-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_data.py
55 lines (43 loc) · 1.67 KB
/
create_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import cv2
# This function can be used during sign-up of a user
def create_dataset():
# The file containing the pretrained classifier
haar_file = 'haarcascade_frontalface_default.xml'
# All the faces data will be present this folder
dataset = './dataset'
if not os.path.exists(dataset):
os.mkdir(dataset)
sub_data = input("Enter your username: ")
# Use the username as path name
path = os.path.join(dataset, sub_data)
# Add a verfication for this step
if not os.path.exists(path):
os.mkdir(path)
# Image to be resized to this shape
(width, height) = (180, 200)
# Make the cascade classifier object
face_cascade = cv2.CascadeClassifier(haar_file)
webcam = cv2.VideoCapture(0)
# The program loops until it has 30 images of the face.
count = 0
while count < 20:
# Read from the webcam
(_, im) = webcam.read()
# Convert to grayscale
gray = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
# Detect the face
faces = face_cascade.detectMultiScale(gray, 1.3, 4)
face_resize = None
for (x, y, w, h) in faces:
# The classifier seemed to scrap the chin and hair. Adjustments made to accomodate those.
face = im[y-60 : y+h+60, x-20 : x+w+20]
face_resize = cv2.resize(face, (width, height))
cv2.imwrite('% s/% s.png' % (path, count), face_resize)
count += 1
cv2.imshow('OpenCV', im)
key = cv2.waitKey(100)
if key == 27:
break
# Call this function whenever you need to create a dataset of the person's images
create_dataset()