-
Notifications
You must be signed in to change notification settings - Fork 1
/
create_mvbb.py
261 lines (225 loc) · 8.46 KB
/
create_mvbb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python
from klampt import *
import klampt.robotsim
from klampt import vis
from klampt.vis.glprogram import *
from klampt.vis.glprogram import GLNavigationProgram #Per il
from klampt.sim import *
import importlib
import sys
import os
import random
from klampt.math import so3, se3
import string
import pydany_bb
import numpy as np
import math
from IPython import embed
from mvbb.graspvariation import PoseVariation
from mvbb.TakePoses import SimulationPoses
from mvbb.draw_bbox import draw_GL_frame, draw_bbox
from i16mc import make_object
import time
objects = {}
objects['ycb'] = [f for f in os.listdir('data/objects/ycb')]
objects['apc2015'] = [f for f in os.listdir('data/objects/apc2015')]
object_geom_file_patterns = {
'ycb':['data/objects/ycb/%s/meshes/tsdf_mesh.stl','data/objects/ycb/%s/meshes/poisson_mesh.stl'],
'apc2015':['data/objects/apc2015/%s/textured_meshes/optimized_tsdf_textured_mesh.ply']
}
class MVBBVisualizer(GLNavigationProgram):
def __init__(self, poses, poses_variations, boxes, world, alt_trimesh = None):
GLNavigationProgram.__init__(self, 'MVBB Visualizer')
self.poses = poses
self.poses_variations = poses_variations
self.boxes = boxes
self.obj = world.rigidObject(0)
self.old_tm = self.obj.geometry().getTriangleMesh()
self.new_tm = alt_trimesh
self.robot = None
self.world = world
if world.numRobots() > 0:
self.robot = world.robot(0)
self.using_decimated_tm = False
def invert_obj_color(self):
color = self.obj.appearance().getColor()
for i in range(3):
color[i] = 1 - color[i]
self.obj.appearance().setColor(*color)
def display(self):
if self.robot is not None:
self.robot.drawGL()
self.obj.drawGL()
for pose in self.poses:
T = se3.from_homogeneous(pose)
draw_GL_frame(T)
for box in self.boxes:
draw_bbox(box.Isobox, box.T)
def keyboardfunc(self, c, x, y):
# Put your keyboard handler here
# the current example toggles simulation / movie mode
print c, "pressed"
if c == 's' and self.new_tm is not None:
self.using_decimated_tm = not self.using_decimated_tm
print "Showing Decimated Trimesh", self.using_decimated_tm
if self.using_decimated_tm:
self.obj.geometry().setTriangleMesh(self.new_tm)
self.invert_obj_color()
else:
self.obj.geometry().setTriangleMesh(self.old_tm)
self.invert_obj_color()
self.refresh()
def idle(self):
pass
def trimesh_to_numpy(klampt_TriangleMesh):
tm = klampt_TriangleMesh
n_vertices = tm.vertices.size() / 3
n_faces = tm.indices.size() / 3
vertices = np.zeros((n_vertices,3))
faces = np.ndarray((n_faces, 3), dtype=np.intc)
for i in range(n_vertices):
vertices[i, :] = np.array([tm.vertices[3 * i], tm.vertices[3 * i + 1], tm.vertices[3 * i + 2]])
for i in range(n_faces):
faces[i, :] = np.array([tm.indices[3 * i], tm.indices[3 * i + 1], tm.indices[3 * i + 2]], dtype=np.intc)
return vertices, faces
def numpy_to_trimesh(vertices, faces):
tm = klampt.robotsim.TriangleMesh()
for i in range(vertices.shape[0]):
tm.vertices.append(vertices[i, 0])
tm.vertices.append(vertices[i, 1])
tm.vertices.append(vertices[i, 2])
for i in range(faces.shape[0]):
tm.indices.append(int(faces[i, 0]))
tm.indices.append(int(faces[i, 1]))
tm.indices.append(int(faces[i, 2]))
return tm
def skip_decimate_or_return(object, min_vertices = 0, max_vertices = 2000):
tm = object.geometry().getTriangleMesh()
n_vertices = tm.vertices.size() / 3
decimator = pydany_bb.MVBBDecimator()
vertices_old, faces_old = trimesh_to_numpy(tm)
if n_vertices <= min_vertices:
return None, None
if n_vertices > max_vertices:
print "Object has", n_vertices, "vertices - decimating"
decimator.decimateTriMesh(vertices_old, faces_old)
vertices = decimator.getEigenVertices()
faces = decimator.getEigenFaces()
tm_decimated = numpy_to_trimesh(vertices, faces)
print "Decimated to", vertices.shape[0], "vertices"
return vertices, tm_decimated
else:
return object, None
def compute_poses(obj, new_method = False):
if isinstance(obj, np.ndarray):
vertices = obj
n_vertices = vertices.shape[0]
box = pydany_bb.Box(n_vertices)
box.SetPoints(vertices)
else:
tm = obj.geometry().getTriangleMesh()
n_vertices = tm.vertices.size() / 3
box = pydany_bb.Box(n_vertices)
for i in range(n_vertices):
box.SetPoint(i, tm.vertices[3 * i], tm.vertices[3 * i + 1], tm.vertices[3 * i + 2])
I = np.eye(4)
print "doing PCA"
box.doPCA(I)
print box.T
print "computing Bounding Box"
bbox = pydany_bb.ComputeBoundingBox(box)
p_0 = bbox.Isobox[0, :]
p_1 = bbox.Isobox[1, :]
long_side = np.max(np.abs(p_0 - p_1))
print "Found Bounding Box:"
print bbox.Isobox
# rubbermaid_ice_guard_pitcher_blue
#param_area = 0.95
#param_volume = 4E-7
param_area = 0.9
param_volume = 5E-7
print "extracting Boxes"
boxes = pydany_bb.extractBoxes(bbox, param_area, param_volume)
print "getting transforms"
if new_method:
poses = []
for box in boxes:
poses += pydany_bb.get_populated_TrasformsforHand(box, bbox, 2)
poses_variations = []
else:
# rubbermaid_ice_guard_pitcher_blue
#poses = pydany_bb.getTransformsForHand(boxes, bbox, 0.01)
poses = pydany_bb.getTransformsForHand(boxes, bbox, 0.005)
poses_variations = []
for pose in poses:
poses_variations += PoseVariation(pose, long_side)
print "done. Found", len(poses_variations), "poses,", len(boxes), "boxes"
return poses, poses_variations, boxes
def launch_mvbb(object_set, objectname):
"""Launches a very simple program that spawns an object from one of the
databases.
It launches a visualization of the mvbb decomposition of the object, and corresponding generated poses.
If use_box is True, then the test object is placed inside a box.
"""
use_program = True
world = WorldModel()
world.loadElement("data/terrains/plane.env")
object = make_object(object_set, objectname, world)
R,t = object.getTransform()
object.setTransform(R, [0, 0, 0])
pattern = object_geom_file_patterns[object_set][0]
tm = object.geometry().getTriangleMesh()
n_vertices = tm.vertices.size() / 3
decimator = pydany_bb.MVBBDecimator()
vertices_old, faces_old = trimesh_to_numpy(tm)
tm_decimated = None
if n_vertices > 2000:
print "Object has", n_vertices, "vertices - decimating"
meshfile = pattern%(objectname,)
decimator.decimateTriMesh(meshfile)
#decimator.decimateTriMesh(vertices_old, faces_old)
vertices = decimator.getEigenVertices()
faces = decimator.getEigenFaces()
tm_decimated = numpy_to_trimesh(vertices, faces)
print "Decimated to", vertices.shape[0], "vertices"
poses, poses_variations, boxes = compute_poses(vertices)
else:
poses, poses_variations, boxes = compute_poses(object)
embed()
# now the simulation is launched
if use_program:
program = MVBBVisualizer(poses, poses_variations, boxes, world, tm_decimated)
vis.setPlugin(program)
program.reshape(800, 600)
else:
vis.add("world", world)
vis.show()
# this code manually updates the visualization
while vis.shown():
if not use_program:
vis.lock()
# draw here
time.sleep(0.01)
vis.unlock()
else:
time.sleep(0.01)
vis.kill()
return
#************************************************Main******************************************
if __name__ == '__main__':
import random
try:
dataset = sys.argv[1]
except IndexError:
dataset = random.choice(objects.keys())
#just plan grasping
try:
index = int(sys.argv[2])
objname = objects[dataset][index]
except IndexError:
index = random.randint(0,len(objects[dataset])-1)
objname = objects[dataset][index]
except ValueError:
objname = sys.argv[2]
print "loading object", index, " -", objname, "-from set", dataset
launch_mvbb(dataset, objname)