-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathevaluate.py
82 lines (70 loc) · 3 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
''' AdapNet++: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation
Copyright (C) 2018 Abhinav Valada, Rohit Mohan and Wolfram Burgard
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.'''
import argparse
import datetime
import importlib
import os
import numpy as np
import tensorflow as tf
import yaml
from dataset.helper import *
PARSER = argparse.ArgumentParser()
PARSER.add_argument('-c', '--config', default='config/cityscapes_test.config')
def test_func(config):
os.environ['CUDA_VISIBLE_DEVICES'] = config['gpu_id']
module = importlib.import_module('models.' + config['model'])
model_func = getattr(module, config['model'])
data_list, iterator = get_test_data(config)
resnet_name = 'resnet_v2_50'
with tf.variable_scope(resnet_name):
model = model_func(num_classes=config['num_classes'], training=False)
images_pl = tf.placeholder(tf.float32, [None, config['height'], config['width'], 3])
model.build_graph(images_pl)
config1 = tf.ConfigProto()
config1.gpu_options.allow_growth = True
sess = tf.Session(config=config1)
sess.run(tf.global_variables_initializer())
import_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
print 'total_variables_loaded:', len(import_variables)
saver = tf.train.Saver(import_variables)
saver.restore(sess, config['checkpoint'])
sess.run(iterator.initializer)
step = 0
total_num = 0
output_matrix = np.zeros([config['num_classes'], 3])
while 1:
try:
img, label = sess.run([data_list[0], data_list[1]])
feed_dict = {images_pl : img}
probabilities = sess.run([model.softmax], feed_dict=feed_dict)
prediction = np.argmax(probabilities[0], 3)
gt = np.argmax(label, 3)
prediction[gt == 0] = 0
output_matrix = compute_output_matrix(gt, prediction, output_matrix)
total_num += label.shape[0]
if (step+1) % config['skip_step'] == 0:
print '%s %s] %d. iou updating' \
% (str(datetime.datetime.now()), str(os.getpid()), total_num)
print 'mIoU: ', compute_iou(output_matrix)
step += 1
except tf.errors.OutOfRangeError:
print 'mIoU: ', compute_iou(output_matrix), 'total_data: ', total_num
break
def main():
args = PARSER.parse_args()
if args.config:
file_address = open(args.config)
config = yaml.load(file_address)
else:
print '--config config_file_address missing'
test_func(config)
if __name__ == '__main__':
main()