge_per6": 29, "recharge_per7": 29, "recharge_per8": 29, "recharge_per9": 29, "recharge_per10": 29, "recharge_per11": 29, "recharge_per12": 29, "chd0_stress_period_data": 29, "warn": 29, "transientlist": 29, "wel0_stress_period_data": 29, "obs2_stress_period_data": 29, "lak0": 29, "effici": 29, "obs1_stress_period_data": 29, "dispar": 30, "cumbersom": 30, "labor": 30, "intens": 30, "numer": 30, "late": 30, "optim": 30, "answer": 30, "inher": 30, "difficult": 30, "revisit": 30, "respons": 30, "carri": 30, "conceptu": 30, "seldom": 30, "feasibl": [30, 33], "cognit": 30, "consum": 30, "tediou": 30, "mung": 30, "leav": 30, "room": 30, "hydrosens": 30, "languag": 30, "propos": 30, "challeng": 30, "easier": 30, "said": 30, "interdepend": 30, "fundament": 30, "principl": 30, "overcom": 30, "obstacl": 30, "extrem": 30, "disciplin": 30, "care": 30, "experi": 30, "shown": 30, "entropi": 30, "increasingli": 30, "collect": [30, 32, 33], "harden": 30, "collabor": 30, "memori": 30, "succinctli": 30, "assembl": 30, "wise": 30, "distil": 30, "codebas": 30, "reus": 30, "reliabl": 30, "datatyp": 30, "inter": 30, "focus": 30, "comprehens": 30, "tool": 30, "ground": 30, "somewhat": 30, "faster": 30, "favor": [30, 32], "entir": 30, "repeat": 30, "unstructur": 30, "futur": 30, "hunt": 31, "krohelski": 31, "chung": 31, "seepag": 31, "117": 31, "122": 31, "1111": 31, "1745": 31, "6584": 31, "tb02496": 31, "woessner": 31, "620": 31, "san": 31, "diego": 31, "academ": 31, "press": 31, "bakker": 31, "hugh": 31, "starn": 31, "2016": 31, "54": 31, "733": 31, "739": 31, "gwat": 31, "12413": 31, "barlow": 31, "peterson": 31, "reev": 31, "h": 31, "viger": 31, "databas": 31, "5066": 31, "f7p84b24": 31, "haserodt": 31, "leaf": 31, "2021a": 31, "appendix": 31, "technic": 31, "depart": 31, "natur": 31, "5281": 31, "zenodo": 31, "5708719": 31, "analyt": 31, "element": 31, "zheng": 31, "330": 31, "333": 31, "00936": 31, "banta": 31, "pandai": 31, "sorab": 31, "provost": 31, "techniqu": 31, "book": 31, "chap": 31, "a55": 31, "197": 31, "3133": 31, "tm6a55": 31, "ibaraki": 31, "formul": 31, "a37": 31, "tm6a45": 31, "engott": 31, "kelson": 31, "a59": 31, "118": 31, "tm6a59": 31, "legislatur": 31, "5708791": 31, "wasn": 32, "assign_lay": 32, "problemat": 32, "bit": 32, "dtype": 32, "match": [32, 34], "inner": 32, "remap": 32, "refactor": 32, "previous": 32, "interfac": 32, "attributeerror": 32, "relax": 32, "mf2k": 32, "blank": 32, "arc": 32, "ascii": 32, "sfr2": 32, "rcha": 32, "configu": 32, "boiler": 33, "plate": 33, "These": 33, "agnost": 33, "config_fil": 33, "setup_di": 33, "fresh": 34, "post250": 34, "g9af1c61": 34, "9af1c61": 34}, "objects": {"mfsetup": [[2, 0, 0, "-", "discretization"], [3, 0, 0, "-", "fileio"], [4, 0, 0, "-", "grid"], [5, 0, 0, "-", "interpolate"], [6, 0, 0, "-", "mf6model"], [7, 0, 0, "-", "mfmodel"], [8, 0, 0, "-", "mfnwtmodel"], [9, 0, 0, "-", "tdis"], [10, 0, 0, "-", "tmr"]], "mfsetup.discretization": [[2, 1, 1, "", "ModflowGwfdis"], [2, 3, 1, "", "adjust_layers"], [2, 3, 1, "", "cellids_to_kij"], [2, 3, 1, "", "create_vertical_pass_through_cells"], [2, 3, 1, "", "deactivate_idomain_above"], [2, 3, 1, "", "fill_cells_vertically"], [2, 3, 1, "", "fill_empty_layers"], [2, 3, 1, "", "find_remove_isolated_cells"], [2, 3, 1, "", "fix_model_layer_conflicts"], [2, 3, 1, "", "get_highest_active_layer"], [2, 3, 1, "", "get_layer"], [2, 3, 1, "", "get_layer_thicknesses"], [2, 3, 1, "", "make_ibound"], [2, 3, 1, "", "make_idomain"], [2, 3, 1, "", "make_irch"], [2, 3, 1, "", "make_lgr_idomain"], [2, 3, 1, "", "populate_values"], [2, 3, 1, "", "verify_minimum_layer_thickness"], [2, 3, 1, "", "voxels_to_layers"], [2, 3, 1, "", "weighted_average_between_layers"]], "mfsetup.discretization.ModflowGwfdis": [[2, 2, 1, "", "thickness"]], "mfsetup.fileio": [[3, 3, 1, "", "add_version_to_fileheader"], [3, 3, 1, "", "append_csv"], [3, 3, 1, "", "check_source_files"], [3, 3, 1, "", "dump"], [3, 3, 1, "", "dump_json"], [3, 3, 1, "", "dump_yml"], [3, 3, 1, "", "exe_exists"], [3, 3, 1, "", "flopy_mf2005_load"], [3, 3, 1, "", "flopy_mf6model_load"], [3, 3, 1, "", "flopy_mfsimulation_load"], [3, 3, 1, "", "load"], [3, 3, 1, "", "load_array"], [3, 3, 1, "", "load_cfg"], [3, 3, 1, "", "load_json"], [3, 3, 1, "", "load_modelgrid"], [3, 3, 1, "", "load_yml"], [3, 3, 1, "", "read_ggofile"], [3, 3, 1, "", "read_lak_ggo"], [3, 3, 1, "", "read_mf6_block"], [3, 3, 1, "", "remove_file_header"], [3, 3, 1, "", "save_array"], [3, 3, 1, "", "set_cfg_paths_to_absolute"], [3, 3, 1, "", "setup_external_filepaths"], [3, 3, 1, "", "which"]], "mfsetup.grid": [[4, 1, 1, "", "MFsetupGrid"], [4, 3, 1, "", "get_cellface_midpoint"], [4, 3, 1, "", "get_crs"], [4, 3, 1, "", "get_crs_length_units"], [4, 3, 1, "", "get_grid_bounding_box"], [4, 3, 1, "", "get_ij"], [4, 3, 1, "", "get_intercell_connections"], [4, 3, 1, "", "get_kij_from_node3d"], [4, 3, 1, "", "get_nearest_point_on_grid"], [4, 3, 1, "", "get_point_on_national_hydrogeologic_grid"], [4, 3, 1, "", "get_transform"], [4, 3, 1, "", "rasterize"], [4, 3, 1, "", "setup_structured_grid"], [4, 3, 1, "", "write_bbox_shapefile"]], "mfsetup.grid.MFsetupGrid": [[4, 2, 1, "", "bbox"], [4, 2, 1, "", "botm"], [4, 2, 1, "", "bounds"], [4, 2, 1, "", "crs"], [4, 2, 1, "", "dataframe"], [4, 4, 1, "", "get_dataframe"], [4, 4, 1, "", "get_intercell_connections"], [4, 4, 1, "", "get_vertices"], [4, 2, 1, "", "intercell_connections"], [4, 2, 1, "", "length_multiplier"], [4, 2, 1, "", "length_units"], [4, 2, 1, "", "polygons"], [4, 2, 1, "", "proj_str"], [4, 2, 1, "", "rotation"], [4, 2, 1, "", "size"], [4, 2, 1, "", "top"], [4, 2, 1, "", "transform"], [4, 2, 1, "", "vertices"], [4, 2, 1, "", "wkt"], [4, 4, 1, "", "write_bbox_shapefile"], [4, 4, 1, "", "write_shapefile"], [4, 2, 1, "", "xul"], [4, 2, 1, "", "yul"]], "mfsetup.interpolate": [[5, 1, 1, "", "Interpolator"], [5, 3, 1, "", "get_source_dest_model_xys"], [5, 3, 1, "", "interp_weights"], [5, 3, 1, "", "interpolate"], [5, 3, 1, "", "regrid"], [5, 3, 1, "", "regrid3d"]], "mfsetup.interpolate.Interpolator": [[5, 2, 1, "", "interp_weights"], [5, 4, 1, "", "interpolate"], [5, 2, 1, "", "source_values_mask"]], "mfsetup.mf6model": [[6, 1, 1, "", "MF6model"]], "mfsetup.mf6model.MF6model": [[6, 4, 1, "", "get_flopy_external_file_input"], [6, 4, 1, "", "get_package_list"], [6, 4, 1, "", "get_raster_statistics_for_cells"], [6, 4, 1, "", "get_raster_values_at_cell_centers"], [6, 2, 1, "", "idomain"], [6, 4, 1, "", "load_from_config"], [6, 2, 1, "", "perioddata"], [6, 4, 1, "", "setup_chd"], [6, 4, 1, "", "setup_drn"], [6, 4, 1, "", "setup_ghb"], [6, 4, 1, "", "setup_ic"], [6, 4, 1, "", "setup_ims"], [6, 4, 1, "", "setup_lak"], [6, 4, 1, "", "setup_npf"], [6, 4, 1, "", "setup_obs"], [6, 4, 1, "", "setup_oc"], [6, 4, 1, "", "setup_rch"], [6, 4, 1, "", "setup_riv"], [6, 4, 1, "", "setup_simulation_mover"], [6, 4, 1, "", "setup_sto"], [6, 4, 1, "", "setup_tdis"], [6, 4, 1, "", "setup_wel"], [6, 4, 1, "", "write_input"]], "mfsetup.mfmodel": [[7, 1, 1, "", "MFsetupMixin"]], "mfsetup.mfmodel.MFsetupMixin": [[7, 4, 1, "", "get_boundary_cells"], [7, 2, 1, "", "high_k_lake_recharge"], [7, 2, 1, "", "interp_weights"], [7, 2, 1, "", "isbc"], [7, 2, 1, "", "lakarr"], [7, 2, 1, "", "lake_bathymetry"], [7, 4, 1, "", "load_cfg"], [7, 4, 1, "", "load_features"], [7, 4, 1, "", "load_grid"], [7, 2, 1, "", "model_version"], [7, 2, 1, "", "package_list"], [7, 2, 1, "", "parent_layers"], [7, 2, 1, "", "parent_mask"], [7, 2, 1, "", "parent_stress_periods"], [7, 2, 1, "", "perimeter_bc_type"], [7, 4, 1, "", "regrid_from_parent"], [7, 4, 1, "", "setup_external_filepaths"], [7, 4, 1, "", "setup_from_cfg"], [7, 4, 1, "", "setup_from_yaml"], [7, 4, 1, "", "setup_grid"], [7, 5, 1, "", "source_path"]], "mfsetup.mfnwtmodel": [[8, 1, 1, "", "MFnwtModel"]], "mfsetup.mfnwtmodel.MFnwtModel": [[8, 2, 1, "", "ibound"], [8, 2, 1, "", "ipakcb"], [8, 4, 1, "", "load"], [8, 2, 1, "", "perioddata"], [8, 4, 1, "", "setup_chd"], [8, 4, 1, "", "setup_drn"], [8, 4, 1, "", "setup_ghb"], [8, 4, 1, "", "setup_hyd"], [8, 4, 1, "", "setup_riv"], [8, 4, 1, "", "setup_tdis"], [8, 4, 1, "", "setup_upw"], [8, 4, 1, "", "setup_wel"], [8, 4, 1, "", "write_input"]], "mfsetup.tdis": [[9, 3, 1, "", "add_date_comments_to_tdis"], [9, 3, 1, "", "aggregate_dataframe_to_stress_period"], [9, 3, 1, "", "aggregate_xarray_to_stress_period"], [9, 3, 1, "", "concat_periodata_groups"], [9, 3, 1, "", "convert_freq_to_period_start"], [9, 3, 1, "", "get_parent_stress_periods"], [9, 3, 1, "", "parse_perioddata_groups"], [9, 3, 1, "", "setup_perioddata"], [9, 3, 1, "", "setup_perioddata_group"]], "mfsetup.tmr": [[10, 3, 1, "", "get_qx_qy_qz"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:property", "3": "py:function", "4": "py:method", "5": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "property", "Python property"], "3": ["py", "function", "Python function"], "4": ["py", "method", "Python method"], "5": ["py", "attribute", "Python attribute"]}, "titleterms": {"10": 0, "minut": 0, "modflow": [0, 11, 13, 14, 15, 16, 18, 19, 25, 28, 29, 30, 34], "setup": [0, 11, 16, 18, 28, 30, 34], "1": [0, 16, 32], "defin": 0, "model": [0, 1, 12, 15, 29, 33], "activ": 0, "area": 0, "coordin": 0, "refer": [0, 1, 18, 31], "system": 0, "2": [0, 16, 32], "creat": [0, 16, 28, 29], "script": [0, 34], "configur": [0, 13, 14, 15], "file": [0, 13, 15, 28, 29], "3": [0, 16, 18, 32], "develop": [0, 16, 28], "flowlin": 0, "repres": 0, "stream": 0, "preprocess": 0, "nhdplu": 0, "hr": 0, "version": [0, 28, 32], "4": [0, 16], "get": [0, 16, 18, 28], "dem": 0, "make": [0, 16, 29], "virtual": 0, "raster": [0, 29], "5": [0, 16], "minimum": 0, "work": [0, 29], "build": [0, 29], "code": [1, 16, 28], "class": [1, 6, 7, 8], "support": 1, "modul": [1, 2, 3, 4, 5, 9, 10], "mfsetup": [2, 3, 4, 5, 9, 10], "discret": [2, 12, 20], "fileio": 3, "grid": [4, 19, 29], "interpol": 5, "mf6model": 6, "mfsetupmixin": 7, "mfnwtmodel": 8, "tdi": 9, "tmr": [10, 15], "concept": 11, "method": 11, "specifi": [12, 13, 19, 21, 26], "perimet": 12, "boundari": [12, 19], "condit": [12, 19, 21], "from": [12, 28], "anoth": 12, "featur": 12, "limit": 12, "input": [12, 13, 19, 22, 25, 29], "time": 12, "locat": [12, 29], "cell": 12, "The": [13, 20, 23, 27], "yaml": 13, "format": [13, 25], "structur": [13, 33], "packag": [13, 19, 20, 22, 23, 27, 28, 29, 33], "block": 13, "sub": 13, "directli": 13, "source_data": 13, "some": 13, "addit": 13, "note": 13, "default": 14, "6": [14, 16], "nwt": [14, 15], "galleri": 15, "shellmound": 15, "test": [15, 16], "case": 15, "inset": [15, 29], "pleasant": [15, 29], "lake": [15, 23, 29], "lgr": 15, "parent": [15, 29], "pleasant_lgr_inset": 15, "yml": 15, "plainfield": 15, "contribut": 16, "start": [16, 18], "bug": 16, "report": 16, "enhanc": 16, "request": 16, "seven": 16, "step": 16, "fork": 16, "repositori": 16, "us": [16, 28, 29], "git": 16, "branch": 16, "environ": [16, 28, 34], "requir": 16, "depend": [16, 28], "instal": [16, 28], "sourc": [16, 28], "chang": [16, 29], "write": [16, 29], "run": [16, 29, 34], "suit": 16, "updat": [16, 28, 34], "document": 16, "7": 16, "submit": 16, "pull": 16, "style": 16, "guid": [16, 18], "lint": 16, "exampl": [17, 29], "problem": 17, "0": [18, 32], "post15": 18, "gdb03604": 18, "user": [18, 28], "bibliographi": 18, "basic": [19, 33], "stress": [19, 25], "list": 19, "base": 19, "constant": 19, "head": [19, 24, 29], "chd": 19, "drain": 19, "drn": 19, "gener": 19, "ghb": 19, "river": 19, "riv": 19, "well": 19, "wel": 19, "recharg": 19, "rch": 19, "direct": 19, "independ": 19, "initi": [21, 32], "instruct": 22, "lak": 23, "observ": 24, "output": 25, "control": 25, "period": 25, "filenam": 25, "other": 25, "argument": 25, "altern": 25, "aquif": 26, "properti": 26, "streamflow": 27, "rout": 27, "sfr": 27, "python": [28, 34], "conda": 28, "download": 28, "distribut": 28, "like": 28, "an": 28, "mamba": 28, "keep": 28, "up": [28, 33], "date": 28, "pypi": 28, "latest": 28, "place": 28, "ipython": 28, "kernel": 28, "jupyt": 28, "notebook": [28, 29], "best": 28, "practic": 28, "consider": 28, "usg": 28, "doi": 28, "ssl": 28, "certif": 28, "pip": 28, "troubleshoot": [28, 34], "issu": 28, "network": 28, "relat": 28, "error": 28, "messag": 28, "when": 28, "If": 28, "you": 28, "ar": 28, "window": 28, "thi": 28, "detail": 29, "just": 29, "directori": 29, "gottcha": 29, "shapefil": 29, "modelgrid": 29, "back": 29, "whole": 29, "plot": 29, "connect": 29, "layer": 29, "result": 29, "first": 29, "combin": 29, "export": 29, "pdf": 29, "can": 29, "also": 29, "summari": 29, "tabl": 29, "philosophi": 30, "motiv": 30, "what": 30, "doe": 30, "doesn": [30, 34], "t": [30, 34], "do": 30, "releas": 32, "histori": 32, "2023": 32, "08": 32, "17": 32, "07": 32, "25": 32, "02": 32, "06": 32, "2022": 32, "09": 32, "30": 32, "program": 33, "usag": 33, "set": 33, "full": 33, "load": 33, "individu": 33, "my": 34, "your": 34}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 57}, "alltitles": {"10 Minutes to Modflow-setup": [[0, "minutes-to-modflow-setup"]], "1) Define the model active area and coordinate reference system": [[0, "define-the-model-active-area-and-coordinate-reference-system"]], "2) Create a setup script and configuration file": [[0, "create-a-setup-script-and-configuration-file"]], "3) Develop flowlines to represent streams": [[0, "develop-flowlines-to-represent-streams"]], "Preprocessing NHDPlus HR": [[0, "preprocessing-nhdplus-hr"]], "Preprocessing NHDPlus version 2": [[0, "preprocessing-nhdplus-version-2"]], "4) Get a DEM": [[0, "get-a-dem"]], "Making a virtual raster": [[0, "making-a-virtual-raster"]], "5) Make a minimum working configuration file and model build script": [[0, "make-a-minimum-working-configuration-file-and-model-build-script"]], "Code Reference": [[1, "code-reference"]], "Model classes": [[1, "model-classes"]], "Supporting modules": [[1, "supporting-modules"]], "mfsetup.discretization module": [[2, "module-mfsetup.discretization"]], "mfsetup.fileio module": [[3, "module-mfsetup.fileio"]], "mfsetup.grid module": [[4, "module-mfsetup.grid"]], "mfsetup.interpolate module": [[5, "module-mfsetup.interpolate"]], "MF6model class": [[6, "module-mfsetup.mf6model"]], "MFsetupMixin class": [[7, "module-mfsetup.mfmodel"]], "MFnwtModel class": [[8, "module-mfsetup.mfnwtmodel"]], "mfsetup.tdis module": [[9, "module-mfsetup.tdis"]], "mfsetup.tmr module": [[10, "module-mfsetup.tmr"]], "Modflow-setup concepts and methods": [[11, "modflow-setup-concepts-and-methods"]], "Specifying perimeter boundary conditions from another model": [[12, "specifying-perimeter-boundary-conditions-from-another-model"]], "Features and Limitations": [[12, "features-and-limitations"]], "Input": [[12, "input"]], "Time discretization": [[12, "time-discretization"]], "Specifying the locations of perimeter boundary cells": [[12, "specifying-the-locations-of-perimeter-boundary-cells"]], "The configuration file": [[13, "the-configuration-file"]], "The YAML format": [[13, "the-yaml-format"]], "Configuration file structure": [[13, "configuration-file-structure"]], "Package blocks": [[13, "package-blocks"]], "Sub-blocks": [[13, "sub-blocks"]], "Directly specifying MODFLOW input": [[13, "directly-specifying-modflow-input"]], "Source_data sub-blocks": [[13, "source-data-sub-blocks"]], "Some additional notes on YAML": [[13, "some-additional-notes-on-yaml"]], "Configuration defaults": [[14, "configuration-defaults"]], "MODFLOW-6 configuration defaults": [[14, "modflow-6-configuration-defaults"]], "MODFLOW-NWT configuration defaults": [[14, "modflow-nwt-configuration-defaults"]], "Configuration File Gallery": [[15, "configuration-file-gallery"]], "Shellmound test case": [[15, "shellmound-test-case"]], "Shellmound TMR inset test case": [[15, "shellmound-tmr-inset-test-case"]], "Pleasant Lake test case": [[15, "pleasant-lake-test-case"]], "LGR parent model configuration": [[15, "lgr-parent-model-configuration"]], "pleasant_lgr_inset.yml": [[15, "pleasant-lgr-inset-yml"]], "Pleasant Lake MODFLOW-NWT test case": [[15, "pleasant-lake-modflow-nwt-test-case"]], "Plainfield Lakes MODFLOW-NWT test case": [[15, "plainfield-lakes-modflow-nwt-test-case"]], "Contributing to modflow-setup": [[16, "contributing-to-modflow-setup"]], "Getting started": [[16, "getting-started"]], "Bug reports and enhancement requests": [[16, "bug-reports-and-enhancement-requests"]], "Code contributions": [[16, "code-contributions"]], "Seven Steps for Contributing": [[16, "seven-steps-for-contributing"]], "1) Forking the modflow-setup repository using Git": [[16, "forking-the-modflow-setup-repository-using-git"]], "Getting started with Git": [[16, "getting-started-with-git"]], "Forking": [[16, "forking"]], "Creating a branch": [[16, "creating-a-branch"]], "2 & 3) Creating a development environment with the required dependencies": [[16, "creating-a-development-environment-with-the-required-dependencies"]], "4) Installing the modflow-setup source code": [[16, "installing-the-modflow-setup-source-code"]], "5) Making changes and writing tests": [[16, "making-changes-and-writing-tests"]], "Writing tests": [[16, "writing-tests"]], "Running the test suite": [[16, "running-the-test-suite"]], "6) Updating the Documentation": [[16, "updating-the-documentation"]], "7) Submitting a Pull Request": [[16, "submitting-a-pull-request"]], "Style Guide & Linting": [[16, "style-guide-linting"]], "Examples": [[17, "examples"]], "Example problems": [[17, null]], "modflow-setup 0.3.0.post15+gdb03604": [[18, "modflow-setup-version"]], "Getting Started": [[18, null]], "User Guide": [[18, null]], "Reference": [[18, null]], "Bibliography": [[18, null]], "Specifying boundary conditions with the \u2018basic\u2019 MODFLOW stress packages": [[19, "specifying-boundary-conditions-with-the-basic-modflow-stress-packages"]], "List-based basic stress packages": [[19, "list-based-basic-stress-packages"]], "Constant Head (CHD) Package": [[19, "constant-head-chd-package"]], "Drain DRN Package": [[19, "drain-drn-package"]], "General Head Boundary (GHB) Package": [[19, "general-head-boundary-ghb-package"]], "River (RIV) package": [[19, "river-riv-package"]], "Well (WEL) Package": [[19, "well-wel-package"]], "Grid-based basic stress packages": [[19, "grid-based-basic-stress-packages"]], "Recharge (RCH) Package": [[19, "recharge-rch-package"]], "Direct input": [[19, "direct-input"]], "Grid-independent input": [[19, "grid-independent-input"]], "The Discretization Package": [[20, "the-discretization-package"]], "Specifying Initial Conditions": [[21, "specifying-initial-conditions"]], "Input instructions by package": [[22, "input-instructions-by-package"]], "The Lake (LAK) Package": [[23, "the-lake-lak-package"]], "Head observations": [[24, "head-observations"]], "MODFLOW Output Control": [[25, "modflow-output-control"]], "Stress period input format": [[25, "stress-period-input-format"]], "Output filenames and other arguments": [[25, "output-filenames-and-other-arguments"]], "Alternative stress period input formats": [[25, "alternative-stress-period-input-formats"]], "Specifying Aquifer Properties": [[26, "specifying-aquifer-properties"]], "The Streamflow Routing (SFR) Package": [[27, "the-streamflow-routing-sfr-package"]], "Installation": [[28, "installation"]], "Installing python dependencies with Conda": [[28, "installing-python-dependencies-with-conda"]], "Download and install a python distribution and Conda-like package installer": [[28, "download-and-install-a-python-distribution-and-conda-like-package-installer"]], "Download an environment file": [[28, "download-an-environment-file"]], "Creating a Conda environment using Mamba": [[28, "creating-a-conda-environment-using-mamba"]], "Keeping the Conda environment up to date": [[28, "keeping-the-conda-environment-up-to-date"]], "Installing Modflow-setup": [[28, "installing-modflow-setup"]], "Installing and updating Modflow-setup from PyPI": [[28, "installing-and-updating-modflow-setup-from-pypi"]], "Installing the latest develop version of Modflow-setup": [[28, "installing-the-latest-develop-version-of-modflow-setup"]], "Installing the Modflow-setup source code in-place": [[28, "installing-the-modflow-setup-source-code-in-place"]], "Installing the IPython kernel to use Modflow-setup in Jupyter Notebooks": [[28, "installing-the-ipython-kernel-to-use-modflow-setup-in-jupyter-notebooks"]], "Best practices": [[28, "best-practices"]], "Considerations for USGS Users": [[28, "id4"]], "Installing the DOI SSL certificate for use with pip": [[28, "id5"]], "Installing the DOI SSL certificate for use with conda": [[28, "installing-the-doi-ssl-certificate-for-use-with-conda"]], "Troubleshooting issues with the USGS network": [[28, "troubleshooting-issues-with-the-usgs-network"]], "SSL-related error messages when using conda": [[28, "ssl-related-error-messages-when-using-conda"]], "SSL-related error messages when using pip": [[28, "ssl-related-error-messages-when-using-pip"]], "If you are on the USGS network, using Windows, and you get this error message:": [[28, "if-you-are-on-the-usgs-network-using-windows-and-you-get-this-error-message"]], "Pleasant Lake Example": [[29, "Pleasant-Lake-Example"]], "Model details": [[29, "Model-details"]], "Just make a model grid": [[29, "Just-make-a-model-grid"]], "Working directory gottcha": [[29, "Working-directory-gottcha"]], "Write shapefiles of the inset and parent modelgrids": [[29, "Write-shapefiles-of-the-inset-and-parent-modelgrids"]], "Change the working directory back to the notebook location": [[29, "Change-the-working-directory-back-to-the-notebook-location"]], "Build the whole model": [[29, "Build-the-whole-model"]], "Plot the inset and parent model grids with Lake Package connections by layer": [[29, "Plot-the-inset-and-parent-model-grids-with-Lake-Package-connections-by-layer"]], "write the MODFLOW input files": [[29, "write-the-MODFLOW-input-files"]], "Run the model": [[29, "Run-the-model"]], "Plot the head results": [[29, "Plot-the-head-results"]], "First combine the parent and inset model head results": [[29, "First-combine-the-parent-and-inset-model-head-results"]], "Make the plot": [[29, "Make-the-plot"]], "Use Modflow-export to export the modflow input to PDFs, rasters and shapefiles": [[29, "Use-Modflow-export-to-export-the-modflow-input-to-PDFs,-rasters-and-shapefiles"]], "Modflow-export can also create a summary table of the model inputs": [[29, "Modflow-export-can-also-create-a-summary-table-of-the-model-inputs"]], "Philosophy": [[30, "philosophy"]], "Motivation": [[30, "motivation"]], "What modflow-setup does": [[30, "what-modflow-setup-does"]], "What modflow-setup doesn\u2019t do": [[30, "what-modflow-setup-doesnt-do"]], "References": [[31, "references"]], "Release History": [[32, "release-history"]], "Version 0.3.1 (2023-08-17)": [[32, "version-0-3-1-2023-08-17"]], "Version 0.3.0 (2023-07-25)": [[32, "version-0-3-0-2023-07-25"]], "Version 0.2.0 (2023-02-06)": [[32, "version-0-2-0-2023-02-06"]], "Version 0.1.0 Initial release (2022-09-30)": [[32, "version-0-1-0-initial-release-2022-09-30"]], "Basic program structure and usage": [[33, "basic-program-structure-and-usage"]], "Setting up a full model": [[33, "setting-up-a-full-model"]], "Loading a model": [[33, "loading-a-model"]], "Setting up individual packages": [[33, "setting-up-individual-packages"]], "Troubleshooting": [[34, "troubleshooting"]], "My script doesn\u2019t run": [[34, "my-script-doesn-t-run"]], "Updating your python environment": [[34, "updating-your-python-environment"]], "Updating Modflow-setup": [[34, "updating-modflow-setup"]]}, "indexentries": {"modflowgwfdis (class in mfsetup.discretization)": [[2, "mfsetup.discretization.ModflowGwfdis"]], "adjust_layers() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.adjust_layers"]], "cellids_to_kij() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.cellids_to_kij"]], "create_vertical_pass_through_cells() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.create_vertical_pass_through_cells"]], "deactivate_idomain_above() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.deactivate_idomain_above"]], "fill_cells_vertically() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.fill_cells_vertically"]], "fill_empty_layers() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.fill_empty_layers"]], "find_remove_isolated_cells() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.find_remove_isolated_cells"]], "fix_model_layer_conflicts() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.fix_model_layer_conflicts"]], "get_highest_active_layer() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.get_highest_active_layer"]], "get_layer() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.get_layer"]], "get_layer_thicknesses() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.get_layer_thicknesses"]], "make_ibound() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.make_ibound"]], "make_idomain() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.make_idomain"]], "make_irch() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.make_irch"]], "make_lgr_idomain() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.make_lgr_idomain"]], "mfsetup.discretization": [[2, "module-mfsetup.discretization"]], "module": [[2, "module-mfsetup.discretization"], [3, "module-mfsetup.fileio"], [4, "module-mfsetup.grid"], [5, "module-mfsetup.interpolate"], [6, "module-mfsetup.mf6model"], [7, "module-mfsetup.mfmodel"], [8, "module-mfsetup.mfnwtmodel"], [9, "module-mfsetup.tdis"], [10, "module-mfsetup.tmr"]], "populate_values() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.populate_values"]], "thickness (mfsetup.discretization.modflowgwfdis property)": [[2, "mfsetup.discretization.ModflowGwfdis.thickness"]], "verify_minimum_layer_thickness() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.verify_minimum_layer_thickness"]], "voxels_to_layers() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.voxels_to_layers"]], "weighted_average_between_layers() (in module mfsetup.discretization)": [[2, "mfsetup.discretization.weighted_average_between_layers"]], "add_version_to_fileheader() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.add_version_to_fileheader"]], "append_csv() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.append_csv"]], "check_source_files() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.check_source_files"]], "dump() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.dump"]], "dump_json() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.dump_json"]], "dump_yml() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.dump_yml"]], "exe_exists() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.exe_exists"]], "flopy_mf2005_load() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.flopy_mf2005_load"]], "flopy_mf6model_load() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.flopy_mf6model_load"]], "flopy_mfsimulation_load() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.flopy_mfsimulation_load"]], "load() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.load"]], "load_array() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.load_array"]], "load_cfg() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.load_cfg"]], "load_json() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.load_json"]], "load_modelgrid() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.load_modelgrid"]], "load_yml() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.load_yml"]], "mfsetup.fileio": [[3, "module-mfsetup.fileio"]], "read_ggofile() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.read_ggofile"]], "read_lak_ggo() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.read_lak_ggo"]], "read_mf6_block() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.read_mf6_block"]], "remove_file_header() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.remove_file_header"]], "save_array() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.save_array"]], "set_cfg_paths_to_absolute() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.set_cfg_paths_to_absolute"]], "setup_external_filepaths() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.setup_external_filepaths"]], "which() (in module mfsetup.fileio)": [[3, "mfsetup.fileio.which"]], "mfsetupgrid (class in mfsetup.grid)": [[4, "mfsetup.grid.MFsetupGrid"]], "bbox (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.bbox"]], "botm (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.botm"]], "bounds (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.bounds"]], "crs (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.crs"]], "dataframe (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.dataframe"]], "get_cellface_midpoint() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_cellface_midpoint"]], "get_crs() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_crs"]], "get_crs_length_units() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_crs_length_units"]], "get_dataframe() (mfsetup.grid.mfsetupgrid method)": [[4, "mfsetup.grid.MFsetupGrid.get_dataframe"]], "get_grid_bounding_box() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_grid_bounding_box"]], "get_ij() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_ij"]], "get_intercell_connections() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_intercell_connections"]], "get_intercell_connections() (mfsetup.grid.mfsetupgrid method)": [[4, "mfsetup.grid.MFsetupGrid.get_intercell_connections"]], "get_kij_from_node3d() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_kij_from_node3d"]], "get_nearest_point_on_grid() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_nearest_point_on_grid"]], "get_point_on_national_hydrogeologic_grid() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_point_on_national_hydrogeologic_grid"]], "get_transform() (in module mfsetup.grid)": [[4, "mfsetup.grid.get_transform"]], "get_vertices() (mfsetup.grid.mfsetupgrid method)": [[4, "mfsetup.grid.MFsetupGrid.get_vertices"]], "intercell_connections (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.intercell_connections"]], "length_multiplier (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.length_multiplier"]], "length_units (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.length_units"]], "mfsetup.grid": [[4, "module-mfsetup.grid"]], "polygons (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.polygons"]], "proj_str (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.proj_str"]], "rasterize() (in module mfsetup.grid)": [[4, "mfsetup.grid.rasterize"]], "rotation (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.rotation"]], "setup_structured_grid() (in module mfsetup.grid)": [[4, "mfsetup.grid.setup_structured_grid"]], "size (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.size"]], "top (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.top"]], "transform (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.transform"]], "vertices (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.vertices"]], "wkt (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.wkt"]], "write_bbox_shapefile() (in module mfsetup.grid)": [[4, "mfsetup.grid.write_bbox_shapefile"]], "write_bbox_shapefile() (mfsetup.grid.mfsetupgrid method)": [[4, "mfsetup.grid.MFsetupGrid.write_bbox_shapefile"]], "write_shapefile() (mfsetup.grid.mfsetupgrid method)": [[4, "mfsetup.grid.MFsetupGrid.write_shapefile"]], "xul (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.xul"]], "yul (mfsetup.grid.mfsetupgrid property)": [[4, "mfsetup.grid.MFsetupGrid.yul"]], "interpolator (class in mfsetup.interpolate)": [[5, "mfsetup.interpolate.Interpolator"]], "get_source_dest_model_xys() (in module mfsetup.interpolate)": [[5, "mfsetup.interpolate.get_source_dest_model_xys"]], "interp_weights (mfsetup.interpolate.interpolator property)": [[5, "mfsetup.interpolate.Interpolator.interp_weights"]], "interp_weights() (in module mfsetup.interpolate)": [[5, "mfsetup.interpolate.interp_weights"]], "interpolate() (in module mfsetup.interpolate)": [[5, "mfsetup.interpolate.interpolate"]], "interpolate() (mfsetup.interpolate.interpolator method)": [[5, "mfsetup.interpolate.Interpolator.interpolate"]], "mfsetup.interpolate": [[5, "module-mfsetup.interpolate"]], "regrid() (in module mfsetup.interpolate)": [[5, "mfsetup.interpolate.regrid"]], "regrid3d() (in module mfsetup.interpolate)": [[5, "mfsetup.interpolate.regrid3d"]], "source_values_mask (mfsetup.interpolate.interpolator property)": [[5, "mfsetup.interpolate.Interpolator.source_values_mask"]], "mf6model (class in mfsetup.mf6model)": [[6, "mfsetup.mf6model.MF6model"]], "get_flopy_external_file_input() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.get_flopy_external_file_input"]], "get_package_list() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.get_package_list"]], "get_raster_statistics_for_cells() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.get_raster_statistics_for_cells"]], "get_raster_values_at_cell_centers() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.get_raster_values_at_cell_centers"]], "idomain (mfsetup.mf6model.mf6model property)": [[6, "mfsetup.mf6model.MF6model.idomain"]], "load_from_config() (mfsetup.mf6model.mf6model class method)": [[6, "mfsetup.mf6model.MF6model.load_from_config"]], "mfsetup.mf6model": [[6, "module-mfsetup.mf6model"]], "perioddata (mfsetup.mf6model.mf6model property)": [[6, "mfsetup.mf6model.MF6model.perioddata"]], "setup_chd() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_chd"]], "setup_drn() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_drn"]], "setup_ghb() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_ghb"]], "setup_ic() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_ic"]], "setup_ims() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_ims"]], "setup_lak() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_lak"]], "setup_npf() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_npf"]], "setup_obs() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_obs"]], "setup_oc() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_oc"]], "setup_rch() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_rch"]], "setup_riv() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_riv"]], "setup_simulation_mover() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_simulation_mover"]], "setup_sto() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_sto"]], "setup_tdis() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_tdis"]], "setup_wel() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.setup_wel"]], "write_input() (mfsetup.mf6model.mf6model method)": [[6, "mfsetup.mf6model.MF6model.write_input"]], "mfsetupmixin (class in mfsetup.mfmodel)": [[7, "mfsetup.mfmodel.MFsetupMixin"]], "get_boundary_cells() (mfsetup.mfmodel.mfsetupmixin method)": [[7, "mfsetup.mfmodel.MFsetupMixin.get_boundary_cells"]], "high_k_lake_recharge (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.high_k_lake_recharge"]], "interp_weights (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.interp_weights"]], "isbc (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.isbc"]], "lakarr (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.lakarr"]], "lake_bathymetry (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.lake_bathymetry"]], "load_cfg() (mfsetup.mfmodel.mfsetupmixin class method)": [[7, "mfsetup.mfmodel.MFsetupMixin.load_cfg"]], "load_features() (mfsetup.mfmodel.mfsetupmixin method)": [[7, "mfsetup.mfmodel.MFsetupMixin.load_features"]], "load_grid() (mfsetup.mfmodel.mfsetupmixin method)": [[7, "mfsetup.mfmodel.MFsetupMixin.load_grid"]], "mfsetup.mfmodel": [[7, "module-mfsetup.mfmodel"]], "model_version (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.model_version"]], "package_list (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.package_list"]], "parent_layers (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.parent_layers"]], "parent_mask (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.parent_mask"]], "parent_stress_periods (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.parent_stress_periods"]], "perimeter_bc_type (mfsetup.mfmodel.mfsetupmixin property)": [[7, "mfsetup.mfmodel.MFsetupMixin.perimeter_bc_type"]], "regrid_from_parent() (mfsetup.mfmodel.mfsetupmixin method)": [[7, "mfsetup.mfmodel.MFsetupMixin.regrid_from_parent"]], "setup_external_filepaths() (mfsetup.mfmodel.mfsetupmixin method)": [[7, "mfsetup.mfmodel.MFsetupMixin.setup_external_filepaths"]], "setup_from_cfg() (mfsetup.mfmodel.mfsetupmixin class method)": [[7, "mfsetup.mfmodel.MFsetupMixin.setup_from_cfg"]], "setup_from_yaml() (mfsetup.mfmodel.mfsetupmixin class method)": [[7, "mfsetup.mfmodel.MFsetupMixin.setup_from_yaml"]], "setup_grid() (mfsetup.mfmodel.mfsetupmixin method)": [[7, "mfsetup.mfmodel.MFsetupMixin.setup_grid"]], "source_path (mfsetup.mfmodel.mfsetupmixin attribute)": [[7, "mfsetup.mfmodel.MFsetupMixin.source_path"]], "mfnwtmodel (class in mfsetup.mfnwtmodel)": [[8, "mfsetup.mfnwtmodel.MFnwtModel"]], "ibound (mfsetup.mfnwtmodel.mfnwtmodel property)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.ibound"]], "ipakcb (mfsetup.mfnwtmodel.mfnwtmodel property)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.ipakcb"]], "load() (mfsetup.mfnwtmodel.mfnwtmodel class method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.load"]], "mfsetup.mfnwtmodel": [[8, "module-mfsetup.mfnwtmodel"]], "perioddata (mfsetup.mfnwtmodel.mfnwtmodel property)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.perioddata"]], "setup_chd() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_chd"]], "setup_drn() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_drn"]], "setup_ghb() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_ghb"]], "setup_hyd() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_hyd"]], "setup_riv() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_riv"]], "setup_tdis() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_tdis"]], "setup_upw() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_upw"]], "setup_wel() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.setup_wel"]], "write_input() (mfsetup.mfnwtmodel.mfnwtmodel method)": [[8, "mfsetup.mfnwtmodel.MFnwtModel.write_input"]], "add_date_comments_to_tdis() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.add_date_comments_to_tdis"]], "aggregate_dataframe_to_stress_period() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.aggregate_dataframe_to_stress_period"]], "aggregate_xarray_to_stress_period() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.aggregate_xarray_to_stress_period"]], "concat_periodata_groups() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.concat_periodata_groups"]], "convert_freq_to_period_start() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.convert_freq_to_period_start"]], "get_parent_stress_periods() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.get_parent_stress_periods"]], "mfsetup.tdis": [[9, "module-mfsetup.tdis"]], "parse_perioddata_groups() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.parse_perioddata_groups"]], "setup_perioddata() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.setup_perioddata"]], "setup_perioddata_group() (in module mfsetup.tdis)": [[9, "mfsetup.tdis.setup_perioddata_group"]], "get_qx_qy_qz() (in module mfsetup.tmr)": [[10, "mfsetup.tmr.get_qx_qy_qz"]], "mfsetup.tmr": [[10, "module-mfsetup.tmr"]]}}) \ No newline at end of file diff --git a/latest/structure.html b/latest/structure.html index d7f4576d..ca3b5d95 100644 --- a/latest/structure.html +++ b/latest/structure.html @@ -4,7 +4,7 @@ - Basic program structure and usage — modflow-setup 0.3.0.post11+g3a6ec42 documentation + Basic program structure and usage — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604
diff --git a/latest/troubleshooting.html b/latest/troubleshooting.html index 7210a45e..fdfd7a3e 100644 --- a/latest/troubleshooting.html +++ b/latest/troubleshooting.html @@ -4,7 +4,7 @@ - Troubleshooting — modflow-setup 0.3.0.post11+g3a6ec42 documentation + Troubleshooting — modflow-setup 0.3.0.post15+gdb03604 documentation @@ -41,7 +41,7 @@ modflow-setup
- 0.3.0.post11+g3a6ec42 + 0.3.0.post15+gdb03604