From a38923ba19c41c71aeac3442a93f252c1a5e6405 Mon Sep 17 00:00:00 2001 From: zhangzefeng92 Date: Mon, 22 Jul 2024 10:35:48 +0800 Subject: [PATCH] add unit test for gmm --- tests/internevo/test_gmm.py | 110 ++++++++++++++++++++++++++++++++++++ 1 file changed, 110 insertions(+) create mode 100644 tests/internevo/test_gmm.py diff --git a/tests/internevo/test_gmm.py b/tests/internevo/test_gmm.py new file mode 100644 index 0000000..76b61eb --- /dev/null +++ b/tests/internevo/test_gmm.py @@ -0,0 +1,110 @@ +import unittest +import itertools + +from absl.testing import parameterized +# from grouped_gemm import ops +from deeplink_ext.internevo_ops import GroupedGemm +import numpy as np +import torch + + +def allclose(x, y, pct=2.0): + mask = torch.isclose(x, y, rtol=1e-5) + pct_diff = (mask.numel() - mask.sum()) / mask.numel() * 100 + if pct_diff > pct: + print(x[torch.logical_not(mask)], y[torch.logical_not(mask)]) + print("{:.2f}% of values not close.".format(pct_diff)) + return False + return True + + +def add_transpose_flags(x): + out = [] + for y in x: + for f in [(False,), (True,)]: + out.append(y + f) + return out + + +_TEST_PROBLEMS = add_transpose_flags(( + (1, 128, 128, 128), + (8, 128, 128, 128), + (16, 128, 128, 128), + (1, 128, 256, 512), + (8, 128, 256, 512), + (16, 128, 256, 512), +)) + + +def randn(bs, x, y): + out = (torch.rand(bs, x, y) - 0.5 * 2) / (y * x) + return out.cuda().to(torch.bfloat16) + + +def gmm(a, b, batch_sizes, trans_b=False): + batch_sizes = batch_sizes.numpy() + + out = [] + start = 0 + for i, size in enumerate(batch_sizes): + rhs = b[i, :, :].t() if trans_b else b[i, :, :] + out.append(a[start:start + size, :] @ rhs) + start += size + return torch.cat(out) + + +@parameterized.parameters(*_TEST_PROBLEMS) +class OpsTest(parameterized.TestCase): + + def testGroupedGemm_FixedSizes(self, z, m, k, n, trans_b): + torch.manual_seed(0) + a = randn(z, m, k).view(-1, k) + b = randn(z, n, k) if trans_b else randn(z, k, n) + batch_sizes = torch.tensor([m] * z) + + a.requires_grad_(True) + b.requires_grad_(True) + a_ref = a.detach().clone().requires_grad_(True) + b_ref = b.detach().clone().requires_grad_(True) + + out = GroupedGemm(a, b, batch_sizes, False, trans_b) + expected_out = gmm(a_ref, b_ref, batch_sizes, trans_b) + self.assertTrue(allclose(out.cpu(), expected_out.cpu())) + + # Check gradients. + out.sum().backward() + expected_out.sum().backward() + self.assertTrue(allclose(a.grad.cpu(), a_ref.grad.cpu())) + self.assertTrue(allclose(b.grad.cpu(), b_ref.grad.cpu())) + + def testGroupedGemm_VariableSizes(self, z, m, k, n, trans_b): + torch.manual_seed(0) + a = randn(z, m, k).view(-1, k) + b = randn(z, n, k) if trans_b else randn(z, k, n) + + dist = torch.rand(z, ) + dist /= dist.sum() + batch_sizes = (dist * m).to(torch.long) + error = m * z - batch_sizes.sum() + batch_sizes[-1] += error + assert batch_sizes.sum() == (m * z) + + a.requires_grad_(True) + b.requires_grad_(True) + a_ref = a.detach().clone().requires_grad_(True) + b_ref = b.detach().clone().requires_grad_(True) + + out = GroupedGemm(a, b, batch_sizes, False, trans_b) + expected_out = gmm(a_ref, b_ref, batch_sizes, trans_b) + self.assertTrue(allclose(out.cpu(), expected_out.cpu())) + + # Check gradients. + out.sum().backward() + expected_out.sum().backward() + self.assertTrue(allclose(a.grad.cpu(), a_ref.grad.cpu())) + self.assertTrue(allclose(b.grad.cpu(), b_ref.grad.cpu())) + + + +if __name__ == '__main__': + unittest.main() \ No newline at end of file