forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
linear.py
440 lines (387 loc) · 15.3 KB
/
linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABCMeta, abstractmethod
from typing import Optional
import numpy as np
import tensorrt as trt
import torch
from .._common import default_net, default_trtnet
from .._utils import set_obj_attrs, str_dtype_to_torch, str_dtype_to_trt
from ..functional import (AllReduceFusionOp, AllReduceFusionParams, Tensor,
_add_plugin_info, _create_tensor, allgather,
allreduce, cast, matmul)
from ..mapping import Mapping
from ..module import Module
from ..parameter import Parameter
from ..plugin import TRT_LLM_PLUGIN_NAMESPACE
from .lora import LoraRuntimeParams
def _gemm_plugin(input: Tensor,
mat2: Tensor,
transa: bool = False,
transb: bool = False,
pad_lda: int = 0,
pad_ldb: int = 0,
use_fp8: bool = False,
alpha: Optional[np.ndarray] = None,
strict_dtype: Optional[trt.DataType] = None) -> Tensor:
'''
output = op(mat2)op(input)
Parameters:
input : Tensor (On GPU)
The input tensor.
mat2 : Tensor (On GPU)
The mat2 tensor.
transa : bool
Is the input tensor transposed? Set to 'True' if you want the
input tensor to be transposed, 'False' otherwise.
transb : bool
Is the mat2 tensor transposed? Set to 'True' if you want the
mat2 tensor to be transposed, 'False' otherwise.
pad_lda: int
Padding to the lead dimension of input tensor. It is used to
support the strided GEMM that only uses the sub-tensor for
computation. The GEMM plugin computation is
[N, K] x [K, M+pad_lda] -> [N, M] if transa,
[N, K] x [K+pad_lda, M] -> [N, M] if not transa.
pad_ldb: int
Padding to the lead dimension of mat2 tensor. It is used to
support the strided GEMM that only uses the sub-tensor for
computation. The GEMM plugin computation is
[N, K+pad_ldb] x [K, M] -> [N, M] if transb,
[N+pad_ldb, K] x [K, M] -> [N, M] if not transb.
use_fp8: bool
Do we use fp8 GEMM.
alpha: float
Alpha for fp8 GEMM.
strict_dtype: trt.DataType
Set the data type for the GEMM plugin. If it is None, the data
type is the gemm_plugin type set in the plugin_config.
'''
plg_creator = trt.get_plugin_registry().get_plugin_creator(
"Gemm", "1", TRT_LLM_PLUGIN_NAMESPACE)
assert plg_creator is not None
if use_fp8:
assert (
isinstance(alpha, np.ndarray) and alpha.dtype == np.float32
and alpha.size == 1
), "`alpha` must be passed as a float32 ndarray if `use_fp8` is enabled for _gemm_plugin"
assert input.dtype == trt.fp8
assert mat2.dtype == trt.fp8
transa = 1 if transa else 0
transa = trt.PluginField("transa", np.array(transa, dtype=np.int32),
trt.PluginFieldType.INT32)
transb = 1 if transb else 0
transb = trt.PluginField("transb", np.array(transb, dtype=np.int32),
trt.PluginFieldType.INT32)
pad_lda = trt.PluginField("pad_lda", np.array(pad_lda, dtype=np.int32),
trt.PluginFieldType.INT32)
pad_ldb = trt.PluginField("pad_ldb", np.array(pad_ldb, dtype=np.int32),
trt.PluginFieldType.INT32)
use_fp8 = 1 if use_fp8 else 0
use_fp8 = trt.PluginField("use_fp8", np.array(use_fp8, dtype=np.int32),
trt.PluginFieldType.INT32)
alpha = alpha if alpha else np.array(1.0, dtype=np.float32)
alpha = trt.PluginField("alpha", alpha.flatten(),
trt.PluginFieldType.FLOAT32)
if strict_dtype is not None:
assert isinstance(strict_dtype, trt.DataType)
p_dtype = strict_dtype
else:
p_dtype = str_dtype_to_trt(default_net().plugin_config.gemm_plugin)
assert p_dtype != trt.fp8, "need to use strict dtype in gemm plugin fp8"
pf_type = trt.PluginField("type_id", np.array([int(p_dtype)], np.int32),
trt.PluginFieldType.INT32)
pfc = trt.PluginFieldCollection(
[transa, transb, pad_lda, pad_ldb, pf_type, use_fp8, alpha])
gemm_plug = plg_creator.create_plugin("gemm", pfc)
plug_inputs = [input.trt_tensor, mat2.trt_tensor]
layer = default_trtnet().add_plugin_v2(plug_inputs, gemm_plug)
_add_plugin_info(layer, plg_creator, "gemm", pfc)
return _create_tensor(layer.get_output(0), layer)
class LinearBase(Module, metaclass=ABCMeta):
def __init__(
self,
local_in_features,
local_out_features,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
share_weight=None,
strict_dtype=False,
pad_lda=0,
prefer_managed_weight=True,
):
super().__init__()
self.in_features = local_in_features
self.out_features = local_out_features
self.dtype = dtype
self.pad_lda = pad_lda
self.prefer_managed_weight = prefer_managed_weight
self.share_weight = share_weight
if not share_weight:
self.weight = Parameter(
shape=(self.out_features, self.in_features),
dtype=dtype,
prefer_managed=self.prefer_managed_weight,
)
set_obj_attrs(
self.weight,
{
"weight_loader": self.weight_loader,
},
)
else:
self.weight = share_weight
self.tp_size = tp_size
self.tp_group = tp_group
self.strict_dtype = self.dtype if strict_dtype else None
if bias:
self.bias = Parameter(shape=(self.out_features, ), dtype=dtype)
else:
self.register_parameter("bias", None)
# see optimize_model's add_lora for LoRA initialization
self.lora = None
def weight_loader(self, mapping: Mapping, param: Parameter,
loaded_weight: torch.Tensor) -> None:
tp_rank = mapping.tp_rank
shard_size = param._shape[self.tp_split_dim()]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(self.tp_split_dim(), start_idx,
shard_size)
param.value = loaded_weight
@classmethod
@abstractmethod
def tp_split_dim(cls) -> int:
pass
def weight_is_kn(self): # WAR for bug 4641821
return (default_net().plugin_config.manage_weights
and self.prefer_managed_weight
and self.weight.dtype == trt.DataType.HALF)
def get_weight(self) -> Tensor:
if default_net(
).plugin_config.manage_weights and self.prefer_managed_weight:
use_gemm_plugin = default_net(
).plugin_config.gemm_plugin is not None
return self.weight.get_managed_tensor(
network=default_net(),
need_transpose=self.weight_is_kn() and not use_gemm_plugin)
else:
return self.weight.get_constant_tensor(network=default_net())
def multiply_and_lora(
self,
x,
weight,
gemm_plugin: Optional[str] = None,
use_fp8: bool = False,
alpha: Optional[np.ndarray] = None,
lora_runtime_params: Optional[LoraRuntimeParams] = None,
lora_hidden_state: Optional[Tensor] = None,
):
hidden_state = x
if gemm_plugin:
if gemm_plugin == 'fp8':
strict_dtype = str_dtype_to_trt(self.dtype) if isinstance(
self.dtype, str) else self.dtype
else:
strict_dtype = self.strict_dtype
x = _gemm_plugin(x,
weight,
transb=True,
pad_lda=self.pad_lda,
use_fp8=use_fp8,
alpha=alpha,
strict_dtype=strict_dtype)
else:
x = matmul(x, weight, transb=not self.weight_is_kn())
if default_net(
).plugin_config.lora_plugin and lora_runtime_params is not None:
x = x + self.lora(
hidden_state
if lora_hidden_state is None else lora_hidden_state,
lora_runtime_params=lora_runtime_params,
)
return x
@abstractmethod
def collect_and_bias(self, x: Tensor) -> Tensor:
pass
def multiply_collect(
self,
x,
weight,
gemm_plugin: Optional[str] = None,
use_fp8: bool = False,
alpha: Optional[np.ndarray] = None,
lora_runtime_params: Optional[LoraRuntimeParams] = None,
lora_hidden_state: Optional[Tensor] = None,
**kwargs):
x = self.multiply_and_lora(
x,
weight,
gemm_plugin=gemm_plugin,
use_fp8=use_fp8,
alpha=alpha,
lora_runtime_params=lora_runtime_params,
lora_hidden_state=lora_hidden_state,
)
return self.collect_and_bias(x, **kwargs)
def forward(self,
x,
lora_runtime_params: Optional[LoraRuntimeParams] = None,
lora_hidden_state: Optional[Tensor] = None,
**kwargs) -> Tensor:
return self.multiply_collect(
x,
self.get_weight(),
gemm_plugin=default_net().plugin_config.gemm_plugin,
use_fp8=False,
lora_runtime_params=lora_runtime_params,
lora_hidden_state=lora_hidden_state,
**kwargs)
class Linear(LinearBase):
def __init__(
self,
in_features,
out_features,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
gather_output=True,
share_weight=None,
strict_dtype=False,
pad_lda=0,
prefer_managed_weight=True,
is_qkv=True,
):
super().__init__(
local_in_features=in_features,
local_out_features=out_features // tp_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
share_weight=share_weight,
strict_dtype=strict_dtype,
pad_lda=pad_lda,
prefer_managed_weight=prefer_managed_weight,
)
self.gather_output = gather_output
self.is_qkv = is_qkv
self.tp_dim = 0
if bias:
set_obj_attrs(
self.bias,
{
"weight_loader": self.weight_loader,
},
)
@classmethod
def tp_split_dim(cls) -> int:
return 0
def collect_and_bias(self, x, **kwargs):
if self.bias is not None:
bias = cast(self.bias.value, x.dtype)
x = x + bias
if self.gather_output and self.tp_size > 1 and self.tp_group is not None:
# [dim0, local_dim] -> [dim0 * tp_size, local_dim] --> [dim0, local_dim * tp_size]
x = allgather(x, self.tp_group, gather_dim=-1)
return x
def postprocess(self, tllm_key, weights, **kwargs):
using_head_as_leading_dim = kwargs.get("using_head_as_leading_dim",
False)
config = kwargs.get("config", None)
if self.is_qkv:
if isinstance(weights, list):
if config.remove_duplicated_kv_heads:
head_size = config.hidden_size // config.num_heads if config.head_size is None else config.head_size
k, v = weights[1:]
k = k.reshape([
k.shape[0] // head_size // 2, 2, head_size,
self.in_features
])
v = v.reshape([
v.shape[0] // head_size // 2, 2, head_size,
self.in_features
])
assert (k[:, 0] == k[:, 1]).all()
assert (v[:, 0] == v[:, 1]).all()
k = k[:, 0].reshape([-1, self.in_features])
v = v[:, 0].reshape([-1, self.in_features])
weights[1] = k
weights[2] = v
weights = torch.cat(weights)
if using_head_as_leading_dim:
# Reorder [n_head, 3, head_dim, ...] into [3, n_head, head_dim, ...]
head_dim = self.out_features // (3 * config.num_heads)
w = weights.reshape(config.num_heads, 3, head_dim, -1)
w = w.transpose(0, 1)
if w.shape[-1] > 1:
weights = w.reshape(-1, self.in_features) # Weight
else:
weights = w.reshape(-1) # Bias
weights = weights.to(str_dtype_to_torch(self.dtype))
return {tllm_key: weights}
ColumnLinear = Linear
class RowLinear(LinearBase):
def __init__(
self,
in_features,
out_features,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
strict_dtype: bool = False,
pad_lda=0,
prefer_managed_weight=True,
):
super().__init__(
local_in_features=in_features // tp_size,
local_out_features=out_features,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
strict_dtype=strict_dtype,
pad_lda=pad_lda,
prefer_managed_weight=prefer_managed_weight,
)
self.tp_dim = 1
@classmethod
def tp_split_dim(cls) -> int:
return 1
def collect_and_bias(self, x, **kwargs):
reduce_fusion_params: Optional[AllReduceFusionParams] = kwargs.get(
"reduce_fusion_params", None)
if self.tp_size > 1 and self.tp_group is not None:
need_bias = self.bias is not None
fuse_bias_into_all_reduce = (
need_bias and (reduce_fusion_params is not None)
and (reduce_fusion_params.fusion_op
== AllReduceFusionOp.RESIDUAL_RMS_NORM))
if fuse_bias_into_all_reduce:
reduce_fusion_params.bias = self.bias.value
x = allreduce(x,
self.tp_group,
reduce_fusion_params=reduce_fusion_params)
if need_bias and not fuse_bias_into_all_reduce:
bias = cast(self.bias.value, x.dtype)
x = x + bias
return x
if self.bias is not None:
bias = cast(self.bias.value, x.dtype)
x = x + bias
return x