-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFGVC_ARC_train.py
285 lines (222 loc) · 11.2 KB
/
FGVC_ARC_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# coding=utf-8
from __future__ import absolute_import, division, print_function
import logging
import argparse
import os
import random
import numpy as np
import torch
from Model.Model_Config import CONFIGS
from Model.ARC_ViT import ARCVisionTransformer
from Utils.tools import count_parameters, AverageMeter
from Data_process.FGVC_config import DATA_CONFIGS
from Data_process.FGVC_loader import construct_test_loader, construct_train_loader
from tqdm import tqdm
from Utils.scheduler import WarmupLinearSchedule, WarmupCosineSchedule
from Utils.Frozen_weight import ViT_ARC_Frozen
logger = logging.getLogger(__name__)
def save_model(args, model):
model_to_save = model.Module if hasattr(model, "module") else model
model_checkpoint = os.path.join(args.output_dir, "%s_checkpoint.bin" % args.name)
torch.save(model_to_save.state_dict(), model_checkpoint)
logger.info("Saved model checkpoint to [DIR: %s]", args.output_dir)
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def setup(args):
# get configure information
config = CONFIGS[args.model_type]
config.transformer["mlp_drop_rate"] = args.vit_drop
config.adapter_dropout = args.adapt_drop
# 初始化transformer模型
num_classes = DATA_CONFIGS[args.dataset].Num_Classes
model = ARCVisionTransformer(config, args.img_size, num_classes=num_classes, zero_head=True,
tuning_mode=args.tuning_mode)
model.load_from(np.load(args.pretrained_dir))
model.to(args.device)
# frozen weights
ViT_ARC_Frozen(model)
num_params = count_parameters(model)
logger.info("{}".format(config))
logger.info("Training HypeParameters %s", args)
logger.info("Total Parameter: \t%2.2fM" % num_params)
for name, para in model.named_parameters():
if para.requires_grad == True:
print(name)
return model, num_params
def valid(args, model, test_loader):
eval_losses = AverageMeter()
logger.info("***** Running Validation *****")
logger.info(" Num steps = %d", len(test_loader))
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
all_preds, all_label = [], []
epoch_iterator = tqdm(test_loader,
desc="Testing (X / X steps) (loss = X.X)",
bar_format='{l_bar}-{r_bar}',
dynamic_ncols=True)
loss_fct = torch.nn.CrossEntropyLoss()
for step, batch in enumerate(epoch_iterator):
batch = tuple(t.to(args.device) for t in batch)
x, label = batch
with torch.no_grad():
logits = model(x)
eval_loss = loss_fct(logits, label)
eval_losses.update(eval_loss.item())
prediction = torch.argmax(logits, dim=-1)
if len(all_preds) == 0:
all_preds.append(prediction.detach().cpu().numpy())
all_label.append(label.detach().cpu().numpy())
else:
all_preds[0] = np.append(
all_preds[0], prediction.detach().cpu().numpy(), axis=0)
all_label[0] = np.append(
all_label[0], label.detach().cpu().numpy(), axis=0)
epoch_iterator.set_description("Validating... (loss=%2.5f)" % eval_losses.val)
all_preds = all_preds[0]
all_label = all_label[0]
accuracy = simple_accuracy(all_preds, all_label)
logger.info("\n")
logger.info("Validation Results")
logger.info("Valid Loss: %2.5f" % eval_losses.avg)
logger.info("Valid Accuracy: %2.5f" % accuracy)
return accuracy
def train(args, model):
# output dir
os.makedirs(args.output_dir, exist_ok=True)
data_cfg = DATA_CONFIGS[args.dataset]
train_loader = construct_train_loader(data_cfg, args.train_batch_size, data_path=args.data_path)
test_loader = construct_test_loader(data_cfg, args.eval_batch_size, data_path=args.data_path)
epoch_steps = len(train_loader)
total_steps = epoch_steps * args.num_epochs
warm_steps = epoch_steps * args.warmup_epochs
evl_steps = args.eval_every * epoch_steps
optimizer = torch.optim.AdamW(model.parameters(),
lr=args.learning_rate,
weight_decay=args.weight_decay)
if args.decay_type == "cosine":
schedule = WarmupCosineSchedule(optimizer, warmup_steps=warm_steps, t_total=total_steps)
else:
schedule = WarmupLinearSchedule(optimizer, warmup_steps=warm_steps, t_total=total_steps)
logger.info("***** Running training *****")
logger.info(" Total optimization steps = %d", total_steps)
logger.info(" Instantaneous batch size per GPU = %d", args.train_batch_size)
logger.info(" Total train batch size = %d", args.train_batch_size * args.gradient_accumulation_steps)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
# 开始训练,首先将梯度给初始化为0
model.zero_grad()
set_seed(args) # 需要进行设定唯一的seed,这里相当于重复现
# 用于记录历史的Loss值
losses = AverageMeter()
# 全局的步骤和最好的准确率
global_step, best_acc = 0, 0
# 开始训练的过程
while True:
model.train()
# 用于显示训练进度的进度条类,可以需要的时候再单独学习
epoch_iterator = tqdm(train_loader,
desc="Training (X / X steps) (loss = X.X)",
bar_format='{l_bar}-{r_bar}',
dynamic_ncols=True)
for step, batch in enumerate(epoch_iterator):
batch = tuple(t.to(args.device) for t in batch)
x, label = batch
loss = model(x, label)
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
losses.update(loss.item())
# 用于添加norm的阶段信息,类似于加了一个惩罚项,就是所谓的L1或者L2约束
torch.nn.utils.clip_grad_norm(model.parameters(), args.max_grad_norm)
optimizer.step()
schedule.step()
optimizer.zero_grad()
global_step += 1
epoch_iterator.set_description(
"Training (%d / %d Steps) (loss=%2.5f)" % (global_step, total_steps, losses.val))
if (global_step + 1) % evl_steps == 0:
accuracy = valid(args, model, test_loader)
if best_acc < accuracy:
# save_model(args, model)
best_acc = accuracy
model.train()
if (global_step + 1) % total_steps == 0:
break
losses.reset()
if (global_step + 1) % total_steps == 0:
break
logger.info("Best Accuracy: \t%f" % best_acc)
logger.info("End Training!")
return best_acc
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--data_path", default="/root/autodl-tmp/Data",
help="where is the data store, should be changed according to local file")
parser.add_argument("--name", default="ViT-B_16_cifar_att_mlp_independent_50dim_bias0_repadapterStructure_error",
help="Name of this run. Used for monitoring.")
parser.add_argument("--dataset", choices=["StanfordDogs", "OxfordFlowers", "CUB_200_2011", "StanfordCars",
"NABirds"], default="StanfordDogs",
help="Which downstream task.")
parser.add_argument("--tuning_mode", choices=["ARC_att", "ARC"],
default="ARC_att", help="Which downstream task.")
parser.add_argument("--model_type", choices=["ViT-B_16", "ViT-L_16", "ViT-H_14"],
default="ViT-B_16",
help="Which variant to use.")
parser.add_argument("--pretrained_dir", type=str, default="ViT-B_16.npz",
help="Where to search for pretrained ViT models.")
parser.add_argument("--output_dir", default="output", type=str,
help="The output directory where checkpoints will be written.")
parser.add_argument("--img_size", default=224, type=int,
help="Resolution size")
parser.add_argument("--train_batch_size", default=32, type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size", default=256, type=int,
help="Total batch size for eval.")
parser.add_argument("--eval_every", default=1, type=int,
help="Run prediction on validation set every so many steps."
"Will always run one evaluation at the end of training.")
parser.add_argument("--learning_rate", default=0.005, type=float,
help="The initial learning rate for SGD.")
parser.add_argument("--weight_decay", default=0.01, type=float,
help="Weight decay if we apply some.")
parser.add_argument("--num_epochs", default=100, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--decay_type", choices=["cosine", "linear"], default="cosine",
help="How to decay the learning rate.")
parser.add_argument("--warmup_epochs", default=10, type=int,
help="Step of training to perform learning rate warmup for.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--vit_drop", default=0, type=float,
help="Max gradient norm.")
parser.add_argument("--adapt_drop", default=0.1, type=float,
help="Max gradient norm.")
args = parser.parse_args()
# Setup CUDA, GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.n_gpu = torch.cuda.device_count()
args.device = device
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO)
logger.warning("Process device: %s, n_gpu: %s" % (args.device, args.n_gpu))
# Set seed
set_seed(args)
# Model & Tokenizer Setup
model, num_params = setup(args)
# Training
best_acc = train(args, model)
return best_acc, num_params
if __name__ == "__main__":
main()