-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsynthesize.py
379 lines (310 loc) · 14.5 KB
/
synthesize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import os
import json
# import re
import argparse
# from string import punctuation
import torch
import numpy as np
from torch.utils.data import DataLoader
# from g2p_en import G2p
# from pypinyin import pinyin, Style
from utils.model import get_model, get_vocoder
from utils.tools import get_configs_of, to_device, infer_one_sample, plot_embedding #, read_lexicon
from dataset import TextDataset, Dataset
from text import text_to_sequence, sequence_to_text
from utils.tools import pad_2D
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def preprocess_english(text, preprocess_config):
sequence = text_to_sequence(
text, preprocess_config["preprocessing"]["text"]["text_cleaners"]
)
print("Raw Text Sequence: {}".format(text))
print("Sequence: {}".format(" ".join([str(id) for id in sequence_to_text(sequence)])))
print("Sequence Input: {}".format(" ".join([str(id) for id in sequence])))
return np.array(sequence)
# use this one to synthesize using extracted stats = stored mu (and sigma) values
def synthesize_sample(model, args, configs, mel_stats, vocoder, batchs):
preprocess_config, model_config, train_config = configs
n_frames_per_step = model_config["decoder"]["n_frames_per_step"]
arraypath = train_config["path"]["array_path"]
for batch in batchs:
# max_target_len = batch[4].shape[1]
# r_len_pad = max_target_len % n_frames_per_step
# if r_len_pad != 0:
# max_target_len += n_frames_per_step - r_len_pad
# assert max_target_len % n_frames_per_step == 0
# ss = pad_2D(batch[4], max_target_len)
batch=to_device(batch, device, mel_stats)
# batch=to_device((*batch[0:4], ss, *batch[5:]), device, mel_stats)
# accents2 = torch.LongTensor(accents2).to(device)
# if flat_acc:
# std_acc = sig_acc*torch.ones((1,model_config["accent_encoder"]["z_dim"])).to(device)
# else:
# std_acc = sig_acc*torch.randn((1,model_config["accent_encoder"]["z_dim"])).to(device)
# if flat_spk:
# std_spk = sig_spk*torch.ones((1,model_config["speaker_encoder"]["z_dim"])).to(device)
# else:
# std_spk = sig_spk*torch.randn((1,model_config["speaker_encoder"]["z_dim"])).to(device)
acc_mu=np.load(os.path.join(arraypath,'acc_mu.npy'))
acc_var=np.load(os.path.join(arraypath,'acc_var.npy'))
spk_mu=np.load(os.path.join(arraypath,'spk_mu.npy'))
spk_var=np.load(os.path.join(arraypath,'spk_var.npy'))
acc_id=np.load(os.path.join(arraypath,'acc_id.npy'))
spk_id=np.load(os.path.join(arraypath,'spk_id.npy'))
z_acc=np.mean(acc_mu[acc_id==batch[8][0].cpu().item()],axis=0)
z_spk=np.mean(spk_mu[spk_id==batch[2][0].cpu().item()],axis=0)
accents2=None
z_acc=torch.from_numpy(z_acc).unsqueeze(0).to(device)
z_spk=torch.from_numpy(z_spk).unsqueeze(0).to(device)
with torch.no_grad():
#forward
# output = model(*batch[2:4], batch[5], batch[5], batch[4], batch[4].size(1), accents=batch[-1])
# output = model(*batch[2:4], batch[5], batch[5], batch[4], torch.tensor(max_target_len).reshape(-1).to(device), accents=batch[-1])
model.eval()
output = model.inference_sampling(*batch[2:5], *batch[6:9], accents2, z_acc, z_spk, args)
infer_one_sample(
batch,
output,
vocoder,
mel_stats,
model_config,
preprocess_config,
train_config["path"]["result_path"],
args,
)
# use this to synthesize with a reference audio
def synthesize_single(model, args, configs, mel_stats, vocoder, batchs):
preprocess_config, model_config, train_config = configs
n_frames_per_step = model_config["decoder"]["n_frames_per_step"]
for batch in batchs:
# max_target_len = batch[4].shape[1]
# r_len_pad = max_target_len % n_frames_per_step
# if r_len_pad != 0:
# max_target_len += n_frames_per_step - r_len_pad
# assert max_target_len % n_frames_per_step == 0
# ss = pad_2D(batch[4], max_target_len)
batch=to_device(batch, device, mel_stats)
# batch=to_device((*batch[0:4], ss, *batch[5:]), device, mel_stats)
with torch.no_grad():
#forward
# output = model(*batch[2:4], batch[5], batch[5], batch[4], batch[4].size(1), accents=batch[-1])
# output = model(*batch[2:4], batch[5], batch[5], batch[4], torch.tensor(max_target_len).reshape(-1).to(device), accents=batch[-1])
model.eval()
output = model.inference(*batch[2:5], *batch[6:9])
infer_one_sample(
batch,
output,
vocoder,
mel_stats,
model_config,
preprocess_config,
train_config["path"]["result_path"],
args,
)
# use this to run a whole set of reference audios through the model and extract mu and sigma values for it (to be used for inference without ref audio)
def synthesize_batch(model, args, configs, mel_stats, vocoder, loader):
preprocess_config, model_config, train_config = configs
normalize = preprocess_config["preprocessing"]["mel"]["normalize"]
acc_mu = []
acc_var = []
spk_mu = []
spk_var = []
embedding_accent_id = []
embedding_speaker_id = []
i=0
for batchs in loader:
for batch in batchs:
batch = to_device(batch, device, mel_stats if normalize else None)
with torch.no_grad():
ids,raw_texts, speakers, texts, text_lens,max_text_lens, mels,mel_lens,max_target_len,r_len_pad,gates,spker_embeds,accents = batch
batch = (ids, raw_texts, speakers, texts, mels,text_lens, max_text_lens, spker_embeds, accents)
#forward
model.eval()
output = model.inference(*batch[2:5], *batch[6:9])
infer_one_sample(
batch,
output,
vocoder,
mel_stats,
model_config,
preprocess_config,
train_config["path"]["result_path"],
args,
)
prob_ = output[4]
acc_mu.append(prob_[0].squeeze(0).cpu().detach())
acc_var.append(prob_[1].squeeze(0).cpu().detach())
spk_mu.append(prob_[2].squeeze(0).cpu().detach())
spk_var.append(prob_[3].squeeze(0).cpu().detach())
embedding_accent_id.append(batch[8].cpu().detach())
embedding_speaker_id.append(batch[2].cpu().detach())
print(i)
i+=1
embedding_acc = np.array([np.array(xi) for xi in acc_mu])
embedding_acc_var = np.array([np.array(xi) for xi in acc_var])
embedding_accent_id = np.array([np.array(id_[0]) for id_ in embedding_accent_id])
embedding_spk = np.array([np.array(xi) for xi in spk_mu])
embedding_spk_var = np.array([np.array(xi) for xi in spk_var])
embedding_speaker_id = np.array([np.array(id_[0]) for id_ in embedding_speaker_id])
np.save('output/arrays/acc_mu.npy',embedding_acc)
np.save('output/arrays/acc_var.npy',embedding_acc_var)
np.save('output/arrays/spk_mu.npy',embedding_spk)
np.save('output/arrays/spk_var.npy',embedding_spk_var)
np.save('output/arrays/acc_id.npy',embedding_accent_id)
np.save('output/arrays/spk_id.npy',embedding_speaker_id)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--restore_step", type=int, required=True)
parser.add_argument(
"--mode",
type=str,
choices=["batch", "single", "sample"],
required=True,
default="sample"
help="Synthesize a whole dataset or a single sentence",
)
parser.add_argument(
"--source",
type=str,
default=None,
help="path to a source file with format like train.txt and val.txt, for batch mode only",
)
parser.add_argument(
"--text",
type=str,
default='He turned sharply and faced Gregson across the table',
help="raw text to synthesize, for single and sample modes only",
)
parser.add_argument(
"--speaker_id",
type=str,
default="ABA",
help="speaker ID for sample mode only, for single mode this should be the same as the reference audio speaker",
)
parser.add_argument(
"--basename",
type=str,
default="ABA_a0009",
help="Reference audio for the speaker, for single-sentence mode only",
)
parser.add_argument(
"--dataset",
type=str,
required=True,
default="L2Arctic",
help="name of dataset",
)
parser.add_argument(
"--accent",
type=str,
default="Arabic",
help="Accent name, e.g., Arabic, Chinese, Hindi, Korean, Spanish, Vietnamese",
)
args = parser.parse_args()
# Check source texts
if args.mode == "batch":
assert args.source is not None and args.text is None
if args.mode == "single":
assert args.source is None and args.text is not None
# Read Config
preprocess_config, model_config, train_config = get_configs_of(args.dataset)
configs = (preprocess_config, model_config, train_config)
with open(
os.path.join(preprocess_config["path"]["preprocessed_path"], "stats.json")
) as f:
stats = json.load(f)
mel_stats = stats["mel"]
os.makedirs(
os.path.join(train_config["path"]["result_path"], str(args.restore_step)), exist_ok=True)
# Get model
model = get_model(args, configs, device, train=False)
# Load vocoder
vocoder = get_vocoder(model_config, device)
# Preprocess texts
if args.mode == "batch":
# Get dataset
# dataset = TextDataset(args.source, preprocess_config, model_config)
# batchs = DataLoader(
# dataset,
# batch_size=1, # currently only 1 is supported
# collate_fn=dataset.collate_fn,
# )
dataset = Dataset(args.source, preprocess_config, model_config, train_config, sort=True, drop_last=True)
batch_size = train_config["optimizer"]["batch_size"]
group_size = 4 # Set this larger than 1 to enable sorting in Dataset
assert batch_size * group_size < len(dataset)
loader = DataLoader(
dataset,
batch_size=batch_size*group_size,
shuffle=False,
collate_fn=dataset.collate_fn,
)
synthesize_batch(model, args, configs, mel_stats, vocoder, loader)
if args.mode == "single":
ids = raw_texts = [args.text[:100]]
# Speaker Info
load_spker_embed = model_config["multi_speaker"] \
and preprocess_config["preprocessing"]["speaker_embedder"] != 'none'
with open(os.path.join(preprocess_config["path"]["preprocessed_path"], "speakers.json")) as f:
speaker_map = json.load(f)
speakers = np.array([speaker_map[args.speaker_id]]) if model_config["multi_speaker"] else np.array([0]) # single speaker is allocated 0
spker_embed = np.load(os.path.join(
preprocess_config["path"]["preprocessed_path"],
"spker_embed",
"{}-spker_embed.npy".format(args.speaker_id),
)) if load_spker_embed else None
if preprocess_config["preprocessing"]["text"]["language"] == "en":
texts = np.array([preprocess_english(args.text, preprocess_config)])
else:
raise NotImplementedError
ref_spk, ref_sample = args.basename.split("_")
text_lens = np.array([len(texts[0])])
mel_path = os.path.join(
preprocess_config["path"]["preprocessed_path"],
"mel",
"{}-mel-arctic_{}.npy".format(ref_spk, ref_sample),
)
mel = np.load(mel_path)
mel = np.expand_dims(mel,axis=0)
with open(os.path.join(preprocess_config["path"]["preprocessed_path"], "accents.json")) as f:
accent_map = json.load(f)
accents_to_indices = dict()
for _idx, acc in enumerate(preprocess_config['accents']):
accents_to_indices[acc] = _idx
accents = np.array([accents_to_indices[accent_map[ref_spk]]])
loader = [(ids, raw_texts, speakers, texts, mel,text_lens, max(text_lens), spker_embed,accents)]
synthesize_single(model, args, configs, mel_stats, vocoder, loader)
if args.mode == "sample":
ids = raw_texts = [args.text[:100]]
# sig_acc = args.siga
# sig_spk = args.sigs
# flat_acc = args.flata
# flat_spk = args.flats
# Speaker Info
load_spker_embed = model_config["multi_speaker"] \
and preprocess_config["preprocessing"]["speaker_embedder"] != 'none'
with open(os.path.join(preprocess_config["path"]["preprocessed_path"], "speakers.json")) as f:
speaker_map = json.load(f)
speakers = np.array([speaker_map[args.speaker_id]]) if model_config["multi_speaker"] else np.array([0]) # single speaker is allocated 0
spker_embed = np.load(os.path.join(
preprocess_config["path"]["preprocessed_path"],
"spker_embed",
"{}-spker_embed.npy".format(args.speaker_id),
)) if load_spker_embed else None
if preprocess_config["preprocessing"]["text"]["language"] == "en":
texts = np.array([preprocess_english(args.text, preprocess_config)])
else:
raise NotImplementedError
acc_name=args.accent
acc_name2=args.accent2
text_lens = np.array([len(texts[0])])
with open(os.path.join(preprocess_config["path"]["preprocessed_path"], "accents.json")) as f:
accent_map = json.load(f)
accents_to_indices = dict()
for _idx, acc in enumerate(preprocess_config['accents']):
accents_to_indices[acc] = _idx
mel=np.zeros((1,1,1))
accents = np.array([accents_to_indices[acc_name]])
accents2 = np.array([accents_to_indices[acc_name2]])
loader = [(ids, raw_texts, speakers, texts, mel, text_lens, max(text_lens), spker_embed, accents)]
synthesize_sample(model, args, configs, mel_stats, vocoder, loader)