https://leetcode-cn.com/problems/maximum-depth-of-binary-tree/
- Maximum Depth of Binary Tree
简单
Given the root of a binary tree, return its maximum depth.
A binary tree's maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
Example 1:
Input: root = [3,9,20,null,null,15,7] Output: 3
Example 2:
Input: root = [1,null,2] Output: 2
Constraints:
The number of nodes in the tree is in the range [0, 104]. -100 <= Node.val <= 100
相关企业
- 领英 LinkedIn|17
- 亚马逊 Amazon|7
- 字节跳动|6
- 谷歌 Google|5
- 微软 Microsoft|3
相关标签
- Tree
- Depth-First Search
- Breadth-First Search
- Binary Tree
相似题目
- Balanced Binary Tree 简单
- Minimum Depth of Binary Tree 简单
- Maximum Depth of N-ary Tree 简单
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxDepth(self, root: Optional[TreeNode]) -> int:
if not root:
return 0
return max(self.maxDepth(root.left), self.maxDepth(root.right)) + 1
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
if (root == null){
return 0;
}
return Math.max(this.maxDepth(root.left), this.maxDepth(root.right)) +1;
}
}
- 思路
-
- 这道题用DFS(深度优先搜索)来解答。我们知道,每个节点的深度与它左右子树的深度有关,且等于其左右子树最大深度值加上 1。
- 递归设计
-
- 递归条件(recursive case): 对于当前节点root,我们求出左右子树的深度的最大值,再加1表示当前节点的深度,返回该数值,即为以root为根节点的树的最大深度。
-
- 终止条件(base case):当前节点为空时,认为树深为0。
- 时间复杂度:O(n),其中 n是节点的数量。我们每个节点只访问一次,因此时间复杂度为 O(n)。
- 空间复杂度:考虑到递归使用调用栈(call stack)的情况。
-
- 最坏情况:树完全不平衡。例如每个节点都只有左节点,此时将递归n 次,需要保持调用栈的存储为O(n)
-
- 最好情况:树完全平衡。即树的高度为 log(n),此时空间复杂度为 O(log(n))
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
if (root == null ){
return 0;
}
return _maxDepth(root, 1);
}
public int _maxDepth(TreeNode curr, int maxDep) {
if (curr.left == null && curr.right == null){
return maxDep;
}
int leftDepth = 0;
int rightDepth = 0;
if (curr.left != null){
leftDepth = _maxDepth(curr.left, maxDep + 1);
}
if (curr.right != null){
rightDepth = _maxDepth(curr.right, maxDep + 1);
}
maxDep = leftDepth > rightDepth ? leftDepth : rightDepth;
return maxDep;
}
}
as above solution section