-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcoqterm.ml
966 lines (890 loc) · 31.3 KB
/
coqterm.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
(* Copyright 2004 INRIA *)
Version.add "$Id$";;
open Expr;;
open Llproof;;
open Namespace;;
open Printf;;
let ( @@ ) = List.rev_append;;
type coqterm =
| Cvar of string
| Cty of string
| Clam of string * coqterm * coqterm
| Capp of coqterm * coqterm list
| Cnot of coqterm
| Cand of coqterm * coqterm
| Cor of coqterm * coqterm
| Cimply of coqterm * coqterm
| Cequiv of coqterm * coqterm
| Call of string * string * coqterm
| Cex of string * string * coqterm
| Clet of string * coqterm * coqterm
| Cwild
| Cmatch of coqterm * (string * string list * coqterm) list
| Cifthenelse of coqterm * coqterm * coqterm
| Cfix of string * string * coqterm
(* | Cannot of coqterm * coqterm *)
;;
type coqproof =
Phrase.phrase list * (string * coqterm) list * string * coqterm
;;
let lemma_env = (Hashtbl.create 97 : (string, string list) Hashtbl.t);;
let mapping = ref [];;
let constants_used = ref [];;
let rawname e = sprintf "%s%x" hyp_prefix (Index.get_number e);;
let rec make_mapping phrases =
match phrases with
| [] -> []
| Phrase.Hyp (n, e, _) :: t -> (rawname e, n) :: (make_mapping t)
| Phrase.Def _ :: t -> make_mapping t
| Phrase.Sig _ :: t -> make_mapping t
| Phrase.Inductive _ :: t -> make_mapping t
| Phrase.Rew _ :: t -> make_mapping t
;;
let init_mapping phrases =
mapping := make_mapping phrases;
constants_used := [];
;;
let getname e =
let result = rawname e in
try List.assoc result !mapping
with Not_found -> result
;;
let is_mapped e = List.mem_assoc (rawname e) !mapping;;
let is_goal e =
try List.assoc (rawname e) !mapping = goal_name
with Not_found -> false
;;
let induct_map = ref [];;
let constructor_table = (Hashtbl.create 100 : (string, unit) Hashtbl.t);;
let init_induct phrases =
induct_map := [];
Hashtbl.clear constructor_table;
let add_induct p =
match p with
| Phrase.Inductive (name, args, cons, schema) ->
induct_map := (name, (args, cons, schema)) :: !induct_map;
List.iter (fun (c, _) -> Hashtbl.add constructor_table c ()) cons;
| Phrase.Hyp _ | Phrase.Def _ | Phrase.Sig _ | Phrase.Rew _ -> ()
in
List.iter add_induct phrases;
;;
let get_induct name =
try List.assoc name !induct_map
with Not_found -> assert false
;;
let is_constr e =
match e with
| Eapp (Evar("@",_), Evar (f, _) :: _, _) | Eapp (Evar(f,_), _, _)
-> Hashtbl.mem constructor_table f
| _ -> false
;;
exception Cannot_infer of string;;
(* For now, [synthesize] is very simple-minded. *)
let synthesize = function
| t when t == type_iota -> any_name
| t when t == Arith.type_int -> "0%Z"
| t when t == Arith.type_rat -> "(0 # 1)%Q"
| t when t == Arith.type_real -> "0%R"
| Eapp(Evar ("nat", _), [], _) -> "O"
| Eapp(Evar ("bool", _), [], _) -> "true"
(*
| t when is_mapped (evar t) ->
let result = getname (evar t) in
constants_used := result :: !constants_used;
result
*)
| ty -> raise (Cannot_infer (Print.sexpr ty))
;;
(* let to_var e =
match e with
| Evar (v, _) -> v
| _ -> assert false *)
let cty s =
match s with
| "" -> Cwild
| _ -> Cty s
;;
(* Returns the type of e as a string.
If e is not typed, returns the empty string. *)
let string_type e =
let ty = get_type e in
if Expr.equal ty type_iota then ""
else Print.sexpr ty
;;
let rec trexpr env e =
match e with
| Evar (v, _) as var when Mltoll.is_meta v && not (List.mem v env) ->
Cvar (synthesize (get_type var))
| Evar (v, _) -> Cvar v
| Emeta _ -> assert false
| Earrow _ -> assert false
| Eapp (Evar("$match",_), e1 :: cases, _) ->
Cmatch (trexpr env e1, List.map (trcase env []) cases)
| Eapp (Evar("$fix",_), Elam (Evar (f, _) as var, e1, _) :: args, _) ->
Capp (Cfix (f, Print.sexpr (get_type var), trexpr env e1), List.map (trexpr env) args)
| Eapp (Evar("FOCAL.ifthenelse",_), [e1; e2; e3], _) ->
Cifthenelse (trexpr env e1, trexpr env e2, trexpr env e3)
| Eapp (Evar("$string",_), [Evar (v, _)], _) -> Cvar v
| Eapp (Evar(f,_), args, _) -> Capp (Cvar f, List.map (trexpr env) args)
| Eapp(_) -> assert false
| Enot (e1, _) -> Cnot (trexpr env e1)
| Eand (e1, e2, _) -> Cand (trexpr env e1, trexpr env e2)
| Eor (e1, e2, _) -> Cor (trexpr env e1, trexpr env e2)
| Eimply (e1, e2, _) -> Cimply (trexpr env e1, trexpr env e2)
| Eequiv (e1, e2, _) -> Cequiv (trexpr env e1, trexpr env e2)
| Etrue -> Cvar "True"
| Efalse -> Cvar "False"
| Eall (Evar (v, _) as var, e1, _) -> Call (v, string_type var, trexpr (v::env) e1)
| Eall _ -> assert false
| Eex (Evar (v, _) as var, e1, _) -> Cex (v, string_type var, trexpr (v::env) e1)
| Eex _ -> assert false
| Etau _ -> Cvar (Index.make_tau_name e)
| Elam (Evar (v, _) as var, e1, _) -> Clam (v, cty (string_type var), trexpr (v::env) e1)
| Elam _ -> assert false
and trcase env accu e =
match e with
| Eapp (Evar("$match-case",_), [Evar (constr, _); body], _) ->
(constr, List.rev accu, trexpr env body)
| Elam (Evar (v, _), body, _) -> trcase env (v :: accu) body
| _ -> assert false
;;
(*
let getv env e = Cannot (Cvar (getname e), trexpr env e);;
*)
let getv _ e = Cvar (getname e);;
let tropt env e = if !Globals.short_flag then Cwild else trexpr env e;;
let trpred env v ty p = Clam (v, cty ty, trexpr env p);;
let mklam env v t = Clam (getname v, tropt env v, t);;
let mklams env args t = List.fold_right (mklam env) args t;;
let mkfixcase (_, args) =
let mklam e arg =
match arg with
| Phrase.Self -> Clam ("_", Cwild, Clam ("_", Cwild, e))
| Phrase.Param _ -> Clam ("_", Cwild, e)
in
List.fold_left mklam (Clam ("x", Cwild, Cvar "x")) args
;;
let rec mk_eq_args gen pre post1 post2 =
match post1, post2 with
| [], [] -> []
| h1 :: t1, h2 :: t2 ->
let args x = List.rev_append pre (x :: t1) in
let ctx x = gen (args x) in
(ctx, h1, h2) :: mk_eq_args gen (h2 :: pre) t1 t2
| _ -> assert false
;;
let rec trtree env node =
let {conc = _; rule = rule; hyps = hyps} = node in
let trexpr = trexpr env in
let tropt = tropt env in
let trpred = trpred env in
let mklam = mklam env in
let tr_subtree_1 = tr_subtree_1 env in
let tr_subtree_2 = tr_subtree_2 env in
match rule with
| Rfalse -> getv env (efalse)
| Rnottrue -> Capp (Cvar "zenon_nottrue", [getv env (enot (etrue))])
| Raxiom (p) -> Capp (getv env (enot p), [getv env p])
| Rcut (p) ->
let (subp, subnp) = tr_subtree_2 hyps in
let lamp = mklam p subp in
Clet (getname (enot p), lamp, subnp)
| Rnoteq (e) ->
let e_neq_e = getv env (enot (eeq e e)) in
Capp (Cvar "zenon_noteq", [Cwild; trexpr e; e_neq_e])
| Reqsym (e, f) ->
let e_eq_f = getv env (eeq e f) in
let f_neq_e = getv env (enot (eeq f e)) in
Capp (Cvar "zenon_eqsym", [Cwild; trexpr e; trexpr f; e_eq_f; f_neq_e])
| Rnotnot (p) ->
let sub = mklam p (tr_subtree_1 hyps) in
Capp (getv env (enot (enot p)), [sub])
| Rconnect (And, p, q) ->
let sub = mklam p (mklam q (tr_subtree_1 hyps)) in
Capp (Cvar "zenon_and", [tropt p; tropt q; sub; getv env (eand (p, q))])
| Rconnect (Or, p, q) ->
let (subp, subq) = tr_subtree_2 hyps in
let lamp = mklam p subp in
let lamq = mklam q subq in
let concl = getv env (eor (p, q)) in
Capp (Cvar "zenon_or", [tropt p; tropt q; lamp; lamq; concl])
| Rconnect (Imply, p, q) ->
let (subp, subq) = tr_subtree_2 hyps in
let lamp = mklam (enot p) subp in
let lamq = mklam q subq in
let concl = getv env (eimply (p, q)) in
Capp (Cvar "zenon_imply", [tropt p; tropt q; lamp; lamq; concl])
| Rconnect (Equiv, p, q) ->
let (sub1, sub2) = tr_subtree_2 hyps in
let lam1 = mklam (enot p) (mklam (enot q) sub1) in
let lam2 = mklam p (mklam q sub2) in
let concl = getv env (eequiv (p, q)) in
Capp (Cvar "zenon_equiv", [tropt p; tropt q; lam1; lam2; concl])
| Rnotconnect (And, p, q) ->
let (subp, subq) = tr_subtree_2 hyps in
let lamp = mklam (enot p) subp in
let lamq = mklam (enot q) subq in
let concl = getv env (enot (eand (p, q))) in
Capp (Cvar "zenon_notand", [tropt p; tropt q; lamp; lamq; concl])
| Rnotconnect (Or, p, q) ->
let sub = tr_subtree_1 hyps in
let lam = mklam (enot p) (mklam (enot q) sub) in
let concl = getv env (enot (eor (p, q))) in
Capp (Cvar "zenon_notor", [tropt p; tropt q; lam; concl])
| Rnotconnect (Imply, p, q) ->
let sub = tr_subtree_1 hyps in
let lam = mklam p (mklam (enot q) sub) in
let concl = getv env (enot (eimply (p, q))) in
Capp (Cvar "zenon_notimply", [tropt p; tropt q; lam; concl])
| Rnotconnect (Equiv, p, q) ->
let (sub1, sub2) = tr_subtree_2 hyps in
let lam1 = mklam (enot p) (mklam q sub1) in
let lam2 = mklam p (mklam (enot q) sub2) in
let concl = getv env (enot (eequiv (p, q))) in
Capp (Cvar "zenon_notequiv", [tropt p; tropt q; lam1; lam2; concl])
| Rex (Eex (Evar (x, _) as vx, px, _) as exp, _) ->
let sub = tr_subtree_1 hyps in
let zz = etau (vx, px) in
let zzn = Index.make_tau_name zz in
let pzz = substitute [(vx, zz)] px in
let ty = string_type vx in
let lam = Clam (zzn, cty ty, mklam pzz sub) in
Capp (Cvar "zenon_ex", [cty ty; trpred x ty px; lam; getv env exp])
| Rex _ -> assert false
| Rnotall (Eall (Evar (x, _) as vx, px, _) as allp, _) ->
let sub = tr_subtree_1 hyps in
let zz = etau (vx, enot (px)) in
let zzn = Index.make_tau_name (zz) in
let pzz = substitute [(vx, zz)] px in
let ty = string_type vx in
let lam = Clam (zzn, cty ty, mklam (enot (pzz)) sub) in
let concl = getv env (enot allp) in
Capp (Cvar "zenon_notall", [cty ty; trpred x ty px; lam; concl])
| Rnotall _ -> assert false
| Rall (Eall (Evar (x, _) as vx, px, _) as allp, t) ->
let sub = tr_subtree_1 hyps in
let pt = substitute [(vx, t)] px in
let lam = mklam pt sub in
let ty = string_type vx in
let p = trpred x ty px in
let concl = getv env allp in
Capp (Cvar "zenon_all", [cty ty; p; trexpr t; lam; concl])
| Rall _ -> assert false
| Rnotex (Eex (Evar (x, _) as vx, px, _) as exp, t) ->
let sub = tr_subtree_1 hyps in
let npt = enot (substitute [(vx, t)] px) in
let lam = mklam npt sub in
let ty = string_type vx in
let p = trpred x ty px in
let concl = getv env (enot (exp)) in
Capp (Cvar "zenon_notex", [cty ty; p; trexpr t; lam; concl])
| Rnotex _ -> assert false
| Rpnotp ((Eapp (Evar(p,_) as p', args1, _) as pp),
(Enot (Eapp (Evar(q,_), args2, _), _) as nqq)) ->
assert (p = q);
let args = mk_eq_args (fun x -> eapp (p', x)) [] args1 args2 in
let base = getv env nqq in
Capp (List.fold_right2 (mk_eq_node env) args hyps base, [getv env pp])
| Rpnotp _ -> assert false
| Rnotequal ((Eapp (Evar(f,_) as f', args1, _) as ff), (Eapp (Evar(g,_), args2, _) as gg)) ->
assert (f = g);
let gen x = enot (eeq (eapp (f', x)) gg) in
let args = mk_eq_args gen [] args1 args2 in
let base = Capp (Cvar "zenon_notnot",
[Cwild; Capp (Cvar "refl_equal", [trexpr gg])])
in
let neq = enot (eeq ff gg) in
Capp (List.fold_right2 (mk_eq_node env) args hyps base, [getv env neq])
| Rnotequal _ -> assert false
| RcongruenceLR (p, a, b) ->
let sub = tr_subtree_1 hyps in
let h = apply p b in
let lam = mklam h sub in
let concl1 = getv env (apply p a) in
let concl2 = getv env (eeq a b) in
Capp (Cvar "zenon_congruence_lr",
[Cwild; trexpr p; trexpr a; trexpr b; lam; concl1; concl2])
| RcongruenceRL (p, a, b) ->
let sub = tr_subtree_1 hyps in
let h = apply p b in
let lam = mklam h sub in
let concl1 = getv env (apply p a) in
let concl2 = getv env (eeq b a) in
Capp (Cvar "zenon_congruence_rl",
[Cwild; trexpr p; trexpr a; trexpr b; lam; concl1; concl2])
| Rdefinition (_, _, _, _, None, folded, unfolded) ->
let sub = tr_subtree_1 hyps in
Clet (getname unfolded, getv env folded, sub)
| Rdefinition _ (*name, sym, args, body, Some v, folded, unfolded)*) ->
assert false (* TODO *)
(* FIXME should drop the coqterm translation or add yet another field
to extensions *)
| Rextension (_, "zenon_induct_discriminate",
[], [Eapp (Evar("=",_), [a; b], _) as e; car], []) ->
Capp (Cvar "eq_ind", [trexpr a; trexpr car; Cvar "I"; trexpr b; getv env e])
| Rextension (_, "zenon_induct_discriminate", _, _, _) -> assert false
| Rextension (_, "zenon_induct_discriminate_diff",
[], [a; b; car], []) ->
let subp = tr_subtree_1 hyps in
let h = enot (eeq a b) in
Clet (getname h, Capp (Cvar "eq_ind",
[trexpr a; trexpr car; Cvar "I"; trexpr b]),
subp)
| Rextension (_, "zenon_induct_discriminate_diff", _, _, _) -> assert false
| Rextension (_, "zenon_induct_cases", [Evar (ty, _); _; e1], [_], _) ->
let (args, cstrs, schema) = get_induct ty in
let typargs = List.map (fun _ -> Cwild) args in
let make_hyp h (c, cargs) =
let vars = List.map (fun _ -> Expr.newname ()) cargs in
let shape =
let vvars = List.map tvar_none vars in
let params = List.map (fun _ -> tvar_type "_") args in
let base = enot (eeq e1 (eapp (tvar_none "@", tvar_none c :: params @ vvars)))
in
enot (all_list vvars base)
in
let sub = Capp (Cvar "NNPP", [Cwild; mklam shape (trtree env h)]) in
let mkbody prf v = Capp (prf, [Cvar v]) in
let body = List.fold_left mkbody sub vars in
let abstract v arg body =
match arg with
| Phrase.Self -> Clam (v, Cwild, Clam ("_", Cwild, body))
| Phrase.Param _ -> Clam (v, Cwild, body)
in
List.fold_right2 abstract vars cargs body
in
let recargs = List.map2 make_hyp hyps cstrs in
let pred =
let v = Expr.newtvar (get_type e1) in
trexpr (elam (v, enot (eeq e1 v)))
in
let refl = Capp (Cvar "refl_equal", [tropt e1]) in
Capp (Cvar schema, typargs @ pred :: recargs @ tropt e1 :: [refl])
| Rextension (_, "zenon_induct_cases", _, _, _) -> assert false
| Rextension (_, "zenon_induct_induction_notall", [Evar (ty, _); p], [c], hs) ->
let (args, _, schema) = get_induct ty in
let typargs = List.map (fun _ -> Cwild) args in
let mksub h prf =
match h with
| [h] -> Capp (Cvar "NNPP", [Cwild; mklam h (trtree env prf)])
| _ -> assert false
in
let hypargs = List.map2 mksub hs hyps in
let tp = trexpr p in
let ap = Capp (Cvar schema, typargs @ tp :: hypargs) in
let nap = getname c in
Capp (Cvar nap, [ap])
| Rextension (_, "zenon_induct_induction_notall", _, _, _) -> assert false
| Rextension (_, "zenon_induct_fix", [Evar (ty, _); ctx; foldx; unfx; a],
[c], [ [h] ]) ->
let (args, cstrs, schema) = get_induct ty in
let typargs = List.map (fun _ -> Cwild) args in
let x = Expr.newtvar type_none in
let p = elam (x, eimply (eimply (apply ctx (apply unfx x), efalse),
eimply (apply ctx (apply foldx x), efalse)))
in
let brs = List.map mkfixcase cstrs in
let th = mklam h (tr_subtree_1 hyps) in
Capp (Cvar schema, typargs @ trexpr p :: brs @ [trexpr a; th; getv env c])
| Rextension (_, "zenon_induct_fix", _, _, _) -> assert false
| Rextension (_, name, args, c, hs) ->
let metargs = List.map trexpr args in
let hypargs = List.map2 (mklams env) hs (List.map (trtree env) hyps) in
let conargs = List.map (getv env) c in
Capp (Cvar name, metargs @ hypargs @ conargs)
| Rlemma (name, _) ->
let args = Hashtbl.find lemma_env name in
Capp (Cvar name, List.map (fun x -> trexpr (tvar_none x)) args)
and tr_subtree_1 env l =
match l with
| [t] -> trtree env t
| _ -> assert false
and tr_subtree_2 env l =
match l with
| [t1; t2] -> (trtree env t1, trtree env t2)
| _ -> assert false
and mk_eq_node env (ctx, a, b) h sub =
if Expr.equal a b then sub else begin
let x = Expr.newname () in
let c = Clam (x, Cwild, trexpr env (ctx (tvar_none x))) in
let aneb = enot (eeq a b) in
let thyp = mklam env aneb (trtree env h) in
Capp (Cvar "zenon_subst",
[Cwild; c; trexpr env a; trexpr env b; thyp; sub])
end
;;
let rec make_lambdas l term =
match l with
| [] -> term
| (ty, e) :: t -> Clam (e, ty, make_lambdas t term)
;;
let rec rm_lambdas l term =
match l, term with
| [], _ -> term
| _ :: t, Clam (_, _, e) -> rm_lambdas t e
| _, _ -> assert false
;;
let compare_hyps (name1, _) (name2, _) = Stdlib.compare name1 name2;;
let make_lemma { name = name; params = params; proof = proof } =
let f (ty, e) =
match e with
| Evar (v, _) -> (ty, v)
| Etau _ -> (ty, Index.make_tau_name e)
| _ -> assert false
in
let rawparams = List.map f params in
let pars = List.map (fun (ty, v) -> (cty (Print.sexpr ty), v)) rawparams in
let parenv = List.map snd rawparams in
let f x = is_goal x || not (is_mapped x) in
let hyps = List.filter f proof.conc in
let hyps0 = List.map (fun x -> (trexpr parenv x, getname x)) hyps in
let hyps1 = List.sort compare_hyps hyps0 in
let formals = pars @ hyps1 in
let actuals = List.map snd formals in
(make_lambdas formals (trtree parenv proof), name, actuals)
;;
let rec trp l =
match l with
| [th] ->
let (thproof, thname, thargs) = make_lemma th
in ([], rm_lambdas thargs thproof, thname, thargs)
| h::t ->
let (lem, name, args) = make_lemma h in
Hashtbl.add lemma_env name args;
let (lemmas, thproof, thname, thargs) = trp t in
((name, lem) :: lemmas, thproof, thname, thargs)
| [] -> assert false
;;
let rec get_goal phrases =
match phrases with
| [] -> None
| Phrase.Hyp (name, e, _) :: _ when name = goal_name -> Some e
| _ :: t -> get_goal t
;;
(* let rec get_th_name lemmas =
match lemmas with
| [] -> assert false
| [h] -> h.name
| _ :: t -> get_th_name t *)
let trproof phrases ppphrases l =
try
Hashtbl.clear lemma_env;
init_mapping phrases;
init_induct ppphrases;
let (lemmas, raw, th_name, _) = trp l in
match get_goal phrases with
| Some goal ->
let trg = tropt [] goal in
let term = Capp (Cvar "NNPP", [Cwild; Clam (goal_name, trg, raw)]) in
((phrases, lemmas, th_name, term), !constants_used)
| None -> ((phrases, lemmas, th_name, raw), !constants_used)
with
| Cannot_infer ty ->
let msg = sprintf "cannot infer a value for a variable of type %s" ty in
Error.err msg;
raise Error.Abort
;;
(* ******************************************* *)
let line_len = 72;;
let rem_len = ref line_len;;
let buf = Buffer.create 100;;
exception Cut_before of int;;
exception Cut_at of int;;
let test_cut j c =
match c with
| '(' | ')' | '~' | '>' | ',' | '[' | ']' | '?' | '|' ->
raise (Cut_before (j+1))
| ':' | '<' -> raise (Cut_before j)
| ' ' -> raise (Cut_at j)
| _ -> ()
;;
let init_buf () = rem_len := line_len;;
let flush_buf oc =
let s = Buffer.contents buf in
let len = String.length s in
let i = ref 0 in
while !i + !rem_len <= len do
try
for j = !rem_len - 1 downto 1 do
test_cut j s.[!i + j];
done;
if !rem_len < line_len then test_cut 0 s.[!i];
for j = !rem_len to len - !i - 1 do
test_cut j s.[!i + j];
done;
raise (Cut_before (len - !i))
with
| Cut_before j ->
output oc (Bytes.of_string s) !i j;
i := !i + j;
output_char oc '\n';
rem_len := line_len;
| Cut_at j ->
output oc (Bytes.of_string s) !i j;
i := !i + j + 1;
output_char oc '\n';
rem_len := line_len;
done;
output oc (Bytes.of_string s) !i (len - !i);
rem_len := !rem_len - (len - !i);
Buffer.clear buf;
;;
let rec get_lams accu t =
match t with
| Clam (s, ty, t1) -> get_lams ((s, ty) :: accu) t1
| _ -> (List.rev accu, t)
;;
let make_lemma_type t =
let (tys, _) = get_lams [] t in
let make_funtype (v, ty1) ty2 =
match ty1 with
| Cty ty -> Call (v, ty, ty2)
| Cwild -> Call (v, "", ty2)
| _ -> Cimply (ty1, ty2)
in
List.fold_right make_funtype tys (cty "False")
;;
(* ******************************************* *)
let tr_ty t =
match t with
| t when t = univ_name -> t
| "" -> assert false
| s -> sprintf "%s" s
;;
let is_infix = function
| "$less" | "$lesseq" | "$greater" | "$greatereq" | "="
| "$sum" | "$product" | "$difference" | "$uminus"
| "$coq_div" -> true
| _ -> false
let to_infix = function
| "$less" -> "<"
| "$lesseq" -> "<="
| "$greater" -> ">"
| "$greatereq" -> ">="
| "=" -> "="
| "$sum" -> "+"
| "$product" -> "*"
| "$difference" -> "-"
| "$uminus" -> "-"
| "$coq_div" -> "#"
| s -> s
;;
let pr_oc oc prefix t =
let pr_list p b l =
let f t = bprintf b " %a" p t; in
List.iter f l;
in
let pr_comma_list p b l =
let f t = bprintf b ",%a" p t; in
match l with
| [] -> assert false
| h::t ->
p b h;
List.iter f t;
in
let pr_id b x = bprintf b "%s" x;
in
let pr_ty b t = bprintf b "%s" (tr_ty t);
in
let rec pr b t =
match t with
| Cvar "" -> assert false
| Cvar s -> bprintf b "%s" (to_infix s); flush_buf oc;
| Cty s -> bprintf b "%a" pr_ty s;
| Clam (_, _, Clam _) ->
let (lams, body) = get_lams [] t in
bprintf b "(fun%a=>%a)" pr_lams lams pr body;
| Clam (s, Cwild, t2) -> bprintf b "(fun %s=>%a)" s pr t2;
| Clam (s, t1, t2) -> bprintf b "(fun %s:%a=>%a)" s pr t1 pr t2;
| Capp (Cvar "=", [e1; e2]) ->
bprintf b "(%a = %a)" pr e1 pr e2; (* NOTE: spaces are needed *)
| Capp (Cvar s, [e1; e2]) when is_infix s ->
bprintf b "(%a %s %a)" pr e1 (to_infix s) pr e2;
| Capp (Cvar "%", [e1; e2]) | Capp (Cvar "$coq_scope", [e2; e1]) ->
bprintf b "(%a)%%%a" pr e1 pr e2
| Capp (Cvar "=", args) -> bprintf b "(@eq _%a)" (pr_list pr) args;
| Capp (t1, []) -> pr b t1;
| Capp (Capp (t1, args1), args2) -> pr b (Capp (t1, args1 @ args2));
| Capp (t1, args) -> bprintf b "(%a%a)" pr t1 (pr_list pr) args;
| Cnot (t1) -> bprintf b "(~%a)" pr t1;
| Cand (t1,t2) -> bprintf b "(%a/\\%a)" pr t1 pr t2;
| Cor (t1,t2) -> bprintf b "(%a\\/%a)" pr t1 pr t2;
| Cimply (t1, t2) -> bprintf b "(%a->%a)" pr t1 pr t2;
| Cequiv (t1, t2) -> bprintf b "(%a<->%a)" pr t1 pr t2;
| Call (v, "", t1) -> bprintf b "(forall %s,%a)" v pr t1;
| Call (v, ty, t1) -> bprintf b "(forall %s:%a,%a)" v pr_ty ty pr t1;
| Cex (v, "", t1) -> bprintf b "(exists %s,%a)" v pr t1;
| Cex (v, ty, t1) -> bprintf b "(exists %s:%a,%a)" v pr_ty ty pr t1;
| Clet (v, t1, t2) -> bprintf b "(let %s:=%a in %a)" v pr t1 pr t2;
| Cwild -> bprintf b "_";
| Cmatch (e, cl) -> bprintf b "match %a with%a end" pr e pr_cases cl;
| Cfix (f, ty, e1) ->
let (lams, body) = get_lams [] e1 in
bprintf b "(fix %s %a:%a:=%a)" f pr_lams lams pr_ty ty pr body
| Cifthenelse (e1, e2, e3) ->
bprintf b "(if %a then %a else %a)" pr e1 pr e2 pr e3;
(* | Cannot (e1, e2) ->
bprintf b "(%a:%a)" pr e1 pr e2; *)
and pr_lams b l =
let f (v, ty) =
match ty with
| Cwild -> bprintf b " %s" v;
| _ -> bprintf b "(%s:%a)" v pr ty;
in
List.iter f l;
and pr_cases b l =
let f case =
match case with
| (constr, args, rhs) when constr = tuple_name ->
bprintf b "|(%a)=>%a" (pr_comma_list pr_id) args pr rhs;
| (constr, args, rhs) ->
bprintf b "|%s%a=>%a" constr (pr_list pr_id) args pr rhs;
in
List.iter f l;
in
init_buf ();
bprintf buf "%s" prefix;
pr buf t;
flush_buf oc;
;;
let print_lemma oc (name, t) =
let prefix = sprintf "let %s:" name in
pr_oc oc prefix (make_lemma_type t);
fprintf oc ":=\n";
pr_oc oc "" t;
fprintf oc "in\n";
;;
let use_hyp oc count p =
match p with
| Phrase.Hyp (name, _, _) when name = goal_name -> count
| Phrase.Hyp (name, _, _)
| Phrase.Def (DefReal (name, _, _, _, _, _))
-> fprintf oc "assert (%s%d := %s).\n" dummy_prefix count name;
count + 1
| _ -> count
;;
let print_use_all oc phrases =
if !Globals.use_all_flag then ignore (List.fold_left (use_hyp oc) 0 phrases);
;;
let print_theorem oc lemmas (name, t) phrases =
let prefix = sprintf "Theorem %s:" name in
begin match get_goal phrases with
| Some (Enot (g, _)) -> pr_oc oc prefix (trexpr [] g);
| None -> pr_oc oc prefix (trexpr [] efalse);
| _ -> assert false
end;
fprintf oc ".\nProof.\n";
print_use_all oc phrases;
fprintf oc "exact(\n";
List.iter (print_lemma oc) lemmas;
pr_oc oc "" t;
fprintf oc ").\nQed.\n";
;;
type result =
| Prop
| Term
| Type of string
| Indirect of string
;;
type signature =
| Default of int * result
| Declared of string
| Hyp_name
;;
let predefined = [
"Type"; "Prop"; "Set"; "nat"; "="; "$match"; "$match-case"; "$fix";
];;
let is_nat s =
try
for i = 0 to String.length s - 1 do
if not (Misc.isdigit s.[i]) then raise Exit;
done;
true
with Exit -> false
;;
let get_signatures ps ext_decl =
let symtbl = (Hashtbl.create 97 : (string, signature) Hashtbl.t) in
let defined = ref (predefined @@ ext_decl) in
let add_sig sym arity kind =
if not (Hashtbl.mem symtbl sym) then
Hashtbl.add symtbl sym (Default (arity, kind))
in
let rec get_sig r env e =
match e with
| Evar ("_", _) -> ()
| Eapp (Evar(s, _), [], _) when Arith.is_num_string s -> ()
| Evar (s, _) when is_nat s || Arith.is_num e -> ()
| Evar (s, _) -> if not (List.mem s env) then add_sig s 0 r;
| Earrow _ -> assert false
| Emeta _ | Etrue | Efalse -> ()
| Eapp (Evar(s,_), args, _) ->
add_sig s (List.length args) r;
List.iter (get_sig Term env) args;
| Eapp(_) -> assert false
| Eand (e1, e2, _) | Eor (e1, e2, _)
| Eimply (e1, e2, _) | Eequiv (e1, e2, _)
-> get_sig Prop env e1;
get_sig Prop env e2;
| Enot (e1, _) -> get_sig Prop env e1;
| Eall (Evar (v, _), e1, _) | Eex (Evar (v, _), e1, _)
| Etau (Evar (v, _), e1, _) | Elam (Evar (v, _), e1, _)
-> get_sig Prop (v::env) e1;
| Eall _ | Eex _ | Etau _ | Elam _ -> assert false
in
let set_type sym typ =
Hashtbl.remove symtbl sym;
Hashtbl.add symtbl sym typ;
in
let do_phrase p =
match p with
| Phrase.Hyp (name, e, _) ->
get_sig Prop [] e;
set_type name Hyp_name;
| Phrase.Def (DefReal (_, s, _, _, e, _)) ->
defined := s :: !defined;
get_sig (Indirect s) [] e;
| Phrase.Def (DefRec (_, s, _, _, e)) ->
defined := s :: !defined;
get_sig (Indirect s) [] e;
| Phrase.Def (DefPseudo _) -> assert false
| Phrase.Sig (sym, _, res) ->
set_type sym (Declared res);
| Phrase.Inductive (ty, _, constrs, _) ->
set_type ty (Declared "Type"); (* FIXME add arguments *)
List.iter (fun (x, _) -> set_type x (Declared ty)) constrs;
| Phrase.Rew _ -> ()
in
List.iter do_phrase ps;
let rec follow_indirect path s =
if List.mem s path then Prop else
begin try
match Hashtbl.find symtbl s with
| Default (_, ((Prop|Term|Type _) as kind)) -> kind
| Default (_, Indirect s1) -> follow_indirect (s::path) s1
| Declared (res) -> Type res
| Hyp_name -> assert false
with Not_found -> Prop
end
in
let find_sig sym sign l =
if List.mem sym !defined then l
else begin
match sign with
| Default (_, (Prop|Term|Type _)) -> (sym, sign) :: l
| Default (arity, Indirect s) ->
(sym, Default (arity, follow_indirect [] s)) :: l
| Declared _ -> l
| Hyp_name -> l
end
in
Hashtbl.fold find_sig symtbl []
;;
let print_signature oc (sym, sign) =
let rec print_arity n =
if n = 0 then () else begin
fprintf oc "%s -> " univ_name;
print_arity (n-1);
end;
in
fprintf oc "Parameter %s : " sym;
match sign with
| Default (arity, kind) ->
begin
print_arity arity;
match kind with
| Prop -> fprintf oc "Prop.\n";
| Term -> fprintf oc "%s.\n" univ_name;
| Type s -> fprintf oc "%s.\n" s;
| Indirect _ -> assert false;
end;
| Declared _ -> assert false
| Hyp_name -> assert false
;;
let print_var oc e =
match e with
| Evar (s, _) -> fprintf oc " %s" s;
| _ -> assert false
;;
let print_constr oc tyname args (cname, tys) =
let print_ty t =
match t with
| Phrase.Param s -> fprintf oc "%s -> " s;
| Phrase.Self ->
fprintf oc "%s" tyname;
List.iter (fprintf oc " %s") args;
fprintf oc " -> ";
in
fprintf oc " | %s : " cname;
List.iter print_ty tys;
fprintf oc "%s\n" tyname;
;;
let declare_hyp oc h =
match h with
| Phrase.Hyp (name, _, _) when name = goal_name -> ()
| Phrase.Hyp (name, stmt, _) ->
pr_oc oc (sprintf "Parameter %s : " name) (trexpr [] (Arith.coqify stmt));
fprintf oc ".\n";
| Phrase.Def (DefReal (_, sym, _, [], body, None)) ->
let prefix = sprintf "Definition %s := " sym in
pr_oc oc prefix (trexpr [] body);
fprintf oc ".\n";
| Phrase.Def (DefReal (_, sym, _, params, body, None)) ->
fprintf oc "Definition %s := fun" sym;
List.iter (print_var oc) params;
fprintf oc " =>\n";
pr_oc oc "" (trexpr [] body);
fprintf oc ".\n";
| Phrase.Def (DefReal (_, sym, _, params, body, Some v)) ->
fprintf oc "Fixpoint %s" sym;
List.iter (print_var oc) params;
fprintf oc " { struct %s } :=\n" v;
pr_oc oc "" (trexpr [] body);
fprintf oc ".\n";
| Phrase.Def _ -> assert false
| Phrase.Sig (sym, args, res) ->
fprintf oc "Parameter %s : " sym;
List.iter (fun x -> fprintf oc "%s -> " (tr_ty x)) args;
fprintf oc "%s.\n" (tr_ty res);
| Phrase.Inductive (name, args, constrs, schema) ->
fprintf oc "Inductive %s" name;
List.iter (fprintf oc " %s") args;
fprintf oc " : Type :=\n";
List.iter (print_constr oc name args) constrs;
fprintf oc " (* %s *)" schema;
fprintf oc ".\n";
| Phrase.Rew _ -> ()
;;
let eq_pred_string t =
if Expr.equal t Expr.type_prop then "iff"
else if Expr.equal t Arith.type_rat then "Qeq"
else "eq"
let print_type_sig oc (s, t) =
fprintf oc "Parameter %s : %s.\n" s (Print.sexpr t);
match t with
| Expr.Earrow (args, ret, _) ->
fprintf oc "Axiom %s_proper : Proper ( " s;
List.iter (fun t -> fprintf oc "%s ==>" (eq_pred_string t)) args;
fprintf oc "%s) %s.\n" (eq_pred_string ret) s
| _ -> ()
let declare_context oc phrases =
if not !Globals.quiet_flag then fprintf oc "(* BEGIN-CONTEXT *)\n";
fprintf oc "Add LoadPath \"%s\".\n" !Globals.load_path;
fprintf oc "Require Import zenon.\n";
Extension.declare_context_coq oc;
let ext_decl = Extension.predef () in
let type_defs = Expr.get_defs () in
fprintf oc "Parameter %s : Set.\n" univ_name;
fprintf oc "Parameter %s : %s.\n" any_name univ_name;
List.iter (print_type_sig oc) type_defs;
let sigs = get_signatures phrases (ext_decl @ (List.map fst type_defs)) in
List.iter (print_signature oc) sigs;
List.iter (declare_hyp oc) phrases;
if not !Globals.quiet_flag then fprintf oc "(* END-CONTEXT *)\n";
flush oc;
;;
let print oc (phrases, lemmas, thname, thproof) =
if !Globals.ctx_flag then declare_context oc phrases;
if not !Globals.quiet_flag then fprintf oc "(* BEGIN-PROOF *)\n";
print_theorem oc lemmas (thname, thproof) phrases;
if not !Globals.quiet_flag then fprintf oc "(* END-PROOF *)\n";
;;