forked from zhulf0804/PointPillars
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
386 lines (334 loc) · 18 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import argparse
import numpy as np
import os
import torch
import pdb
from tqdm import tqdm
from utils import setup_seed, keep_bbox_from_image_range, \
keep_bbox_from_lidar_range, write_pickle, write_label, \
iou2d, iou3d_camera, iou_bev
from dataset import Kitti, get_dataloader
from model import PointPillars
def get_score_thresholds(tp_scores, total_num_valid_gt, num_sample_pts=41):
score_thresholds = []
tp_scores = sorted(tp_scores)[::-1]
cur_recall, pts_ind = 0, 0
for i, score in enumerate(tp_scores):
lrecall = (i + 1) / total_num_valid_gt
rrecall = (i + 2) / total_num_valid_gt
if i == len(tp_scores) - 1:
score_thresholds.append(score)
break
if (lrecall + rrecall) / 2 < cur_recall:
continue
score_thresholds.append(score)
pts_ind += 1
cur_recall = pts_ind / (num_sample_pts - 1)
return score_thresholds
def do_eval(det_results, gt_results, CLASSES, saved_path):
'''
det_results: list,
gt_results: dict(id -> det_results)
CLASSES: dict
'''
assert len(det_results) == len(gt_results)
f = open(os.path.join(saved_path, 'eval_results.txt'), 'w')
# 1. calculate iou
ious = {
'bbox_2d': [],
'bbox_bev': [],
'bbox_3d': []
}
ids = list(sorted(gt_results.keys()))
for id in ids:
gt_result = gt_results[id]['annos']
det_result = det_results[id]
# 1.1, 2d bboxes iou
gt_bboxes2d = gt_result['bbox'].astype(np.float32)
det_bboxes2d = det_result['bbox'].astype(np.float32)
iou2d_v = iou2d(torch.from_numpy(gt_bboxes2d).cuda(), torch.from_numpy(det_bboxes2d).cuda())
ious['bbox_2d'].append(iou2d_v.cpu().numpy())
# 1.2, bev iou
gt_location = gt_result['location'].astype(np.float32)
gt_dimensions = gt_result['dimensions'].astype(np.float32)
gt_rotation_y = gt_result['rotation_y'].astype(np.float32)
det_location = det_result['location'].astype(np.float32)
det_dimensions = det_result['dimensions'].astype(np.float32)
det_rotation_y = det_result['rotation_y'].astype(np.float32)
gt_bev = np.concatenate([gt_location[:, [0, 2]], gt_dimensions[:, [0, 2]], gt_rotation_y[:, None]], axis=-1)
det_bev = np.concatenate([det_location[:, [0, 2]], det_dimensions[:, [0, 2]], det_rotation_y[:, None]], axis=-1)
iou_bev_v = iou_bev(torch.from_numpy(gt_bev).cuda(), torch.from_numpy(det_bev).cuda())
ious['bbox_bev'].append(iou_bev_v.cpu().numpy())
# 1.3, 3dbboxes iou
gt_bboxes3d = np.concatenate([gt_location, gt_dimensions, gt_rotation_y[:, None]], axis=-1)
det_bboxes3d = np.concatenate([det_location, det_dimensions, det_rotation_y[:, None]], axis=-1)
iou3d_v = iou3d_camera(torch.from_numpy(gt_bboxes3d).cuda(), torch.from_numpy(det_bboxes3d).cuda())
ious['bbox_3d'].append(iou3d_v.cpu().numpy())
MIN_IOUS = {
'Pedestrian': [0.5, 0.5, 0.5],
'Cyclist': [0.5, 0.5, 0.5],
'Car': [0.7, 0.7, 0.7]
}
MIN_HEIGHT = [40, 25, 25]
overall_results = {}
for e_ind, eval_type in enumerate(['bbox_2d', 'bbox_bev', 'bbox_3d']):
eval_ious = ious[eval_type]
eval_ap_results, eval_aos_results = {}, {}
for cls in CLASSES:
eval_ap_results[cls] = []
eval_aos_results[cls] = []
CLS_MIN_IOU = MIN_IOUS[cls][e_ind]
for difficulty in [0, 1, 2]:
# 1. bbox property
total_gt_ignores, total_det_ignores, total_dc_bboxes, total_scores = [], [], [], []
total_gt_alpha, total_det_alpha = [], []
for id in ids:
gt_result = gt_results[id]['annos']
det_result = det_results[id]
# 1.1 gt bbox property
cur_gt_names = gt_result['name']
cur_difficulty = gt_result['difficulty']
gt_ignores, dc_bboxes = [], []
for j, cur_gt_name in enumerate(cur_gt_names):
ignore = cur_difficulty[j] < 0 or cur_difficulty[j] > difficulty
if cur_gt_name == cls:
valid_class = 1
elif cls == 'Pedestrian' and cur_gt_name == 'Person_sitting':
valid_class = 0
elif cls == 'Car' and cur_gt_name == 'Van':
valid_class = 0
else:
valid_class = -1
if valid_class == 1 and not ignore:
gt_ignores.append(0)
elif valid_class == 0 or (valid_class == 1 and ignore):
gt_ignores.append(1)
else:
gt_ignores.append(-1)
if cur_gt_name == 'DontCare':
dc_bboxes.append(gt_result['bbox'][j])
total_gt_ignores.append(gt_ignores)
total_dc_bboxes.append(np.array(dc_bboxes))
total_gt_alpha.append(gt_result['alpha'])
# 1.2 det bbox property
cur_det_names = det_result['name']
cur_det_heights = det_result['bbox'][:, 3] - det_result['bbox'][:, 1]
det_ignores = []
for j, cur_det_name in enumerate(cur_det_names):
if cur_det_heights[j] < MIN_HEIGHT[difficulty]:
det_ignores.append(1)
elif cur_det_name == cls:
det_ignores.append(0)
else:
det_ignores.append(-1)
total_det_ignores.append(det_ignores)
total_scores.append(det_result['score'])
total_det_alpha.append(det_result['alpha'])
# 2. calculate scores thresholds for PR curve
tp_scores = []
for i, id in enumerate(ids):
cur_eval_ious = eval_ious[i]
gt_ignores, det_ignores = total_gt_ignores[i], total_det_ignores[i]
scores = total_scores[i]
nn, mm = cur_eval_ious.shape
assigned = np.zeros((mm, ), dtype=np.bool_)
for j in range(nn):
if gt_ignores[j] == -1:
continue
match_id, match_score = -1, -1
for k in range(mm):
if not assigned[k] and det_ignores[k] >= 0 and cur_eval_ious[j, k] > CLS_MIN_IOU and scores[k] > match_score:
match_id = k
match_score = scores[k]
if match_id != -1:
assigned[match_id] = True
if det_ignores[match_id] == 0 and gt_ignores[j] == 0:
tp_scores.append(match_score)
total_num_valid_gt = np.sum([np.sum(np.array(gt_ignores) == 0) for gt_ignores in total_gt_ignores])
score_thresholds = get_score_thresholds(tp_scores, total_num_valid_gt)
# 3. draw PR curve and calculate mAP
tps, fns, fps, total_aos = [], [], [], []
for score_threshold in score_thresholds:
tp, fn, fp = 0, 0, 0
aos = 0
for i, id in enumerate(ids):
cur_eval_ious = eval_ious[i]
gt_ignores, det_ignores = total_gt_ignores[i], total_det_ignores[i]
gt_alpha, det_alpha = total_gt_alpha[i], total_det_alpha[i]
scores = total_scores[i]
nn, mm = cur_eval_ious.shape
assigned = np.zeros((mm, ), dtype=np.bool_)
for j in range(nn):
if gt_ignores[j] == -1:
continue
match_id, match_iou = -1, -1
for k in range(mm):
if not assigned[k] and det_ignores[k] >= 0 and scores[k] >= score_threshold and cur_eval_ious[j, k] > CLS_MIN_IOU:
if det_ignores[k] == 0 and cur_eval_ious[j, k] > match_iou:
match_iou = cur_eval_ious[j, k]
match_id = k
elif det_ignores[k] == 1 and match_iou == -1:
match_id = k
if match_id != -1:
assigned[match_id] = True
if det_ignores[match_id] == 0 and gt_ignores[j] == 0:
tp += 1
if eval_type == 'bbox_2d':
aos += (1 + np.cos(gt_alpha[j] - det_alpha[match_id])) / 2
else:
if gt_ignores[j] == 0:
fn += 1
for k in range(mm):
if det_ignores[k] == 0 and scores[k] >= score_threshold and not assigned[k]:
fp += 1
# In case 2d bbox evaluation, we should consider dontcare bboxes
if eval_type == 'bbox_2d':
dc_bboxes = total_dc_bboxes[i]
det_bboxes = det_results[id]['bbox']
if len(dc_bboxes) > 0:
ious_dc_det = iou2d(torch.from_numpy(det_bboxes), torch.from_numpy(dc_bboxes), metric=1).numpy().T
for j in range(len(dc_bboxes)):
for k in range(len(det_bboxes)):
if det_ignores[k] == 0 and scores[k] >= score_threshold and not assigned[k]:
if ious_dc_det[j, k] > CLS_MIN_IOU:
fp -= 1
assigned[k] = True
tps.append(tp)
fns.append(fn)
fps.append(fp)
if eval_type == 'bbox_2d':
total_aos.append(aos)
tps, fns, fps = np.array(tps), np.array(fns), np.array(fps)
recalls = tps / (tps + fns)
precisions = tps / (tps + fps)
for i in range(len(score_thresholds)):
precisions[i] = np.max(precisions[i:])
sums_AP = 0
for i in range(0, len(score_thresholds), 4):
sums_AP += precisions[i]
mAP = sums_AP / 11 * 100
eval_ap_results[cls].append(mAP)
if eval_type == 'bbox_2d':
total_aos = np.array(total_aos)
similarity = total_aos / (tps + fps)
for i in range(len(score_thresholds)):
similarity[i] = np.max(similarity[i:])
sums_similarity = 0
for i in range(0, len(score_thresholds), 4):
sums_similarity += similarity[i]
mSimilarity = sums_similarity / 11 * 100
eval_aos_results[cls].append(mSimilarity)
print(f'=========={eval_type.upper()}==========')
print(f'=========={eval_type.upper()}==========', file=f)
for k, v in eval_ap_results.items():
print(f'{k} AP@{MIN_IOUS[k][e_ind]}: {v[0]:.4f} {v[1]:.4f} {v[2]:.4f}')
print(f'{k} AP@{MIN_IOUS[k][e_ind]}: {v[0]:.4f} {v[1]:.4f} {v[2]:.4f}', file=f)
if eval_type == 'bbox_2d':
print(f'==========AOS==========')
print(f'==========AOS==========', file=f)
for k, v in eval_aos_results.items():
print(f'{k} AOS@{MIN_IOUS[k][e_ind]}: {v[0]:.4f} {v[1]:.4f} {v[2]:.4f}')
print(f'{k} AOS@{MIN_IOUS[k][e_ind]}: {v[0]:.4f} {v[1]:.4f} {v[2]:.4f}', file=f)
overall_results[eval_type] = np.mean(list(eval_ap_results.values()), 0)
if eval_type == 'bbox_2d':
overall_results['AOS'] = np.mean(list(eval_aos_results.values()), 0)
print(f'\n==========Overall==========')
print(f'\n==========Overall==========', file=f)
for k, v in overall_results.items():
print(f'{k} AP: {v[0]:.4f} {v[1]:.4f} {v[2]:.4f}')
print(f'{k} AP: {v[0]:.4f} {v[1]:.4f} {v[2]:.4f}', file=f)
f.close()
def main(args):
val_dataset = Kitti(data_root=args.data_root,
split='val')
val_dataloader = get_dataloader(dataset=val_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=False)
CLASSES = Kitti.CLASSES
LABEL2CLASSES = {v:k for k, v in CLASSES.items()}
if not args.no_cuda:
model = PointPillars(nclasses=args.nclasses).cuda()
model.load_state_dict(torch.load(args.ckpt))
else:
model = PointPillars(nclasses=args.nclasses)
model.load_state_dict(
torch.load(args.ckpt, map_location=torch.device('cpu')))
saved_path = args.saved_path
os.makedirs(saved_path, exist_ok=True)
saved_submit_path = os.path.join(saved_path, 'submit')
os.makedirs(saved_submit_path, exist_ok=True)
pcd_limit_range = np.array([0, -40, -3, 70.4, 40, 0.0], dtype=np.float32)
model.eval()
with torch.no_grad():
format_results = {}
print('Predicting and Formatting the results.')
for i, data_dict in enumerate(tqdm(val_dataloader)):
if not args.no_cuda:
# move the tensors to the cuda
for key in data_dict:
for j, item in enumerate(data_dict[key]):
if torch.is_tensor(item):
data_dict[key][j] = data_dict[key][j].cuda()
batched_pts = data_dict['batched_pts']
batched_gt_bboxes = data_dict['batched_gt_bboxes']
batched_labels = data_dict['batched_labels']
batched_difficulty = data_dict['batched_difficulty']
batch_results = model(batched_pts=batched_pts,
mode='val',
batched_gt_bboxes=batched_gt_bboxes,
batched_gt_labels=batched_labels)
# pdb.set_trace()
for j, result in enumerate(batch_results):
format_result = {
'name': [],
'truncated': [],
'occluded': [],
'alpha': [],
'bbox': [],
'dimensions': [],
'location': [],
'rotation_y': [],
'score': []
}
calib_info = data_dict['batched_calib_info'][j]
tr_velo_to_cam = calib_info['Tr_velo_to_cam'].astype(np.float32)
r0_rect = calib_info['R0_rect'].astype(np.float32)
P2 = calib_info['P2'].astype(np.float32)
image_shape = data_dict['batched_img_info'][j]['image_shape']
idx = data_dict['batched_img_info'][j]['image_idx']
result_filter = keep_bbox_from_image_range(result, tr_velo_to_cam, r0_rect, P2, image_shape)
result_filter = keep_bbox_from_lidar_range(result_filter, pcd_limit_range)
lidar_bboxes = result_filter['lidar_bboxes']
labels, scores = result_filter['labels'], result_filter['scores']
bboxes2d, camera_bboxes = result_filter['bboxes2d'], result_filter['camera_bboxes']
for lidar_bbox, label, score, bbox2d, camera_bbox in \
zip(lidar_bboxes, labels, scores, bboxes2d, camera_bboxes):
format_result['name'].append(LABEL2CLASSES[label])
format_result['truncated'].append(0.0)
format_result['occluded'].append(0)
alpha = camera_bbox[6] - np.arctan2(camera_bbox[0], camera_bbox[2])
format_result['alpha'].append(alpha)
format_result['bbox'].append(bbox2d)
format_result['dimensions'].append(camera_bbox[3:6])
format_result['location'].append(camera_bbox[:3])
format_result['rotation_y'].append(camera_bbox[6])
format_result['score'].append(score)
write_label(format_result, os.path.join(saved_submit_path, f'{idx:06d}.txt'))
format_results[idx] = {k:np.array(v) for k, v in format_result.items()}
write_pickle(format_results, os.path.join(saved_path, 'results.pkl'))
print('Evaluating.. Please wait several seconds.')
do_eval(format_results, val_dataset.data_infos, CLASSES, saved_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Configuration Parameters')
parser.add_argument('--data_root', default='/mnt/ssd1/lifa_rdata/det/kitti',
help='your data root for kitti')
parser.add_argument('--ckpt', default='pretrained/epoch_160.pth', help='your checkpoint for kitti')
parser.add_argument('--saved_path', default='results', help='your saved path for predicted results')
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--nclasses', type=int, default=3)
parser.add_argument('--no_cuda', action='store_true',
help='whether to use cuda')
args = parser.parse_args()
main(args)