-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathScriptWriter.py
556 lines (476 loc) · 30.1 KB
/
ScriptWriter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
from modules import *
from keras.preprocessing.sequence import pad_sequences
import Utils
import Evaluate
import pickle
import os
from tqdm import tqdm
embedding_file = "./data/embeddings.pkl"
train_file = "./data/train.pkl"
val_file = "./data/dev.pkl"
evaluate_file = "./data/test.pkl"
evaluate_embedding_file = "./data/embeddings.pkl"
max_sentence_len = 50
max_num_utterance = 11
batch_size = 64
eval_batch_size = 64
class ScripteWriter():
def __init__(self, data_iterator):
self.max_num_utterance = max_num_utterance
self.negative_samples = 1
self.max_sentence_len = max_sentence_len
self.word_embedding_size = 200
self.hidden_units = 200
self.total_words = 43514
self.batch_size = batch_size
self.eval_batch_size = eval_batch_size
self.initial_learning_rate = 1e-3
self.dropout_rate = 0
self.num_heads = 1
self.num_blocks = 3
# self.gamma = 0.1
self.gamma = tf.get_variable('gamma', shape=1, dtype=tf.float32, trainable=True, initializer=tf.constant_initializer(0.5))
self.utterance_ph = data_iterator[0]
self.response_ph = data_iterator[4]
self.y_true = data_iterator[6]
self.embedding_ph = tf.placeholder(tf.float32, shape=(self.total_words, self.word_embedding_size))
self.response_len = data_iterator[5]
self.all_utterance_len_ph = data_iterator[1]
self.narrative_ph = data_iterator[2]
self.narrative_len = data_iterator[3]
self.word_embeddings = tf.get_variable('word_embeddings_v', shape=(self.total_words, self.word_embedding_size), dtype=tf.float32, trainable=False)
self.embedding_init = self.word_embeddings.assign(self.embedding_ph)
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.is_training = True
def load(self, previous_modelpath):
sess = tf.Session()
latest_ckpt = tf.train.latest_checkpoint(previous_modelpath)
# latest_ckpt = previous_modelpath + "model.4"
print("recover from checkpoint: " + latest_ckpt)
variables = tf.contrib.framework.get_variables_to_restore()
saver = tf.train.Saver(variables)
saver.restore(sess, latest_ckpt)
return sess
def build(self):
all_utterances = tf.unstack(self.utterance_ph, num=self.max_num_utterance, axis=1)
all_utterance_len = tf.unstack(self.all_utterance_len_ph, num=self.max_num_utterance, axis=1)
reuse = None
alpha_1 = None
response_embeddings = embedding(self.response_ph, initializer=self.word_embeddings)
response_embeddings = tf.layers.dropout(response_embeddings, rate=self.dropout_rate, training=tf.convert_to_tensor(self.is_training))
Hr_stack = [response_embeddings]
for i in range(self.num_blocks):
with tf.variable_scope("num_blocks_{}".format(i)):
response_embeddings, _ = multihead_attention(queries=response_embeddings, keys=response_embeddings, num_units=self.hidden_units, num_heads=self.num_heads, dropout_rate=self.dropout_rate, is_training=self.is_training, causality=False)
response_embeddings = feedforward(response_embeddings, num_units=[self.hidden_units, self.hidden_units])
Hr_stack.append(response_embeddings)
narrative_embeddings = embedding(self.narrative_ph, initializer=self.word_embeddings)
narrative_embeddings = tf.layers.dropout(narrative_embeddings, rate=self.dropout_rate, training=tf.convert_to_tensor(self.is_training))
Hn_stack = [narrative_embeddings]
for i in range(self.num_blocks):
with tf.variable_scope("num_blocks_{}".format(i), reuse=True):
narrative_embeddings, _ = multihead_attention(queries=narrative_embeddings, keys=narrative_embeddings, num_units=self.hidden_units, num_heads=self.num_heads, dropout_rate=self.dropout_rate, is_training=self.is_training, causality=False)
narrative_embeddings = feedforward(narrative_embeddings, num_units=[self.hidden_units, self.hidden_units])
Hn_stack.append(narrative_embeddings)
Mur, Mun = [], []
self.decay_factor = []
for utterance, utterance_len in zip(all_utterances, all_utterance_len):
utterance_embeddings = embedding(utterance, initializer=self.word_embeddings)
Hu_stack = [utterance_embeddings]
for i in range(self.num_blocks):
with tf.variable_scope("num_blocks_{}".format(i), reuse=True):
utterance_embeddings, _ = multihead_attention(queries=utterance_embeddings, keys=utterance_embeddings, num_units=self.hidden_units, num_heads=self.num_heads, dropout_rate=self.dropout_rate, is_training=self.is_training, causality=False)
utterance_embeddings = feedforward(utterance_embeddings, num_units=[self.hidden_units, self.hidden_units])
Hu_stack.append(utterance_embeddings)
r_a_u_stack = []
u_a_r_stack = []
for i in range(self.num_blocks + 1):
with tf.variable_scope("utterance_attention_response_{}".format(i), reuse=reuse):
u_a_r, _ = multihead_attention(queries=Hu_stack[i], keys=Hr_stack[i], num_units=self.hidden_units, num_heads=self.num_heads, is_training=self.is_training, causality=False)
u_a_r = feedforward(u_a_r, num_units=[self.hidden_units, self.hidden_units])
u_a_r_stack.append(u_a_r)
with tf.variable_scope("response_attention_utterance_{}".format(i), reuse=reuse):
r_a_u, _ = multihead_attention(queries=Hr_stack[i], keys=Hu_stack[i], num_units=self.hidden_units, num_heads=self.num_heads, is_training=self.is_training, causality=False)
r_a_u = feedforward(r_a_u, num_units=[self.hidden_units, self.hidden_units])
r_a_u_stack.append(r_a_u)
u_a_r_stack.extend(Hu_stack)
r_a_u_stack.extend(Hr_stack)
n_a_u_stack = []
u_a_n_stack = []
for i in range(self.num_blocks + 1):
with tf.variable_scope("narrative_attention_utterance_{}".format(i), reuse=reuse):
n_a_u, _ = multihead_attention(queries=Hn_stack[i], keys=Hu_stack[i], num_units=self.hidden_units, num_heads=self.num_heads, is_training=self.is_training, causality=False)
n_a_u = feedforward(n_a_u, num_units=[self.hidden_units, self.hidden_units])
n_a_u_stack.append(n_a_u)
with tf.variable_scope("utterance_attention_narrative_{}".format(i), reuse=reuse):
u_a_n, alpha_1 = multihead_attention(queries=Hu_stack[i], keys=Hn_stack[i], num_units=self.hidden_units, num_heads=self.num_heads, is_training=self.is_training, causality=False)
u_a_n = feedforward(u_a_n, num_units=[self.hidden_units, self.hidden_units])
u_a_n_stack.append(u_a_n)
n_a_u_stack.extend(Hn_stack)
u_a_n_stack.extend(Hu_stack)
u_a_r = tf.stack(u_a_r_stack, axis=-1)
r_a_u = tf.stack(r_a_u_stack, axis=-1)
u_a_n = tf.stack(u_a_n_stack, axis=-1)
n_a_u = tf.stack(n_a_u_stack, axis=-1)
with tf.variable_scope('similarity'):
# sim shape [batch, max_sent_len, max_sent_len, 2 * (stack_num + 1)]
sim_ur = tf.einsum('biks,bjks->bijs', u_a_r, r_a_u) / tf.sqrt(200.0)
sim_un = tf.einsum('biks,bjks->bijs', u_a_n, n_a_u) / tf.sqrt(200.0)
self_n = tf.nn.l2_normalize(tf.stack(Hn_stack, axis=-1))
self_u = tf.nn.l2_normalize(tf.stack(Hu_stack, axis=-1))
with tf.variable_scope('similarity'):
self_sim = tf.einsum('biks,bjks->bijs', self_u, self_n) # [batch * len * len * stack]
self_sim = tf.unstack(self_sim, axis=-1, num=self.num_blocks + 1)
reuse2 = reuse
for i in range(self.num_blocks + 1):
tmp_self_sim = tf.expand_dims(self_sim[i], axis=-1)
tmp_self_sim = 1 - self.gamma * tf.layers.conv2d(tmp_self_sim, filters=1, kernel_size=[max_sentence_len, 1], padding="valid", kernel_initializer=tf.ones_initializer, use_bias=False, trainable=False, reuse=reuse2) # for auto2
tmp_self_sim = tf.squeeze(tmp_self_sim, axis=1)
tmp_self_sim = tf.squeeze(tmp_self_sim, axis=-1)
Hn_stack[i] = tf.einsum('bik,bi->bik', Hn_stack[i], tmp_self_sim)
reuse2 = True
Mur.append(sim_ur)
Mun.append(sim_un)
if not reuse:
reuse = True
r_a_n_stack = []
n_a_r_stack = []
reuse2 = False
for i in range(self.num_blocks + 1):
with tf.variable_scope("narrative_attention_response_{}".format(i), reuse=reuse2):
n_a_r, _ = multihead_attention(queries=Hn_stack[i], keys=Hr_stack[i], num_units=self.hidden_units, num_heads=self.num_heads, is_training=self.is_training, causality=False)
n_a_r = feedforward(n_a_r, num_units=[self.hidden_units, self.hidden_units])
n_a_r_stack.append(n_a_r)
with tf.variable_scope("response_attention_narrative_{}".format(i), reuse=reuse2):
r_a_n, _ = multihead_attention(queries=Hr_stack[i], keys=Hn_stack[i], num_units=self.hidden_units, num_heads=self.num_heads, is_training=self.is_training, causality=False)
r_a_n = feedforward(r_a_n, num_units=[self.hidden_units, self.hidden_units])
r_a_n_stack.append(r_a_n)
n_a_r_stack.extend(Hn_stack)
r_a_n_stack.extend(Hr_stack)
n_a_r = tf.stack(n_a_r_stack, axis=-1)
r_a_n = tf.stack(r_a_n_stack, axis=-1)
with tf.variable_scope('similarity'):
Mrn = tf.einsum('biks,bjks->bijs', n_a_r, r_a_n) / tf.sqrt(200.0)
Mur = tf.stack(Mur, axis=1)
Mun = tf.stack(Mun, axis=1)
with tf.variable_scope('cnn_aggregation'):
conv3d = tf.layers.conv3d(Mur, filters=32, kernel_size=[3, 3, 3], padding="SAME", activation=tf.nn.elu, kernel_initializer=tf.random_uniform_initializer(-0.01, 0.01), name="conv1")
pool3d = tf.layers.max_pooling3d(conv3d, pool_size=[3, 3, 3], strides=[3, 3, 3], padding="SAME")
conv3d2 = tf.layers.conv3d(pool3d, filters=16, kernel_size=[3, 3, 3], padding="SAME", activation=tf.nn.elu, kernel_initializer=tf.random_uniform_initializer(-0.01, 0.01), name="conv2")
pool3d2 = tf.layers.max_pooling3d(conv3d2, pool_size=[3, 3, 3], strides=[3, 3, 3], padding="SAME")
mur = tf.contrib.layers.flatten(pool3d2)
with tf.variable_scope('cnn_aggregation', reuse=True):
conv3d = tf.layers.conv3d(Mun, filters=32, kernel_size=[3, 3, 3], padding="SAME", activation=tf.nn.elu,
kernel_initializer=tf.random_uniform_initializer(-0.01, 0.01), name="conv1")
pool3d = tf.layers.max_pooling3d(conv3d, pool_size=[3, 3, 3], strides=[3, 3, 3], padding="SAME")
conv3d2 = tf.layers.conv3d(pool3d, filters=16, kernel_size=[3, 3, 3], padding="SAME", activation=tf.nn.elu,
kernel_initializer=tf.random_uniform_initializer(-0.01, 0.01), name="conv2")
pool3d2 = tf.layers.max_pooling3d(conv3d2, pool_size=[3, 3, 3], strides=[3, 3, 3], padding="SAME")
mun = tf.contrib.layers.flatten(pool3d2)
with tf.variable_scope('cnn_aggregation'):
conv2d = tf.layers.conv2d(Mrn, filters=32, kernel_size=[3, 3], padding="SAME", activation=tf.nn.elu, kernel_initializer=tf.random_uniform_initializer(-0.01, 0.01), name="conv2d")
pool2d = tf.layers.max_pooling2d(conv2d, pool_size=[3, 3], strides=[3, 3], padding="SAME")
conv2d2 = tf.layers.conv2d(pool2d, filters=16, kernel_size=[3, 3], padding="SAME", activation=tf.nn.elu, kernel_initializer=tf.random_uniform_initializer(-0.01, 0.01), name="conv2d2")
pool2d2 = tf.layers.max_pooling2d(conv2d2, pool_size=[3, 3], strides=[3, 3], padding="SAME")
mrn = tf.contrib.layers.flatten(pool2d2)
all_vector = tf.concat([mur, mun, mrn], axis=-1)
logits = tf.reshape(tf.layers.dense(all_vector, 1, kernel_initializer=tf.orthogonal_initializer()), [-1])
self.y_pred = tf.sigmoid(logits)
self.learning_rate = tf.train.exponential_decay(self.initial_learning_rate, global_step=self.global_step, decay_steps=1000, decay_rate=0.9, staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate, beta1=0.9, beta2=0.98, epsilon=1e-8)
self.loss = tf.reduce_mean(tf.clip_by_value(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.cast(self.y_true, tf.float32), logits=logits), -10, 10))
self.all_variables = tf.global_variables()
self.grads_and_vars = optimizer.compute_gradients(self.loss)
for grad, var in self.grads_and_vars:
if grad is None:
print(var)
self.capped_gvs = [(tf.clip_by_value(grad, -5, 5), var) for grad, var in self.grads_and_vars]
self.train_op = optimizer.apply_gradients(self.capped_gvs, global_step=self.global_step)
self.saver = tf.train.Saver(max_to_keep=10)
self.alpha_1 = alpha_1
def evaluate(model_path, eval_file, output_path):
with open(eval_file, 'rb') as f:
utterance, response, narrative, labels = pickle.load(f)
all_candidate_scores = []
utterance, utterance_len = Utils.multi_sequences_padding(utterance, max_sentence_len, max_num_utterance=max_num_utterance)
utterance, utterance_len = np.array(utterance), np.array(utterance_len)
narrative_len = np.array(Utils.get_sequences_length(narrative, maxlen=max_sentence_len))
narrative = np.array(pad_sequences(narrative, padding='post', maxlen=max_sentence_len))
response_len = np.array(Utils.get_sequences_length(response, maxlen=max_sentence_len))
response = np.array(pad_sequences(response, padding='post', maxlen=max_sentence_len))
y_true = np.array(labels)
dataset = tf.data.Dataset.from_tensor_slices((utterance, utterance_len, narrative, narrative_len, response, response_len, y_true))
dataset = dataset.batch(eval_batch_size)
iterator = dataset.make_initializable_iterator()
data_iterator = iterator.get_next()
with open(evaluate_embedding_file, 'rb') as f:
embeddings = pickle.load(f)
model = ScripteWriter(data_iterator)
model.build()
sess = model.load(model_path)
sess.run(iterator.initializer)
sess.run(model.embedding_init, feed_dict={model.embedding_ph: embeddings})
test_loss = 0.0
step = 0
try:
with tqdm(total=len(y_true)) as pbar:
while True:
candidate_scores, loss = sess.run([model.y_pred, model.loss])
all_candidate_scores.append(candidate_scores)
test_loss += loss
pbar.update(model.eval_batch_size)
step += 1
except tf.errors.OutOfRangeError:
pass
all_candidate_scores = np.concatenate(all_candidate_scores, axis=0)
with open(output_path + "test.result.micro_session.txt", "w") as fw:
for sc in all_candidate_scores.tolist():
fw.write(str(sc) + "\n")
return Evaluate.evaluate_all(all_candidate_scores, labels), test_loss / step, all_candidate_scores.tolist()
def simple_evaluate(sess, model, iterator, utterance_ph, utterance_len_ph, narrative_ph, narrative_len_ph, response_ph, response_len_ph, y_true_ph, eval_file):
with open(eval_file, 'rb') as f:
utterance, response, narrative, labels = pickle.load(f)
all_candidate_scores = []
utterance, utterance_len = Utils.multi_sequences_padding(utterance, max_sentence_len, max_num_utterance=max_num_utterance)
utterance, utterance_len = np.array(utterance), np.array(utterance_len)
narrative_len = np.array(Utils.get_sequences_length(narrative, maxlen=max_sentence_len))
narrative = np.array(pad_sequences(narrative, padding='post', maxlen=max_sentence_len))
response_len = np.array(Utils.get_sequences_length(response, maxlen=max_sentence_len))
response = np.array(pad_sequences(response, padding='post', maxlen=max_sentence_len))
y_true = np.array(labels)
sess.run(iterator.initializer, feed_dict={utterance_ph: utterance,
utterance_len_ph: utterance_len,
narrative_ph: narrative,
narrative_len_ph: narrative_len,
response_ph: response,
response_len_ph: response_len,
y_true_ph: y_true})
test_loss = 0.0
step = 0
try:
with tqdm(total=len(y_true)) as pbar:
while True:
candidate_scores, loss = sess.run([model.y_pred, model.loss])
all_candidate_scores.append(candidate_scores)
test_loss += loss
pbar.update(eval_batch_size)
step += 1
except tf.errors.OutOfRangeError:
pass
all_candidate_scores = np.concatenate(all_candidate_scores, axis=0)
return Evaluate.evaluate_all(all_candidate_scores, labels), test_loss / step, all_candidate_scores.tolist()
def evaluate_multi_turns(test_file, model_path, output_path):
vocab = {}
vocab_id2word = {}
utterance_ph = tf.placeholder(tf.int32, shape=(None, max_num_utterance, max_sentence_len))
response_ph = tf.placeholder(tf.int32, shape=(None, max_sentence_len))
y_true_ph = tf.placeholder(tf.int32, shape=(None,))
response_len_ph = tf.placeholder(tf.int32, shape=(None,))
utterance_len_ph = tf.placeholder(tf.int32, shape=(None, max_num_utterance))
narrative_ph = tf.placeholder(tf.int32, shape=(None, max_sentence_len))
narrative_len_ph = tf.placeholder(tf.int32, shape=(None,))
with open(evaluate_embedding_file, 'rb') as f:
embeddings = pickle.load(f)
dataset = tf.data.Dataset.from_tensor_slices((utterance_ph, utterance_len_ph, narrative_ph, narrative_len_ph, response_ph, response_len_ph, y_true_ph))
dataset = dataset.batch(eval_batch_size)
iterator = dataset.make_initializable_iterator()
data_iterator = iterator.get_next()
model = ScripteWriter(data_iterator)
model.build()
sess = model.load(model_path)
sess.run(model.embedding_init, feed_dict={model.embedding_ph: embeddings})
with open("./data/vocab.txt", "r", encoding="utf-8") as fr:
for idx, line in enumerate(fr):
line = line.strip().split("\t")
vocab[line[0]] = idx + 1
vocab_id2word[idx + 1] = line[0]
vocab["_PAD_"] = 0
vocab_id2word[0] = "_PAD_"
def initialize(test_file):
initial_file = output_path + "test.multi.0.pkl"
max_turn = 0
narrative_dict = {}
narrative_dict_score = {}
with open(test_file, 'rb') as f:
utterance, response, narrative, labels = pickle.load(f)
new_utterance, new_response, new_narrative, new_labels = [], [], [], []
for i in range(len(response)):
ut = utterance[i]
if len(ut) == 1:
o = narrative[i]
r = response[i]
l = labels[i]
new_utterance.append(ut)
new_response.append(r)
new_narrative.append(o)
new_labels.append(l)
if len(ut) > max_turn:
max_turn = len(ut)
o = "".join([vocab_id2word[x] for x in narrative[i]])
if o not in narrative_dict:
narrative_dict[o] = {0: narrative[i]}
narrative_dict_score[o] = {0: [-1]}
r = response[i]
l = labels[i]
if len(ut) in narrative_dict[o]:
narrative_dict[o][len(ut)].append(r)
narrative_dict_score[o][len(ut)].append(l)
else:
narrative_dict[o][len(ut)] = [r]
narrative_dict_score[o][len(ut)] = [l]
pickle.dump(narrative_dict, open(output_path + "response_candidate.pkl", "wb"))
new_data = [new_utterance, new_response, new_narrative, new_labels]
pickle.dump(new_data, open(initial_file, "wb"))
(acc, r2_1, r10_1, r10_2, r10_5, mrr), eva_loss, result = simple_evaluate(sess, model, iterator, utterance_ph, utterance_len_ph, narrative_ph, narrative_len_ph, response_ph, response_len_ph, y_true_ph, initial_file)
with open(output_path + "test.result.multi.0.txt", "w") as fw:
fw.write("R2@1: %f, R10@1: %f, R10@2: %f, R10@5: %f, MRR: %f\n" % (r2_1, r10_1, r10_2, r10_5, mrr))
for r in result:
fw.write(str(r) + "\n")
return max_turn, narrative_dict, narrative_dict_score
max_turn, narrative_dict, narrative_dict_score = initialize(test_file)
for turn in range(1, max_turn):
# for turn in range(1, 2):
score = []
with open(output_path + "test.result.multi." + str(turn - 1) + ".txt", "r") as fr:
for idx, line in enumerate(fr):
if idx == 0:
continue
score.append(float(line.strip()))
with open(output_path + "test.multi." + str(turn - 1) + ".pkl", "rb") as fr:
utterance, response, narrative, labels = pickle.load(fr)
new_utterance = []
new_response = []
new_narrative = []
new_labels = []
for i, o in enumerate(narrative):
if i % 10 == 0:
sent_o = "".join([vocab_id2word[x] for x in o])
if turn + 1 in narrative_dict[sent_o]:
new_response.extend(narrative_dict[sent_o][turn + 1])
score_sub_list = score[i:i + 10]
response_sub_list = response[i:i + 10]
max_idx = score_sub_list.index(max(score_sub_list))
selected_response = response_sub_list[max_idx]
for ut in utterance[i:i + 10]:
tmp = ut + [selected_response]
new_utterance.append(tmp)
new_narrative.extend([o] * 10)
new_labels.extend(narrative_dict_score[sent_o][turn + 1])
new_data = [new_utterance, new_response, new_narrative, new_labels]
new_file = output_path + "test.multi." + str(turn) + ".pkl"
pickle.dump(new_data, open(new_file, "wb"))
(acc, r2_1, r10_1, r10_2, r10_5, mrr), eva_loss, result = simple_evaluate(sess, model, iterator, utterance_ph, utterance_len_ph, narrative_ph, narrative_len_ph, response_ph, response_len_ph, y_true_ph, new_file)
with open(output_path + "test.result.multi." + str(turn) + ".txt", "w") as fw:
fw.write("R2@1: %f, R10@1: %f, R10@2: %f, R10@5: %f, MRR: %f\n" % (r2_1, r10_1, r10_2, r10_5, mrr))
for r in result:
fw.write(str(r) + "\n")
def train(load=False, model_path=None):
best_val_loss = 100000.0
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
epoch = 0
with tf.Session(config=config) as sess:
with open(embedding_file, 'rb') as f:
embeddings = pickle.load(f, encoding="bytes")
with open(train_file, 'rb') as f:
utterance, response, narrative, labels = pickle.load(f)
with open(val_file, "rb") as f:
utterance_val, response_val, narrative_val, labels_val = pickle.load(f)
state = np.random.get_state()
np.random.shuffle(utterance)
np.random.set_state(state)
np.random.shuffle(response)
np.random.set_state(state)
np.random.shuffle(labels)
np.random.set_state(state)
np.random.shuffle(narrative)
utterance_ph = tf.placeholder(tf.int32, shape=(None, max_num_utterance, max_sentence_len))
response_ph = tf.placeholder(tf.int32, shape=(None, max_sentence_len))
y_true_ph = tf.placeholder(tf.int32, shape=(None,))
response_len_ph = tf.placeholder(tf.int32, shape=(None,))
utterance_len_ph = tf.placeholder(tf.int32, shape=(None, max_num_utterance))
narrative_ph = tf.placeholder(tf.int32, shape=(None, max_sentence_len))
narrative_len_ph = tf.placeholder(tf.int32, shape=(None,))
utterance_train, utterance_len_train = Utils.multi_sequences_padding(utterance, max_sentence_len, max_num_utterance=max_num_utterance)
utterance_train, utterance_len_train = np.array(utterance_train), np.array(utterance_len_train)
response_len_train = np.array(Utils.get_sequences_length(response, maxlen=max_sentence_len))
response_train = np.array(pad_sequences(response, padding='post', maxlen=max_sentence_len))
narrative_len_train = np.array(Utils.get_sequences_length(narrative, maxlen=max_sentence_len))
narrative_train = np.array(pad_sequences(narrative, padding='post', maxlen=max_sentence_len))
y_true_train = np.array(labels)
utterance_val, utterance_len_val = Utils.multi_sequences_padding(utterance_val, max_sentence_len, max_num_utterance=max_num_utterance)
utterance_val, utterance_len_val = np.array(utterance_val), np.array(utterance_len_val)
response_len_val = np.array(Utils.get_sequences_length(response_val, maxlen=max_sentence_len))
response_val = np.array(pad_sequences(response_val, padding='post', maxlen=max_sentence_len))
narrative_len_val = np.array(Utils.get_sequences_length(narrative_val, maxlen=max_sentence_len))
narrative_val = np.array(pad_sequences(narrative_val, padding='post', maxlen=max_sentence_len))
y_true_val = np.array(labels_val)
dataset = tf.data.Dataset.from_tensor_slices((utterance_ph, utterance_len_ph, narrative_ph, narrative_len_ph, response_ph, response_len_ph,
y_true_ph)).shuffle(1000)
dataset = dataset.batch(batch_size)
iterator = dataset.make_initializable_iterator()
data_iterator = iterator.get_next()
model = ScripteWriter(data_iterator)
model.build()
if load:
sess = model.load(model_path)
sess.run(tf.global_variables_initializer())
sess.run(model.embedding_init, feed_dict={model.embedding_ph: embeddings})
while epoch < 8:
train_loss = 0.0
sess.run(iterator.initializer, feed_dict={utterance_ph: utterance_train,
utterance_len_ph: utterance_len_train,
narrative_ph: narrative_train,
narrative_len_ph: narrative_len_train,
response_ph: response_train,
response_len_ph: response_len_train,
y_true_ph: y_true_train})
step = 0
try:
with tqdm(total=len(y_true_train)) as pbar:
while True:
_, loss, lr = sess.run([model.train_op, model.loss, model.learning_rate])
train_loss += loss
pbar.set_postfix(learning_rate=lr, loss=loss)
pbar.update(model.batch_size)
step += 1
except tf.errors.OutOfRangeError:
pass
val_loss = 0.0
val_step = 0
sess.run(iterator.initializer, feed_dict={utterance_ph: utterance_val,
utterance_len_ph: utterance_len_val,
narrative_ph: narrative_val,
narrative_len_ph: narrative_len_val,
response_ph: response_val,
response_len_ph: response_len_val,
y_true_ph: y_true_val})
try:
while True:
loss = sess.run(model.loss)
val_loss += loss
val_step += 1
except tf.errors.OutOfRangeError:
pass
print('Epoch No: %d, the train loss is %f, the dev loss is %f' % (epoch + 1, train_loss / step, val_loss / val_step))
if val_loss / val_step < best_val_loss:
best_val_loss = val_loss / val_step
model.saver.save(sess, "./model/model.{0}".format(epoch + 1))
print("Save model.{}".format(epoch + 1))
epoch += 1
if __name__ == "__main__":
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
is_train = True
previous_train_modelpath = "./model/"
if is_train:
train(False, previous_train_modelpath)
else:
# check the validation loss obtained in the training process and use the saved model with the smallest validation loss
(acc, r2_1, r10_1, r10_2, r10_5, mrr), eva_loss, _ = evaluate(previous_train_modelpath, evaluate_file, output_path="./output/")
print("Loss on test set: %f, Accuracy: %f, R2@1: %f, R10@1: %f, R10@2: %f, R10@5: %f, MRR: %f" % (eva_loss, acc, r2_1, r10_1, r10_2, r10_5, mrr))
# to evaluate multi-turn results, the vocab file is needed
# evaluate_multi_turns(test_file=evaluate_file, model_path=previous_train_modelpath, output_path="./output/")
# Evaluate.recover_and_show(basic_directory="./output/")
# test_file = basic_directory + "test.result.multi.txt"
# gold_file = "./data/ground_truth.result.mul.txt"
# Evaluate.evaluate_multi_turn_result(test_file, gold_file)