-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpset-5.tex
705 lines (640 loc) · 32.7 KB
/
pset-5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
\documentclass[letterpaper]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{hyperref}
\usepackage{geometry}
\usepackage{nth}
% Comment the following lines to use the default Computer Modern font
% instead of the Palatino font provided by the mathpazo package.
% Remove the 'osf' bit if you don't like the old style figures.
\usepackage[T1]{fontenc}
\usepackage[sc,osf]{mathpazo}
\newcommand*{\QED}{\hfill\ensuremath{\square}}%
\DeclareMathOperator{\rank}{rank}
% Set your name here
\def\name{Problem Set 5}
\geometry{
body={6.5in, 8.5in},
left=1.0in,
top=1.25in
}
% Customize page headers
\pagestyle{myheadings}
\markright{\name}
\thispagestyle{empty}
% Custom section fonts
\usepackage{sectsty}
\sectionfont{\rmfamily\mdseries\Large}
\subsectionfont{\rmfamily\mdseries\itshape\large}
% Other possible font commands include:
% \ttfamily for teletype,
% \sffamily for sans serif,
% \bfseries for bold,
% \scshape for small caps,
% \normalsize, \large, \Large, \LARGE sizes.
% Don't indent paragraphs.
\setlength\parindent{0em}
\begin{document}
{\huge \name}
% Alternatively, print name centered and bold:
%\centerline{\huge \bf \name}
\vspace{0.25in}
Dev Dabke \\
MATH 501: Introduction to Algebraic Structures I \\
October 4, 2016 \\
Prof.\ Calderbank \\
\section{Question 1}
\label{sec:Question1}
First, let us develop some useful labels for our 4-by-4 matrices:
\begin{align*}
A &=
\begin{bmatrix} + & & & \\ & + & & \\ & & + & \\ & & & + \end{bmatrix}
\\
B &=
\begin{bmatrix} & + & & \\ - & & & \\ & & & - \\ & & + & \end{bmatrix}
\\
C &= \begin{bmatrix} & & - & \\ & & & - \\ + & & & \\ & + & & \end{bmatrix}
\\
D &=
\begin{bmatrix} & & & - \\ & & + & \\ & - & & \\ + & & & \end{bmatrix}
\\
\end{align*}
Next, we will take elements of $ D_4 $:
\begin{align*}
I_2 &= \begin{bmatrix} + & \\ & + \end{bmatrix}
\\
x &= \begin{bmatrix} & + \\ + & \end{bmatrix}
\\
xz &= \begin{bmatrix} & - \\ + & \end{bmatrix}
\\
xzx &= \begin{bmatrix} - & \\ & + \end{bmatrix}
\end{align*}
Thus, we can write that:
\begin{align}
A &= I_2 \otimes I_2 \label{eqA} \\
B &= xzx \otimes xz \label{eqB} \\
C &= x \otimes xz \label{eqC} \\
D &= x \otimes xzx \label{eqD}
\end{align}
\section{Question 2}
\label{sec:Question2}
We will prove this by induction.
Our inductive hypothesis is:
\[
e_v = e_{v_{m-1}} \otimes \ldots \otimes e_{v_{0}}
\]
As a base case, we will prove the $ m = 0 $ case (a very simple case).
Here, $ v = (v_0) $.
$ v_0 $ can either be $ 0 $ or $ 1 $.
If $ v_0 = 0 $, then $ e_{v_0} = e_0 = (1,0) $.
Trivially, $ e_v = e_{(v_0)} = (1,0) $.
If $ v_0 = 1 $, then $ e_{v_0} = e_1 = (0,1) $.
Trivially, $ e_v = e_{(v_0)} = (0,1) $.
Thus, where $ m = 0 $, $ e_v = e_{v_0} $.
\\ \\
Now, assuming the $ m $ case, we will prove the $ m + 1 $ case.
Construct a binary, $ (m + 1) $-tuple $ w $, i.e.\ $ w = (w_m, w_{m-1}, \ldots, w_0) $.
Construct $ u : u = (w_{m-1}, w_{m-2}, \ldots, w_0) $.
For $ u $, by our inductive hypothesis, we know that:
$$ e_u = e_{w_{m-1}} \otimes \ldots \otimes e_{w_{0}} $$
We will now construct a useful vector $ x : x = e_{w_m} \otimes e_u $.
We will show that $ e_w = x $, which in turn will demonstrate that $ e_w = e_{w_m} \otimes e_{w_{m-1}} \otimes \ldots \otimes e_{w_{0}} $.
Conveniently, $ w_m $ can only have two values $ 0 $ or $ 1 $.
Let us investigate what happens in each case.
\\ \\
Where $ w_m = 0 $, we see that $ e_{w_m} = e_0 = (1,0) $.
Thus $ x = (1,0) \otimes e_u $, which looks like $ x = (e_u, \vec{0}) $, where $ \vec{0} $ is the vector of all $ 0 $ entries with the same length as $ e_u $.
In short, the first $ 2^{m-1} $ terms of $ x $ are the terms of $ e_u $ and the next $ 2^{m-1} $ terms are all $ 0 $.
Note that we have constructed a vector with length $ 2^{m-1} + 2^{m-1} = 2(2^{m-1}) = 2^1 2^{m-1} = 2^{(1 + m - 1)} = 2^m $.
We can finally see what is actually going on:
we are taking a binary number and adding a new bit; in particular, we are adding a most-significant digit (bit).
\\ \\
Therefore, in this case, we have added an extra $ 0 $ to our number on the left side, i.e.\ as the most-significant digit (bit).
An arbitrary number $ k $ written out with $ m $ digits that has a $ 0 $ added as the most-significant digit (bit) does not change value.
Therefore, when $ w_m $ is $ 0 $, we do not change the value of what this number represents from the value that $ u $ represents.
In short, the representation vector is simply twice as long; we copy the original part of the vector, and fill the rest of the bits with $ 0 $s, as the $ 1 $ will already be in the right position.
This would look like $ x = (e_u, \vec{0}) $, which is exactly what we get.
If we inspect $ e_w $, we see that we get a vector with a $ 1 $ in the same spot as $ e_u $, just with twice the length.
Therefore, where $ w_m = 0 $, we see that $ e_w = x = e_{w_m} \otimes e_u $.
\\ \\
Similarly, where $ w_m = 1 $, we see that $ e_{w_m} = e_1 = (0,1) $.
We yield $ x = (0,1) \otimes e_u $, which looks like $ x = (\vec{0}, e_u) $, where $ \vec{0} $ is as it was before.
We again have constructed a vector of length $ 2^m $.
Let us once more consider the argument by looking at what $ w_m $ represents.
If it is a $ 1 $, we are constructing a new number with $ 1 $ as its most-significant digit (bit).
Designate $ y $ as the number that $ u $ encodes in binary.
It is in the $ m $ position, so our new number $ 2^{m - 1} + y $.
In short, in our $ 2^m $ representation vector, we have to shift over wherever our $ 1 $ is by $ 2^{m - 1} $ spots to add the value $ 2^{m - 1} $.
Note that this is not a special process for powers of two.
In fact, for any representation vector, to add any value $ z $ to our current representation, we would just need to move our $ 1 $ over by $ z $ spots.
\\ \\
What would this new representation vector look like with our $ 1 $ shifted over by $ 2^{m-1} $?
It would look like $ x = (\vec{0}, e_u) $!
Looking at $ e_w $, we have correctly shifted over the $ 1 $ in the correct spot, which would $ 2^{m - 1} $ places over to the right.
Again, $ e_w = x = e_{w_m} \otimes e_u $
\\ \\
Looking across the quad to the ECE department, we see that we have in fact constructed a decoder.
Since we have that $ e_w = e_{w_m} \otimes e_u $ no matter the value of $ w_m $, we can make our formal conclusion by substitution.
Since $ e_u = e_{w_{m-1}} \otimes \ldots \otimes e_{w_{0}} $, we see that:
$$ e_w = e_{w_m} \otimes e_{w_{m-1}} \otimes \ldots \otimes e_{w_{0}} $$
\QED{}
\section{Question 3}
\label{sec:Question3}
We will prove this by exhaustion.
\\ \\
First, we are going to inspect $ e_{v_{i} + a_{i}} $ and $ e_{v_{i}} \begin{bmatrix} & + \\ + & \end{bmatrix}^{a_{i}} $.
In particular, we will show that:
\[
e_{v_{i} + a_{i}} = e_{v_{i}} \begin{bmatrix} & + \\ + & \end{bmatrix}^{a_{i}}
\]
To start, we will need to have a few facts at our disposal:
\begin{align}
0 + 0 &= 1 + 1 &= 0 \\
0 + 1 &= 1 + 0 &= 1
\end{align}
and:
\begin{align}
\begin{bmatrix} & + \\ + & \end{bmatrix}^{0} &= \begin{bmatrix} + & \\ & + \end{bmatrix} \\
\begin{bmatrix} & + \\ + & \end{bmatrix}^{1} &= \begin{bmatrix} & + \\ + & \end{bmatrix}
\end{align}
Now, we know that $ v_{i} $ and $ a_{i} $ can each either be $ 0 $ or $ 1 $.
We will also note $ x^1 = \begin{bmatrix} & + \\ + & \end{bmatrix} $ and $ x^0 = \begin{bmatrix} + & \\ & + \end{bmatrix} $
Let us enumerate all of the possibilities:
\begin{center}
\begin{tabular}{c | c | c | c }
\hline
$ v_i $ & $ a_i $ & $ e_{v_i + a_i} $ & $ e_{v_i} x^{a_i} $ \\
\hline
\hline
0 & 0 & $ e_0 = (1, 0) $ & $ (1, 0) x^0 = (1, 0) $ \\
0 & 1 & $ e_1 = (0, 1) $ & $ (1, 0) x^1 = (0, 1) $ \\
1 & 0 & $ e_1 = (0, 1) $ & $ (0, 1) x^0 = (0, 1) $ \\
1 & 1 & $ e_0 = (1, 0) $ & $ (0, 1) x^1 = (1, 0) $
\end{tabular}
\end{center}
As we can see, we have proven that
\begin{equation}
\label{eqn:eviadao}
e_{v_{i} + a_{i}} = e_{v_{i}} \begin{bmatrix} & + \\ + & \end{bmatrix}^{a_{i}}
\end{equation}
\\ \\
Next, we will introduce a fact about the Kronecker product for matrices:
\begin{equation}
(A \otimes B) (C \otimes D) = AC \otimes BD
\label{eqn:kronecker-product}
\end{equation}
where the products $ AC $, $ BD $, and $ (A \otimes B) (C \otimes D) $ are well-defined.
\\ \\
Now, we can finally tie all of this together to yield our proof.
First, let us consider the structure of $ e_{v + a} $.
For convenience, let us write $ v = (v_0, \ldots, v_{m - 1}) $ and $ a = (a_0, \ldots, a_{m - 1}) $.
We see that $ v + a = (v_0 + a_0, \ldots, v_{m - 1} + a_{m - 1}) $.
By our proof for Question~\ref{sec:Question2}, then
\begin{equation}
\label{eqn:evplusa}
e_{v + a} = e_{v_{m - 1} + a_{m - 1}} \otimes \ldots \otimes e_{v_0 + a_0}
\end{equation}
\\ \\
If we look at $ e_v D(a, 0) $, we yield something similar.
Since $ e_v = e_{v_{m - 1}} \otimes \ldots \otimes e_{v_0} $ (by Question~\ref{sec:Question2}) and (by definition) $ D(a, 0) = x^{a_{m - 1}} \otimes \ldots \otimes x^{a_{0}} $, we can use the fact in Equation~\ref{eqn:kronecker-product} and the associativity of the Kronecker product to see that
\begin{equation}
\label{eqn:evdao}
e_v D(a, 0) = (e_{v_{m - 1}} \otimes \ldots \otimes e_{v_0})(x^{a_{m - 1}} \otimes \ldots \otimes x^{a_{0}}) = e_{v_{m - 1}} x^{a_{m - 1}} \otimes \ldots \otimes e_{v_0} x^{a_{0}}
\end{equation}
\\ \\
Finally, let us combine Equation~\ref{eqn:eviadao}, Equation~\ref{eqn:evplusa}, and Equation~\ref{eqn:evdao} to formally conclude our proof.
\begin{align*}
e_{v + a} &= e_{v_{m - 1} + a_{m - 1}} \otimes \ldots \otimes e_{v_0 + a_0} &\text{by Equation~\ref{eqn:evplusa}} \\
e_{v + a} &= e_{v_{m - 1}} x^{a_{m - 1}} \otimes \ldots \otimes e_{v_0} x^{a_{0}} &\text{substitution by Equation~\ref{eqn:eviadao}} \\
e_{v + a} &= e_v D(a, 0) &\text{by Equation~\ref{eqn:evdao}}
\end{align*}
\QED{}
\section{Question 4}
\label{sec:Question4}
This proof will follow a similar train of though as Question~\ref{sec:Question3}.
\\ \\
Let us look at the product $ e_v D(0, b) $ (using Question~\ref{sec:Question2})
\[
e_v D(0, b) = (e_{v_{m - q}} \otimes \ldots \otimes e_{v_0})(z^{b_{m - 1}} \otimes \ldots \otimes z^{b_{0}})
\]
Recall the convenient property in Equation~\ref{eqn:kronecker-product}:
\begin{equation}
(A \otimes B) (C \otimes D) = AC \otimes BD
\tag{\ref{eqn:kronecker-product} revisited}
\end{equation}
By this property:
\[
e_v D(0, b) = (e_{v_{m - q}} \otimes \ldots \otimes e_{v_0})(z^{b_{m - 1}} \otimes \ldots \otimes z^{b_{0}}) = e_{v_{m - q}} z^{b_{m - 1}} \otimes \ldots \otimes e_{v_0}z^{b_{0}}
\]
We will also note $ z^1 = \begin{bmatrix} + & \\ & - \end{bmatrix} $ and $ z^0 = \begin{bmatrix} + & \\ & + \end{bmatrix} $
\\ \\
We will now use another ``truth table'' to exhaustively show what happens with the different possible values of $ v_i $ and $ b_i $ respectively:
\begin{center}
\begin{tabular}{c | c | c | c }
\hline
$ v_i $ & $ b_i $ & $ e_{v_i} $ & $ e_{v_i} z^{b_i} $ \\
\hline
\hline
0 & 0 & $ e_0 = (1, 0) $ & $ (1, 0) z^0 = (1, 0) = e_0 $ \\
0 & 1 & $ e_1 = (0, 1) $ & $ (1, 0) z^1 = (1, 0) = e_0 $ \\
1 & 0 & $ e_1 = (0, 1) $ & $ (0, 1) z^0 = (0, 1) = e_1 $ \\
1 & 1 & $ e_0 = (1, 0) $ & $ (0, 1) z^1 = (0, -1) = -e_1 $
\end{tabular}
\end{center}
Interestingly, we see that $ e_{v_i} z^{b_i} = e_{v_i} $ \textit{unless} $ v_i = b_i = 1 $.
In the case that $ v_i = b_i = 1 $, we see that $ e_{v_i} z^{b_i} = -e_{v_i} $
Let us say that $ \delta_i = 1 \iff v_i = b_i = 1 $ and $ \delta_i = 0 $ otherwise.
Now, we have certain properties of this binary multiplication, namely:
\begin{align*}
(0)(0) &= 0 \\
(0)(1) &= 0 \\
(1)(0) &= 0 \\
(1)(1) &= 1
\end{align*}
Fortunately, this aligns with exactly the function we hoped to describe with $ \delta_i $.
Therefore, we write $ \delta_i = (v_i)(b_i) $
\\ \\
Thus, we can finally equate the terms of $ e_v $ with the terms in the form of $ e_{v_i} z^{b_i} $.
Namely:
\[
e_{v_i} z^{b_i} = {(-1)}^{\delta_i} e_{v_i}
\]
Therefore, by substitution:
\begin{equation}
\label{eqn:q4subs}
e_v D(0, b) = e_{v_{m - 1}} z^{b_{m - 1}} \otimes \ldots \otimes e_{v_0}z^{b_{0}} = {(-1)}^{\delta_{m - 1}} e_{v_{m - q}} \otimes \ldots \otimes {(-1)}^{\delta_0} e_{v_0}
\end{equation}
Fortunately, we can now invoke another property of the Kronecker product:
\begin{equation}
\label{eqn:kronecker-scalar}
(cA) \otimes B = A \otimes (cB) = c(A \otimes B)
\end{equation}
where $ c $ is some scalar.
Thus, we can ``collect'' the $ \delta $ terms all onto the left side of the Kronecker product:
\[
{(-1)}^{\delta_{m - 1}} e_{v_{m - q}} \otimes \ldots \otimes {(-1)}^{\delta_0} e_{v_0} = \left[{(-1)}^{\delta_{m - 1}} \ldots {(-1)}^{\delta_0} \right] \left(e_{v_{m - q}} \otimes \ldots \otimes e_{v_0} \right)
\]
\\ \\
We will now work with the $ \delta $ terms.
In particular, we will aggregate the exponents:
\[
{(-1)}^{\delta_{m - 1}} \ldots {(-1)}^{\delta_0} = {(-1)}^{\delta_{m - 1} + \cdots + \delta_0}
\]
Recall our definition of $ d_i $, in that $ d_i = (v_i)(b_i) $.
Thus, $ \delta_{m - 1} + \cdots + \delta_0 = (v_{m - 1})(b_{m - 1}) + \cdots + (v_0)(b_0) $.
By definition $ b v^T = (v_{m - 1})(b_{m - 1}) + \cdots + (v_0)(b_0) $.
Combining these two equations yield
\[
{(-1)}^{\delta_{m - 1} + \cdots + \delta_0} = {(-1)}^{b v^T}
\]
Finally, we put everything together:
\begin{equation}
\label{eqn:q4gather}
\left[{(-1)}^{\delta_{m - 1}} \ldots {(-1)}^{\delta_0} \right] \left(e_{v_{m - q}} \otimes \ldots \otimes e_{v_0} \right) = {(-1)}^{b v^T} \left(e_{v_{m - q}} \otimes \ldots \otimes e_{v_0} \right)
\end{equation}
We can now formally complete the proof
We combine Equation~\ref{eqn:q4subs} and Equation~\ref{eqn:q4gather} to see that:
\[
e_v D(0, b) = e_{v_{m - 1}} z^{b_{m - 1}} \otimes \ldots \otimes e_{v_0}z^{b_{0}} = {(-1)}^{\delta_{m - 1}} e_{v_{m - q}} \otimes \ldots \otimes {(-1)}^{\delta_0} e_{v_0} = {(-1)}^{b v^T} \left(e_{v_{m - q}} \otimes \ldots \otimes e_{v_0} \right)
\]
Since $ e_v = \left(e_{v_{m - q}} \otimes \ldots \otimes e_{v_0} \right) $ proved in Question~\ref{sec:Question2}, we can conclude that:
\[
e_v D(0, b) = {(-1)}^{b v^T} e_v
\]
\QED{}
\section{Question 5}
\label{sec:Question5}
\subsection{Part i}
\label{sub:5Parti}
To show that $ G $ is a group, we have to show that
\begin{enumerate}
\item the operator is associative
\item that the operator permits an inverse
\item that the group is closed (to be pedantic, that the group operator has the same domain and codomain, namely the set of matrices)
\end{enumerate}
First, we know that the operator is associative since matrix multiplication is associative.
Second, we will prove that the operator permits a well-defined inverse.
Note that an element $ A = D(a,b) = D(a,0)D(0,b) $ ultimately looks like:
\[
A = D(a,0)D(0,b) = D(a,b) = (x^{a_{m - 1}} \otimes \ldots \otimes x^{a_{0}}) (z^{b_{m - 1}} \otimes \ldots \otimes z^{b_{0}}) = (x^{a_{m - 1}} z^{b_{m - 1}}) \otimes \ldots \otimes (x^{a_{0}} z^{b_{0}})
\]
As a result from linear algebra, we know that the product of two non-singular matrices is also non-singular.
Since $ x $ and $ z $ are non-singular and $ x^0 = z^0 = I_2 $ is non-singular, we see that every term $ x^{a_i} z^{b_i} $ is also non-singular and that $ \rank{(x)} = \rank{(z)} = 2 $
More precisely, $ k_i = x^{a_i} z^{b_i} $ has rank $ 2 $, since it is a non-singular $ 2 $-by-$ 2 $ matrix.
We will now invoke a useful property of the Kronecker product, namely that:
$$ \rank{(C \otimes D)} = \rank{(C)}\rank{(D)} $$
Therefore, we see that $ A $ has rank $ 2m $, since it is the Kronecker product of $ m $ matrices with rank $ 2 $.
Since it is a $ 2m $-by-$ 2m $ matrix, and thus square, and has full rank, it is non-singular.
Since it is non-singular, it has an inverse.
Thus, the operator permits a well-defined inverse.
\\ \\
Finally, we need to show that the group is closed.
Recall the property of the Kronecker product in Equation~\ref{eqn:kronecker-product}:
\begin{equation}
(A \otimes B) (C \otimes D) = AC \otimes BD
\tag{\ref{eqn:kronecker-product} revisited}
\end{equation}
What we want to show is that the group operator (matrix multiplication) is closed, i.e.\ if we multiply two elements of the group, we will get a result also in the group.
Let us take another generic element $ B \in G : B = D(a', b') $ and take its product with $ A $:
\[
AB = D(a,b)D(a',b') = \left[(x^{a_{m - 1}} z^{b_{m - 1}}) \otimes \ldots \otimes (x^{a_{0}} z^{b_{0}}) \right] \left[(x^{a'_{m - 1}} z^{b'_{m - 1}}) \otimes \ldots \otimes (x^{a'_{0}} z^{b'_{0}}) \right]
\]
Using our handy property in Equation~\ref{eqn:kronecker-product}:
\begin{equation}
\label{eqn:kron-ab-expansion}
\left[(x^{a_{m - 1}} z^{b_{m - 1}}) \otimes \ldots \otimes (x^{a_{0}} z^{b_{0}}) \right] \left[(x^{a'_{m - 1}} z^{b'_{m - 1}}) \otimes \ldots \otimes (x^{a'_{0}} z^{b'_{0}}) \right] = (x^{a_{m - 1}} z^{b_{m - 1}} x^{a'_{m - 1}} z^{b'_{m - 1}}) \otimes \ldots \otimes (x^{a_{0}} z^{b_{0}} x^{a'_{0}} z^{b'_{0}})
\end{equation}
Now, we are allowed to have anything that looks like $ \pm D(a, b) $, so we will proceed accordingly.
What we will demonstrate is that:
$ x^r z^s x^t z^u = {(-1)}^k x^v z^w $
for some $ k $.
\\ \\
Conveniently, we see that $ r $, $ s $, $ t $, and $ u $ must be either $ 0 $ or $ 1 $.
If $ s = 0 $, since this produces the identity, we generate something in the form:
\[
x^r x^t z^u = x^{r + t} z^u
\]
so, $ v = r + t $, $ u = w $, and $ k = 0 $; our equality is satisfied.
Similarly, if $ t = 0 $, then $ w = s + u $ and $ v = r $ ($ k = 0 $).
If $ s = t = 0 $, then $ v = r $ and $ w = u $ ($ k = 0 $).
\\ \\
Now, we will use the fact that $ xz = -zx $ (i.e.\ these element anti-commute).
If $ r = u = 0 $, and $ s = t = 1 $, then we see that we directly use the property of anti-commuting, in that:
\[
z^1 x^1 = (-1) x^1 z^1
\]
Now, assume either $ r = 0 $ or $ u = 0 $.
In this case, we can ``move'' the $ z $ or $ x $ terms together, with a ``sign penalty,'' i.e.\ $ k = 1 $.
Now, for every term $ (x^{a_{i}} z^{b_{i}} x^{a'_{i}} z^{b'_{i}}) $, we have that:
\[
(x^{a_{i}} z^{b_{i}} x^{a'_{i}} z^{b'_{i}}) = {(-1)}^{k_i} x^{c_i} z^{d_i}
\]
Putting this all together, where $ K $ is the sum of the $ k_i $ terms:
\[
AB = (x^{a_{m - 1}} z^{b_{m - 1}} x^{a'_{m - 1}} z^{b'_{m - 1}}) \otimes \ldots \otimes (x^{a_{0}} z^{b_{0}} x^{a'_{0}} z^{b'_{0}}) = {(-1)}^{K} D(c, d)
\]
Since $ {(-1)}^{K} D(c, d) $ is $ \pm D(c, d) $, we have shown that the product $ AB $ is indeed in the group.
Thus, we have closure.
\\ \\
Because we have elucidated these three properties, we know that we do indeed have a group with our group operator as matrix multiplication.
\\ \\
Finally, we will demonstrate that
\[
D(a,b) D(a', b') = {(-1)}^{a'b^T + b'a^T} D(a', b') D(a, b)
\]
Let us inspect a particular term $ x^{a_i} z^{b_i} x^{a'_i} z^{b'_i} $.
We are going to ``move'' the $ x^{a'_i} $ ``across'' the $ z^{b_i} $ term.
If $ a'_i = 0 $ or $ b_i = 0 $, this is trivial since at least one of the terms becomes an identity.
If $ a'_i = 1 $ and $ b_i = 1 $, then we have to do some work.
Since $ xz = -zx $ (they anti-commute), we know that:
$$ x^{a_i} zx z^{b'_i} = x^{a_i} x(-1)z z^{b'_i} = (-1) x^{a_i} xz z^{b'_i} $$
We can summarize all of this as:
$$ x^{a_i} z^{b_i} x^{a'_i} z^{b'_i} = \left[{(-1)}^{a'_i b_i} \right] x^{a_i} x^{a'_i} z^{b_i} z^{b'_i} $$
Fortunately, powers of $ x $ commute with each other as do powers of $ z $.
Thus:
\[
\left[{(-1)}^{a'_i b_i} \right] x^{a_i} x^{a'_i} z^{b_i} z^{b'_i} =
\left[{(-1)}^{a'_i b_i} \right] x^{a'_i} x^{a_i} z^{b'_i} z^{b_i}
\]
Now we will ``move'' the $ z^{b'_i} $ ``across'' the $ x^{a_i} $.
Symmetrically, we find that:
\[
x^{a'_i} x^{a_i} z^{b'_i} z^{b_i} = \left[{(-1)}^{b'_i a_i}\right] x^{a'_i} z^{b'_i} x^{a_i} z^{b_i}
\]
Putting this all together, we yield that:
\[
x^{a_i} z^{b_i} x^{a'_i} z^{b'_i} = \left[{(-1)}^{a'_i b_i} \right] \left[{(-1)}^{b'_i a_i}\right] x^{a'_i} z^{b'_i} x^{a_i} z^{b_i}
\]
and finally:
\[
x^{a_i} z^{b_i} x^{a'_i} z^{b'_i} = \left[{(-1)}^{a'_i b_i + b'_i a_i} \right] x^{a'_i} z^{b'_i} x^{a_i} z^{b_i}
\]
For convenience, denote $ \delta_i = a'_i b_i + b'_i a_i $.
We move back to the general terms:
\[
AB = (x^{a_{m - 1}} z^{b_{m - 1}} x^{a'_{m - 1}} z^{b'_{m - 1}}) \otimes \ldots \otimes (x^{a_{0}} z^{b_{0}} x^{a'_{0}} z^{b'_{0}})
\]
We substitute in what we have learned to yield:
\[
(x^{a_{m - 1}} z^{b_{m - 1}} x^{a'_{m - 1}} z^{b'_{m - 1}}) \otimes \ldots \otimes (x^{a_{0}} z^{b_{0}} x^{a'_{0}} z^{b'_{0}}) = ({(-1)}^{\delta_{m - 1}} x^{a_{m - 1}} z^{b_{m - 1}} x^{a'_{m - 1}} z^{b'_{m - 1}}) \otimes \ldots \otimes ({(-1)}^{\delta_{0}} x^{a_{0}} z^{b_{0}} x^{a'_{0}} z^{b'_{0}})
\]
By Equation~\ref{eqn:kronecker-scalar} (the scalar multiplication property of the Kronecker product), we can ``aggregate'' the $ \delta $ terms.
Therefore:
\begin{multline}
\label{eqn:q5pilong}
AB = ({(-1)}^{\delta_{m - 1}} x^{a_{m - 1}} z^{b_{m - 1}} x^{a'_{m - 1}} z^{b'_{m - 1}}) \otimes \ldots \otimes ({(-1)}^{\delta_{0}} x^{a_{0}} z^{b_{0}} x^{a'_{0}} z^{b'_{0}})
= \\
\left[{(-1)}^{\delta_{m-1}} \ldots {(-1)}^{\delta_{0}}\right] \left[(x^{a_{m - 1}} z^{b_{m - 1}} x^{a'_{m - 1}} z^{b'_{m - 1}}) \otimes \ldots \otimes (x^{a_{0}} z^{b_{0}} x^{a'_{0}} z^{b'_{0}}) \right]
\end{multline}
Now let us focus on the $ \delta $ terms:
\[
{(-1)}^{\delta_{m-1}} \ldots {(-1)}^{\delta_{0}}
=
{(-1)}^{\delta_{m-1} + \cdots + \delta_{0}}
\]
Recalling our definition of $ \delta_i = a'_i b_i + b'_i a_i $.
Using a simple result from linear algebra, we see that:
$$ \delta_{m - 1} + \cdots + \delta = a'b^T + b'a^T $$
Thus:
\[
{(-1)}^{\delta_{m-1}} \ldots {(-1)}^{\delta_{0}}
=
{(-1)}^{\delta_{m-1} + \cdots + \delta_{0}}
=
{(-1)}^{a'b^T + b'a^T}
\]
We can substitute this result back into Equation~\ref{eqn:q5pilong}, we see that:
\[
AB = \left[{(-1)}^{a'b^T + b'a^T}\right]\left[(x^{a_{m - 1}} z^{b_{m - 1}} x^{a'_{m - 1}} z^{b'_{m - 1}}) \otimes \ldots \otimes (x^{a_{0}} z^{b_{0}} x^{a'_{0}} z^{b'_{0}}) \right]
\]
By symmetry, we see that the last expression enclosed in brackets is actually just $ BA $, i.e.
\[
BA = \left[(x^{a_{m - 1}} z^{b_{m - 1}} x^{a'_{m - 1}} z^{b'_{m - 1}}) \otimes \ldots \otimes (x^{a_{0}} z^{b_{0}} x^{a'_{0}} z^{b'_{0}}) \right]
\]
Thus, we put this all together and yield:
\[
AB = \left[{(-1)}^{a'b^T + b'a^T}\right] BA
\]
or equivalently by plugging in the definitions of $ B $ and $ A $:
\[
D(a,b)D(a',b') = \left[{(-1)}^{a'b^T + b'a^T}\right] D(a',b')D(a,b)
\]
\QED{}
\subsection{Part ii}
\label{sub:5Partii}
We are going to see what happens when we square $ A = D(a,b) $, some non-identity element.
Jumping to our Kronecker product definition defined in Equation~\ref{eqn:kron-ab-expansion}, we see that:
\[
A^2 = AA = (x^{a_{m - 1}} z^{b_{m - 1}} x^{a_{m - 1}} z^{b_{m - 1}}) \otimes \ldots \otimes (x^{a_{0}} z^{b_{0}} x^{a_{0}} z^{b_{0}})
\]
Looking at a particular element $ x^{a_{i}} z^{b_{i}} x^{a_{i}} z^{b_{i}} $, we will ``inner'' terms by the same logic as before:
\[
x^{a_{i}} z^{b_{i}} x^{a_{i}} z^{b_{i}}
=
{(-1)}^{a_i b_i} x^{a_{i}} x^{a_{i}} z^{b_{i}} z^{b_{i}}
\]
We will now return to the Kronecker products of all the terms and again ``aggregate'' the ones.
Since we have now performed this operation twice on this problem set already, the details are extremely clear.
Thus, we will simply move from result to result:
\[
A^2
=
(x^{a_{m - 1}} z^{b_{m - 1}} x^{a_{m - 1}} z^{b_{m - 1}}) \otimes \ldots \otimes (x^{a_{0}} z^{b_{0}} x^{a_{0}} z^{b_{0}})
=
{(-1)}^{\sum_i a_i b_i}
(x^{a_{m - 1}} x^{a_{m - 1}} z^{b_{m - 1}} z^{b_{m - 1}}) \otimes \ldots \otimes (x^{a_{0}} x^{a_{0}} z^{b_{0}} z^{b_{0}})
\]
Note that $ \sum_i a_i b_i = ab^T $.
Thus:
\[
A^2 =
{(-1)}^{ab^T}
(x^{a_{m - 1}} x^{a_{m - 1}} z^{b_{m - 1}} z^{b_{m - 1}}) \otimes \ldots \otimes (x^{a_{0}} x^{a_{0}} z^{b_{0}} z^{b_{0}})
\]
Interestingly, we see that every term is now in the form $ x^l x^l z^k z^k $.
Since $ z^2 = x^2 = I_2 $, i.e.\ $ |x| = |z| = 2 $, we see that $ x^l x^l z^k z^k = x^{2l} z^{2k} = (I_2)(I_2) = I_2 $.
Thus, we rewrite $ A^2 $ to be:
\[
{(-1)}^{ab^T}
(I_2) \otimes \ldots \otimes (I_2)
\]
Now note that $ (I_2) \otimes \ldots \otimes (I_2) = I_{2m} $.
Thus, we see that $ A^2 = {(-1)}^{ab^T} I_{2m} $, which is very nice indeed.
$ ab^T $ can either be $ 0 $ or $ 1 $, thus we see that where it is $ 0 $, $ A^2 = I_{2m} $, which makes $ |A| = 2 $.
If $ ab^T = 1 $, then $ A^2 = -I_{2m} $.
In this case, note that $ A^3 = A^2 A = -A $.
Thus, we know that the order of $ A $ cannot be $ 3 $.
But, as is obvious, $ A^2 = -I_{2m} \implies A^4 = I_{2m} $.
Thus, for a non-identity element $ A $, it must have either order $ 2 $ or order $ 4 $.
\QED{}
\section{Question 6}
\label{sec:Question6}
Note that the first six rounds will help us determine the actual bit sequence, while the \nth{7} round will simply tell us if we are working with the positive Walsh function or the negative one.
Thus, without loss of generality, we will assume we are working with only the positive Walsh functions, and we will return to the parity issue later.
\\ \\
First, pick some fixed $ a \in \mathbb{F}_2^6 $.
This vector $ a $ characterizes the Walsh function $ W_a $ of the Grand Prize Door.
Now, every round of the first six rounds proceeds as follows:
\begin{enumerate}
\item The host picks some vector $ b \in \mathbb{F}_2^6 $
\item We pick some vector $ c \in \mathbb{F}_2^6 $
\item The host tells us if $ W_a(b) = W_a(c) $
\end{enumerate}
Let us enumerate what the Walsh function actually does.
We see that we take the product of all of the terms of the vector $ a $ with some input vector $ b $.
If $ a_i = b_i = 1 $, then $ a_i b_i = 1 $; otherwise $ a_i b_i = 0 $.
We take each term $ a_i b_i $ and sum them to get some odd or even number, which results in either a $ -1 $ or $ 1 $ output.
In essence, the Walsh function issues a parity bit over the number of bits where $ a_i b_i = 1 $.
What we are curious about, though, is in what happens when we just change one bit of the input vector.
If $ a_i = 1 $, then changing the bit of the input vector will indeed change the result of the Walsh function.
If $ a_i = 0 $, then changing the bit of the input vector will not change the result of the Walsh function.
\\ \\
Now that we have some intuition of the Walsh function, let us inspect a particular round.
Suppose the host has picked vector $ b = (b_1, \ldots, b_6) $ and we are interested in divining the value of bit $ k $.
We take $ b_k $ and we flip it to produce $ c = (b_1, \ldots, \overline{b_k}, \ldots, b_6) $.
Let us investigate what happens to the result of the Walsh function.
\\ \\
Suppose $ b_k = 0 $.
If $ a_k = 0 $, then setting $ c_k = 1 $ would result in no change in the output of the Walsh function.
However, if $ a_k = 1 $, then setting $ c_k = 1 $ would result in a change in the parity of the Walsh function.
\\ \\
What happens when $ b_k = 1 $?
If $ a_k = 0 $, then setting $ c_k = 0 $ would result in no change in the output of the Walsh function.
However, if $ a_k = 1 $, then setting $ c_k = 0 $ would result in a change in the parity of the Walsh function.
\\ \\
What we have shown is that to divine the value of a particular $ a_k $, given some input $ b $, we simply need to flip bit $ k $.
Therefore, our strategy is as follows:
\begin{enumerate}
\item For round $ k $, take the host's input $ b $ and flip bit $ k $ to produce $ c $.
\item Ask if $ W_a(b) = W_a(c) $.
\item If true, then $ a_k = 0 $; if false, then $ a_k = 1 $.
\end{enumerate}
Finally, we reach our \nth{7} round.
We will denote our final guess vector $ g $.
If there are no entries that are $ 1 $, i.e.\ we have determined that $ a = \vec{0} $, then ignore this round as it does not matter.
If there exists at least one entry that is a $ 1 $, pick the first entry.
Ask about its parity.
If it is $ + $, then we have the positive Walsh function characterized by $ a $, i.e.\ set $ g = a $.
If it is $ - $, then we have the negative Walsh function characterized by $ -a $, i.e.\ set $ g = -a $.
\\ \\
Now we can conclude: pick the door that corresponds to the Wash function characterized by $ g $, which will win us the Hawaiian vacation.
\QED{}
\section{Question 7}
\label{sec:Question7}
We will invoked a theorem that we proved on an earlier homework.
In particular, we know that the largest possible order of an element in a symmetric group $ S_N $ is the $ lcm $ of the partitions of $ N $.
For $ S_1 $, $ S_2 $, $ S_3 $, and $ S_4 $, this number is $ 1 $, $ 2 $, $ 3 $, and $ 4 $ respectively.
In $ S_5 $, note that there does exist an element of order $ 6 $, e.g.
$ (123)(45) $.
\\ \\
Why is this important?
Simply, to construct a map $ \rho : G \to S_N $, we need to map $ G $ into a subgroup of $ S_N $.
However, to satisfy the requirement that $ \rho $ be injective and homomorphic, we must find an element in $ S_N $ of order $ 6 $.
Since there exists an element in $ C_6 $ of order $ 6 $ and $ \rho $ preserves group structure, this requirement must be met.
(Trivially, $ S_5 $ contains elements of all orders less than $ 6 $, so we know we have covered everything in $ C_6 $. This is seen by fixing $ i $ points, which results in a cycle of order of $ 6 - i $.)
By what we have shown above, $ N = 5 $ is the smallest such $ N $ for which this is possible.
Thus, by definition, $ d(C_6) = 5 $.
Additionally, $ |C_6| = 6 $.
Thus
\[
\alpha(C_6) = d(C_6) / |C_6| = 5/6
\]
\QED{}
\section{Question 8}
\label{sec:Question8}
\subsection{Part i}
\label{sub:8Parti}
First, note that we will always be able to find a faithful collection.
In particular, we see that the collection with just the trivial subgroup will indeed always be faithful.
Now, let us inspect the sums over faithful collections.
We are going to transform it a little by multiplying through with the constant $ |G| $, i.e.\ the order of the group:
\[
|G| \sum_{i}^{r} \frac{1}{|H_i|} = \sum_{i}^{r} \frac{|G|}{|H_i|}
\]
Multiplying through a sum with a non-zero constant, i.e. $ |G| $, still maintains this is a minimization problem.
Now, note that $ |A_i| = |G|/|H_i| $.
Thus, we are now trying to minimize the sums:
\[
\sum_i^{r} |A_i|
\]
Suppose that we have now indeed found such a minimal sum, which must exist since we must \textit{at least} one faithful collections.
Denote this minimal sum $ \sum_{i}^{r'} |A'_i| $
Since a faithful group action must induce an injective homomorphism into $ S_l $ for some $ l $, we can now draw from the definition of the Cayley Constant.
In essence, we see that we have to be able to sum the orders of the left cosets $ A'_i $, which will in fact correspond to partitions of $ S_N $.
For this to fit, we quite literally have to find an $ N $ large enough.
For example, we could map each $ A'_i $ to a cycle of length $ |A'_i| $.
The $ lcm $ of the partitions of $ S_N $ indicate how large we are able to get.
Therefore, drawing from our argument for Question~\ref{sec:Question7}, we see that $ d(G) $, i.e.\ the smallest such $ N $ for which there is an injective homomorphism will indeed correspond to the sums of the orders of $ A'_i $.
Therefore, we see that $ d(G) = \sum_i^{r} |A'_i| $.
Dividing by $ |G| $, we yield $ d(G) / |G| = \sum_i^{r} |A'_i| / |G| = \sum_i^{r} \frac{1}{|A'_i|} $.
Since $ d(G) / |G| = \alpha(G) $ (by definition), we can formally conclude:
\[
\alpha(G) = \min{\sum_i^{r} \frac{1}{|A_i|}}
\]
\subsection{Partii}
\label{sub:8Partii}
An interesting property of the quaternions is that all subgroups of the $ \mathbb{Q}_8 $ are normal.
In addition, if we inspect the lattice, we see that all subgroups ``go through'' the one generated by $ \langle -1 \rangle $.
\\ \\
Now, let us try to find faithful collections $ I $.
If we allow just one subgroup in this collection, we see that any subgroup besides the one generated by the identity ($ \langle 1 \rangle $) will result in a non-trivial normal subgroup in the intersection of the collection, namely itself.
In fact, if we try to find a faithful collection $ I $ without the subgroup generated by the identity, we will always have $ \langle -1 \rangle $ in the intersection by the structure of this group.
Since $ \langle -1 \rangle $ is normal and is certainly nontrivial, we see that we must always include the $ \langle 1 \rangle $ in our colleciton $ I $ to generate a faithful collection.
\\ \\
We now reintroduce the result from the previous part.
Denote $ S $ as the subsgroup generated by $ \langle 1 \rangle $.
Note that $ |S| = 1 $.
Furthermore, $ 1 / |S| = 1 $.
In particular, note that this trivial subgroup is the only subgroup that has order $ 1 $.
Therefore, it also is the only subgroup with inverse order $ 1 $.
Thus, any sum over the inverse orders of the subgroups that is a faithful collection for the quaternions will have to be \textit{at least} greater than or equal to $ 1 $.
For all faithful collecitons $ I_i $, designate this sum of inverse orders as $ \sigma(I_i) = \sigma_i $
In short, we know that $ \sigma_i \geq 1 $
\\ \\
Finally, pick the collection $ I_0 = \{S\} $.
This clearly only has the trivial subgroup as its intersection.
Now, we can clearly see that $ \sigma_0 = 1 $.
Thus to formally conclude, we see that since $ \sigma_i \geq 1 $ and that we have indeed found a faithful collection $ I $ where the equality is true, i.e.\ $ \sigma_0 $, that the minimum across the $ \sigma_i $s is in fact $ 1 $.
Therefore, $ \alpha\left(\mathbb{Q}_8\right) = 1 $.
\QED{}
\end{document}