\n",
+ "
\n",
"
\n",
"\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " id | \n",
- " values | \n",
- " metadata | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 5733be284776f41900661182 | \n",
- " [-0.010262451963272523, 0.02222637996192584, -... | \n",
- " {'text': 'Architecturally, the school has a Ca... | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 5733bf84d058e614000b61be | \n",
- " [-0.009786712423983223, -0.013988726438873078,... | \n",
- " {'text': 'As at most other universities, Notre... | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 5733bed24776f41900661188 | \n",
- " [0.013343917696606181, -0.0007001232846109822,... | \n",
- " {'text': 'The university is the major seat of ... | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 5733a6424776f41900660f51 | \n",
- " [-0.0085222901071539, 0.004399558219521822, -0... | \n",
- " {'text': 'The College of Engineering was estab... | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 5733a70c4776f41900660f64 | \n",
- " [-0.006695996885869355, -0.02067068565761649, ... | \n",
- " {'text': 'All of Notre Dame's undergraduate st... | \n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- "
\n"
- ]
- },
- "metadata": {},
- "execution_count": 4
- }
- ],
- "source": [
- "# we drop sparse_values as they are not needed for this example\n",
- "dataset.documents.drop(['sparse_values', 'blob'], axis=1, inplace=True)\n",
- "\n",
- "dataset.head()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "B2_Pt7N6Zg2X"
- },
- "source": [
- "## Vector Database"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "JQTfOTR6aBRS"
- },
- "source": [
- "Next we initialize the vector database. For this we need a [free API key](https://app.pinecone.io/), then we create the index:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "lgfywcQj9SmP"
- },
- "outputs": [],
- "source": [
- "index_name = 'langchain-retrieval-agent-fast'"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "C3wrG-9yaJel"
- },
- "outputs": [],
- "source": [
- "import pinecone\n",
- "import os\n",
- "\n",
- "# Load Pinecone API key\n",
- "api_key = os.getenv('PINECONE_API_KEY') or 'api_key'\n",
- "# Set Pinecone environment. Find next to API key in console\n",
- "env = os.getenv('PINECONE_ENVIRONMENT') or \"us-central1-gcp\"\n",
- "\n",
- "pinecone.init(api_key=api_key, environment=env)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "D5WT4PAN9SmP"
- },
- "outputs": [],
- "source": [
- "import time\n",
- "\n",
- "if index_name in pinecone.list_indexes():\n",
- " pinecone.delete_index(index_name)\n",
- "\n",
- "# we create a new index\n",
- "pinecone.create_index(\n",
- " name=index_name,\n",
- " metric='dotproduct',\n",
- " dimension=1536 # 1536 dim of text-embedding-ada-002\n",
- ")\n",
- "\n",
- "# wait for index to be initialized\n",
- "while not pinecone.describe_index(index_name).status['ready']:\n",
- " time.sleep(1)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "uiSWrAQ5aRco"
- },
- "source": [
- "Then connect to the index:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "bfsfuFmqaS4G",
- "outputId": "45f17443-b87a-4682-ab44-6cfd6efdc46c"
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "{'dimension': 1536,\n",
- " 'index_fullness': 0.0,\n",
- " 'namespaces': {},\n",
- " 'total_vector_count': 0}"
- ]
- },
- "metadata": {},
- "execution_count": 12
- }
- ],
- "source": [
- "index = pinecone.GRPCIndex(index_name)\n",
- "index.describe_index_stats()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "QbDTrvvm9SmP"
- },
- "source": [
- "We should see that the new Pinecone index has a `total_vector_count` of `0`, as we haven't added any vectors yet.\n",
- "\n",
- "Now we upsert the data to Pinecone:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 98,
- "referenced_widgets": [
- "d7b2791e5f3d4c68b02da4123f715a72",
- "e4e2a2e10c684ac7bbf102bad235464f",
- "5290c01d786b4baf8b5e9adfe1a5befe",
- "f073c54fdece48c0817f21f0970621d9",
- "c593df22c7294a078a8d036d10e1c117",
- "2a15af3253884c7cb97c6c6f3dd21e3f",
- "bb3e80cb30214f6b80c4316606761d34",
- "1a90f0bf4c8e4aabb8e346c3d9cfdff6",
- "6e332262dd2944a68e3415bc827f1407",
- "ded11ea7cc6b4c8aa6acbe8d03a6f742",
- "bd0b82bd40b0418a8e326bec7e1cfe9e",
- "2868c074bd55491a92000c7cd363ce6b",
- "be04454d283147d79e353c1ab24b8573",
- "89c1ae7c90004a6bae1e5aeedb19fa8c",
- "b22dd946e0ac4a0abfb27efcf811c790",
- "dd464906d8ab4900916b35dd3e779d46",
- "4b2dd63f4b5e4a40ab5ec52826cc5bb3",
- "87258691c1e041219045522dcf52bc52",
- "9f125e0287ed46ebba34a0d26cdfb8cc",
- "795dabbc25bb426c8756a36b5778f572",
- "d9dd4543607840bfb4e813e801549c66",
- "7e51d478a2e14ff09853d93c102ff40f"
- ]
- },
- "id": "AhDcbRGTaWPi",
- "outputId": "14b0b058-fa02-4078-83b9-7c3067edf613"
- },
- "outputs": [
- {
- "output_type": "display_data",
"data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "d7b2791e5f3d4c68b02da4123f715a72",
+ "version_major": 2,
+ "version_minor": 0
+ },
"text/plain": [
"sending upsert requests: 0%| | 0/18891 [00:00, ?it/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "d7b2791e5f3d4c68b02da4123f715a72"
- }
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- "collecting async responses: 0%| | 0/148 [00:00, ?it/s]"
- ],
"application/vnd.jupyter.widget-view+json": {
+ "model_id": "2868c074bd55491a92000c7cd363ce6b",
"version_major": 2,
- "version_minor": 0,
- "model_id": "2868c074bd55491a92000c7cd363ce6b"
- }
+ "version_minor": 0
+ },
+ "text/plain": [
+ "collecting async responses: 0%| | 0/148 [00:00, ?it/s]"
+ ]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "execute_result",
"data": {
"text/plain": [
"upserted_count: 18891"
]
},
+ "execution_count": 13,
"metadata": {},
- "execution_count": 13
+ "output_type": "execute_result"
}
],
"source": [
@@ -1048,7 +777,6 @@
},
"outputs": [
{
- "output_type": "execute_result",
"data": {
"text/plain": [
"{'dimension': 1536,\n",
@@ -1057,8 +785,9 @@
" 'total_vector_count': 18891}"
]
},
+ "execution_count": 14,
"metadata": {},
- "execution_count": 14
+ "output_type": "execute_result"
}
],
"source": [
@@ -1143,7 +872,6 @@
},
"outputs": [
{
- "output_type": "execute_result",
"data": {
"text/plain": [
"[Document(page_content='Episcopalians and Presbyterians, as well as other WASPs, tend to be considerably wealthier and better educated (having graduate and post-graduate degrees per capita) than most other religious groups in United States, and are disproportionately represented in the upper reaches of American business, law and politics, especially the Republican Party. Numbers of the most wealthy and affluent American families as the Vanderbilts and the Astors, Rockefeller, Du Pont, Roosevelt, Forbes, Whitneys, the Morgans and Harrimans are Mainline Protestant families.', metadata={'title': 'Protestantism'}),\n",
@@ -1153,8 +881,9 @@
" Document(page_content='In the United States, two of the wealthiest nonprofit organizations are the Bill and Melinda Gates Foundation, which has an endowment of US$38 billion, and the Howard Hughes Medical Institute originally funded by Hughes Aircraft prior to divestiture, which has an endowment of approximately $14.8 billion. Outside the United States, another large NPO is the British Wellcome Trust, which is a \"charity\" by British usage. See: List of wealthiest foundations. Note that this assessment excludes universities, at least a few of which have assets in the tens of billions of dollars. For example; List of U.S. colleges and universities by endowment.', metadata={'title': 'Nonprofit_organization'})]"
]
},
+ "execution_count": 22,
"metadata": {},
- "execution_count": 22
+ "output_type": "execute_result"
}
],
"source": [
@@ -1247,17 +976,17 @@
},
"outputs": [
{
- "output_type": "execute_result",
"data": {
- "text/plain": [
- "'Based on the provided context, Yale University is mentioned as having received significant donations from wealthy individuals and families, such as Elihu Yale, the Harkness family, the Beinecke family, John William Sterling, Payne Whitney, Joseph E. Sheffield, Paul Mellon, Charles B. G. Murphy, William K. Lanman, and the Yale Class of 1954. These donations suggest a strong presence of intergenerational wealth at Yale University. However, it is important to note that this information does not provide a comprehensive ranking of universities based on intergenerational wealth.'"
- ],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
- }
+ },
+ "text/plain": [
+ "'Based on the provided context, Yale University is mentioned as having received significant donations from wealthy individuals and families, such as Elihu Yale, the Harkness family, the Beinecke family, John William Sterling, Payne Whitney, Joseph E. Sheffield, Paul Mellon, Charles B. G. Murphy, William K. Lanman, and the Yale Class of 1954. These donations suggest a strong presence of intergenerational wealth at Yale University. However, it is important to note that this information does not provide a comprehensive ranking of universities based on intergenerational wealth.'"
+ ]
},
+ "execution_count": 24,
"metadata": {},
- "execution_count": 24
+ "output_type": "execute_result"
}
],
"source": [
@@ -1364,8 +1093,8 @@
},
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"\n",
"\n",
@@ -1384,7 +1113,6 @@
]
},
{
- "output_type": "execute_result",
"data": {
"text/plain": [
"{'input': 'What universities had the most intergenerational wealth?',\n",
@@ -1392,8 +1120,9 @@
" 'output': 'Some universities in the United States with large endowments include Harvard University, Stanford University, and Princeton University.'}"
]
},
+ "execution_count": 27,
"metadata": {},
- "execution_count": 27
+ "output_type": "execute_result"
}
],
"source": [
@@ -1421,8 +1150,8 @@
},
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"\n",
"\n",
@@ -1436,7 +1165,6 @@
]
},
{
- "output_type": "execute_result",
"data": {
"text/plain": [
"{'input': 'what is 2 * 7?',\n",
@@ -1445,8 +1173,9 @@
" 'output': 'The product of 2 multiplied by 7 is 14.'}"
]
},
+ "execution_count": 28,
"metadata": {},
- "execution_count": 28
+ "output_type": "execute_result"
}
],
"source": [
@@ -1474,8 +1203,8 @@
},
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"\n",
"\n",
@@ -1494,7 +1223,6 @@
]
},
{
- "output_type": "execute_result",
"data": {
"text/plain": [
"{'input': 'can you tell me some facts about legacy admissions?',\n",
@@ -1505,8 +1233,9 @@
" 'output': \"Legacy admissions refer to the practice of giving preferential treatment to applicants who have family members who attended the university in question. This means that if a student's parent, grandparent, or sibling attended the university, they may have a higher chance of being admitted compared to other applicants with similar qualifications. Legacy admissions are one of the factors that can be taken into account in the holistic admissions process used by some universities in the United States.\"}"
]
},
+ "execution_count": 29,
"metadata": {},
- "execution_count": 29
+ "output_type": "execute_result"
}
],
"source": [
@@ -1525,8 +1254,8 @@
},
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"\n",
"\n",
@@ -1549,7 +1278,6 @@
]
},
{
- "output_type": "execute_result",
"data": {
"text/plain": [
"{'input': 'Teach a class of 7th graders how legacy admissions ruin the playing field.',\n",
@@ -1562,8 +1290,9 @@
" 'output': 'Legacy admissions can have a negative impact on the playing field in college admissions by potentially disadvantaging applicants from underrepresented or disadvantaged backgrounds. By giving preferential treatment to legacy applicants, universities may prioritize the continuation of a privileged class rather than promoting diversity and equal opportunity.'}"
]
},
+ "execution_count": 30,
"metadata": {},
- "execution_count": 30
+ "output_type": "execute_result"
}
],
"source": [
@@ -1605,13 +1334,14 @@
}
],
"metadata": {
+ "accelerator": "GPU",
"colab": {
- "provenance": [],
- "gpuType": "T4",
"collapsed_sections": [
"bhWwrfbbVGOA"
],
- "include_colab_link": true
+ "gpuType": "T4",
+ "include_colab_link": true,
+ "provenance": []
},
"kernelspec": {
"display_name": "Python 3",
@@ -1627,102 +1357,14 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.16"
+ "version": "3.10.11"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
- "d7b2791e5f3d4c68b02da4123f715a72": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e4e2a2e10c684ac7bbf102bad235464f",
- "IPY_MODEL_5290c01d786b4baf8b5e9adfe1a5befe",
- "IPY_MODEL_f073c54fdece48c0817f21f0970621d9"
- ],
- "layout": "IPY_MODEL_c593df22c7294a078a8d036d10e1c117"
- }
- },
- "e4e2a2e10c684ac7bbf102bad235464f": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2a15af3253884c7cb97c6c6f3dd21e3f",
- "placeholder": "",
- "style": "IPY_MODEL_bb3e80cb30214f6b80c4316606761d34",
- "value": "sending upsert requests: 100%"
- }
- },
- "5290c01d786b4baf8b5e9adfe1a5befe": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1a90f0bf4c8e4aabb8e346c3d9cfdff6",
- "max": 18891,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_6e332262dd2944a68e3415bc827f1407",
- "value": 18891
- }
- },
- "f073c54fdece48c0817f21f0970621d9": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ded11ea7cc6b4c8aa6acbe8d03a6f742",
- "placeholder": "",
- "style": "IPY_MODEL_bd0b82bd40b0418a8e326bec7e1cfe9e",
- "value": " 18891/18891 [00:05<00:00, 4043.05it/s]"
- }
- },
- "c593df22c7294a078a8d036d10e1c117": {
+ "1a90f0bf4c8e4aabb8e346c3d9cfdff6": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1771,10 +1413,32 @@
"width": null
}
},
+ "2868c074bd55491a92000c7cd363ce6b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_be04454d283147d79e353c1ab24b8573",
+ "IPY_MODEL_89c1ae7c90004a6bae1e5aeedb19fa8c",
+ "IPY_MODEL_b22dd946e0ac4a0abfb27efcf811c790"
+ ],
+ "layout": "IPY_MODEL_dd464906d8ab4900916b35dd3e779d46"
+ }
+ },
"2a15af3253884c7cb97c6c6f3dd21e3f": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1823,25 +1487,10 @@
"width": null
}
},
- "bb3e80cb30214f6b80c4316606761d34": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "1a90f0bf4c8e4aabb8e346c3d9cfdff6": {
+ "4b2dd63f4b5e4a40ab5ec52826cc5bb3": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1890,26 +1539,120 @@
"width": null
}
},
- "6e332262dd2944a68e3415bc827f1407": {
+ "5290c01d786b4baf8b5e9adfe1a5befe": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1a90f0bf4c8e4aabb8e346c3d9cfdff6",
+ "max": 18891,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_6e332262dd2944a68e3415bc827f1407",
+ "value": 18891
+ }
+ },
+ "6e332262dd2944a68e3415bc827f1407": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "795dabbc25bb426c8756a36b5778f572": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "7e51d478a2e14ff09853d93c102ff40f": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "ded11ea7cc6b4c8aa6acbe8d03a6f742": {
+ "87258691c1e041219045522dcf52bc52": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "89c1ae7c90004a6bae1e5aeedb19fa8c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9f125e0287ed46ebba34a0d26cdfb8cc",
+ "max": 148,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_795dabbc25bb426c8756a36b5778f572",
+ "value": 148
+ }
+ },
+ "9f125e0287ed46ebba34a0d26cdfb8cc": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -1958,92 +1701,61 @@
"width": null
}
},
- "bd0b82bd40b0418a8e326bec7e1cfe9e": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "2868c074bd55491a92000c7cd363ce6b": {
+ "b22dd946e0ac4a0abfb27efcf811c790": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_be04454d283147d79e353c1ab24b8573",
- "IPY_MODEL_89c1ae7c90004a6bae1e5aeedb19fa8c",
- "IPY_MODEL_b22dd946e0ac4a0abfb27efcf811c790"
- ],
- "layout": "IPY_MODEL_dd464906d8ab4900916b35dd3e779d46"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d9dd4543607840bfb4e813e801549c66",
+ "placeholder": "",
+ "style": "IPY_MODEL_7e51d478a2e14ff09853d93c102ff40f",
+ "value": " 148/148 [00:00<00:00, 1274.85it/s]"
}
},
- "be04454d283147d79e353c1ab24b8573": {
+ "bb3e80cb30214f6b80c4316606761d34": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_4b2dd63f4b5e4a40ab5ec52826cc5bb3",
- "placeholder": "",
- "style": "IPY_MODEL_87258691c1e041219045522dcf52bc52",
- "value": "collecting async responses: 100%"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "89c1ae7c90004a6bae1e5aeedb19fa8c": {
+ "bd0b82bd40b0418a8e326bec7e1cfe9e": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_9f125e0287ed46ebba34a0d26cdfb8cc",
- "max": 148,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_795dabbc25bb426c8756a36b5778f572",
- "value": 148
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "b22dd946e0ac4a0abfb27efcf811c790": {
+ "be04454d283147d79e353c1ab24b8573": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
@@ -2055,16 +1767,16 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_d9dd4543607840bfb4e813e801549c66",
+ "layout": "IPY_MODEL_4b2dd63f4b5e4a40ab5ec52826cc5bb3",
"placeholder": "",
- "style": "IPY_MODEL_7e51d478a2e14ff09853d93c102ff40f",
- "value": " 148/148 [00:00<00:00, 1274.85it/s]"
+ "style": "IPY_MODEL_87258691c1e041219045522dcf52bc52",
+ "value": "collecting async responses: 100%"
}
},
- "dd464906d8ab4900916b35dd3e779d46": {
+ "c593df22c7294a078a8d036d10e1c117": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2113,10 +1825,32 @@
"width": null
}
},
- "4b2dd63f4b5e4a40ab5ec52826cc5bb3": {
+ "d7b2791e5f3d4c68b02da4123f715a72": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_e4e2a2e10c684ac7bbf102bad235464f",
+ "IPY_MODEL_5290c01d786b4baf8b5e9adfe1a5befe",
+ "IPY_MODEL_f073c54fdece48c0817f21f0970621d9"
+ ],
+ "layout": "IPY_MODEL_c593df22c7294a078a8d036d10e1c117"
+ }
+ },
+ "d9dd4543607840bfb4e813e801549c66": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2165,25 +1899,10 @@
"width": null
}
},
- "87258691c1e041219045522dcf52bc52": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "9f125e0287ed46ebba34a0d26cdfb8cc": {
+ "dd464906d8ab4900916b35dd3e779d46": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2232,26 +1951,10 @@
"width": null
}
},
- "795dabbc25bb426c8756a36b5778f572": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "d9dd4543607840bfb4e813e801549c66": {
+ "ded11ea7cc6b4c8aa6acbe8d03a6f742": {
"model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
"model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
@@ -2300,25 +2003,51 @@
"width": null
}
},
- "7e51d478a2e14ff09853d93c102ff40f": {
+ "e4e2a2e10c684ac7bbf102bad235464f": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2a15af3253884c7cb97c6c6f3dd21e3f",
+ "placeholder": "",
+ "style": "IPY_MODEL_bb3e80cb30214f6b80c4316606761d34",
+ "value": "sending upsert requests: 100%"
+ }
+ },
+ "f073c54fdece48c0817f21f0970621d9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ded11ea7cc6b4c8aa6acbe8d03a6f742",
+ "placeholder": "",
+ "style": "IPY_MODEL_bd0b82bd40b0418a8e326bec7e1cfe9e",
+ "value": " 18891/18891 [00:05<00:00, 4043.05it/s]"
}
}
}
- },
- "accelerator": "GPU"
+ }
},
"nbformat": 4,
"nbformat_minor": 0
-}
\ No newline at end of file
+}