-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution.py
54 lines (43 loc) · 1.6 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
import scipy.io
# Parameters
n = 128 # number of pixels in each dimension
t_max = 300 # maximum time of flight
t = np.arange(1, t_max+1) # time vector
r = 5 * np.ones((n, n)) # target intensity/amplitude
b = np.ones((n, n)) # background/dark photon level
g = lambda x: np.exp(-x**2/3**2) # Gaussian impulse response
# Depth map
depth_map = scipy.io.loadmat('Depth_CameraMan.mat')['CameraMan'] # load Cameraman image
t_ij = depth_map / 255 * t_max # scale to [0, t_max]
#Question 1
# Generate data cube
s = np.zeros((n, n, t_max))
for i in range(n):
for j in range(n):
s[i, j, :] = r[i, j] * g(t - t_ij[i, j]) + b[i, j]
# Generates noisy data cube
y = np.random.poisson(s)
# Matched filtering to estimate depth map
t_hat = np.zeros((n, n))
for i in range(n):
for j in range(n):
y_vec = y[i, j, :]
xcorr_g_y = np.correlate(g(t), y_vec, mode='same')
max_idx = np.argmax(xcorr_g_y)
t_hat[i, j] = t[max_idx]
# Display clean and estimated depth maps
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.imshow(depth_map, cmap='gray', vmin=0, vmax=t_max)
plt.title('Clean Depth Map')
plt.colorbar()
plt.subplot(1, 2, 2)
plt.imshow(t_hat, cmap='gray', vmin=0, vmax=t_max)
plt.title('Estimated Depth Map')
plt.colorbar()
plt.show()
#The depth map of the estimated image can be improved by using a more pratical
#impulse response to model response of the LIDAR system. A deep learning/
#machine learning approachcan be used to determine the depth map estimation.