-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassify.py
35 lines (30 loc) · 1.28 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
def train_classifier(texts, labels):
# create a CountVectorizer with character-based bigrams
vectorizer = CountVectorizer(analyzer='char', ngram_range=(2,2))
X = vectorizer.fit_transform(texts)
# train the classifier and return it
clf = MultinomialNB()
clf.fit(X, labels)
return clf, vectorizer
def train_word_classifier(texts, labels):
# create a CountVectorizer with words
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(texts)
# train the classifier and return it
clf = MultinomialNB()
clf.fit(X, labels)
return clf, vectorizer
def predict_age_group(classifier, vectorizer, new_text):
# take in a classifier as input and return the prediction
new_X = vectorizer.transform([new_text])
predicted_age_group = classifier.predict(new_X)
return predicted_age_group
def evaluate_classifier(classifier, vectorizer, test_texts, test_labels):
# transform the test data
X_test = vectorizer.transform(test_texts)
# predict the age group and return score
predicted_age_groups = classifier.predict(X_test)
return accuracy_score(test_labels, predicted_age_groups)