forked from saadgroup/TurboGenPY
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilters.py
127 lines (120 loc) · 3.35 KB
/
filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 18 16:28:57 2014
@author: Tony Saad
"""
from tkespec import compute_tke_spectrum
import scipy.io
import numpy as np
from numpy import sqrt, zeros, conj, pi, arange, ones, convolve,sin
import matplotlib.pyplot as plt
from numpy.fft import fftn, ifftn
def spectralcutoff(u, kappa, cx, cy, cz):
nx = len(u[:,0,0])
ny = len(u[0,:,0])
nz = len(u[0,0,:])
nt= nx*ny*nz
uh = fftn(u)/nt
for i in range(0,nx):
for j in range (0,ny):
for k in range (0,nz):
rk = sqrt(cx*i*i + cy*j*j + cz*k*k)
#rk = int(np.round(rk))
if(rk >= kappa):
uh[i,j,k] = 0.0
ureal = ifftn(uh)*nt
return ureal.real
#def spectralcutoff(u, kappa):
# nx = len(u[:,0,0])
# ny = len(u[0,:,0])
# nz = len(u[0,0,:])
# nt= nx*ny*nz
# uh = fftn(u)/nt
# for i in range(0,nx):
# for j in range (0,ny):
# for k in range (0,nz):
# rk = sqrt(i*i + j*j + k*k)
# #rk = int(np.round(rk))
# if(rk >= kappa):
# uh[i,j,k] = 0.0
# ureal = ifftn(uh)*nt
# return ureal.real
def boxfilter(u):
nx = len(u[:,0,0])
ny = len(u[0,:,0])
nz = len(u[0,0,:])
# filter the data
ut = np.empty([nx+2,ny+2,nz+2])
uf = np.zeros([nx,ny,nz])
ut[1:nx+1,1:ny+1,1:nz+1] = u
# now make it periodic
ut[0,:,:] = ut[nx,:,:]
ut[nx+1,:,:] = ut[1,:,:]
ut[:,0,:] = ut[:,ny,:]
ut[:,ny+1,:] = ut[:,1,:]
ut[:,:,0] = ut[:,:,nz]
ut[:,:,nz+1] = ut[:,:,1]
for i in range(0,nx):
for j in range (0,ny):
for k in range (0,nz):
uf[i,j,k] = 1.0/27.0*( ut[i,j,k] \
+ ut[i-1,j,k] + ut[i+1,j,k] \
+ ut[i,j+1,k] + ut[i,j-1,k] \
+ ut[i,j,k+1] + ut[i,j,k-1] \
+ ut[i+1,j+1,k] + ut[i+1,j-1,k] \
+ ut[i-1,j+1,k] + ut[i-1,j-1,k] \
+ ut[i+1,j,k+1] + ut[i+1,j,k-1] \
+ ut[i-1,j,k+1] + ut[i-1,j,k-1] \
+ ut[i,j+1,k+1] + ut[i,j+1,k-1] \
+ ut[i,j-1,k+1] + ut[i,j-1,k-1] \
+ ut[i+1,j+1,k+1] + ut[i+1,j+1,k-1] \
+ ut[i+1,j-1,k+1] + ut[i+1,j-1,k-1] \
+ ut[i-1,j+1,k+1] + ut[i-1,j+1,k-1] \
+ ut[i-1,j-1,k+1] + ut[i-1,j-1,k-1])
return uf
#mat = scipy.io.loadmat('uvw_32.mat')
#u = mat['U']
#v = mat['V']
#w = mat['W']
#
#lx=ly=lz=1.0
#
## verify that the generated velocities fit the spectrum
#knyquist, wavenumbers, tkespec = compute_tke_spectrum(u,v,w,lx,ly,lz, True)
#
#q, ((p1,p2),(p3,p4)) = plt.subplots(2,2)
#
#p1.loglog(wavenumbers, tkespec, 'bo-')
#p1.axvline(x=knyquist, linestyle='--', color='black')
#p1.set_title('Spectrum of generated turbulence')
#p1.grid()
#
#nx = len(u[:,0,0])
#ny = len(v[0,:,0])
#nz = len(w[0,0,:])
#
##uf1 = sectralcutoff(u,30)
##vf1 = sectralcutoff(v,30)
##wf1 = sectralcutoff(w,30)
#
#uf0 = boxfilter(u)
#vf0 = boxfilter(v)
#wf0 = boxfilter(w)
#
#uf1 = boxfilter(uf0)
#vf1 = boxfilter(vf0)
#wf1 = boxfilter(wf0)
#
## verify that the generated velocities fit the spectrum
#knyquist, wavenumbers, tkespec = compute_tke_spectrum(uf1,vf0,wf0,lx,ly,lz, True)
#p1.loglog(wavenumbers, tkespec, 'ro-')
#p2.loglog(wavenumbers, tkespec, 'ro-')
#p2.axvline(x=knyquist, linestyle='--', color='black')
#p2.set_title('Spectrum of generated turbulence')
#p2.grid()
#
#
#p3.matshow(u[:,10,:])
#p4.matshow(uf1[:,10,:])
#
#plt.draw()