From 56b508f52db66bd6a45a42996b47887c32bea944 Mon Sep 17 00:00:00 2001 From: Roni Lazimi Date: Wed, 28 Apr 2021 21:42:41 -0400 Subject: [PATCH] updated REPORT=README --- README.md | 74 ++++++++++------ data_joining.py => data-joining.py | 0 model-selection.ipynb | 134 +---------------------------- 3 files changed, 51 insertions(+), 157 deletions(-) rename data_joining.py => data-joining.py (100%) diff --git a/README.md b/README.md index f911eb9..b921982 100644 --- a/README.md +++ b/README.md @@ -1,43 +1,63 @@ -# Credit-Analysis +# Report of Credit-Analysis ## Goal -build a classification model to determine whether or not a loan applicant will receive a loan given some data about the loan and some objective data about an individual - -## Running This Notebook -### Steps -``` -python3 -m venv ./venv -source venv/bin/activate -pip install -r requirements.txt - -# open this notebook in a Jupyter processor -``` -### Links -- download [python3.9.4](https://www.python.org/downloads/release/python-394/) -- download [VSCode and its Jupyter processing extension](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter) +Build a classification model to determine whether or not a loan applicant will receive a loan given some data about the loan and some objective data about an individual +## Implementation +Try many different model building algorithms and variants of such algorithms, and select the algorithm that produced the model that had the best accuracy (in short – we will be comparing accuracies) -## Presenting -- a 6 minute live presentation will be given to the class +## Relevant files: +- [database.csv](./database.csv): contains our data +- [data-joining.py](./data-joining.py): used to produce database.csv +- [model-selection.ipynb](./model-selection.ipynb): used to produce database.csv -## Dataset +## Collecting the Dataset - the original dataset is sourced from [kaggle](https://www.kaggle.com/kapoorshivam/credit-analysis) - due to the large amount of data in the dataset, the original dataset is split into the following two files: current_app.csv and previous_app.csv - considering we need to test our data quickly, we decided to keep every 5th row from each of these datasets, and to join only those rows -- after joining every 5th row, we decided to keep 25,000 examples, considering we are preferring testing speed over maximum accuracy in our case +- after joining every 5th row, we decided to keep 50,000 examples (before cleaning), considering we are preferring testing speed over maximum accuracy in our case - such data collection was performed using a script that leverages python3's sqlite3 library - data processing is done entirely as part of our jupyter notebook – we left as much work as possible to be done in pandas - -## Approach -- train models using three standard supervised classification algorithms and analyze the results of the models built from each algorithm -- multiple augmentations of each algorithm will be analyzed, such as different feature transformations and such as different regularization techniques - -## Implementation +## Implementation of Testing our models - clean data - transform our target dimension into a binary number (simplifying from multiple values to a single value) - for each dimension that has multiple possible string values, we will create a dimension using one-hot encoding - create a class that represents a test - each test contains a training algorithm and arguments to run the training algorithm - - results of run will be presented as a single-row numpy array (that can be hstacked onto the other results) -- create a list of instances of those tests and run them and produce a numpy array that contains all test results \ No newline at end of file + - the class contains a run function that performs k-fold cross validation to obtain a model with high accuracy relative to all models in the k-fold validation, then stores those values in the class + - the class is therefore a cache where one can run and get results, or where one can get results in constant time if the test has already been ran +- create a list of instances of those tests and run them and produce a numpy array that contains all test results + +## Details we Looked for +- SVM + - for rbf and for linear kernelrs, we did not have many options beside changing the cost coefficient, C, which is used as a regularization scalar + - for the polynomial kernel, we tried combinations of degree and C +- Logistic Regression + - for both ridge and lasso regression, we tried different regularization values + - for lasso regression, we plotted the coefficients of the best model we found to see which parameters were irrelevant +- Neural Network + - We tried using the algorithms we learned in class –Stochastic GD and Logistic Activation- however we quickly learned that they'd immediately become oversaturated (this is not to say what we learned in class is unusable, what we learned will naturally lead us to derive the optimizations that others made to improve neural networks) + - We ran combinations of structures and regularization terms, and found that the hidden layer structure (4,3) with a high ∆ with relu activation worked best + - After learning this, we used these arguments to compare different initial weights, and we achieved accuracy in the high 0.60s + +## Issues we Dealt With +- With our original data, every prediction we made was entirely composed of one class – the models said yes to everything; we solved this by: + - undersampling the yes' so there was an equal amount of yes' and nos + - picking new dimensions + - performing k-fold cross validation +- The first Neural Networks we tried had much larger training accuracies than test accuracies – the classic sign of an overfit; we solved this by introducing regularization and trying different ∆ values + + +## Running This Notebook +### Steps +``` +python3 -m venv ./venv +source venv/bin/activate +pip install -r requirements.txt + +# open this notebook in a Jupyter processor +``` +### Links +- download [python3.9.4](https://www.python.org/downloads/release/python-394/) +- download [VSCode and its Jupyter processing extension](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter) \ No newline at end of file diff --git a/data_joining.py b/data-joining.py similarity index 100% rename from data_joining.py rename to data-joining.py diff --git a/model-selection.ipynb b/model-selection.ipynb index 95eec89..7045e52 100644 --- a/model-selection.ipynb +++ b/model-selection.ipynb @@ -505,72 +505,9 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\n", - "\n", - "Logreg l1 penalty with ∆=0.0001\n", - "===============================\n", - "Mean prediction: 0.0\n", - "Training accuracy: 0.49409953822473063\n", - "Test accuracy: 0.5236139630390144\n", - "\n", - "\n", - "Logreg l1 penalty with ∆=0.001\n", - "==============================\n", - "Mean prediction: 1.0\n", - "Training accuracy: 0.4961518727552591\n", - "Test accuracy: 0.5154004106776181\n", - "\n", - "\n", - "Logreg l1 penalty with ∆=0.01\n", - "=============================\n", - "Mean prediction: 0.28\n", - "Training accuracy: 0.6346844535659313\n", - "Test accuracy: 0.6529774127310062\n", - "\n", - "\n", - "Logreg l1 penalty with ∆=0.1\n", - "============================\n", - "Mean prediction: 0.28\n", - "Training accuracy: 0.6346844535659313\n", - "Test accuracy: 0.6529774127310062\n", - "\n", - "\n", - "Logreg l1 penalty with ∆=1\n", - "==========================\n", - "Mean prediction: 0.41\n", - "Training accuracy: 0.6469984607491021\n", - "Test accuracy: 0.6365503080082136\n", - "\n", - "\n", - "Logreg l1 penalty with ∆=10\n", - "===========================\n", - "Mean prediction: 0.43\n", - "Training accuracy: 0.6572601334017445\n", - "Test accuracy: 0.6386036960985626\n", - "\n", - "\n", - "coefficents: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.311, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2021-04-28T20:51:15.940448\n image/svg+xml\n \n \n Matplotlib v3.4.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAKHCAYAAADAGoKDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAADp2UlEQVR4nOzdedzs9fz/8efznIqSNiVpLyl7OC2yp2QJoQUhWbILX1H4kV0UkTWRhFCirG0oW+q0F1Ii7Ugb2crr98frPV1zzZmZz3vmc825us553G+3uV2zvebznrlm+Xxe7/f79XZECAAAAAAAAJhp82a7AQAAAAAAAFgykXgCAAAAAADARJB4AgAAAAAAwESQeAIAAAAAAMBEkHgCAAAAAADARJB4AgAAAAAAwESQeAIAAHcatte0fZrtW2wf5HS47Rtsn2H70bYvrnic3W2fuDja3MT2M21fYfvvth+6mLb5RdvvbRH/R9vblfNvtX3YzLWuvfJabjTb7QAAAM2Wme0GAAAAdNlL0l8lrRQRYfvRkraXtE5E/KPcZ9OmB4mIr0j6ykw0yHZI2iQiLh3zIQ6U9JqIOG4m2rO4RcT7Z7sNvSJixdluAwAAqMOIJwAAcGeyvqRfR0R0Xf5jV9JpLlpf0kWz3QgAAIDZQOIJAACMxfa6to+1/Rfb19v+RLl+nu23277c9p9tf8n2yl1xW9v+he0bbZ9n+3Hl+i9K2kPSm8tUqpdLOkzSI8rld9l+nO0rK9rwIts/67rfZrZPsv032xfb3rXrti/a/qTt75Upfr+yvXG57bRyt/NKG3br8zr0fb6272L775Lml/jfD3gdh7XtqbbPsX1zma63f0/so7peyytsv6jr5lX7PacBbXhBaf/1tt/Wc9v+tr9czm9gO2zvWbZ3g+1X2N7C9vmlHZ/oiX+x7d+U+55ge/2u26LEX1JiP2nb5bb72D7V9k22/2r76z1x9ynnVy6v+V/Kc3i77XnlthfZ/pntA8v2/2D7yYNeBwAAMPNIPAEAgJHZni/pu5Iul7SBpLUlfa3c/KJyerykjSStKKmTEFpb0vckvVfSapLeJOmbtteIiBcpp8d9KCJWjIjPSnqFpF+Wy+8coQ3d97ubpJMkfVXSPSU9R9KnbN+/627PkfQuSatKulTS+yQpIh5Tbn9IacPXtai+zzci/t01JewhEbFI4qeibf+Q9EJJq0h6qqRX2t6pxK4v6QeSDpG0hqTNJZ3b9Jz6tOH+kj4t6QWS7i3pHpLW6XffLltJ2kTSbpIOlvQ2SdtJeoCkXW0/tjz2MyS9VdKzSht/KumonsfaUdIWkh4saVdJO5Tr3yPpxNL+dcrz7OcQSSsrX/vHKl+vPXvaerGk1SV9SNLnO8ktAAAweSSeAADAOLZUJin2iYh/RMS/IqIzwmh3SR+JiMsi4u+S9pP0HNvLSHq+pO9HxPcj4n8RcZKkhZKeMsNt6Lajcrre4RFxW0ScI+mbknbpus+3IuKMiLhNmfzafIR2DHu+TYa2LSJ+EhEXlNfqfGXS5rEl9nmSTo6IoyLivxFxfUScO8Zz2lnSdyPitIj4t6T/J+l/De1+T3m9T1Qmx46KiD9HxFXK5FKniPorJH0gIn5T2vF+SZt3j3qS9MGIuDEi/iTpx13t/K9ymuK9B/1vS/LxOZL2i4hbIuKPkg5SJtE6Lo+Iz0XE7ZKOkLSWpDUbnh8AAJghJJ4AAMA41lUe0N/W57Z7K0chdVyuXNBkTWUiYZcyrepG2zdKepQyGTCTbei2vqStera5u6R7dd3n2q7ztypHLdUa9nybDG2b7a1s/7hMI7tJmchZvcSuK6nv9L2i9jndW9IVnQulntb1De2+ruv8P/tc7mxrfUkf63puf5Nk5ei0pna+udz3DNsX2X5xn3asLmlZLfr69338iLi1nKU4OQAAiwmr2gEAgHFcIWk928v0SfxcrUw4dKwn6TZlcuIKSUdGxMsm3Ibe+50aEdvPwDb7GfZ8mzS17avKaYpPjoh/2T5YU4mnK5Sjvtq6RtL9Ohdsr6CcbjcTrpD0vrLK4Egi4lpJLyttepSkk22f1rO64F81NTLq1+W69SRd1arVAABgxjDiCQAAjOMMZcLig7bvZvuuth9ZbjtK0htsb2h7ReX0qq+X5NCXJT3N9g6255e4x9luqik0ahu6fVfSfUsB7WXLaQvb9+tz336uU9YPGmTY823S1La7S/pbSTptqZxe1/EVSdvZ3tX2MrbvYXvzyufU7RhJOzoLlS8n6d2auX3Ez0jaz/YDpDsKge/SEKNy31263hc3SAr1TAEs0+e+Iel9tu9epvC9Ufk+AwAAdwIkngAAwMjKAf/TJN1H0p8kXaksNC1JX5B0pKTTJP1B0r8kvbbEXSGpU3D6L8oRMftojH2ShjZ03+8WSU9U1gK6Wjn16gBJd6nc1P6SjijTxXbtc/vA51vxHJra9ipJ77Z9i6R3KJMsndg/KWtj/Z9yCtu5kh5S+Zy623CRpFcrR1ddo0zyXDk0qP6xv6V8Pl+zfbOkCyXVriq3haRfOVcGPF7S3hFxWZ/7vVZZZ+oyST9TPo8vtG07AACYGY6I2W4DAAAAAAAAlkCMeAIAAAAAAMBEkHgCAAAAAADARJB4AgAAAAAAwESQeAIAAAAAAMBEkHgCAAAAAADARCwz2w1YnFZfffXYYIMNZrsZAAAAAAAAS4yzzjrrrxGxRr/blqrE0wYbbKCFCxfOdjMAAAAAAACWGLYvH3QbU+0AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBGzmniy/STbF9u+1Pa+fW6/i+2vl9t/ZXuDrtv2K9dfbHuHxdpwAAAAAAAANFpmtjZse76kT0raXtKVks60fXxE/Lrrbi+RdENE3Mf2cyQdIGk32/eX9BxJD5B0b0kn275vRNy+eJ/F4vftc67Sh0+4WFff+E/de5Xltc8Om2qnh65N7J0odq62e2mLnavtXtpi52q7l7bYudrupS12rrZ7aYudq+1e2mLnarvnYmxbc/E5L22xc7Xds/m+nmscEbOzYfsRkvaPiB3K5f0kKSI+0HWfE8p9fml7GUnXSlpD0r7d9+2+37BtLliwIBYuXDiJp7NYfPucq7TfsRfon/+dyq8tv+x8feBZD2p8gxO7eGLnaruXtti52u6lLXautntpi52r7V7aYudqu5e22Lna7qUtdq62ey7GtjUXn/PSFjtX2z2b7+s7K9tnRcSCvrfNYuJpZ0lPioiXlssvkLRVRLym6z4XlvtcWS7/XtJWkvaXdHpEfLlc/3lJP4iIY4Ztc64nnh75wR/pqhv/qXecfKju/+fL7rh+uWXm62HrrTI09uw/3aj/3LbogDBiZzZ2NrdNbH3sbG6b2PrY2dw2sfWxs7ltYutjZ3PbxNbHzua2ia2Pnc1tL22xbc3F57y0xc7mtu8U7+vNN5cOPrj+/ndiwxJPS3xxcdt72V5oe+Ff/vKX2W5OK1ff+M++1/d7w9feh9iZjZ3NbRNbHzub2ya2PnY2t01sfexsbpvY+tjZ3Dax9bGzuW1i62Nnc9tLW2xbc/E5L22xs7ntufq+nouYajeHdEY89Vp7leX18323JfZOEDub2ya2PnY2t01sfexsbpvY+tjZ3Dax9bGzuW1i62Nnc9vE1sfO5raXtti25uJzXtpiZ3Pbc/V9fWd1Zx3xdKakTWxvaHs5ZbHw43vuc7ykPcr5nSX9KDJTdryk55RV7zaUtImkMxZTu2fNPjtsquWXnT/tuuWXna99dtiU2DtJ7Gxum1j+T0ta7Gxum1j+T0ta7Gxum1j+T0ta7Gxue2mLbWsuPuelLXY2tz1X39dz0aytahcRt9l+jaQTJM2X9IWIuMj2uyUtjIjjJX1e0pG2L5X0N2VySuV+35D0a0m3SXr10rCiXadI2TiV84ldPLFztd1LW+xcbffSFjtX2720xc7Vdi9tsXO13Utb7Fxt99IWO1fbPRdj25qLz3lpi52r7Z7N9/VcNGtT7WbDXJ9qBwAAAAAAcGdzZ51qBwAAAAAAgCUYiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMxKwknmyvZvsk25eUv6sOuN8e5T6X2N6j6/qf2L7Y9rnldM/F13oAAAAAAADUmK0RT/tKOiUiNpF0Srk8je3VJL1T0laStpT0zp4E1e4RsXk5/XlxNBoAAAAAAAD1Zivx9AxJR5TzR0jaqc99dpB0UkT8LSJukHSSpCctnuYBAAAAAACgrdlKPK0ZEdeU89dKWrPPfdaWdEXX5SvLdR2Hl2l2/8+2J9ROAAAAAAAAjGmZST2w7ZMl3avPTW/rvhARYTtGfPjdI+Iq23eX9E1JL5D0pQHt2EvSXpK03nrrjbgZAAAAAAAAjGtiiaeI2G7Qbbavs71WRFxjey1J/Wo0XSXpcV2X15H0k/LYV5W/t9j+qrIGVN/EU0QcKulQSVqwYMGoCS4AAAAAAACMabam2h0vqbNK3R6SjutznxMkPdH2qqWo+BMlnWB7GdurS5LtZSXtKOnCxdBmAAAAAAAAjGC2Ek8flLS97UskbVcuy/YC24dJUkT8TdJ7JJ1ZTu8u191FmYA6X9K5ypFRn1vszwAAAAAAAABDOWLpmX22YMGCWLhw4Ww3AwAAAAAAYIlh+6yIWNDvttka8QQAAAAAAIAlHIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATASJJwAAAAAAAEwEiScAAAAAAABMBIknAAAAAAAATMSsJJ5sr2b7JNuXlL+rDrjfD23faPu7PddvaPtXti+1/XXbyy2elgMAAAAAAKDWbI142lfSKRGxiaRTyuV+PizpBX2uP0DSRyPiPpJukPSSibQSAAAAAAAAY5utxNMzJB1Rzh8haad+d4qIUyTd0n2dbUvaVtIxTfEAAAAAAACYPbOVeFozIq4p56+VtOYIsfeQdGNE3FYuXylp7ZlsHAAAAAAAANpbZlIPbPtkSffqc9Pbui9ERNiOCbZjL0l7SdJ66603qc0AAAAAAACgx8QSTxGx3aDbbF9ne62IuMb2WpL+PMJDXy9pFdvLlFFP60i6akg7DpV0qCQtWLBgYgkuAAAAAAAATDdbU+2Ol7RHOb+HpONqAyMiJP1Y0s7jxAMAAAAAAGDxmK3E0wclbW/7EknblcuyvcD2YZ072f6ppKMlPcH2lbZ3KDe9RdIbbV+qrPn0+cXaegAAAAAAADSa2FS7YSLieklP6HP9Qkkv7br86AHxl0nacmINBAAAAAAAQGuzNeIJAAAAAAAASzgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJiIqsST7UfWXAcAAAAAAAB01I54OqTyOgAAAAAAAECStMywG20/QtI2ktaw/caum1aSNH+SDQMAAAAAAMDcNjTxJGk5SSuW+9296/qbJe08qUYBAAAAAABg7huaeIqIUyWdavuLEXH5YmoTAAAAAAAAlgBNI5467mL7UEkbdMdExLaTaBQAAAAAAADmvtrE09GSPiPpMEm3T645AAAAAAAAWFLUJp5ui4hPT7QlAAAAAAAAWKLMq7zfd2y/yvZatlfrnCbaMgAAAAAAAMxptSOe9ih/9+m6LiRtNLPNAQAAAAAAwJKiKvEUERtOuiEAAAAAAABYslRNtbO9gu23l5XtZHsT2ztOtmkAAAAAAACYy2prPB0u6T+StimXr5L03om0CAAAAAAAAEuE2sTTxhHxIUn/laSIuFWSJ9YqAAAAAAAAzHm1iaf/2F5eWVBctjeW9O9xN1pWxTvJ9iXl76oD7vdD2zfa/m7P9V+0/Qfb55bT5uO2BQAAAAAAAJNRm3h6p6QfSlrX9lcknSLpzS22u6+kUyJik/JY+w6434clvWDAbftExObldG6LtgAAAAAAAGACale1O8n22ZK2Vk6x2zsi/tpiu8+Q9Lhy/ghJP5H0lj7bPcX243qvBwAAAAAAwJ3f0BFPtjcrfx8maX1J10i6WtJ65bpxrRkR15Tz10pac4zHeJ/t821/1PZdWrQFAAAAAAAAE9A04umNkvaSdFCf20LStoMCbZ8s6V59bnrbtAeJCNvR0I5e+ykTVstJOlQ5WurdA9qxl/I5aL311htxMwAAAAAAABjX0MRTROxV/j5+1AeOiO0G3Wb7OttrRcQ1tteS9OcRH7szWurftg+X9KYh9z1UmZzSggULRk1wAQAAAAAAYExVxcVtv9r2Kl2XV7X9qhbbPV7SHuX8HpKOGyW4JKtk25J2knRhi7YAAAAAAABgAmpXtXtZRNzYuRARN0h6WYvtflDS9rYvkbRduSzbC2wf1rmT7Z9KOlrSE2xfaXuHctNXbF8g6QJJq0t6b4u2AAAAAAAAYAKqVrWTNN+2IyIkyfZ8ZX2lsUTE9ZKe0Of6hZJe2nX50QPiB9aWAgAAAAAAwJ1DbeLph5K+bvuz5fLLy3UAAAAAAABAX7WJp7cok02vLJdPknTY4LsDAAAAAABgaVeVeIqI/0n6dDkBAAAAAAAAjYYmnmx/IyJ2LYW8o/f2iHjwxFoGAAAAAACAOa1pxNPry98dJ9wOAAAAAAAALGGaEk/flfQwSe+NiBcshvYAAAAAAABgCdGUeFrO9vMkbWP7Wb03RsSxk2kWAAAAAAAA5rqmxNMrJO0uaRVJT+u5LSSReAIAAAAAAEBfTYmntSLilbbPiYhDF0uLAAAAAAAAsESY13D7fuXvKybdEAAAAAAAACxZmkY8XW/7REkb2j6+98aIePpkmgUAAAAAAIC5rinx9FTlqnZHSjpo8s0BAAAAAADAkmJo4iki/iPpdNvbRMRfbK8QEbcuprYBAAAAAABgDmuq8dRxH9u/lvRbSbL9ENufmlyzAAAAAAAAMNfVJp4OlrSDpOslKSLOk/SYCbUJAAAAAAAAS4DaxJMi4oqeq26f4bYAAAAAAABgCdJUXLzjCtvbSArby0raW9JvJtcsAAAAAAAAzHW1I55eIenVktaWdLWkzctlAAAAAAAAoK+qEU8R8VdJu0+4LQAAAAAAAFiCVI14sr2O7W/Z/nM5fdP2OpNuHAAAAAAAAOau2ql2h0s6XtK9y+k75ToAAAAAAACgr9rE0xoRcXhE3FZOX5S0xgTbBQAAAAAAgDmuNvF0ve3n255fTs+XdP0kGwYAAAAAAIC5rTbx9GJJu0q6VtI1knaW9KIJtQkAAAAAAABLgKpV7SS9W9IeEXGDJNleTdKByoQUAAAAAAAAsIjaEU8P7iSdJCki/ibpoZNpEgAAAAAAAJYEtYmnebZX7VwoI55qR0sBAAAAAABgKVSbPDpI0i9tH10u7yLpfZNpEgAAAAAAAJYEVYmniPiS7YWSti1XPSsifj25ZgEAAAAAAGCuq54uVxJNJJsAAAAAAABQpbbGEwAAAAAAADASEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYCBJPAAAAAAAAmAgSTwAAAAAAAJgIEk8AAAAAAACYiFlJPNlezfZJti8pf1ftc5/Nbf/S9kW2z7e9W9dtG9r+le1LbX/d9nKL9xkAAAAAAACgyWyNeNpX0ikRsYmkU8rlXrdKemFEPEDSkyQdbHuVctsBkj4aEfeRdIOkl0y+yQAAAAAAABjFbCWeniHpiHL+CEk79d4hIn4XEZeU81dL+rOkNWxb0raSjhkWDwAAAAAAgNk1W4mnNSPimnL+WklrDruz7S0lLSfp95LuIenGiLit3HylpLUn1VAAAAAAAACMZ5lJPbDtkyXdq89Nb+u+EBFhO4Y8zlqSjpS0R0T8Lwc8jdSOvSTtJUnrrbfeSLEAAAAAAAAY38QSTxGx3aDbbF9ne62IuKYklv484H4rSfqepLdFxOnl6uslrWJ7mTLqaR1JVw1px6GSDpWkBQsWDExwAQAAAAAAYGbN1lS74yXtUc7vIem43juUleq+JelLEdGp56SICEk/lrTzsHgAAAAAAADMrtlKPH1Q0va2L5G0Xbks2wtsH1bus6ukx0h6ke1zy2nzcttbJL3R9qXKmk+fX6ytBwAAAAAAQCPnAKKlw4IFC2LhwoWz3QwAAAAAAIAlhu2zImJBv9tma8QTAAAAAAAAlnAkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARJJ4AAAAAAAAwESSeAAAAAAAAMBEkngAAAAAAADARs5J4sr2a7ZNsX1L+rtrnPpvb/qXti2yfb3u3rtu+aPsPts8tp80X6xMAAAAAAABAo9ka8bSvpFMiYhNJp5TLvW6V9MKIeICkJ0k62PYqXbfvExGbl9O5k24wAAAAAAAARjNbiadnSDqinD9C0k69d4iI30XEJeX81ZL+LGmNxdVAAAAAAAAAtDNbiac1I+Kacv5aSWsOu7PtLSUtJ+n3XVe/r0zB+6jtu0yonQAAAAAAABjTMpN6YNsnS7pXn5ve1n0hIsJ2DHmctSQdKWmPiPhfuXo/ZcJqOUmHSnqLpHcPiN9L0l6StN566434LAAAAAAAADCuiSWeImK7QbfZvs72WhFxTUks/XnA/VaS9D1Jb4uI07seuzNa6t+2D5f0piHtOFSZnNKCBQsGJrgAAAAAAAAws2Zrqt3xkvYo5/eQdFzvHWwvJ+lbkr4UEcf03LZW+WtlfagLJ9lYAAAAAAAAjG62Ek8flLS97UskbVcuy/YC24eV++wq6TGSXmT73HLavNz2FdsXSLpA0uqS3rtYWw8AAAAAAIBGjlh6Zp8tWLAgFi5cONvNAAAAAAAAWGLYPisiFvS7bbZGPAEAAAAAAGAJR+IJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATQeIJAAAAAAAAE0HiCQAAAAAAABNB4gkAAAAAAAATMWuJJ9ur2T7J9iXl76p97rO+7bNtn2v7Ituv6Lrt4bYvsH2p7Y/b9uJ9BgAAAAAAABhmNkc87SvplIjYRNIp5XKvayQ9IiI2l7SVpH1t37vc9mlJL5O0STk9aeItBgAAAAAAQLXZTDw9Q9IR5fwRknbqvUNE/Cci/l0u3kWlvbbXkrRSRJweESHpS/3iAQAAAAAAMHtmM/G0ZkRcU85fK2nNfneyva7t8yVdIemAiLha0tqSruy625XlOgAAAAAAANxJLDPJB7d9sqR79bnpbd0XIiJsR7/HiIgrJD24TLH7tu1jRmzDXpL2kqT11ltvlFAAAAAAAAC0MNHEU0RsN+g229fZXisirilT5/7c8FhX275Q0qMl/VzSOl03ryPpqgFxh0o6VJIWLFjQN7kFAAAAAACAmTebU+2Ol7RHOb+HpON672B7HdvLl/OrSnqUpIvLFL2bbW9dVrN7Yb94AAAAAAAAzJ7ZTDx9UNL2ti+RtF25LNsLbB9W7nM/Sb+yfZ6kUyUdGBEXlNteJekwSZdK+r2kHyzOxgMAAAAAAGA456JwS4cFCxbEwoULZ7sZAAAAAAAASwzbZ0XEgn63zeaIJwAAAAAAACzBSDwBAAAAAABgIkg8AQAAAAAAYCJIPAEAAAAAAGAilpntBgAAAAAA0M+3z7lKHz7hYl194z9171WW1z47bKqdHrr2bDcLwAhIPAEAAAAA7nS+fc5V2u/YC/TP/94uSbrqxn9qv2MvkCSST8AcwlQ7AAAAAMCdzodPuPiOpFPHP/97uz58wsWz1CIA4yDxBAAAAAC407n6xn+OdD2AOycSTwAAAACAO517r7L8SNcDuHMi8QQAAAAAuNPZZ4dNtfyy86ddt/yy87XPDpvOUosAjIPi4gAAAACAO51OAXFWtQPmNhJPAAAAAIA7pZ0eujaJJmCOY6odAAAAAAAAJoLEEwAAAAAAACaCxBMAAAAAAAAmgsQTAAAAAAAAJoLEEwAAAAAAACaCxBMAAAAAAAAmgsQTAAAAAAAAJoLEEwAAAAAAACaCxBMAAAAAAAAmgsQTAAAAAAAAJoLEEwAAAAAAACaCxBMAAAAAAAAmgsQTAAAAAAAAJsIRMdttWGxs/0XS5bPdjhmyuqS/Enunjp3NbRM7N7ZN7NzYNrFzY9vEzo1tEzs3tk3s3Ng2sXNj28TOjW3P5nNeUqwfEWv0vSUiOM3Bk6SFxN65Y+dqu5e22Lna7qUtdq62e2mLnavtXtpi52q7l7bYudrupS12rrZ7aYudq+1e2mLnarvbPuel4cRUOwAAAAAAAEwEiScAAAAAAABMBImnuetQYu/0sbO5bWLnxraJnRvbJnZubJvYubFtYufGtomdG9smdm5sm9i5se3ZfM5LvKWquDgAAAAAAAAWH0Y8AQAAAAAAYCJIPAFLCNvL2950ttsxF9h+0Gy3Ac1sb1hz3YTbsKrtBy+mbT2y5roBsbvUXNdz+5Hl7961bZwptg8of4e2cUDsLuXv4n4vtGnz2LFzVZv3l+27tNjunHytW76/xv4sdL5j2rzmAGaf7fm23zDb7RjXbBzHjLuf6bTuZFq15CLxtBRrOqCxvdKEtvv1htvXm8R2J8n21rO8/adJOlfSD8vlzW0fXxl7Ss11Pbc/a9ipYpvzbf+2pn1DHmNt29vYfkznNEL4p2yfYftVtlceY9uPsr1nOb/GJA+AbT9s2GmEx1nf9nbl/PK27z6pNs+gb/a57piawM5BXNN1A2J/Ynsl26tJOlvS52x/pDJ25M9Tl0Mqr+tnv8rruj3c9r0lvbgk2FbrPlVud1xPse2KNvbTien3/pikNm1uEzsjbD/S9t3K+efb/ojt9Se4yTbvr1+Wdh45xnZn9bW2/aHy/bGs7VNs/8X28ytC27T7mLLt2u+abh8vf385RixQxfYTbC8/RhwH+JUi4nZJz53tdoyj5XHMu3suz7f9lcpNj7WfGVmr6PuV20CxzGw3AOOzvYqkV0fE+4bcZ76kXSWtLemHEXGh7R0lvVXS8pIeOmQT59h+W0R8bQabLUmPaLj925KqD6h72X7jsNsjYugBpO17SHqepM3KVb+RdFREXD8k7FNq0eay3Qsk9RZdu0nSQknvbdj+/pK2lPQTSYqIc5uSIbbvKmkFSavbXlWSy00rKd8vwzxtyG0h6dhhwRFxu+2Lba8XEX9q2NYiSgJhN0m/lnR713ZPq4mPiEfb3kTSiyWdZfsMSYdHxEkV236npAWSNpV0uKRlJX1ZUlMid2hCLiIGvWYHlb93Lds9T/m/erDyvdH0eZLtl0naS9JqkjaWtI6kz0h6QkNcq89SeYz3KP8vv4iIfzTdv8RsJukBklbued1WUr4ONbaX9Jae657c57p+Vo6Im22/VNKXIuKdts9vaPPYnyfbj5C0jaQ1el7zlSTNb4h9sqSnSFrb9se7blpJ0m3DYpXvgVMkbSTprK42S/l52qghvrsduyh/Y26x/Xbl9+F7I+LsASE/lHSDpBVt39z9UMp9umEdH3+zfaKkjfrtmEbE0yvb/EhJ50bEP0pi4GGSPhYRl0+gzW1i27S526clPcT2QyT9n6TDJH1J0mMrtjvq/1dq9/5azvbzJG3T77tzyPelNAOvte2NJV0ZEf+2/Tjl9+2XIuLGplhJT4yIN9t+pqQ/SnqW8jvwyw1xbdo9z/ZbJd233/d2w3f1f20fKmmdnu+QTuzrGtotZwfOkzT1XXeVpBNqXq+WsVbu+3THnhEVBWxbxo7d5rbxc/G1Ll4o6dO2/ybpp8rPxM8i4oZhQRERtr8vaeSR6i32uzrxy0i6vbRhXUlbSfp9RJxTuf2zJH1B0lebnmdXzHe06LFAd5ubft9+bvsTkr4u6Y59robv6kFt2Vh5PPSciHhAxf0fqTweWV+ZY+h8d9XsS+yvEY9juqxre7+I+IBz5OY3JA39H83QfubZtreIiDMr77/UI/E0B5Qvu/8n6d7KpMxRkt4t6QXl/DCfl7SupDMkfdz21cqD130j4tsNsdtKOtj2SyS9MiIuHfc5jMjNdxmqeyTHyyV9tnrD9v0k/UjSCcovLUvaQtJbbW8bEa1G6TT4gTKJ8tVy+TnKA9lrJX1Rw5M9/42Im3K/4A5NOwMvl/R65fuq+6DgZkmfGBYYEXs2PHaNVSVdVJI+3T+ONQeNO0naNCL+Pe7GI+KScgC1UNnj+9CyY/XWhp2RZyoTtmeXx7nadaOHOv+/eyqTDD8qlx8v6RcakKyLiMdLku1jJT0sIi4olx+o/KGu8WrlD/qvymNeYvueFXGd57Wp8nPQOch/mvI7pcZlyh64j9u+RWWHMyKOGxKzqaQdJa2i6e/7WyS9bNjGbL9S0quUSYnuZNHdJf28ss3L2F5LmbR/W2XM2J8nSctJWlH5m9z9XrpZ0s4NsVcr38NPL9vtuEVS05D770TEx21/OiJe2XDfJv8vIo62/ShJ20n6sDLRsdWA+789IvaxfVxEPGPEbT1Fmfg4UlOJ2XGMmohp0+Y2sW3a3O22cgD1DEmfiIjPl9/3GqP+f6V2769XSNpdi34HSM2dGzPxWn9T0gLb91GuVHSc8rf5KRWxy5a/T5V0dJ/f5kHatPs5yt/F3u+QGjsq/6c7aPp3SBXbL5T0TkknKpMRUv6uvd/2uyLiSxOKfaKy0++Srth1JN3H9qsi4sQJxY7d5hl4znPute6IiD3KY91b+bv2SeXvZc2x6LgH+GPtd5V2vkzSAZL+XjrQ9lHu9z3U9hciomYE9W6S9pR0pu2Fys7KExuSdQeWv8+SdC9NJayfK+m6im1uXv52jwIK5TFdo/L/2U2ZcHqQpA8ov19qfF6533GWpjqFa41zHNPxYklfsb2f8n/7/Yg4uCFm7P3MLltJ2t325crjmE6ibbGUZ5iTIoLTnfwk6cfKA8wdJH1UZQSOpHtVxF4oaV45f1dJN0q6x4jbf7Lyy+67ygPP4yUd3xDzsAGnh0u6piH2z8pEQN/TiG0/Z8T7HyNp1z7XP1vSN4fE3dj92vSeKrd99qDrJF3QEPt55Y/E+ZI2UU7P+Uzldl/b8v35VElvlvSOzqky7rH9TpWxP5C0Yos2P7h8ln6n3Pl5WLn+3pIub4g9o+d/czdJ54+w7RMlrdV1eS1lj2NT3EU11w2I/VX5e075u8yIbT5N0t27Lt9dmTwa5TW/l6TXSfqTpFsqYx4xxv92ZUkbKL8j1+86rTbCY+xcPkufKpc3Gvb574kd+/Mkaf0WscuOEXNW+XvKuNvteqzOe+sDkp7Xfd2A+3c+P0eOsa0jy983t2xzpw3vkPSS7usm0OaxY9u0uSf2VOU0rt+Vz+M8Nfy2jPv/bfv+krRL+bvXbLzWXY+xT+cz3fR8u2I/KOm3ys6rZSWt0fkOnlS7Je3deV+MEXtA+TvW50nSxZJW6XP9qpJ+N8HY30jaoM/1G0r6zQRjx27zLL9es/Jad933+cqO4F8o943frMrf+PJ5uk3S75W/zRdowvtdki4qr816yqTC6uX6FVS579X1WPOUnUNXKfeB3qWGfRJJC2uum6mTclT8j5W/D+9V7if/YcTHaPyeGxI78nGMph9fbqWcqvfJznWV2x15P7Mrdv1+p0n9j5aEEyOe5obVImL/cv6EMuR994j4X0Xsfzr3i4h/2b4shk/ZmsZZ5O1NylEKn5RUs01peC9006ihf2qMXrcBYsT7PygiFhlhEBHftP3+IXF/Ubued0mab3vLiDhDkmxvoalpNk1TZl6rHJnxb2Wv7AmS3lOz0Yg4xPY2yoP1ZbquH9prV9r4GeWP8OOVPe87q3IkTESc6qwvsklEnGx7BTVMK+pyq6RznfUs7hj1FBVTAopDSnvfGhH/7Iq/uoyCGuYbtj8raZXSI/ZiSZ+r3K4krRsR13Rdvk65Y9PkfNuHaar3a3flD3SNU8s0jOVtb68cEfSd2gZLWlPSf7ou/6dc16i0+f7K5/lT5Xukdsj3paXdG2j6e/PFgwIi4iblFNXnOqcar1liV7S9YtRN7bwmunqsIuIyV9Z4avN5knSXMuWlN7amp3JL2/trtCHubabn9LqqfC62l3RAGe4+rI5km6lUndpBu9v+nHpGyUbE3yrbfEvpIX2+pMfYnqep0Soz3eY2sW3a3K3Ti/2SiLjWWU/xw5Wxo/5/pXbvr/0kHa0c+XRoZRs7ZuK1/q/t50raQ1O94bWv8zslfUjSTZHTym9VHnROst17SvqYctTTu4fcr5+n2N5XOarhQyPGSuW7ps/1/1PzCPY2sctIurLP9Vep+X/VJrZNm9vGz8XXuuNgZeLoM5J+HBF/rIyTsuO9jXH2u/4TOT3uBtuXRsRfJSkibrX9n4bYOzgXJ9lTOVrym5K+IulRytFXmw8JvZvtjSLisvI4Gyo7Opu2t6ak90u6d0Q82fb9lcmVzzeEfkJZ5+15EbGwPNaox1A/tv1h5Uiy7n3zmn2+7uOYo1R3HNN73HWDcn/zINWP8hp5P7PrPpeXUcCbRMThttdQjl7HACSe5ghPrxlyvXJOqqXGnezNuqabWNLG5XLjcEDbH5T0DElviIgfjtLeKNODBjxu04/U9RFxxCjbm0HDatAMu+3vEXFqy22/VNIXbK+o/P/cLOmlzmKwH2iIfWpEvE1d04JKgvLopo06i7durOwp6K6XVHOgvE1EPNj2+RHxLtsHKUcjNfKidYfWVkXdoaIzmmxkJRlxVUT0LVo76Pqu2w8syZublUN13xEVtaG6nGL7BE1Nk91N0skVcXtKeqWkvcvl05RTXWrsK+klyl7ClysLIh5W22Dle+EM298ql3eSVPsZvYcyoXijpL9J+mtENCVSO45TJqtO1ojDtm2/RjlS9DpNJcxD2YvX5BAtWrOt33X9ttvm83S08jNwmEYfpj7OEPc203N67aqsHXJgRNzonKq4z5D7t5lKNVO1qUZNxLRpc5vYNm2WdMf33lHdv80lCVvzvpRG//9K7d5f1zvreG3o0et4zcRrvWd5nPdFxB/KQV9tofNfRsQd3xWR9bh+qubvjzbt/o3tSyTd29OnGNdM/WhbE+t9yqlQJ0q6oly3njJJ2XTg2Cb2C8opTF/ril1X+b5rOshuE9umzW3j5+JrLUmKiNVtP0DSYyS9z1ln8+KIeEFFbNsD/HH2u5a3/VBlgn25ct7lVFUDyFnj6Ubla7RvTJWH+JWbV6x9g6Sf2L6sbHN95f5bky8qp/R1jgd+p6z31PR/WkvSLpIOsn0vZZ2k2qRiR2fq9YKu66oSQBFxq7LNteUNhh5rjqDNfuY7NUbN16WZI0ZNZmJxs/1HDe6RGNqj7YYVa2JIQdIymuSpEfGvyqYOVJJk2yp3mHeMiIGjJWyfHhFjrxLn6UW67yOpU5uqJtl2paR+vbCW9PqI6Luyhu1jI2JoEcNaLquslZEbtTFnd+/oDrpuQOxvJN0/xvgysP2riNjK9unK+ejXK4cg36ci9lyVukMR8dBy3QURUVVA0vZyku5bLl4cEf8dod0/lfSEiKjuteqJX2SkVkTcMkL8M5U7X1JOWfvWsPt3xS0vab2IuHjkRrfkXEHv0eXiaVFZXLMr/n7KXss3KF+vdSpizo2IzUdta4m9VNJWI47w7BT5fr1yKmbHSpKeGREPqXiMNp+nsyLi4aPGldhfRcSwejvDYp8cEVUJ4wHx85Wf+80a77xo7EsqemIHxY5dm6q0+eRxdlxbtrlN7NhtLvGnSHrWKL8tPfGLHPhFxB8q4kZ+f5Xv904dr5f23l7T0dPytd47Ij7WdF3P7fdSdqB8Wbmv073AwGdqPx/jtrts/wT1GV01bF+vK37smlilc3QHLVq0+oYJx95P2UHaHXt8RPx6wrFjt7lt/Fx8rUv8SsoD8scq9yVWl3R6lNpPDbF3HOBHxH2dI16PjojqA/xR97ts/3jY7TXfw+4asTQO58jSzvfGb6OirqntMyNiC9vndO1bj7QvZXsdZXLuucpRVt+KiLeO/ATqttW2mHrndXq2Fh211Dj6s+V+5rkqNV+7XuvzGxL9SzVGPM0BEbFBi9i+OxtlB/K5yqLDg6zaNulke2vlDthOypEtr1ZO3Rvm1R6yTHzFkM0dR2ljj89pcM/ssBEiH7P9mEE3RsRpTRvu/eJ0KbA37IvT7Va06rhQWe/jmqY79vFd5+qKH1ZOnwrVj6T5d0T8p/M8nauHVB2sO1cZOkK5YpCVK1rsUfM6F39QrvxxvKYXNq9Zpa3NSK2Os5V1jk62vYLtuzclrmw/Xfk6L6ccBbC5pHdX/ii3WTGxYwVJN3cOOm1vWHnQuaNyJ/Mxyp78Hyl7l2p81/ZTImKcJWuvUD7HUbQp8t3R5vP0HduvkvQtTR+mXjN1bOwh7hHxA9tPVa7wcteu66um7ESLVSojC1w/UDk8vnvbjSNxOkknZ6H87tjGNpQ2/8/2yqMmYlq2uU3s2G0u/i7pAtsnafr3Xs2qZWP37I7z/iqdAqfb3iYi/tK0jQGPMfZrrZxi15tkelGf67rtUO6zjqZ3YN2iXEm4yrjtjohrJTUmx4fEj5V0KrE3SBprBeSWsb9R1h9a3LFjt7lt/Fx8rYufdZ0+ERH9pu4NMu6iLt1G2u+qTfDb3j56Rr27a2qx+ywsULmvuYKkNyprBr3M9ia2N42I7zaE/sO5OneUx9laI+4Llf/NQcrRT/dVV3Hxfs+367ZxpvkdOOS2Wscpn+NZ6tr/qdRmP/M/EREuUxKdM1QwBImnOcD28yPiy+X8IyPi5123vSYimlZM6tz3ocok0C7KA+/aof0jc9ZD2kVZRO8oZSG9hVE3hW7Yl1DNkM3PRcQTqxra++AR7xonTv2TaZ1pPeuqrnbROF+cbVa06lhd0q+dq8t1H7A2JjQiojM8+5u2vyvpriMcEJ3q8esOHaRcsvpiSSo/jEcpi9fX+H05zdPoU0DGXSFOUqvE1Ts1/lKzbVZMbDuc+EnKRNPHIuLqyvZ27K1cUfI/yrpStVM/pFxN7ye2v6fp7+uBO3xlFMWptr9YM0JggLE/T8qDXWn6FKbaqWNjD3F3i1ptXVbVGKtUlvfW45QH2d9XLmbxM1VMAbP9NOUB/r2Vi1Ksrzwwalz2uRgrEdOyzWPHtmlzcazG/90f+8Cv7fvL9oFaNAlT874e+bV21nV6nhad4nd35VThgcr+zRG2nx0R32xq30y2uyt2E+XU/N7Xq/E7pBygHiLpfsok/HxJ/6j8vh30mIdGxF6zELt/TNVGXZyxY7e5bfyd/bXujAKxvULktKpRtDrAn6EOw0EOkNSbiGk7dV3Kfa2zJD2iXL5KOR2/KfH0RmUpio1t/1y5uEFtx9kiIuJ3ml43rt/z7fiiRpzmF12jV50jXTdT7rtcHPWzEtaJiCdV3rdXZz/z35L+q9H2M9vWfF3qkHiaG96oqYLCvXVGXqwhS3WXA/LnltNflV8Arszkb+Q+tRU6Gg4oXqr8wvm0cknlf7uySF1tL8MQa4wbaPsbEbFrOX9ARLyl67YTByW0ImLagbtz7vbblQf2r63c/MhfnBFxnqTzbH81Rphq1mP/UQNsbxsRP3KfAqi2a4u3tqk7tGx0TTeLiN+5uXbYHVokGKUWI7WKcRNXbZaa3S6mT7u8wGUqpu3nV8SPfdAZEa8pvWBbOEcynhERf66MbbPz9qdyWq6cRtGmyPf+I27rDhFRm0jsF9vme3PsWm1d/t+Y295ZOUrjnIjYs7xXvtwQ0/FeSVsrp5891PbjlUW3a42biGnT5jaxUovkUUQc4fGn67Y58Gvz/vqKcr/lqcoaSHsoF/OoMc5r/QvlaMXVNb1w7S2qX8zhu84i4RtoxGkfLdrdcbiyk+KjykTfnmouAt/xCWWnxNHKBPYLNTWdfVyfnaXYNgvUtIlt0+a28Xfq19o5lf3zylHF69l+iKSXR8SrKsL7HeCPUqeyVYdhg0WGNLXcx+zYOCJ2K8nwTlHzxuL1EXG27ccqOwqtEUtRVBjWhtUj4hvOBTAUEbfZrqqb5BwV+xllp7CVyf+XR9007V/YflBEXFCzrW5t9jOjfc3XpQ6Jp7nBA873u9zrt8rRBjtGxKWSZLt2JEybldrWUhYsfK6kg51zpZe3vUxUFBZ2DhN9nqbmNv9G0lejbsrJyv0SIh0NSZFNus5vL+ktXZcbE1q2n6A8AAtJ7x/xC2jsL05JG9geq5czxiuK/ljllKl+I2WqirdGrrb4OY3XO7DQi67wtrA22Fmf5M1adOpHTWKhzUgtafzE1UXlYGZ+6dV+nfIgqUabFROlFgedziL3BypHalnSIbb3iYhjKmKt/N9uGBHvsb2ucknkxtESnR2/MXtXxy7yHS1Wa/TU0Pr1ImKv8n+uGVo/7hD3js7Kjrc6a2dcr/wOr9bief8zIv5n+zZnDZA/K0eJ1vhvRFxve57teRHxY9sHj9DmcRMxbdrcJrZV8sg5QuxAjTFdV+16dtu8v+4ROfVs75gakXhm7XZHfa0jRzperqlRBuNoM+1DavceWT4iTrHt8lz2dxY4fkdNcERcant+RNwu6XDb5yhXGBxLRIydxGkZO8pv8kzGtlqReRZfr8XxWh+snI56fIk7z0NKVPRso+0BftsOw6HN673C9psj4kO2D+l3e9SNUP1P+a7v7HdtrPrvky01lfh+mLNDuHZUbZNhr1ubaX4HSXp817HqxpK+p7pOikdJepHtPyhfo5pFFVS20/c9GHUlUl4r6cskm+qReJobYsD5fpd7PUvZg/Vj2z9Uzu1uzJgXtwxKSjiHvg9LWKwduRLeD521i3aUtLxySeZTIuJ5gwKdBQx/pCySeU5p7xbKoZDbRsRvG9q9ctle32LsGp4UGfZ6DrytZOrfpvyCfXtE/Kyhjf2M/cWpFr2cHmN4fUS8s/zds2YbA7b7SOXokPVVv/x7xyuVPVidH++fSvrUCJvv9KLvqNF70d+iHNE37gpx4yauxllqtqPNiolSu97Gt0vaojPKqST9TpbUmHhS/k//p5wu9h7lNKNPKr8PhmrZu3pbRNSuGNi73TZD+jtD67cpl2uH1kvjr2QjtavVJqnV815Ytv055XP/u3JJ5xo3lvf0aZK+YvvPGr76aG+bx03EtGlzm9i2yaP9teh03aoVAFse+LV5f3V66q8pv7NXK99jNcZ+rUvn1QGS7indsZJVDPtd7NJm2ofU7j3yb9vzJF3iXNnzKtWv/nWrc6rLubY/pBz51bgf4Sx6/1JlbasfxvRyEG+PiPdWbr/3cUee/mX7dxHROEqrJMZfo3wvHqLcT36WsrP23RHx9yGxD46I88v5ZZX7BFsq6/u9t6mjo/xfvhYRf7V9H+WKcQ+WdLGklw7rfLTdGfH47WFtHBA7T1mD7NnK/9Xtyt+Jz0TETxpiN1L+ll8t6YPKfc1HKDuF94mIP9a0ISKu8PRBO7WjYTozEE7qc12Ncfe7xtWphVXdIdrHO5UrTq5r+yvK0gYvagpyu5V122ozze+WTtKpuEw50rTGk+ubuIju0gZ3VX6Wz1JFmQJJaypXezxb+Tk+IYJV24aKCE538pOkW5VDvC/oOt+5/I/Kx7ibcgTRd5Q75p9W1sgZFnPskNv+1BB79oDrV5L0wobYYyTt2uf6Z0v6ZsVz7bvtytfpt8opRQ9X/nA8VDm18eGSfjMk7n/KaT3fUX7pTjtVbnv9fqfK2LPK3wt6r6uIXahc/e8cZdJpT0kfqIx9v6RVui6vqtzxqn2tn6zcsb9H5zTu/27E/3Pn9Tq/67ozK+LmK1cWabPteZJepkwoHFPOezE975UlrTxm7PbKA8cDJW0/QtwFPZfn9V43JPbs8vecruvOq4z9lXKUQHfshZWx+yt3TNdSHuSuJmm1ythzlUmB7u3WPt+FLZ7vmX1iz62MvUv3+fI+uUtN7Ew87677byDpwSPc/27l/bSMMnn8utr/U4k/qzzXkd8j47a5bWybNitXkOp9j5w/yvbHfJ5jv7+UnQMrS3qgpB+X5/+0Sb/WytVw7zfm8z1U0oNm6LUbtd1bKBNN6ygT0d9Uru5ZE7u+8sBrJeVB70eU032a4g5T1g98ffn/fKTrtqH7Y93frz2ne0i6siH2FmUi9OZy/hblgfYtyoUwhsV+QznC4lOSTlFOM3y08jfuyIbYs7vOH6RM+j9WmYz5UsXrdVHX+e8pV0yVsq7Xzxtir1LuN/ytPIdnSlqu8v97uPK37VHK0UfvVv6unyzptQ2xpyk7/PZVJtj+T/n7+hJJP6rc/jHKTpWzlXUi36RMwNXELvI+0gjfXRpzv6vEbdNwn4HHSm1P5XPwVOX34OqVMb+peW4z/XyV+8dvUP4eP0D5nb3sCNv+tLIj90XK3/Pvls/ns5SrsdY8xj0lrdc5jfkarKuKY82u+1s5ku9ryt+N96vie3NpPTHiaW64X9sHiIh/KHcMvupcTnVnZS/NiUNiBk5XU/Ooqb63R8TNas66PygiFsmQR8Q3nUXLmwxsm5tXXbpWU6vRdJ/vXB5k7Poqtlcqr0ttZr+fNr2civGH1z85upZYjYgbbD9F2TPW5KYYfYntb0TEru6/SpuifgnTsXrRo8XqXV2PMdIUQ9sHR8TrPWDJ2agb6dAZlfcASXd1xYqJPbFteht/aPsE5SgtKZforV095L+lNz3KNtdQJnmrxJi9q2pX5LvNkP42Q+vbDHH/pUrtwMjlmv9devAeNjRqurGedxkB+4Sy7T/2XtfgHeU9+D/lKpeyfYCmT5Eepl/dtMb3V5s2t3y+Y7e5GHm6ru2fRcSjbN+i6f/PUUYAtXl/3RC5YMVNKr+zZbRso5av9XWRq3iNo83o5bbt3iAizlSOktqzxO6iUtumwU4R8TFJ/1IuCCPbe2v4Sn6StGVMFY7+hKRPlZE5z1XzvuJflFMbu+8X5XJTDZ7DlSul7hMR15Xt/yHqauXdt+xLWDmya7uICNs/k3ReQ2x3W5+gHNH7X9unVcRK02eb3DMiviVJEfETN9dO/HNE7OycgvkMZQLlUOfiLkdFxMB9ekkPj6lR6j+zfXpEvKO0+1zlyK9B7h5lFLDtV0VEpwzH58s+Z41XKN9Layv3UU/U8JW1ZfuVyk6gjWx311i7u6Sf949a1Kj7Xd1xtj+p7IQedJ+Bx0q2FyhHIa+v6fXeBn4X2N4sIn7rqdW9Oyvkrlf2PZtWqh17Zd02z7fsHz83Ij4q6aJRt61Mel+nTOJK+d2wvLKkR2jIbBXnqs8HafyFRrpdqRGOu8v3xrXKY8TblB3wx9g+KSLePMb2l2gknuaAKKsrlaHXnRpEv4uK1cOctVxW7z7AL8mBq5Q1bobFDjoQ7ww7H2Zt2x8fdGMMn988bKpEzTSKFzin2awt6bSI+LPtByt7ah6t4bUSnl6SQKM6Z1Cc7fUaYr+q7M04S1M7XB21B7t7K1cNep1yStK2mjp4bjLW8Ppivu27lIMJlYPmuwwL6PoxHWf5973L3x0r2zfIe22vrOy1O0TZw1tb+2zc1bvGTZodWf6OveSs269a1lvvTMrRao0H+BGxj+1na2oFvEM7O9oVPi7pW5Luaft9ynbXJDUl6Qrb20iKMh1ib1UuBV154DJImyH979QYQ+uLkYe4276X8ntyeeeqp53vnpWU75dRjPS8bd+1bGP10hnSve21K7c59vuyGCkR06bNM/R8R25zj+7pul9VTtcdOg0qIh5V/o5cgHWG3l+9C6oMuq57uzPxWi+0/XVJ39b036eawu5jTfuYoXbvpxzV0XRdP3to0STTi/pc1+uOxRsia3juZfsdypIJTR1gl0l6Qr+OHNtXDAuMiNfZfriko2x/WzlqqTbJ33mMsP39iBy6UC43PcbKtp+p3E+6S5TCzZWxUh6UflE54uhbtl+v/J3bVjlyfmiTy7ZuVu4bHFk6HHZR7uMOSzz91/bGEfH7sh/2n/JYNYv//M+5WNHKklawvSAiFjqnClbVMIyIvyprNo7iq8oaPx9QPr+OW6Ku5quk1qUdTin7MMd23icj+IqyA+sC1XcQvFE5bb1fjd1Q8xSwNivrSu2e789L8vnrmr5/3JQsU7Qo3aE87hlroRFPr8M1T9LmKgvpVMTurVyE4a/Kfet9ShJ6nqRL1HCcvTTy6O8pLG7OGkmflbSTpD8ovzDXV/5QvSKGLDdp+0eS9oyepcGdRWAPjyHFlEtvXW8i5A7DDs5sX64hxSwjlx0eFHulpo80uuMmSa+PiKFFNksyY0dlD859lDvXL1X+cH02Iv41JPb3kt4WEV8bto0+cWdHWTWst2ey+7ZR2fYYX/yjbmN9ZS/Dcsrky8qSPhXT51oPin2Lsjfi8HLVnsqphR8aEvPjIQ8Zw96TXY+xyGibftdNgnO1kEVEQ5F222tFxDXl9e4Xf3m/60vsfOUQ/lF32jrx58fUqlIPdtbF+UFEPLoh7o7eRuVKIx13V04JGGUFsbHY3kzZq2xJp9SOQrC9uvKAabsSe6KkvSPi+orYNkW+5ymnHzyxbPcESYfVfo7LQcTWJfb0srNexTnKqHolG9t7KA8sF0g6U1Pf9bdI+mLlQXbnsaz8nq163mWH7fXKHsqrurZ9s6TPRcSw1Vo778uNlUPbO0Z6X5b/89tKm1Xa/N5BvxEt2zx27JA2d17n9wz7XStx85U75SOPzi2xF0XEZo13nh439vurdB5to3zNPtp100rKqUkPGRLb+rW2fXifqyMiXtwUW+IfpSy0f7hzpOaKEfGHhpg2768nS3qKpF2VB30dK0m6f0RsOST2ucpSDI9S1kvsjr09GkZa2f6yssDuD3uuf6mkT0fEwBVnbb9a0s8iV+jtve21ETFsFE7nfvOU9Zp2UU5xuXdFzGHK/cm/91y/saQjOgnXAbG97419I+K6kmj9StPrVR7jRcqpaxsrO+uuUCY5DxjWqWz7tIioKsjdJ3Zb5bTAfyuTL8+JiF+V9+c+w0ZnOBfO6dRcfJlyX/EhyvfIyyLiuCGxwwrbR0TU1qqUcyW67gVhqkae2/6tss1nqWvkc+X+wC3Kad23KxdKqB7t6TJitKaNM2XcfdSu+DbPt9/+fe1+/TrKToVOJ+VPlftsV1bELoyIBbbPk/TQyJFb5w37neiK7e6kv03SH6OrTl1D7LskfaHf/rvt+9Xury5NSDzNAbbfozzwe0VE3FKuu7uyyO7lETFwGWvbZ0ZE30K8nYPQCbW5TbLlncNuj4ZlSm3/WtLDIuJfpdfwCkkPjIrihyUpcLCyl+6VNcmXEndORDy093y/y0Me490R8Y6uy/OUtQYGJhs8A9OwnEVUvxdl1NKobD9JeXAvSSdFxAnjPM6I21zk/VXzfvaAFUY6om6lkbG1PPj7maRthyWah8T+KiK2sn26cr789coDyfs0xK2sHOE1cm+jF52aM03NTkx5nFWVoxS7h6lX9UaNyznS4SxlPboHloP9X0TE5pPcbtn2g7XoMuyNCaDy3npqn9h+Sfze2GdHxDfHaG73tkdOTJTYqoPLnpix35c9j/Owcd5L47R5JmLbsn2KslZG7RTM7tjjlHVgRp5iPM77qxw8PU45PeczXTfdIuk7EXFJxWPMymtd9mEWKJPV93Wu5Hd0RNROERznM/EQZU/9uzW90+8WST+OiBuGxK4vaUP1+Twp6+jUrHxa08btY8zVn2piba+lPOj8fs/1I223u8Nv0m2eVPyg2NJBcI9hHRq12y2dOzdElmgYGGv7//qE303ZQXOPiGgsC+FcVOEj6plKFRFVU6k6+0A1951JJWH3XGUdsVFHTso5ansDTf9NH1quxLPYMduG7ZOUI9w6o/yfL2n3iNi+IvZk5eCMDyrrYv1ZOQV2m2FxXfHLSeosStDYadcT+xDlbBpJ+mm/JDqmMNVubnimcg79HStlRMQttl8l6XRJAxNPyp3zQUadStHpDXqesqdk2Bf+yAfHHU2JpQr/itL7Gzmt8JKapFO5/+WSnll6D3/uXLb5f123D0rkxIDz/S4Psq7t/SLiA85Rbt9QFvwepvU0LOWIpY865/l/XbkqzSg7mr9RrgJ2su0VbN+9kyAdxvYb+1x9k7Lw97kDYtrO9++sMPJISffXVM/wLpJ+XRE/KKFyU3ns/4uIywbFRs6B/5/tlcc4+LtM+Z48XtOHMDcmFjTmqlIxVVvludK03sYVba847CA0ytSckji/RvletXKofdVS6iX2RcrRVp3XvGaouWxvqJxatIGm77TVDDffOCJ2c44EUETcWnbYa9q8o3LYd++Q/prews7qRhdp6ntnaG2DLt9R1mYZZUh/xzrOmiG3KGtgPEzZiz9s2sYdol3ts2s73xm23162/d5hCaHO+7Lc/9rIqSKPk/Rg21+KiBsrt32Qc5TCMZK+HhEXTqrNMxSrAZ0Mne+foSN6lXV/Lig7+N3fITUJ97GmGBcjv78ie+dPtf3FmCo3ME85cqh2OvzYr7Vz2ttLVOridbWrZsTTM5U1Us4uMVe7uXZPq3aXg53zbH+1c9DUSdoPSzqV2MslXW57O0n/jBwtcF9Jmym/T2bKAeqqEzjTsRFxjfrXtRlpu52k0zixbbY7w/F9Y8tzaxpFW7XdAcmrRWJjqh5Up9N8b+Xo+K+p/3Syft6rMaZSuV1ph85jdPZbNoyI99heV9JaEVFTrmBP5edoWY34m+7xV6drNQV9nOc7YH/+DpX7qWtERPdowi86p6HWeIZy/+f1yravrEzCNyr7DkdI+qNyf21d23tExGkVsa9TTovs/D+/7FyNc1Y6l+YCEk9zw/+iz/KsEfF3N8/LPtlZG+XtXT04VhaO/FHNxktv3W7KhNODlL1izxkWExFblwzy7poq7naRpK9Gw8gal1o45fy0LL3tEyPiiYOjJWVS4viuyxt2X27aUba9qXK1jZ8qR5XVHMTds3zxuuu8yuU1KuKlXKL+K7b3k/R4Sd+PiIOHBUTEWeXsQpUdxvIc5quh1lLXY+zprIHzZGWC4ZPOongvbYp1u6XjF5RTpw7MjsrVGl9h++joP12v1Xz/KFM8SwLrUZ0Em7MG0k+HxXY5WFl88KvK/+9zlM+9s5zq4xrixz34+305zVMm2qrF1FD2bzqLkN51lMTXoN5G1RVufHpMH+78aedw6GHD7zt2VSaBxklkf1vS55Xvr1ETMW2KfB+sHFV2Qc8BTI2tI+L+I8Z0rBPjj2B9cUR8zPYOyt7CFygThVWJp2LcxMT/i4ijnVOTtlMmRz8tqaZ3+puSFjjrjBwq6Tjl5/IpNQ2OiMeXxNOukj5bkiNfj+bl39u0uU2slAnoNTS9WP8tyt7azyn/d4Mcq7okZj/DOriatHl/fcD2K5QHXmdKWsn2xyLiwxWxbV7rI5Urr+6gPIDZXZU14iT9J2Kq3o/tu1XGzUS7T3IW2l1GOWrzz7Z/ERE1NQxPk/TokrA6Ufl676bR6/IMUpW8J3bWtz3jsc6asW9UvpeOUM5KGJoQ7fHfiLje9jzb8yLix7YProjrTWwt6Dpf1YmlqSmG2yo7lf6uPDboO5ukxxYRsWnF/fpZoJwmWztN/44p6GN2zHaM83w7+6Sblvt1jrmepvp6otfbfr6mftueqxyd3ygi/lF+y7dUrvh4QlRMoywOUq7yfrEklaT7UcrVzJu8VLlq6D9K7AHKxTRIPA1A4mluCE8vNNmt6YDq/5QjGy61fW657iHKRMXQxILtvZQf/LWVo29eIum4mhFJtu+nPOD7uXLnR8oD8rfZfnpEDBtdsknX+d7MfU0S5xk9l2t7VGT7gyX+jTHaimuf09QXb/d5qWFkSVePjJQ1aT6rfN1Oc/1UkFOUO6idegXLK3ccq4aZRhbD+4Hyh3h55ZDVxsSTckWSLVVWzImIS5yjYmqso9z5+Lt0x/SE70l6jPI9s0jiqc0InB6rKmsTdJJVK2r46MBuvYmUQ22fGxFvcRZXbjLywV9JJN43RqzxZHvbiPiRczpl723Vw701Zm9j8Q/buyt7N0P5v6tZJEDK1VlWUSa7RvWviBi4wEGDNkW+r1Aubz/OPPZf2r5/w/fjID+w/cTaUUo9Or8tT1HWEruodFCMYtzERKcn96nKwvPfs92U+On4X0TcVt7fh0TEIc4VOatFxLWSPu6sTfFmZUK0aftt2twmVsqlrrsPAL7jMqXe9tCVhCLiCI85pSAq64MM0Ob9df+IuLl8h/xA2eFwljIZ06TNa32fiNjF9jPK6/ZV1XdOfMP2ZyWtUjpnXqzRVtNq0+6Vy+v1UuVr/c6eg9BhHDm68yXKOo8f6tpvnAltanssbbGzue0ZjS0jjZ6l7Bx4UPTU1ap0o7M25U+VHbR/VsV+RIxR1qCPrSLiYZ3flsiZFMs1BRW/aPGbPurqdDNSiF1jPN/OcaFz5sTDYqoszP7K/foaL1YmbD6qfB/9QmVlzibl+66zoIElHeIsX/KFivBlO0mn8lx+Vzrjqzat6asl3672CeclGomnuWFl5Y5Wvzfz0B+IkoV9ru2N1DXyKHqmA9l+QET07rR+Qpm5fV5ELCz3q/1B+oSyRlLvXO/tlJnzYT8Gw7bRuP2WO8i3Kesk2PYDy3WXRkPh1ppk3BC9ibEblNPADlJ9j8xdu3/My2i4qqmUzmmFuykTgz9RJsp2rYlVu6Xj76npo0j+K2nNiPin7aZRcW1G4Eg5D/yccrBpZbJr/8rYW23vqpyeI+XKYZ33x9DnXhJILxp1ZyhyKtP6tpcbcfTPY5U/xE/r97CqT4CN29so5UjJj5VTKJOqz6uM/YDy/3ShRl+d5WMlmXmiRhha75zOs6pyR7lT5HvvqC/y/WZJ37d9as92a4aaf0mZfLpWoy/DfrpyhaR5ys9S9RQ/SWfZPlFZ52U/53SIkUaJRcSpttfUVK/oGRFRkzC8qhykby/pAOc049pVNf/rnA75Qk29x2t3GDsdJLtJerayZ/Xrys6aSba5TayUSfY7pjQ6V03t1EgZ+t3gdlMKtlYeFNxPuRDFfEn/WAzvr2XLQcBOkj5ROklqf2NavbfK3xvLvsC1yt+sRhFxoHNlx5uVIwDe0bsvNMF2L+OsdbSrsgj9KOws6r67sqNRqlyxDBji/5S/Z29Xdj53rh/lN+oZykLXr9eIU6kkyVm4/3CNN538v2XfrTOCcQ3Vf39trVwx+g8a/Td9pNXpIuIm239X1jlbpNj1CNo83zU1/XfoP+W6RqXNtSvv9dpH+byvlyTnIi2/UM5CaLLQudjAl8vl3TVVlqPJ4ZJ+Zftb5fJOypH2GIDE0xwQERvMwGNcphyiP8iRWnR54rWUtW86dTC+ofqd+rX77WhF1gFqGoK4gnPp5XmavgyzlaNxhvKA5eq72jDsC/9dyt7ul0i6XFM754crV7vr2ztse+jIihgyjSpyusc8SbtExNcH3a/BP9w1Osq5xPA/K2NfoPzfvjxGLzB+qsdfOv4ryi/s48rlp0n6qnNaQlPvUJsROIpcaegHmpq68JYy8qHG7sokyqeU77PTJT3fOTXrNQ3bXaw1nkpv9zzlCnbfGHF73Tq9jadphN7G0oY/atFRiLWOUNaMGKdu0YOU7+1tNb22wtBEbmR9kzeX16u2p67b+5QjD++qrmXGK31e2eZxnu9HJD1C403xe4ky4X5ZGfFwD1X2NHaUZOyHlcnrTo/jPhFxzNDAPEB+kqQDI+LGctC8T+Vm91QWn35fRPzBWdfryIaYbl9QJpt2iIirR4hr0+Y2sVIexP3MuQKrlcmcV5XvzSMaYttMKfiEclrx0copIC/U1MipJm3eX59VJsrOU44CXl+Z0KnR5rU+1DnS/O3KaSMraoRRfWX/Z9z6PG3a/W7lSoc/i4gzS6djYyH2Ym9J+0n6VhmVtpGkYavQjuqPxM6Jbc9obESMkljvK3Iq1frKlSKPKB2royRF20z3/bhyFfF7OkuX7Kz8XqjxpBHa2Gv/UQOiXb3FjjbP90uSzuhJxHyxJrD8Hn1a2QH9QOdCK0+P5qnvUnYcddeWvUWV0/SUq0u+WlLnOO2nyv37RhHxEds/Ua4IKuUq8iONul7asKrdHFB6NAdq8eXSvY1zYsjKa85lLndTTpO5m3LHZOC0Itu/Uw6p/XfP9XdVHhht0j9Scv/lOO/QNFrEA5ar74of2BNg+6PKaXJv6BoqupKyePc/I2LvAXH/UQ6L/Yakq9UzOi1KbaGGdi+MiAVN9xsQu4VyKlNn2/eStFtM1YAaFDf2Kmslvu3S8Qs0tXTqzzsj6yrixl46tesx1tZUAWhJUk3Pf1sl0fZQ5UFJdY0nD1jtsWa0XZv3Vom/mzKROU9TvY1fiSFz6Evy5kMesJJg0/MtjzFwVc6K2EuV03TGWQXwg8oCrF/X9P9R43B12xdGxAOb7jcg9pcR8YgxY0+T9Lgodd4Wt/JZ3L4zyqn0kp48ymcSdcoImM4Kghc3jcjtiltk5c9+1w2I7Xzn3nH/pv2GSXAOl5gfM7TS2pDtbBgRf2i6bkDs2AtQzEXuM5W7WwyZ0r20xc7mtmfzObflrnqiEbGx7U0kfSYiauqJ3vE9Z/tjkn4SEd8a5fvL9mbK2qWWdEpE1NZ768R3ykJImpnjtiHbOk25jznOQhCdxxj7+TrLh3RWeTutNhHjHCW+j3KRjIeW64buT3mqnu7mys7G45Tfvc9Qrsj5oort3k1ZmuH2cnm+pLtEn9rKXTGrDXvMmn3FpRWJpzmgawRPdzIjlPWO7hkRrYdCu8/y9EPue1/lqnYDh7k6V2LZWtKrY2pFmg2UmfSFw2Inwbns6/VNCRHblyhr6UTP9fMl/XZQwqz04O6iTM7dpjxgPSbqV1dqdbBb4pdVDuuXRqjd4RZLbJf45ZQHQVG22zTdY6XIGhR9v7grD+47S6d+QDkcedSlUw9Q/q+mrR5W88PcsldGtvfod31NcnJcLRMpYyUnbf8/ZSLywcrh1uMkYz+iHGJ+vEZfiebbkvaKuulevbH9Di4jIjaqiP2Q8vUaudaS7U8pa1p9RyMuvWz7i5I2UtZ4GHWKX2u2L4iIB3VdnifpvO7r7ixcFrDwoqNjR5kGMWucU7/ur+kHMk0rHcm5auL/NH1KwfyoWKmtHMxsp5yKfa2y7siLltTEYr99IttnRUTj6DDnapyDFqB4ZUQ8buZbPHts/0+58ta5nau6bo5h76+lLXautrvtc27LWWtsS0m/6kpKXFD7++KctbC2coToQ5SjpX5S83ku8fOVU8a6Oyobk0fOQv8HqacsRAxfFbwTO9b0ZtuP7Xd9jFCGZNTnOxOJGE/VKjyn6398bkRsPiSmb4ds13ZrOmZPl7RdTNWbXVHSicOOJ8o+Yu9xeddmm/cVl1ZMtZsDer9YSwLnLcqdwPdParudEQvl/C4RcXRpz++cI5cGioj32n6NpJ96qtbQP5RDx8eq9u+cyvXmiNi+4X5bK2v4/E25IsORyuTEPNsvjIgfDm/6osmpyOGrw6bvXa9cze0zztFhz1HOzX5LRNRO/dit/H1190MrDyaHKkmnVyprFUnST2x/tjL5NPYS27afqnzed0z7sP3yGF6Y/avKFezOUp+DPlU8X03N93+Dxpjvr0xabRqjTy2Usj7APsopIIqI852FZ6sST+MmmMoIkjdr0eW9a2qAjf3eivGnB66sXOHtfsrVCn+unHP/ixF6gzq9kVt3N0l1dc9WkfRb22dqxPpQEbFhZfv6eaWkNznrlI1aa2l5ZVu7V+6srcX1h3JaTlNT/BZnz9IPbZ+g6autfX8xbn8UnZGrO85qK8ZQdrQfp0w8fV+5GunP1LzEttRiSoFyaso85XTiN0haV1kHbYlSevofIGnlnlEeK6nre7dB2wUo5ppnKfd5HqwccXBURFxK7J1u27P5nNtqU09UajHd1/ZrlQuOXKep4tGhfC2avEfjl4UYa3rzKAmmfsZ8vp39+U4ipvO/GWW//q/OFYQ7taV2VkNh9ZrEUoWRa+S23EdcukUEpzlyUq729kVlEeWXKivxz9Rjn97nurP7ne93uU/ss7rO313S3Udoy7aSfqdMiHxZOXxyofKL7VkV8QuVB267KAt1b12u30zSOQ2x35b0wj7XP1/S8RXbfpiyzsm5ynot919M743DlPU9ti2nw5VT3mpi9+h3qoz9rXL1n87ljZUjwyb9fDdU/lh0Li8vaYMR4n8gacUxt31m+XtO13XnjhC/ibIw+a+VdZsuU+4MNcWdqNx5+o2yaPgXJB1QETdPOe2yzet9nKQ/lff0xzunytjllKsrvknSN5XTQX9dGbtRzXUDYh/b7zTCc36gstbKCzuntu/bim0+sua6AbG71Fw3IHa1PqeRf1+UBycfKadnjhC3vrLHsfNZrv696HqMeZJWGuH+8yX9eNL/05l+vsr6X53RZFL2Sp80Qvxyyh7/B0laboS4vWuuGxB7kKQHzIXXWtmpcbiyPsjhXaePK1cUrNnmL8t3x7xy2lVlH0tDfiuUveyL/TWawdf6bsqFI45TJkMfS+ydb9uz+ZxbvLc+JOmtyn3O7ZU1iN43QryV+/HvKJfXk7RlZeylku4xZrsXlr/nSZrXOT9i7Pld151TEbe1pDOVx1D/USaPbh6hzWM/35b/440knSzpVklXlffX+othuz9XrsTXufxwSb8cIb6z33OQpJ0W9+s2106MeJoDyrD6tyl74T4k6SVR5qJWxFbVh4qIrfvc7AHn+13u9XaVXvootZJGcJByLvcvlb25v1SuPvGJyvhlokxzcS6neXppx2/dvILzqyUda/vFykSXlD0Ny0t65qAg2+9WLn38G2Wtpf1ixBoU/UYtKec614xa2iKm97D+yFlzpVFkocblJa0XXUuKVrolpvd6XabpBf6G8vh1lo5WJjM6bi/X1dYDulW50sgpmj4apnGUl8bolelxuLI36aOSHq/sdaspvnmPiPi87b0je7ROLaN5hoqsf7WPcprduI5V/Qp4vZZXjhZYuZyuVh481zhGiy56cLTqiiE/JSLe0n1FmWLZ2BvYZlSJ7VOip+5Ev+sGOESLPt9+1/Wzn/K1abqun7OVI1huUH63ryLpWtvXSXpZNNSK6/IL5Wfxf8od30buqt2hTFyvoxxF2fh6lZGGryjbPFPSSrY/FhEfboqNFoX+y0iYA5SrnHUWvoioGNXW5vkW/yyf6duc9Qf/rPzf1bR7nBGqHXsoF1Xo9qI+1/XzG+Won2WU339H1b7m7l9b5iZlrcih02jHea0j4jhJx9l+RET8sqaNfYy7AMUaY25P0h3TY1aNsgKncxr8i5Q1K+9XEb+GpJdJ2kDTf5Nrp1H9S/m/uVn5u147QmxpjJ3Nbc/mcx7XvsqOtwskvVz5u3zYCPGfUv4ubascHX+LsiOsZp/xCuVzHseNHnNhFuUKyssp91U/pNzPrNlXbLMQhDTG87W9WTnG6ruvEhXlESJr323nrLk0b4xjx3G9XtLRtqfVyK0JdJZHuI+mRnq/wvb2EfHqIWFLNRJPc8N5yi+C7ynnOG/ZnUBpOFj+nobUh9LwVSFiwPl+l2dSRMRPyvlv275qhKSTNH01qN6V3Ya2OyKukrSV7W2ViT5J+n5EnGL72cofqn7erpzm8pByen/5H41SM+TTylUDO1MfXlCue2lF7O22N46I30uSczWa2uTk05TF05dTHohsLundUVeIcKHt7yuLqodylNmZnYOFGF6sslNn6dddbQ3lD3STZaKrllTkEOxRVhA7vpzG8WpJh0razPZVyv979Yp6kpYv7ydH1j/b3/ZZkt7RENdJQF5TDiCvVh5Q1TjZ9ps0Zv2wGGN6oO1DlZ+hWyT9SpmU+EhE3FAROxPTXbZXTknu9uQ+1/Wzs/JzfE5E7Gl7TU3VxRnU5rtKWkHS6s7VsDrfuSspa0sMi32EMpG6hqeKZXZih9bws/1kSU+RtLanr665krLeXI2TlDXpTiiP+URJz1YmCT6lqdUfh7Xjpcr38I+kO1a1e3dENC1n/GqV2h2SFBGXOAux1rh/ZL243ZWjGPdVdhg0Jp6KcacZf0jS02LEArNFm+cr5XfuKsopv2cpn0NtguQgSY/vdBaUBPr3lK9dX7afqxzhsKFzRc2OlZTT2RtFxGGSDrO9qTLRfr7tn0v6XET8uCH8JcrVGjv3e5zyeW9Y3l/DprK3ea0vLdPiNtCISZhyAPW0ATf/bEho7/dd7+MO+z19jnL69z+ctSrfpxwVe6YyEVbjOOX0y5NVuf9Qtr2t8kB3yxL7sahfKGSpip2r7W77nNsqyfYjlJ/lUNYTHeU4ZKuIeJjtc8rj3dC0z9j1W3yZsnzF91RZP9FTq8o9Q+OXheg3vfnZNYERcant+WWQwuHlee83LKbN85X0RmWS/6B+zVFFeQTn9Md3KleIC9s/Ux6L1K5ON5bI1T830xg1cpXP636d92J5j140gWYuMUg8zQ0v0ZiJnmhXH+ohtm9WHkQsX86rXG46+NvM9vl9rq9JxKzSs/O1TPflYTtfM9DuzjZ+pDyA6vZRDU48zcR837FHLSlrDv3Y9mXK57m+6per3l+5M/ETSYqIc0viqsZdlfPAH1su/0U5wuVpaq5Ns5PGr7P0F9tPj4jjJcn2M5TFs6uUUV7LaaoXqPqHZgZ6Zf7tLLx8ibMO2lXKpbqbvNf2ysrl1A9RHvi9oXKbY9d4kiTnCjIf0KIFjYfFryfpLsqlvK9SFtu9sbK9myrr76yi6Qdwtyh75Ie19ZWSXiVp457voLsrh1TXGGdUycuVPWf3Vh4YdxJPNyt7IIdZTvkeWKa0s+NmZRJsmKuV04ufrqlRmlK+VrXvj60j4o7XNSJOtH1gRLzcuYJajX2UK0xeL92xE/kL5cHvMG1qdyzrHCm6k6RPRMR/PaQWXx/jjuS7bsykk9SyVklEvKqc/YztHyqnF/b7re1nnBGqv1D2tK+u6QcVtyhrt1Upo3E2K6e/KjvU3ugccfWcIaHLKHfsryuPs6Zy5OFWyk6KYYmnNq/1WEmYsp27KvfbeuvxNSWtVlZ+7/UtWKvh79W3S3p4OeB8mDIZuXNEfGeEpq/QO0q00snK98LPlN/5L7T9ws6NDYncpS12rra77XNuxe1Ga0rSf8t3UCdBsIamd1L30/kt/lM5jVI/8dvK6Vv/sP3NiHi2shxGtYi4vOynbqD87Dcu3lOMO1Jq7OcbEXuVv4+v2M4gX1N+p3eSa7srO0u3awp0i0V/bL9auUrzheXyqrafGxE19Q8vVe7rXl4ur1uuwwAknuaAiPjioNvKjlSjcuD4NuXO2kGSXtd0oB3tVsv7gwb3+DU5tSf2tK7LTTtf1e22vWrN6IvukCG37SvpLRFx85D7NBl71FIZQbOJpmfsaxM6/42Imzx9GmLTD3Jnu7XJrX4uU47wGifx9ArlsOVPKP8vVyiHE1ex/TjlTsAfS/y6tveIIdP8ekaidF8vqbE3qNveypExr1MWntxWOY1lqIj4bjl7k3KKXrVoXwhx5OmBEfEk54vzAOVonv+T9EDbf1POn3/nkNjjbH9X+ZkadQGFrypHcHxA+bnsuKV2hJfGGFUSER8r78e3RsR7RmlwRJxaevceHCMWy4yI82xfKGmHcUamFdfYfotyx0/KROV1ZUe96rtAWROnO4lxS7muyallZMnyzgUkXqVc1a/GZ5Wf4fMknWZ7fWWyrkpJQK9Rzv+l6f5dHSALbX9deXAx0uqDavd8O+2YNkXZ9mMavru6273ICNVh24oclXm5pEeU13eTiDjZOW1seVVMrbb9UWVC5UeS3h8RZ5SbDrDdNL173U7Sqfhzue5vtps6C9q81uMmYaRMhv1W0g7K0Q27K6cbNrm8ZkTVAP/pJBUj4mzbl4yYdJKk79p+SkSMuijAizX+KPilLXY2tz2bz7mtkUdr9vi4si7UPW2/T9mh8/ZhAZ3fYnctrtRhe5eG7XXvUNd25E5/gPGTbWONlGr5fLvvu40WHSnaWKZA0lo9+07vtV015U3tFv15WUR8squtNzinadcknu4u6Te2O79pWyh/Z48vj1Uzc2Sp4tFGKmI22P5ZRDyqnD8yIl7QddsiS/72xPbWhzoqKutDDXnMVSS9OiLeN+Q+50RZDvPOqum163P/P0VE35pZzho6e0l6Z0R8dcR2vF7Zq7yK8svzD+WmDSS9uIy+anqMXST9MCJusf12ZU2Y90bdsvOfl3SK8iD92cqEyLIR8YqK2A8pv9j/KemHylUv3hARA6cl2T5EuQOztnI60zh1ljqPtWKJ+XvTfXvizpL0vCg1rUpvyVExZGldTy3buqnyx6Uz7eRpks6IiFGm243M9oaSXqtFf9Crftg85hLsJfasiHi4u5YvduXS4uW+60h6pDIBtaOyXtUqFXFnRMSWNdvoiZsv6aKI2GzU2D6PtYFGGFXS5rvP9i8j4hFjxv5U0hMqe0R7Y1fX1BB3KUeGvUuZ5Fwvhqxe1JWQ3VxZsPo45ef7GcqiqC9q2PY85eiQJyp3rk9QLoww1s6J7WWiob5eSYi+U7ljPq9s9zZJh0TEwGkQziW5B4mapEHb5+sBU5SHfQ80tLuqA8Fd9ZIiYuPS0fGZqKhdZntPSd+IiEVqm7ihxpazhsZ6mqpV9mzl6Ml9JH13WA97+T+/VGO81rbfq1yBc+SVGTvfAbbPj4gHO0fl/TT619JcJG7U7ZXYK5UFbjve2H25pmPE9i3K4tH/Kafq2mVDHrPx80js7G97Np9z5TbOjIgtui5bud/VWKOpfOdurZwa/ATl+/qUqBy12u9YoeLY647bRz3W6HqM30rasTfZVrNf4xzxtJmmpiVW7xeM83y77neksp7euZr++9S4X2/7I5LOUHaMSJkc3DIi3lQRe2ZEbNH9HepcSXTzitgLlJ1+ndFw85X7Lg8YHinZfuyw26PlCoNLIhJPc0DPB2nah79pR8X27ZqqD7VIwmnYl4HtdSX9P+XUkW8ri6e9Wzmy5KsRsfeQ2E9ExLAimp377RE9vfTlQOamiPh8z/UvUa5Ic3DT49bo99qVL6B+HwpLum9EDJx2UnqhP6KckvBpdY0UiOG1GQ5UHpDfTzkt6UplPYtvRsTVlc+ls4P7KOUomgOVq3fU1GZZQZmc7N45f09E/Ksi9tyI2Nz2M5UJhTdKOi2mTxnsjRk6uqf3/TDgMfrWQxp20NgTf370TPfsd92A2NMkPTXKFDvbd1fuDDymIW5oTammBJJz2uXnlcU1u99bYxfLjoimaVyd+F8okxLHKEctXCXpgxGx6ZCY1ynf19so61P9out0QUQ0jqRxjpRYVovWpqpJqB4n6bVRFlAYlXOUyKOU3wc/i4hvVcYdqBwddeyoyRPbn1YmZI/W9OfbOJLG9peU3yHH98TWjsQbS1dCtq+YmeWOB217TeWU8XtHxJNt31/SI3p/O/rEvVH5GdgrIv5QrttI+b39w4j46ATbfDdJ/4rSAVR2cu8SEbdWxl+s3EkeZ6To2Gyfq1IvqWt/5I5EdEPs2AX3ywHms5WJaymTot9s+my1TT53JWH+rfz+GqWA/BkRsWX5rXiVpGuVB8lDRz7YfkBEjFUfZJY/h206R5eq2Lna7rbPua3y27i+po/W/JNyCmDjb+Q4SV1P1U/cVdMXZ1lJWV9wYKdYOfb6h/J7Y3nlgjbSaN8jYyXb3GeklKTGkVJtnm/XY/ym3Hfk5ELXd27nWHW+pvZlhr5mtn+g7Eg6OrKW187KhbieXLHdDyvfW58tV71c0hUR8X8jtH0lTe8Qrh1dv9Rhqt3cMOwD3PThHnfYtpR1FE5V1jV6krKOyLmSHhQR1w4LrEk6FXtr0XnPuyt7J3odWdpwcOVjN+n32u049oNFXOUsxvc+5SiYzoH10OmBnWx+6aFYoDxQf5yk/WzfGBH3r9h854v6qcqCrd9z9tjWtPtWZeLpbWVn/W41Saei8x3yVOUX/k1uWDmwJrFUobvn/K7K/9soNVcW2j5MUwWjd1e+t2qsqewN7vhPua7JI5RJ4KOUBTKHv1CL+ldEfHzEmI6Ri2X3GGd64AbKBMobImKUVf+6bV7+dicUqwpVSlpV0kXOIdDdiZjGEWJedKWSl9veLupWKnm5MgF7m+1/aYQdTeV7+XpNf36N04uL35fTPE2vE9XIOeLvTVp0NF3j69z2gNb2I5V15jpTxzqvV830hC8qp4G+rVz+nXKHeWjiSTkVYfsoq38pN3iZ7edLOlE5pXRYm4+QtHdE3FguryrpoKibJnWKsmZFZ5Tm8mWb2wyMmG7sKcoev/aQNEa9JLcouN/VtlAmvI+puX9X3O22L/ZUkd+RRMRIn6Eeh5bn+3ZlInhFZSdek9Pdv0ZZ43fITCSWyoHt7pI2jIj3lM7HtWJqauQgd+s63ztKoOl3bmmLnc1tz+ZzbqtNPVFJ6iwQNEqHUKd+4i7K3xYpR8Zep4b6idGuVEnHuIv3jDstcezn2+VC5apwI+/ztfzObbPoz1uU+22vLJdPUuWKibb3Uu6f/kt5zGeNUD91aUTiaW5YpYwomafphbetLEY5zHmSzhsn+6wcUr9/OX+CczrX7jUjFUbQ7wdrmehTf6rs9E70By6ymN9OyoPOC6Ks8tTE9gOUveVXK4eGjnOg3WbZ+atsf1a5ktcBzoLANcUE5RZLkitrQvxWOdXulc56KbVJq7FFxLSVM8ook6r/VfFK5Q9VZ8TfT1U3n1vKhOwZtjsjYHZSHgA3uZfy/9NZJep7yul9tT3cHyu92idq+tTExtE/arEEe9nGmZI6Q9ZfFxUF1SOib02sUUS7QpU1B3qDbKsxVypps/MULWqmtTzwPFrZQ3qYRiyk3FE++2/WokmNpuTV55U7tWeNse3VI+Ibtvcr27qt9DQ3WbY76dTV1r84p0U1eXAn6VTibrBd25t+1+iaGhwRf3eOOq11q7Jo7DhTlMetPSSNVy+pu+B+9/dUTcF9SXeMPDxAuQqvNVoit03yue8I1hhSS6vrPp2DltM0wgFIm+8OT1/Rst9j17w/upecf48yOfpJNS8536ZzdGmLnc1tz+ZzbqXNb2MxTofQr5XfkctpqhN/PWVnx3cHBc2gcZNt4ywiIbV4vra/U9p0d0m/Lt+53b9PE611FC0W/SnHtJ8up1HtI+mB/fYn0B+Jp7nhVOWKRZ3zvYW3hzlM0kbOmja/UA5T/2Xth7Knl/J65XK/lmZsKGG/H6x5tteM6QVFO9MqZtIiSawy0uEBytfqPba3jLpCwcdIen1voqr0+D4tegr19dxn7GXnu+yqHJV2YETcaHst5RdijbGXJI+IfZ11nm4qPcy3Kmu7LG4rSFpnhPsvo1wO+CPS1HSXmsCIeF8Z1vvoctWeEXFORdztyjpYPyyJwecql6x9V0TUHIQ9SDlSY1tNH01XM/qnzRLssr1AufNx93L5JmX9sbOGBs6AMmy8N5nROKUy2s2tb7VSSfne3ETT29x4wNpmREqLxI8k3RYR4+x0dfuKcrTRjspE9h7KHeUmNzVNARjiH87V8zoJwq2VdamaDKt3UVMLY567FqewvZrq96f+YfthnYSx7YcrE/e1jtdUfblR3ScidrH9jMjC6l9VJt1rvEVZL+kC5UHc99XQKxwRH1MmzF8bEYeM2eYPKX9Dx1lFsE3yufv3867KaYZnqe77djZ0fxe/S1nDbFQjLzlftOkcXdpi52q72z7nVjzmqmW2HxkRP5e0xggj+Ts+pBytuH5MlVZYSVnK4kDlSPCJaZFsG3ekVJvne7xy5H/v78mjNcbop1GVfepnq4za9tSiP437ih5v1eaO32tqGiUqUONpKVB6U7fUVL2VLZQ1B34eU0sz94v7o6aGDvaqnQrR1LZzYtE6Sy9UjkT5P031kj5cmQj5RDRM1SrP97+dUVO2N1XOW768+wvX9mq9yTPn6lAPKUmUFZQFQRsLKNu+S5SaGyWJsYMysfDE8hgDa+k4l8ReXTlE9RfKhMCFo4xSK0Npr4yIf9t+nLLI95e6e+WHxF6knNL0VeXre6rt82JInaaZZHuFqKxv0hXTXYtrvqQ1JL27MoEj26dL2q4z8sBZpPzEiKid7jKW8uP4VOV7YwPlj/UXIuKqithLlUnCkYtH9zzOBhptCXbZPl+5oMBPy+VHSfpUVNTEasP2Z5RJxccrD3J3VtY4eElF7NaSDlHWPVpOpV5AzUgJ26cqvyfPUL7PtlQOQb9JGt57Z/ulyh20dZRTk7dWJvsbD1htH60ckfI8dY1IiSH19LpiT1Qmft6krsRPVKzMZXt/5Si4b2l6L2V154KnCtDfUSvNPTUqBsR9UPm/OVYjjuRzLht/iKQHKr8/11AuIT/0ve2p+huL3KQckTR01FP5jXqrpgpe7yLpfRFxZEWbt1CuHnh12d69JO22mJK449YeGqteku1tI+JHXQep0ww5AOp+jJ9HxCOb7jckfk1Njdg5IyL+PObjrCvp4Mhl0e/U+u1XVcb9SrmPeGZJQK2h/F0c+lhuUbx+aYudzW3P5nNuq/wm7yPpszFVY+7CiHhgQ1znd2nkOlS2L1HWdo2e6+dL+m1EbDLasxiNx1xQpuF/FYM6sto8X+cqxPtFxAU91z9IuZLpwFXObW8YpdbiuMpx1E3qGTkdPbMjBsT+TFOrNj9NZdXmiOhbS7Yn9qHKTtlfacxFkpY2JJ7mAOeKUBtExM/K5Tcqs9JSFvmu6ol3DkHcWlmk84XKD9ZMJI/aFMTsW4TcWeRuX+UBRSinuXywpme87FS/JCIusX0f5cHjV5TZ7DMiYr8hsb3F26t/rJyrGzxPmeQ6Q/k6b1STVLGnLTu/jfJ5Ny473xV/rrI+1AbKnujjJD0gIp5SEfs6ZW/2ecqkyHqSvhwRjx4a2JJzydXDJK0YEevZfoiyAOLAZGhX7PpdF2+TdF2MsKqK+6x20e+6meQs/vxA5f/naxFx4Yjx31YWQx73wOnBWnQHpqZ20KAE8eIoKNopmt/5u6KkH9S8N20vlPQcZXJggfI7777DPv9dsWOvVFKSoltIOj2y8P5myh2vvgffPbHnxBirYZXYsRI/5X79dvpG6lywfXpEbG37BOXS1VdLOiYiNm6I+/GAbVeNLHHWGtpUmcS5OPpM054EZyHzTht/FBG/HiF2WWWbpRHb3KZ3tiRFv6kcPflFldpDEfHZYXElduRi/c7RnO8ccCA08ACo5zE+pkzOfVvTd+xrkla7KjusfqJ8fzxa0j4RMVK9qPJYVibfamouzqpxv5udo553U66Ke4TKkvMxZMQ2sDh4zFXLSifj+cqSCF/rvX1YgsD27yLivqPeNlPcYkGZMbc39vMdtq/hhkUouvZdqhacGPAYjUnIiu2PvGqzc0rhz7To/2gmatkukZhqNzd8WJk46Xi5sojaCsoh1bsPCrT9PGUiY3PlTtuZyszso6KhQPgIjlTuqHRv9+CIeH05v3fkkPvObV+MssR2v6RTuf4HaiiEZ3u/iPhAn5tWjYhLyvk9lHV0XuscMn6WpGEHnps5R3dIuaO6cbncmQ/ed4SHcynjPymHAr8pIm6x/YeapJN0RwHVC23fqMza36ScsrKl6obM/y+yvsmzlEuCH+IyXL5i2x9XHih2nsuflCNMJu2jypFhx5d2nOcBdTW62rZaOds7VXQl26OM0Gg73WUcz1eOsthb0us8Va6stmbJKpJ+a/tMjTh33vYXlKPgLlJl0fsepzpriB1V4nZTThN8WGlDTZ2pcXT+J7favrdyuu9atcERcant+ZHTHA8vn4nGxFPLHbt/RcS/bMs5EvK3zlGXNToJiBttP1A5IuWeI8Ze45yeeLWk1Ybc/w4RsWHlNoZ5r+2VlSNVD1HWq3t9xbZH/q7xgBE0ku5bvgdq39dtrKYcQXe47TWaem09ePTPqG0+XFO9s49X6Z2tCYw+tYecBXdrjFwvqSSd5imTxd8YdL8GKymnMjyx+6FV9931NklbdJL1zhE8J6uiULntQzQ1qnaech+q6nvOWdrgC8qOwVGmzM+qiPhKaXtnyfmdomKKY+kMHfa4A1fWXNpiZ3Pbs/mcZ8BfnSP7O9Oqd1bdFK4dlYs57KDp01Fr/Nr2CyPiS91XOheh+O2IjzWONgvKjKPN811lyG3LN8TOc9YPvG+/91nle+sXth8UPSOuKv27/E5dYvs1ylWbV2yI6Vg2ZqCe6dKExNPcsGlEdBd2uzXK8EHbTfUZPivpYmXh2NMi4ncN9x9Hv6l43QmEPSR9rOvyTE3P2UXZ89urexjftiq1iiKLkzcVRr/fmG05Rtmjspuk20vvcNVwQg9edv4Lqi8u/l/bz1WO6ugMaa0pkruIkgSrGj1k+1hlj8wPYoyi8xFxhafXi28qDHyW8nW1cmTWDeX8KsrEX+0B9OslHW172nSXmkDn8OdrotQLsL28su7AH4fFRUTVweEQ49Ts6Ni6ZU99Z9plbxseqvo6U+P4rrM21YeVB32hrFNV49aSbD7XWYfsGlUeoLd0ZWnztyWdZPsGTdWKatJZDev/abTVsKT+iZ+hK9EMSYZIqh8RV+7b+Y26SSVxbfv1Q7b9/Ij48qADmoadzYHD9jVaQnUsziL/C5Sjlg5Xftd+WTnKdZDHSvqR+rd9lDYvHxGn2HZEXC5p/5IsaJwWMMBHlaOgmoxVLylyUYM3K+uNjBPfZgrPvJg+QvR61X8HdK9yepuyA+vnlbG7KROCZzpHXh6unLI2sSkGzqXIO4+/gu2bOzeprmOj4zplnZZllIXk7+igGeJA5bTiHyg7RUZZBGZpi53Nbc/mc26r36plAzvdOyKLPn/N9m8i4rwxtnms7RdrKmm1QJlIeeaIjzWOj3n8BWXG0eb5LrT9soiYtn/mHGXblPB7jvL4aRmNviJvp+zGMpL2tH2Zpt6fAwcL9Nhb01dtfryaV23u+IFzZbvvaMwyBUsbptrNAbZ/3X3Q6K7aROXLdGCyxDk39yGaSmxsqjwA+6VyGtePZqB9iwzr9vThsHecH3T/Mbc77XG7rv+ycqTAVcrpehtGxK3lYPDUmFDtImcG5XHK+j1PURZcfImk70fXKkZ94j6iLPr+ixhz2XnntI9XKP+nR5XkyK4RccA4jzfCdrdT7mBvrZzSdHhEXFwZe4ykjyhXN9pK+eW/ICKeUxH7OUnfiojvl8tPVvbOvnyEto813aUcSGwTpdZSSW78PCqmNM0W259XLvdePR3ozsZZH+uuEVFTPLozHfM6ZX2nNyg/j5+KyqnJM8E5ZW9lST+MlrW5JsEzMBWq4fH/FBHrDbjt5RHx2bJj3W/j72qz7UlyTm1+qKSzu37n7pji2BDbGYE37rZ/IelRys6OHyl/5z4YEbWj6nof74qIaFzhctyEe7nvByX9VVmDrHu01MCdc9tvjogP9Yw8ukNU1NCw/WFlR9dR5ardlKvVvrkptsQvJ6kzvWTkaZylF31H5Ujo25UJqI/dWQ9KbL9H0ouUBXM7r3lEw7RX5zT55yoXODlL+XqfUpNoW9pi52q72z7nmeKyaplyFORzIuIrDSGduLGKk5fYbZWlMCTp1xFxynitH43tDygXlPm9ukaqN30eZ2C7Iz9fZy29bykX5+hOWi0n6ZlRMcPG9pNjxIVGPL3sxiJK58zEeAbKFCx1IoLTnfyknBp33z7Xb6asWTTKY60p6TXKFZpun6H2nd3nuvOUQ/Pv0XV+tXI6b1LbLdcvr0w4fUxZKLxz/TaSXtDwmLcol3runG7p/jtC25ZV7nB+RdJfZ/s9NOmT8uD6FZKuUI7W2lM5BHVYzOrl9blOWdj4y5JWq9zeBTXXDYlfQdLbJX2uXN5E0o6Vsef2uW5G3tMT/P88VjkS5WJlvYMLJJ0/QvyamhrZJmV9mZcshnbfVbkE8rHKURlvUCafauOXUx54PkjScovx9X6YsvfstZIeNkLcPZSjlc5W7rwdLOkelbEbKXvd/lo+T8cpa8zN5vvuisWwjacqV/N7R+e0GLZ5Rvl7dvl7t9rPk3Jk5qEq05nG2PYWypFw6ygTGccqRzSO+1z+VHm/hd2fofLZOrMy9g99Tpc1xDyt/N2j32mE5/csZQfHR5QHQLVxj1OOVDxVOTXxD5IeM0L8g5WjyS5WTmXfSjka8dxJvz9bvBcubvs9qdzPOkTSb5QH9sTeCbc9m895xG2tpJwe/wlJ2ytHsrymfB6PG+FxTlWWrjin67oLJ9n2GXjul7b9PJbHeYZyxcrF0ebHK/d7Xitp2xFjVy7f0wvL6SBJK1fGHllzHafZPzHVbm54p3LKyfs0fZW3t6phOc+S1d+m67ScMjFwiHKUzUzo15O/svLAqTMct3to6Ez1kAwa6vs6SR+Onl7liOhMYRvmFOW0q2OVBaCrCqk6V9D6rKSNlQf1L46cevLd0jM8UW5XcHYF5Q7xehHxsvJYvdM7h8XfQ1m/6AWSzlEmkx6lPEB43JDQTSNi2lBp249U3fvyattvVyarpBxyfXVNe4vDle/PR5TLVylHbNU857/YfnpEHF/a/Azlwf6d2eeV/59pBRBH8EXla/a2cvl3ytELn5+Jxg3xJWXSt7MU+/OUNeV2aQp01jn6jLK30JI2LKNsahYoeKSk/SWtrxzC3Rm2XfN5ekdpX2fq1OG2j46KnlVl8dPTlMsCS/m+/rqyRkWTr0r6pKaGxD9H2Su9VUWbpy1F3Lk+KpYiblDTk36EpL2jrMBZphoeFHWFp/uuetimwZW+4ax5tortl0l6cdl+jc2UnRKvlvR552pAX4uyeEiTiDiznP27MsHfyNNXAZ12kzKpXGOZ6Bq1Fzl1fbmawBijhlhEfKecPS16amc5VwYcyLmoyJoR8fPI6aLHlusfZXvjiPh9RRMOkvTEKCN4y4iJo5T7XkOVqY83Kr8f942y4q2kX5XvljurC5XT1sddwGIN5UjAB0m6cpTHWdpiZ3Pbs/mcx3CksqTCLyW9TLkPYmUS+dwRHmeFiDjD00s7VC9IM0tafR67bCXpQbaXiYgnt27VEBHxY0k/HjP8C8rnvGu5/ALlfmfjwiyaGqEl6Y7ZPo3f1W2V46c3Ko+f9hr1+GmpNNuZL051J+VqWF9SHiyfpVxx5IEVcWcrD9qeq/xgjLLN9YadJvhcX1N5v7cOuP4Tyrnojxxz+ysrd+hPUPaSvEoNI3GU2fntJd1FedB5wmJ+f/xM2YN+vvJgeX9J766M/bpyxMCF5fIKquyVVQ6t/bWyR2qt3tek6b1Zc92A2NWUI9rOKe/xg5v+R/3apum9X1WjlpTJxdOVIxc6I7zusxj+x3vXXDcg9pctt31mn9er6j3Scru/rrluQOxvu/8v5f/22xFin6ws7H2Pzqky9mJ1jcpSjsC8uDJ2kR5YVY7kU58RNyO8p3/Y9T3wf51TZWzvKNHu0aK3VcSfU3PdsOfc9XdF5SqAE31flm1tr6w9dqCk7cd8jFWVv+uNo4+VNb8Gnhpi1x92qmzrSeoa3aDsRT+lMvaF/U6VsWdJWrvr8mObPhPKDoQH9bn+QZK+M8p7q+m6AbGLjDRUTvmf+PuyzUk5NeYq5b5P1XurxL24fIf8RDka5Z4jbHOpip2r7W77nFu8Jy/oOj9fmYSpHvXcFfsD5T5AZ5TqziojuO+sp/Ja/23Uz+NcPan/bIJFruu5fT+VfQ1N3/e4XtIHKrY5X9IbWrR57OOnpfVEjacliO1DIuK1A267q6T7lIuXRqnT0PB4nV7S7i6CkLSG8kdn/pDYoTWcYkhxvJmoAVW2/wnlUOBPa/oyl7Ur08xTjhr4uHI59GErfkxr80zVsarldsuBLoyIBT11uc6LhlpY5fV5a9SN5OiOe4Ry9N3rlVMROlZS9mIN3W7PY90tIv7RfM9F4n6hTNT9PCIe5lwt5aiI2HKEx1hRkmJI/a6Z1O89NajOWZ/YTyl7znoLIFYVNLb9E+WImJPK67W1pAMi4rH1z2B0znptn4iI08vlrSS9OiJeWBE7bXlfZ1fnGVFRi8v2ryKicaTQgNgfK9/HN5bLq0g6NirqMjjrvZ2hqULMO0vaMiLeVBF7gLJn+GuaWnlwVU0trjCsns7YSxG35Vwy+nFRVv9yrlx5agxZfrkr9lcRsZVzyexnKXc2L4qI+zSEtm3zARHxlqbrhsQ/Vvn/eZKy0+LrETG0wLftvygT3Ucpp99P67qPCS2x3bX9jZWjWddWvr+uVCaPGmumlTpNHXdVfveeHRE7V8RuIelTyqLsD1OO7N0xIq4YEjP20t5d9/uCcr+he1Tt/Kgbidfvu7rq93g22b5IOXJ7pOXbnYu2XKipRRSmHVjEkJUPl7bYudruts95XDO1b217I+UU522Uv5N/kLR7TLgGUBvld2IRFZ/HVrMYZovtX0raJ8ro3zI69MCIeMTwyKyHFRGNKxYPiD1jlH3/ntixjp+WZky1W7IsMoTb9jKS3q/srbhcubO6rrOY7NtiSLHM3p0z2xtIeoty2sf7G9qyUPkj1ZmC1Ju8mmhxvIg427k85zeVvRydH8nGbdveRjlC7NHKkUTPjIim1QNX8fSVoaZdrj3Ab6HNcqD/cU4HDOmOA4x/Dw+5Y7WiZ0saKfGknO65ohZdweJm5YF2o/I/Oqw8znrOwpcvj4hXVbbhncreu3Vtf0X52XlRwzb7rsLVGbo9LDHZhnO1wucpp4od33XT3ZW9YTWWV/5Px1mSXMqhxMdL2tj2z5XJ56r/VUsPVy6T25nyup6kiztJ8RhezHmh7e8rkzihHIl4Zudz2e8z2ZUw/7GzMPGxGn01mZuUy86fVLa7vaQzbH+8PMawosgvUyZkOwe78yT9w/bL1bwyVWd4em+B/eeUdgybJthmKeK2DpL0S9tHK38ndpb0vsrYNqsetrG98rew25P7XLcI239UjtT8hnInuzZxfq+y3c73wfeUyfKLKuNbiZyetvU4CffeDrHyP/taZeyZzpVfT5T0L0nbRcRfGsJWGXJb7dT3VyqnQ3Y+rz9VJsAGsr2ZcsrHyj37Ayupawr8nditMd7y7Y9vsc2lLXY2tz2bz3lcD/H0FRqXL5dHWq0xIi6TtJ17ipOrfsXZxS4iTnUW7e4k0c+I6at0DnK4xi8lMZteIelLztV5pUwQ7lETOG7Sqfi57U9o0cUvavb3xjp+Wpox4mkJMqCX7aPKA9Q3RMQt5bqVlNMD/hkRe1c87ibKedVbKQ8SjhiWsCoxr1ceQNyk3MH8Vu2Oqu3blD8Ki9ykih8a2/cs7dxI0qtihCVUy0HBjaXNP1LPHPBBX0TuvypUV1i71aGalF7h3yh3uN+j3NH9cGekSEPsE5X/3/srd+4fKWnPyLnaTbEHKufeHxsjfpnYXj8iLre9QkT0+38Pi/2V8v11fFcvw0ijNpy1qbZWvq9Oj1x2d9j9Z2UVLueqHRsqe/r37brpFuXUj4nVKSjvqysi4tqSxH65cuTTr5VFnCe6OpNbrFgyzmeyjFYaFlMzamnojlJEHNH0GIub7V8rR8T+QaMvRTwT27+/pjoEfhRjrL7oEVc9HIftVyqnXm+krB3WcXfl6MnnN8TPV3b4tKqdVZ7rc5UJt3dFxCfaPF7lNtdUdjjdOyKeXP5nj4iIkeu8OVcUvTCGrMRn+zuaPqri/soVeW+QGkdnHKV8H/Vb2nv7iNitoo13k/SvKLUiy//uLsN+q5z1/naS9HRlor7jFmUdr6Yak7PKOeLy38q2z/jy7ba/GRHPbr4nsbO57dl8zjOtHO+8WjlS8zhJJ5fL/6fcf3rGLDZvKNu7Kr/jf6L8TX60srPimIa4OT0Kp/zPFBE3N913hrbXb7+vdn9ve+VCRd3HTy+KiJ/MaCOXICSeliADEk+XKFfEi57r5yvrnWwy5PEeqExIPEDSh5S9qyMtA12Gtz5HWQ/icuWUtXMbYu74shyHc3nLDyhXLOt93lvEVHHWfrE/0eCCuFVfRA1t2+NOeuA5UhKmK+4W5YpOtyl7o6t7oZxT7j4vacWIGGnUkqem2Iz1w+ocwntuRPzD9vOVUzg+NiyRcWcwZu9Xm+2drRxh8Dfbj1EmZF8raXNJ94uKqTIz1I57anrR/Kqi/y22t1HpIR163YS2vapylcXu53taZewDtegCA1+qiOub4Jvk58H2ShFxs3NqXb9tD5saeEdCtFx+oTIhermk/SeVEC09sauqTxK4dptuN6z/LspV/J6rLAR/vKQvRMRV4zzeiNv+gcoCAxHxkJKIPifqpq11J5HmKd+j34iIfYfEDJ3GG0Omm3hmlvY+Xfnd9/dyeUVJJ0bENhWxj4iIXzbd786mzQFY5eOPvW+3tMXO5rZn8znPNNvHaao4+ROUdRutrI957iw2rZFzGvr2nf08Z2H3k5v2cz0DpSRQb9zjp6UVU+2WLP1WeYve5Eu58nb///buM0y2qtr6+H8ckJwUFQMCksSAZEXAAF6zoqKICNeEOYCoqKhXUe9rTog5oSgGUMEAIoKCApLTIV4QFLOIophAYLwf1qrT1X0q7Orq6uowfs9Tz+na1av2qj7dVXvPPdecUr+o40WUmhLHUdqQPkhtHSHce8lI63uuqW/8q1I6FGxOKfw9Sg9yWyp+vTK7d73dSDkA7cj2I0Y8twMoheHnDEkn234k5f956raebK/Z73t6+DDwGOqVYdsX1eBGE79SWW7nevX8AErGV1OfoKRwb0VZRvY5SpHfvjWLJN2bEnzZiMkdwEZS46Btv3tSMhVPofytHyap79WvIa3QdkK9F/Bpl1o035R04Qj3C4Ck3SnZi/egFBXdkPL/fP9e4+rYVYD96ve2B2KaZB9+gxKMbHc0zTpaDdNh8gWU3+X1Ke+TO1IOmJtceXsrpYvk/YDjKUu/TqP8XvfUCjBNDfCN2Fco3d3OY3KwX/RfGvgpaqe/+p7xbiYCop9mRMtAXbKp/kr5LJmuaaX1SzqC0mTkeEqW0yVNd6jeXe3sZpltd7Z9lKSD63xvldT0QtT7276+Ffil7V/3GtAeWBo04G77D8BOknal/MwAjrP9o4bzhZI9tyxL2/bfVWqndKVSy6q15GK535Emx0zjUi9Gfsf2h/p+8/QNc6V7sY0d577H+Zpn2saeqHv6WUrW5AZuUOd2Dlgy5b3uBkrgvp+BS0ksBPU9bD0mH5f3vUip0ol4OW6YmWz7BtrOn6K3BJ7mOZX2mK2lNod2+JbLJD176lXvmuVxRZ+nn/bysCmZTr+iZEq80/a/Ggw/err7BbB9vUo9qlaw6T+UE9btbf+i11hJr7P93vr1nraPbnvsnbbfOMzc6BwcHIt6Yr4acOeaZdGa21qUtOSmzzPtDA3bv9Lk9rZNT2ReQvl9vydl/fqJlPTppm617bo04mO2Pydpv4Zjj6UEqr5LWwHWWfBmYIepV78oQZJRWaHtPeaRwIvaHpuNz493UIIvJ9nepp5I9lzO1OZLlPe4xwBvpxQH7hmc1MzUaDmccuD3IWBXSofMJgeLUIJOO1Cumu1a59Ovnl7L04GtKFkoz6sn61/uMwYYLsA3XbafWP+99zSGjzUgOqSt67/tB7VN6h7uSwlUHQDs3/a+2STL9ImDT3M5/6hXdluBlR0pQbgmrgN+1zrZk7SqpI36fR7X75263KRxwN3Dtfb+h6RtWwFBSdsB/Y5fzp3mvsauXozcm8kNPyLmu2VlQerv+K/nSdAJ4ARJP6A0lIDyWff9foNs/7Bmq7eycA5Y6Fk4kl5JOe76AxPH5QaaXFRpr7O4CuXzcpAL2TGABJ7mAUmn2d6lfv0l2//d9vDZ1Cvztr/QYfjLgW9Jej6TU85XBZ7aZ9cXUdpxT+cKxtXAxZQ11X+jFAV+qZoVYr6baiHeTvpdNVTpjLAWJdj1NNtXSbq2yUEuJVj23vr1wUwOgj0WGDbwNJeuBr2YUsj4HpTfjdaZzN8oHQH7GiZDgyGyluqH6D5NvreLm+qV+32Bh6kUZr9Dw7H/9vQKsA5r4KtfmlIIfao+f4dQDnhOlfQnyknXT+vzbkrzk85h/Mf2DZKWSFpi+8eSPtxw7Ka295T0ZNtflPQV6vx7uA/loGMdShetlpsohb+bWNX2yZJUM4kOkXQe0PGq2hT/tv1vSUha2fYVkrrWwZniXy4F/29VqZHwR+BeDccOE+CbFg3R+ZTxB0Snzfa0ivTabhq87DR2JpZMDtNg4GhKN6mW2+q2vh0mKcv9ZzvgDuWz8WhJv6V8Nt6NcuLXlefgMvoBDVNkt4lhLrwttrHj3Pc4X/NMm5Hi5ONg+6B6AWyXuunTto/pN04TpSSOq0kGb5Q0H0pJrEKpobgL5VzpNOATDQOFB1A6990w6H5tf2DKPN4P/GDQ54lm5vQBWiyzetvXU69A93yTd6n98GBJu7WNPd72yZOeRLqjazvrNp8FNq4nTWcApwM/cy1S3sfbmQiyNO2u1vISSke8o4DWQd8g/kDJhFmPcnB8Fc0DPurydaf70zGjH8rtqf2d9ArS2T4UOFTSK20f1u37+hgmQ2PYrKVh7EXpDLWfS+HsDaht5xs4tC5rOpERFGDtodPVr+P7jBlmKSS2/5+kk4G7U+qbtNdpeWX3kTPmRpXaKj8BjpT0RyZfneqldaXzRpXaR7+n1Hfoyva3gW9ruBotw3SY/LVKx69jgR9K+gvNu+6cW8d+hhJI/jslCNzEMAG+6Wod7K1CuRhyEeX98YGUzJFeLZTHHRCdNs1gke4B9nkTvZfadT350kQ9rfNV6i61GgycCPRcLtdmRdu3tO7YvkXSSg3HTne5yVBcuultQQlGA1zpPk1VWmpw7PUsv9x2pN18Z8DW9d9Bs/Ga6tv1MWPnxL7H+ZpnlO0Vxj2H6VIp63C8awfeATJFp11KYsyOoFzka52PPIuSub5ng7G/YuY++1ejXExvRNIuwGa2D6/v/WvYvnaG5rLgpLj4PKC2ouGaUkB86v2Z2MeU7atR6jvtVG87UE7gTnfz1vWDzmVdyhvNXpR6EF8HvmH7xgGeY21gD8pSu80oGQyPsX12n3Ej/VlL+qjtVwzzHFOeb0Y6aGn6RYnPsb1DXd7yYNs3S7rU9siW6IybpHdR6pX9nLaU3tk4qZD0NMp6fYCfNrn6NZ+pdJb6F+VEcx9gbeDIJle1ajbeN4EtgS9Qgj//Y/tTPca8zvZ7uwV0+2Vb1ueYdofJKc/zcMrrPaH9pL3h2I2AtWxf3PD7T6J043o3sC4lW2oHNyikPCxJ3wLeantpvf8ASoHwntk0Kku9WgHRf9Rtm1MO+kYSBB4mgNP2HNMu0j0OmoEGA5J+CBxm+zv1/pOB/d2gjqCk91GCke0B94ttj/QEV9LLKe81N9b7dwT2tv3xBmNPpBy3vJZygeU5wPWjnvO4SOr2PtO3hthiGzvOfY/zNcfgJJ0L7NT6/K/B+tNt98wUbZ2rqNQu+o1LKYkZOVccJUmX2b5fv21THm9l9d+fcpHgOCZfEO6X1T+1BuIKlISFt7tBt9h6EXp7SrbV5pLuARxte+c+QxetBJ7mAUnXUFp/LqFkZby29RDwXtubzMA+LnCPThT1BHBHyknvsylXIXsWy5X0OMpytdabxqXAe2z3y9Jof471KcvfXg283vaXmo5te467Ug5Wn0kpKth1+YlKsdR/UFNygVbrZFGKjXZcjqXSVamrJkGccVGXosQNTyiOodSweRXlquhfgDvYfnyPMdPO0qrjlwBPt31Uv/mNgqSrgfsNGgwYh5kIpCwmkp5k+7vdArpNA7nzzTABvhnY93KB6oUcvG4L1i/7zJV0oe2tR7jPYToILusWKuljlADKIfV+o3mrdFU6kpLdakqm1LNtX91w/u3LTWYl4N7ptfU7Tmr7vvNsbyfp4tYJeev/fUTTnTGSnsDyDRl6FtmtF55MaRjwXabUwnKPJT6Lbex8nfewrzkG1+U9qG/3ZkmnUoqLPw94GOVC0kVz9eJGi6QvAx9tXaST9GDg5ba7nl/V85eubL+twX7bu/reCvzBE7WT+429ENgGOL/t83zZ+34sL0vt5odTgd3bvm6vPdKoiHMDy52USnoWJctpa0oE+RzgLGAX92lHLOmFlJT81zFRcHN74N2S1rf96X4TUqkBsjfwKEpBvfN6j+j4HHehXI05jFKUtGPb8BY3TMvV8ksTux1Q7k452B5p4EnDpfZPuyix7VadsENUWjGvTfnA62WoAqwudWxeR1mKOQ6XULJZenZWmmn15Os9TLQDbpJl0aqZNW+L3s6yTSQ9iBJ0aXTgsRDY/kd9b9zMpR7WapQrf7PhYpVuQ633nH0o9QHnnG6Bm5ZeAZw2wxTpnq6pHQTbl3z36yA4dD0t2z8HdlRZNovbusU1dDpl6awpdS1nwwqS5Hp1VqVjUtPlga0leb+rgZzfAj1/d+YCSZ+kLDPZlVJq4ek0+Hnb3lplWeLelN+1y+q/J/Z7H11sY+frvId9zTEt10va3ZMzRZsUCR+mlMQ4bQecIanViW4D4MpWRlKnYE6TwFI/tn+psizxoXXTT2h+DHKLbat2ia8X8aIX27nlBiVaO3XbTZQT1hcAmw/4fJcBd+qwfV3g8j5j3045QP4y5WB5xQH3LeAQyhv0X+rteuAto/x5Tdn/vsBSSrr9A2fh/+9ESuv4yynruD9PyS5rMvbs+u95lGVBAq7oM+ZOvW4Dzn0tYM0Bx7ybkvl3r0H3SzmhPnKIn/UpwJ8pxQe/07rNwv/x1ZSlLdMZu+2o57cQbpS272fU/99TKbV4njjo7/R8u1EKp58D/Lze3ww4eZb2vQpwIHBMvR1IyS4d+8+lw1yvBa6p/069XdPwObalBFL+Wv/9v9n4jOgxH/V5/E11nt8GLmh9P7ApZdlHk32sR6kz8v16/36Uk6ImY59BqXP2RcoFnGspGa+j/rm8j3Jx45H1dhTw/oZjn0i5CPMASle984Ddx/V/PMBrvnjKv2tQMswGfZ69KMdfB2Xs3N33OF9zbo1+xpsAZ1K6gl5Xj002Hfe8Rvh6N+x16zP2u7Qdj9fblyh1aHseT9TvuYRy7vl2yrnbKxvO+bXApyjHBS+k1NVsNHax3rLUbp5Q6Wz0ImCLuulySoeD/5uh57/AU1LI6xW+rZio73Qf4HeUP6yf2f5Rj+e73PZ9B32sPn475eCytcyt9Usq4Hb3TzN9NWW52ItcC7xJ2phScO8E2x/qNb6JLj+vFYHnUt6IzgTeZfvKYffVcD7TTu2X9HFKt75nUpZ0/p3SEeN5PcZcy8SV8w0owT1RMoGuc4MW6ZK2p9Q6WbOOvRF4vu2+mW11/1PZfZZ/to0/DdjN01gup1J7p9POTx30uQbc7+me5rrxmo12N0onqK/bvmRGJzfDJH2akuV4kps1M5jp/a9EydDciVLk+iHAje5Ra2AuqFmirY4wp7thraOaLv4g4CxPpIsv9Syl5ktalbIMelbeL8etflbch/K+17ho9Qzs9+2239J2fwnwJds9O4RqyHpaGqKulaSLgEd5Sle7fscBw6o/mxdRgk5QroDfzfZsNcCYdZLOsv1gSWdSamTeAFxqe9MGY+9JOYZ4KuV44CjgGDfIbltsY+frvId9zTE9g2aKanItwpUoHZv/bnvt0cxwZtTMrOXYvq7T9iljD6XUZmqvBfg3ys9hLU/uBj917MWUBh+tz7bVKee4jZbLSXoU8GjK5/kPbP+wybjFKkvt5gFJDwG+BXy63kRZU3qKpD08QNHa+sHRWkLxW0+kyC5X5NP2bcD59fbRugRrT0o9n7fTeynG3yRtZfuiKfvfipJJ1UunoIUo2S0H9xkLpfDzo2wvS0m1fY1KW9ETgaEDT0xZmqhSiPQA4GTgse7fdWKmTTu13xNF4j8p6QQaFCVuBZYkfYZy4HF8vf84SpHiJj4PvMx2qyPVLpSTk75v9k0CW31cQ2kd/R0mt43uW4jQ9qlty5JOmsVlSedK+jql41l78cRv9Rvo0nHwbpTsgU9JWosSgPrfUU12SJ+jBI9fLekWyt/tCVPfTzqpSxK7avLzotR3W4uStbA25e9paYNxrRPyTwDr2X6ApAdSsh26/qw1M0Wr30J5f269vsMlHd3w//hml05jredasct8Zpyk3SnZJSsB95a0NaWw5+49B46BpC1sX1EDfMtpGITZk/K7fKmkNwPbSvrfpkHCId1L0sG23yVpZcqJ4wX9BnU6xhjwotedbR8l6eA69laVeopNjKur3e2SzqJkHTwDuDOlWUFf03kPmCO+p9IZ832U4z5TumT2pFJTZk3K79PzKP9HACtJupN71xBbVGPn67yHfc0xOEnvpNTxvbHevyPwGttv7jXO9rJuxiof6k+m1Oid645j4oL2KpRzwStZvpt7JztNudD+XU3UU7y0z1gB7Z9HtzF5OXpPNdCUYFNDyXiaB+rVwvfYPmXK9ocDb7D9uB5jD6YUe357vX8dJbNkJeCLtt/VY+wDmch22qmOOYOS8XS67a51Y2oQ4UhKIKGVwbI9pbvLvrZP6/GS259nG8pa5T0pWVDfdJ9OA5Iusf2AQR8bhJbveHc7pebP9Uw+YZuVjh+SnkhpKX4vSivStYC3ua4N7zP2ZE/pLtRpW5exy2VFNM2UUOessUadN2qw59WULIkXSdqM0lXie/3G1vFv7bTdzQoRvpByJfxOtjep+/5kk5/XMCQd3mGzbT9/wOfZklJ7bS/bTWuWjI1KPZxHUwJRW1JOlE9wl+LybT+nu1Let1qZmbsCZ9h+Yo99fZpykHMTpZ7dmcCZnlzPrd98TwUOAj7lieyhGXnf6bPfK4GtbP+73l+Vkrl4n94jQdJ7KZ8Lz6Z0LHsZcJntN41uxsv2fR6lMcEpHkO21SAkfbq+3/y4w8N2g5p6qlmp9TPyHZTlnW+x/eCZnm+HfYvyubyU8vdwvO0Pz8J+TwGeBvzQpdvSjpRjmo7Zo1PGdupqt9T260Y0180pdWz2piwl+jrwWtsbDvAcY3kPmEk1MLmK7b71xyT9gonjnk7HP10zkRfb2Pk672FfcwxumGPkJs8119ULPC+z/YIG33s5pXP5dfX+BpTso/v2e+0qq2SeQ1nqD+Xi+ReafDZqerVXF7VkPM0Pm0wNOsGyzIt+Rbr3ZKJgGsANtrdRWUZ3KtA18ERpQX46ZcnLm90g3bFtbqepFOl9OWX5GZS6Tzu6f2HyTgd+sr1rw933Wj41U53IpkbDh83AGUpbwOWvlBOKviStQikkeud6JaX1mtaiFERv4rf1qn17YeDfNhx7qqRPUU4oTDmhOKWVTdAnA6AV0Gy1e/8NcDTQKPDUCjBJWs32P/t9/xQvpy5Lqs91lUrnxJFyj6WP/Ui6L+Xn+zTKlcqvU5ZVznkundW+Wm9I2g54bI/vf179vhMp3Qd/V+/fnfKe1ssGwMrAVZTfqV9TAjKDWM322a3soWqg4qv196m9SUCT997f1jH/rvdXpryGJt5AqRG3lNIU4nhKceHZ8B/bf53y85qTV8RstwprP9L27e2P1ffTJlpXVp8AfMb2cZJGmgkzJUPrUEpNitOBn0jats977Ux4NaXmxiaSTqcsiejbNRXA9kGa3NXu0x5tV7srKBdxnujadU/SgQM+x9DvAeNQf4dfxsRy3dMkfaIVzO7G9kbT3ediGzvOfY/zNce0rCBpZds3w7KLSSv3G6TJWd9LKBf9e/4Nz0W2z1fpbNfEayjvVz+nnMvcG3iZyrK5L/bZzwfrxZHWZ8zzbPfNBK7eCzzJ9uV9vzOABJ7mi15L0/7R4zGgdCxqu3to3XZbfRPrNW5bWHYwsqmkBwBX9zsIqWPuAqzrtnoSdfv9JN1m+/oew4c98NtK0t86TYu2k7ku816NciL0n3r/PsDjgV968hKdqdktT6Vkg53vWezwIel1tt8r6TA6nKzZ3r/H8BdTlk3egxLEaR0l/w3omVXWZm/grUxcKfhJ3dZEq0bH1OyjbSivpVf2wCa295K0N4Dtf2rKUX4vKstXP0cpnrqByhLQF3ti2WEvY1uWNITPU4JNj7HdNDA4J7nUAGvS4fJeraBT9QdKYKnXcz+2/h7dnxLUfA3wAEl/pqz575gpN8WfVNrHG0DS0ym18fpSWXb2Acrf5B8pRTUvp1mq+V+BSyX9sO77UcDZkj5SX1vX94IaRPkMDZbVjMClKh1UV6jZg/tT3kvnss8CyzIN68Htd+iwZL2D39SA+6OA99TMklEvHfvAlPt/oRT4/gD932uHVk8gHs4Ada0kbUpZqnZ6/ez9Vt2+i6RNXDrljcIelDo2P1ZZev41Blh2UU37PWDMjqAcbx5W7z+LUqB3z0GfqL7+ZwHPtN3k/WvRjh3nvsf5mqOvI4GT27K4n0efIErV3vn8VuAXlOV2c1rNPGpZQmnE0eh41fbx9fihVQf5yrZz1Q/32e8HgM/b/shgMwbgDwk6DSaBp/nhXq2ThylE/8yUNSTdoXWQZ/sLsCyNumcqYD2hfiflAPuXdX/3qm+Cb+pz4HgY8PEO29cF3kz5sOpmqAM/28PU2zmBcuX/qnrg+zPKm/8TJe1gu1WjYup69vUpb25bqLT+PJ1y8nRGh++dSa03vK7LHruxfShwqKRX2j6s74DOz/FnSm2r6YxtmsHWyS01cNo6sN+EtrpHDXwYeAzlZBHbF0l6WMOxp0p6I7CqSlHBl1E6asxZth8y7jmMwcmSfsDkJTon9Rtk28Alkm6kBHP+SulS9SCWD5J28nJKLb4tJP2GskR434ZzfgelFsNJNTN11wHGHsNEABhK98We6ntV16CpR7xEuHolpXPazZT/qx9Qfg5z2W8kfdz2y2q26HE0D9o9g5Kx937bN9ZMvINGNVEY+r122iTtAPzK9u9d6jptR8m6/KWkQ/p8Nn6YzjUd/1ofe1KHx4Zm+1jg2BpMfDLl4sxdJX2CUs/wxAZP0+k9oGcB9zniAZ7cQOHHki5rOljSPZho5b4lJaP+mRk7t/Y9ztcczdl+j0rh69YFjXfY/kGDcdPOjh+zNdu+vpXyudq0rt6zp2zaShK2j2gw/HLg0/Wc93Dgq+6zxLgtq2zatVcXq9R4mgckPafX47a7RsBVitPdDXhFa0lRPaD6KPD7ViCly9gPUd4IDnTtLKVSlPj9wL9sdw04SDrX9vZdHmtU66DtwG9vyhXZI2h+4DctaqstIukdlDo+L1fpcnWe+9Qd0TzqhtV+UlDvP5t6UgD0OyloPcfmlC5+G9EWyHazWifrUGrKTB3bK0urNfZRlADm/SiFp3cGnusOS1K7jG9177nAEzU4LnKDTkkq3Y72o62LBfBZj+jNtGZnnTmd55d0lO1ndAgwzErtsXGT9FSgFVD8Sb8lOpL2Z6Km3X+oweN6Wzp1eVWf51qdUhi5cVe+1vumSievbVwKHDf6vazjVwI2r3ebZJX0rFtj+5eNJr4IqdTFWgvYDni37UYHyOMk6QDKgfVNlEDZtpQ6kSP5TJV0PvBftv9cA/tfowQatwbua7vrcjv16MqqWa4BVoOLe1Lq4jWu5dd6D6B06H2m7SNHNMUZIenLwEddi8mrLHN5ue2pJ3VTx72Icpx2T0rx6aOAb7tZd9tFNXa+znvY1xyzR9L6lIv/rS7IPwUOsP3r8c2qOQ3Yxa+Oab94vgolWHd+r8+YDs9xH0pW2d6U5IHP2O5UzxF1rrnaYg9Ye3VRsZ3bPLpRlgatMcD3rwC8m1Ir6TxKp5LrKcXQVuwz9ipqcLLDc17VZ+yV03msx5g7Ugo6nzzin+/FbV+fDjyl7f5FDcavTbma/Q5KdsW5wOGz8HvxQ2CdKT+vH/QZcz4lsAbl5Py3lMDTO4BvNNzvRcBLKdkg27VuDceeAXyQ8kb/nNZtgNe8LqVOyhMpXZMG+Xl9gxJcOJ/Sava1wNdG/f80zf/bT9R5fo1SL+1uA4y9e/13w063cb+2BvNfDfgfygEAwGaUJbhNx29IOfFtPdeafb7/g/Vv4O5DzPmdHf4W/7fh2JPqe/xHKdk/h1KyJpuMfQQlaHwqZcnrtcDD+ozZFNi5w/adKctZR/l/+51et3H/7nWZ8x5tt6cBF1IyW/YA9hj3/BrM/6L672Mo2XH3pxycj3R/9euPUS5otO5f2Gds12MMypL/sf88O8xrLUqW1kcpSykFvKL+LX573PPrMe+lwMWUK/+3U5bmXFu/vqzB+Fvq+872bduuabjvRTV2vs572Nec2+A3SvbzOcDf68//NuBvDcb9kHJcvWK9PZfS2GHsr6nPvB9AaR7zy3o7j5KFOZ3nWofShKbp969ASXQ4tu739ZSVDD3PC+hy/DTun+VcvmWp3Twh6aWUA5rV6/2/U7rCdFrOtozt24A3SHob5SQDykHbvyStR6l70mO4l8uycKkP1S/74mpJj7d9/JTX8ThKK/uBuHSV+nS9jdLFkt5PKcq7KSWbppWd05WW74Z1BvBBD9ANa0h3cW25CuXnpf4Fr1fwRFbTXpSird8Evinpwob7vdX2JwaebbGK7Vf3/7bu4ym1SlYE7lfTan/ScOxLKCf196T8X59IWR7R1biWJdl+ad3/FpTObl+QtDbwY8rS0NPr33knq0va2fbp7Rsl7Qz0LPI/RxxOOQhoLRVsXERebd0HKS3R7wl8kh51eIb8fWx5nO03tj3nXyQ9npKh18+TKUVAX0VZmrM28PaG+/0A8GjbV8KybMSvUoLB3XyYzsuZ/sYIlzNVDwF+RZnjWQxeR2ccpv48LqAErp9EeW+Y6+n1rZ/x44EjbF8qNa+NNw0rSFrRpe7hIyl/jy39jj/PlfRC25OWMEp6Ac1qvI3DlyifST8DXkhZQirgqbYvHOO8+una6bOhu1Mywj4g6W6UbJg7ZOyc2/c4X3MM7qOUZYxHU1ZSPJuJjOZe7mK7PSPnC5JeNfPTm3GfBl7tmmUk6RF12049xnTzDxo2faqre55I6YD8Tttn14feo9ItuJfDKJnD/bZFlaV284BK17CdKMvlrqnbNqacOJ9lu3FHnBpAeRplffZ9bd+jx/ceC3zLU9bIStoXeIbt3XuM3YyyPvcMJg4St6ecbDzR9v81nfNsUqkbdADlQ/bzti+q23eiZAB8qcu4E4A7A5dQXvPPgEs6Be5GNO/zKAe3rVaiG1KWJXZ985N0CbC1S+2NK4AXtQI3AyyHPIRSBPkYJq9vbrJM70DKlZzvTWPseyjBskspV2Xr0O6/k1PGr+IGRfKnjGktS2oFqFq/C/vWfb9hkOcbRv093ZUSiHqIuy9r/R5wsO2lU7ZvSfmAHWVgYWhtS88u8OBLIi+kdh9sGzvyJTq1JsMOntyJ5lw3LL5aD+ofRAlknOM+XUDb9zs1+Nlp25THx7acSaWz6qMoae0PpHxefNX2paPa51xR30s2s31S/f1Y0QMsyRxiv4dTArD3pjR3WAE4xXav4OQw+3sTJcj1J0ph/21tW6V+4hdt79xj7HqUz5VbmHwMsRLls27OBc6nLNVfgVJQfINBP2tmWz1+OI3SwfiUYeZbl/nsRfm7Xp1yHPLG3qMW59j5Ou9hX3M003b8s+xzvP1YqMe4k6m1iuqmvSmd2hovEx6HTsd2AxzvfZeJC8MrAPcFjmpyXC7pefV7l2vWJWltd6j3pFICYyfKRcIPtT20FuXzqVF5hEVpmHSp3GbnBlxJyQ6Zun1V4P8ajF+VEjX/DuUK842UZRlL+oy7J+VK9CmUq+kfoKTang3cs8F+V6ake7bGPr/T65hLN0p65QrTHCtKquiLKG3bz6Vk0rxtFub9GOA6SjDky5Q01cf0GfMmynLCb1Ou3LcC0ZtSsmia7PfaDremqdsvr7+Lv5jG2CuBlYf4eV1dX/u7Kcv11h5g7AUdto1sucqQvxfn9Hhs6bjn12D+Z9T3r/Pr/U2AsxuOPav9/4uSYXHxTM6vy35fTzmJ26/eTgNe13DsC+rf8Rco3Wt+ATy/4djPU7qtPaLePkMJnvcaMyeWM9XPiudSloG/Yty/dw3m26rvdAfg5DrvfRuOfSFl+cTP6/3NGPES8rZ9tzoFrVPvrws8cMT73JHS9XX1tm2bU4JQTcbvSqkL9Upgt3H/3/eZ6/m97s/VW31vfET9PDwLOJ5yAW7zhuNf0fb1/af8P78lY+fGvsf5mnMb/EZZMr8Spb7te4EDaVbyY0PK+d719XYsJQA+9tfUZ97HUEorbFRvb6YENZuMfXjbbWdg/RHP9eGUZjO/q/+2bq+mXFQa+89zrt6S8TQPSLrC9haDPlYf/wrwUEoA5GuUVMKrPUBBQEm7MdHO+zLbJ095/I6evSVlIyXpo8AulIKap/f7/i7PsT7ljW8nSvrmurbXmbFJLr+/JcDTKf+3O9bNZ9r+U4OxO1Kyu050jfbXJTpr2D5/RFNu7fsa4EFN5tlh7PeBPT1A8cEOz7EB5W9jZ8pV+Rttb91g3IW0/X7UbLiPNxk72yRdZXuzLo9dbXvTTo/NFRqiiLxK8ecbKenpr6R0H7zM9ptGNd+2fT+OiSV9P3SDTjR13JXATrZvqPfXpdR4uk+DsStTgrm71E0/pfxedu32KOmrwI/ceTnTo2zv1WTe01Xn/ATKFdmNKAfLn7f9m1Hud1iSLrS9tUrx+idSDjZ/4jmciddhHofYPmQ297nQSbqNssQDyoWoVSmFxVvNHHp2Ep4rVDqXPbbeNqUcT7ysx/ef75pd3f51w30tqrHzdd7DvuYYXM2M/QMl+HQgZen9x21fPdaJjYhKE4e3UY5hTDmGeVvT88uaJdvK4D7b9h9HMtHJ+9zQacIykNR4mh9+I+mRHQI+j6REW3u5H6XmwOXA5W5Wn2kS2z+iBDW6OZkp61klXUv3eji2vckgc5gttl8haVvgo5IupxR2vr3t8Y7BGHXvhvV5SuHOUc75dkmvs30UDWrfTBl7ZodtjZdBSroDpbh4q3PYKcCn3KebVnU15aC8MZXOFa7jLqwpxe3L9Pp2xKvP0woOPpSy5ORSSmZKE/sBn1epsyTK39dc7WAxH+ukLGP7hyqdsXak/KwPGCBQ+QbK/9VS4MXA8VN/DqNi+/uUZSuDuoFSJ67lprqtyT5vphRH/6Cku9vu99kAJU38GEn70GE5U9NJT4ekIygZosdTDi4vGeX+Zljr2OkJwNG2/6rmpZJutn1L6/tVWjiP4wrg7sAhY9jvgmV7hXHPYSbY/q2kL1CacPydiRp7TQxTM2yxjR3nvsf5mqOBtoDGvykBmUY0UYplR8pny88o3ckHrq87W+rS5G/Z3nWa458BvI9yDiLgMEkH2f7GzM1yeQk6DS6Bp/lhf+Dbkk5j8snBzpRitF3Vq7JbUK4onyTpT8Caktaz3auw+CA6fQhNrTmzBHgGpXvYBTO035Gwfb6kNwLfpCztaZ0UGNity7CNKAUAD2x4wjfTTpL0WuDrTFxxxQ3qJQ3pE5TlJq0i9/9dt72gwdh/UIJHP6Z58Ojc+u95lOyI6bqOstzlnbZfMshA2+cBW9XAE+6w/ntUplEb5lWMKbAwE1SKoF9o+ziV2nJvlHRoww/7V9o+lLLkrPV8B9Rto5jrabZ3kXQTkwMJg2Q7XA2cJenb9TmeTGl48GrKk3yw4XSOo0Fxy/oZsJOkXSlBIIDj6sWGUduX8h5wALB/W+BmPmSHfE+lLt6/gJdKugvl5KCJU+vny6o1o+9llO45sy0njzFJzZB/CaV71jmU5aSH2n5fn6Hr1Oy/JcBakvZof9B2r6L7i23sfJ33sK85BlSPfw6hLJ1bdr5ue+M+Q79C6SLaOsZ7JqXe04NnfpYzoyZF3K4uNZUaeBOltuYfAepn8kmU4HlfNdvqXkz+OY901cdilaV284BKIc67UdZSL1vyRqlz8zvbPx/gubajBKGeAfza9nS6BUx9zq5ptyrLwP4bOIjSevqdti8bdp+jotIJ7gPAxsDLXIuLDzB+Vyb+jy517c4wajXDbCo3+IAadr/DFAN8Tqfttr84U/Prse+tKOm8D6MUvb0KONX25xqOfwLl/3mV1jbbTbuPTYvaurTZ3kSlgP8n3aBg5JTAwqWzFFgYmkqh7q0oxacPBz5HaWzw8AZjl3tfUoPCnEPMdeNhryhKemuvx203uuo5ytcZhaQ7AX+tB8yrA2u6QcHr+pm4H/BoSvDnB7OViae2pgqSlti+vd+YWDw0sYR0H0rg+g3Aee7TsVWlaH03tt01I3ixjR3nvsf5mmNw9eLGgZSLhss6F7suxe8xrlOjkUbH5eNUL7htA/yQyRfQ+65k0JTl6vVz9iI3WMIu6R2UGpM/py3RwHa3RAMkvcf26yXtafvofvuICQk8zQMaQWcqlcvLD3Xz9vO9nqvTCd4dKMuPDqQsYXq358G65BrAeRfwGU/545C0g+1zuoy7B6Uw3r+ZyCzZjlLj4ame4zVLpqsug9qzFfysKb7f6BaI7DB+JSbaw17pZkv0kLSU5Zen/JWSEfW//T6Y63OsQQk+PZSSfYHtDRuM+ySwGrArpZjz0ynryfdrMvfp0hypDTObWu8tkt4C/Mb253oFuuuYvSldO3eh1AhoWRO4vUmgbppzPc/2dpJOHtU+BpjLy2x/vP93xmzrlHU3yky8Kfu5mlIz5Kf1dtpsZmzG3CbpUmBrSsbER22fOpMnrJKeM90LS4tt7Dj3Pc7XHBMknWV74Cwlla7Pf6HU9TWlA+EdKUvRZmMlxLQMczFa0vsoFyhbnfz2ojSTeX2DsVcCW9q+ZYC5Lq37O6/p+U4UCTzNAxpRy2tJ19neYLjZdb66LunXwK3AhynLmibxHE3LlXQX29e33b8fJUNsb0rx6W5t648Bvm37C1O2Pxt4mu2eSyKHJWk1SoHbDWy/qGbD3Mf2QDWfprHfR1IyUa6hXL3fkNK2tW+ml6RHMNG5S5Q01+c0CYaqFI6+jXKADCWVeDXg98Au/YKxks6ldNI6g3oS5oZrtVtXk9r+XQP4vu2HNhk/Xa2DkNbfm0ptmPP7XY2ezySdCpxA6Y75MOCP9LmKpbIc8d6UAHJ7K92bKAcit45orhdQltu+jFJraRL3WCYn6cO2X6XJLYHbx+7ecA6zXlwzBjPbmXgd9j+tpgqx8El6JeU98yJK/bINgC/P1Gdbv4sGGTs39j3O1xwTJL0bWAH4FpPLUfRcAtZlBUTb8NGuhJhtNZFifcqxz7LmKraPaTj+m8BLBzleqoGuFwJr0NZAovWv53apgLFKjaf5YZ0ej606xPMOVONB0j0pb4IAv207get0df8kyh/hVvXWzpQ30jnH9vWSNmIi2PQfSjBle9u/6DH0fraXq5lj+whJI++iRQn+nEcpbg7wG8pJ8EgDT7ZPbgW56qYr3aOL1hQfAB5t+0oAlW56X6VkivXzX1MObpa2Zcfs22D849oDjAP6V/33nzXT7QZKZ8BRO1VzozbMbNqLkr20n+3f15PmnvVGagDxlwxWEHcmPBN4CuU9cs0Bx36p/vv+6e5cYyquGc20ZeLdW1J7fbo1gVm5Aq3hmirEAlaXpvzB9j3btl1Hyeydsd1k7LzYdwqPzw2tbKfWMXEruNF1CRiAB+haPhdIejKwvu2P1ftnAXepD7+u3zGMbUs6vl6QnM655buACyRdwuQAX9cLfrYPAg6S9O1RJxYsNAk8zQ+j6kzVM91N0sHAHTxRu+ZnlPbkK1EyVd4FndM2bT93iHmNjaSfUQpqfo2SqXSVpGv7BJ2gFFzs9HxLmAjWjdImtveqJzfY/me9CjBSkl4OHGn74nr/jpL2a7jM5w6toBOUbnp1iWYTK0h6kO2z6353YOLn3CSj5RZJH2SiG9+pwNsbLjv5nqR1KCf551P+jj7bcN7DWK5L2yztd2xcauZ8sO3+dcARTcaqFD99D3BXygHbqK9EPdb2eySt7AHrfbkUrIeyVPRfrrV3VDq9rNzwaYYqrhmDqRdiphZ97ZWteQalC+2dKUH3lpuAi0cxxw6m3VQhFjbX7rjAUW3bTLPP08a7ydh5se9xvuZFT7WZCBMXjg1cT1ka3TWbqR4H/6oeNy1bcUG5EHfIXF1iB7yOcuGuZWVK9tLqlIvqTY5hzlePcih9fJFyrLiUti7mTdh+8pRM87OGuKi9KCTwND+8iml2puq2dINyErZun/3uSbky2nJDXeKzAuVE/V099vvqbo/BQN2ZZtsfgHsC61Ei7lfR7IP0e5I+A7zK9j8AVArOfogSIBi1W1S6nLnuexPaIvcj9MLWVQoA239RKYLdJPB0rqTPAl+u9/dhomtdPy8APl+XuQn4G/CC+jPv+nvZ5vPAJZQi+1AK4B8O7NF1RGX7HfXLb6rUX1ulYcBqKDUY8RnaurQtdJrcIW4lSgfFv9teu8Hw9wJPsn35qOY3xfMoLYyfAky30PzJwH9RWphDyWg9kYlMxl6WTEkVv4EuAfEYTq2hsRelyUer6KuBroGnMWbitduGshThWZLewIBNFWLBG3V33PmYhZOMp9kbG0WnjOkNgTdJOsT217qM+xTl+AFJDwPeDbySUrft05R6pHPRSrZ/1Xb/NJc6rTfUY/omHgzsI+mXlPeu1oXGJqUo/mn7I4NNuZC0JyVT/RSSad5IAk/zgIdred1r6UbfZR2tIEp1aN12Ww1y9DLoUpM5wfZTJK1NCUAcUpeRrdOeXdPF6ygBj1/WN75WzaIvAm8c9byBt1Jq4dxL0pGU5RTPnYX9riBJ9cpoK0NjpYZjXwq8HGh1rPgpzQJW1KsaW9b/K6YEfo7qPGqSTWw/re3+21SKd/fVluV1o+2bJa2mERZzVudC6sss5BpPtpe9j9QMvicDOzYc/odZDDoBXC7pKuAeKt34WgY5AFrFdivohO2/q9Rva+IEST9gcnHN7zccG4N5CqWG3sDBfUk7AocB96W8V64A/GM2akLYvkjSzynde1pNFR5O6RYZsVf99+Vt20zp8tuVpD3crG7n6Yt97Dj3Pc7XHM25S/dalU6qJ1FWZHSyQluQeC/g07a/SblIeuGMT3Tm3LH9ju1XtN29C808Zoj9/1TSu4DvMEAtrerNJNN8ICkuvsBJ2qAuT5nO2P8D7u8pncYkrQxcYnuzGZjfwbabZKiMhaS7Ut7An0kp3H2vPt+/KrBpvftz2/8c8RTb970u5aRcwJm2/zQL+3wf5UrMp+qmF1NSfV/TYOzqwL9t31bvrwCs3OtnJmlf21/ullHXNJOuLqk8yPZp9f7OwPtt981GUG05PWXbBR5RcWCVYtlduWFR9IWi6c9a0qHA3YBjmXwwMbL6cpLuBvwAWK42QJP/J0mnA69sHfBI2o7SXapRlkxdXjhwcc0YjKTvU7p5/r3vNy8/9lzK58nRlMzlZwOb2z54ZmfZdd/TaqoQ0Y3mYSHrcY0d577H+ZpjZvQ6/lGpUbS17VslXQG8qLX8W9Ilth/Qady41Yvlp3j5cjIvBh5he++Gz7MCZbVK+/L3vue/kjo1Q7LtnrW06thJDb5Uyqv0bICz2CXjaeE7FtgWSuX+KVke/XwD+JSkV7SCATVY8FFmLpq7J82WRs26Grm27cMo6ZM9AwA18PMsYIu66XJJX60po7OhVfx9ReBhkmaje+DrKcGml9b7P6R53aHpLCtqpd0Om1H3EuCIVsYUpfVsx1auHQyT5TWwxXxiWAMpLUsoJ+r/bjh8LUq3kUe3bRtpYwOXAugPZiL4fLXtpvOFsqz6aEm/pQSQ78ZEFkJHkjYF1rN9ev17/1bdvoukTWz/fNDXEZ1JOozyO/RP4EJJJzM5qLl/t7HtbF8taYUadD9cpSPiyANPDNdUIRY4jak7bkT0V1e9/KXHt3yV0oTmT5QmOD+t4zYFRl4OYggHAsdKehalbiqUguorU7KL+1LpyPlWSrmUVp0mA30zzW0P00ChU6b5bJRXmbeS8bTAtUfHB83KqCfU/49ST6d9+djngTd5BtqSjzJTZDrqcp63Aq9gcrHqw9yjYLCk+wI/omQ7XED5WW0DPArYzfYVI5735ylvsJfS9qZr+/mj3G/d96qUA9Ur+37z5HGdMoeW2zZKktYCsP03Sa+y/eEGY6ad5TUMTa531PJXSl2s19i+ZpT7HwdJh7fdvRX4BfAZD9D2drZIWhF4J6XW03VMvF8eTnm//E+P4e3Pcwcmd4nsOU6lztjBtpdO2b4lpYj0kwZ6IdGVpJ7BadtfbPAcP6EE3D8L/J5ScPy5tqd2f51xNdD+VqbXVCEWOElfp9QRfbbtB9RA1Bn9PpMl/RO4utND9FlmvNjGztd5D/uaozl1Lq9wJ+C3lL/NrucTdSn33YETPVFvdnNgjYZLx8ZG0m7A/evdS92snExr7NXAg6dzoX/Yz8Vkmg8mgacFrj09drqpslOWj11t+1+S1nOpPTVj85sL6hKux1FSVK+t2zYGPgGcYPtDXcZ9AzjK9lFTtj8NeNaAmWbTmfdltu83yn102e/ulO5uK9m+t6StKW/YXduQto0deFmRpJ4FAJtmHHR57utsb9Dg+5YAL6IWcaRkeX3GtRPZqEh6B/Br4CuUg71nAptQrhC91PYjRrn/+aYebH2Ckg30AEkPBHa3/b8j2t+HKJl4B9q+qW5bi1JL71+2D+gxdjfbP5qS4bVMr8xFSefY3qHLY5PSwGP8aubsHyhZkgcCawMft93ppG6m9/1NSlOFVoDsv4GtbPdtqhALn6RzbW8/5YLlRf2CopIuBR7f7fFeWbuLbew49z3O1xzNdVhdYUpzp390+v5YtlzuUdNJiMjn4uxK4GmBk3QbExX+V6UsEYCJqxSNC5qqtJB/GmU52X1t32MG5jfXMp4uoLx5/WnK9rtQriB0W1t9pe37DPrYTJH0OeADti8b5X467Pc8YDfK+uzWgWqjk12V1q9fo1zFWbasyBOt5TuNac84eBvlKsUyTTIOejz3r9ynhleXcQ8Fnmn75X2/eQidTgBaGWJNTg7mI0nrUwox71w3/RQ4wPavG4w9FTgI+FTb7+bI6hyoFBbf3FM+VGvm6BXuURNP0ttsv3VKhldLz8xFSVd1e25JV9vetNNjMX1drki3sg//t9dV1xpcPM7TKEw+rLmQZRpzl6QzgEcCp9veVqU77ldtP6jPuGkfxy22sePc9zhfc8QoaKLe6/0pmeLHMXn5e9+6r/lcnF2p8bTA2V6h/3d1V7OdnkwJNm1DuaL/FHq0ja7jXmH7ow12cfQw8xuBO0wNOgHYvr4ugemm15WI2bhKcQTwM0m/p7zpzlb6839s/1Wa1EG3UTTb9jmStmCAZUXtgaW6NG7agaZOT9/0GyVtA+wNPAO4lhHWDWrzT0nPYKK+2tOZqHe0UK8gHE7J8Nqz3t+3bntUg7Gr2T57yu/m0MuDe/DUoFPdeJuknv8/tt9a/33eNPZ7rqQXevnCnC+gLJuJmfd94DbK7yaU7MPVKEvnvgD0Wt74JOBDdcnd1ymZtKP8vWz3L0m7eHJThX/N0r5j7juE5bvjNnlPGqaT2WIbO859j/M1R4xCq97rdfW2EhM1V5seF+dzcRYl4ym6kvQVSsvlEymZKT+iLLW7d4Oxc2oJXVO95t3nsV8DnSLrAl41nUyaQdT1za8GljJR42nk6c810+pk4A2UbLj9KcG7lzQcvxOwEZO7UBzRcOzAv2PqXCcJakag7a7B+Lp0a+96+xPlpPG1tnsWnZ8pdcnnocBDKK/hTMpSnd8A27U+NBeSYa5EqXQeewVwdL16/3RgP9uPG9FcjwW+NfX3V9K+wDPcbPnpypS/o42Y/DfRq77cesAxwC1MBJq2pxx8PdX27wd6IdFXp/ee1rYmGZ/1IsbjKIVIdwF+aPsFo5vxsv1uRblIMampgu2LR73vmB80je64NRO568lEr8/0xTZ2nPse52uOGCVJe9o+ut+2LmOn/bko6QDbh/bbFhMSeIquJF1I6SR1BPA127+WdI3tjRuMna+Bp9bSxOUeAlax3THrSdJbO21vsf22GZheV5J+5oYt12d4v6sBb6J0DhOluPo73KCTl6QvUWoUXUjJHoCSNdKoTtNs/45Jup2y1Gs/13osTf8eYnpUuoYdzkTHkL2B59l+ZIOxGwOfpnRJ/AslM22fUQVjJd2Tkvn2LyYHgFalBIB+0+A5TqAs2TqPib8JbH+gwdhdgdYywoEKc8ZgJF0EvND22fX+DsBnbW/VdElKDT49lpJR8jDbdx7ppCfve+CmCrHwSTp56ntrp20dxh3W5aHdgXv2uaCzqMaOc9/jfM0Ro9TrYlCfcSsA77H92vbPxSH3m2WpPSTwFD3VpVB7U67M/omyLOoB7lNYXNKtTNSTmvQQA9aWWkgkHWz7XSN43o8D6wDfZfL65tlYAtaawwrA6k3ftCVdDtyv0/KkHmPaM5ZWY4iaZYOS9BTKkpqdKcsRvkY52eybAThD+78L8EKWz4YZeefCcVEpsnkYE1leZwD7275ugOdYnRJA/yelFteRo5hr2/7aO7NcZvvkAcaOrAZVzJwaaPo8sAblvedvlO6vlwJP8JQmE1PGtjKdHgGcAhxFqR84W8vtps6nUVOFWLgkrUL5PP0x5feytT55LcpS0C0GeC4B+wCvBy4D/l/TjLrFNna+znvY1xwxU+rn6eMpZS++3vbQWpTzi5716epznGl7xwH3uzelBM0ulAvSLWsCtze5OLpYJUIdPbm07Xwr8FaVrmN7A+dI+rXtnXoMXZqIb0d7AjMeeKJkVdxMyTxqMSOuPVSXY76Ekp1xDrCWpENtv6/B8EsoBcV/13R/ttfs/12jYftY4NgayHgy8CrgrpI+ARxj+8QRT+HblA+4k2jLhlnIanZS3yVq7epVq5cD96T8zE6q918DXAyMNPBUM42mm210hqQtbS+dyTnFzLJ9DrClShtmPLntctegU/VsygHyiz2GAuMdqP+3xAL3Ysrn2T0oXVJb/gY0qdWJpBWB5wKvpSwDf7rtKzN2bu17nK85YgR+S2nqsTuTa1reRClF0cQFkr5DqTm8bMVLnwv3Z1DOXe4MtGek30Q5zowukvEUA6tXOx5qu2uB8aQadrbQfi6a6Kq2D7AtpdbTeW5Q1Fyl/enWwNlMztIaKNAwTpLuSAkm7jXqKxxaRF02alp/r3oSXZdjSvo2ZWndzygdmu5KObk+wPaFMzvTmSXpMmBTyrLA2WwSEA1I2tf2lzXRSWcSN+igM9ck4ylaJL3SdrclVb3GvRw4gFLv8T22f5Gxc2/f43zNEaMk6Q7u05yox9iBuwnH9CXwFNPS72BV0httv3M25zQfjKoukaR7A69k+WVYIw3iSLqUEjz6CvBR26dKusj2Vg3GPrzTdtunzuwsFwZJ/wucYfv4cc9l1FQKmba8jZJ1uYx7dDNUW3Hnuvzzd8AGblB3bNzq0sLleMRNAqIZSS+2/Sl1qennHrX8JJ1mexct3+BgNpYJT7upQix8knaz/SNJe3R6vN+SfZX6h38ErqfD71mvwPliGztf5z3sa46YayS9x/br1bAIeZfn2AN4DxMXOBd1OZkmcrAR09UvPf9ukj7S7cFeGQsL3KiWNRwLfI5S4+n23t86oz4F/AK4CPhJPXFuVOMpAaaBHQC8UdLNwH9YwB9w7YElleLHXQNNHSy76mX7troseM4HnapcCZrDbH+q/jtwswjbu9R/Z3258DiXKMe88HDK8uAndXisyZL9+wDrAb+asv1eQL+umott7Dj3Pc7XHDHXPF7SG4CDKcvspuO9wJNsXz5z01rYEniK6ep3gvQSSg2foyhrcBd0HQlJr7DdpBbCdN/c+vm37a6BvlGp+1y2X0nXAbv2GtPn6vuCDKTMhEV88jhoMGYrSa3gp4BV6/358Pt1HOX1ClgFuDdwJRPFymOMel1Mgf4XVGoG3qWDFGuOGDXbb63/Pm+aT/Eh4OCpmZm13t6H6BzQWqxj5+u8h33NEXPNCZSyDGu0HTPCYMeKf0jQaTAJPEVXkr5L9wDBun2G351a+wa4lVJM9Ru2b5zJOc4hz6dBEc4RLj88tC7/OJHJ9ZLO7z5k5rms3e3ZnWkRB1CmRdIWtq+Q1HGJ5mz/H891tlcY9xymq7VEsKX+n79sTNOJ5bUXL11uCWg/NQPvSkkbeIDOjBGzRdITKIHuVVrbbL+9z7D13KEhgu2lkjbK2Dmz73G+5oiRkbQ5cBCwIZPLjezWbYztg4CDJH3b9pOnuetzJX2dsupkLB3F55sEnqKX90/zMWzfAHwS+KSk9Slt6C+T9HrbX5rBOUaxJfDfwG5MLLVzvR/z26uBFzG5c0bLgvw/npIVt9qUDKa5nrU0Y2yfL+nB455HFEMuAW25I3CppLOZ3EFn3jRViIVJ0ieB1ShZy58Fnk5p/tHPOj0eWzVj58y+xzU2YtSOppxzfoYBuz4PEXQCWAv4J7PcUXw+S+Aperl22Kuy9Yr93sCjgO8z+YrxQvLAKamaLbN1orwnsLHtW0a8HwAk3cP2b2djX4ud7RfVf3suYVxIFmtW3JRuaUsonSLzdzY3Tbce1//M6CwiZs5Oth8o6WLbb5P0AcpxWz/nSnqh7c+0b5T0Avof8y22sfN13sO+5ohRutX2J2Z7p0MsT1600tUuumrvwCbpm7afNsDYtwNPAC4HvgacYLvnEqz5TNIFtrcZ4/6PBV5k+4+ztL/jgTsBp1DWSZ+2kP9/x0nSDsCvbP++3n828DTgl8Ahtv88zvnFzJnSLe1WSuH+b86j4uiLxqAdSiWtQql9uCmwFPhc3jNjLpF0lu0HSzoT2AO4gVKTbNM+49YDjgFuYSIIsT2wEvDU1mdXxs7feQ/7miNGQdKd6pf7U7ouHsPkJW8jPT6WdDiduzw+f5T7nc8SeIqu2oMpgwZWauvVaykpiDDxhyngdttbzehkx2wOBJ5OAR4InMPkN92RLd+oJ1KPAB4H7AxcRwlCnZD6JTNH0vnAf9n+s6SHUQK5rwS2Bu5r++njnF/EYjF1CSgTn299M1trHYj/AD+lvGf+0vYBI5xuxEAk/Q9wGPBI4GOU3/XP2H5Lw/G7Ag+ody+1/aMB9r2oxo5z3+N8zREzSdK1TDRkmcq2Nx7x/tsTMlYBngr81ou3c3tfCTxFV1Mynga9urthp82U1qsH2378DE1zTpD0xhEWDm+y/4d32m771Fmcw70pJ1SPBe5m+0Gzte+FTNJFrUCtpI8B19s+pN6/0PbWY5xezABJ3+n1eOr/zH+SlraKx0taETh7kM/UiFGR9CrgDOD8VhaepJWBVWz/dZxzi4gYJUk7A4cwUZi8dSFp4KCVpCWUFSA7zegkF5DUeIpeWm3J21uSQ4Oru25ruSppG+BZlDpE1wLfHN2Ux+Zu6tFqe9TRb9un1lToHeqms2dr2V3bHK4FPg58XNJKs7nvBW4FSSvWE4JHUgqNt+Q9fGF4CPAr4KvAWXS+ehfz239aX9i+Vcp/ccwZ6wMfBraQtBQ4nRKIOmOck4qIaELSnpTVFjdJejOlPuY7bF/QYPjngAMpS0gHKkzewWbAXYd8jgUtGU8xErW15d719ifg68BrbXfKhJr3JN0CXAIcRSkGPOmsYprdjwbZ/zOA91FqLgl4KHCQ7W+Mcr8xepLeBDye8ne0AbCtbUvaFPii7Z3HOsEYmqQVKA0Y9qYsmT0O+KrtS8c6sZgxkm5jooudKJ2g/ski69QYc1e9YLQ9sBMlGP4Q4Ebb9xvrxCIieqgNER4oaRfgfynnQ2+x3bcrcKu23TT321p+r/rv7ymrehZigsWMSOApRqLWePopsJ/tq+u2a0a93nZcJK1Lyejai1IU+OvAN2zfOEv7vwh4VCvLSdJdgJMWWi2txUrSjsDdgRNt/6Nu2xxYw/b5Y51czKi6xGVvyoHT22x/dMxTiohFQNLalGDTzvXfdYCl6dwUEXNZq86upHdR3rO+0q/2bu26DvAMYAXgW0yukZtj6xFI4ClGQtJTgGdSDmBOoBRE/qzte49zXrNB0vqU1/5q4PW2vzQL+1xWP6TeXwJc1L5tRPt9EnCc7dtHuZ+Iha4GnJ5ACTptBHwH+Lzt34xzXhGxsEn6NHB/4CbKUt8zgTNt/2WsE4uIaEDS94DfUDLHtwX+RSk50vXiu6Qf93hK296t4b53Bx5W755i+3vNZr04JfAUIyVpdeDJlJOp3YAjgGNsnzjWiY1IjaDvTXnzOw/4gO3LZmG/76Ms0flq3bQXJer/uhHv98uUK6PfpJwkXzHK/UUsRJKOoHQKOh74mu1LxjyliFgkJJ0A3JlSLuAM4GfAJc4JQkTMA5JWozQ2Wmr7Kkl3B7Yc9bmmpHdTauseWTftDZxj+42j3O98lsBTzBpJd6QuR7P9yHHPZyZJejslW+FySnbXCa3uMLM4hz2AXerdn9o+Zpb2uxblzfZ5lDXOh1Pq09w0G/uPmO/q0uRW/Z/2D+XU/4mIkVOpdn9/Sn2nnSiB8D8DP7P91nHOLSKiCUl3BVZp3bd9XYMxB1DOW24CPkPJmHpDk6CVpIuBrVurPmq9zgtsP3B6r2DhS+ApYgbUE8drKcViYeLkUcDto6q1VAtMr2f79CnbdwF+Z/vno9hvh3msC/w38CpK8G1T4CO2D5uN/UdERMRwaqmAnSnBpycC69peZ6yTiojooS53+wBwD+CPlEY8V9i+f4OxF9neStJjgJcAbwa+ZHvbPkNbgadH2P5zvX8nynK7BJ66SCvuiJnRqXaVgHsBB49wvx/u8vx/rY89aYT7RtKTgedSAk1HAA+y/cea9noZkMBTRETEHCVpfyYynf5DWW53BvB5YOkYpxYR0cQ7gB0pTZW2kbQrsG/Dsa0u5I8HjrB9ac0AbeJdwAW1XpQotZ7eMMC8F50EniJmgO1ftr6WtA3wLMqywmsp9Y9GZT3byx0Y2l4qaaMR7rflqcCHbP9kyv7/KWm/Wdh/RERETN9GwNHAgbZ/N+a5REQM6j+2b5C0RNIS2z+W9OGGY8+TdCIlgeBgSWsCjRom2f6qpFModZ6gNJT6/aCTX0wSeIqYAbW1/d719ifg65SlrLuOeNfr9Hhs1VHuuK5l3nBq0KnF9smj3H9EREQMx/arxz2HiIgh3ChpDeAnwJGS/shE3cx+9gO2Bq6pF83XpdSs7UvSU4Ef2f5Ovb+OpKfYPnbQF7BYpMZTxAyoNZ5+Cuxn++q67RrbG494v1+lvOl9Zsr2FwCPsr3XiPd/MrCH7b+Ocj8RERERERHtagf1fwFLgH2AtYEjbd/QcPwdgc2YXJi840X1KeMutL31lG0X2N6m+ewXl2Q8RcyMPYBnAj+urYm/xsS64VF6FXCMpH2A8+q27YGVKMvgRu3vwFJJP6Tt6oLt/Wdh3xERERERsch0aLB0O/DF2mBpHaBv4KleqD8AWB+4kFIr6mfAbg2msKTDtsRWekjGU8QMqlH3J1OW3O1GKbh9TJO2nEPud1dK+2OAS23/aJT7a9vvczptt/3F2dh/REREREQsLpK+Bxw8tdatpC2Bd9ru22BJ0lJKjaYzbW8taYs6do8GYz8P3Ah8rG56OXAn288d6IUsIgk8RYxITd3cE9jL9iPHPZ+IiIiIiIj5TtI5tnfo8thS21s2fQ5JFwIPtn2zpEtt37/B2NWB/wH+CzDwQ+D/2W5aX2rRSeApIqZN0maUdqL3Y/La6JHWtoqIiIiIiMVJ0lW2N+vy2NW2N23wHMdQiom/irJS5S/AHWw/fibnGkWntYkREU0dDnwCuBXYlbK08MtjnVFERERERCxk50p64dSNtW7TeR2+fzm2n2r7RtuHULKXPgc8pclYST+UtE7b/TtK+kGTsYtVMp4iYtoknWd7u/aU1ta2cc8tIiIiIiIWHknrAccAt9ChwZLt3zd4jh0ptXFvqvfXAu5r+6wGY5frYJeudr2l8npEDONmSUuAqyS9AvgNsMaY5xQREREREQuU7T8AO01psHTcgA2WPgFs23b/7x22dXO7pA1sXwcgaUNKrafoIoGniBjGAcBqwP7AOyjrozt2uouIiIiIiJgptn8M/Hiaw+W25V+2b5fUND7yJuA0SacCAh4KvGia81gUstQuIiIiIiIiIhYNSd8CTqFkOQG8DNjV9lMajr8zsGO9e6btP830HBeSBJ4iYmCSvkuPdFLbu8/idCIiIiIiIhqTdFfgI5QVGwZOBl5l+48Nx98R2IzJnb1/MoKpLggJPEXEwCQ9vH65B3A3JjrZ7Q38wfaBY5lYRERERETECNXueQcA6wMXUjKffmZ7t3HOay5L4Ckipk3Suba377ctIiIiIiJiLpJ0vu0mRcVb378U2IGyxG5rSVsA77S9x8gmOc8tGfcEImJeW13Sxq07ku4NrD7G+URERERERAxCA37/v23/G0DSyravAO4z89NaONLVLiKGcSBwiqRrKG/YGwIvHu+UIiIiIiIiGjtuwO//taR1gGOBH0r6C/DLmZ7UQpKldhExFEkrA1vUu1fYvnmc84mIiIiIiJgNtfbt2sAJtm8Z93zmqgSeImIoknYCNqItg9L2EWObUERERERERA+S9gDeA9yVsnJDgG2vNdaJLVAJPEXEtEn6ErAJpZvDbXWzbe8/tklFRERERET0IOlq4Em2Lx/3XBaD1HiKiGFsD9zPiWBHRERERMT88YcEnWZPAk8RMYxLgLsBvxv3RCIiIiIiIho6V9LXKQXCl9Wotf2tJoMlbQhsZvskSasCK9q+aSQzXQASeIqIYdwZuEzS2Ux+w959fFOKiIiIiIjoaS3gn8Cj27YZ6Bt4kvRC4EXAnShlR9YHPgk8cuanuTCkxlNETFvt4rAc26fO9lwiIiIiIiJGTdKFwIOAs2xvU7cttb3lWCc2hy0Z9wQiYv6qAaYrgDXr7fIEnSIiIiIiYi6TtL6kYyT9sd6+KWn9hsNvtn1L23OtSMmWii4SeIqIaZP0DOBsYE/gGcBZkp4+3llFRERERET0dDjwHeAe9fbduq2JUyW9EVhV0qOAo+v46CJL7SJi2iRdBDzK9h/r/bsAJ9nearwzi4iIiIiI6EzShba37rety9glwH6U+lACfgB8Np2+u0tx8YgYxpJW0Km6gWRSRkRERETE3HaDpH2Br9b7e1POZfqyfTvwmXqLBhJ4iohhnCDpB0y8Ye8FfH+M84mIiIiIiOjn+cBhwIco9ZnOAJ7XZKCknYFDgA0pMRUBtr3xSGa6AGSpXUQMRdIewC717k9tHzPO+URERERERIyKpCuAA4HzgNta2203yphajBJ4iohpk3Rv4He2/13vrwqsZ/sXY51YRERERETEFJLe0uNh235Hg+c4y/aDZ3BaC14CTxExbZLOBXZqtROVtBJwuu0dxjuziIiIiIiIySS9psPm1SnFwte1vUaPsdvWL58BrAB8C7i59bjt82dwqgtKAk8RMW1dukFclK52ERERERExl0laEziAEnQ6CvjAlMZJU7//xz2ezrZ3m+EpLhgpLh4Rw7he0u62vwMg6cnAn8Y8p4iIiIiIiI4k3Ql4NbAP8EVgW9t/6TfO9q51/Ma2r5nynCks3kMyniJi2iRtAhwJ3JPSDeLXwLNtXz3WiUVEREREREwh6X3AHsCngY/Z/vs0nuN829tO2Xae7e1maJoLTgJPETE0SWsATOeNOyIiIiIiYjZIup1Sl+lWyoXzZQ9Rlsut1WPsFsD9gfcCB7U9tBZwkO37z/yMF4YstYuIaZO0HvBO4B62HyfpfsBDbH9uzFOLiIiIiIiYxPaSIYbfB3gisA7wpLbtNwEvHOJ5F7xkPEXEtEn6PnA48CbbW0laEbjA9pZjnlpERERERMSMk/QQ2z8b9zzmk2GifRERd7Z9FHA7gO1bgdvGO6WIiIiIiIjRSNBpcAk8RcQw/iFpXer6aEk7An8d75QiIiIiIiJirkiNp4gYxquB7wCbSDoduAvw9PFOKSIiIiIiIuaK1HiKiKHUuk73oXSCuNL2f8Y8pYiIiIiIiJGQtA7wbGAj2pJ5bO8/pinNecl4ioiBSdoB+JXt39u+VdJ2wNOAX0o6xPafxzzFiIiIiIiIUTgeOBNYSq11G70l4ykiBibpfOC/bP9Z0sOArwGvBLYG7ms7y+0iIiIiImLBkXS+7W3HPY/5JIGniBiYpItsb1W//hhwve1D6v0LbW89xulFRERERESMhKQDgb8D3wNubm3Pqo/ustQuIqZjBUkr2r4VeCTworbH8r4SEREREREL1S3A+4A3Ubt71383HtuM5ricIEbEdHwVOFXSn4B/AT8FkLQp8NdxTiwiIiIiImKEXgNsavtP457IfJGldhExLZJ2BO4OnGj7H3Xb5sAats8f6+QiIiIiIiJGQNKJwFNs/3Pcc5kvEniKiIiIiIiIiGhA0jHA/YEfM7nG0/5jm9Qcl6V2ERERERERERHNHFtv0VAyniIiIiIiIiIiGpK0ErB5vXul7f+Mcz5zXQJPERERERERERENSHoE8EXgF4CAewHPsf2T8c1qbkvgKSIiIiIiIiKiAUnnAc+yfWW9vznwVdvbjXdmc9eScU8gIiIiIiIiImKeuEMr6ARg+/+AO4xxPnNeiotHRERERERERDRznqTPAl+u9/cBzh3jfOa8LLWLiIiIiIiIiGhA0srAy4Fd6qafAh+3ffP4ZjW3JfAUEREREREREdGHpBWAS21vMe65zCep8RQRERERERER0Yft24ArJW0w7rnMJ6nxFBERERERERHRzB2BSyWdDfyjtdH27uOb0tyWwFNERERERERERA+SVq51nP5n3HOZb1LjKSIiIiIiIiKiB0nn295W0pds//e45zOfJOMpIiIiIiIiIqK3lSQ9C9hJ0h5TH7T9rTHMaV5I4CkiIiIiIiIioreXAPsA6wBPmvKYgQSeushSu4iIiIiIiIiIBiTtZ/tz457HfJLAU0REREREREREjMSScU8gIiIiIiIiIiIWpgSeIiIiIiIiIiJiJBJ4ioiIiIiIiIhoQNLOklavX+8r6YOSNhz3vOayBJ4iIiIiIiIiIpr5BPBPSVsBrwF+Dhwx3inNbQk8RUREREREREQ0c6tLl7YnAx+1/TFgzTHPaU5bcdwTiIiIiIiIiIiYJ26SdDCwL/AwSUuAO4x5TnNaMp4iIiIiIiIiIprZC7gZ2M/274H1gfeNd0pzm0qGWERERERERERE9FILi//b9m2SNge2AL5v+z9jntqclcBTREREREREREQDks4DHgrcETgdOAe4xfY+Y53YHJaldhERERERERERzcj2P4E9gI/b3hN4wJjnNKcl8BQRERERERER0YwkPQTYBziubktspYf8cCIiIiIiIiIimnkVcDBwjO1LJW0M/Hi8U5rbUuMpIiIiIiIiImIAklarS+6ij2Q8RUREREREREQ0IOkhki4Drqj3t5L08TFPa05L4CkiIiIiIiIiopkPA48BbgCwfRHwsHFOaK5L4CkiIiIiIiIioiHbv5qy6baxTGSeWHHcE4iIiIiIiIiImCd+JWknwJLuABwAXD7mOc1pKS4eEREREREREdGApDsDhwL/BQg4ETjA9g1jndgclsBTRERERERERESMRJbaRURERERERET0IOkwoGvmju39Z3E680oCTxERERERERERvZ077gnMV1lqFxERERERERERI5GMp4iIiIiIiIiIBiRtDrwW2Ii2mIrt3cY1p7kuGU8REREREREREQ1Iugj4JHAecFtru+3zxjapOS6Bp4iIiIiIiIiIBiSdZ3u7cc9jPkngKSIiIiIiIiKiB0l3ql/uD/wROAa4ufW47T+PY17zQQJPERERERERERE9SLoWMKAOD9v2xrM8pXkjgaeIiIiIiIiIiBiJJeOeQERERERERETEfCBpT0lr1q/fLOlbkrYZ97zmsgSeIiIiIiIiIiKa+R/bN0naBfgv4HOULnfRRQJPERERERERERHN3Fb/fQLwadvHASuNcT5zXgJPERERERERERHN/EbSp4C9gOMlrUxiKz2luHhERERERERERAOSVgMeCyy1fZWkuwNb2j5xzFObsxJ4ioiIiIiIiIgYgKS7Aqu07tu+bozTmdOSDhYRERERERER0YCk3SVdBVwLnFr//f54ZzW3JfAUEREREREREdHMO4Adgf+zfW9KZ7szxzuluS2Bp4iIiIiIiIiIZv5j+wZgiaQltn8MbD/uSc1lK457AhERERERERER88SNktYAfgIcKemPwD/GPKc5LcXFIyIiIiIiIiIakLQ68C/KCrJ9gLWBI2sWVHSQwFNERERERERERA+SNgXWs336lO27AL+z/fPxzGzuS42niIiIiIiIiIjePgz8rcP2v9bHoosEniIiIiIiIiIielvP9tKpG+u2jWZ/OvNHAk8REREREREREb2t0+OxVWdrEvNRAk8REREREREREb2dK+mFUzdKegFw3hjmM2+kuHhERERERERERA+S1gOOAW5hItC0PbAS8FTbvx/X3Oa6BJ4iIiIiIiIiIhqQtCvwgHr3Uts/Gud85oMEniIiIiIiIiIiYiRS4ykiIiIiIiIiIkYigaeIiIiIiIiIiBiJFcc9gYiIiIj5TNIhwN+BtYCf2D5plve/O3A/2++ezf1GRERENJEaTxERERFDaAWebL9/3HOJiIiImGuy1C4iIiJiQJLeJOn/JJ0G3Kdu+4Kkp9evfyHpXZIulHSupG0l/UDSzyW9pO15DpJ0jqSLJb2tbttI0uWSPiPpUkknSlq1Pra/pMvq93+tbnuupI+2jf1RffxkSRu0ze0jks6QdE1rnhERERGjlsBTRERExAAkbQc8E9gaeDywQ5dvvc721sBPgS8ATwd2BFoBpkcDmwEPqs+1naSH1bGbAR+zfX/gRuBpdfsbgG1sPxBYFsBqcxjwxfr4kcBH2h67O7AL8EQgy/IiIiJiViTwFBERETGYhwLH2P6n7b8B3+nyfa3tS4GzbN9k+3rgZknrAI+utwuA84EtKAEngGttX1i/Pg/YqH59MXCkpH2BWzvs8yHAV+rXX6IEmlqOtX277cuA9Rq+1oiIiIihpLh4RERExGjcXP+9ve3r1v0VAQHvsv2p9kGSNpry/bcBq9avnwA8DHgS8CZJW05jPtR9R0RERIxcMp4iIiIiBvMT4CmSVpW0JiUINB0/AJ4vaQ0ASfeUdNdu3yxpCXAv2z8GXg+sDawx5dvOoCwDBNiHsswvIiIiYmyS8RQRERExANvnS/o6cBHwR+CcaT7PiZLuC/xMEsDfgX0pGU6drAB8WdLalIylj9i+sY5teSVwuKSDgOuB501nbhEREREzRbbHPYeIiIiIiIiIiFiAstQuIiIiIiIiIiJGIoGniIiIiIiIiIgYiQSeIiIiIiIiIiJiJBJ4ioiIiIiIiIiIkUjgKSIiIiIiIiIiRiKBp4iIiIiIiIiIGIkEniIiIiIiIiIiYiQSeIqIiIiIiIiIiJH4/2K9Jr8Sb7g0AAAAAElFTkSuQmCC\n" - }, - "metadata": { - "needs_background": "light" - } - } - ], + "outputs": [], "source": [ "logreg_l1_tests = [\n", " Test(\n", @@ -616,72 +553,9 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\n", - "\n", - "Logreg l2 penalty with ∆=0.0001\n", - "===============================\n", - "Mean prediction: 0.53\n", - "Training accuracy: 0.6192919445869677\n", - "Test accuracy: 0.6098562628336756\n", - "\n", - "\n", - "Logreg l2 penalty with ∆=0.001\n", - "==============================\n", - "Mean prediction: 0.33\n", - "Training accuracy: 0.6326321190354027\n", - "Test accuracy: 0.6406570841889117\n", - "\n", - "\n", - "Logreg l2 penalty with ∆=0.01\n", - "=============================\n", - "Mean prediction: 0.31\n", - "Training accuracy: 0.6341713699332991\n", - "Test accuracy: 0.6550308008213552\n", - "\n", - "\n", - "Logreg l2 penalty with ∆=0.1\n", - "============================\n", - "Mean prediction: 0.35\n", - "Training accuracy: 0.633658286300667\n", - "Test accuracy: 0.6406570841889117\n", - "\n", - "\n", - "Logreg l2 penalty with ∆=1\n", - "==========================\n", - "Mean prediction: 0.4\n", - "Training accuracy: 0.6480246280143663\n", - "Test accuracy: 0.6262833675564682\n", - "\n", - "\n", - "Logreg l2 penalty with ∆=10\n", - "===========================\n", - "Mean prediction: 0.42\n", - "Training accuracy: 0.6613648024628014\n", - "Test accuracy: 0.6344969199178645\n", - "\n", - "\n", - "coefficents: [-0.069, -0.033, 0.038, 0.002, -0.076, -0.083, -0.066, 0.003, 0.026, -0.021, -0.005, 0.046, -0.049, -0.02, 0.017, 0.006, 0.096, -0.093, -0.03, -0.006, 0.033, 0.074, 0.008, -0.07, -0.007, -0.006, 0.001, -0.012, -0.029, 0.007, -0.06, -0.065, -0.017, -0.008, -0.002, -0.028, 0.014, 0.024, 0.016, 0.127, 0.025, 0.009, -0.003, 0.007, -0.007, 0.08, -0.092, 0.018, 0.005, -0.009, -0.005, 0.003, 0.0, 0.0, 0.395, -0.48, 0.085, 0.031, 0.057, -0.053, -0.028, -0.034, 0.043, -0.017, 0.015, -0.004, -0.011]\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2021-04-28T20:51:22.231704\n image/svg+xml\n \n \n Matplotlib v3.4.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJcAAAKHCAYAAAA8D6lJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAADtQUlEQVR4nOzdebytY/3/8ffnHOTIcIiU4ZgSDTJ0DFEpX5JSSZlSoUFzNJyi+pVGhCKapJCiIqEoMkRmh2OWiMTRKAchU5/fH59rnX3vdda67+u+77332vvs1/PxWI+9173Wte5rrXWve/hc1/W5zN0FAAAAAAAANDFl0BUAAAAAAADAxEVwCQAAAAAAAI0RXAIAAAAAAEBjBJcAAAAAAADQGMElAAAAAAAANEZwCQAAAAAAAI0RXAIAAGPOzFY0s4vM7CEzO8zCsWZ2v5ldaWYvM7NbM15ndzM7ZyzqXMXM3mhmd5vZf8xswzFa53Fm9qUW5f9sZlun/z9lZseMXO3aS5/lmoOuBwAAKLfIoCsAAAAmpb0l/UvS0u7uZvYySdtIWsXdH07PWafqRdz9x5J+PBIVMjOXtLa7397wJQ6V9EF3P30k6jPW3P0rg65DN3dfctB1AAAA1ei5BAAABmE1STe7uxfu/7kQWJqIVpN006ArAQAAMNYILgEAgFJmtqqZnWpm/zSz+8zsqLR8ipl9xszuMrN/mNkPzWyZQrnNzOxSM5tnZteZ2SvS8uMk7SHpE2nY03skHSPpJen+583sFWZ2T0Yd9jSziwvPW9fMfmtm/zazW81s58Jjx5nZN83szDQc7wozWys9dlF62nWpDrv0+Bx6vl8ze5qZ/UfS1FT+T30+x7K6vdbM5pjZg2lo3QFdZV9a+CzvNrM9Cw8v2+s99anD21L97zOzT3c9doCZ/Sj9v7qZuZntldZ3v5m918w2NrPrUz2O6ir/DjO7JT33bDNbrfCYp/K3pbLfNDNLjz3HzC40swfM7F9m9tOucs9J/y+TPvN/pvfwGTObkh7b08wuNrND0/rvNLPt+n0OAABgZBFcAgAAfZnZVEm/knSXpNUlrSzpJ+nhPdPtlZLWlLSkpE7QZ2VJZ0r6kqTlJH1c0s/NbAV331MxlO2r7r6ku39X0nslXZbuf65GHYrPe7qk30o6UdIzJe0q6Vtm9vzC03aV9HlJy0q6XdKXJcndX54eXz/V4adaUM/36+6PFYZvre/uCwR3Mur2sKS3S5ou6bWS3mdmO6Syq0n6taQjJa0gaQNJ11a9px51eL6kb0t6m6SVJD1D0iq9nluwqaS1Je0i6XBJn5a0taQXSNrZzLZMr/0GSZ+StGOq4+8lndT1WttL2ljSiyTtLGnbtPyLks5J9V8lvc9ejpS0jOKz31Lxee3VVddbJS0v6auSvt8JYAEAgNFFcAkAAJTZRBGImOXuD7v7f92901Nod0lfc/c73P0/kvaXtKuZLSLprZLOcvez3P1/7v5bSbMlvWaE61C0vWJo3bHu/qS7z5H0c0k7FZ7zC3e/0t2fVAS4NqhRj7L3W6W0bu7+O3e/IX1W1ysCM1umsm+RdK67n+TuT7j7fe5+bYP39GZJv3L3i9z9MUn/T9L/Kur9xfR5n6MIgJ3k7v9w97mKAFIncfl7JR3o7rekenxF0gbF3kuSDnL3ee7+F0kXFOr5hGJI4Ur9vtsUYNxV0v7u/pC7/1nSYYpAWcdd7v49d39K0vGSni1pxYr3BwAARgDBJQAAUGZVxUX7kz0eW0nRm6jjLsVkISsqggU7pSFQ88xsnqSXKi74R7IORatJ2rRrnbtLelbhOX8r/P+IovdRrrL3W6W0bma2qZldkIZ8PaAI1iyfyq4qqedQuyT3Pa0k6e7OnZTf6r6Kev+98P+jPe531rWapCMK7+3fkkzRy6yqnp9Iz73SzG4ys3f0qMfykhbVgp9/z9d390fSvyQEBwBgDDBbHAAAKHO3pBlmtkiP4M69iqBCxwxJTyoCEHdLOsHd3z3Kdeh+3oXuvs0IrLOXsvdbpapuJyqGFG7n7v81s8M1FFy6W9F7q62/Snpe546ZLaEYGjcS7pb05TR7Xy3u/jdJ7051eqmkc83soq5Z+/6loR5ON6dlMyTNbVVrAAAwIui5BAAAylypCEocZGZPN7PFzWyL9NhJkj5iZmuY2ZKKoVA/TQGgH0l6nZlta2ZTU7lXmFlVjp+6dSj6laTnpqTVi6bbxmb2vB7P7eXvinw+/ZS93ypVdVtK0r9TYGkTxVC4jh9L2trMdjazRczsGWa2QeZ7KjpF0vYWycEXk/QFjdy54Hck7W9mL5DmJ9/eqaKM0nN3KmwX90tydQ3XS0Pdfibpy2a2VBpu91HFdgYAAAaM4BIAAOgrXdS/TtJzJP1F0j2K5M6S9ANJJ0i6SNKdkv4r6UOp3N2SOkme/6no2TJLDc49KupQfN5Dkl6lyM1zr2KY1MGSnpa5qgMkHZ+Gdu3c4/G+7zfjPVTV7f2SvmBmD0n6rCKQ0in7F0Wuqo8phptdK2n9zPdUrMNNkj6g6CX1V0Ug557SQvmv/QvF+/mJmT0o6UZJubO1bSzpCosZ986QtI+739HjeR9S5H26Q9LFivfxg7Z1BwAA7Zm7D7oOAAAAAAAAmKDouQQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGFhl0BUba8ssv76uvvvqgqwEAAAAAALDQuPrqq//l7iv0emyhCy6tvvrqmj179qCrAQAAAAAAsNAws7v6PcawOAAAAAAAADRGcAkAAAAAAACNEVwCAAAAAABAYwSXAAAAAAAA0BjBJQAAAAAAADRGcAkAAAAAAACNEVwCAAAAAABAYwSXAAAAAAAA0BjBJQAAAAAAADRGcAkAAAAAAACNDTS4ZGavNrNbzex2M9uv5HlvMjM3s5ljWT8AAAAAAACUG1hwycymSvqmpO0kPV/Sbmb2/B7PW0rSPpKuGNsaAgAAAAAAoMoiA1z3JpJud/c7JMnMfiLpDZJu7nreFyUdLGnW2FYPAAAAAJDrtDlzdcjZt+reeY9qpenTNGvbdbTDhisPuloAxsAgh8WtLOnuwv170rL5zGwjSau6+5llL2Rme5vZbDOb/c9//nPkawoAAAAA6Ou0OXO1/6k3aO68R+WS5s57VPufeoNOmzN30FUDMAbGbUJvM5si6WuSPlb1XHc/2t1nuvvMFVZYYfQrBwAAAACY75Czb9WjTzw1bNmjTzylQ86+dUA1AjCWBhlcmitp1cL9VdKyjqUkvVDS78zsz5I2k3QGSb0BAAAAYHy5d96jtZYDWLgMMrh0laS1zWwNM1tM0q6Szug86O4PuPvy7r66u68u6XJJr3f32YOpLgAAAACgl5WmT6u1HMDCZWDBJXd/UtIHJZ0t6RZJP3P3m8zsC2b2+kHVCwAAAABQz6xt19G0RacOWzZt0amate06A6oRgLE0yNni5O5nSTqra9ln+zz3FWNRJwAAAABAPZ1Z4ZgtDpicBhpcAgAAAAAsHHbYcGWCScAkNW5niwMAAAAAAMD4R3AJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0NtDgkpm92sxuNbPbzWy/Ho9/1MxuNrPrzew8M1ttEPUEAAAAAABAbwMLLpnZVEnflLSdpOdL2s3Mnt/1tDmSZrr7iySdIumrY1tLAAAAAAAAlBlkz6VNJN3u7ne4++OSfiLpDcUnuPsF7v5Iunu5pFXGuI4AAAAAAAAoMcjg0sqS7i7cvyct6+edkn49qjUCAAAAAABALYsMugI5zOytkmZK2rLP43tL2luSZsyYMYY1AwAAAAAAmNwG2XNprqRVC/dXScuGMbOtJX1a0uvd/bFeL+TuR7v7THefucIKK4xKZQEAAAAAALCgQQaXrpK0tpmtYWaLSdpV0hnFJ5jZhpK+qwgs/WMAdQQAAAAAAECJgQWX3P1JSR+UdLakWyT9zN1vMrMvmNnr09MOkbSkpJPN7FozO6PPywEAAAAAAGAABppzyd3PknRW17LPFv7feswrBQAAAAAAgGyDHBYHAAAAAACACY7gEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgsUUGXQEAAACgjdPmzNUhZ9+qe+c9qpWmT9OsbdfRDhuuPOhqAQAwaRBcAgAAwIR12py52v/UG/ToE09JkubOe1T7n3qDJBFgAgBgjDAsDgAAABPWIWffOj+w1PHoE0/pkLNvHVCNAACYfAguAQAAYMK6d96jtZYDAICRR3AJAAAAE9ZK06fVWg4AAEYewSUAAABMWLO2XUfTFp06bNm0Radq1rbrDKhGAABMPiT0BgAAwITVSdrNbHEAAAwOwSUAAABMaDtsuDLBJAAABohhcQAAAAAAAGiM4BIAAAAAAAAaI7gEAAAAAACAxgguAQAAAAAAoDGCSwAAAAAAAGiM2eIAYBScNmcu02IDAAAAmBQILgHACDttzlztf+oNevSJpyRJc+c9qv1PvUGSCDABAAAAWOgwLA4ARtghZ986P7DU8egTT+mQs28dUI0AAAAAYPQQXAKAEXbvvEdrLQcAAACAiYxhcQAwwlaaPk1zewSSVpo+bQC1AQAAWLiR6xIYPHouAcAIm7XtOpq26NRhy6YtOlWztl1nQDUCAABYOHVyXc6d96hcQ7kuT5szd9BVAyYVei4BwAjrtJTRggYAWNjQQwTjTVmuS7ZNYOwQXAKAUbDDhitzQgMAWKgwGyrGI3JdAuMDw+IAAAN32py52uKg87XGfmdqi4POpys7AIxDzIaK8ahfTktyXQJji+ASAGCgyJUAABMDPUQwHpHrEhgfCC4BAAaKlnAAmBjoIYLxaIcNV9aBO66nladPk0laefo0HbjjegzVBMYYOZcAAANFSzgATAyztl1nWM4liR4iGB/IdQkMHj2XAAADRUs4AEwM9BABAPRDzyUAwEDREg4AEwc9RAAAvRBcAgAMVOci5ZCzb9W98x7VStOnada263DxAgAAAEwQBJcAAANHSzgAAJhoTpszl8YxICG4BAAAAABADafNmTtsWP/ceY9q/1NvkCQCTJiUSOgNAAAAAEANh5x967B8kZL06BNP6ZCzbx1QjYDBIrgEAAAAAEAN9857tNZyYGHHsDgA2RhXDgAAAEgrTZ+muT0CSStNnzaA2gCDR88lAFk648rnzntUrqFx5afNmTvoqgEAAABjata262jaolOHLZu26FTN2nadAdUIGCx6LgHIUjaunN5LAAAAmEw657+TrVc/IxnQD8ElAFkYVw4AAAAM2WHDlSdVYIUZ8lCGYXGY77Q5c7XFQedrjf3O1BYHnc9wJwzTb/w448oBAACAhR8z5KEMwSVIIp8OqjGuHAAAAJi8GMmAMgyLgyTy6aDaZB1XjnyMwQcAABMN5y/5mCEPZQguQRJRaOSZbOPKkY8x+AAAYKLh/KWeWduuM+zzkhjJgCEMi4Mk8umMNfJbYWHDGHwAADDRcP5Szw4brqwDd1xPK0+fJpO08vRpOnDH9QjEQRI9l5AQhR47tJBgYUTvRwATdWjJRK03gPY4f6mPkQzoh55LkEQUeizRQoKFEb0fgcltok4MMlHrDWBkcP4CjBx6LmE+otBjgxYSLIzo/QhMbhN1YpCJWu/JiB5mGA2cvwAjh+ASMMaYZWFscTI6NphNEJjcRqLhZBD7axp8JgZSCmC0cP4CjByCS8AYo4Vk7HAyOrbo/QhMfE0DPG0bTga1v6bBZ2KghxlGE+cvEwMNxuNfVs4lM9siZxmAauS3GjvktwKAfG3yD83adh1NW3TqsGV1Gk4Gtb9uW2+MDXqYAZMb+fEmhtyeS0dK2ihjGYAMtJCMDU5GJwdasoCR0aZ3SNuhJYPaX7etN/ufsUEPM2Byo/fixFAaXDKzl0jaXNIKZvbRwkNLS5rauxQAjA8jMUyDi4bxjaGPEwe/p/GvbYCnTcPJIIMHTes9yP3PZPs9kVIAmNxoMJ4YqobFLSZpSUUQaqnC7UFJbx7dqgHj22lz5mqLg87XGvudqS0OOp9umeNQm+EOdL+dGBj6ODHwe5oYBjkl90Qcnjao/c9k/D21TSkwEc/ZJmKdgdEyyOMT8pX2XHL3CyVdaGbHuftdI71yM3u1pCMUvaCOcfeDuh5/mqQfSnqxpPsk7eLufx7pemBkTKZWNHpLTAxthjvQ/XZimKwtWRNtf8vvaWIYZO+QiThj06D2P5P19zQRe5g1NRHrDIwmei9ODLk5l55mZkdLWr1Yxt23arpiM5sq6ZuStpF0j6SrzOwMd7+58LR3Srrf3Z9jZrtKOljSLk3XidEz2Q6Ck/XEbiJqejI6WYMWE81kzMMxEfe3/J7qG0QAcdABnomWj3BQ+x9+T/VMxHO2kahzm33IRGvAwMJv0Mcn5MkNLp0s6TuSjpH0VMVzc20i6XZ3v0OSzOwnkt4gqRhceoOkA9L/p0g6yszM3X2E6oARMhEP3G1wYrfwm4xBi4loMrZkTcT9Lb+negYZQJxoAZ5Barv/aXoBz++pnol4zta2zm32IROxAQOTQ5vjEwHTsWE5cRozu9rdXzyiKzZ7s6RXu/u70v23SdrU3T9YeM6N6Tn3pPt/Ss/5V7/XnTlzps+ePXskqzoY++4rXXvtoGuR7fI77uv72GZrPmMMazI2rvnLPD3+5IJx1sUWmaqNZkwf+wrV8K//PKa//PtRPf7kU1pskamasdw0Lb/k0wZdrXHnX/95THf882H9r7CPnGKmNVd4+kL9eU3E7WOQdW6z7qZlJ+L+drL+npqayMeYyabp77jNb6Lt72ki7ufbGOTvqeln3bbObcqz/8HCZtycg2ywgXT44WO3vlGSYkMzez2W23Ppl2b2fkm/kPRYZ6G7/3sE6teame0taW9JmjFjxoBrMzkttsjUvgeihdGM5ab13EnNWG58txp271wff/Ip3fHPhyVpoT6xbKLzeUymE/CJun0sv+TTBlK/Np9Xm7ITcX87GX9PUvMLy17fb9lyDE7T/c9f/v3osHMISfqfu/7y70crX6/N72mi7ufbaHvONlIBxDqfdds6t9mHsP/BwqbN/hb15PZcurPHYnf3NRuv2Owlkg5w923T/f3Tix5YeM7Z6TmXmdkikv4maYWyYXELTc+lCaa7C60UXcPrzOQx0UzE7pVbHHR+z670K0+fpkv2a5xCDQsJto962nxebcq23d9OxH3XRNTme+K3uPBbY78z1etk1iTdedBrR229k3XbarrfG+TvuM2+elDHJ2A8Gon9LedOQ1r3XHL3NUa2SpKkqyStbWZrSJoraVdJb+l6zhmS9pB0maQ3SzqffEvj02RMsjYR81JMxLwDGDtsH/W0+bzalG2zvyWXxthpkxtrMuYSm2xIBj62mp6ztfkdt/2s25xnttmHsP/Bwqbt/pZzp3xZwSUzW0LSRyXNcPe9zWxtSeu4+6+artjdnzSzD0o6W9JUST9w95vM7AuSZrv7GZK+L+kEM7td0r8VASiMUxMx2DLZkAQUZdg+6mnzebX9rAdxoTRZNW2tHFQAERPDoC7g2c/X0+Z3PMjPus0+hP0PRtMgegC13d9y7pQvN+fSsZKulrR5uj9XMYNc4+CSJLn7WZLO6lr22cL//5W0U5t1ABhCaxTKsH3UMxFbhidrr4Wm2rRWDiqAiIlhUBfw7OfrafM7HvRn3WYfwv4Ho2FQPYDa7m85d8qXG1xay913MbPdJMndHzEzG8V6AeijTcR/orZGMc55bEzU7WNQJmLLML0W6mFoG0bTIC7g2c/X0+Z3zGcNDDfIHkBt9recO+XLTeh9qaT/k3SJu29kZmtJOsndNxntCtZFQm8szCZr4vTJ9p6B0cLvqZ62SUAJjAMTH79jYGQMaiKDtjh3Gq51Qm9Jn5P0G0mrmtmPJW0hac+RqR6AXJNxzO9kfM/AaKElvR6GtgHgdwyMjInaA4hzp3y5s8X91syukbSZIri4j7v/a1RrBmABk3HM72R8z23RyooybS6UJtu2NVGHtk227wkAJqOJtq+fqMdUiSBzrtLgkpmt6+5/MLON0qK/pr8zzGyGu18zutUDUDRRI/5tTMb33AbTpWK0TMZtayK2Vk7G7wkAJpuJuK+fiMdU1FOac8nMjnb3vc3sgh4Pu7tvNXpVa2ay51yaaBFs1DMZx/xOxvfcxhYHnd8zGLfy9Gm6ZL9xt8vGBMK2NTHwPQHAwq/tvp5rRjTVOOeSu++d/r5yNCqGkTURI9ioZzJG/Cfje26DYYQYLWxbEwPfEwAs/Nrs67lmxGjJyrlkZh+Q9GN3n5fuLytpN3f/1ijWDTWR+HhymIxjfifje26KYYQYLWxbEwPfEwAs/Nrs67lmxGiZkvm8d3cCS5Lk7vdLeveo1AiN0VoJYNa262jaolOHLZsoyRIxvrFtTQx8TwCw8Guzr+eaEaMlq+eSpKlmZp4SNJnZVEmLjV610AStlQAYRojRwrY1MfA9AcDCr82+nmtGjJbShN7zn2R2iKTVJH03LXqPpLvd/WOjWLdGJnNCbxIfAwAAAAD64ZoRbTRO6F3wSUVA6X3p/m8lHTMCdcMIorUS4xmzUgAAAACDxTUjRktWz6WJZDL3XALGK1pIAAAAAGBia9xzycx+5u47m9kNkhaIQrn7i0aojgAWYsxKAQAAAAxHz34sTKqGxe2b/m4/yvUAsBBjVgoAAABgSHfP/rnzHtX+p94gSQSYMCFNqXj8V+nvl9z9ru7baFcOwMKh3+wTzEoBIMdpc+Zqi4PO1xr7naktDjpfp82ZO+gqAQDQSlnPfmAiquq5tJiZvUXS5ma2Y/eD7n7q6FQLwMJk1rbr9My5NGvbdQZYKwATAS27AICFET37sbCpCi69V9LukqZLel3XYy6J4BKASsxKAaCpkcjZRk4LAMB4s9L0aZrbI5BEz35MVFXBpWe7+/vMbI67Hz0mNQLGEBccY2eHDVfmswVQW9uWXXo+AQDGI3r2Y2FTFVzaX9LJih5MBJfGCAGPscEFBwD2t+Nf25ZdZqsEAIxH9OzHwqYquHSfmZ0jaQ0zO6P7QXd//ehUa/Ii4DF2uOAAJjf2txND25ZdcloAAMYrevZjYVIVXHqtpI0knSDpsNGvDgh4jB0uOIDJjf3txNC2ZZecFgAAAKOvNLjk7o9LutzMNnf3f5rZEu7+yBjVbVKarAGPQQxN4YIDmNwm6/52ImrTsktOCwAAgNE3JfN5zzGzmyX9QZLMbH0z+9boVWvy6hfYWJgDHp2hKXPnPSrX0NCU0+bMHdX1ztp2HU1bdOqwZVxwAJPHZNzfTkY7bLiyDtxxPa08fZpM0srTp+nAHdejdxoAAMAIqhoW13G4pG0lnSFJ7n6dmb18tCo1mU3GFta2Q1Oa9noiiR4wuU3G/e1kRU4LAACA0ZUbXJK7321mxUVP9XsumpuMAY82Q1PaJuTlggOYvCbj/hYAAAAYDbnBpbvNbHNJbmaLStpH0i2jV63JbbIFPNrkPiIhL4A2Jtv+FgAAABgNuTmX3ivpA5JWlnSvpA3SfaC1NrmPSMgLAAAAAMBgZfVccvd/Sdp9lOuCSarN0BRmfMPCahAzKAIAMJo4tgHAwisruGRmq0g6UtIWadHvJe3j7veMVsUwuTQdmkJCXiyM2uYSAwBgvOHYBgALt9xhcccqZopbKd1+mZYBA8UU01gYleUSAwBgIuLYBgALt9yE3iu4ezGYdJyZ7TsK9QFqIyEvFjbkEgMALGw4tgHAwi2359J9ZvZWM5uabm+VdN9oVgwAJqt+OcPIJQYAmKg4tgHAwi03uPQOSTtL+pukv0p6s6Q9R6lOADCptZlBEQCA8YhjGwAs3HKHxX1B0h7ufr8kmdlykg5VBJ0AACOozQyKAACMRxzbAGDhZu5e/SSzOe6+YdWy8WDmzJk+e/bsQVcDAAAAAABgoWFmV7v7zF6P5Q6Lm2JmyxZecDnl93oCAAAAAADAQio3QHSYpMvM7OR0fydJXx6dKgEAAAAAAGCiyAouufsPzWy2pK3Soh3d/ebRqxYAAAAAAAAmguyhbSmYREAJAAAAAAAA8+XmXAIAAAAAAAAWQHAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjRFcAgAAAAAAQGMElwAAAAAAANAYwSUAAAAAAAA0RnAJAAAAAAAAjQ0kuGRmy5nZb83stvR32R7P2cDMLjOzm8zsejPbZRB1BQAAAAAAQH+D6rm0n6Tz3H1tSeel+90ekfR2d3+BpFdLOtzMpo9dFQEAAAAAAFBlUMGlN0g6Pv1/vKQdup/g7n9099vS//dK+oekFcaqggAAAAAAAKg2qODSiu7+1/T/3yStWPZkM9tE0mKS/jTaFQMAAAAAAEC+RUbrhc3sXEnP6vHQp4t33N3NzEte59mSTpC0h7v/r89z9pa0tyTNmDGjcZ0BAAAAAABQz6gFl9x9636PmdnfzezZ7v7XFDz6R5/nLS3pTEmfdvfLS9Z1tKSjJWnmzJl9A1UAAAAAAAAYWYMaFneGpD3S/3tIOr37CWa2mKRfSPqhu58yhnUDAAAAAABApkEFlw6StI2Z3SZp63RfZjbTzI5Jz9lZ0ssl7Wlm16bbBgOpLQAAAAAAAHoy94VrFNnMmTN99uzZg64GAAAAAADAQsPMrnb3mb0eG1TPJQAAAAAAACwECC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgsYEEl8xsOTP7rZndlv4uW/Lcpc3sHjM7aizrCAAAAAAAgGqD6rm0n6Tz3H1tSeel+/18UdJFY1IrAAAAAAAA1DKo4NIbJB2f/j9e0g69nmRmL5a0oqRzxqZaAAAAAAAAqGNQwaUV3f2v6f+/KQJIw5jZFEmHSfr4WFYMAAAAAAAA+RYZrRc2s3MlPavHQ58u3nF3NzPv8bz3SzrL3e8xs6p17S1pb0maMWNGswoDAAAAAACgtlELLrn71v0eM7O/m9mz3f2vZvZsSf/o8bSXSHqZmb1f0pKSFjOz/7j7AvmZ3P1oSUdL0syZM3sFqgAAAAAAADAKRi24VOEMSXtIOij9Pb37Ce6+e+d/M9tT0sxegSUAAAAAAAAMzqByLh0kaRszu03S1um+zGymmR0zoDoBAAAAAACgJnNfuEaRzZw502fPnj3oagAAAAAAACw0zOxqd5/Z67FB9VwCAAAAAADAQoDgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGCC4BAAAAAACgMYJLAAAAAAAAaIzgEgAAAAAAABojuAQAAAAAAIDGFhl0BQAAAAAAk9tpc+bqkLNv1b3zHtVK06dp1rbraIcNVx50tQBkIrgEAAAAABiY0+bM1f6n3qBHn3hKkjR33qPa/9QbJIkAEzBBMCwOAAAAADAwh5x96/zAUsejTzylQ86+dUA1AlAXwSUAAAAAwMDcO+/RWssBjD8ElwAAAAAAA7PS9Gm1lgMYfwguAQAAAAAGZta262jaolOHLZu26FTN2nadAdUIQF0k9AYAAAAADEwnaTezxQETF8ElAAAAAMBA7bDhygSTgAmMYXEAAAAAAABojOASAAAAAAAAGiO4BAAAAAAAgMYILgEAAAAAAKAxgksAAAAAAABojOASAAAAAAAAGiO4BAAAAAAAgMYILgEAAAAAAKAxgksAAAAAAABojOASAAAAAAAAGiO4BAAAAAAAgMYILgEAAAAAAKAxgksAAAAAAABozNx90HUYUWb2T0l3DboeI2R5Sf+aYGUHuW7KTox1U3ZirJuyE2PdlJ0Y66bsxFg3ZSfGuik7MdZN2YmxbsqObfmFwWruvkLPR9yd2zi9SZo90cpO1HpPtrITtd6TrexErfdkKztR6z3Zyk7Uek+2shO13pOt7ESt92QrO1HrPdnKTtR6T7ayI1F+Yb8xLA4AAAAAAACNEVwCAAAAAABAYwSXxrejJ2DZQa6bshNj3ZSdGOum7MRYN2UnxropOzHWTdmJsW7KTox1U3ZirJuyY1t+obbQJfQGAAAAAADA2KHnEgAAAAAAABojuARMIGY2zczWGXQ9JgIzW2/QdUA1M1sjZ9ko12FZM3vRGK5vi5xlfcrulLOs6/ET0t99cus4Eszs4PS3tH59yu6U/o7ptpDW2abejctORG23LTN7Wot1T7jPuuW21fi30Nm/tPm8AYwPZjbVzD4y6Ho0MYjrmDbnmRZWHflaLbwILk0CVRctZrb0KKzzpxWPzxjpdY4FM9tsgOt+naRrJf0m3d/AzM6oUf68nGVdj+9YdstY51Qz+0NuHfu8xspmtrmZvbxzyyz6LTO70szeb2bLNFjvS81sr/T/CqN9kWtmG5XdarzOama2dfp/mpktNXq1HhE/77HslJyCnQu1qmV9yv7OzJY2s+UkXSPpe2b2tZyyqXzt31PBkZnLetk/c1nRi81sJUnvSIG05Yq3zPU28Rozs4z69dIp02v7GG1t6t2mbGtmtoWZPT39/1Yz+5qZrTaKq2y7bV2W6npCg3UP+rP+atqHLGpm55nZP83srRXF2tT5lLTe3P1M0TfS38salAWymdn/mdm0BuW4iM/k7k9J2m3Q9airzXWMmX2h6/5UM/tx5qobn2d65A86K3M9kLTIoCuAcmY2XdIH3P3LFc+bKmlnSStL+o2732hm20v6lKRpkjYsKT7HzD7t7j8ZoWpL0ksqHj9NUvYFczcz+2jZ4+5eepFoZs+Q9BZJ66ZFt0g6yd3vq1j1t9Si3mndN0jqTnb2gKTZkr5UUocDJG0i6XeS5O7X5gQ8zGxxSUtIWt7MlpVk6aGlFdtLmdeVPOaSTi0r7O5PmdmtZjbD3f9SVdduKVCwi6SbJT1VWO9FVWXd/WVmtrakd0i62syulHSsu/82Y72fkzRT0jqSjpW0qKQfSaoK1JYG3Ny97PM6LP1dPK37OsV39SLFtlH1m5KZvVvS3pKWk7SWpFUkfUfS/1WUa/t7+qLiO7nU3R+uqmcqs66kF0haputzW1rxGeTYRtInu5Zt12NZL8u4+4Nm9i5JP3T3z5nZ9Rn1bvx7MrOXSNpc0gpdn/nSkqZWlN1O0mskrWxm3yg8tLSkJyuq/R1J50laU9LVhTpL8Xtas6J8pw47KY4vD5nZZxT7wi+5+zV9ivxG0v2SljSzB4svpThnK2vY+LeZnSNpzV4nn+7++pw6p3pvIelad384XfxvJOkId79rFOrdpmybOnd8W9L6Zra+pI9JOkbSDyVtmbneut9x221rMTN7i6TNe+0/K/aZrT9rM1tL0j3u/piZvUKxv/2hu8+rKivpVe7+CTN7o6Q/S9pRsR/80SjVeYqZfUrSc3vtsyv200+Y2dGSVunaf3TKfrik7FAlo6Hm1Rra182VdHbO59WyrCnOf4plr/SMxLEtyw7q/TYuOwLrbvx5JW+X9G0z+7ek3yt+Exe7+/1lhdzdzewsSbV6nbc875KZLSLpqbT+VSVtKulP7j4nc/1XS/qBpBOr3mOhzC+14HVAsc45x7dLzOwoST+VNP+8q2RfXVaftRTXRLu6+wsynr+F4ppkNUUsobP/qtrfH6AG1zHJqma2v7sfaNED82eSSr+jETrPlKRrzGxjd7+qRplJi+DSOJF2aP9P0kqKwMtJkr4g6W3p/yrfl7SqpCslfcPM7lVcoO7n7qdVlN1K0uFm9k5J73P325u8h5qs+imlir0x3iPpu9krNnuepPMlna3YMZmkjSV9ysy2cvdWPW0y/FoRKDkx3d9VcbH6N0nHqX9A5wl3fyCO+/PlHOzfI2lfxbZVPPl/UNJRZQXdfa+M16+yrKSbUnCneADMOXjuIGkdd3+syYrd/bZ0gTRb0XK7YTpx+lTFCccbFQHZa9Lr3Gt5PYA6390zFUGE89P9V0q6VCXBOHd/pSSZ2amSNnL3G9L9FyoOyDk+oDhwX5Fe8zYze2ZGuc57W0fxW+hczL9OsU+pcoeiFe0bZvaQ0gmlu59eUmYdSdtLmq7h2/xDkt5dtjIze5+k9ysCD8WA0FKSLsmoryQtYmbPVgTlP51ZRmrxe5K0mKQlFcfe4vb0oKQ3V5S9V7Edvz6tt+MhSVXd43/p7t8ws2+7+/sqnlvm/7n7yWb2UklbSzpEEczYtM/zP+Pus8zsdHd/Q811vUYR2DhBQ4HXpuoGXNrUu03ZNnXueDJdJL1B0lHu/v10bM9V9ztuu229V9LuWnA/IFU3YIzEZ/1zSTPN7DmKGYBOVxybX5NRdtH097WSTu5xfB7pOu+qOCZ27z9ybK/4PrfV8P1HNjN7u6TPSTpHEXCQ4tj2FTP7vLv/cJTKvkrRsHdboewqkp5jZu9393NGqeyg3m/jsiOw7safV4e775FeayXFce2biuNlzjVnk4v4xuddqUHuYEn/SY1ksxTnfRua2Q/cPacn9C6S9pJ0lZnNVjRInlMRjDs0/d1R0rM0FJDeTdLfM9YpSRukv8UePa64pquUvp9dFEGl9SQdqNjH5Pi+4rzjag01/OZoeh0jRUPxj81sf8V3e5a7H15RpvF5ZpdNJe1uZncprmM6wbQxS6cwobg7t3Fwk3SB4gJyW0lfV+pJI+lZmeVvlDQl/b+4pHmSnlGzDtspdmq/UlxcniHpjJLnb9Tn9mJJf61Y1z8UF/s9bzXrPafm80+RtHOP5W+S9POKsvOKn033LXP91/RbJumGknLfVxwErpe0tmIYzXdqvO8PtdxGXyvpE5I+27llltuy1y2z7K8lLdmwvi9Kv6U/Kk5uNkrLV5J0V0XZK7u+l6dLur7Gus+R9OzC/WcrWg1zyt6Us6xP2SvS3znp7yI1632RpKUK95dSBIlyyz9L0ocl/UXSQ5llXtLgu11G0uqKfeRqhdtyNV7jzem39K10f82q339X+ca/J0mrtSi7aIMyV6e/5zVdb9d2daCktxSX9Xl+5/dzQoN1nZD+fqJNnbvq8VlJ7ywuG4V6Ny7bps6Fchcqhlz9Mf0ep6jkuDIC33GrbUvSTunv3oP4rAuvMavzmy57v11lD5L0B0Uj1aKSVujsg0dp29qns000KHtw+tv49yTpVknTeyxfVtIfR7HsLZJW77F8DUm3jGLZQb3fxmUH+VkXnvtWRYPvpYpz408o8ziffk9PSvqT4vh8gzLPYdTgvEvSTelzmaEIGiyfli+hzPOuwmtNUTT+zFWcA31eFeckkmbnLBvJm6J3+wWKY8SXFOfKd9Z8jdL9XEm52tcxGn59ualiWN03O8sy11v7PLOr/Gq9bqP5PU3kGz2Xxo/l3P2A9P/ZqWv67u7+v8zyj3ee6+7/NbM7vHqI13wWydU+ruhx8E1JOesta02u6v3zqBq2nvXgNZ+/nrsv0EvA3X9uZl+pKPtPtW9Fn2pmm7j7lZJkZhtraEhM2fCWDyl6WDymaFk9W9IXc1fq7kea2eaKi/JFCstLW8FSHb+jONi+UtGC/mbl9WiRu19okfNjbXc/18yWUMUQoIJHJF1rkWNifu8lz+vCf2Sq66fc/dFC2XtTb6YyPzOz70qanlq23iHpe5l1lqRV3f2vhft/V5y85LjezI7RUEvW7ooDcY4L07CJaWa2jaJ3zy8zy0rSipIeL9x/PC0rler7fMX7/L1i+8jtmn17qvPqGr5dvqNfAXd/QDGUdDeLIcErprJLmtmSnjcE869eaHVy9zusRs6lNr8nSU9LQ1S6y+a0OG5iZgeoXnf0NsNpiuam38U2kg5OXdPLcje2GfLUyeWzu5l9T129Xd3935l1lqSHUmvnWyW93MymaKjXyUjXu03ZNnXu6LREv9Pd/2aR3/CQzHVK9b/jttvW/pJOVvRgOrpGPaWR+ayfMLPdJO2hoZbtnM9Zit4hX5X0gMcQ8EcUF5ejVee9JB2h6L30hZLn9fIaM9tP0TPhqzXLdph6n2/9T9W90duUXUTSPT2Wz1X1d9Wm7KDeb5uybcu3+bw6DlcEh74j6QJ3/3NmOSka2Jtqct71uMdQtvvN7HZ3/5ckufsjZvZ4Rdn5LCYE2UvR4/Hnkn4s6aWKXlQblBR9upmt6e53pNdZQ9GYmbPOFSV9RdJK7r6dmT1fEUT5fkXRoxS5197i7rPTa9W9jrrAzA5R9AornptXnfcVr2NOUt51TPc11/2K883DlN9Tq/Z5ZpG735V6867t7sea2QqKXujogeDSOGLD83fcpxgjalLWifS6heEhJmmtdL+y656ZHSTpDZI+4u6/ya2vp2E8fV6z6iB0n7sfn7uuEVaWE6YqX8x/3P3Clut/l6QfmNmSiu/nQUnvskjCemBJude6+6dVGMKTgpAn56zUImHqWoqofzF/Uc7F8Obu/iIzu97dP29mhyl6FeWstzsP0MrKyAOUdHqF1ZICDnPdvWeS2H7LC48fmoIzDyq61X7WM3I1FZxnZmdraEjrLpLOzSy7l6T3Sdon3b9IMSwlx36S3qlo7XuPIgnhMZllpdgWrjSzX6T7O0jK+Z0+QxEwnCfp35L+5e5VeYA6TlcEpM5Vve7VMrMPKnp8/l1DAXFXtMRVOVIL5k/rtazfutv8nk5W/AaOUc33rGbd0dsMpynaWZHH41B3n2cxrHBWyfPbDHkakTxRSd2AS5t6tynbps6d/d5JxWNzCrTmbJMddb/jttvWfRa5tdaw+rm1RuKz3iu9zpfd/c50cZebXPwyd5+/v/DIj/V7le9D2tT5FjO7TdJKNnw4cM4QjZHIBfZlxbClcyTdnZbNUAQiqy4Q25T9gWLI0U8KZVdVbHtVF9Jtyg7q/bYp27Z8m89LkuTuy5vZCyS9XNKXLXJf3urub8so2+Yivsl51zQz21ARQF8s/W/plpWTxyLn0jzF57OfD6VxuMKqZ4H9iKTfmdkdaZ2rKc7dchynGILXuSb4oyL/UtX39GxJO0k6zMyepchdlBs47OgMk55ZWFYZ6HH3R1J9s1MRlF1r1tD4PFNqnod1sjL3usFKjAYz+7P6typUtUrLKmaD8ZIkoKlXyGvd/b8ZVS2rgyl2LG+RtL279+3xYGaXu3vjmddseFLs50jq5InKCabdI6lXa6pJ2tfd+85WYWanuntp8sBclmYwS70wcp5/TfFEtt+ykvK3SHq+N/jRm9kV7r6pmV2uGCN+n6LL8HMyyl6rlAfI3TdMy25w96ykjWa2mKTnpru3uvsTmeV+L+n/3D279amr/AK9rdz9oRrl36g4uZJiaNkvyp7fVXaapBnufmutSo8Ai5npXpbuXuSZSS1T2ecpWh4/ovi8Vskoc627b9CwrrdL2rRmL81OUu19FcMmO5aW9EZ3Xz/zddr8nq529xfXLZfKXuHu/fLfVJXdzt2zgsI9yk5V/ObXrXzygmXfmdGa2q9sqzxRqd7nNjlBbVnvNmXb1Pk8STvmHlf6vMYCF3fufmdFmUbbVtq/d3Jrvav78ZzGnJaf9T7ufkTVsq7Hn6VoJPmR4nynmNT/Ozm/kaZ1Tus+Wz16SJWd5xXKt8oFlhpBt9WCiaLvH+Wyz1M0ghbLnuHuN49y2UG938ZlR2DdjT+vVH5pxUX3lopzieUlXe4pF1NF2fkX8e7+XIveqye7e9ZFfN3zLjO7oOzxnH2wFXoeNWHRO7Szz/iDZ+YYNbOr3H1jM5tTOLeudT5lZqsognC7KXpM/cLdP1XrDeStp3UC8/Q5vUkL9j6q7MXZ5jyzU14pD2vhs76+IqA/adFzaZxw99Vblu95UpFOEndTJPrtZ9k2gSUz20xxgrWDonfKBxRD7Mp8wEqmV8/oWrl9nTp2+Z76t7BW9fI4wsxe3u9Bd7+oauXdO0hLie367SCt3SxRRTcqcnD8teqJPfzKYubCQxTDnVz5PWIec/fHO+/TYmaOrAtyi9l7jlfMxGOK2SL2yPmcJd2pmE3jDA1PJF45BMja9bbquEaRd+hcM1vCzJbKCU6Z2esVn/Niitb8DSR9IfPg23QmwqIlJD3YubA0szUyLiy3V5xEvlzRIn++opUox6/M7DXu3mSq17sV76+ONkm1i9r8nn5pZu+X9AsN71KeM9SraXd0ufuvzey1itlTFi8srzw58xYzP3oklX6hoit7cb2VPWo6gSWLxPTFsll1SPX+n5ktUzfg0rLebco2rrOk/0i6wcx+q+H7vdzZwBq10DbdtlLw/3Iz29zd/5lTxx6v0fizVgyH6w4k7dljWdG26TmraHhD1UOKGXorNa2zu/9NUlYAvE/5xoGlVP5+SY1mFm5Z9hZFPqCxLjuo99u47Aisu/HnlVxcuB3l7r2G2fXTdDKVjlrnXbkBfDPbxrt6r1thGLD1SOSfea65hKSPKvL3vNvM1jazddz9VxnVethi5mtPr7WZap4Ppe/mMEUvpueqkNC713suPFZ3SN6hfZbXcbri/V2twrlPpjbnmVIMn3RLwwctRpqgD4JL44SZvdXdf5T+38LdLyk89kF3r5qFqPhaGyqCPTspLrBzu+HXYpGfaCdF4rqTFMnrZnvecLeyHU3OGNrvufursira/eLun29SLukVNOsMw1lVebmE6u4g28wSVbS8pJstZm0rXpRWBi3cvdOV+udm9itJi9e46LnQmucBOkwx3fOtkpQOficpksZX+VO6TVH94RpNZ11Tqmeb4NTn1Hyq1qYzEXbq3bTr76sVwaQj3P3ezLp27KOYqfFxRY6nOsM07lB0KT9Tw7fpvid1qSfEhWZ2XE5Lf4nGvyfFBa00fLhR7lCvRt3RJbXKnZYsqwYzP6bt6hWKC+mzFJNHXKyM4Vpm9jrFBfxKiokgVlNc+FROl1zQKODSst6Ny7aps+J43+aY3+jibgS2LZnZoVow2JKzXdf+rC3yLL1FCw7HW0oxtLevdI5zvJm9yd1/XlW/kapzoezaiiH03Z9V5f4jXYAeKel5ikD7VEkPZ+5vy173aHffewBlD/ChfKVjWXZQ77dx2RFYd9bn1enNYWZLeAyDqqPxRfwINQr2c7Ck7kBLmyHmHccqzutfku7PVQybzwkufVSRNmItM7tEMaFAnQayYdz9jxqey63Xe+44TjWG5HmhB6pFb9V1Fectt3r+6IJV3P3Vmc/t1jnPfEzSE6p3nim1z8M6qRBcGj8+qqEEvt15P96hiimu00X3bun2L8WP3DKj8mtaj1wHHSUXDu9S7FC+rZiO+DHLTAqX21pQYoWmBc3sZ+6+c/r/YHf/ZOGxc8qCVu4+7OLcYjz1ZxQX7x/KrEKtHaS7XyfpOjM70TOHhPVxQN0CZraVu59vPRKPmlluwtQ2eYAW9cLQMHf/o1Xn8+o8t00QsXFvq6RNcKrNVK1b+/BhkjdYGjppZm/NKN/owtLdP5hasja26JF4pbv/I6fC7t7mBO0v6bZYutXRJqm21OD3VFhHbrCwV9k2+87GudOS/9dwvW9W9LaY4+57pW3lRxVlOr4kaTPFMLENzeyViiTXdTQNuLSpd5uyUsM6u/vx1m5YbdOLu7bb1o8V5y2vVeQl2kMxgUaOJp/1pYpeh8treMLYh5Q/gcKvLJJzr66awzQa1rnjWEUjxNcVwby9VJ50vegoRaPDyYoA9ds1NOy8je8OqGybiWHalB3U+21Ttm35rM/LYuj59xU9hGeY2fqS3uPu788o3usiPvd8sVWjYIUFuia1PMfsWMvdd0nB7k4i8Zyk7XL3a8xsS0VjoKlG2ohMZfVY3t1/ZjHphNz9STOrzGVk0bv1O4qGX1ME99/jeUOqLzWz9dz9hpzKF7U8zxyJPKyTCsGl8cP6/N/rfi9/UPQc2N7db5ckM8vt1dJ0BrRnKxIE7ibpcIuxy9PMbBHPSOZr0Z3zLRoaa3yLpBM9b2jIMr0CHh0VQY+1C/9vI+mThftZQSsz+z/FhZZL+krNnUzTHeTqZtaotTI9r0ki8i0VQ5x69XjJSpjqMYvh99Qsyj/bFpw5bXZOQYtcIZ/QgsM0coIHbXpbSe2CUzelC5apqYX6w4oLoRxNZyLsaHRhaZFY/lBFbyuTdKSZzXL3UzLKmuJ7XcPdv2hmqyqmE67s9dA5uWvYQtomqba8xSyINtQVfoa7752+56yu8NZ8hhgpZumUpEcsclncp9iPZ2nxnh919/+Z2ZMW+Tj+oejpmeMJd7/PzKaY2RR3v8DMDs+tc6p304BLm3q3Kdu4zhY9vQ5Vg2G1SdMW2lbblqRneAwV28eHehdelVm29mft0WvxLg31GGiizTCNNtvHNHc/z8wsvY8DLJIKfzansLvfbmZT3f0pScea2RzFrH2NuXvjQE3LsnWOyyNZdlDvt9Usy2P0WR+uGDp6Rip3nZWkk+haR5uL+LaNgqVV615gZp9w96+a2ZG9Hve8ociPp/1855xrLdXbl2yioeD2RhaNvnUmcChT9tk1HZJ3mKRXFq5T15J0pvIaIl4qaU8zu1PxGeVMZKC0np7bn+el2JCZfUjSjwgo5SG4NH54n/973e9lR0Vr1AVm9hvFWOus6LdifHLPwINFN/V+QYmVPWaX+41FHqHtJU1TTGV8nru/pd8KLRIGnq9ITDkn1XVjRbfFrdz9DxV1Xiatr2cCdJUHPco+z9LPOkXdP63YiX7G3S+uqGcvTXeQbVorG3WHd/fPpb975a6nx3q3UPTyWE35U6d3vE/RGtU5SP9e0rcyV91pCd9e9VvCP6nomdd01rU2wakmU7V2NJ2JsKNpq+FnJG3c6a2UAnvnSqoMLim+z/8phnV9UTEc6JuK/UGpli2kT7p77ix8vdbdpgt+pyv85ul+na7wx6nZDDFSu9xpbd7z7LTe7yne938UUyHnmJe254sk/djM/qHqWT2769004NKm3m3KtqnzAVpwWG32zHotLu5abVuKoQqS9Nd0nL1XsZ3laPxZp0aqgyU9U5o/S5SXHRcL2gzTaLN9PGZmUyTdZjFj5lzlz6j1iMWwlGvN7KuK3ltZ5xEWiebfpcg19Rsfnr7hM+7+pcw6dL9u7aFaZvZHd6/scZUC4B9UbI9HKs6Td1Q0yH7B3f9TUvZF7n59+n9RxXnBJop8e18qa9BI38tP3P1fZvYcxSxsL5J0q6R3lTUumlmn1+JpZfUrKT9FkRPsTYrv6inFceI77v67irJrKo7n90o6SHG++RJF4+8sd/9zTh3c/W4b3gEnqwHHhkYT/LbHsiptzrua6OSlymrw7ONzipkcVzWzHytSEOyZU9DazVjbVtMheQ91AkvJHYreojm2q1fFYYopCBZX/I6vVkY6gWRFxSyK1yh+y2e7MyNaX+7ObRzcJD2i6Ip9Q+H/zv2Ha7zO0xW9gX6pOAH/tiJnTVmZU0se+0vJY9f0Wb60pLdXrPMUSTv3WP4mST/PeJ891535Gf1BMfTnxYqDw4aKYYgvlnRLRdn/KYbh/FKxYx12y1z/ar1uGeWuTn9v6F6Wud7Zipn15igCS3tJOjCz7FckTS/cX1ZxcpX7eW+nOHl/RufW9Pur8X47n9f1hWVXZZSbqpixo826p0h6tyJgcEr630b7PRfWv4ykZRqW3UZxgXiopG0yy9zQdX9K97KSstekv3MKy67LLHuForW/WPbGzLIHKE4+n624iF1O0nI1PqdrFRf+xXXnvufZLd7zVT3KXptZ9mnF/9N28rScsm3fc+H5q0t6UY3nPz1tT4soAsQfrvM9pde4Or3X2ttJ03q3Ldu0zopZmbq3j+vrrLvhe2y7bW2fyrxQ0gXp/b9utD9rxUyzz2v4no+WtN4IfHZ167yxIpi0iiLQ/HPFrJk5ZVdTXFwtrbiw/ZpiaE5O2WMU+fz2Td/P1wqPlZ6TFfexXbdnSLqnouxDimDng+n/hxQX0w8pJp8oK/szRW+Jb0k6TzEs8GWKY9wJFWWvKfx/mCKwv6Ui4PLDirI3Ff4/UzETqRR5ti6pKDtXcd7w71T/N0parMb2cazi+PZSRS+iLyiO6+dK+lBF2YsUjXr7KYJoH1McY98p6fzM9Z+iaDi5RpG38eOKQFtO2QW2I2Xuv9TwvCuV27ziOX2vk9re0m/gtYp94PI1yt2S8/5G+j0rzpE/ojgmv0Cxz140c73fVjTW7qk4nv8q/TZ3VMxymvMaz5Q0o3Nr+P5XVca1ZlcZU/TI+4niuPEVZe47J9tt4BXglr6IPgEHZQYe+rzmsmnnel6Let1d8ticFq97a5PHctZdtbNRtOhe0O9WUXbLsltF2aXT354nWRnv+dJ0QDhV0RL3xpzPqlC+c0FbDLZkfYe9nqfMAJ+kKxpsHz9Lf2/QUKB1/i3zNToXWWenA/eGkv6UWfb0pgetpjdJh6e/jQOXqfxrFcMBP9u51Sh7cM6yHs85JH3Oe6bbr3PKdbYPxclKJ8i0Qo3t8oru7VP5QZo7e9zuqPFZDVu34kQrd9u8VNHLs/Oe11Lkqcop+zvFyWin7GaSLsws2+vEPTtQ3/Q9q8cxqNeykdwmu57fKODSst6Ny7as8/cVDUzXK4aAH6nosVBV7uL0t3gh37mYL72AH6Fta4ucZaPwPZVe6FeUvVkxCcGtGmoMzN0HtKnzTjnL+pTdJ2dZn7LFc4dFFMG1UxXBxDkVZZ9S9FIYtr9Nfx+vKPsNRW+MFQvL7sys87XprylyY1rhful31fXbu1bpAjqz7K2F/6/qeixrvYoA4NsUF+P/VASNShuLe71+YV/yNFU3oBbf81/6PVbxGssreo7/XTHc80eqaFBUBLRuUDSKF8/37lQMR8r+XTa55b63PmVnKmZ+vUaZ56mS1k1/N+p1y1zvyYoUAoN4z1nnKz3KHVty+0FF2ddLui1tI3cqGvtvalgPk3Rzg3LrKwK2f1AEyuZI+upobZcT9cawuHHC06xFqZt0JyfQHz1zRi6L3CrLeyEpmrvfb2ZzFReaZWX7dT3vdBHvZ2Uz+0a/B718vHHZsIacIQ9vS0NiVpZ0kbv/w8xepGhteZnKcxe83t0fzFhHL3P6lTWzGRVlT1S0TFyt6Lpa/Gxd1TNF7aOYjefDiuFDW2lo1qkcjbvDK3L5PM3dH5OkNEb8aWUFLBI7S82mTt8n/d0+s369fMnMllG0vB2pOFHLzUPWdFasn7n7zmZ2g3qPwS8b+nhC+tt4ylZrP2NTdw4yKXqdlXZJd/dZZvYmDc0qd7S7/yJznd9QnJg908y+rKjzZzLL3m1mm0vyNGxhH2VOoewtkmonbbrgf04Nu8KrQXd0M3uWYl85zWI20c6+Z2nF9pKr1ns2s8XT6y9vZst2rXflzHU22ia71Mpj1qbeI/Sea9e5oDis9kRF0LdyuJK7vzT9rZX4dAS3re6JTPotK657JD7r2Wb2U0mnafjxKSeZeu1hGiNU5/0VF5ZVy3rZQ9IRXcv27LGsl/mTJnjk1dzbzD6rSHFQNSzvDkn/5+5/6X7AzO4uK+juHzazF0s6ycxOU/Q+WuD4WvEabmZnebpCTPerXmMZM3uj4jzpaZ6SJWeWPcXMjlP0GvqFme2rOM5tpej9XlrdtJ4HFecFJ1jkt9lJcY57TkX5J8xsLXf/UzoPezy9Xs6kO/+zmCBoGUlLmNlMd5+dhvZl5RR0938p8ijWcaKiUepAxXvseMjz8rC2TcFwXjqHObWzjdTwY8WwqxsUAY8cH1UMMe+V79aVN1yrzYy1Urv3fImZHaUYkl88Ry47r5e3SLGhuO5pNLmHDc+LNUXSBkoT12SW30cx+cG/FOfWs9z9ic7wZFVcZ082Vn97wmiwyFn0XUk7KCKypthB/kLSe71iqkYzO1/SXt41tbZF8tVjvSSJsUXun+5gx3z9LsLM7C6VJJD0mK633zrvUXTHXuAhSfu6e2liyxSs2F7RmvQcxQn0uxQHpu+6+39Lyv5J0qfd/Sdl6+hT9hpPs3FZ5JX6v16PNXhda7Bzr7uO1RQtSYspgizLSPqWDx//3K/sJxVJvY9Ni/ZS9Kb5akmZC0pe0su2ycJrLDDWvsb4+8YsZuBYgFckRTezZ7v7X9Nn3av8Xb2WF8pPVXS3r3ti1il/vQ/N2PQii1w1v3b3l1WUe58iULCmYhaPjqUULft1Z+eqxczWVeTtMUXrfVaAyMyWV1wUbZ3KnqNohb8vo2zjpNqp/BTFUIFXpXWfLemY3N9xuljYLJW9PJ2QZ7FIVJo9Q4yZ7aG4gJwp6SoN7esfknRc5oV0J/n6u5T5ntMJ2b6SVlIM9eis90FJ33P3vrOgFrbJtRRd0Dtqb5Ppu/50qrdSvb/U7zjRst6Ny5bUufNZf7Hi2DZVceLdaEbBVP4md1+38slDZVptW6mRaHPFZ/b1wkNLK4YSrV9StvVnbWbH9ljs7v6OqrKp/EsVCe6Ptcg1t6S73zkadTaz7SS9RtLOiou6jqUlPd/dNykpu5uiR9tLFbkLi2WfKp7LlLzGjxS9SH7Ttfxdkr7t7n1ncjWzDyh6x13X47EPufuRGeufoui1vZNiOMpKGWWOUZxT/qdr+VqSju8EVfuU7d429nP3v6eA6o+rPjMz21PRI2ctRWPc3Yog5sFlDcdmdpG7ZyXA7lN+K8UQvscUQZZd3f2KtH3Ocve+F8IWk9V08iC+W3GuuL5iO3m3u59eUrYsoby7e27uSFnM8laciKUqICcz+0Oq79Uq5HjKPB94SDEE+ynF5ATZudfM7OKy7Wi0ND1PLZRv8557nd9Xnteb2SqKRoNOQ+TvFeds92Ssc7a7zzSz6yRt6DEhwnVlx4hC2WJD/JOS/uyFnHEZ5T+v6Fm1wDm8mT0v95x1siC4NE6Y2RcVF3bvdfeH0rKlFIlt73L30imgzewqd++ZALdzoTkKdW4TTPlc2eNeMcWnmd2s6Dr639T6d7ekF3pGssF04X+4oqXtfTnBlULZOe6+Yff/ve6XvMYX3P2zhftTFGP/ewYUzOxwd9/XzH6p3r1hslopLBKXnump91FdZvZqxUW8JP3W3c9u8jo117nANla1PVufmTs6PG8Gj8ZG4ALvYklbVQWU+5S9wt03NbPLFWPY71NcLD6notwyit5atVoN08lJ2WedkxRX6Te8qoZP553dqtSERW+FqxX54V6YLuYvdfcNRnO9hfW/SAtOYV4Z5Enb12t7lO0VrO8u+yZ3/3mD6jYKPBTKZl08dpVptE32ea2NmmxPTeo9EmXbMLPzFLkrsno99yh/uiIvS+XFXFe5RttWukB6hWLShe8UHnpI0i/d/baM1xjUZ/05RVBtHXd/rsUseSe7+xYVRZv+JtZXtLh/QcMb9h5SDOm/v6TsapLWUI/fk2IIT85sorn13MYbzqqUU9bMnq24uDyrzXqLjXqjXeexLpsaAp5R1miRu+7UiHO/x+yCfcua2cd6FH+6ohHmGe5emXTeYiKDrymCr/9QNLLf4u4vyCh7hbtvWvW8kZYCcrspcnrV7f0oi97Xq2v48bwyKbcNqPG1DTP7raKXWqen/lsl7e7u22SUPVfRAeMgRWqAfygmktm8rFyh/GKSOpMAVDbK9Si/vmJkjCT9vlegHIFhcePHGyVt4oXZJ9z9ITN7v6TLFdPel1m25LE6XdMlzW/VeYuixaPfTr32xW9HVfAow389teB6DP+7LSewlJ5/l6Q3plbASyymO/5f4fGyYI33+b/X/X5WNbP93f1Aix5rP1OM2+2n9XCp5HWSvm5mFylaPX9T84TyFsUMW+ea2RJmtlQnEFrGzD7aY/EDioTb1/YpM78njZldX3hoKUlVrQ2dmTu2kPR8DbXw7qTIkVGpT9DkgfTaH3P3O/qVdfenzOx/ZrZMwwu8OxTb5Rka3t24MnighjM2pXo+oDhBKrYaLmlmS/a70PQ0hCYFx/+q2FZN0SU+axryVHZPRY+pzmee1S3czNZQDANaXcNPzHICrmu5+y4WLfpy90fSCXkWM9te0U27uwt+TqtfZ+agmzS073GVz3LZ8UtJ/1W9Lvgdq1hMe/6QYpaqjRSt8VXDLDrb9a1mNqNu4EHS3zr7CzP7TFrvl8oCPp1tMj3/bx5DOl4h6UVm9kN3n1dj/YdZ9DY4RdJP3f3G0ar3CJVVn8aEzj6orHfufyTdkE7ii/uP3KB6oyHBarhtebSyX2hmx/lQeoApih5AucPXG3/WFsPU3qlITFvsKZHTc+mNilx+16Qy96ZGwVGpc7qYuc7MTuxcGHUC82WBpVT2Lkl3mdnWkh71aPV/rqR1FfuSkXSwCrN9jXRZd/+r4njTar2dwFKTsm3WOxZl03ur6g2bte4+AaoFyrr7/CFe6Xewj6KX+0/Ue/hXL19SzaFP1i4FQ+c1Oucta7j7F81sVUU+o5y0AnspfkeLqubx3NrN+NZqyHiT99znfH6+jPPUFdy92CPwOIshozneoDj32VdR72UUgfZK6dzheEl/VpyrrWpme7j7RZnlP6wYxtj5Tn9kMcvlmDdqTAQEl8aP/3mPaU3d/T9WPUZaks61yFfymUJLjEn6vGI8fKXU6raLIqi0nqKFa9d+z3f3zVIkeHfFiZkUF0snekXvGEu5adL/wyLtZnaOu7+qf2lJEXQ4o3B/jeL9qhNhM1tHMYPF7xW9w3Iv0p6Zdq5W+F/p/gqZr/EOxZTa+0t6paSz3P3wfk9296vTv7OVTgrTe5iqirxHXa+zl0Vemu0UQYRvmtlv3f1dVWWt3bTrM9Otk5tle0XCw/ea2cnee2hd4/H3noZjpgDVSzsBNIt8RL8vK1twuKR7Uj1M8TtYS3ER8QNFS3uZNhd4f0q3KYpgWjYf6nb+czP7laTF6wS4+rUaauj33c/rfXjX5G9bdF0u6ybfsbMi0NMkWH2aIoHxL1U/0PK4Re6wzv5yLRVOSDMcrugddkPXRUqOzdz9+TXLdKzizXuivsPdjzCzbRUtf29TBAQrg0tJ08DD/3P3ky2GEG2tCH5+W1JOK/PPJc20yPlxtCLZ/omK4UFZ3P2VKbi0s6TvpiDIT7166vQ29W5TVoog8wqSTkr3d1EEbp6rCN68rU+5zjTmTVU1ZPXTdts60Mzeq7jAukrS0mZ2hLsfklG2zWd9giI567aKC5XdlZm3TZGIen7+HTN7ema5tnX+rZm9XnEOf7Wkf5jZpe6ek1PwIkkvS0GpcxSf9S6qnyOnTHaQnrIDKzsq67bI4fpRxfZ0vGKEQWngs8sT7n6fmU0xsynufoGZHV5RpjtwNbPwf27+os5QwK0UjUb/UVwb9BwR0mVjd18n43m9zFQMac0+hyg0vq7VoPG1qMl77pyTrpOe17nuep3y8nveZ2Zv1dBxbTdFD/tK7v5wOo5vophJ8WzPGPKYHKZIhn+rJKXA+kmKWcJzvEsxI+fDqfzBki5TDPFDF4JL44fb8OSORTkXTR9T9FC43cyuTcvWVwQkSoMHZra34ge+sqIXzTslnV7Vu8jMnqe4qLtEcYIjxUX3p83s9e5e1ktk7cL/3dH3nCDNG7ru57aKyMwOSuU/6oUE6Jm+p6Gda/F/qaKHSKF1RYo8Md9VfHYXWd6wjfMUJ6Gd3AHTFCeHWV1CJckjAd2vFQfcaYouppXBJUkfUOzQr0ivc5tF75YcqyhOMP4jzR9KcKaklyu2mwWCS0170nRZVpEnoBOMWlLlPfyKuoMlR5vZte7+SYuExlUaXeClgOFzvWbOJTPbyt3Ptxj62P1YdvdsNWg1TB42s90VLZSu+N5yEvNLMd3xdEUwq67/unvfSQUqtEmqLcVQ3BsbBJYk6TIze37FPrKfX5vZq3J6G/XQOb68RpHb66bUCJGraeCh0yL7WkWy9zPNrDLJdPI/d38ybdtHuvuRZlbW07Mnd/+bpG9Y5IrozKZYVYc29W5TVoppoosn+b+0NPzdzG7qV8jdj7cW3f89M19HD223ree7+4NpP/JrRaPC1YqgS5U2n/Vz3H0nM3tD+uxOVH4jxM/M7LuSpqcGmHcozgtytKnzMumzepfis/5c10VmGfPopflORc7FrxbOGUdKm3wblB2bsiO+7tRraEdFI8B63pXnKtM8i1yRv1c0wv5DFecS3jAFQZdN3X2jzrHFY0TEYlWFkktbHM9vlPQs9e6J10/r5OdJ7ffcuS60GAGxkQ+lcTlAcV5f5R2KgMzXFdvQpYqeX5XS/q4zgYBJOtIizcgPMoov2gkspffxx9TYnstUyOOV/m8b3F1oEVwaP5ZRnEj12lgrDwApmrqbma2pQi8i7xq+Y2YvcPfuE9OjFBHYt7j77PS8nIPOUYqcRd3jrrdWRL/Ldvhlr5/zfpueAEuRzG0DReeuF6Zlt3tJotTCetsM5+sOgN2vGLZ1mPJaVxYvHqxTr7bsIY8WwwB3UQQAf6cIhu2cWfwxd3+8c61gkVA498TkmRreI+QJxZTCj5pZVQ+3pj1ppBiXPSddTJoimHVAZp0fMbOdFcNopJiNq7N9lL7vFCDas8kJj8fQo9XMbLGaPXm2VBxwX9frZZUf6GrSaihFb8cj0s0VQdO3ZK7zQMX3dKPqz3hyRApWnqMa3eAtht0sqzgR7iTV3sdrJNVWBCjOMrMLu9adM3zxh4oA099S2c6QupweSZcrZh+aovgtZQ/Hk3S1mZ2jyL2yv8XQheweX+5+oZmtqKGWzSvdPScoODddhG8j6WCL4cC5M1U+YTF08e0a2r7rnBR2GkJ2kfQmRSvpTxUNMqNZ7zZlpQikzx+CaDEbaSdnSd99g7Xv/r+Z4uT/eYrJH6ZKejhj+2q1bUlaNJ3s7yDpqNQQknuMabV9pb/z0vnA3xTHrErufqjFrIkPKlryP9t9PjRKdV7EIu/Qzoqk73WYRRL13RUNiVLmLGBAhY8pjmefUTQyd5bXOUa9QZFcel/VH/q0j2LSmdrDvhXHmaka6sm8gvL3X5spZmG+U/WP57VnfHP3B8zsP4q8YwskmK6hzXteUcOPQ4+nZaVSfXNns+s2S/Ge75Mki0lRLlWMJqgy2yK5/4/S/d01lEIjx7GSrjCzX6T7Oyh6zaMHgkvjhLuvPkKvc4eiO30/J2jBqX2frchH08lL8TPlnbyv3OtEyiMnT1VXwSUspi2eouFTGJuiR00p6zPVe6EOZTv1zytarN8p6S4NnYAfq5hFrm8rr5mV9pLwkmFPHkMzpkjayd1/2u95JR62Qg8ni6l5H61R/m2K7/Y9Xj+p94XWfNr1Hyt2yqen+6+TdKLFEIKqlp6mPWnkMXvPrzU0zOCTqfdCjt0VgZJvKbazyyW91WIY1Qcr1jvmOZdSy/UUxcxwP2uwzo5Oq+FFymw1TOv/sxbsTZjreEX+hiY5hNZTbNdbaXiug9JArUe+kU+kzyqnta2XLyt6ES6uwhTdmb6vqHeT9/w1SS9Rs+F471QE1u9IvReeocxWQ0lKAddDFMHpTsvhLHc/pbRgXAS/WtKh7j4vXRjPylztXopkz1929zst8mydUFGm2w8UAaVt3f3eGuXa1LtNWSku1C62mN3UFEGb96f95vEl5dp2/z9KMQz4ZMWQjbdrqBdUmVbblqIn758lXafozbuaImiTo81nfbRFr/HPKIZ4LKkaPfTSOVCTnDlt6vwFxeyBF7v7ValRsTLxebKPpP0l/SL1LltTUtnMrk38mbLjvuyIr9vd6wTPe/IY+rSaYgbG41MDam7ws83Q3G8oZud+pkWKkTcr9gk5Xp35vF4OaFLI2+VA7Gjznn8o6cquYMtxVYXS8ejbigbmF1pMbPJ6rx6iLkXDUDHP60PKHFKnmLXxA5I612i/V5zfZ3H3r5nZ7xSzbUoxO3vtHtSTBbPFjROpVbKvFjuP7vXM8ZIZzSymidxFMazl6YoTkJ7DgMzsj4qur491LV9cceGzdq9y6TmlJzNVvT6sz1TvhfJ9o/lm9nXFcLaPFLp0Lq1ImP2ou+9TUvZxRTfWn0m6V109zTzl+6mo+2x3n1n1vB7lNlYMO+qs91mSdvGhnExlZdvOYNZ22vWZGpp69JJOD7mMco2nHk3lV9ZQwmVJUm4LfhspkLah4qKjVs4l6zOTYk6vuabbVqH80xUByykaajX8sfcZ154CNF+1PjP0Zb7fvjNdZpS9XTGcpsnMegcpEp7+VMO/o6xu5WZ2o7u/sPqZPcte5u4vaVj2Ikmv8JR7bSyl3+E2nd5KqaXz3NzfI+pJvVk6s/PdmtO71nrMptlrWUn5zj53fpmq84bRYNHtYaqP4CxmfdazhrvfWbWsT9nGEz9MRNZj2HWRlwy/puzYlB30utuyQn5Pd1/LzNaW9B13r8zv2dlnmdkRkn7n7r+os+8ys3UVeURN0nlec3p5G0rfIGnkrttK1neR4jyzbg7E4ms0fs8WqT46s6ddlBNssejpPUsxKcWGaVnpuZQN5bbdQNGgeLpiv/sGxUyXe2as9+mKNApPpftTJT3Ne+Q67iq3XNnjueeLkw3BpXGi0BOnGKxwRf6hZ7r7iHRbth5Tu5c897mK2eJ6dkm1mOFkM0kf8KFZXlZXRMNn9ys3WiymS72vKuBhZrcp8tp41/Kpkv5QERR7hqKX1y6K4XU/lXSK15i5qM1FrcWwgU7iwFq5NKz9FNWLKS50PK279ILezJb2yAvRc+ec+X47U48eqOg+nD31qEXCvV3UNSNXzoG3ZeuKzGyPXstzgo9ttNy2agcgzez/KQKNL1J0i24SbP2aojv4Gao/w8tpkvb2vKFZ3WV7XTy6u6+ZWf6ris+rdu4jM/uWIs/UL1Vz6mIzO07SmoqcC3WH47ViZje4+3qF+1MkXVdcNp5YmjjCFuzpWmfYwsBYDNN6voZfsJTOImQxE+H/NLz7/1TPm/2sc8GytWLY9N8UuUD2XFgDiL3Oiczsanev7OllMdNlv4kf3ufurxj5Gg+Omf1PMavVtZ1FhYe9bBuj7NiUHfS627LI/7WJpCsKwYcbco4xFqMPVlb08lxf0ePpdzm/5VR+qmJoV7ExsjJAZJFc/zB1pW/w/jNtF8s2HYYsM9uy13KvkTak7ntuG2yxobyBcwrf77XuvkFJmZ4NroV15jS8Xi5pax/K/bqkpHOqriXSeWL3tXlh1Xnni5MNw+LGie4dZwrSfFJxkveV0Vx3p/dB+n8ndz851emPFr2QenL3L5nZByX93oZy/zys6ObdKIO+xZCrT7j7NhXP20yRU+ffilkOTlAEH6aY2dvd/Tclxb1XAMqjm2lpYMqjB8d3JH3HopfXrorx0p9099yhGrukvx8ovrTigrGvFFh6nyJ3kCT9zsy+WyPA1HgGMzN7reJ9zx+iYWbv8fKE6CcqZoa7Wj0u7FTxfpPO+PuPqOb4e0VQah2vPwRQivH6sxRDNeTu11skes0KLrUJIqXeIJ/QglNj58x40mjbSq/fZDjfMopZ056nmAHwEsUY+EtrtOh0WhU366pzzvudLukPZnaVauZrcvc1MuvXz/skfdwib1jd3EfTFPUtzoqZmxvrznRbTEPD8caqleg3Zna2hs9gdtYYrbuJTi/U7QdaiwbSCfUrFMGlsxSzfF6s6imqW3X/VwwlmaIY/vsRSasqcpMtVFKL/QskLdPVW2NpFfa7FdpO/DDR7Kg453mRovfASe5+O2XHVdlBr7utNvk9Gw/NNbMPKSb5+LuGkjW74nOo8kU1TN+g5sOQ2+aebfqeO+fznWBL57vJPa//l8XMvJ08T29WRTLznOBRhkY5a0fgPHFycndu4+immEXtOEXS4ncpMtyP5Otf3mPZNb3+73W/67EdC/8vJWmpGvXYStIfFQGPHym6Os5W7Lh2zCg/W3FhtpMiMfZmafm6kuZUlD1N0tt7LH+rpDMy67+RIvfItYr8Kc8fg23jGEWuja3S7VjF0LTc8nv0umWW/YNiVp3O/bUUvbxG+z2voTgodO5Pk7R6ZtlfS1qy4XqvSn/nFJZdW6P82opk4DcrcijdoTjhySl7juIk6RZFou4fSDo4o9wUxTDJNp/36ZL+krbpb3RuGeUWU8xa+HHF1PH3Sro5c51r5izrU3bLXrca7/eFitwnb+/cRmK7zVjvFjnL+pTdKWdZn7LL9bjVOsYoLj6+lm5vrFFuNUXLYed3nH28KLzGFElL1ywzVdIFY/G9juR7VuTj6vQMk6J1+beZZRdTtNyvJ2mxmnXeJ2dZj+ccJukFg/icm3zWioaLYxU5O44t3L6hmKkvZ52Xpf3HlHTbWekcS32OF4rW8oF8RiP4WT9dMWHD6YqA55aUHV9lB73uFtvWVyV9SnHOuY0iJ9CXM8ua4jz+s+n+DEmbZJa9XdIzGtZ5dvp7naQpnf9rlr2+sGxOZtnNJF2luI56XBEgerBGvRu/5xbf75qSzpX0iKS5adtabQzWe4lidrvO/RdLuqzma3TOfQ6TtMNYfm4T7UbPpXEidX//tKIl7auS3ulpbGhm+aycTe6+WY+Hrc//ve4XfUappd1T7qIaDlOMq75M0SJ7mWJWh6Myyy/iaTiKxVSUl6d6/MGqZz/+gKRTzewdimCWFC0G0yS9saygmX1BMXXwLYr8R/t7zZwQvXogKcYfV/VA2tiHt5Keb5EDJYtHcsRpkmZ4YUrOTA/58NarOzQ8sV4pa5776GRF0KLjqbQsJ0fPI4oZPM7T8F4tlT211KB1pcuxihahr0t6paL1LDfZ5TPc/ftmto9Hy9SFqWdOKY98VLMUQ+KaOlX5M8sVTVO0+C+TbvcqLo5znKIFJxk4WXkJiF/j7p8sLkjDIStb9Fr0DOmUP8+78kD0WtbHkVrwPfda1sv+is+nalkv1yh6otyv2LdPl/Q3M/u7pHd7Rv42Rc+0pxRDryq3S2l4Hg1FYHoVRU/InDwaJyoSej+V1re0mR3h7jlT1MtbJNhPPVoOVswe1plwwj1vyELj95w8mn7TT1rkBPyH4rurWm+TXqZFeygmMyjas8eybrcoeu4sotj/nVTn87beuV4eUORvLB322uSzdvfTJZ1uZi9x98ty69mlycQPKzRcl6T5w1iW9TSzpcVw9T0VOSSfl1F+BUnvlrS6hh+P6wx3+q/iu3lQcVzP7elF2bErO+h1N7WfonHtBknvURybj8ks+y3FcWkrRQ/3hxSNXTnni3cr3m8T86zBRCjJI+k3fG0aav9X5Z8rNu71lNR+z2a2brrO6nmu4hXpDDzy0G1tkQNpSoNrx6b2lXSymQ3LWZtb2CKVwXM01Gv7vWa2jbt/oKTYpEVwafy4TvFDP1Mx3niTYpAk44L4TJXkbFL5bAve5/9e90eKu/vv0v+nmdncGoElafgMS90zppXW2d3nStrUzLbS0JT2Z7n7eWb2JsXBqJ/PKIakrJ9uX0nfU50cHt9WzMbXGarwtrTsXRXlnjKztdz9T5JkMctLnQDk6xRJyxdTXHBsIOkLnpf8b7aZnaVIZO6KHmNXdS4IvDxBZCf30c2F+rriQFxlES/kdvLoLp07M9cZ6dbEByQdLWldM5ur+M5zuzlL0rS0PZlHPrIDzOxqSZ/NKNsJMv41XSjeq7hoynGumX1cDZNUe83hfGZ2tOI39JCkKxSBh6+5+/0ZZUdiWMo2iuHDRdv1WNbLmxW/4TnuvpeZraihPDV9paHCS0ha3mKWqc4+d2lFvoeysi9RBEtXsKEklZ2ypXn1zGw7Sa+RtLINn7VyaUX+txy/VeSIOzu95qskvUkRDPiWhmZW7FeHdym24fOl+bPFfcHdq6YC/oBSHg1JcvfbLJKf5ni+R+623RW9EfdTNApkBZeSpkOCvyrpdV4zsWvS5j1Lsc+drhiie7XiPeQEQQ6T9MpOY0AKkp+p+Oz6MrPdFD0V1rCYqbJjacXw81LufoykY8xsHUUw/Xozu0TS99z9gox6v1MxC2Lnua9QvO810jZWNuy8zWd9exrCtrpqBlvShdLr+jx8cZ/l3fu77tcsO5buqhiq/bBF7sgvK3q2XqUIdOU4XTFU8lzVOH9I699KcTG7SSp/hOdPzkHZMSg76HW3lQLqxyt+y67I75l7HbKpu29kZnPSa91fdb5YOA7foUg1caYycxna0Extb1Dz9A29hiG/KbOs3P12M5uaOiMcm977/mVl2rxnSR9VBPIP61UdVaQzsBiq+DnFrGtuZhcrrkNyZ31rxGNWzXXVMGet4n09r7Mtpm30phGu5kKD4NL48U61COR4u5xN65vZg4qLhWnpf6X7ZRd565rZ9T2W5wRapnedYC1SvF92gtWyzvO5+/mKi6Sir6s8uDQS42+b9kCaJekCM7tD8T5XU72png9QnDD8TpLc/doUoMqxuGJc9pbp/j8VvVVep+pcMTuoee6jf5rZ6939DEkyszcoElZXSj21FtNQS072wWQEWlces0h2fJtFXrK5iimuc3zJzJZRTEV+pOLi7iOZZRvnXJIki5lZDtSCSYT7lZ8h6WmKabDnKpLbzsus6zqKXDjTNfwC7SFFy3pZPd8n6f2S1uraBy2l6P6co1HPEEVr6r6K5J1Xayi49KCiJbHMYortYJFU144HFcGuMvcqhgO/XkM9LqX4vHK3j83cff5n6+7nmNmh7v4ei5nJqsxSzNp4nzT/RPFSxQVumTZ5NBa16O25g6Sj3P0Jq8iN10PTHnl/bxhYktq9Z7n7+9O/3zGz3yiGA/Y63nZr2sv0UkWr+fIafuHwkCKfWqXUq2bddPuXotHsoxY9p3atKL6I4uT97+m1VlT0ItxU0RBRFlxq81m3CbYsrjh3686PVxaYWkax3+uZIFbl2+lnJL04XVBupAg2vtndf1mj2kt09/as4VzFtnCxYr//djN7e+fBimAtZcem7KDX3Yq163n5RNoHdQIAK2h4Q3QvnePwX9KtTi7D0xRDrR42s5+7+5sUqSuyuftd6Tx1dcVvv3KynIKmvZ4av2d33zv9fWVmHbv9RLE/7wTQdlc0hm5dVdBaTLRjZh9QzHx8Y7q/rJnt5u65+QhvV5zv3pXur5qWoQeCS+OEux/X77F0opQlXRx+WnFCdpikD1ddUHvzmejuVP9WuyoXdpW9qHC/6gQru85mtmxOL4pikYrH95P0SXd/sOJ5ZRr1QEo9YdbW8Mh7nYDNE+7+gA0fNlh14O2su04Qq9sdip5aTYJL71V0Mz5K8d3crej6W8nMXqE40P85lV3VzPbwkuF4Xb1JisslVbboFO2j6N3yYUWyx60Uw00qufuv0r8PKIbUZfP2yQdrDedz91dbfDgvUPTI+ZikF5rZvxXj2T9XUvZ0M/uV4vdUd9KCExU9MQ5U/CY7HsrtpaWGPUPc/Yi0PX7K3b9Yp9LufmFqqXuR10xS6e7XmdmNkrat28Os4K9m9knFCZ4Uwci/pxPynH3BfRoeqHgoLatyYeodMs1i0ob3K2bKy/FdxW/4OkkXmdlqimBcthRoXiH9/8+q5xcaOmab2U8VFxG1ZvVTu/fcqcew4cRm9vJ++6+uOi/Qy7RqXR49LO+S9JL0Ga/t7udaDPGapooAlZl9XRE0OV/SV9z9yvTQwWaWMwx71U5gKflHWvZvM6tqFGjzWbcJtpygyA2zraKnwu6K4YFl7srpFdXH453AobtfY2a31QwsSdKvzOw17t4kEf871LwRlLJjU3bQ626rUc/L5BuKHE3PNLMvKxpsPlNWoHMctsJkRh1mtlPF+oon07kNtcNfoF0wrVGvp5bvufjczbVgj8+qtALP7jpv+pKZ5Q5PazPRzrvd/ZuFet5vMZw6N7i0lKRbzKxzXNtYcaw9I71ezgiQScPyextiNJnZxe7+0vT/Ce7+tsJjC0yV26N8d86mk7xGzqY+rzld0gfc/ct9Hp/jaSrJ8Srns+t6/l/cvW/+KoucNntL+py7n1izLvsqWoenK3aSd6aHVpf0jtSTqqz8TpJ+4+4PmdlnFPlZvuQZU7an8t+XdJ7iYvxNisDHou7+3oyyX1XswB+V9BvFbBIfcfe+w4jM7EjFScrKiuFHTXIfdV5ryVTmP1XPLZS5WtJbPOWXSq0eJ3nJtLQ2NOXpOoqDR2d4yOskXenudYbGNWJma0j6kBY8aGcdvKzB9OWFsle7+4utMPWv5U/LvYqkLRRBpu0VuaOmZ5S70t03yalfV7mpkm5y93Xrlu3xWqsrv2dIp0zj/Z+ZXebuL2lY9veS/q9G62ax7PIa6pIuRS+vzysCmTO8z6xAhaDrBook0acrfttvUCQi3bNivVMUPTxepTiBPlsxGUGjExAzW8Qzct2lwOfnFCffU9K6n5R0pLv3HbZgMaV1P54THGj7nq3PcOJ++4GKOmc3EFghf5G7r5UaNL7jFbnEzGwvST9z9wVyjVhGviuLnBYzNJQ77E2KnpCzJP2qrKU8fc/vUoPP2sy+pJjdsnawpbMPMLPr3f1FFj3sfu+9c1sOK1N3XansPYqEsh0fLd7Pafwws4cUyZofT7fsPGIVr5v1m6Ts4MoOet2Z67jK3Tcu3DfFuVdp3qS0v91MMYT3/xTb9Xme2fO017VC1fVD8fG61xqF1/iDpO27g2m55zUWPZfW1dAQwuzzgibvufC8ExT57a7V8ONT6Xm9mX1N0pWKxg8pAoCbuPvHM9Z5lbtvXNyHWszOuUFG2RsUjXqdXm1TFecuLygvOb/8lmWPe8uZ+xY2BJfGia4fy7Afd87JiJk9paGcTQsElcp+8Ga2qqT/pxjmcZoiYdkXFD1ETnT3ffqUO8rd+yWtLD5vD+9qaU8XKw+4+/e7lr9TMcvL4VWvm6PXZ5d2Mr02fJP0XHcvHR6SWpO/phg+8G0VWvy9PF/CoYoL7+cphhHdo8gv8XN3vzfjvXROYF+q6A1zqGJWjNI8KYXySygCkMUT8C+6+38zyl7r7huY2RsVgYOPSrrIhw/v6y5T2lOne5vo8xo9cxSVXRgWyl7vXUMzey3rU/YiSa/1NBzOzJZSHPBfXlGuNMdTToDIYojk9xUJLYvbVuMk1e5eNeSqU/5SReDhFEUPhLmSDnL3dfo8/8OKbXpzRa6oSwu3G9y9sjeMRY+HRbVgnqjKoKmZnS7pQ54mLKjLorfHSxX7g4vd/Rc1yh6q6Ol0at0giZl9WxF0PVnD33Nljxgz+6FiH3JGV9ncXnW1FYKuPfnITBXcb90rKoZ2r+Tu25nZ8yW9pPvY0afsRxW/gb3d/c60bE3Ffvs37v71Uaz30yX911MjTzqZfZq7P5JZ/lbFyXCTHp+Nmdm1SvmLCuck84PNJeXaJLjvXES+SRGgliLw+fOq31bbIHMh2PKYYh9WJ2n7le6+STpevF/S3xQXwn17MZjZC9y9Ua6OQf4O0/obN4JSdmzKDnrdbaVj42oa3vPyL4rhelXn2LUDtzaUy3BnDZ8MZWlFvr++DV/puuthxT5jmmISGanePqRRMC09d4FeT5Iqez21ec+F17glPbfuuU9nf9u5Tp2qofOY0s/MzH6taCg62SO31psVk19tl7HeQxTb1XfTovdIutvdP1az/ktreKNvbk/5SYVhceNH2Q8058fbtJu1FHkNLlTkGnq1Iq/HtZLWc/e/9a1URmAp2UcLjkPeXdHK0O2EtP7DM1+7Sq/PbvtWL+g+1yIB3pcVPVo6F9Clw/k6kfnU0jBTcUH+Ckn7m9k8d39+xao7O+PXKpKknmnR6ppb70cUwaVPpxPyp+cElpLOvuK1ih37A1YxK19O8ChDsRV8ccV3l5sDZbaZHaOhJM27K7atHCsqWnU7Hk/LqrxEEeQ9SZGQsmqYZS//dfdvNCgnNUxSXVB3ON/qigDJR9y9zmx6RRukv8WAYWViyGRZSTdZdFUuBlpygnjds3+8x8y29vzZP96jCLI+aWb/VY0TSsW2fJ+Gv8fK4cDJn9Jtiobnbapk0Xvv41qwV1zpZ932otXMtlDkfOsM8ep8VjlDCY5TDNf8dLr/R8UJcWVwSTFsYBtPM2spVnqHmb1V0jmK4Z9l9T5e0j7uPi/dX1bSYZ43rOk8RR6JTm/LaWmdm/ctMVyj4cTWLA9QUa38RdYiwX1Rukg5Jd2yecwGeKsNJdetxd1r/Ya6HJ3e82cUwd4lFQ11ZS633jnDKvcfIxE8Shevu0taw92/mBoXn+1DwxjLPL3wf3eLf9WxjrJjU3bQ626rTX7PzqQ8dRp8OrkMd1IcW6To3fp3VeQy9OYpRYoaT5aj5kMIG7/nghsVM67VOu9rub9tM9HOJxXnbO9L93+r/FkIZWZ7K85R/6u45jPVyGc62RBcGj+mp14hUzQ82bUpEkBWuU7SdXWjyMly7n5A+v9si+FXu+f0OsjU64C0iPfIBZVOakf1AOaRQG8HxYXlDZ5mTsphZi9QtHrfq+jK2eSCuum07XPN7LuKGbIOtkjAm5O8T5Jk7ab0/pVF991HJb3PIn9JbmCqMXcfNiNF6i2S+329T3Ew6vTa+73yx1f/UNKVZtbpybKD4iK3yrMU309n5qUzFUPx6rRUH5FaqM/R8GGEOcMfmyap7qzjKkmdLuYf9opE5u7eM0dVHd48MaRUfSFXZiu1mP2jzUmSt8hh1vIC82RFS+cxqpm8WJLS7/4TWjBwURUI/L7ipPXqButd3t1/Zmb7p3U9mVqMcyxaDCx1uPs/LYYwVXlRJ7CUyt1vZrkt44t7YRivu//HovdorkcUiVrrDidukgeo6EKrl7+omOC+uI/KSXA/XzrnOVgxu62pXrC2TZC5Z29UL8nNV3hO5+LkImVeZLTZb9jwWSJ7vXbOUPPidO1fVAQ/v6m86drbNIJSdmzKDnrdrbQ5NqpZg8/Nin3kYhpqpJ+haND4Vb9CI6hNMK3p5A2N37OZ/TLVaylJN6d9bvH4NGq5h7zFRDvpevbb6dbELEkv7HU+gQURXBo/LlTMAtT5vzvZdZVjJK1pkWfmUkWX8styf3xdLY73KabLNWlEuv31OiBNMbMVfXgCz84QiJG0QKAq9Vh4geJz+qKZbeL5iXlPkbRvd0Aqtd6+zruS43U9p/G07cnOip5lh7r7PDN7tmKHl6vxlN7uvp9F3qUHUkvxI4p8K2NtCUmrZD53EcU0ul+Thoal5BR09y+nLrgvS4v2cvc5GeWeUuSk+k0K/u2mmOr18+6ee6G1nqLHxVYa3isupydP0+nLJUlmNlNxgrFUuv+AIh/Y1aUFW0rdu7sDFpVDH73dOPfWs3+k/ebaGl7vyv11m94lLQI8kvSkuzc9uZKkHyt6DW2vCFTvoTgZrvJAVVf9Eg9bzErXCQJupsgRlaMs/0ROboopVpgUwsyWU/5508NmtlEnKGxmL1YE53OdoaGcb3U8x913MrM3eCQyP1ERWM/1SUX+ohsUF2tnqaSF192PUATEP+TuRzaob8dXFcfQJrPztQkyF4+hiyuGBF6tvP3tWCvuhz+vyCdWV+3p2gvaNIJSdmzKDnrdrViDGcHMbAt3v0TSCjV643d8VdHjcDUfSoOwtCLtxKGK3tyjpmUwrWmvpzbv+QxFL/7uY8rLVLMXU13pnPpNSj2vbWiinZw0GXVnQu72Jw0Ne0QFci4tRFKr6CYayoGysSIHwCU+NK1xr3J/1lA3v265QxfK6jXHF8x79HZFj5KPaai188WKQMdRXjGkKr3XJzq9n8xsHcUY4ruKO1QzW647OGYx49L6KUiyhCIBZ2XC4lT2aZ5yYKRgxbaKAMKr0uv0zW1jMZ308orupJcqLvpvzO1tlrq83uPuj5nZKxRJtX9YbFmvKH+TYgjSiYrP+EIzu85L8iaNJDNbwjPzjRTKFPNjTZW0gqQv5ARqzOxySVt3eg9YJAU/x91zh6U0kg6Ar1VsF6srDsY/cPe5meVvVwQCayds7nqd1VU/SfX1iiT+v0/3XyrpW56Rp6opM/uOImj4SsVF7JsVOQfemVF2M0lHKnIQLaY0fj+nt4OZXajYR16p2MY2UXQVf0CqboEzs3cpTsJWUQwj3kwR0K+8KDWzkxW9S96iQu8S75PfrqvsOYoAz8dVCPB4xoxXZnaAojfbLzS8tTGrAcGGEr7Pz11mXTkj+pQ7SPHdnKqavfEsplw/UtILFfvOFRTTr1du1zaUE2OBhxQ9i0p7L6Xj1Kc0lGR6J0lfdvcTMta9sWJWvnvT+p4laZcxCNTWzgNUKFs7f5GZbeXu5xcuQocpucDpfp1L3H2L6mf2Lb+ihnrfXOnu/2j4OqtKOtxjWvFxq9d5VWa5KxTnh1elINMKiuNi5WtZi6TxlB2bsoNed1vpuDxL0nd9KOfbje7+wpIyneNS7ZxQZnabIteqdy2fKukP7r52/XdRa/1rqOEELhXflfdrrGrzni1m+N3f3W/oWr6eYpbQnjOIm9kanvIeNpWuoR5QVw9o7xrh0KfsxRqaCfl1SjMhu3vPvK49ym+oaHi9Qg0nJppMCC6NExYzLa3u7hen+x9VRJalSKqd3aJu0WVwM0VizLcrfkCtx4Vaw0SU1ifxt0VSuf0UFw2uGJJyUE4Ldzpxfqe732Zmz1FcIP5YEZW+0t33LynbnTC97oxyWyouCl+T1ruFpDVzAidmw6Zt31zx3iunbU9lr1Xkalpd0Zp8uqQXuPtrMuv9YUWr9HWK4McMST9y95eVFmzJYrrSYyQt6e4zzGx9RdLBvgHPQtnVCneflPR3z5ytxHrMItFr2UiySLb8QsX38xN3v7HBa5ymSEDc9OLoRVrwRCX3Aq9XIHhUk3jaUKL6zt8lJf06Z7s0s9mSdlVc/M9U7O+eW/b7L5RtNftHCnxuLOlyj2T36ypOrnpeZHeVneM1Z5kqlG0U4EnP63Vyl92AYGaXu/tmZna2YtrneyWd4u5rVZS7oM96s3qHWOT9WUcRpLnVewypHi0WCcQ79Tzf3W+uUXZRRb2lmvVu2tKagp4/V/SAPE4pD5C7f7esXKF8rST5Fr0yP9fnQqfvBU6P1zlCEYA7TcNP3nOS3O+saJj6nWIbeZmkWe5eK39Tei1TBNiqciAOVNP9skXP5V0Us80erzRdu5f0ugbGijWYESw1JF6vSF/wk+7HywIAZvZHd39u3cdGirWYwKXFOhu/57JzDSuZ+KFw3pI9yUOP1ygNMlaUbTwTcnrulZIu1oLf00jkll3oMCxu/DhEERzpeI8icdkSiu7Pu5cVNrO3KIIVGyhOzK5SRFhf6iVJuWs6QXFC0lnn4e6+b/p/H4/u8Z3HjvM0PXWvwFJa/mtVJJ4zs/3d/cAeDy3r7rel//dQ5LX5kEX37qsllV1crmvRQ0OKE9G10v3O+Oy+vTQspgL+i6Lb7sfd/SEzuzMnsCTNT1p6o5nNU0TgH1AMMdlE1V3c/+eRb2RHxVTaR1rq2p657m8oLgg77+Uvit4io+3rih5eZ6R6XGd98lwU6rZc+rd7WOfSZpbb06LtsJQm3qroKbGPpA/bUPqwOvlDpkv6g5ldpZpj2c3sB4oebTcpM9F8lwst8nqdlMrtohjWt1GqQ07ep7o638kjZraSYljus3MLu/vtZjbVY0jisek3URlcGoGTt/+6+3/NTBY9Gv9g0YMyRyfIMM/MXqjoXfLMmmX/ajGc8F5Jy5U8fz53XyNzHf18ycyWUfQ4PVKRO27fjPXW3s9Yn54wkp6b9gG523Rbyyl6wx1rZitUtcBa/548det9rIZaWl+p1NJaVch75AGySHKbq1b+ohRYmqIICP+s13MyLa0YdvCq4ssrb9/1aUkbdwLyFr1xzlVGcnAzO1JDvWOnKM6hsvZzFmkIfqBoAMwd3j5Q7v7jVO/OdO07eP507aU59rxkxkrKjk3ZQa97BPzLopd+Zxj0m1U93Gp7xeQJ22r40NEcN5vZ2939h8WFFpM+/KHmazXRZgKXptq85+klj00reWyKRS6/5/baxjK3q0vNbD3v6jWV6bF0nLrNzD6omAl5yYoyRYv6COQYnSwILo0f67h7MZHaI566+plZTr6E70q6VZGs9SJ3/2PF85voHjZXDBDsIemIwv2RGkazk6L1tluxy91WSnmDPBKCVyUif16L+pyiaB3ZRdJTqZU3d1hbv2nbf6C8hN5PmNluit4Zna6nOUlpe0qBrtxeQKcqWld+7Q0Svbv73TY8T3tVQt6rFZ+rKXpY3Z/+n64I7uVcJO8r6WQzGzYsJae+Fl2V/+pp/L6ZTVPkAPhzWTl3z06wXqJJHo2OzVq2uHeGSHbXYUPl532q61cWeaIOUVzUuSJnVI5HUkD5WoucYH9VjST3Ld2T6n2apN+a2f0ayt9UpTPL1P9T/ixTHb0CPKUzvJQEPCTl92wrHKMeUApMm9m+Jet9q7v/qN8FS8UJZc/u9Z2iyg+YNmaRWH+movfRsYr97Y8UvVX72VLS+epd/zr1nubu55mZuftdkg5IQYGsbvxdvq7ozZSjdv4ij0kEPqHI/dGItxtuM8WH9/S8T/n7geIMok8qGqouySy7iyLod5VFL8pjFUPMRmVIgMU03p3XXsLMHuw8pPzGCykSCP9ecQ0wrdgIU+FQxRDgXysaPupMvkLZsSk76HW31WtGsNLGdY8kyz8xs1vc/boG6zvVzN6hocDUTEWg5I01X6uJI6z5BC5NtXnPs83s3e4+7BzNosdsWWBvV8W10yKqP8ttJz3GIpL2MrM7NLRtlnYIKNhHw2dCfqXKZ0Lu9muLGeN+qQYpBSYbhsWNE2Z2c/Gi0Aq5gtIOszQgYjFWdn0NBS/WUVxoXaYYcnX+CNSxezhZsdvq/P97PbfFOoe9bmH5jxSt/XMVQ+vWcPdH0sXehT6KeYQsoiSvUOTUeY0iyeE7JZ3lhdmBepT7miLR+qXeYJY5i+EZ71V8nyelAMjO7n5w/XdRe91bK06iN1MMQTrW3W/NLHuKpK8pZg7aVLGTn+nuu2aU/Z6kX7j7Wen+doqW1vdkrrvRsJR0obC5p7xHKYBxiWcMPRokM/u+Yqr07KE744lFvqrF3T0rYbPFsMm/K/ItfUTxW/yW1xhGPBIshtgtI+k33jJX1miwERq61Oe1/+LuM/o89h53/246ee614s83Xe9YsBiKvKGkawrHuvnDESvKdnrTNV33pZJeqmjQOF9xrDvI3XN7xxVf6253z5o1smlg3SKv1r8U+cCKPZ5KT77N7BPu/tWuHkTzeUZOCzM7RNGgdVJatItiJthPVJVN5ReT1BkKUnvYZWoR317Ro/kpRZDpiPF44WFmX5S0pyJBbefzds/LFbe+4rzn1YoLyZMknZcTTKPs2JQd9LpHiqUZwRS9GXd19x9XFJE1SAZeKLuVImWFJN3s7uc1r30+MztQMYHLn1TobZ7zexyBddd+zxa57X6hmBCjGJhaTNIbvWKkjJlt5zUn97Dh6TEWkBpfRpW1TCkw6bg7t3FwUwxhe26P5esqcgjVfb0VJX1QMfvRUyNUx2u67l+n6EL/jML/y6XbdaOxzsLyaYqg0hGK5Nyd5ZtLelvFaz6kmCa5c3uo+Ldm/RZVnFT+WNK/Br0djfZNcQH9Xkl3K3pd7aXoLlpWZvn0+fxdkUz4R5KWy1zfDTnL+pRdQtJnJH0v3V9b0vaZZa/tsWxEtulR/n62VPQquVWRg+AGSdfXKL+ihnqoSZHv5Z2jXOfFFdMHn6roXfERRYApt/xiigvL9SQtNsaf90aKlrAPSdqoRrlnKHodXaM4QTtc0jMyy66paD37V/o9na7I+Taobe7uMVjHaxUz5H22cxuj93Zl+ntN+vv03N+Toofl0UrDjxqse2NFj7ZVFMGKUxU9E5u8j7/UeO7s4u8o/b6uyih3Z4/bHRnlXpf+7tHrVqPeOyoaMb6muMjJLfcKRY/DCxVDCe+U9PIa5V+k6Bl2q2LY+aaKXoXXjsU22mBbuHUk9pOKc60jJd2iuICn7DgrO+h111zX0orh7EdJ2kbRK+WD6fd4euZrXKhIMTGnsOzG0az3CLzv20fi95he6w2K2SDHot6vVJz3fEjSVjXKLZP20bPT7TBJy2SWPSFnGbfB3xgWN358TjE85MsaPnvap5QxFWaK0G9euC2muPg/UtFbZiR0t8gvo7gw6nSbLXbjHKlWjn5dcj8s6RDvahl2985QszLnKYZInapIupyVuFSSLGan+q6ktRQX7u/wGCryq9TCO2qs5VSaFjPjfUzSDHd/d3q97uGYZeWfocgp9DZJcxQBo5cqLgJeUVJ0HXcf1q3ZzLZQ3nZ5r5l9RhGQkqJ79L059VVckF0t6SXp/lxFr6uc9/tPM3u9u5+R6vsGxcX8ePd9xfczLOlgDccpPrdPp/t/VPRE+P5IVK6PHyoCu51pzN+iyO+2U1VBi5xD31G0+pmkNVJvmZxJAbaQdICk1RTdrTtdrHN/T59NdewMczrWzE72jFZSRdLRixTT6kqxXf9UkTeiyomSvqmh7uu7KlqXN82o87CpfDvLPWMq3xI5reHHS9rH08yWaUjgYZ7RY8r6zCbYor51/MwiB9l0M3u3pHekOuRYV9Hw8AFJ37eYZecnnibtqOLuV6V//6MI4pey4TNrDntIETTOtYgXet95DDWvnKreG+bzcvdfpn8v8q5cVhYz7vVlMZnHiu5+icfQzlPT8pea2Vru/qeMKhwm6VWeeuKm3g8nKc6/SqVhivMU+8f9PM0kK+mKtH8Zj25UDC9vNGGEpE5Oqw0VAf176rwWZcem7KDX3cAJivQHl0l6t+IcxBSB4mszX2MJd7/ShqdgyEr9MECtf48Fm0paz8wWcfftRuD1+nL3CyRd0KDoDxTveed0/22Kc87KiVA01MtK0vwRO1kJudtK108fVVw/7V33+mnSGXR0i9vQTTHL1A8VF8RXK2byeGFm2WsUF2e7KTb+OuudUXYbpff6wcznfarP8qMU48K3aLj+ZRQn7GcrWjver4zeNIpI+zaSnqa4sDx7DLePixWt4NcrLogPkPSFGuV/qmj9vzHdX0KZrauKbrA3K1qWnt39mVRtmznL+pRdTtE7bU7axg/P+Z6K9dLwVqys3keK4OHlit4HnV5azxmj73mfnGV9yl7Wct1X9fjMsraRFuu8OWdZn7J/KH4v6Xv7Q42y2ykSaT+jc6tR71tV6GGl6E15a2bZBVpTld8jb4GeMzW2698U9gMf69wyynX39iz2+nwyo/ycnGVl77fwd0nFzHqjtk12rX8bRT6wQyVt0/A1llUc2yt7EStycPW9lZRbrexWo66/VaGXgqI1/LyMcm/vdaux3qslrVy4v2XVb0LRULBej+XrSfplne2ralmfsgv0GFQM0R+TbbPhtjhT0dByds521VX2HWkf8jtFr5Jn1lgvZceg7KDX3WK7vKHw/1RFsCW7B3Mq92vFOUCnp+mblXphj9db+pz/3eT3OBFv6j0qYIFlXY/vr3SuoeHnHvdJOjBjnVMlfaRlvRtfP03GGzmXJhgzO9LdP1Ty+OKSnpPu3u4pb0LFa3ZaPIvhfpe0guLAMrVPudKcSl6SkG4kcjKl9R+l6LL7bQ2fHjJ3tpcpipb/byimEa+ahaM779SoTtPete62U2nOdveZXbmyrvOK/FTpM/qU5/XIKJZ7iaIX3b6KYQMdSytao0rX2/VaT3f3h6ufOazMpYpg3CXuvpHFDCQnufsmNV5jSUnyklxaI63XNtUv91iPst9StIJ1Jx3MSiJsZr9T9Gz5bfrMNpN0sLtvmf8O6rHIn3aUu1+e7m8q6QPu/vaMssOmxbVosrzSM3JjmdkV7l7Z26ek/AWK7Xheuj9d0qmel7vka4reN50EyG+WtIm7fzyj7MGKFt6faGhGv2U1NKlB3zwv1mIq3zYsplt+hacZtSxmg7zQ+0xb3FX2Cnff1GK66R0VJ5Q3uftzKoq2ZmYHu/snq5aVlN9S8f28WtEw8VN3L02sbWb/VAS0T1IMlx/WDO+jOEV1Wv9ail6pKyu2r3sUQaLSPGYpZ1LH4op97zXu/ubM9W4s6VuKROgbKXrpbu/ud5eUaTQtdtfzfqA4dyj2jp3qeb3qeu2rs4/Jg2BmNyl6X9ee+txispQbNTRxwbALCC+Z0ZSyY1N20OtuaiTOrc1sTcVQ5M0Vx8g7Je3uY5CTp6l0jFhA5u+x1WiEQTCzyyTN8tSDN/XwPNTdX1JeMvJTuXvlTMB9yl5Z59y/R/lG10+TFcPiJp6eXa3NbBFJX1G0OtylOCFd1SKB66e9JEFl9wmYma0u6ZOKIRpfKanLbMVBqDNcqDs4NaoJ6dz9GoupLX+uaK3oHAQr121mmyt6eb1M0SPoje6eMyvfdBs+49Kw+7kX8Q21nUrzcYuhey7Nv4h4rLzI/JmA3iSpVnBJMTRzSS04O8SDiovpSul7Oia9zgyLZJPvcff3ZxT/nKIFblUz+7Hit7Nnxfp6zm7V6WZdFXxsw2ImwLcohnadUXhoKUXLVo5piu+0yXTeUnT7PUPSWmZ2iSLAnPVdtfBixRSzneGpMyTd2gl6e3ny5NlmdpYiSOOK3oRXdX6TvX6PhaD4BRaJgE9Vs1laHlBM2f7btO5tJF1pZt9Ir1OWiPjdiqBr54J2iqSHzew9qp71qdOdvDup/a6pHmXD+tpM5dvGYZIuM7OTFceJN0v6cmbZNrMJtrWN4lhYtF2PZQswsz8relz+THEynRscf1Zab2d/cKYiKH5TZvlWPIaSbVY3sN7d6JW+s5/UWO9VFjOqniPpv5K2dvd/VhSbXvJY7jD19ymGLnZ+r79XBLn6MrN1FUM0luk6H1hahSHr49Qj3nzq81e2WC9lx6bsoNfd1Po2fPbDael+9kyI7n6HpK2tKxm48mdxHXPufqFFkuxOkPxKHz7zZZlj1Tz1w6C8V9IPLWa8lSIIuEdOwaaBpeQSMztKC044kXu+1+j6abKi59IE0y+ab2ZfV1yEfsTdH0rLllZ05X/U3ffJeO21FeOcN1VcDBxfFpSymIL6zYqLrJ8oZvXKOhE1sycVO/4FHlLGgcTMnpnquKak93uN6UfTSf+8VOfz1TUmu6LH1bElL+05rZ1NpZbdWxQn1F9UnMge0unxkVH+VYrv9/mKE/gtJO3lMXa6quyhirHwp3rNnYaZrebud5nZEu7e6zsvK3uFYhs7o9BakN37wiJP1GaK7epyjylry54/sNmtLGbEWEPRYr9f4aGHFMM0Ri13QNq27nb3v6VA9XsUPZhuViRPHrVZj6zFTCBNfo+px1FZmayguJmVnhC5+/E5rzOWzOxmRc/WO1V/Kt+2636+hoL+53uDGQ2t5myCTZnZ+xRDpddU5PPqWErRE/KtFeWnKhp12uSy6rzf3RSBtc+7+1FtXi9znSsqGpVWcvft0vf2EnevlXfNYqbOG71idjsz+6WG9454vmKm2/ulyl4WJym2pV7TYm/j7rtk1PPpkv7rKX9j+u6eVnasssjBt4Ok1yuC8R0PKfJqVeV9HBiLXpOPKeo9KlOfm9nP3f1N1c+k7KDKDnrdIyld63xA0dvydEnnpvsfU5w7vWGA1StlZjsr9u+/UxyPX6ZojDglo+yE7U2TvjO5+4NVzx2h9fU676tzvreNYoKg4vXTnu7+uxGr5EKE4NIEUxJcuk0x25x3LZ+qyEGydslrvlARdHiBpK8qWkmzp1BOXVF3VeRmuEsxvOzaijLzd4ZNWEwLeaBiJrDu97yxDyVD7VX2d+qfhDZ7Z1NRvz3G6cVlrWBLodxDipmSnlS0Kme3JlkMj/u+pCXdvVbvIxsaElP74GnR3fZad3/YzN6qGGpxRFmwYrxo0ZLVdH3XKHoK/NvMXq4IvH5I0gaSnueZQ1ta1uGZGp6oPjvRfsP1rZlaOkuXjeL6l1XMYFh8zxdlln2hFkzs/8OMcj0DeaP1mzCzpd39QYthcL3WWzaEb37AM91/uyLgeZekA0Y54LmMYqjhAoHe3PVai274Kaj0WkVgaXVFIOAH7j63yevVXPevlZL6u/v6Kdg8xyuGmHUFiaYots+fuft+/Uv1HxbS4SXDQ6zltNjpNS5X7Pv+k+4vKekcd988o+xL3P2yqueNJ20vsjLX0fj8jrJjU3bQ6x5JZna6hpKB/58ij6IpclVeO8CqVbIYMr5N5xzPIpH6uZnnuK1TPyBf0+unyYhhcRNPv9nTvDvIkhY+ZWZVEcTrFDkezlRM47mJFWZb8PLhHXL3O9LOfZoi8/9zFcm2R9MmXugyn1pXd0u3eYoTzJ7c/RWjXDcpZvgbV8ElMzvP3f9P8T13Lyvl7ktVPafE4ZK2VWrhdffrUgAjx90WQ+M8tYTvo+i9lePbiq7W6yuGe31fkVS3Mn+Qma2hCK6sruGzao1KvoGude+k6HH4O8Xv/Ugzy2rJamFq4aJ5F0lHe+SG+bmZXTuK65WZvV7RC3ElRRLP1RTf8QvKyqWyi0t6Z3puMdCS04PwFEXAsehkZc4+Yi1mb0w9K/ZRTDN/reKE5TJlDCVOvepekdZ7lmKY1sWKbbtUJ4jUHcgbRScqZky7WsMD+qbqIXzfVZo9L+0vDtJQwPPo/9/efYdJVlXrH/++M0hOiooBEUliQLIiYACvWUFRRIRrwoyCqKioVzH8zAkxo6AoFwUVDCASBFSQnIZ4QVHMKAqiKAi8vz/2runqngqnuru6anrez/PU012netfZnarOWWfttRjick2XzKibKe8n0zWtNHxJR1Cae5xAyVa6rMnO1LtbnN08O+2eto+WdGCd7x2Smlxs+mjb53cAv7b9236D2oNHgwbVbf8J2E7SjpSfGcDxtn/cYL4tK7ot49r2P1RqmXSlUl+qtTxiib+RfsdMo1IvNn7P9if6fvHMzOSqdcbOzdhR73s2re+JOqRfomQ+rusGNWfHwIIpr3M3UoLzTQxc+mFpV1/D1mbycXnfC5Eq3X2X4AGyi23fSNv5U3SX4NJSQKWtZGtJzMFdvuwKSS+cevW6Zmxc1WcX01rKNSVj6TeUbIf32/5Xg+HHTGefLbb/rFIbqhVQ+g/lpHRr27/qNVbSm21/uH6+m+1j2h57v+23zWRuraeaheeYFfUEfGXgnjVbojW31SlpxE2fZ9qZFrZ/o8ntYZtmxr2K8jd/f8p68pMo6c5N3GHbdQnDZ2x/WdLeDcceRwlGfZ+2oqdz5B3ANlOvZFGCIcOysO115gnAK9oeG/b7xHspwZVTbG9RTxR7Ljtq8zXK69uTgfdQivH2DD5q9uqlHE45uPsEsCOl+2TTg8L9KCfRZ9vesc6pV327ds8FNqNkk7yknpB/vc8YYGaBvOmw/Yz6cTpt6kcW8Jwlm9eP7QevTWoR7kUJRu0H7Nv2utkvW/QZ05vmEv5Zr9C2gifbUgJt/VwP/KF1QidpJUnr9Xs/btGSy0MaB9U9/bbYUL7fLVtBP0lbAf2OYc6f5r5Gql5s3IPJDTYilnaLy3fUv/HfLiWBJYATJf2I0sABynvdD5sMtH1yzTpvZdPsN5+zaSS9jnLM9ScmjssNNLlw0l7zcEXK+2XTC9UxoASXxoSkn9neoX7+Ndv/3fbwudQr7La/0uUp9gG+I+mlTE4PXwl4dp/dX0JpZT3olYhrgUspa5z/TinE+2o1K358H9XCt530u/Kn0nFgdUpA6zm2r5F0XcMD2edTlv9BaXHZHuh6CjAbwaVxuqrzSkrx4PtR/jZaZyt/p3Tb62smmRbMIPuovlHu2eRrO7ilXn3fC3isSjH0uzUc+29Pv+jpTA18JUtTCpBP1ed/EcqBzRmS/kI5sfppfd4NaXZiORP/sX2jpAWSFtg+TdInG47d0PZuknax/VVJ/0udew8PphxYrEnpTNVyC6XQdlMr2T5VkmpG0EGSLgA6XiGb4t+2/y0JSSvYvkpSz9o0bf7lUmT/DpW6BTcAD2g4diaBvIFpBh1FGW3Ac8ZsT6swru2mAcqp42ZraeN0i/ofQ+nS1HJn3da3c2P1duY+qA7lvfEYSb+nvDfeh3KC15XHcMn7AGZa2LaJmVxcy9i5GTvqfc+mGRcDHxXbB9SLXDvUTV+0fWyTsZoo/XB8TSR4m6SxLv1QL3a/hvL9mpJ1/bmGwcD9KN3wbhx0v7Y/NmUeHwV+NOjzRDNjf4C2DFml7fOpV5H7voi71GJ4lKSd2safYPvUSU8k3d21HXSbLwHr1xOjs4AzgZ+7Fgbv4T1MBFEG6VoGJSPlMkonndZB3SD+RMlmWZty8HsNzQM66vJ5p/vTNWtvvO0p+J00WLZ4MHCwpNfZPqTX1/Ywk0yLmWQfzcTulG5Le7sUql6X2q69gYPr8qOTGFLR0x46Xck6oc+YmSxbxPb/k3QqcF9KvZH22imv6z5yVtykUufkJ8CRkm5g8lWmXlpXLG9SqUP0R0q9ha5sfxf4rmZeL2Um3Rt/q9JN6zjgZEl/o3lHm/Pr2EMpweJ/UAK9TcwkkDcdrQO6FSkXOy6hvDY+gpL90av98CgDnjOmWSqMPcD+bqH3srh+TTJaNa4uVKmD1CrqfxLQd3kbsJzt21t3bN8uafnG38DMlodMm0uXuk0oQWeAq92jkUm7GgB7C0sujR1qp9wZ2rx+HDSjbhB9uylm7MjHjnrfs8b2wlHPYbpUSjCc4NrZdsCMz2mXfhihIygX8lrnIi+gZKDv1mDsb5i99/6VKRfLG5O0A7CR7cPra/+qtq+bpfnMKynoPSbUVqhbU4p2T70/W/uZsn1lSr2l7eptG8qJ2plu1vZ90HmsRXkx2Z1Sn+GbwLds3zTAc6wB7EpZFrcRJRPhybbP7TNu6D9rSZ+2/dqZPk99rlnrSqXpFwI+z/Y2dTnKo2zfJuly20NZTjNqkj5AqR/2C9rSb+fqpEHScyjr5wF+2vRK1tJIpVvTvygnknsCawBHNrk6VTPqvg1sCnyFEtz5H9tf6DHmzbY/3C1o2y9Y2/Y8M+re2PY8j6N8zye2n5w3HLsesLrtSxt+/SmULlcfBNaiZD1t4wbFi2dC0neAd9leVO8/nFKUu2dGjMqSrFbA859128aUg7qhBXpnGqipzzGtwtijohkW9Zd0MnCI7e/V+7sA+7pBTb/69R+hBB3bg+qX2h7qSaykfSivNzfV+3cH9rD92QZjT6Icu7yJchHlRcCfhz3nUZHU7XWmb12vjJ2bsaPedwxG0vnAdq33/hqQP9N234zP1vmKSj2h37mUfpi188VhkHSF7Yf22zbl8VZm/sMoFwGOZ/JF336Z+VNrEi6kJCW8xw07sNaLzVtTMqc2lnQ/4Bjb2/cZukxKcGlMSPolpW3mAkp2xZtaDwEftr3BLO3nIvfo8FBP9LalnNi+kHI1sWvRVUlPpSwta70wXA58yHa/TIv251iHslTtDcBbbH+t6di257g35WD0+ZRCfl2XiagUJ/0nNX0WaLUcFqW4Z9elUyodi7pqEqgZFXUpBNzvpKGOPZZSU+b1lCucfwPuZvtpPcbMKOOqZoU81/bR/eY32yRdCzx00JP9UZmtgMmyQNIzbX+/W9B2kGDt0mYmgbwZ7neJQPR8Dk7DpID84vdcSRfb3nxI+5t2Z746fnEXTkmfoQRJDqr3+85bpVPRkZQMVVOynV5o+9oBvof25SFzElTv9L31O05q+7oLbG8l6dLWSXfr9z6k6c4KSU9nySYIfQvb1otLphTq/z5TalO5x3KcjJ2bsaPedwymy+tP047IZ1AKer8EeCzlYtEl43oBA0DS14FPty7CSXoUsI/trudW9dylK9vvbrDf9k65dwB/8kQt477q/8UWwIVt7+eLX/djsiyLGx9nADu3fd5eC6RR0eSGljjxlPQCSrbS5pRo8HnAOcAO7tHKV9LLKanzb2aiwOXWwAclrWP7i/0mo1KTYw/giZQidhf0HtHxOe5FuaJyCKUIaMd22y1umEKrzksIux007kw5qB5acEkzT8GfdiFg2626XQeptDJeg/Km1suMip661JV5M2Xp5Fy7jJKR0rNb0TDUE6wPMdFOt0m2RKuG1VJZaHaObSDpkZSgSuODi/nA9j/r6+NGLjWqVqZcxRu2S1W6+LReb/ak1OsbS90CNC39AjXVdAtjT9fUznztS7P7deaDGda4sv0LYFuVJa64rQPbAM6kLHU1pdbkXFgoSa5XWlW6ETVdztdaPveHGrD5PdDzb2fUJH2esiRkR0pJhOfS8Gdte3OVJYR7UP7erqgfT+r3WpqxczN21PuOgf1Z0s6enPHZtCj3TEo/jMpWwFmSWh3e1gWubmUWdQrWNAke9WP71yrLBx9TN/2EwY5Bbrdt1e7r9UJddGM7t2XoRom6Tt12C+Wk9GXAxgM81xXAPTpsXwu4ss/Y91AOgr9OOSBebsDvQ8BBlBfhv9Xbn4F3DvNn1WEOewGLKKnxjxjy7+4kStv1Kylrqg+jZIk1HX9u/XgBZQmPgKv6jLlHr9uA818dWG3AMR+kZPE9YJD9Uk6Yj5zBz/p04K+Ugn/fa92G+ftt2/e1lGUo0xm75VzMcWm+UVqmn1V/v2dQ6uI8Y9C/56XxRilYfh7wi3p/I+DUOdjvisD+wLH1tj8lS3TkP5Mu870O+GX9OPX2y4bPsSUlWHJz/fh/w36P6DEXNfiat9d5fhe4qDUG2JCyTKPf+LUpNT9+WO8/lHLS03SOz6PUHfsq5SLNdZTM1WH/bD5CuYDxhHo7Gvhow7HPoFxoeTilW90FwM6j+B0P8P1eOuXjqpQssek81+6UY7ADMnY8x45637n1/fluAJxN6bZ5fT022XDU8xri9/vAXrc+Y79P2/F4vX2NUhO25/FE/ZrLKOee76Gct71ugHm/CfgC5bjg5ZQ6l43HL2u3LIsbIyrdgl4BbFI3XUnpHPB/s7iPizwl3bteqduMiXpLDwb+QPnn+bntH3d5rittP2TQx+rjd1EOHltL0lp/iALucp+U0LoG96nAK1wLqklan1Lg7kTbn+g1voluqfEqtTNeTHmxORv4gO2rZ7q/BvOZUQq+pM9SOuE9n7IE8x+UThMv6THmOiaugq9LCeKJktVzvRu0GJe0NaX2yGp17E3AS233zVKr+5/K7rFUs23sz4CdPI2lbSp1cDrt+IxBn2sa+z7T01zHXbPK7kPpsPRN25fN6uRmkaQvUrIVT3H/5gHD2P/ylEzL7SiFpR8N3OQea//HRc34bHVbOdMN6w/V1O5HAud4IrV7kecgjV7SSpQly0N/rRwX9b3iwZTXvcaFome4z/fYfmfb/QXA12z37bqpGdS40gxrTEm6BHiip3SL63csMFP15/MKSmAJytXs+9iei6YTc07SObYfJelsSs3KG4HLbW/YcPz9KccQz6YcDxwNHOsGmWoZOzdjR73vGNx0Mj41uTbg8pRuyP+wvcbsz3B21OyqJdi+vtP2KWMPptRKaq/L93fKz2B1T+6yPnXspZSGGq33tVUo57eNl7VJeiLwJMr7+Y9sn9x07LImy+LGhKRHA98BvlhvoqzvPF3Srh68SOz9mVju8HtPpLMuUVzT9p3AhfX26bpcajdKfZ330H3ZxN8lbWb7kin73oySDdVLp6CEKBkqB/YZC6XY8hNdWtW3vo9fqrTjPAmYcXCJzksI96FEwE8FnuJmHR1my4xS8D1RmP3zkk6kQSHgVvBI0qGUg4sT6v2nUgoDN3EY8BrbrW5PO1BOQvq+qDcJXvXwS0rb5e8xueVy3+J/ts9oWz50yhwuH4LSDeyblE5i7UULv9NvoEsnv/tQsgC+oNKq/pu23zesyc7AlykB4jdIup3yf3vi1NeTTurSwa6a/Kwo9dZWp2QerEH5f1rUYFxrDhtTgtlr2364pEdQsha6/qw1O4Wi30l5fW59j4dLOqbh7/g2ly5eredarst8ZpWknSkZIssDD5K0OaWY5s49B46IpE1sX1WDeEtoEsyTtBvl7/lySe8AtpT0vqaBwBl4gKQDbX9A0gqUE8OLmgzsdJwxwMWte9o+WtKBddwdKvUNmxpVt7i7JJ1DySB4HnBPSpOAvqbzGjAGfqDSbfIjlGM+UzpP9qVS42U1yt/USyi/I4DlJd3DPZaLZuzcjB31vmMwkt5Pqat7U71/d+CNtt/Rb6ztxV2CVd7Ud6HUzB1nxzNxwXpFyrng1SzZJb2T7aZcTP++JmobXt5nrID296M7mbx0vK8aTEpAqYFkLo2JetXvQ7ZPn7L9ccBbbT+1z/gDKQWW31PvX0/JEFke+KrtD/QY+wgmspa2q2POomQunWm7Yx2XGiQ4khIoaGWhbE3pmLKX7Z/1mnPb82xBWTe8GyWb6dvuU8Ff0mW2Hz7oY4NQh64LKhlXN1CW4LX/8wy9k4akZ1DacT+A0sZzdeDdrmu1G4w/1VM693Ta1mXsEtkNTTMe1DlbrlFHixrUeQMl4+EVkjaidGv4QYOx7+q03c2K/72ccjX7HrY3qPv9fJOf1UxJOrzDZtt+6YDPsymlHtrutgdpCT7nVGrTPIkSbNqUcjJ8orsUc2/7Gd2b8prVyq7cETjL9jN67OuLlAOZWyi15c4GzvaS9dX6zfkM4ADgC57IApqV154++70a2Mz2v+v9lSgZiA/uPRIkfZjyvvBCSiew1wBX2H778GZcsi4pjQBO9xxnTE2HpC/W15vTOjxsN6hzp5phWt8n30tZjvlO24+a7flO2a8o78uLKP8PJ9j+5DD3Wfd7OvAc4GSXDkbbUo5pOmaBdhjfqVvcIttvHtJ8N6bUldmDsuznm8CbbD9wgOcYyWvAbKnBxxVtN6oFJulXTBz3dDr+6dX8JWPnYOyo9x2DmcnxcdPnG2f1As5rbL+swddeSekIfn29vy4lg+gh/b5vldUuL6Isy4dycfwrTd8bNb1aqMusZC6Njw2mBpZgcQZF38LYlMDMY9ru32h7C5Ulb2cAXYNLlBbeZ1KWqLzDDdIT69x+plIYdx/KMjEodZi2dY9C4ND1wE62d2yyb6DXUqfZ6vDVKao9k0yaGWkLqNxMOWloRNKKlAKe96xXRVrf1+qUIuRN/L5efW8vyPv7hmPPkPQFykmDKScNp7eyAvpcyW8FLlut0n8HHAP0DS61gkiSVrZ9a7+vn2If6vKh+lzXqHQkHDr3WKbYj6SHUH6+z6FccfwmZQnkWHPpVnZUvSFpK+ApPb7+JfXrTqJ09ftDvX9fyutZL+sCKwDXUP6efksJuAxqZdvntrKAqoEKnta/qfbi/E1ee39fx/y73l+B8n008VZK3bZFlGYMJ1CK+g7bf2zfPOVnNbZXtmy3ilk/wfZd7Y/V19MmWldJnw4cavt4SUPLaJmSZXUwpT7EmcBPJG3Z53V2NryBUgNjA0lnUpYv9O1E2mL7AE3uFvdFD7db3FWUizXPcO1oJ2n/AZ9jxq8Bc63+/b6GiWW1P5P0uVawuhfb6013vxk7N2NHve8Y2EJJK9i+DRZfLFqhyUBNzuBeQLm43/f/eJzYvlClY1wTb6S8Xv2Cch7zIOA1KkvcvtpnPx+vF0Ba7y8vsd0oo7f6MPBM21f2/cpIcGmM9FpG9s8ejy3mupa0Orhuu7O+WPUatyUsPujYUNLDgWv7HWyo1ERYy231Her2h0q60/afewyf6YHdZpL+3mlatJ2sdZn3ypSTnf/U+w8Gngb82pOX03TKUnk2JavrQs9R5wzNvM38KylLHO9HCdS0joT/DvTMEGuzB/AuJqL+P6nbmmjVzJiaSbQF5fvplQWwge3dJe0BYPtWTTmS70ZlqemXKQVL11VZrvlKTywP7GUky4dmwWGUgNKTbTcN/o0dl3pcTTpHPqAVWKr+RAke9Xrup9S/oYdRgpZvBB4u6a+UNfgdM946+ItK+3UDSHoupVZdXyrLxD5G+Z+8gVLM8kqapYbfDFwu6eS67ycC50r6VP3+ur4e1EDJoTRcBjOLLlfpSrqwZgHuS3kdHXdfAhZnDNaD2O/R+b1hqt/VoPoTgQ/VLJFhLvP62JT7f6MU1f4Y/V9nZ6yeJDyOAWtMSdqQsqzszPr++526fQdJG7h0oRuGXSl1ZU5TWSb+DQZcJsEMXgNG6AjK8eYh9f4LKEVxd5vOk9Xv/wXA8203ef3K2DkeO+p9R09HAqe2ZWO/hD6BkjbtXcXvAH5FWRo3tmoGUcsCSuOLRseqtk+oxw+tusRXt52nfrLPfj8GHGb7U4PNeLE/JbDUXIJL4+MBrZODKUSz7JJVJd2tdTBn+yuwOO25Z9pePXF+P+Ug+td1nw+oL3Zv73GAeAjw2Q7b1wLeQXkz6mZGB3a2Z1L/5kTK1ftr6oHtzykv8M+QtI3tVs2ITmvL16G8iG2i0jrzTMpJ0lldvn42zKjNvO2DgYMlvc72IX0HdH6Ov1JqTU1nbOMsqw5ur8HR1sH7BrTVIerjk8CTKSeD2L5E0mMbjj1D0tuAlVSK+L2G0qlirNl+9KjnMMdOlfQjJi+lOaXfINsGLpN0EyVYczOl89MjWTII2s0+lPp4m0j6HWVJ714Nx76XUhvhlJphuuMAY49lIsgLpbNhT/W1qmtw1ENczlu9jtKN7DbK7+pHlJ/BuPudpM/afk3N+jye5oG551Gy7z5q+6aaVXfAsCY6w9fZaZO0DfAb2390qbO0FSVz8teSDmrwvvhJOtdZvLk+9swOj82Y7eOA42rAcBfKBZh7S/ocpb7gSQ2eptNrQN/C6SP2cE9uWnCapCsGeQJJ92OiDfqmlMz452fs+Iwd9b6jGdsfUik23bpg8V7bP2o4dtpZ7iO0Wtvnd1DeU5vWuHvhlE2bScL2EQ2GXwl8sZ7vHg4c5QbLgduyw6ZdC3VZlJpLY0LSi3o9brtnJFulKNx9gNe2lgDVg6ZPA39sBUy6jP0E5R9+f9euTSqFgD8K/Mt2x6CCpPNtb93lsUZ1B9oO7PagXFk9guYHdtOitlofkt5Lqauzj0r3qAvcrI7QUtNpqv3gv95/IfXgH2hy8N9axvgmYD3agtJuVntkTUqNl6lj+2VcUQM776BcgT8J2B54sTssIe0wttUV5yJP1MO4xA26D6l0ENqbts4QwJc8xBfMmml19nT2Ielo28/rEEQYei2wUZP0bKAVNPxJv6U0kvZlor7cf6jB4XpbNHUZVIP9r0IpRty4413rtVOlQ9YWLkWFG/1t1vHLAxvXu30zRFSK03dl+9eNJr4MUqlTtTqwFfBB240OhEdF0n6Ug+dbKIGwLSl1G4fynirpQuC/bP+1Bu+/QQkmbg48xHbPpXHq0fFUc1yXqwYQd6PUqWtcX6/1GkDpfvt820cOaYozJunrwKddi7erLEnZx/bUE7dOY19BOVa7P6Xg89HAd92sa2zGzsHYUe875o6kdSgX+VvdhX8K7Gf7t6ObVTOaXne89ovjK1ICchf2e4+Z8hwPpmSH7UFJDjjUdqfaiq2v71QDtcUesBbqMsN2bmN2oyzjWXXAMQuBD1LqF11A6QLyZ0oBsuX6jL2GGmjs8JzX9Bh39XQe6zHm7pQiyqcO+ed7advnZwLPart/ScPnWINyVfq9lEyJ84HDhzzvk4E1p/y8ftRg3IWUABqUk/DfU4JL7wW+1XDflwCvpmR2bNW6NRx7FvBxygv6i1q3Ab7vtSh1S55B6UjUdNy3KAGECyktWt8EfGOYv6MZ/n4/V+f6DUoNs/sMMPa+9eMDO91G/b31mfvKwP9Q3uQBNqIsl206/oGUk9vWc63W5+s/Xv/+7zvDeb+/w//j+xqOPaW+zn+akslzMCX7scnYx1MCw2dQlqdeBzy2z5gNge07bN+esvR0WL/b7/W6jfpvr8e8d227PQe4mJKhsiuw66jn12ful9SPT6ZkuD2McgA+1P3Vzz9DuWDRun9xg/G9jjGuHfXPs8u8VqdkW32asuxRwGvr/+J3Rz2/LnNeBFxKuYJ/F2UJzXX18ysaPsft9XVn67Ztv8zY8Rk76n3nNtiNksF8HvCP+rO/E/h7w7EnU46rl6u3F1MaKoz8++ox54dTGrb8ut4uoGRTTue51qQ0fmn69QspyQzH1f2+hbIioe95AV2On0b98xzXW5bFjRFJr6YcsKxS7/+D0m2l09KzSWzfCbxV0rspJxJQDsz+JWltSi2SHsO9RLaES72mXlkU10p6mmt7+rbv46mUNvADcenW9MV6G6ZLJX2UUgR3Q0pGTCvDpict2WnqLODjHrDT1DTdy7VdKZSfl5oVmV7oieyk3SmFUr8NfFvSxQ33fYftzw002wkr2n5D/y/rPp5SP2Q54KE1DfYnDca9inLSfn/K7/okyjKGrka5fMj2q+scNqF0TfuKpDWA0yhLOc+s/+edrCJpe9tntm+UtD3Qs7j+GDic8kbfWtLXuGi72rr6UVqJ3x/4PD1q4szwb7HdU22/re15/ybpaZRMu352oRTefD1lGc0awHsa7vdjwJNsXw2LswqPogR8u/kknZce/Z0hLj2i/E5/Q5nfOQxe02ZUpv48LqIEqJ9JeX0Y51T41s/4acARti+XmtWpm6aFkpZzqUH4BMr/Y0uTY8zzJb3c9qTlhpJeRrO6a6PwNcp70s+Bl1OWfAp4tu2LRzivXrp20BzAfSmZXR+TdB9KVsvdMnasxo563zGYT1OWGx5DWQ3xQiaykvu5l+32zJqvSHr97E5v1n0ReINrtpCkx9dt2/UY080/adhkqa7QeQals/D7bZ9bH/qQSgfefg6hZAH32xZkWdzYUOnEtR1lWdsv67b1KSfH59geqMtMDZQ8h7Je+iG279fja48DvuMp61Yl7QU8z/bOXcZtRFkvexYTB4FbU04onmH7/waZ81xRqeGzH+VN9DDbl9Tt21Gu4n+tx9gTgXsCl1G+758Dl3UKzg1h3hdQDl5bbTgfSFlC2PPFTdJlwOYu9TCuAl7RCs4MsHzxIErh4WOZvN64yZK6/SlXZX4wjbEfogTELqdcYa1DO/9NThm7oht0wJkyprV8qBWEav0t7FX3+9ZBnm+m6t/qjpRg06PdfRnqD4ADbS+asn1TyhvpsIIHM9a2ROwiD7588WJqVz/PcYv7WidhG0/u8nK+GxY8rQfuj6QEK85znw6b7fudGuTstG3K4yNZeqTSrfSJlBT0R1DeL46yffkw9jdu6uvJRrZPqX8fy3mA5ZPT3OfhlCDrgyjNFBYCp9vuFXycyf7eTglk/YVSTH9L21apZ/hV29v3Gb825X3ldiYfRyxPeb8bu+D4lKX1CylFvNcd9P1mLtXjh59RugKfPtO51iU5u1P+t1ehHIu8rfeojJ3LsaPed/TXdvyz+D28/Vioz9hTqfWD6qY9KF3QGi/pnWudju0GON77PhMXfxcCDwGObnJcLukl9WuXaJAlaQ13qb+kUq5iO8qFwE+0PbQ65f2pUSmDZc5M0p5ym70bcDUlw2Pq9pWA/2v4HCtRIuDfo1wtvomyhGJBn3H3p1xVPp1yVfxjlLTYc4H79xm7AiUtszXupZ2+j3G6UVIhF85gvCipna+gtD0/n5IV8+4hz/vJwPWUgMfXKSmlT24w7u2U5X/fpVyBbwWVN6RkwzTZ93Udbk3TrPepf4u/msbYq4EVpvnzurZ+3x+kLKtbY4CxF3XYNrSlJbPwt3Fej8cWjXp+feZ+Vn3turDe3wA4t+HYc9p/X5RMiUtnc3499v0Wysna3vX2M+DNDce+rP4vf4XSGeZXwEsbjj2M0sXs8fV2KCVI3mvMyJce1feKF1OWa7921H93Defcqrd0N+DUOve9Go59OWW5wy/q/Y0Y8pLvup9WB5416/21gEcMeZ/bUjqprtK2bWNKoKnpc+xIqdX0OmCnUf/u+8z1wl73x/FWXxsfX98PzwFOoFxk23iA53ht2+cPm/K7fmfGjn7sqPed22A3ytL25Sn1Zj8M7E/z8hwPpJzv/bnejqMEuUf+ffWY87GUMgjr1ds7KEHLJmMf13bbHlhnDub7OEqTlz/Uj63bGygXjkb+Mx3HWzKXxoSkq2xvMuhjbV/zv8BjKEGOb1BS/671AEX4JO3ERCvsK2yfOuXxu3tuln8NlaRPAztQilie2e/rezzPOpQXuO0o6ZZr2V5zVia55L4WAM+l/F63rZvPtv2XhuO3pWRqneQaua/LaVa1feEQpty+718Cj2w61yljfwjs5gGK/k0Zvy7l/2J7ytX1m2xv3mDcxbT9fdSsts82GTsKkq6xvVGXx661vWGnx8aBZla0/cOUwOULKSelr6G8dr19WPOdsv+nMrEE72Q37PJS07C3s31jvb8WpebSgxuMXYESsN2hbvop5W+zaxdFSUcBP3bnpUdPtL17k3lPR53v0ylXVdejHAwfZvt3w9rnbJF0se3NVYrGP4NyQPkTj3lWXdscDrJ90Fztb1kh6U7KkgwoF5tWohTzbjVQ6NmhdxyodAN7Sr1tSDmeeE2fMRe6Zkq3f95wfxk7B2NHve8YTM1u/RMlwLQ/ZYn8Z21fO9KJDYlK04R3U45fTDl+eXfTc8ua6drKwj7X9g1DmeiS+32g0/iksdRcGh+/k/SEDgGdJ1Aipv08lFID4ErgSvevl7QE2z+mBC+6OZW29aWSrqN7fRrb3mCQ/c8V26+VtCXwaUlXUgop39X2eNdgi7p3mjqMUjBzWHO+S9KbbR9Ng1o0Hcaf3WFb42WLku5GKejd6sp1OvAF9+lSVV1LOfBuTKUrhOu4i2v6b/uSuiad5lrBv8dQlodcTskuaWJv4DCVmkei/G+Nc1eIpbFuCQC2T1bpOLUt5We93wCByLdSfleLgFcCJ0z9GQyT7R9SlpkM6kZK3baWW+q2Jvu8jVKU/OOS7mu7yfvD64FjJe1Jh6VHTSc9KElHULI8T6AcQF42rH0NSesY6enAMbZvVvPyRbfZvr319SotkOf6at7OwEFzvM95z/bCUc9hpmz/XtJXKI0v/sFEzbumZlLHK2PnZuyo9x19tAUs/k0JujSmidIp21LeW35O6fo9cM3buVCXEH/H9o7THP884COU8w8Bh0g6wPa3Zm+WnSWwNJgEl8bHvsB3Jf2MyQf/21OKv/ZUr65uQrk6fIqkvwCrSVrbdq9i3oOY+kYztf7LAuB5lK5cF83SPofC9oWS3gZ8m7IMp3XQb2CnHkPXoxTe27/hSd1sOkXSm4BvMnHVFDeoXTQLPkdZGtIqLv/fddvLGoz9JyVAdBrNA0Tn148XUDIdpuN6yrKU99t+1SADbV8AbFaDS7jLeuxhmUatltczguDBbFApOn6x7eNV6ry9TdLBDd/MX2f7YMrSsNbz7Ve3DWu+P7O9g6RbmBwsGCRr4VrgHEnfrc+xC6XRwBsoT/LxhtM5ngYFJet7wHaSdqQEewCOrxcUhmkvyv//fsC+bYGZpSXD4wcqder+Bbxa0r0oJwFNnFHfY1aq2XmvoXSmmUs5OYxJapb7qyhdqc6jLPs82PZHGgxfs2bxLQBWl7Rr+4O2exW6z9i5GTvqfccA6vHPQZQlbovPyW2v32D4/1I6dLaO8Z5Pqb/0qNmd5eyoSQ93qUeNoz7eTqlzeQNAfT8+hRIg76tmTT2AyT/noa7cWFZlWdyYUCl+eR/KuubFS9MoNWf+YPsXAz7fVpRA0/OA39qeTiX+qc/ZMUVWZcnWfwMHUFo2v9/2FTPd37CodFj7GLA+8BrXgt4DPseOTPyeLnftfDBMNVNsKjd8E5rpvmdShO9Fnbbb/upsza/LfjejpN4+llJo9hrgDNtfbjj+6ZTf8YqtbbabdvSaNrV1QLO9gUrh/M+7QZHGKcGDy+cgeDBjKoWxN6MUfD4c+DKlkcDjGoxd4jVJDYthTpek9Wd6ZVDSu3o9brvRFcxhf68Bku4B3FwPjFcBVnODItP1fXFv4EmUIM+P5iKrTm2NDCQtsH1XvzGx7NDEUs89KYHptwIXuEEnVJVi8d3Ydtfs3oydm7Gj3ncMpl682J9yUXBxN2DXJfN9xnZq7tHouHxU6gW1LYCTmXyRvMlqhEnLyut77CVusNRc0nspNR9/QVsyge1eyQRI+pDtt0jazfYx/fYTRYJLY0JD6vakcqn4MW7Wur3fc006katLpV5KeWH8GfBBLwXrhGuQ5gPAoZ7yDyBpG9vn9Rh7P0pBun8zkSGyFaXmwrO9FNQRmY66bGm3VpCzpuN+q1Owscv45Zlor3q1my2nQ9IillxKcjMls+l9/d6AJa1KCTA9hpJFge0HNtjv54GVgR0pxZOfS1nfvXeTec+ExqBWy1xqva5IeifwO9tf7hbIbhuzB6UT5g6UNfstqwF3NQnEzWC+F9jeStKpw9xPw7m8xvZn+39lzLVOGXTDzqqr+7iWUsPjp/X2s7nOvIzxJelyYHNK1sOnbZ8x2yekkl403YtHGTs3Y0e97ygknWN7WplGKt2U/0aps2tKZ7+7U5aOzdWqhoHM5GKzpI9QLkK2uuPtTmng8pYGY68GNrV9+wDTbZ2DPIISgE/9sYYSXBoTGmKraEnX2153+rNb/DyTrpJL+i1wB/BJyhKkSTym6bOS7mX7z233H0rJ8tqDUvC5Y7v3+rXHAt+1/ZUp218IPMd23yWM0yVpZUpB2XVtv6JmtDzY9sA1mKax7ydQskp+SbkK/0BKy9O+GVuSHs9ERyxR0lJf1CTgqVKw+U7KgTCUtN+VgT8CO/QKuko6n9Kh6izqiZYbrptuXRFq+7gq8EPbj2kyfiZaBxut/zeVWi0XNrmyvDSSdAZwIqXr5GOBG+hzNUpl2eCDKEHi9ja0t1AONu4Y4nwvoiyNfQ2l9tEk7rGkTdInbb9ek1vqto/dueEcRlLUMpobRVZd236m1cgg5j9Jr6O8Zl5CqSW2LvD12Xxv63dxIGNHP3bU+45C0geBhcB3mFw2ou9yrS6rGdqeYvirGuZKTZRYh3Lcs7iZie1jG47/NvDqQY+VakDr5cCqtDVtaH30+C/tH4nUXBofa/Z4bKUZPvdAdRck3Z/yYgfw+7YTtalX6U+h/JNtVm/tTHmxHDu2/yxpPSYCSv+hBEu2tv2rPsMfanuJGja2j5A07A5Vh1OypVpLHH9HOckdenDJ9qmtYFbddLV7dKea4mPAk2xfDaDSpe4oSsZXP/815QBmUVumy159xj61PYg4oH/Vj7fWbLUbKd325sIZGn2tlrm0OyULaW/bf6wnxj3rf9Qg4a8ZvAjtbHg+8CzKa+RqA479Wv340enuXCMsahn9tWXVPUhSe7241YChX0nWzBoZxDxWl5H8yfb927ZdT8nQndVdZezYjx31vqNoZS21jodbwYuey7UAPEA38FGTtAuwju3P1PvnAPeqD7+53/GLbUs6oV50nM655QeAiyRdxuQgXs8LerYPAA6Q9N1hJg/MNwkujY9hdnvqmZ4m6UDgbp6oJ/NzSnvv5SkZJx+AJVMsbb94hvMaCUk/pxSx/AYl2+gaSdc1CCxBKXLY6TkXMBGQG5YNbO9eT16wfWuN5g+dpH2AI21fWu/fXdLeDZfk3K0VWILSpa4uqWxioaRH2j637ncbJn7O/bJTbpf0cSY63J0BvKfhEpEfSFqTchJ/IeV/6EsN5zxTS3RAm8N9zzmX+jUfb7t/PXBEk7EqxUY/BNybclA2F1eTnmL7Q5JW8IA1uFwKxUNZ1vkv13o4Kl1UVmj4NDMqahmDqRdbphZb7ZV1eRalw+s9KYH1lluAS4cxxymm3cgg5jfXrrPA0W3bTP/30oF3lbFjP3bU+16mqTbvYOLisIE/U5Yx98pIah0H/6YeOy1eOUG54HbQOC6HA95MuTDXsgIlC2kVyoXzJscvF6pP6ZIevko5VlxEW3fwpmzvMiVj/JwZXLye9xJcGh+vZwbdnrots6CcbK3VZ/hulKucLTfW5TgLKSfkH+iyzzd02t7Sa3nIiP0JuD+wNiVyfg3N3yh/IOlQ4PW2/wmgUuT1E5QgwDDdrtI5zHW/G9AWgR+yl7euOADY/ptK4ekmwaXzJX0J+Hq9vycT3eD6eRlwWF2WJuDvwMvqz7zj32Wbw4DLKEXtoRSdPxzYteuIyvZ766ffVqmHtmLDoNSM1YDDobR1QJvPNLnr2vKUroT/sL1Gg+EfBp5p+8phza+Dl1Da/z4LmG6B91OB/6K0AIeSnXoSE1mJvSyYktp9I12C3jEztabF7pTmGq1iqwa6BpdGnFUHpVjqDsALJL2VARsZxLw3F11nl8ZMnmVt7Kj3vazrlPX8QODtkg6y/Y0eY79AOX5A0mOBDwKvo9RS+yKlRui4Wd72b9ru/8ylZuqN9Xi+iUcBe0r6NeW1q3UxsUnJiFttf2qwKU+QtBsl4/x0kjHeV4JLY8IzbxXda5lF3yUYrUBJdXDddmcNZnQz6JKQsWD7WSot5ncFDqrLvdZsz5Dp4c2UoMav6wtcq4bQV4G3DXPewLsotWkeIOlIytKHFw95ny0LJale5WxlWizfcOyrgX2AVjeIn9IsKEW9QrFp/X0xJcBzdOdRi21g+zlt99+tUiy7r7ZMrZts3yZpZQ25eLI6Fy9fbL7WXLK9+HWkZuLtAmzbcPif5jiwBHClpGuA+6l0umsZ5EBnRdutwBK2/6FSU62JEyX9iMlFLX/YcGwM5lmUunYDB/ElbQscAjyE8lq5EPjnsGs02L5E0i8oXXFajQweR+nCGLF7/bhP2zZTuuf2JGlXN6uleWbGjmbsqPcdzbhLR1iV7qSnUFZWdLOwLRi8O/BF29+mXAy9eFYnOnvu3n7H9mvb7t6LZp48g/3/VNIHgO8xYG2r6h0kY7yxFPSeJyStW5eTTGfs/wEP85QOXpJWAC6zvdEM53ag7X5ZJiMj6d6UF+jnU4plP6DBmJWADevdX9i+dYhTbN/vWpQTbwFn2/7LHO33I5SrKl+om15JSct9Y4OxqwD/tn1nvb8QWKHXz0zSXra/3i07rklWXF3+eIDtn9X72wMftd03o0C1XfOUbRd5uC3ue3axc8Ni5PNB05+1pIOB+wDHMfmAYaj13iTdB/gRsMR6/Sa/J0lnAq9rHdhI2orSualRtktdDjhwUcsYjKQfUrpk/qPvFy859nzKe8oxlCzkFwIb2z5wdmfZcb/TamQQ0YuWwsLVy9rYUe87Zq7f8Y9K3aDNbd8h6SrgFa2l2pIus/3wbmNHpV4QP91Lln55JfB423s0fJ6FlFUn7cvU+577SurUfMi2+9a2quMnNdZSKYXSs/HMsiyZS/PHccCWUKriT8nY6OdbwBckvbZ1wl8DAp9mdqKyu9F/CdNI1OizbR9CSXNs0qZ+LUrB1k3qpislHVVTPIetVWx9OeCxkuaqK99bKAGlV9f7J9O8DtB0lgC10mRnkh33KuCIVtYTpWVrxzaoHcwkU2taltUTwBooaVlAORH/d8Phq1M6eDypbdvQmwm4FB5/FBMB5mttN50zlGXQx0j6PSVQfB8mMgo6krQhsLbtM+v//Hfq9h0kbWD7F4N+H9GZpEMof0e3AhdLOpXJwct9u41tZ/taSQtrYP1wlU6DQw0uMbNGBjHPaYRdZyOit7p65W99vuwoSuOXv1Caz/y0jt0QmJPyDdOwP3CcpBdQ6phCKWK+AiVDuC+VTpfvopQ2adVNMtA3W9z2TJsWdMoYH3YplKVWMpfmifZI96AZFvXE+f9R6tu0L/U6DHi7Z9jWe9gZH4OqS2/eBbyWycWhD3GfAr2SHgL8mJK1cBHlZ7UF8ERgJ9tXDXHeh1FeRC+n7YXV9kuHtc8p+1+JckB6dd8vnjyuUxbQEtuGRdLqALb/Lun1tj/ZYMy0M7VmSpNrELXcTKlT9Ubbvxz2HOaSpMPb7t4B/Ao41AO2jJ0rkpYD3k+pvXQ9E6+Xh1NeL//TY3j789yNyd0Xe45Tqf11oO1FU7ZvSine/MyBvpHoSlLPILTtrzZ4jp9QgupfAv5IKfL9YttTO6vOqhpMfxfTa2QQ85ykb1Lqer7Q9sNrsOmsJu/Hkm4Fru30EH2WBGfs3Iwd9b6jGXUug3AP4PeU/82e5xJ12fV9gZM8Uf91Y2DVAZZ6zTlJOwEPq3cvd/PSL0i6FnjUdC7kz8b7YjLGm0twaZ5oT2WdblrrlKVe19r+l6S1XepBzcrcxkFdavVUSirpdXXb+sDngBNtf6LH2G8BR9s+esr25wAvGDBjbNB5X2H7ocN6/j773pnSOW152w+StDnlhblnG886duAlQJJ6Ft5rmjnQ4Xmvt71ug69bALyCWjSRkql1qGt3r2GS9F7gt8D/Ug7ong9sQLna82rbjx/2HJYW9WDqc5SMnodLegSws+33DXGfn6Bk1O1v+5a6bXVKbbt/2d6vx9idbP94SrbWYr2yECWdZ3ubLo9NStmO0atZsH+iZDzuD6wBfNZ2pxO32dzvtymNDFoBsP8GNrPdt5FBzH+Szre99ZQLkpc0CXpKuhx4WrfHe2XfZuzcjB31vqOZDqskTGmm9M9OXx+Ll7Y9cToJD3lfnFsJLs0Tku5konr+SpR0fpi42tC4iKhKC/bnUJZ+PcT2/WY4t3HLXLqI8gL1lynb70W5CtBrrfPVth886GOzQdKXgY/ZvmJY++ix7wuAnShrplsHpI1OaFXapn6DckVm8RIgT7Rl7zSmPXPg3ZQrDos1yRzo8ry/cYOaWh3GPQZ4vu19+n7xDHU60G9lejU9CViaSFqHUvh4+7rpp8B+tn/bYOwZwAHAF9r+Lodac0ClmPfGnvLmWTNAr3KPGnWS3m37XVOytVp6ZiFKuqbbc0u61vaGnR6L6etydbmVRfi+XldQawDxeE+jGPhMjDpTNMabpLOAJwBn2t5SpevsUbYf2WDstI/lMnZuxo563xGzTRO1Vx9GyfY+nsnL1JvUYM374hxKzaV5wvbC/l/VXc1a2oUSUNqCcmX+WfRouaxSo+nTDZ7+mJnMbQjuNjWwBGD7z3WpSi+9rioM+4rDEcDPJf2R8sI6l2nK/7F9szSp+2yjyLTt8yRtwgBLgNqDR3Up27SCSZ2euukXStoC2AN4HnAdQ67j0+ZWSc9jot7Zc5moQTQfrwYcTsnS2q3e36tue2KDsSvbPnfK3+WMlvE24KmBpbrxTkk9fz+231U/vmQa+z1f0su9ZEHMl1GWucTs+yFwJ+XvE0oW4cqUZW5fAXotRXwm8Im6PO6blKzYYf9tAvxL0g6e3MjgX3Ow31g6HMSSXWebvh7NpENYxs7N2FHvO2K2tWqvXl9vyzNRA7XpMXHeF+dQMpcCSf9LaVl8EiXD5MeUZXEP6jNurJa7NdVr3v2+J0m/BTpFyQW8fjpZMU3V9cZvABYxUXNpTtKUa9bUqcBbKVlt+1KCdK9qOH47YD0md3g4ouHYgf7O1LlmEdSsPttdg+p1mdUe9fYXyknhm2z3LfQ+W+oSzYOBR1O+j7Mpy2p+B2zVenOcL2ZyRUmlm9drgWPqVfjnAnvbfupQJlv2eRzwnal/v5L2Ap7nZktFV6D8H63H5P+JrjXfJK0NHAvczkQwaWvKQdazbf9xoG8k+ur02tPa1iRzs16seCql+OcOwMm2Xza8GYOkzSgXIiY1MrB96TD3G0sPTbPrbM0o7nrS0Os9PWPnZuyo9x0xLJJ2s31Mv21dxs7ofVHSfrYP7rctigSXAkkXU7o0HQF8w/ZvJf3S9vp9xi2twaXWEsIlHgJWtN01e0nSu7o9BmD73TOcXleSfu6GrcqHsO+VgbdTunKJUtD8vW7QIUvS1yg1gy6mZAFAyf5oVDdpLv/OJN1FWZa1t2ttlCb/CzF9Kp24DmeiC8cewEtsP6HB2PWBL1I6D/6NkmG25zADrpLuT8li+xeTgzwrUYI8v2vwHCdSllddwMT/BLY/1mDsjkBr2d9ABTFjMJIuAV5u+9x6fxvgS7Y3a7p8pAaYnkLJDnms7XsOddIT+x24kUHMf5JOnfra2mlbl7GHdHloZ+D+fS7cZOwcjB31viOGpdfFnj7jFgIfsv2m9vfFWdh3lpB2keBSAFCXLe1BucL6F8oSpoe7RzFvSXcwUdtp0kMMWOdpvpF0oO0PzPJzfhZYE/g+k9cbz9VyrdY8FgKrNH1xlnQl8NBOS4l6jGnPPlqZGdQQG4SkZ1GWvmxPWTrwDcrJZM8svlmew72Al7NkVsucdAWcayqFLQ9hIlPrLGBf29cP8ByrUALkt1JqYx05jLlO2Wd715MrbJ86wNih1oWK2VGDSYcBq1Jee/5O6ap6OfB0T2nsMGVsK2Pp8cDpwNGUmn5zsTRu6lwaNTKI+UvSipT30tMof5OttcSrU5ZsbjLg8wnYE3gLcAXw/wbIAsjYORg76n1HzIb6Xvo0SomKb7Y9tDrl3KJJvbizbW87jX3vQSkXswPlwnPLasBdTYLyy6JEoAMAl7aX7wLepdLNaw/gPEm/tb1dl2GLErXtajdgVoNLlMyI2yjZQy1mDmoB1aWTr6JkWZwHrC7pYNsfaTD8MkoR7z803Z/t1fp/1eyzfRxwXA1W7AK8Hri3pM8Bx9o+aQ6m8V3Km9gptGW1zFc1y6jvUrJ29erTPsD9KT+vU+r9NwKXAkMPLtWMoelmDZ0laVPbi2ZzTjG7bJ8HbKrSxhhPblvcNbBUvZByIPxKz3FR7w7U/0tinnsl5f3sfpTOoy1/B5rUzgRA0nLAi4E3UZZsP9f21Rk7PmNHve+IWfZ7ShONnZlcX/IWSsmIJi6S9D1KDeDFK1caXJw/i3Luck+gPbP8FsqxZnSQzKXoql61eIztjkW9kxLY3Xz72WiiW9mewJaU2ksXuEExcZX2oZsD5zI542qggMKoSLo7JVi4+1xcpdAy0sGipt/3qu3QddmkpO9SlsH9nNL56N6UE+j9bF88uzOdfZKuADakLOOb6+L80YekvWx/XRNdaiZxg+404ySZS9Ei6XW2uy196jd2H2A/Sv3FD9n+VcaO19hR7ztiWCTdzX2aAfUYO3CH3pi+BJeip14HpZLeZvv9cz2npcEw6gRJehDwOpZcLjX0II2kyykBov8FPm37DEmX2N6swdjHddpu+4zZneX8IOl9wFm2Txj1XIZJpXBoy7spmZOLuUeHQLUVU67LNP8ArOsGNcDGQV0KuATPQXH+6E/SK21/QV1q7LlHbT1JP7O9g5ZsLDDsJb3TbmQQ85+knWz/WNKunR5vsrxepSbhDcCf6fC31is4nrFzM3bU+44YJ5I+ZPstalj4u8fz7Ap8iIkLmct8+ZdecrAR/fRKp7+PpE91e7BX5sEyYBjLEI4DvkypuXRX7y+ddV8AfgVcAvyknhw3qrmUINLA9gPeJuk24D/M0zex9uCRSsHhrsGkDhZfvbJ9Z12+u1QElqpc1Rljtr9QPw7coMH2DvXjnC7tHdVS4lhqPI6yjPeZHR5rurz+wcDawG+mbH8A0K9bZcbOzdhR7ztinDxN0luBAylL4qbrw8AzbV85O9Oa3xJcin56nQS9ilJP52jKmth5X9dB0mttN6lPMJMXsW7+bbtrMG+Y6n4X71vS9cCOvcb0uZI+74Ils2UZPUkcNNiymaRWcFPASvX+0vK3dTzlexawIvAg4GomCoTHCPW6aAL9L5zUbLrLBy2SHDEstt9VP75kBk/zCeDAqRmWtQbeJ+gcuMrYuR076n1HjJMTKSUUVm07ZoTBjxX/lMBScwkuBZK+T/cgwFo9ht6XWosGuINSvPRbtm+a7TmOkZfSoPjlkJYLHlyXaZzE5NpFF3YfMhwu62l7dj1aRoMk0yZpE9tXSeq4nHIUv+dxZXvhqOcwE60lfS31d/6aEU0nltReNHSJJZv91Gy6qyWt6wG6HkbMBUlPpwSyV2xts/2eBkPXdocmBLYXSVovY8di7Kj3HTEUkjYGDgAeyOTSIDt1G2P7AOAASd+1vcsMdn++pG9SVpCMrFv30iLBpQD46HQes30j8Hng85LWobRwv0LSW2x/bZbnGLAp8N/ATkwsi3O9H0u/NwCvYHJHipZ593uektm28pRMpKUh+2jW2L5Q0qNGPY8oZrhks+XuwOWSzmVyd5qlopFBzE+SPg+sTMk8/hLwXEqzjSbW7PHYShk7FmNHve+IYTmGcs55KAN2Up5hYAlgdeBWRtCte2mU4FIAXDeTq6v1qvsewBOBHzL5qu9884gpqZUtc3FCvBuwvu3bh7iPSSTdz/bv52p/yzLbr6gfey43nC+W5cy2KV3IFlA6MOb/bDxNtz7W/8zqLCJmx3a2HyHpUtvvlvQxynFbE+dLerntQ9s3SnoZ/Y/7MnZuxo563xHDcoftz41ixzNcTrzMSbe4mNTZTNK3bT+n4bj3AE8HrgS+AZxou+dSqaWdpItsbzGifR8HvML2DXO4zxOAewCnU9Yu/2y+/45HRdI2wG9s/7HefyHwHODXwEG2/zrK+cXsmdKF7A5KsfxvL2VFyZcJg3b+lLQipR7hhsAi4Mt5zYxxIekc24+SdDawK3AjpT7Yhg3Grg0cC9zORKBha2B54Nmt966MHd3YUe87YrZJukf9dF9KJ8Njmbw0bejHxpIOp3P3xJcOe99LowSXYlLAZJDgSW1Zeh0lVRAm/vEE3OUGbeqXNiMOLp0OPAI4j8kvrENdZlFPlh4PPBXYHrieEmg6MfVEZo+kC4H/sv1XSY+lBGxfB2wOPMT2c0c5v4hlxdQlm0y8x/XNUK11Gf4D/JTymvlr2/sNcboRjUn6H+AQ4AnAZyh/54fafucAz7Ej8PB693LbP87Y8Ro76n1HzBZJ1zHRAGUq215/DubQnnSxIvBs4Pdetruid5XgUkzNXGp8lba2o19iM6Vl6YG2nzaL0xwLkt42pGLdTfb9uE7bbZ8xx/N4EOWk6SnAfWw/ci73P19JuqQVkJX0GeDPtg+q9y+2vfkIpxezQNL3ej2eejxLP0mLWgXbJS0HnDtI5lPEMEh6PXAWcGErk07SCsCKtm8e5dwiIoZJ0vbAQUwUA29dKJpWYErSAspKju1mbZLzSGouBUy09W5v6Q19rtK6rVWppC2AF1DqAl0HfHu4Ux6Z+6hHm+phRrFtn1FTlrepm86dyyVybfO4Dvgs8FlJy8/1/uexhZKWqwf+T6AU927Ja/X88GjgN8BRwDl0vhIXS7f/tD6xfYeUX3GMhXWATwKbSFoEnEkJNp01yklFRDQhaTfKiolbJL2DUqvyvbYvajD8y8D+lKWeAxUD72Ij4N6z8DzzUjKXYtpqW8g96u0vwDeBN9nulNE0L0i6HbgMOJpSgHfSmcM0uwo13ffzgI9Q6h8JeAxwgO1vDWufMXckvR14GuV/aV1gS9uWtCHwVdvbj3SCMWOSFlIaH+xBWeJ6PHCU7ctHOrGYNZLuZKI7nCgdlm5lGeyCGOOnXhDaGtiOEux+NHCT7YeOdGIRET3UJgSPkLQD8D7K+dA7bffttNuqNTeDfbeWyqt+/CNlhc58TaSYkQSXYtpqzaWfAnvbvrZu++VcrH8dFUlrUbKzdqcU4v0m8C3bN83Bvi8BntjKVpJ0L+CU+VjbalklaVvgvsBJtv9Zt20MrGr7wpFOLmZVXZKyB+UA6d22Pz3iKUXEPCdpDUpAafv6cU1gUbohRcQ4a9W8lfQBymvW//arg1u7mQM8D1gIfIfJNWtzXD0ECS7FtEl6FvB8ykHKiZQCxF+y/aBRzmuuSFqH8v2/AXiL7a8NeX+La3nU+wuAS9q3DXHfzwSOt33XsPcVMZ/VoNLTKYGl9YDvAYfZ/t0o5xUR85ekLwIPA26hLMk9Gzjb9t9GOrGIiAYk/QD4HSX7e0vgX5TyIF0vsEs6rcdT2vZOA+x/Z+Cx9e7ptn/QdOyyJsGlmDFJqwC7UE6WdgKOAI61fdJIJzZENRq+B+VF7gLgY7avGPI+P0JZSnNU3bQ7JXr/5mHut+7765SrnN+mnAhfNex9Rsw3ko6gdOA5AfiG7ctGPKWIWAZIOhG4J2VZ/1nAz4HLnJOAiFgKSFqZ0khoke1rJN0X2HQuzjUlfZBS7/bIumkP4Dzbbxv2vpdGCS7FrJJ0d+qyMdtPGPV8Zpuk91CyDq6kZGqd2Oq8Mkf73xXYod79qe1j53Dfq1NeUF9CWXN8OKVezC1zNYeIpVldStyqx9P+5pt6PBExVCrV5R9Gqbe0HSXQ/Vfg57bfNcq5RUQ0IenewIqt+7avbzBmP8o5yy3AoZTMp7c2DUxJuhTYvLV6o9bPvMj2Iwb/Dua/BJciBlBPDq+jFGiFiRNEAXcNo/5RLei8tu0zp2zfAfiD7V/M9j57zGUt4L+B11MCbBsCn7J9yFzNISIiIqanLunfnhJgegawlu01RzqpiIge6rK0jwH3A26gNL65yvbDGoy9xPZmkp4MvAp4B/A121v2GdoafynweNt/rffvQVkal+BSB2lvHTGYTvWkBDwAOHBI+/xkl+e+uT72zCHtdzFJuwAvpgSTjgAeafuGmqZ6BZDgUkRExBiStC8TGUv/oSyNOws4DFg0wqlFRDTxXmBbSiOjLSTtCOzVcGyrs/fTgCNsX14zOZv6AHBRreEkSu2ltw4wfpmS4FLEAGz/uvW5pC2AF1CWAV5HqUc0DGvbXuLgz/YiSesNaZ9TPRv4hO2fTJnDrZL2nqM5RERExODWA44B9rf9hxHPJSJiUP+xfaOkBZIW2D5N0icbjr1A0kmUBIEDJa0GNG5QZPsoSadT6i5BaeL0x0EmvyxJcCliALUt/B719hfgm5TlpTsOcbdr9nhspSHuF1i8tviBUwNLLbZPHfYcIiIiYnpsv2HUc4iImIGbJK0K/AQ4UtINTNSw7GdvYHPgl/Wi+FqU+rGNSHo28GPb36v315T0LNvHDfINLCtScyliALXm0k+BvW1fW7f90vb6Q9znUZQXtUOnbH8Z8ETbuw9r3237OhXY1fbNw95XREREREQELO5M/i9gAbAnsAZwpO0bG46/O7ARk4uBd7xo3mHsxbY3n7LtIttbNJv9siWZSxGD2RV4PnBabe37DSbW8g7L64FjJe0JXFC3bQ0sT1muNhf+ASySdDJtVwps7ztH+4+IiIiIiGVEh6ZGdwFfrU2N1gT6Bpfqxfj9gHWAiym1m34O7NRwGgs6bEsMpYtkLkVMQ42g70JZHrcTpcj1sU3bWk5znztSWgcDXG77x8PaV4d9v6jTdttfnas5RERERETEskHSD4ADp9aelbQp8H7bfZsaSVpEqZd0tu3NJW1Sx+7acA6HATcBn6mb9gHuYfvFjb+RZUiCSxEzVFMtdwN2t/2EUc8nIiIiIiJiaSbpPNvbdHlske1Nmz6HpIuBR9m+TdLlth/WcA6rAP8D/Bdg4GTg/9luWvNpmZLgUkT0JWkjSivOhzJ5vfLQak1FRERERMSySdI1tjfq8ti1tjds8BzHUgp4v56y2uRvwN1sP2025xpFpzWEERFTHQ58DrgD2JGyDPDrI51RRERERETMV+dLevnUjbWO0gUdvn4Jtp9t+ybbB1EykL4MPKvpBCSdLGnNtvt3l/SjpuOXNclcioi+JF1ge6v2FNTWtlHPLSIiIiIi5hdJawPHArfToamR7T82eI5tKbVqb6n3VwceYvuchnNYojNcusV1l0rnEdHEbZIWANdIei3wO2DVEc8pIiIiIiLmIdt/Arab0tTo+AGbGn0O2LLt/j86bOvlLknr2r4eQNIDKbWXooMElyKiif2AlYF9gfdS1ix37CAXERERERExG2yfBpw2zeFy21It23dJGiQG8nbgZ5LOAAQ8BnjFNOcy72VZXERERERERETMK5K+A5xOyVYCeA2wo+1nDfAc9wS2rXfPtv2X2ZzjfJLgUkR0Jen79Ej9tL3zHE4nIiIiIiKiEUn3Bj5FWXVh4FTg9bZvGOA57g5sxOSO2T+Z5anOCwkuRURXkh5XP90VuA8THeL2AP5ke/+RTCwiIiIiImKIame6/YB1gIspGUw/t73TKOc1rhJcioi+JJ1ve+t+2yIiIiIiIsaNpAttNy3k3RqzCNiGshxuc0mbAO+3vetQJrmUWzDqCUTEUmEVSeu37kh6ELDKCOcTERERERHRlKYx5t+2/w0gaQXbVwEPnt1pzR/pFhcRTewPnC7pl5QX5gcCrxztlCIiIiIiIho5fhpjfitpTeA44GRJfwN+PZuTmk+yLC4iGpG0ArBJvXuV7dtGOZ+IiIiIiIi5UGvRrgGcaPv2Uc9nHCW4FBGNSNoOWI+2jEfbR4xsQhEREREREV1I2hX4EHBvyuoLAba9+kgnNk8luBQRfUn6GrABpUvCnXWzbe87sklFRERERER0Iela4Jm2rxz1XJYFqbkUEU1sDTzUiUZHRERERMTS4U8JLM2dBJcioonLgPsAfxj1RCIiIiIiIho4X9I3KQW5F9eLtf2dpk8g6YHARrZPkbQSsJztW2Z9pvNAgksR0cQ9gSskncvkF+adRzeliIiIiIiIrlYHbgWe1LbNQKPgkqSXA68A7kEpEbIO8HngCbM7zfkhNZcioq/aHWEJts+Y67lEREREREQMm6SLgUcC59jeom5bZHvTkU5sTC0Y9QQiYvzVINJVwGr1dmUCSxERERERMa4krSPpWEk31Nu3Ja0zwFPcZvv2tudbjpL5FB0kuBQRfUl6HnAusBvwPOAcSc8d7awiIiIiIiK6Ohz4HnC/evt+3dbUGZLeBqwk6YnAMfU5ooMsi4uIviRdAjzR9g31/r2AU2xvNtqZRURERERELEnSxbY377etx/gFwN6Umk0CfgR8KR20O0tB74hoYkErsFTdSDIfIyIiIiJifN0oaS/gqHp/D8p5TCO27wIOrbfoI8GliGjiREk/YuKFeXfghyOcT0RERERERC8vBQ4BPkGplXQW8JKmgyVtDxwEPJASOxFg2+vP+kzngSyLi4hGJO0K7FDv/tT2saOcT0RERERExLBIugrYH7gAuLO13Xbj7KdlSYJLEdGXpAcBf7D973p/JWBt278a6cQiIiIiIiLaSHpnj4dt+70Nn+cc24+apWnNewkuRURfks4Htmu14pS0PHCm7W1GO7OIiIiIiIgJkt7YYfMqlOLca9letc/4LeunzwMWAt8Bbms9bvvCWZrqvJLgUkT01aXTwiXpFhcREREREeNK0mrAfpTA0tHAx6Y0Kuo05rQeD9v2TrM4xXkjBb0jook/S9rZ9vcAJO0C/GXEc4qIiIiIiFiCpHsAbwD2BL4KbGn7b03G2t6xPsf6tn855XlTzLuLZC5FRF+SNgCOBO5P6bTwW+CFtq8d6cQiIiIiIiLaSPoIsCvwReAztv8xzee50PaWU7ZdYHurWZjmvJPgUkQ0JmlVgOm+QEdERERERAyTpLsoNZLuoFwYX/wQZVnb6n3GbwI8DPgwcEDbQ6sDB9h+2OzOeH7IsriI6EvS2sD7gfvZfqqkhwKPtv3lEU8tIiIiIiJiMdsLZvgUDwaeAawJPLNt+y3Ay2f43PNWMpcioi9JPwQOB95uezNJywEX2d50xFOLiIiIiIiYdZIebfvno57H0mKmEb2IWDbc0/bRwF0Atu8A7hztlCIiIiIiIoYjgaXBJLgUEU38U9Ja1DXLkrYFbh7tlCIiIiIiImIcpOZSRDTxBuB7wAaSzgTuBTx3tFOKiIiIiIiIcZCaSxHRSK2z9GBKl4Wrbf9nxFOKiIiIiIgYCklrAi8E1qMtMcf2viOa0lhL5lJEdCVpG+A3tv9o+w5JWwHPAX4t6SDbfx3xFCMiIiIiIobhBOBsYBG19mx0l8yliOhK0oXAf9n+q6THAt8AXgdsDjzEdpbGRURERETEvCPpQttbjnoeS4sElyKiK0mX2N6sfv4Z4M+2D6r3L7a9+QinFxERERERMRSS9gf+AfwAuK21Pas3OsuyuIjoZaGk5WzfATwBeEXbY3n9iIiIiIiI+ep24CPA26lds+vH9Uc2ozGWk8OI6OUo4AxJfwH+BfwUQNKGwM2jnFhERERERMQQvRHY0PZfRj2RpUGWxUVET5K2Be4LnGT7n3XbxsCqti8c6eQiIiIiIiKGQNJJwLNs3zrquSwNElyKiIiIiIiIiGgj6VjgYcBpTK65tO/IJjXGsiwuIiIiIiIiImKy4+otGkjmUkRERERERETEFJKWBzaud6+2/Z9RzmecJbgUEREREREREdFG0uOBrwK/AgQ8AHiR7Z+MblbjK8GliIiIiIiIiIg2ki4AXmD76np/Y+Ao21uNdmbjacGoJxARERERERERMWbu1gosAdj+P+BuI5zPWEtB74iIiIiIiIiIyS6Q9CXg6/X+nsD5I5zPWMuyuIiIiIiIiIiINpJWAPYBdqibfgp81vZto5vV+EpwKSIiIiIiIiKikrQQuNz2JqOey9IiNZciIiIiIiIiIirbdwJXS1p31HNZWqTmUkRERERERETEZHcHLpd0LvDP1kbbO49uSuMrwaWIiIiIiIiICEqtpVpX6X9GPZelSWouRUREREREREQAki60vaWkr9n+71HPZ2mRzKWIiIiIiIiIiGJ5SS8AtpO069QHbX9nBHMaewkuRUREREREREQUrwL2BNYEnjnlMQMJLnWQZXEREREREREREW0k7W37y6Oex9IiwaWIiIiIiIiIiJi2BaOeQERERERERERELL0SXIqIiIiIiIiIiGlLcCkiIiIiIiIioo2k7SWtUj/fS9LHJT1w1PMaVwkuRURERERERERM9jngVkmbAW8EfgEcMdopja8ElyIiIiIiIiIiJrvDpQPaLsCnbX8GWG3Ecxpby416AhERERERERERY+YWSQcCewGPlbQAuNuI5zS2krkUERERERERETHZ7sBtwN62/wisA3xktFMaXypZXhERERERERERAVCLef/b9p2SNgY2AX5o+z8jntpYSnApIiIiIiIiIqKNpAuAxwB3B84EzgNut73nSCc2prIsLiIiIiIiIiJiMtm+FdgV+Kzt3YCHj3hOYyvBpYiIiIiIiIiIySTp0cCewPF1W2IoXeQHExEREREREREx2euBA4FjbV8uaX3gtNFOaXyl5lJERERERERERAeSVq7L46KHZC5FRERERERERLSR9GhJVwBX1fubSfrsiKc1thJcioiIiIiIiIiY7JPAk4EbAWxfAjx2lBMaZwkuRURERERERERMYfs3UzbdOZKJLAWWG/UEIiIiIiIiIiLGzG8kbQdY0t2A/YArRzynsZWC3hERERERERERbSTdEzgY+C9AwEnAfrZvHOnExlSCSxERERERERERMW1ZFhcRERERERERAUg6BOiahWN73zmczlIjwaWIiIiIiIiIiOL8UU9gaZRlcRERERERERERMW3JXIqIiIiIiIiIaCNpY+BNwHq0xU5s7zSqOY2zZC5FRERERERERLSRdAnweeAC4M7WdtsXjGxSYyzBpYiIiIiIiIiINpIusL3VqOextEhwKSIiIiIiIiICkHSP+um+wA3AscBtrcdt/3UU8xp3CS5FRERERERERACSrgMMqMPDtr3+HE9pqZDgUkRERERERERETNuCUU8gIiIiIiIiImKcSNpN0mr183dI+o6kLUY9r3GV4FJERERERERExGT/Y/sWSTsA/wV8mdI9LjpIcCkiIiIiIiIiYrI768enA1+0fTyw/AjnM9YSXIqIiIiIiIiImOx3kr4A7A6cIGkFEkPpKgW9IyIiIiIiIiLaSFoZeAqwyPY1ku4LbGr7pBFPbSwluBQRERERERER0YGkewMrtu7bvn6E0xlbSemKiIiIiIiIiGgjaWdJ1wDXAWfUjz8c7azGV4JLERERERERERGTvRfYFvg/2w+idIw7e7RTGl8JLkVERERERERETPYf2zcCCyQtsH0asPWoJzWulhv1BCIiIiIiIiIixsxNklYFfgIcKekG4J8jntPYSkHviIiIiIiIiIg2klYB/kVZ8bUnsAZwZM1miikSXIqIiIiIiIiIACRtCKxt+8wp23cA/mD7F6OZ2XhLzaWIiIiIiIiIiOKTwN87bL+5PhYdJLgUEREREREREVGsbXvR1I1123pzP52lQ4JLERERERERERHFmj0eW2muJrG0SXApIiIiIiIiIqI4X9LLp26U9DLgghHMZ6mQgt4REREREREREYCktYFjgduZCCZtDSwPPNv2H0c1t3GW4FJERERERERERBtJOwIPr3cvt/3jUc5n3CW4FBERERERERER05aaSxERERERERERMW0JLkVERERERERExLQtN+oJRERERCwNJB0E/ANYHfiJ7VPmeP87Aw+1/cG53G9EREREP6m5FBEREdFAK7hk+6OjnktERETEOMmyuIiIiIguJL1d0v9J+hnw4LrtK5KeWz//laQPSLpY0vmStpT0I0m/kPSqtuc5QNJ5ki6V9O66bT1JV0o6VNLlkk6StFJ9bF9JV9Sv/0bd9mJJn24b++P6+KmS1m2b26cknSXpl615RkRERAxTgksRERERHUjaCng+sDnwNGCbLl96ve3NgZ8CXwGeC2wLtIJITwI2Ah5Zn2srSY+tYzcCPmP7YcBNwHPq9rcCW9h+BLA4SNXmEOCr9fEjgU+1PXZfYAfgGUCW0EVERMTQJbgUERER0dljgGNt32r778D3unxda/si4Bzbt9j+M3CbpDWBJ9XbRcCFwCaUoBLAdbYvrp9fAKxXP78UOFLSXsAdHfb5aOB/6+dfowSTWo6zfZftK4C1G36vEREREdOWgt4RERERM3Nb/XhX2+et+8sBAj5g+wvtgyStN+Xr7wRWqp8/HXgs8Ezg7ZI2ncZ8qPuOiIiIGKpkLkVERER09hPgWZJWkrQaJdAzHT8CXippVQBJ95d0725fLGkB8ADbpwFvAdYAVp3yZWdRluwB7ElZkhcRERExEslcioiIiOjA9oWSvglcAtwAnDfN5zlJ0kOAn0sC+AewFyVTqZOFwNclrUHJPPqU7Zvq2JbXAYdLOgD4M/CS6cwtIiIiYjbI9qjnEBERERERERERS6ksi4uIiIiIiIiIiGlLcCkiIiIiIiIiIqYtwaWIiIiIiIiIiJi2BJciIiIiIiIiImLaElyKiIiIiIiIiIhpS3ApIiIiIiIiIiKmLcGliIiIiIiIiIiYtgSXIiIiIiIiIiJi2v4/m3AI5QxIxI0AAAAASUVORK5CYII=\n" - }, - "metadata": { - "needs_background": "light" - } - } - ], + "outputs": [], "source": [ "logreg_l2_tests = [\n", " Test(\n",