forked from saadgroup/TurboGenPY
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathisoturbo.py
210 lines (182 loc) · 7.29 KB
/
isoturbo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#
# isoturbo.py
#
# The MIT License (MIT)
#
# Copyright (c) 2015, Tony Saad. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# -*- coding: utf-8 -*-
"""
Created on Mon May 12 09:31:54 2014
@author: tsaad
"""
import multiprocessing as mp
import numpy as np
import time
from numpy import sin, cos, sqrt, ones, zeros, pi, arange
from numpy import linalg as LA
def compute_turbulence(nthread, dx, dy, dz, psi, um, kx, ky, kz, sxm, sym, szm, nx, ny, nz, nxAll, nyAll, nzAll, ip, jp,
kp, q):
print('Generating turbulence on thread:', nthread)
t0 = time.time()
u_ = zeros([nx, ny, nz])
v_ = zeros([nx, ny, nz])
w_ = zeros([nx, ny, nz])
xl = (ip - 1) * nx
xh = ip * nx
yl = (jp - 1) * ny
yh = jp * ny
zl = (kp - 1) * nz
zh = kp * nz
xc = dx / 2.0 + arange(xl, xh) * dx
yc = dy / 2.0 + arange(yl, yh) * dy
zc = dz / 2.0 + arange(zl, zh) * dz # cell centered coordinates
for k in range(0, nz):
for j in range(0, ny):
for i in range(0, nx):
# for every grid point (i,j,k) do the fourier summation
arg = kx * xc[i] + ky * yc[j] + kz * zc[k] - psi
bmx = 2.0 * um * cos(arg - kx * dx / 2.0)
bmy = 2.0 * um * cos(arg - ky * dy / 2.0)
bmz = 2.0 * um * cos(arg - kz * dz / 2.0)
u_[i, j, k] = np.sum(bmx * sxm)
v_[i, j, k] = np.sum(bmy * sym)
w_[i, j, k] = np.sum(bmz * szm)
t1 = time.time()
print('Thread ', nthread, ' done generating turbulence in ', t1 - t0, 's')
q.put((ip, jp, kp, u_, v_, w_))
return ip, jp, kp, u_, v_, w_
def generate_isotropic_turbulence(patches, lx, ly, lz, nx, ny, nz, nmodes, wn1, especf):
## grid generation
# generate cell centered x-grid
dx = lx / nx
dy = ly / ny
dz = lz / nz
## START THE FUN!
# compute random angles
np.random.seed(0)
phi = 2.0 * pi * np.random.uniform(0.0, 1.0, nmodes);
nu = np.random.uniform(0.0, 1.0, nmodes);
theta = np.arccos(2.0 * nu - 1.0);
psi = np.random.uniform(-pi / 2.0, pi / 2.0, nmodes);
alfa = 2.0 * pi * np.random.uniform(0.0, 1.0, nmodes);
# highest wave number that can be represented on this grid (nyquist limit)
wnn = max(np.pi / dx, max(np.pi / dy, np.pi / dz));
print('I will generate data up to wave number: ', wnn)
# wavenumber step
dk = (wnn - wn1) / nmodes
# wavenumber at cell centers
wn = wn1 + arange(0, nmodes) * dk
# wn = wn1 + np.arange(0,nmodes)*dk*np.log(np.arange(0,nmodes) + 1)/np.log(nmodes)
dkn = ones(nmodes) * dk
# dkn = wn[1:nmodes] - wn[0:nmodes-1]
# dkn = np.append(dkn,dkn[nmodes-2])
# wavenumber vector from random angles
kx = sin(theta) * cos(phi) * wn
ky = sin(theta) * sin(phi) * wn
kz = cos(theta) * wn
# create divergence vector
ktx = np.sin(kx * dx / 2.0) / (dx)
kty = np.sin(ky * dy / 2.0) / (dy)
ktz = np.sin(kz * dz / 2.0) / (dz)
# # Use Davidson's Method to enforce Divergence Free Condition
# ktmag = sqrt(ktx*ktx + kty*kty + ktz*ktz)
# theta = np.arccos(kzstag/kstagmag)
# phi = np.arctan2(kystag,kxstag)
# sxm = cos(phi)*cos(theta)*cos(alfa) - sin(phi)*sin(alfa)
# sym = sin(phi)*cos(theta)*cos(alfa) + cos(phi)*sin(alfa)
# szm = -sin(theta)*cos(alfa)
# another method to generate sigma = zeta x k_tilde, pick zeta randomly
# np.random.seed(3)
phi1 = 2.0 * pi * np.random.uniform(0.0, 1.0, nmodes);
nu1 = np.random.uniform(0.0, 1.0, nmodes);
theta1 = np.arccos(2.0 * nu1 - 1.0);
zetax = sin(theta1) * cos(phi1)
zetay = sin(theta1) * sin(phi1)
zetaz = cos(theta1)
sxm = zetay * ktz - zetaz * kty
sym = -(zetax * ktz - zetaz * ktx)
szm = zetax * kty - zetay * ktx
smag = sqrt(sxm * sxm + sym * sym + szm * szm)
sxm = sxm / smag
sym = sym / smag
szm = szm / smag
# verify that the wave vector and sigma are perpendicular
kk = np.sum(ktx * sxm + kty * sym + ktz * szm)
print('Orthogonality of k and sigma (divergence in wave space):', kk)
# get the modes
km = wn
# now create an interpolant for the spectrum. this is needed for
# experimentally-specified spectra
# espec = especf(km + dk/2) + especf(km))*0.5
espec = especf(km)
espec = espec.clip(0.0)
# generate turbulence at cell centers
um = sqrt(espec * dkn)
# must use Manager queue here, or will not work
nxthreads = patches[0];
nythreads = patches[1];
nzthreads = patches[2];
nxt = nx // nxthreads;
nyt = nx // nythreads;
nzt = nx // nzthreads;
manager = mp.Manager()
mq = manager.Queue()
pool = mp.Pool(mp.cpu_count()) # assume 2 threads per core
# fire off workers
jobs = []
nthread = 0
for k in range(1, nzthreads + 1):
for j in range(1, nythreads + 1):
for i in range(1, nxthreads + 1):
nthread = nthread + 1
job = pool.apply_async(compute_turbulence, (
nthread, dx, dy, dz, psi, um, kx, ky, kz, sxm, sym, szm, nxt, nyt, nzt, nx, ny, nz, i, j, k, mq))
jobs.append(job)
# collect results from the workers through the pool result queue
print('now collecting results from individual threads...')
uarrays = []
varrays = []
warrays = []
patches = []
for job in jobs:
i, j, k, u, v, w = job.get()
uarrays.append(u)
varrays.append(v)
warrays.append(w)
patches.append([i, j, k])
del u, v, w
pool.terminate()
pool.close()
# combine the arrays computed from threads into large arrays
print('now combining velocity fields generated by the individual threads...')
uall = zeros([nx, ny, nz])
vall = zeros([nx, ny, nz])
wall = zeros([nx, ny, nz])
nthread = 0
for k in range(1, nzthreads + 1):
for j in range(1, nythreads + 1):
for i in range(1, nxthreads + 1):
uall[(i - 1) * nxt:i * nxt, (j - 1) * nyt:j * nyt, (k - 1) * nzt:k * nzt] = uarrays[nthread]
vall[(i - 1) * nxt:i * nxt, (j - 1) * nyt:j * nyt, (k - 1) * nzt:k * nzt] = varrays[nthread]
wall[(i - 1) * nxt:i * nxt, (j - 1) * nyt:j * nyt, (k - 1) * nzt:k * nzt] = warrays[nthread]
nthread = nthread + 1
return uall, vall, wall