forked from CIA-Oceanix/Conditional_StyleGAN2_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
executable file
·74 lines (56 loc) · 2.25 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import glob
import random
import numpy as np
import torch
from torch.utils import data
from torchvision import transforms
from PIL import Image
from CStyleGAN2_pytorch.config import EXTS
def cycle(iterable):
"""
Transform an iterable into a generator.
"""
while True:
for i in iterable:
yield i
class Dataset(data.Dataset):
"""
The Dataset object is used to read files from a given folder and generate both the labels and the tensor.
"""
def __init__(self, folder, image_size):
"""
Initialize the Dataset.
:param folder: the path to the folder containing either pictures or subfolder with pictures.
:type folder: str
:param image_size: the size of the tensor to output.
:type image: int
"""
super().__init__()
self.folder = folder
self.image_size = image_size
self.labels = [subfolder for subfolder in os.listdir(folder) if os.path.isdir(os.path.join(folder, subfolder))]
if not self.labels:
self.labels = '.'
self.label_number = len(self.labels)
self.path_keys = [[p for ext in EXTS for p in glob.glob(os.path.join(folder, label, f'*.{ext}'))]
for i, label in enumerate(self.labels)]
self.length = sum([len(path_keys) for path_keys in self.path_keys])
assert self.length, f"Didn't find any picture inside {folder}"
self.transform = transforms.Compose([
#transforms.RandomHorizontalFlip(),
transforms.Resize(image_size),
transforms.ToTensor()
])
def __len__(self):
return self.length
def __getitem__(self, index):
label_index = index % self.label_number # we select one label after another
if not (index // self.label_number)%len(self.path_keys[label_index]):
random.shuffle(self.path_keys[label_index])
path_keys = self.path_keys[label_index]
index = (index // self.label_number) % (len(path_keys))
with Image.open(path_keys[index]) as image_file:
img = self.transform(image_file)
label = torch.from_numpy(np.eye(self.label_number)[label_index]).cuda().float()
return img, label