-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognition.c
157 lines (129 loc) · 3.09 KB
/
recognition.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "recognition.h"
#define INPUT_SIZE 64
#define TRAINING_SAMPLES 2
#define WEIGHTS_FILE "weights.dat"
static double weights[INPUT_SIZE];
static double bias;
static double sigmoid(double x);
static void saveWeights(void);
static int loadWeights(void);
static void initTrainingData(void);
static double training_data[TRAINING_SAMPLES][INPUT_SIZE];
static double labels[TRAINING_SAMPLES];
static double sigmoid(double x)
{
return 1.0 / (1.0 + exp(-x));
}
/* Save Weights to a .dat file */
static void saveWeights(void)
{
FILE *file;
int i;
file = fopen(WEIGHTS_FILE, "wb");
if (file == NULL)
{
printf("Error saving weights.\n");
return;
}
fwrite(weights, sizeof(double), INPUT_SIZE, file);
fwrite(&bias, sizeof(double), 1, file);
fclose(file);
}
/* Load Weights from .dat file */
static int loadWeights(void)
{
FILE *file;
int i;
file = fopen(WEIGHTS_FILE, "rb");
if (file == NULL)
{
return 0; /* File does not exist */
}
fread(weights, sizeof(double), INPUT_SIZE, file);
fread(&bias, sizeof(double), 1, file);
fclose(file);
return 1; /* Successfully loaded */
}
/* Initializes our simple training data */
static void initTrainingData(void)
{
int i;
double sample1[INPUT_SIZE] = {
0, 1, 1, 1, 1, 1, 1, 0,
1, 0, 0, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0};
double sample2[INPUT_SIZE] = {
0, 1, 1, 1, 1, 1, 1, 0,
1, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0};
for (i = 0; i < INPUT_SIZE; i++)
{
training_data[0][i] = sample1[i];
training_data[1][i] = sample2[i];
}
labels[0] = 1.0;
labels[1] = 1.0;
}
/* Training loop for our perceptron */
void trainPerceptron(int retrain)
{
double learning_rate = 0.1;
int epochs = 100;
int epoch, i, j;
double sum, output, error;
if (!retrain && loadWeights())
{
printf("Loaded trained weights from file.\n");
return;
}
printf("Training perceptron...\n");
initTrainingData();
for (i = 0; i < INPUT_SIZE; i++)
{
weights[i] = ((double)rand() / (double)RAND_MAX) * 0.2 - 0.1;
}
bias = 0.1;
for (epoch = 0; epoch < epochs; epoch++)
{
for (i = 0; i < TRAINING_SAMPLES; i++)
{
sum = bias;
for (j = 0; j < INPUT_SIZE; j++)
{
sum += training_data[i][j] * weights[j];
}
output = sigmoid(sum);
error = labels[i] - output;
for (j = 0; j < INPUT_SIZE; j++)
{
weights[j] += learning_rate * error * training_data[i][j];
}
bias += learning_rate * error;
}
}
printf("Training complete. Saving weights...\n");
saveWeights();
}
double classifyGrid(double input[INPUT_SIZE])
{
double sum = bias;
int i;
for (i = 0; i < INPUT_SIZE; i++)
{
sum += input[i] * weights[i];
}
return sigmoid(sum);
}