-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathIntegratedLikelihoodCalculation2.r
180 lines (137 loc) · 7.66 KB
/
IntegratedLikelihoodCalculation2.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
##The function to calculate the likelihood values for each of the integrated measurements.
IntegratedLikelihoodCalculation2<-function (WD, OD, CropName)
{
##Step 1. Get the information of integrated measurements from the processed evaluation file or File A.
eval(parse(text=paste('Evaluation<-read.table("',OD,'/EvaluateFrame_2.txt", header=TRUE, fill=TRUE, comment.char="")',sep = '')));
#RowsWithNA <- nrow(Evaluation[rowSums(is.na(Evaluation)) > 0,])
#
#if(RowsWithNA>0)
#{
# Evaluation <- na.omit(Evaluation)
# write(paste0("Number of rows containing NAs removed from EvaluateFrame file: ", RowsWithNA,
# ". Rows removed can be found in NARowsRemovedLines.txt..."), file = paste0(OD,"/ModelRunIndicator.txt"), append = T);
# write(paste0(colnames(Evaluation), collapse = ' '), file = paste0(OD,"/NARowsRemovedLines.txt"));
# write(apply(Evaluation,1,paste0, collapse=' '), file = paste0(OD,"/NARowsRemovedLines.txt"), append = T);
#}
#else{
# write("No NAs found in EvaluateFrame file...", file = paste0(OD,"/ModelRunIndicator.txt"), append = T);
#}
#print(Evaluation);
Dimension<-dim(Evaluation);
Treatments<-Evaluation[,"X.RUN"]
TreatmentNumberIndex<-which.max(Evaluation[,"X.RUN"]);
TreatmentNumber<-Treatments[TreatmentNumberIndex]; ##Get the number of treatments in the experiment.
RunNumber<-(Dimension[1]/TreatmentNumber); ##Get the number of model runs.
## Step 2. Get the information about measurement variance from a given Excel file.
#library(xlsReadWrite);
if (CropName=="PT" || CropName=="SC" || CropName=="CS" || CropName=="TN" || CropName=="TR" || CropName=="WH" || CropName=="PI" )
{
# eval(parse(text=paste('VAR<-read.xls("',WD,
# '/MeasurementVariance.xls", sheet = "',CropName,'", rowNames = T, colNames=T)',sep = '')));
eval(parse(text=paste('VAR<-read.csv("',WD,
'/MeasurementVariance_', CropName, '.csv", header = T)',sep = '')));
} else
{
# eval(parse(text=paste('VAR<-read.xls("',WD,
# '/MeasurementVariance.xls", sheet = "Sheet 1", rowNames = T, colNames=T)',sep = '')));
eval(parse(text=paste('VAR<-read.csv("',WD,
'/MeasurementVariance_All.csv", header = T)',sep = '')));
}
newRowNames <- VAR[ , 1];
VAR <- VAR[ , -1];
rownames(VAR) <- newRowNames;
##Read the variance information including standard devaiton, Variance, and CV from a given Excel file.
##Step 3. Calclate the likelihood value for the integrated measurements, such as
#anthesis date (ADAP), maturity date (MDAP), first pod date (PD1TS),
#Pod/Ear/Panicle weight at maturity (kg [dm]/ha) (PWAM),
#Yield at harvest maturity (kg [dm]/ha) (HWAM), Tops weight at maturity (kg [dm]/ha) (CWAM),
#Leaf area index, maximum (LAIX), Leaf number per stem at maturity (L#SM).
MeasurementNames<-c();
RowNames<-rownames(VAR);
NumberOfMeasurement<-dim(VAR)[1];
if (CropName=="BA" || CropName=="RI" || CropName=="WH" || CropName=="TF")
{
VAR["PD1T","Flag"]<-0;
VAR["PWAM","Flag"]<-0;
#Evaluate file of barley doesn't have this two outputs.
}
for (i in 1:NumberOfMeasurement)
{
if (VAR[i,"Flag"]==2)
{
MeasurementNames<-c(MeasurementNames,RowNames[i]);
}
}
eval(parse(text=paste('EvaluateFile<-readLines("',OD,'/Evaluate_output.txt",n=-1)',sep = '')));
IsHWAH<-grep("HWAH",EvaluateFile);
#Read the Evaluate file to see if it contains the output called "HWAH", while the default name is "HWAM".
if(length(IsHWAH)!=0)
{
Address<-which(MeasurementNames == "HWAM");
MeasurementNames[Address]<-"HWAH";
}
##Integrated measurement names used in the second round of GLUE.
MeasurementNumber<-length(MeasurementNames); ##Number of integrated measurements.
IntegratedLikelihoodMatrix<-matrix(Evaluation[,1],nrow=length(Evaluation[,1]),ncol=1,byrow=T);
#The first column of Evaluation is the number of runs in each model run with an individual random parameter sets.
#Since more than one experiment could be run simultaneously, the total treatment number should be the sum of all
#treatments in all experiments. Thus, the value of "Run" is used as number of "Total Treatment".
IntegratedLikelihoodMatrix<-rbind("Treatment",IntegratedLikelihoodMatrix);
##Calculate the likelihood values for each of the measurements.
for (i in 1:MeasurementNumber)
{
Simulation<-Evaluation[,paste(MeasurementNames[i],"S", sep="")]; ##Read the simulated values.
Measurement<-Evaluation[,paste(MeasurementNames[i],"M", sep="")]; ##Read the measured values.
Simulation<-ifelse(Simulation==-99, NA, Simulation);
Measurement<-ifelse(Measurement==-99, NA, Measurement);##Change the unknown measurements "-99" to NA.
if (is.na(VAR[MeasurementNames[i],"CV"]))
{
Variance<-VAR[MeasurementNames[i],"Variance"];
} else
{
CV<-VAR[MeasurementNames[i],"CV"];
Variance<-(Measurement*CV)^2;
}
eval(parse(text=paste('source("',WD,'/Calculation.r")',sep = '')));
Likelihood<-Calculation(Simulation, Measurement, Variance);
##Call the function "Calculation" to calculate the likelihood values.
Likelihood<-c(MeasurementNames[i],Likelihood); ##Add a tile for the likelihood values.
eval(parse(text = paste('Likelihood',MeasurementNames[i],'<-matrix(Likelihood,nrow=length(Likelihood),ncol=1,byrow=T)',
sep = ''))); ##Save the likehood values for each of the measurements as a single column matrix.
eval(parse(text = paste('IntegratedLikelihoodMatrix<-cbind(IntegratedLikelihoodMatrix,Likelihood',
MeasurementNames[i],')',sep="")));
##Save the likehood values for all of the measurements as a matrix, with the treatment number as the first column.
}
IntegratedLikelihoodMatrix<-ifelse(is.na(IntegratedLikelihoodMatrix)==TRUE, 1, IntegratedLikelihoodMatrix);
#Change the NA values to 1 before calculating the combined likelihood value.
#library ('MASS');
#eval(parse(text=paste('write.matrix(IntegratedLikelihoodMatrix,file ="',OD,
#'/IntegratedLikelihoodMatrix_Frame_2.txt")',sep = '')));
eval(parse(text=paste('write.table(as.matrix(IntegratedLikelihoodMatrix), file ="',OD,
'/IntegratedLikelihoodMatrix_Frame_2.txt", row.names = F, col.names = F, append = F)',sep = '')));
eval(parse(text=paste('IntegratedLikelihoodMatrixTable<-read.table("',OD,
'/IntegratedLikelihoodMatrix_Frame_2.txt", header=TRUE,comment.char="")',sep = '')));
##Step 4. Likelihood combination
eval(parse(text=paste('source ("',WD,'/Combination.r")',sep = '')));
IntegratedCombinedLikelihood<-Combination(IntegratedLikelihoodMatrixTable);
#Calculate the combined likelihood values for the integrated measurements.
names(IntegratedCombinedLikelihood)<-"IntegratedCombinedLikelihood" #Set the name for the combined likelihood values.
IntegratedLikelihoodMatrixTable<-cbind(IntegratedLikelihoodMatrixTable,IntegratedCombinedLikelihood)#Add the combined likelihood 1 to the likelihood matrix.
##Step 5. Distribute the icombined likelihood values of the integrated measurements to each treatment.
for (i in 1:TreatmentNumber)
{
Selection<-i;
RowIndex <- which(Selection==IntegratedLikelihoodMatrixTable$Treatment);
# Get the address of the rows that contain information of treatment i.
ColumnIndex<-c("Treatment",MeasurementNames,"IntegratedCombinedLikelihood");
eval(parse(text = paste('IntegratedCombinedLikelihoodTreatment_2_',i,
'<-IntegratedLikelihoodMatrixTable[RowIndex,ColumnIndex]',sep="")));
#library ('MASS');
#eval(parse(text = paste('write.matrix(IntegratedCombinedLikelihoodTreatment_2_',i,
#',file ="',OD,'/IntegratedLikelihoodTreatment_2_',i,'.txt")',sep="")));
eval(parse(text = paste('write.table(as.matrix(IntegratedCombinedLikelihoodTreatment_2_',i,
'), file ="',OD,'/IntegratedLikelihoodTreatment_2_',i,'.txt", row.names = F, col.names = T, append = F)',sep="")));
}
return(TreatmentNumber);
rm(list = ls());
}