forked from Weizhi-Zhong/IP_LAP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_video_renderer.py
393 lines (358 loc) · 18 KB
/
train_video_renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
from os.path import join, isfile
from tqdm import tqdm
import torch
from torch import nn
from torch import optim
from tensorboardX import SummaryWriter
from torch.utils import data as data_utils
import numpy as np
from glob import glob
import os, random
import cv2
from piq import psnr, ssim, FID
import face_alignment
from piq.feature_extractors import InceptionV3
from models import define_D
from loss import GANLoss
from models import Renderer
import argparse
parser=argparse.ArgumentParser()
parser.add_argument('--sketch_root',required=True,help='root path for sketches')
parser.add_argument('--face_img_root',required=True,help='root path for face frame images')
parser.add_argument('--audio_root',required=True,help='root path for audio mel')
args=parser.parse_args()
#other parameters
num_workers = 20
Project_name = 'renderer_T1_ref_N3' #Project_name
finetune_path =None
ref_N = 3
T = 1
print('Project_name:', Project_name)
batch_size = 96 #### batch_size
batch_size_val = 96 #### batch_size
mel_step_size = 16 # 16
fps = 25
img_size = 128
FID_batch_size = 1024
evaluate_interval = 1500 #
checkpoint_interval=evaluate_interval
lr = 1e-4
global_step, global_epoch = 0, 0
sketch_root = args.sketch_root
face_img_root = args.face_img_root
filelist_name = 'lrs2'
audio_root=args.audio_root
checkpoint_root = './checkpoints/renderer/'
checkpoint_dir = os.path.join(checkpoint_root, 'Pro_' + Project_name)
reset_optimizer = False
save_optimizer_state = True
writer = SummaryWriter('tensorboard_runs/Project_{}'.format(Project_name))
criterionFeat = torch.nn.L1Loss()
class Dataset(object):
def get_vid_name_list(self, split):
filelist = []
with open('filelists/{}/{}.txt'.format(filelist_name, split)) as f:
for line in f:
line = line.strip()
if ' ' in line: line = line.split()[0]
filelist.append(line)
return filelist
def __init__(self, split):
min_len = 25
vid_name_lists= self.get_vid_name_list(split)
self.available_video_names=[]
print("filter videos with min len of ",min_len,'....')
for vid_name in tqdm(vid_name_lists,total=len(vid_name_lists)):
img_paths = list(glob(join(face_img_root,vid_name, '*.png')))
vid_len=len(img_paths)
if vid_len>= min_len:
self.available_video_names.append((vid_name,vid_len))
print("complete,with available vids: ", len(self.available_video_names), '\n')
def normalize_and_transpose(self, window):
x = np.asarray(window) / 255.
x = np.transpose(x, (0, 3, 1, 2))
return torch.FloatTensor(x) # B,3,H,W
def __len__(self):
return len(self.available_video_names)
def __getitem__(self, idx):
while 1:
vid_idx = random.randint(0, len(self.available_video_names) - 1)
vid_name = self.available_video_names[vid_idx][0]
vid_len = self.available_video_names[vid_idx][1]
face_img_paths = list(glob(join(face_img_root,vid_name, '*.png')))
# 1.randomly select a windows of 5 frame
window_T=5
random_start_idx = random.randint(0,vid_len-window_T)
T_idxs = list(range(random_start_idx, random_start_idx + window_T))
# 2. read face image and sketch
T_face_paths = [os.path.join(face_img_root, vid_name, str(idx) + '.png') for idx in T_idxs]
ref_N_fpaths = random.sample(face_img_paths, ref_N)
T_frame_img=[]
T_frame_sketch = []
for img_path in T_face_paths:
sketch_path = os.path.join(sketch_root,
'/'.join(img_path.split('/')[-3:]))
if os.path.isfile(img_path) and os.path.isfile(sketch_path):
T_frame_img.append(cv2.resize(cv2.imread(img_path),(img_size,img_size)))
T_frame_sketch.append(cv2.imread(sketch_path))
else:
break
if len(T_frame_img)!=window_T: #T (H,W,3)
continue
ref_N_frame_img,ref_N_frame_sketch = [],[]
for img_path in ref_N_fpaths:
sketch_path = os.path.join(sketch_root,
'/'.join(img_path.split('/')[-3:]))
if os.path.isfile(img_path) and os.path.isfile(sketch_path):
ref_N_frame_img.append(cv2.resize(cv2.imread(img_path),(img_size,img_size)))
ref_N_frame_sketch.append(cv2.imread(sketch_path))
else:
break
if len(ref_N_frame_img) != ref_N: # ref_N (H,W,3)
continue
T_frame_img = self.normalize_and_transpose(T_frame_img) #: T,3,H,W
T_frame_sketch = self.normalize_and_transpose(T_frame_sketch) #: T,3,H,W
ref_N_frame_img = self.normalize_and_transpose(ref_N_frame_img) # ref_N,3,H,W
ref_N_frame_sketch = self.normalize_and_transpose(ref_N_frame_sketch) # ref_N,3,H,W
# 3. get T audio mel
try:
audio_mel = np.load(join(audio_root,vid_name, "audio.npy"))
except Exception as e:
continue
frame_idx=T_idxs[2]
mel_start_frame_idx = frame_idx - 2 ###around the frame idx
if mel_start_frame_idx < 0:
continue
start_idx = int(80. * (mel_start_frame_idx / float(fps)))
m = audio_mel[start_idx: start_idx + mel_step_size, :] # get five frame around
if m.shape[0] != mel_step_size: # in the end of vid
continue
T_mels = m.T # (hv,wv)
T_mels = torch.FloatTensor(T_mels).unsqueeze(0).unsqueeze(0) # (1,1,hv,wv)
return T_frame_img[2].unsqueeze(0),T_frame_sketch,ref_N_frame_img,ref_N_frame_sketch,T_mels
# (1,3,H,W) (T,3,H,W) (ref_N,3,H,W) (ref_N,3,H,W) (1,1,hv,wv)
def load_checkpoint(path, model, optimizer, reset_optimizer=False, overwrite_global_states=True):
global global_step
global global_epoch
print("Load checkpoint from: {}".format(path))
checkpoint = torch.load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '',1)] = v #
# for k, v in s.items():
# new_s['module.'+k] = v
model.load_state_dict(new_s)
if not reset_optimizer:
optimizer_state = checkpoint["optimizer"]
if optimizer_state is not None:
print("Load optimizer state from {}".format(path))
optimizer.load_state_dict(checkpoint["optimizer"])
if overwrite_global_states:
global_step = checkpoint["global_step"]
global_epoch = checkpoint["global_epoch"]
return model
def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch, prefix=''):
checkpoint_path = join(
checkpoint_dir, "{}_epoch_{}_checkpoint_step{:09d}.pth".format(prefix, epoch, global_step))
if isfile(checkpoint_path):
os.remove(checkpoint_path)
optimizer_state = optimizer.state_dict() if save_optimizer_state else None
torch.save({
"state_dict": model.state_dict(),
"optimizer": optimizer_state,
"global_step": step,
"global_epoch": epoch,
}, checkpoint_path)
print("Saved checkpoint:", checkpoint_path)
n_layers_D = 3
num_D = 2
disc = define_D(input_nc=3, ndf=64, n_layers_D=n_layers_D, norm='instance', use_sigmoid=False, num_D=num_D,
getIntermFeat=True)
criterionGAN = GANLoss(use_lsgan=True, tensor=torch.cuda.FloatTensor)
# criterion_L1 = nn.L1Loss()
#evaluate index
fid_metric = FID()
feature_extractor = InceptionV3() #.cuda()
def compute_generation_quality(gt, fake_image): # (B*T,3,96,96) (B*T,3,96,96) cuda
global global_step
psnr_values = []
ssim_values = []
#############PSNR###########
psnr_value = psnr(fake_image, gt, reduction='none')
psnr_values.extend([e.item() for e in psnr_value])
#############SSIM###########
ssim_value = ssim(fake_image, gt, data_range=1., reduction='none')
ssim_values.extend([e.item() for e in ssim_value])
#############FID###########
B_mul_T = fake_image.size(0)
total_images = torch.cat((gt, fake_image), 0)
if len(total_images) > FID_batch_size:
total_images = torch.split(total_images, FID_batch_size, 0)
else:
total_images = [total_images]
total_feats = []
for sub_images in total_images:
sub_images = sub_images.cuda()
feats = fid_metric.compute_feats([
{'images': sub_images},
], feature_extractor=feature_extractor)
feats = feats.detach()
total_feats.append(feats)
total_feats = torch.cat(total_feats, 0)
gt_feat, pd_feat = torch.split(total_feats, (B_mul_T, B_mul_T), 0)
gt_feats = gt_feat.cuda()
pd_feats = pd_feat.cuda()
fid = fid_metric.compute_metric(pd_feats, gt_feats).item()
return np.asarray(psnr_values).mean(), np.asarray(ssim_values).mean(), fid
def save_sample_images_gen(T_frame_sketch, ref_N_frame_img, wrapped_ref, generated_img, gt, global_step, checkpoint_dir):
# (B,T,3,H,W) (B,ref_N,3,H,W) (B*T,3,H,W) (B*T,3,H,W) (B*T,3,H,W)
ref_N_frame_img = ref_N_frame_img.unsqueeze(1).expand(-1, T, -1, -1, -1, -1) # (B,T,ref_N,3,H,W)
ref_N_frame_img = (ref_N_frame_img.cpu().numpy().transpose(0, 1, 2, 4, 5, 3) * 255.).astype(np.uint8) # ref: (B,T,ref_N,H,W,3)
fake_image = torch.stack(torch.split(generated_img, T, dim=0), dim=0) #(B,T,3,H,W)
fake_image = (fake_image.detach().cpu().numpy().transpose(0, 1, 3, 4, 2) * 255.).astype(np.uint8) # (B,T,H,W,3)
wrapped_ref = torch.stack(torch.split(wrapped_ref, T, dim=0), dim=0) # (B,T,3,H,W)
wrapped_ref = (wrapped_ref.detach().cpu().numpy().transpose(0, 1, 3, 4, 2) * 255.).astype(np.uint8) # (B,T,H,W,3)
gt = torch.stack(torch.split(gt, T, dim=0), dim=0) # (B,T,3,H,W)
gt = (gt.cpu().numpy().transpose(0, 1, 3, 4, 2) * 255.).astype(np.uint8) # (B,T,H,W,3)
T_frame_sketch=(T_frame_sketch[:,2].unsqueeze(1).cpu().numpy().transpose(0, 1, 3, 4, 2) * 255.).astype(np.uint8) # (B,T,H,W,3)
folder = join(checkpoint_dir, "samples_step{:09d}".format(global_step))
if not os.path.exists(folder):
os.mkdir(folder)
collage = np.concatenate((T_frame_sketch, *[ref_N_frame_img[:, :, i] for i in range(ref_N_frame_img.shape[2])], wrapped_ref, fake_image, gt),
axis=-2)
for batch_idx, c in enumerate(collage): # require (B,T,H,W,3)
for t in range(len(c)):
cv2.imwrite('{}/{}_{}.png'.format(folder, batch_idx, t), c[t])
def evaluate(model, val_data_loader):
global global_epoch, global_step
eval_epochs = 1
print('Evaluating model for {} epochs'.format(eval_epochs))
eval_warp_loss,eval_gen_loss = 0.,0.
count = 0
psnrs, ssims, fids = [], [], []
for epoch in range(eval_epochs):
prog_bar = tqdm(enumerate(val_data_loader), total=len(val_data_loader))
for step, (T_frame_img, T_frame_sketch, ref_N_frame_img, ref_N_frame_sketch,T_mels) in prog_bar:
# (B,T,3,H,W) (B,T,3,H,W) (B,ref_N,3,H,W) (B,ref_N,,3,H,W) (B,T,1,hv,wv)
model.eval()
T_frame_img, T_frame_sketch, ref_N_frame_img, ref_N_frame_sketch,T_mels = \
T_frame_img.cuda(non_blocking=True), T_frame_sketch.cuda(non_blocking=True),\
ref_N_frame_img.cuda(non_blocking=True), ref_N_frame_sketch.cuda(non_blocking=True),T_mels.cuda(non_blocking=True)
generated_img, wrapped_ref, perceptual_warp_loss, perceptual_gen_loss \
= model(T_frame_img, T_frame_sketch, ref_N_frame_img, ref_N_frame_sketch,T_mels) # (B*T,3,H,W)
perceptual_warp_loss = perceptual_warp_loss.sum()
perceptual_gen_loss = perceptual_gen_loss.sum()
# (B*T,3,H,W)
gt = torch.cat([T_frame_img[i] for i in range(T_frame_img.size(0))], dim=0) # (B*T,3,H,W)
eval_warp_loss += perceptual_warp_loss.item()
eval_gen_loss += perceptual_gen_loss.item()
count += 1
#########compute evaluation index ###########
psnr, ssim, fid = compute_generation_quality(gt, generated_img)
psnrs.append(psnr)
ssims.append(ssim)
fids.append(fid)
save_sample_images_gen(T_frame_sketch, ref_N_frame_img, wrapped_ref,generated_img, gt, global_step, checkpoint_dir)
# (B,T,3,H,W) (B,ref_N,3,H,W) (B*T,3,H,W) (B*T,3,H,W)(B*T,3,H,W)
psnr, ssim, fid= np.asarray(psnrs).mean(), np.asarray(ssims).mean(), np.asarray(fids).mean()
print('psnr %.3f ssim %.3f fid %.3f' % (psnr, ssim, fid))
writer.add_scalar('psnr', psnr, global_step)
writer.add_scalar('ssim', ssim, global_step)
writer.add_scalar('fid', fid, global_step)
writer.add_scalar('eval_warp_loss', eval_warp_loss / count, global_step)
writer.add_scalar('eval_gen_loss', eval_gen_loss / count, global_step)
print('eval_warp_loss :', eval_warp_loss / count,'eval_gen_loss', eval_gen_loss / count,'global_step:', global_step)
if __name__ == '__main__':
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir, exist_ok=True)
device = torch.device("cuda")
# create a model and optimizer
model = Renderer().cuda()
optimizer = optim.Adam(model.parameters(), lr=lr)
if finetune_path is not None: ###fine tune
load_checkpoint(finetune_path, model, optimizer, reset_optimizer=False, overwrite_global_states=False)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
disc = nn.DataParallel(disc)
disc = disc.cuda()
disc_optimizer = torch.optim.Adam([p for p in disc.parameters() if p.requires_grad],lr=1e-4, betas=(0.5, 0.999))
# create dataset
train_dataset = Dataset('train')
val_dataset = Dataset('test')
train_data_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
drop_last=True,
num_workers=num_workers,
pin_memory=True
)
val_data_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=batch_size_val,
shuffle=True,
drop_last=True,
num_workers=num_workers,
pin_memory=True
)
while global_epoch < 9999999999:
prog_bar = tqdm(enumerate(train_data_loader), total=len(train_data_loader))
running_warp_loss,running_gen_loss= 0.,0.
for step, (T_frame_img, T_frame_sketch, ref_N_frame_img, ref_N_frame_sketch, T_mels) in prog_bar:
# (B,T,3,H,W) (B,T,3,H,W) (B,ref_N,3,H,W) (B,ref_N,3,H,W) B,T,1,h,w
model.train()
disc.train()
optimizer.zero_grad()
disc_optimizer.zero_grad()
T_frame_img,T_frame_sketch,ref_N_frame_img,ref_N_frame_sketch,T_mels =\
T_frame_img.cuda(non_blocking=True),T_frame_sketch.cuda(non_blocking=True),\
ref_N_frame_img.cuda(non_blocking=True),ref_N_frame_sketch.cuda(non_blocking=True),T_mels.cuda(non_blocking=True)
generated_img,wrapped_ref,perceptual_warp_loss,perceptual_gen_loss\
= model(T_frame_img, T_frame_sketch, ref_N_frame_img, ref_N_frame_sketch, T_mels)# (B*T,3,H,W)
perceptual_warp_loss=perceptual_warp_loss.sum()
perceptual_gen_loss=perceptual_gen_loss.sum()
gt = torch.cat([T_frame_img[i] for i in range(T_frame_img.size(0))], dim=0) # (B*T,3,H,W)
# discriminator
pred_fake = disc.forward(generated_img.detach())
loss_D_fake = criterionGAN(pred_fake, False)
# Real Detection and Loss
pred_real = disc.forward(gt.clone().detach())
loss_D_real = criterionGAN(pred_real, True)
loss_D = (loss_D_fake + loss_D_real).mean() * 0.5
#
# GAN loss
pred_fake = disc.forward(generated_img)
loss_G_GAN = criterionGAN(pred_fake, True).mean()
# GAN feature matching loss
loss_G_GAN_Feat = 0
feat_weights = 4.0 / (n_layers_D + 1)
D_weights = 1.0 / num_D
for i in range(num_D):
for j in range(len(pred_fake[i]) - 1):
loss_G_GAN_Feat += D_weights * feat_weights * \
criterionFeat(pred_fake[i][j], pred_real[i][j].detach()).mean() * 2.5
if global_epoch>25:
loss = 2.5*perceptual_warp_loss+4*perceptual_gen_loss+0.1*2.5*loss_G_GAN+ loss_G_GAN_Feat
else:
loss = 2.5 * perceptual_warp_loss+0*perceptual_gen_loss
loss.backward()
optimizer.step()
# update discriminator weights:
loss_D.backward()
disc_optimizer.step()
##log#
running_warp_loss += perceptual_warp_loss.item()
running_gen_loss+= perceptual_gen_loss.item()
if global_step % checkpoint_interval == 0:
save_checkpoint(model, optimizer, global_step, checkpoint_dir, global_epoch, prefix=Project_name)
if global_step % evaluate_interval == 0 or global_step == 100 or global_step == 500:
with torch.no_grad():
evaluate(model, val_data_loader)
prog_bar.set_description('epoch: %d step: %d running_warp_loss: %.4f running_gen_loss: %.4f' \
% (global_epoch,global_step, running_warp_loss / (step + 1),running_gen_loss / (step + 1)))
writer.add_scalar('running_warp_loss', running_warp_loss / (step + 1), global_step)
writer.add_scalar('running_gen_loss', running_gen_loss / (step + 1), global_step)
global_step += 1
global_epoch += 1
print("end")