forked from the-virtual-brain/tvb-hpc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtests.py
473 lines (386 loc) · 14.7 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# Copyright 2018 TVB-HPC contributors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import logging
import unittest
import loopy as lp
from loopy.target.c import CTarget
import pymbolic as pm
import numpy as np
from scipy.stats import kstest
from .bold import BalloonWindkessel
from .coupling import (
Linear as LCf, Diff, Sigmoidal, Kuramoto as KCf,
PostSumStat)
from .model import BaseModel, _TestModel, HMJE, RWW, JansenRit, Linear, G2DO
from .model import Kuramoto
from .network import Network
from .rng import RNG
from .scheme import euler_maruyama_logp, EulerStep, EulerMaryuyamaStep
# from .harness import SimpleTimeStep
from .numba import NumbaTarget
from .utils import getLogger, VarSubst
from .workspace import Workspace, CLWorkspace
LOG = logging.getLogger(__name__)
class TestCase(unittest.TestCase):
def setUp(self):
super().setUp()
self.tic = time.time()
self.logger = getLogger(self.id())
self._time_limit = 0.1
def timeit(self, fn, *args, **kwds):
niter = 0
tic = toc = time.time()
while ((toc - tic) < self._time_limit):
fn(*args, **kwds)
toc = time.time()
niter += 1
per_iter = self._time_limit / niter
self.logger.info('%r requires %.3f ms / iter',
fn, per_iter * 1e3)
def tearDown(self):
super().tearDown()
msg = 'required %.3fs'
self.logger.info(msg, time.time() - self.tic)
class TestUtils(TestCase):
def test_var_subst(self):
subst = VarSubst(b=pm.parse('b[i, j]'))
expr = subst(pm.parse('a + b * pre_syn[i, j]'))
self.assertEqual(str(expr), 'a + b[i, j]*pre_syn[i, j]')
class BaseTestCl(TestCase):
def setUp(self):
try:
import pyopencl as cl
self.ctx = cl.create_some_context(interactive=False)
self.cq = cl.CommandQueue(self.ctx)
except Exception as exc:
raise unittest.SkipTest(
'unable to create CL queue (%r)' % (exc, ))
self.target = lp.target.pyopencl.PyOpenCLTarget()
super().setUp()
class TestCl(BaseTestCl):
def test_copy(self):
knl = lp.make_kernel('{:}', 'a = b')
knl = lp.to_batched(knl, 16, 'a b'.split(), 'i', sequential=False)
knl = lp.add_and_infer_dtypes(knl, {'a,b': 'f'})
import pyopencl.array as ca
a = ca.zeros(self.cq, (16, ), 'f')
b = ca.zeros(self.cq, (16, ), 'f')
b[:] = np.r_[:16].astype('f')
knl(self.cq, a=a, b=b)
np.testing.assert_allclose(a.get(), b.get())
def test_add_loops(self):
# build kernel
kernel = """
<> dx = a * x + b * y
<> dy = c * x + d * y
xn = x + dt * dx {nosync=*}
yn = y + dt * dy {nosync=*}
"""
state = 'x y xn yn'.split()
knl = lp.make_kernel("{:}", kernel)
knl = lp.add_and_infer_dtypes(knl, {'a,b,c,d,x,y,dt,xn,yn': 'f'})
knl = lp.to_batched(knl, 'nt', state, 'it')
knl = lp.to_batched(knl, 'na', state + ['a'], 'ia')
knl = lp.to_batched(knl, 'nb', state + ['b'], 'ib')
knl = lp.tag_inames(knl, [('ia', 'g.0'), ('ib', 'l.0')], force=True)
# setup pyopencl
import pyopencl as cl
import pyopencl.array as ca
import numpy as np
ctx = cl.create_some_context(interactive=False)
cq = cl.CommandQueue(ctx)
# workspace
a = ca.Array(cq, (10,), 'f')
b = ca.Array(cq, (10,), 'f')
x = ca.Array(cq, (10, 10, 5), 'f')
y = ca.Array(cq, (10, 10, 5), 'f')
xn = ca.Array(cq, (10, 10, 5), 'f')
yn = ca.Array(cq, (10, 10, 5), 'f')
a[:], b[:] = np.random.rand(2, 10).astype('f')
c, d, dt = [np.float32(_) for _ in (0.5, 0.6, 0.1)]
x[:], y[:], xn[:], yn[:] = np.random.rand(4, 10, 10, 5).astype('f')
# execute
knl(cq,
na=np.int32(a.size),
nb=np.int32(b.size),
nt=np.int32(x.shape[-1]),
a=a, b=b, c=c, d=d, x=x, y=y, dt=dt, xn=xn, yn=yn)
# cl arr doesn't broadcast
a_ = ca.Array(cq, (10, 10, 5), 'f')
b_ = ca.Array(cq, (10, 10, 5), 'f')
a_[:] = np.tile(a.get()[:, None], (10, 1, 5)).astype('f')
b_[:] = np.tile(b.get()[:, None, None], (1, 10, 5)).astype('f')
# check
np.testing.assert_allclose(
xn.get(), (x + dt * (a_ * x + b_ * y)).get(), 1e-6, 1e-6)
np.testing.assert_allclose(
yn.get(), (y + dt * (c * x + d * y)).get(), 1e-6, 1e-6)
class TestLoopTransforms(TestCase):
"""
These are more tests to check that our use of Loopy is correct.
"""
def setUp(self):
super().setUp()
from loopy.target.ispc import ISPCTarget
target = ISPCTarget()
self.knl = lp.make_kernel('{[i]:0<=i<n}', "out[i] = in[i]",
target=target)
def _dtype_and_code(self, knl, **extra_dtypes):
dtypes = {'in': np.float32, 'out': np.float32}
dtypes.update(extra_dtypes)
knl = lp.add_dtypes(knl, dtypes)
code, _ = lp.generate_code(knl)
return code
def test_chunk_iname(self):
"Chunk useful to split work for e.g. omp par for"
knl = lp.chunk_iname(self.knl, 'i', 8)
print(self._dtype_and_code(knl))
def test_split_iname2(self):
"Split useful for omp simd inner loop"
knl = lp.split_iname(self.knl, 'i', 8)
knl = lp.tag_inames(knl, [('i_inner', 'ilp.unr',)])
print(self._dtype_and_code(knl))
def test_wrap_loop(self):
"Take kernel, place in larger loop, offsetting certain vars"
knl = lp.make_kernel("{[i,j]:0<=i,j<n}",
"out[i] = sum(j, (i/j)*in[i, j])",
target=CTarget())
# in will depend on t
knl2 = lp.to_batched(knl, 'T', ['in'], 't')
print(self._dtype_and_code(knl2))
def test_wrap_loop_with_param(self):
knl = lp.make_kernel("{[i,j]:0<=i,j<n}",
"""
<> a = a_values[i]
out[i] = a * sum(j, (i/j)*in[i, j])
""",
target=CTarget())
# in will depend on t
knl2 = lp.to_batched(knl, 'T', ['in'], 't', sequential=True)
print(self._dtype_and_code(knl2, a_values=np.float32))
def test_split_iname3(self):
"Split one of two inames."
from loopy.target.ispc import ISPCTarget as CTarget
knl = lp.make_kernel("{[i,j]:0<=i,j<n}",
"out[i, j] = in[i, j]",
target=CTarget())
knl = lp.split_iname(knl, 'i', 8)
knl = lp.prioritize_loops(knl, ['i_outer', 'j', 'i_inner'])
print(self._dtype_and_code(knl))
def test_sparse_matmul(self):
"Tests how to do sparse indexing w/ loop."
target = NumbaTarget()
knl = lp.make_kernel(
[
'{[i]: 0 <= i < n}',
# note loop bounded by jlo jhi
'{[j]: jlo <= j < jhi}'
],
# which are set as instructions
"""
<> jlo = row[i]
<> jhi = row[i + 1]
out[i] = sum(j, dat[j] * vec[col[j]])
""",
'n nnz row col dat vec out'.split(),
target=target)
knl = lp.add_and_infer_dtypes(knl, {
'out,dat,vec': np.float32,
'col,row,n,nnz': np.uintc,
})
# col and dat have uninferrable shape
knl.args[3].shape = pm.var('nnz'),
knl.args[4].shape = pm.var('nnz'),
from scipy.sparse import csr_matrix
n = 64
mat = csr_matrix(np.ones((64, 64)) * (np.random.rand(64, 64) < 0.1))
row = mat.indptr.astype(np.uintc)
col = mat.indices.astype(np.uintc)
dat = mat.data.astype(np.float32)
out, vec = np.random.rand(2, n).astype(np.float32)
nnz = mat.nnz
knl(n, nnz, row, col, dat, vec, out)
np.testing.assert_allclose(out, mat * vec, 1e-5, 1e-6)
class TestNumbaTarget(TestCase):
def test_simple(self):
target = NumbaTarget()
knl = lp.make_kernel(
"{ [i]: 0<=i<n }",
"out[i] = 2*a[i]",
target=target
)
typed = lp.add_dtypes(knl, {'a': np.float32})
a, out = np.zeros((2, 10), np.float32)
a[:] = np.r_[:a.size]
typed(a, 10, out)
np.testing.assert_allclose(out, a * 2)
class TestCompiledKernel(TestCase):
@unittest.skip
def test_simple_kernel(self):
knl = lp.make_kernel(
"{ [i]: 0<=i<n }",
"out[i] = 2*a[i]",
target=CTarget()
)
typed = lp.add_dtypes(knl, {'a': np.float32})
code, _ = lp.generate_code(typed)
fn = CompiledKernel(typed) # noqa
a, out = np.zeros((2, 10), np.float32)
a[:] = np.r_[:a.size]
fn(a, 10, out)
np.testing.assert_allclose(out, a * 2)
class TestLogProb(TestCase):
def setUp(self):
super().setUp()
self.model = _TestModel()
def test_partials(self):
logp = euler_maruyama_logp(
self.model.state_sym,
self.model.drift_sym,
self.model.diffs_sym).sum()
for var, expr in zip(self.model.indvars,
self.model.partial(logp)):
LOG.debug('%s -> %s', var, expr)
class TestModel(TestCase):
def _test(self, model: BaseModel, log_code=False):
target = NumbaTarget()
knl = model.kernel(target=target)
target.get_kernel_executor(knl)
def test_balloon_model(self):
model = BalloonWindkessel()
self._test(model)
def test_hmje(self):
model = HMJE()
self._test(model)
def test_rww(self):
model = RWW()
self._test(model)
def test_jr(self):
model = JansenRit()
self._test(model)
def test_linear(self):
model = Linear()
self._test(model)
def test_g2do(self):
model = G2DO()
self._test(model)
class TestRNG(TestCase):
# Trickier to use Numba. Can we port one of them?
@unittest.skip
def test_r123_normal(self):
rng = RNG()
rng.build()
array = np.zeros((1024 * 1024, ), np.float32)
rng.fill(array)
d, p = kstest(array, 'norm')
# check normal samples are normal
self.assertAlmostEqual(array.mean(), 0, places=2)
self.assertAlmostEqual(array.std(), 1, places=2)
self.assertLess(d, 0.01)
class TestCoupling(TestCase):
def test_linear(self):
model = G2DO()
cf: BaseCoupling = LCf(model)
self.assertEqual(cf.post_stat(0), PostSumStat.sum)
def test_diff(self):
model = G2DO()
cf = Diff(model)
self.assertEqual(cf.post_stat(0), PostSumStat.sum)
def test_sigm(self):
model = JansenRit()
cf = Sigmoidal(model)
self.assertEqual(cf.post_stat(0), PostSumStat.sum)
def test_kura(self):
model = Kuramoto()
cf = KCf(model)
self.assertEqual(cf.post_stat(0), PostSumStat.mean)
class TestNetwork(TestCase):
def _test_dense(self, Model, Cfun):
model = Model()
cfun = Cfun(model)
net = Network(model, cfun)
target = NumbaTarget()
knl = net.kernel(target=target)
target.get_kernel_executor(knl)
def test_hmje(self):
self._test_dense(HMJE, LCf)
def test_kuramoto(self):
self._test_dense(Kuramoto, KCf)
def test_jr(self):
self._test_dense(JansenRit, Sigmoidal)
class TestScheme(TestCase):
def _test_scheme(self, scheme):
target = NumbaTarget()
knl = scheme.kernel(target=target)
target.get_kernel_executor(knl)
def test_euler_dt_literal(self):
self._test_scheme(EulerStep(0.1))
def test_euler_dt_var(self):
self._test_scheme(EulerStep(pm.var('dt')))
def test_em_dt_literal(self):
self._test_scheme(EulerMaryuyamaStep(0.1))
def test_em_dt_var(self):
self._test_scheme(EulerMaryuyamaStep(pm.var('dt')))
class TestHackathon(TestCase):
pass
class WorkspaceTestsMixIn:
def test_copy(self):
knl = lp.make_kernel('{:}', 'a = b + c + x', target=self.target)
knl = lp.to_batched(knl, 'm', ['a', 'b'], 'i')
knl = lp.to_batched(knl, 'n', ['a', 'c'], 'j')
knl = lp.add_and_infer_dtypes(knl, {'a,b,c,x': 'f'})
wspc = self.make_workspace(knl, m=10, n=5, x=3.5)
self.assertEqual(wspc.data['a'].shape, (5, 10))
self.assertEqual(wspc.data['b'].shape, (10, ))
self.assertEqual(wspc.data['x'].shape, ())
self.assertEqual(wspc.data['x'].dtype, np.float32)
class TestWorkspaceNumba(TestCase, WorkspaceTestsMixIn):
target = NumbaTarget()
def make_workspace(self, *args, **kwargs):
return Workspace(*args, **kwargs)
class TestWorkspaceCL(BaseTestCl, WorkspaceTestsMixIn):
def make_workspace(self, *args, **kwargs):
return CLWorkspace(self.cq, *args, **kwargs)
class TestMetrics(TestCase):
def test_ocov(self):
from tvb_hpc.metric import OnlineCov
ocov = OnlineCov()
knl = ocov.kernel(NumbaTarget())
_ = lp.generate_code(knl)
self.assertTrue(_)
def test_bcov(self):
from tvb_hpc.metric import BatchCov
bcov = BatchCov()
knl = bcov.kernel(NumbaTarget())
self.assertTrue(lp.generate_code(knl))
class TestRmap(TestCase):
def test_rmap_to_avg(self):
from tvb_hpc.network import RMapToAvg
knl = RMapToAvg().kernel(NumbaTarget())
i = np.r_[:16].reshape((-1, 1))
rmap = i // 4
node = i.astype('f')
roi = np.zeros((4, 1), 'f')
knl(nroi=4, nvar=1, nnode=16, rmap=rmap, node=node, roi=roi)
np.testing.assert_allclose(roi[:, 0], node.reshape((4, 4)).sum(axis=1))
def test_rmap_from_avg(self):
from tvb_hpc.network import RMapFromAvg
knl = RMapFromAvg().kernel(NumbaTarget())
i = np.r_[:16].reshape((-1, 1))
rmap = i // 4
node = np.zeros((16, 1), 'f')
roi = np.r_[:4].reshape((4, 1)).astype('f')
knl(nroi=4, nvar=1, nnode=16, rmap=rmap, node=node, roi=roi)
np.testing.assert_allclose(rmap, node)