-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
248 lines (205 loc) · 9.18 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 16 17:56:08 2020
@author: del
"""
import os
import argparse
import json
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
from data import QQPDataset
from utils import label_transformer, train, validate
from model import ESIM
def main(train_q1_file, train_q2_file, train_labels_file,
dev_q1_file, dev_q2_file, dev_labels_file,
embeddings_file,
target_dir,
hidden_size=128,
dropout=0.5,
num_classes=2,
epochs=15,
batch_size=64,
lr=0.001,
patience=5,
max_grad_norm=10.0,
gpu_index=0,
checkpoint=None):
device = torch.device("cuda:{}".format(gpu_index) if torch.cuda.is_available() else "cpu")
print(20 * "=", " Preparing for training ", 20 * "=")
# 保存模型的路径
if not os.path.exists(target_dir):
os.makedirs(target_dir)
# -------------------- Data loading ------------------- #
print("\t* Loading training data...")
train_q1 = np.load(train_q1_file)
train_q2 = np.load(train_q2_file)
train_labels = np.load(train_labels_file)
# train_labels = label_transformer(train_labels)
train_data = {"q1": train_q1,
"q2": train_q2,
"labels": train_labels}
train_data = QQPDataset(train_data)
train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
print("\t* Loading validation data...")
dev_q1 = np.load(dev_q1_file)
dev_q2 = np.load(dev_q2_file)
dev_labels = np.load(dev_labels_file)
# dev_labels = label_transformer(dev_labels)
dev_data = {"q1": dev_q1,
"q2": dev_q2,
"labels": dev_labels}
dev_data = QQPDataset(dev_data)
dev_loader = DataLoader(dev_data, shuffle=True, batch_size=batch_size)
# -------------------- Model definition ------------------- #
print("\t* Building model...")
embeddings = torch.tensor(np.load(embeddings_file), dtype=torch.float).to(device)
model = ESIM(embeddings.shape[0],
embeddings.shape[1],
hidden_size,
embeddings=embeddings,
dropout=dropout,
num_classes=num_classes,
device=device).to(device)
# -------------------- Preparation for training ------------------- #
criterion = nn.CrossEntropyLoss()
# 过滤出需要梯度更新的参数
parameters = filter(lambda p: p.requires_grad, model.parameters())
# optimizer = optim.Adadelta(parameters, params["LEARNING_RATE"])
optimizer = torch.optim.Adam(parameters, lr=lr)
# optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
mode="max",
factor=0.85,
patience=0)
best_score = 0.0
start_epoch = 1
# Data for loss curves plot
epochs_count = []
train_losses = []
valid_losses = []
# Continuing training from a checkpoint if one was given as argument
if checkpoint:
checkpoint = torch.load(checkpoint)
start_epoch = checkpoint["epoch"] + 1
best_score = checkpoint["best_score"]
print("\t* Training will continue on existing model from epoch {}..."
.format(start_epoch))
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
epochs_count = checkpoint["epochs_count"]
train_losses = checkpoint["train_losses"]
valid_losses = checkpoint["valid_losses"]
# Compute loss and accuracy before starting (or resuming) training.
_, valid_loss, valid_accuracy = validate(model,
dev_loader,
criterion)
print("\t* Validation loss before training: {:.4f}, accuracy: {:.4f}%"
.format(valid_loss, (valid_accuracy*100)))
# -------------------- Training epochs ------------------- #
print("\n",
20 * "=",
"Training ESIM model on device: {}".format(device),
20 * "=")
patience_counter = 0
for epoch in range(start_epoch, epochs+1):
epochs_count.append(epoch)
print("* Training epoch {}:".format(epoch))
epoch_time, epoch_loss, epoch_accuracy = train(model,
train_loader,
optimizer,
criterion,
epoch,
max_grad_norm)
train_losses.append(epoch_loss)
print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%"
.format(epoch_time, epoch_loss, (epoch_accuracy*100)))
print("* Validation for epoch {}:".format(epoch))
epoch_time, epoch_loss, epoch_accuracy = validate(model,
dev_loader,
criterion)
valid_losses.append(epoch_loss)
print("-> Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n"
.format(epoch_time, epoch_loss, (epoch_accuracy*100)))
# Update the optimizer's learning rate with the scheduler.
scheduler.step(epoch_accuracy)
# Early stopping on validation accuracy.
if epoch_accuracy < best_score:
patience_counter += 1
else:
best_score = epoch_accuracy
patience_counter = 0
# Save the best model. The optimizer is not saved to avoid having
# a checkpoint file that is too heavy to be shared. To resume
# training from the best model, use the 'esim_*.pth.tar'
# checkpoints instead.
torch.save({"epoch": epoch,
"model": model.state_dict(),
"best_score": best_score,
"epochs_count": epochs_count,
"train_losses": train_losses,
"valid_losses": valid_losses},
os.path.join(target_dir, "best.pth.tar"))
# Save the model at each epoch.
torch.save({"epoch": epoch,
"model": model.state_dict(),
"best_score": best_score,
"optimizer": optimizer.state_dict(),
"epochs_count": epochs_count,
"train_losses": train_losses,
"valid_losses": valid_losses},
os.path.join(target_dir, "esim_{}.pth.tar".format(epoch)))
if patience_counter >= patience:
print("-> Early stopping: patience limit reached, stopping...")
break
# Plotting of the loss curves for the train and validation sets.
# plt.figure()
# plt.plot(epochs_count, train_losses, "-r")
# plt.plot(epochs_count, valid_losses, "-b")
# plt.xlabel("epoch")
# plt.ylabel("loss")
# plt.legend(["Training loss", "Validation loss"])
# plt.title("Cross entropy loss")
# # plt.show()
# plt.savefig('./loss_curves.png')
if __name__ == "__main__":
default_config = "./config.json"
parser = argparse.ArgumentParser(description="Train the ESIM model on QQP")
parser.add_argument("--config",
default=default_config,
help="Path to a json configuration file")
parser.add_argument("--checkpoint",
default=None,
help="Path to a checkpoint file to resume training")
parser.add_argument("--gpu",
default=0,
help="which cuda device to use")
args = parser.parse_args()
script_dir = os.path.dirname(os.path.realpath(__file__))
if args.config == default_config:
config_path = os.path.join(script_dir, args.config)
else:
config_path = args.config
with open(os.path.normpath(config_path), 'r') as config_file:
config = json.load(config_file)
main(os.path.normpath(os.path.join(script_dir, config["train_q1_data"])),
os.path.normpath(os.path.join(script_dir, config["train_q2_data"])),
os.path.normpath(os.path.join(script_dir, config["train_labels_data"])),
os.path.normpath(os.path.join(script_dir, config["dev_q1_data"])),
os.path.normpath(os.path.join(script_dir, config["dev_q2_data"])),
os.path.normpath(os.path.join(script_dir, config["dev_labels_data"])),
os.path.normpath(os.path.join(script_dir, config["embeddings"])),
os.path.normpath(os.path.join(script_dir, config["target_dir"])),
config["hidden_size"],
config["dropout"],
config["num_classes"],
config["epochs"],
config["batch_size"],
config["lr"],
config["patience"],
config["max_gradient_norm"],
args.gpu,
args.checkpoint)