This repository has been archived by the owner on Sep 22, 2024. It is now read-only.
forked from anirbankonar123/CorrosionDetector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
217 lines (178 loc) · 8.38 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""
Original code taken from https://github.com/anirbankonar123/CorrosionDetector
Adapted code in https://github.com/DZDL/CorrosionDetector
"""
from object_detection.utils import visualization_utils as vis_util
from object_detection.utils import label_map_util
import warnings
from object_detection.utils import ops as utils_ops
import streamlit as st
import numpy as np
import os
from os import listdir
from os.path import isfile, join
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import cv2 as cv
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
sys.path.append("..")
warnings.filterwarnings('ignore')
# Weights path
# change this path as in your system
PATH_TO_CKPT = './checkpoints/weights/frozen_inference_graph.pb'
# check this path, and provide the image file names properly
PATH_TO_TEST_IMAGES_DIR = './datasetsplitted/test/'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = './checkpoints/weights/rust_label_map.pbtxt'
NUM_CLASSES = 1
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
def clean_temporal_files():
"""
Remove all temporal files
"""
paths_to_remove = ['datasetsplitted/test/',
'datasetsplitted/train']
try:
for path in paths_to_remove:
for f in os.listdir(path):
os.remove(os.path.join(path, f))
except Exception as e:
print(e)
def load_image_into_numpy_array(image):
"""
Convert image to numpy array
"""
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
def run_inference_for_single_image(image, graph):
"""
Inference one single image
"""
with graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {
output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in ['num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks']:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(
tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(
tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(
tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [
real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [
real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict, feed_dict={
image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(
output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
def get_list_files_from_path(path):
onlyfiles = [f for f in listdir(path) if isfile(join(path, f))]
return onlyfiles
if __name__ == '__main__':
clean_temporal_files() # delete temporal files
st.title("Corrosion detector")
# Upload file
st.subheader("- Choose a file (video or image)")
uploaded_file = st.file_uploader("Elige una imagen compatible", type=[
'png', 'jpg', 'bmp', 'jpeg', 'mp4'])
if uploaded_file is not None: # File > 0 bytes
file_details = {"FileName": uploaded_file.name,
"FileType": uploaded_file.type,
"FileSize": uploaded_file.size}
st.write(file_details)
#######################
# VIDEO UPLOADED FILE
#######################
if file_details['FileType'] == 'video/mp4':
st.write("MP4 is not supported yet.")
#######################
# IMAGE UPLOADED FILE
#######################
elif (file_details['FileType'] == 'image/png' or
file_details['FileType'] == 'image/jpg' or
file_details['FileType'] == 'image/jpeg' or
file_details['FileType'] == 'image/bmp'):
file_bytes = np.asarray(
bytearray(uploaded_file.read()), dtype=np.uint8)
image = cv.imdecode(file_bytes, 1)
cv.imwrite(PATH_TO_TEST_IMAGES_DIR+uploaded_file.name, image)
st.write("This is your uploaded image:")
st.image(image, caption='This is the uploaded image',
channels="BGR", use_column_width=True)
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
#############
# INFERENCE #
#############
TEST_IMAGE_PATHS = get_list_files_from_path(
PATH_TO_TEST_IMAGES_DIR)
for image_path in TEST_IMAGE_PATHS:
# st.write(PATH_TO_TEST_IMAGES_DIR+image_path)
image = Image.open(PATH_TO_TEST_IMAGES_DIR+image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(
image_np, detection_graph)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=2)
st.image(image_np, caption='Output image',
channels="RGB", use_column_width=True)