-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.nb
1569 lines (1467 loc) · 84.5 KB
/
test.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 84824, 1561]
NotebookOptionsPosition[ 75783, 1449]
NotebookOutlinePosition[ 76129, 1464]
CellTagsIndexPosition[ 76086, 1461]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"bin", "=",
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztm02uHTUQhS+MGLIFdsGUIdMgFpCIEDEJUgJCbIotXnLzXl7uT7er7Hb9
HNf5JJBCp9vl87ncfknzw5s/X/3+7el0+vjdp3+9ev3PTx8+vP73l+8//eLX
9x//ePf+7W8/v//r7bu3H358c/ltf39zOv336R9CCCGEEEIIIYQQQgghhBBC
CFmMc3Ki80lFtAyZ6IQSEa1CQ3RGeYg2oSE6ozREi9ARnVIStqMRkpOSnX97
dExJSB8GdX0FIIv8FbqBEAVCjS4AtBZtvYARBEaV5oDEALEDmAOTAkqdpsCE
ALOsDAHKAKdSM5AiQKrVBKgAoIq1ACsArGqnAzZ9oJesBWizR6t3KnCTr9xc
gHPHq3gagFMHXGCTgJw4ZNEzwJw4ZtWHAZ12zb0Qdtaodbc53yF9hiZ9hWR7
+2yi0+/EOZ10ROffR3Ra4UQL6CE6q3iiDXQQHVUCohV0sFW9NDnhuhRO6O2b
96AglQs2nQeE+sGmt7gs8YdFqAmq5oIymU0W2jwWmsoeCzXXOjPZZxld6++D
F5ayJVxGmEebRZqrwFvrMyVsgcxCZonmqtJaypn6lTNEGVkrNBf+DPTA66px
ev8C+l5YZx+8AN5ctVoL/EgFXfwI0M1VrbWwdVVrLWhb9VoLWFdFWbg/YNbb
By+ANlfN1gLVpZN1xWrfHA4GE4Om5KUZTCYEVcVrI8zdJPZBVAUvzlg2AQgF
CdMBR7KVTZdOVp56JwPWXKVbC665arcWWHNpSk1TrAVIzVX8rXUBqLko6+uP
KO3f4FnSDsWPGE+g7IXcBz8D0lzljxhPgDQXW+sJiOairC8A6OJb6wUUW+2r
0SW6kV6XrrUcC4ok+0GD++ANyZtLU1wdWcmbi611R+rmYmvdcU6si0eMB3S2
IjLhPrhB2ubiPrhB2oMGW2uLpM3F1tok50FDJ6swY8EZoSmpNmPJmaApqDrt
cIzE7A/ZvEja8dh4GRhQrHdtsumirBa0BUUuXZTVRnx1eQZEWRKZmou2JDI1
V3sg2jplai62loIsuihLA21BkUQXZalQHjQ8imhfpa0LGZqrPQJlXRGviy+t
DmgLiejmoqweaAuKWF2U1cdZisQ0MNrqJLK5KKsXsbnsdFFWP7QFRZQuyhoh
6KChGpM0aEZnYouyxhlKlraiSGIrLgAo/GQ1nyoVtBqXaQpa9LqMgtt9bDVZ
nbR1WQVHW4O08rELbufBlCXQai674LafLO3LpLGeLXPbfDZlyexmZBrcxsMp
S8He/mMbHG0Nsp2SdXAPj6csFdvNZR0cbQ2ylZN9cNsDUpbEvi37UZtFkC0e
k/II7mYIylLz+OZyCe5qDMrq4D4sn+CuRqGtHm7T8gruZRjK6uJ2L/QKjrYG
uc7LL7fnkSirl6vEHIM73+Iy5gqcQ4KjrTEy2PIZcwligqOtQWKCo6wxomWR
UWgLCsqCgraQcJflMuBKeOvyXx5LEWjLYbjVcF7stHUM1/wo6yCezcW31mEc
I6Ssw/jZoqwJuOmirRk4pUhZU/BpLh4xJuFuy2yQCngse8qahoMu2pqGvS3K
moi5LtqaiXGalDUV2+airMnMCfQsM6/kykwJmrKcoC0oXGzZT6MIHrbsZ1EG
z96SfteRy+C3ty+L168GOmyLuEFbSNAWEtNsHdz6pb376O3ty0dv9+K4LfkJ
RImDLeqaBm0BISbNP3nKgxz0nFOG/UwqYBk0bU3Gdv1T11xs86StqVi/Wqhr
JtZp0tZE7MOkrmlY74P3YxgNUQSPJGlrEh6tRV2T8JFFXXPwSpG2JuDVWrQ1
Azdb1HUcP1n8X4+P45kgbR3Ed71T1yGcNyfuhYfwju+8ifgx8qGPlWNvt/rS
2kEWvw+dhYss2pqEjy3qmoKTLNqagpetU8SYSxASHG2NEd1a1NVDRHBR+y88
IbnR1hghx4znoairl3tbfn/wdKKtXq4Dc7dFXX3c9pRTcFfD0FYPt4vbKbkt
W9Sl4C4tR1v3BVgPugD3S9sluPOmLeqSOD9k5RDc3RDUpWUjKfvg7gegLR1b
y9o8uIcB2Fw6NnMyDm7j8dSlYTsl2krJ4xHj+r+bDrpbidGoC7CXkWlwm4+m
LZH9iAyD23k0dQns7YNfr9mN2ijGYtAFCLG1+2DqatPMxyi4/cfSVpN2PO62
+Hmhkt5cTWRRl45mdrSVjJFkLWxRlwJHWWpds4cFR5QVcMzguXCPKFlsrgGU
+6DZj8dyYQYjwxLWWmyufgJbi7q6CWwt2uolVBZ19SHugwF/1f9wlbqeiZZF
Wz1EHjGuRmhfpa0nwluLzaUngSzq0hJ+xNAMQl3P5JBFWzqS2GofNOQNoAZZ
ZLG5FIiL1i8k6hJJ01q0JZNIFnWJpLLFv5dsk0sWm6tJoiPG9Xjtq2V1JWut
oa8L631zOBaeBZp6qjOWnQWaeoozFp0NmopqM5acDcKYG8VLkzt0WcJ//QwG
Z4SmpoKnQp0s/1yoawNx2lGpqMqqpivnPqgYuaKttK31Zej21WK68rYW98IH
sh4xrgYXLtPW/XXPijpGr2Yr81tLHr5Yc52l+Uanwea6QtdajgV1FlCqubLv
g3IFlXRl3wcVNdSxlX8ffCmCBw2AfVBRRRVdCPugXEcRWyCtdeK58AJKa7G5
TkitxTcXUmvxFI/UWie+uZBaq/xeiCXL4ktr6ZvEgx+0Wdw+mE4AmnJXpz17
k9gHESqKi9CP0WwiaJcUl6Ebg8nEoCo5Wc1TkGzlnHhxW8J1x4JUVG0u0HmD
ln0QzNaS68pa9yFQZdVsLuAlilv5KLitVbG5gGXV04XcWtC7+AjYssB3hm7Q
Fyd6/X2oZutXTj+V3lzoG+Gp0il+AVmF9kL4ffDCAitOxQqtVae5lpBV5aCx
zKJcZNU1WWMfvLDMsmuwjKylprLDOq11Wv+HrqVkLd9cK9q6xfhL6tDbd56J
wsDkliPaQQfRUcUTbaCH6KziiTbQRXRY0UTnPxfYOWlsIM6rCewSRK37GKCz
hl1lxwCdNmbVx4GcN+gaOw7kxBFrngPgzCFX2CTwpo5X8Tzg5g5X8FTQZo9W
71zAZg9W7nSg5l/5iPEEUgBItdoAlABQqWbAZMB98ERbYKCEgFKnLSBrFqNK
eyByAFlT9kAEgVCjDwBJQKwoJ/JHkb9CP84bCN+4iZ9CG9weHVMW2tFlITql
NESL0BCdUR6iTWiIzigP0SYUREeUiWgXMtEJEUIIIYQQQgghhBBCCCGEEEII
IYQQQgghfvwP6WOf+g==
"], {{0, 373}, {430, 0}}, {0, 255},
ColorFunction->GrayLevel],
BoxForm`ImageTag["Byte", ColorSpace -> "Grayscale", Interleaving -> None],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{430, 373},
PlotRange->{{0, 430}, {0, 373}}]}], "\n",
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.787134083790639*^9, 3.787134100350349*^9}, {
3.7871341523156295`*^9, 3.7871341544169626`*^9}, {3.852459117275353*^9,
3.8524591230455503`*^9}, {3.852459752836131*^9, 3.8524597542532015`*^9}, {
3.852459858269901*^9, 3.852459882399186*^9}, {3.852510437772091*^9,
3.852510451905265*^9}, {3.8525157863737803`*^9, 3.8525157887737856`*^9}, {
3.852516318277542*^9, 3.85251633545805*^9}, {3.852516411862253*^9,
3.852516420872342*^9}, {3.8525164658036847`*^9, 3.85251646608865*^9}, {
3.8525165416583633`*^9, 3.852516597428556*^9}, 3.8525167391582565`*^9, {
3.852627621103629*^9, 3.8526276287692614`*^9}, {3.852635028225142*^9,
3.8526350300296793`*^9}},
CellLabel->"In[78]:=",ExpressionUUID->"5ccdfa4e-b0b8-453e-a3cb-67de6af4ea46"],
Cell[BoxData[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztm02uHTUQhS+MGLIFdsGUIdMgFpCIEDEJUgJCbIotXnLzXl7uT7er7Hb9
HNf5JJBCp9vl87ncfknzw5s/X/3+7el0+vjdp3+9ev3PTx8+vP73l+8//eLX
9x//ePf+7W8/v//r7bu3H358c/ltf39zOv336R9CCCGEEEIIIYQQQgghhBBC
CFmMc3Ki80lFtAyZ6IQSEa1CQ3RGeYg2oSE6ozREi9ARnVIStqMRkpOSnX97
dExJSB8GdX0FIIv8FbqBEAVCjS4AtBZtvYARBEaV5oDEALEDmAOTAkqdpsCE
ALOsDAHKAKdSM5AiQKrVBKgAoIq1ACsArGqnAzZ9oJesBWizR6t3KnCTr9xc
gHPHq3gagFMHXGCTgJw4ZNEzwJw4ZtWHAZ12zb0Qdtaodbc53yF9hiZ9hWR7
+2yi0+/EOZ10ROffR3Ra4UQL6CE6q3iiDXQQHVUCohV0sFW9NDnhuhRO6O2b
96AglQs2nQeE+sGmt7gs8YdFqAmq5oIymU0W2jwWmsoeCzXXOjPZZxld6++D
F5ayJVxGmEebRZqrwFvrMyVsgcxCZonmqtJaypn6lTNEGVkrNBf+DPTA66px
ev8C+l5YZx+8AN5ctVoL/EgFXfwI0M1VrbWwdVVrLWhb9VoLWFdFWbg/YNbb
By+ANlfN1gLVpZN1xWrfHA4GE4Om5KUZTCYEVcVrI8zdJPZBVAUvzlg2AQgF
CdMBR7KVTZdOVp56JwPWXKVbC665arcWWHNpSk1TrAVIzVX8rXUBqLko6+uP
KO3f4FnSDsWPGE+g7IXcBz8D0lzljxhPgDQXW+sJiOairC8A6OJb6wUUW+2r
0SW6kV6XrrUcC4ok+0GD++ANyZtLU1wdWcmbi611R+rmYmvdcU6si0eMB3S2
IjLhPrhB2ubiPrhB2oMGW2uLpM3F1tok50FDJ6swY8EZoSmpNmPJmaApqDrt
cIzE7A/ZvEja8dh4GRhQrHdtsumirBa0BUUuXZTVRnx1eQZEWRKZmou2JDI1
V3sg2jplai62loIsuihLA21BkUQXZalQHjQ8imhfpa0LGZqrPQJlXRGviy+t
DmgLiejmoqweaAuKWF2U1cdZisQ0MNrqJLK5KKsXsbnsdFFWP7QFRZQuyhoh
6KChGpM0aEZnYouyxhlKlraiSGIrLgAo/GQ1nyoVtBqXaQpa9LqMgtt9bDVZ
nbR1WQVHW4O08rELbufBlCXQai674LafLO3LpLGeLXPbfDZlyexmZBrcxsMp
S8He/mMbHG0Nsp2SdXAPj6csFdvNZR0cbQ2ylZN9cNsDUpbEvi37UZtFkC0e
k/II7mYIylLz+OZyCe5qDMrq4D4sn+CuRqGtHm7T8gruZRjK6uJ2L/QKjrYG
uc7LL7fnkSirl6vEHIM73+Iy5gqcQ4KjrTEy2PIZcwligqOtQWKCo6wxomWR
UWgLCsqCgraQcJflMuBKeOvyXx5LEWjLYbjVcF7stHUM1/wo6yCezcW31mEc
I6Ssw/jZoqwJuOmirRk4pUhZU/BpLh4xJuFuy2yQCngse8qahoMu2pqGvS3K
moi5LtqaiXGalDUV2+airMnMCfQsM6/kykwJmrKcoC0oXGzZT6MIHrbsZ1EG
z96SfteRy+C3ty+L168GOmyLuEFbSNAWEtNsHdz6pb376O3ty0dv9+K4LfkJ
RImDLeqaBm0BISbNP3nKgxz0nFOG/UwqYBk0bU3Gdv1T11xs86StqVi/Wqhr
JtZp0tZE7MOkrmlY74P3YxgNUQSPJGlrEh6tRV2T8JFFXXPwSpG2JuDVWrQ1
Azdb1HUcP1n8X4+P45kgbR3Ed71T1yGcNyfuhYfwju+8ifgx8qGPlWNvt/rS
2kEWvw+dhYss2pqEjy3qmoKTLNqagpetU8SYSxASHG2NEd1a1NVDRHBR+y88
IbnR1hghx4znoairl3tbfn/wdKKtXq4Dc7dFXX3c9pRTcFfD0FYPt4vbKbkt
W9Sl4C4tR1v3BVgPugD3S9sluPOmLeqSOD9k5RDc3RDUpWUjKfvg7gegLR1b
y9o8uIcB2Fw6NnMyDm7j8dSlYTsl2krJ4xHj+r+bDrpbidGoC7CXkWlwm4+m
LZH9iAyD23k0dQns7YNfr9mN2ijGYtAFCLG1+2DqatPMxyi4/cfSVpN2PO62
+Hmhkt5cTWRRl45mdrSVjJFkLWxRlwJHWWpds4cFR5QVcMzguXCPKFlsrgGU
+6DZj8dyYQYjwxLWWmyufgJbi7q6CWwt2uolVBZ19SHugwF/1f9wlbqeiZZF
Wz1EHjGuRmhfpa0nwluLzaUngSzq0hJ+xNAMQl3P5JBFWzqS2GofNOQNoAZZ
ZLG5FIiL1i8k6hJJ01q0JZNIFnWJpLLFv5dsk0sWm6tJoiPG9Xjtq2V1JWut
oa8L631zOBaeBZp6qjOWnQWaeoozFp0NmopqM5acDcKYG8VLkzt0WcJ//QwG
Z4SmpoKnQp0s/1yoawNx2lGpqMqqpivnPqgYuaKttK31Zej21WK68rYW98IH
sh4xrgYXLtPW/XXPijpGr2Yr81tLHr5Yc52l+Uanwea6QtdajgV1FlCqubLv
g3IFlXRl3wcVNdSxlX8ffCmCBw2AfVBRRRVdCPugXEcRWyCtdeK58AJKa7G5
TkitxTcXUmvxFI/UWie+uZBaq/xeiCXL4ktr6ZvEgx+0Wdw+mE4AmnJXpz17
k9gHESqKi9CP0WwiaJcUl6Ebg8nEoCo5Wc1TkGzlnHhxW8J1x4JUVG0u0HmD
ln0QzNaS68pa9yFQZdVsLuAlilv5KLitVbG5gGXV04XcWtC7+AjYssB3hm7Q
Fyd6/X2oZutXTj+V3lzoG+Gp0il+AVmF9kL4ffDCAitOxQqtVae5lpBV5aCx
zKJcZNU1WWMfvLDMsmuwjKylprLDOq11Wv+HrqVkLd9cK9q6xfhL6tDbd56J
wsDkliPaQQfRUcUTbaCH6KziiTbQRXRY0UTnPxfYOWlsIM6rCewSRK37GKCz
hl1lxwCdNmbVx4GcN+gaOw7kxBFrngPgzCFX2CTwpo5X8Tzg5g5X8FTQZo9W
71zAZg9W7nSg5l/5iPEEUgBItdoAlABQqWbAZMB98ERbYKCEgFKnLSBrFqNK
eyByAFlT9kAEgVCjDwBJQKwoJ/JHkb9CP84bCN+4iZ9CG9weHVMW2tFlITql
NESL0BCdUR6iTWiIzigP0SYUREeUiWgXMtEJEUIIIYQQQgghhBBCCCGEEEII
IYQQQgghfvwP6WOf+g==
"], {{0, 373}, {430, 0}}, {0, 255},
ColorFunction->GrayLevel],
BoxForm`ImageTag["Byte", ColorSpace -> "Grayscale", Interleaving -> None],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{430, 373},
PlotRange->{{0, 430}, {0, 373}}]], "Output",
CellChangeTimes->{3.852634792828735*^9, 3.8526351387222166`*^9},
CellLabel->"Out[78]=",ExpressionUUID->"ef971c53-810e-40f8-b7b4-ce57fbdb5bb9"]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.852627631028983*^9, 3.852627631739191*^9}},
CellLabel->"In[79]:=",ExpressionUUID->"66123250-6260-4bd6-8481-f1fe7245fa9b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"skeleton", "=",
RowBox[{"Pruning", "[",
RowBox[{
RowBox[{"SkeletonTransform", "[", "bin", "]"}], ",", "10"}], "]"}]}],
"\n"}]], "Input",
CellChangeTimes->{{3.7871341886646433`*^9, 3.7871341886696277`*^9},
3.7871342585358725`*^9, {3.787134347863978*^9, 3.787134348422515*^9}, {
3.8524591605881195`*^9, 3.852459161706485*^9}, 3.852542715704971*^9, {
3.8526349885817547`*^9, 3.8526350003921304`*^9}},
CellLabel->"In[80]:=",ExpressionUUID->"aff7d3c4-299a-4c97-afc9-e235f59643fe"],
Cell[BoxData[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt3U2oXtdaB/DUQXMiKTm9RFtF763jDDpQhBsHbiEDBxk1DhIyKPGSoBBQ
rphyJ3UuOC5Sv2gdZGQGnTnRgTiK4ORCEoQIpQMHcZJSCgp6D6frpO/b8573
a++91t7/3w/ufcgHzV7Ju5/1PGutvd9f+/0/eu/ez507d+5PDn72f+/d+eB3
fvzjOz+58frRD+7euf+bv3H36Bf/9LVz5/7hZ/8DAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAA4Gz/9lt/du9v/u717vhHB6IoijOLAAD13Lj97OrN6xe6xZ/tv+5Z7OtW
m1v/lzruElPHnzruEtsY/6v89vLWnWtXnlxcez0AAH3ZtB4CmIvT15cAAPqj
zwJSlfwnDwIAfVNnAByTBwGAvjlHA7BI3wUA7Mu+FsDp5EUAYF/qCYCzyZMA
wLbUDwCbkS8BgG2pHwC2I28CAOuoFwB243lXAGAVdQJAP+RRAGCZ+gCgX/Iq
AKAeABiG/AoAqAcAhiXPAkAe8z/AOORbAMhj/gcYl7wLAPNnvgeow3tgAWD+
zPMAdd24/ezqzesXutrXAQD0R58F0Ab7XAAwH+ZzgDbJzwAwfeZzgLbJ0wAw
PeZvgGmQrwFgqg662lcAwGb0XQAwNfotgGk58B4NAGjYy1t3rl15crGrfR0A
bKe8J9774gGgXU/vP3/84OvDrvZ1ALCdsl5m3QyAFi2evzgYLJY/5+GXH338
weevffPz50oc6DpWK/Py+ReP7l36cLnPOjyZt09fL53K+OvH1HGXmDr+1HGL
48SSlxf7q8OTuFvfVX9c/UQAWtNXP7EurjpXX+qxfuuvV+NanndP76821d+4
i2HG304c99+9vZg6/tRxl7juvp/r+Mcd93rr+rHF+a/+399+cfW8B0Adac8V
O28CkCk7/2/enwLQj7Q+q/AcNUCm1PdppM73ALUsPUcRyjofQJr0viN9/ABj
Sc+36eMHSJe2v1VYbwUYVnqe1WcBcKTMB6nzQuq4AYaWml9Txw3A2dLnh/Tx
A/QlPZ+mjx+As6XOE6njBuiL84PmEQDWc74wc9wA+0rNn+nzJgC7SX2PhvkS
YDfZ+dP73gHYTva8afwAm0rPl+njB2A/qftc6c8hAKyTnif1WQD0If1ceuq4
AdZJzY/pfSYAwzCvAnAkPS+mzocAjCN1nin1RXqdAeRKz3+p8x8A43K+MHPc
AKn5L33eA6AO79EAyJCe91LnOwDqSl/nSx8/kCM936WPH4C60tf9zMPAXKXn
t/T5DYA2pJ9rTx03MH+p+S19XgOgTenzU+q4gflJf15LPgegZannL8zPwNTp
s+RxANqXPl+ljx+YrtT8tTjug67mtQDAplL3udLXh4HpSc9bqfMVAHOQu06Y
uk4MTE96vnp56861K08udvouAKakzFtlHqt9PbWk1zFAu9Lz0+nz08HJe59W
7Pt1e8ZV9v3viqIoijOPZV4q89Ryv5Xad6XXM0C7UvPTjvNRJ4qiKIoNxJXS
z2uk1jVAe1LzUZl/UuchADKk7nMVqXUOUF/6ezHS5x8AMqQ/16XfAmpJzT/2
swBI5HxhZt0DjC8936Su7wHAkdR5ML3+AcaTmm9S1/MA4Nvsc2XWQcDwPK+V
uZ4HAKdJnRf1W0Df9FmZ8wkAnMU+l74L6EdqPvG+dwBYL3VdMn09Gthfeh5J
nT8AYBveF5+5Lg3sLzV/2M8CgO05X5hZNwHbS88XqetzANCH1Hk0vX4CNpd6
jjB1fgCAPqU//6zvAlZJ7bPSz50DwBBS51X9FrCs9Fmp/VbqfAAAY0idZ/Vd
QJGaD9LPOwDAGFLfo5G6jg28kp4HUtfbAKCG1Hk3dV0byL3/09bXAKAFqftc
RWrdBYnS7/fU9TUAaEHqPJxef0GS1Ps9Nb8DQEvsc2XWYZAg9f72XgwAaE/q
OmhqPQZz5r0YmfkcAFqW/v2X+i6Yj9T72X4WALTP+cLMOg3mIP3+TV0vA4Ap
Sp230+s1mLLU+zc1XwPA9B12ta+gltS6DaYo/XmtY7n5GgCmK3f+1m/BdKTf
r+dfPLp36cPcfA0AU1Ke2yrz99P7zx8/+Dp3Hk+v46Bl6ffncn4u+bv8vazY
9+tEURRFURwvlvl4Xd2Sun6aXs9Bi9LPD+6YjztRFEVRFKvFtdKfx9Z3QTtS
78f0PAwACVL3uYrUOg9aYF8rO/8CQJLUeV+/BfWk3n+p+RYAkqXP/6l1H9SQ
fr85RwgAuVL7rvT6D8bg/GBmfgUAXkmvB/RdMBz315Hc/AoAvJL6PV2lHlQX
Qn/S76fUfAoArJe635VeH0Kfsu+nvPwJAGwutd8qsutE2I/ntbLzJwCwudS6
Qb8Fu0u9f7x/EADYVmq/VaTWjbCL9PslPV8CALtLrSPS60fYRuo5wtT8CAD0
J/2cjL4LVkvts9LzIgDQv9T6IrWehLOk3xf2tQCAoaTWGfa54JXU+yE1/wEA
Y8utN1LrTDiS/vnXbwEAY0mtO9LrTbKlfv5T8x0AUE96/ZFad5Ip/fOenu8A
gHpS65D0+pMsqZ/31PwGALQjvR5JrUPJkP75Tn0vKwDQnqf3nz9+8LW+q/Z1
QB+87z17HQkAaFdqnaLfYk5SP8/2swCA1qX2W0Vqnco8pH9+0/MXADAdqXVL
er3KtKV+flPzFQAwXcfPf7zZ1b6OWlLrVqYp/fNa8pW+CwCYlstd7SuoLb2O
pW2Ln8+Drua11FDe87P8vp8bt59dvXn9Qlf+fla8P6QTRVEURfEkntvw1+eq
WxH3VuqR8px5WR9e3N9K77sOVtVrUFVqv7Wqz9pQJ4qiKIriSVx+r/HKXz+9
7pheXLEeuxx7HvemUvsu/RZtS9mHPX09CABgPtLqnJQ6lmlLWQ/wnBYAMHcp
9Y4+iyma6+fWvhYAkCKl7plr3UqGuX1+U9Z5AACKPZ9Xb9bc6lQyzeVzXPqr
ueUZAIBNzWXdeS71KXzb1D/Xc99HBwBYZy7nC6del8JppvoejbKfNfV1HACA
vkx1n0ufRYKpfM7nsn4DADCUqdVJU6lDoQ+tf96nlj8AAMY2lXqp9boThtDq
596+FgDALi53ta9gWak3W607YQytff6neh4ZAKC21tarb9x+dvXm9Qtd7euA
mlrpt7zvHQCgD/X3uexrwSutvLewtfUYAICpaWXdWp8F31X6rrH7r7Kv5fwg
AEA/aq1j67NgvbHvE/taAAD9qvWchn4L1htrf8v3GAMADGusekufBdsb6r7x
XgwAgHENdZ5InwX76/s+cn4QAGBcQ+1v6bdgf32dL/ReDACAFuz/vnh9FvRv
3/vKvhYAQBv2rcv0W9C/Xb+3znNaAABt2bXf0mfBeG7cfnb15vUL3brfZ18L
AKBl688Xblr3Af3Z7L7b/3wwAABDKvXa5a6sky8+b3/Y6begtlfnBV8+ffj3
f/Dnv9Ct/r0AALTkk08/e+OL997qal8HsNpX737v/bt3L3/zfNcvdsc/e9n7
CAEAGrNYny3Xb293lS4LOMO6fa2yD12es1zxnvlOFEVRFEVR7CeWeqvUX+vO
BS72XUBL9jxH2ImiKIqiKIqDxC15/h5a4nktAIB5Ud9BO9yPAADz5Hwh1KPP
AgCYt1LvqftgfO47AIAM3hcP47GvDACQyXo7DKd8v1bt6wAAoA7r7jAc6xkA
ABxRF0Lf7GsBAHBMvwX9cT8BAHAa5wthd/osAADO4n3xsC/nCAEAOJv3xcPm
rE8AALALdSSsYz8LAIDdeJ4LVrMeAQBAH9SV8Ir7AQCAPqkvYZlzhAAA9Mv5
QpJZdwAAYAzqTvLYzwIAYBz6LZL4vAMAUIM6lBz2twAAGJd+i/kq/ZU+CwCA
uvRdzInPMwAALVGfMgfevwkAQMvUq0zRJ59+9sYX773V1b4OAADYhPqVKbhx
+9nVm9d/qat9HQAAsI3//e8f/eGv//SXu9rXAZv4r/958M5Pv/+rXe3rAACA
TahfWe+drlb893+889v/+YN3uvMvHt279OE73R//y1//8C8efL8r6wSL+7OX
u6f3nz9+8PVh9/LWnWtXnlzsjs/Nvt49/PKjjz/4/LVuaWDdtrH8d8p/9/in
D2YTV/x9ncS5jj913CWmjj913CWmjj913CWmjn9NPXBuruMucdW/+9zHXWLf
4z8+d3XhpN4s9efxr18+qU9LvVrq11LPlvr2+Pe3EuFYT+sD3YYRAJivbinC
IEr9Wvqu2tcDZ3H+FQCAKfnnn//BuX/93V/pal8HbO/trvYVAADAmf7vb//y
8V957xvT4vsMAABon/0Bps33dwMA0CL7A8zH5a72FQAAwBH7AcyRzzUAAC1Q
lzJf9rkAAKjD+UESWE8AAGBM6k8S+dwDADAGdSe5nC8EAGAY+ixwHwAAMAx1
JhRln8t+FwAA+9FnwSqXu4dffvTxB5+/2dW+EgAApsw6Pqzm/gAAYDv2tWC9
r9793vt37+q3AADYTOmz1JGwOesTAABswvcYw/b0WwAAnEWfBftzHwEA8G1l
Xd76PPTHeVwAAI588ulnb3zx3ltd7euAObF+AQCQTT0IQ7O/BQCQynMmMJbS
d+m/AADmzr4WjM99BwCQQd0HtdnnAgCYG+cHoT7rHQAA8+J979Ce3dY/Drpt
4/Gf83r38MuPPv7g89e+8+eVny+/b9c/p7W4Ztzlx13o+P27Z47fv3vm+Gf7
715i6vhTx13iivH3fJ9vzvveoT1l/WOx77r8TZ54s3t56861K08uLuWL3nRL
MUW3IqbolmKKbkVM0S3FFN2KmKJbimm6pZiiW4rsaLlvK3VZqdOOf9flzvlB
aN8P/+NHn/3T773d1b4OAAC2o46D9jnnCwAwZfotaM9hd/7Fo3uXPjzsFn/e
ewsBAKbiq3e/9/7du75nFVpw4/azqzevX+hW/frT+88fP/h6uf8CAKA1i89x
LTvs1tV9QH+2fd/F2fcvAABjK+eSNl0f12/B8HZ9r+C29zMAAMPadT18oPdM
Q7RV34OxrdJvnf6cFwAAQ+tr/VvfBf3p+35yvhAAYFxlvbvvOkzfBbsb6v4p
97t9LgCAcQy13q3fgt0Nff/Y5wIAGMfQdZe+CzY31v1inwsAYAzDf49WqR/1
XbDe2PeJ9xYCAPSr1nq2fgtW6+s9hLuyzwUA0I9az23UriehRa3cF/otAID9
tHJuyD4XvNLa/dBKngAAmIqh3ve+r9bqTBhTK/tay7xHAwBgO6XPaq1+0m+R
rPXPf2vrMwAArSn9Vevng1qvO6FPU/u8t54/AABqmcr69NTqT9hFq+cH12l1
fxwAoJaprkfru5izqX++p7J+AwAwjuG/x3goU69L4TRT/1zb5wIA0s1l/Xnq
dSl821w+z62+5xQAYCxzq4PmUqeSaarPa61Tzivb5wIAskz3/OAq+i2mbO6f
37mt7wAALEtZX5573cq8pHxefS8yADB3KevLKfUrc3LQ1b6Csez5PtROFEVR
FEVxpLixUt9M9b3vuyp911yfi2FOcvqtYl0+WnH/iqIoiqIoDh1Pnqtft4+T
2mctOtBv0bTU/djl9xeWH9+4/ezqzesXutrXBwBQlPpkuX5JOT+4Smody7Sk
rwdkrwcBANM1v/cPbkqfxRSlf269RwMAmAr7Wtl1K9OW+vnVbwEArUt/33Jq
ncq8pH+OU/MXANC+1OcgSn2aXqcyD+nPc+m3AIDWpNcn+izmKP1znZ7XAIB2
pNYl6fUoGVI/5y9v3bl25cnFrvZ1AAC5UvusIrUOJYvzhdl5DgCoJ7UO0WeR
KP1zb78LABhL6nsxivS6k2ypn//U9SUAYGy59UZqnQnflnofLO5v5eZBAGA4
qeu7qfUlnCb9eS7nCgGAvqXXF/ot+K7Sd6X2X+l5EQDoj30tYJXs+yQvLwIA
/fFejOQ6EraTer+k50kAYHf2tYBNpd83qfkSANheet2QXjfCLlKf4yrS8yYA
sF7689/6LNhf+n2k7wIAVkmtE9LrQxhC6n2Vvm4FAHxXap9VpNaFMCTnC7Pz
KgDwSmpdoM+C4aXfZ/a7ACBXap9VpNeBMAb7XNl5FgASpa+36rNgfOn3nb4L
AHKkzvvp9R60IPU+TM27AJAkfb5PrfOgJen34dP7zx8/+Do3DwPAnKX2W+n1
HbQo/b7cru866HaN5e956Tm6kx8v/jvs/ue0GlPHnzru9OjfXRSHjqulr6em
13XQovT7sqx/HddBb3bludoV9RIAUFGZn8t8XeZxfVZ2PQdTkH6fpp47AIAp
M38fS6/jYArS93HS3xcLANOV22/ps2B6Uu/b1HEDwJSlrpeqW2D6Uu/jG7ef
Xb15/UJX+zoAgNVKn5U6b6fWaTAnzhdmrpcBQMtKf5U6T+uzYH7S7+vUdTMA
aFFqn1Wk12UwR+n3dXpeB4AW2NfKrscgQfp9nprfAaAFqfNwqb/S6zBI4Hmu
zDwPADXZ19JnQZr0+97zXAAwntQ+K32dG8jtu1LzPgCMyfveM+ss4JX0PJCa
/wFgSOnnB+1rAUV6PtBvAUD/9FkAi0p+SM0TqfMCAPSprGOmrmemnxsC1kvP
E6nzAwD0IXX9MnW9Gthdat+VOk8AwD7S58/UugnYXfo6Tfq8AQCbSH8vhj4L
2FdqHkl/fy0AbCK1zypS6ySgP+l5JH0eAYDT2NfKro+A/qXmlfT3LAHAaVL7
rCK1LgKG43mu7HkFAI7Y19JnAcNKzzP2uQBIltpnpa87A+NJzzep8wwA2dLP
16evNwPjK31Xav+l7wIgSeq8p88CakvNQzueX+96jmP9Oa3FdWpf39BxldrX
NXRcpfZ1jRVXqX1dQ8dVal/XWHGVof/7J1L7rCK1zgHakbq/VZR5aPn7ukp+
Xvr7EUVRFMUW4sn8vaqfSP8eSn0W0Jr0vHT+xaN7lz487GpfBwDsovRV6fNZ
+joy0L7Uviv9vAUA85A+n6XWMcB0yFNHDrraVwAAu0g/P6iOAVqXvg8vTwMw
XQex/UbquIHpSs9b6eMHYFpS563UcQPzkZrHnEsAYArS56n08QPTl36+MPUc
PABtS18XTB03MF+peS19PgOgTanrgenrwMB8pec3/RYALUhfB0wdN5AjPc+l
jx+AulLnodRxA7lS8176uiIAdaTPO+njB/LIe0d8LzIAw1qcb/PmHfUGkC41
D6aOG4AafI9x7esAqMV7NMwDAAwndZ5Jry8AlqXOB0X6+AHoV+q8os8COF16
fkydFwHoV/p7mVLHDbCp9DyZPn4A9pM6j6Sv2wJsK3W+SB03APtJnz/Sxw+w
rfR1KvMGANtInTdSxw3Ql/Q8mj5+AM6WOk+kr8sC9C11PkkdNwBn816MzHED
DCV9Hcu8AsC33bj97OrN6xe62tcxNvMhwLCy8+xBV/sKAKgrex40foChZefZ
g9hzIwAce3nrzrUrTy52ta9jbOY/gHGl5d1ybiT1/AgAx86/eHTv0oeHXe3r
GFvavA/Qirnn3zK+sp6Zuq4JkG4x/x+ezAcp82Dt6wBItZiHDwaP5c9ben/H
yY+HuZ7v2m6/a7Bxnxh2/PVjnX/3+tG/u393/+718nyx3Tpb/b+/vmKZ3/Rb
ALRgef9rpPmpW4pk6JYiGbqlSE+WzzEc/+yh8wwA0BDPdQHMgz4LANrjvAXA
PFg/A4B2macBpsz3fgBAy8zTANNkvQwApsO8DTAt1ssAYDrKvG3+Bmib9TEA
mC79FkCbrIsBwHyYzwHaIi8DwHyY1wHaIB8DwHyZ5wHqkocBYL7M8wB1yL8A
kMO8DzAueRcAcjz88qOPP/j8ta72dQDMnT4LAHKpAwCGIb8CAIW6AGAIB13t
KwAA6tNvAfTD9xgDAKuoDwB2o88CANZRJwDsw/lBAGA9fRfAduRNAGBTzsUA
bEaeBAB2pY4AOJ11KQCgL+oJgEXyIgDQF3UFwDH5EAAYijoDSCcPAgBDU28A
aeQ9AGBsN24/u3rz+oVu8WfL98/0FzetcxZ/X//XMXZMHXeJqeNPHXeJbY1/
VZ4DABhb/TpNFEVx2AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAECq/wezyEsk
"], {{0, 373}, {430, 0}}, {0., 1.},
ColorFunction->GrayLevel],
BoxForm`ImageTag["Real64", ColorSpace -> Automatic, Interleaving -> None],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{430, 373},
PlotRange->{{0, 430}, {0, 373}}]], "Output",
CellChangeTimes->{3.8525427356042137`*^9, 3.85261059039561*^9,
3.8526347947267065`*^9, 3.852635008376745*^9, 3.852635139486475*^9},
CellLabel->"Out[80]=",ExpressionUUID->"093ef266-04c2-43a8-893d-3ae8b20cea06"],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"FetchURL", "::", "conopen"}], "MessageName"], ":",
" ", "\<\"The connection to URL \
\[NoBreak]\\!\\(\\\"https://github.com/DeepaMahm/misc/raw/master/Bagah.jpeg\\\
\"\\)\[NoBreak] cannot be opened. If the URL is correct, you might need to \
configure your firewall program, or you might need to set a proxy in the \
Internet connectivity tab of the Preferences dialog (or by calling \
SetInternetProxy). For HTTPS connections, you might need to inspect the \
authenticity of the server's SSL certificate and choose to accept \
it.\"\>"}]], "Message", "MSG",
GeneratedCell->False,
CellAutoOverwrite->False,
CellChangeTimes->{3.787134190928587*^9, 3.7871342618709507`*^9,
3.78713435296134*^9,
3.852461624977841*^9},ExpressionUUID->"b0a753bb-364b-4e7b-8419-\
ebe6ac11a957"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"graph", "=",
RowBox[{"MorphologicalGraph", "[", "skeleton", "]"}]}]], "Input",
CellChangeTimes->{{3.8524591649316325`*^9, 3.8524591649472837`*^9}, {
3.8525090435931654`*^9, 3.8525090615124063`*^9}, {3.85254272225274*^9,
3.852542727754283*^9}, 3.852634592497411*^9, 3.8526350214118056`*^9},
CellLabel->"In[81]:=",ExpressionUUID->"9086a855-71a0-4cf4-8577-65c6a420913d"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 12, 6, 11, 7, 8, 9, 10, 13, 14, 16, 17, 15, 19, 18,
20, 21, 22, 23, 29, 24, 30, 25, 26, 27, 28, 31, 32}, {
Null, {{1, 2}, {1, 3}, {2, 4}, {3, 5}, {3, 6}, {4, 7}, {4, 8}, {5, 7}, {
5, 9}, {7, 10}, {9, 10}, {9, 11}, {10, 12}, {11, 12}, {11, 13}, {12,
8}, {8, 14}, {6, 13}, {6, 15}, {13, 14}, {14, 16}, {17, 15}, {15,
16}, {15, 18}, {16, 19}, {16, 20}, {18, 20}, {18, 21}, {20, 22}, {21,
23}, {21, 24}, {22, 25}, {22, 26}, {23, 25}, {23, 27}, {25, 28}, {27,
28}, {27, 29}, {28, 30}, {29, 30}, {29, 24}, {30, 26}, {24, 31}, {26,
32}, {31, 32}}}, {
EdgeWeight -> {184, 4, 4, 24, 136, 25, 138, 216, 28, 28, 248, 27, 29,
280, 27, 25, 2, 1, 29, 312, 29, 18, 344, 28, 19, 28, 313, 2, 3, 26,
135, 25, 135, 280, 27, 28, 248, 27, 27, 218, 26, 25, 4, 4, 186},
VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGBQAGIQDQYK0Q5guqIEQnsUQegMKF8hCioO5XcUofIVwiH0
Caj4AVcIHZANVVcMoXfA9JVB6AlQeYVgCM1RiGoujO/gB6E35EHlS6H6oXwH
NzT7ylD5DTZQ/elQ+XJUPoMqKh9mnkEKhK6oQJWPKEOVh6n/kIwqfyEZzf0J
EPpBJFTcG9U/MPkZRajysPBZgBYPMP6DMKi6EKj90PB+ANX3AKrOwQsqXwTn
AwAzUUTx
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGBQAGIQDQYK0Q5guqIEQnsUQegMKF8hCioO5XcUofIVwiH0
Caj4AVcIHZANVVcMoXfA9JVB6AlQeYVgCM1RiGoujO/gB6E35EHlS6H6oXwH
NzT7ylD5DTZQ/elQ+XJUPoMqKh9mnkEKhK6oQJWPKEOVh6n/kIwqfyEZzf0J
EPpBJFTcG9U/MPkZRajysPBZgBYPMP6DMKi6EKj90PB+ANX3AKrOwQsqXwTn
AwAzUUTx
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7],
LineBox[{{1, 2}, {1, 3}, {2, 4}, {3, 5}, {3, 6}, {4, 7}, {4, 8}, {5,
7}, {5, 9}, {6, 13}, {6, 15}, {7, 10}, {8, 12}, {8, 14}, {9, 10}, {
9, 11}, {10, 12}, {11, 12}, {11, 13}, {13, 14}, {14, 16}, {15,
16}, {15, 17}, {15, 18}, {16, 19}, {16, 20}, {18, 20}, {18, 21}, {
20, 22}, {21, 23}, {21, 24}, {22, 25}, {22, 26}, {23, 25}, {23,
27}, {24, 29}, {24, 31}, {25, 28}, {26, 30}, {26, 32}, {27, 28}, {
27, 29}, {28, 30}, {29, 30}, {31, 32}}]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.144932860400304], DiskBox[2, 0.144932860400304],
DiskBox[3, 0.144932860400304], DiskBox[4, 0.144932860400304],
DiskBox[5, 0.144932860400304], DiskBox[6, 0.144932860400304],
DiskBox[7, 0.144932860400304], DiskBox[8, 0.144932860400304],
DiskBox[9, 0.144932860400304], DiskBox[10, 0.144932860400304],
DiskBox[11, 0.144932860400304], DiskBox[12, 0.144932860400304],
DiskBox[13, 0.144932860400304], DiskBox[14, 0.144932860400304],
DiskBox[15, 0.144932860400304], DiskBox[16, 0.144932860400304],
DiskBox[17, 0.144932860400304], DiskBox[18, 0.144932860400304],
DiskBox[19, 0.144932860400304], DiskBox[20, 0.144932860400304],
DiskBox[21, 0.144932860400304], DiskBox[22, 0.144932860400304],
DiskBox[23, 0.144932860400304], DiskBox[24, 0.144932860400304],
DiskBox[25, 0.144932860400304], DiskBox[26, 0.144932860400304],
DiskBox[27, 0.144932860400304], DiskBox[28, 0.144932860400304],
DiskBox[29, 0.144932860400304], DiskBox[30, 0.144932860400304],
DiskBox[31, 0.144932860400304], DiskBox[32, 0.144932860400304]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None,
ImageSize->{395., Automatic}]], "Output",
CellChangeTimes->{3.8526351400217943`*^9},
CellLabel->"Out[81]=",ExpressionUUID->"b38b0ce9-0a11-422d-a945-e8cbb700dfea"],
Cell[BoxData[
TemplateBox[{
"Set","write",
"\"Tag \\!\\(\\*RowBox[{\\\"Inherited\\\"}]\\) in \
\\!\\(\\*RowBox[{\\\"Inherited\\\", \\\"[\\\", \\\"\\\\\\\"State\\\\\\\"\\\", \
\\\"]\\\"}]\\) is Protected.\"",2,156,1,29373222163218641304,"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8526355206902323`*^9},
CellLabel->
"During evaluation of \
In[156]:=",ExpressionUUID->"f3113c51-7127-4315-8a25-004a74badc21"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"bin", "=",
RowBox[{
"Import", "[", "\"\<https://i.stack.imgur.com/qAZxM.png\>\"", "]"}]}],
";"}], "\n",
RowBox[{"g", "=",
RowBox[{"MorphologicalGraph", "[", "bin", "]"}]}]}], "Input",
CellChangeTimes->{{3.7871348018922663`*^9, 3.7871348030461807`*^9},
3.7871348428886256`*^9, 3.852459789221822*^9, 3.8526872904529963`*^9},
CellLabel->"In[95]:=",ExpressionUUID->"250b8e28-2715-4850-aa20-451e531cb86b"],
Cell[BoxData[
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 12, 6, 11, 8, 7, 10, 9, 14, 13, 16, 17, 15, 20, 18,
19, 22, 21, 23, 24, 25, 32, 26, 31, 27, 28, 29, 30, 34, 33}, {
Null, {{1, 2}, {1, 3}, {2, 4}, {3, 5}, {3, 6}, {4, 7}, {4, 8}, {5, 7}, {
5, 9}, {7, 10}, {10, 9}, {10, 11}, {9, 12}, {12, 11}, {12, 6}, {11,
8}, {8, 13}, {6, 14}, {14, 13}, {14, 15}, {13, 16}, {17, 15}, {15,
18}, {16, 19}, {16, 18}, {19, 20}, {19, 21}, {18, 22}, {22, 21}, {22,
23}, {21, 24}, {23, 25}, {23, 26}, {24, 27}, {24, 28}, {25, 27}, {25,
29}, {27, 30}, {29, 30}, {29, 31}, {30, 32}, {31, 32}, {31, 26}, {32,
28}, {28, 33}, {26, 34}, {34, 33}}}, {
EdgeWeight -> {184, 4, 5, 24, 136, 25, 136, 217, 29, 27, 249, 28, 27,
280, 25, 24, 3, 2, 312, 28, 28, 17, 1, 1, 344, 18, 28, 27, 312, 3, 3,
26, 134, 25, 135, 280, 27, 27, 248, 26, 27, 218, 26, 24, 4, 5, 185},
VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGBQAmIQDQYK0Q5guqIEQnsUofIVoqDiUP6MIlS+QjiEPgEV
P+AKoQuyIXREMYTeAdNXBqEnQOUfBEHoHwWo5nIUQvmlUPV5ENrBD5UPM88A
ap6DGyq/wRpCb0iHqi9H5TOoovIbbKDmQ/kRaOorKtDMg9mfgmY/lA8LjwvJ
UPPKUPkw/2xIgNAPIqHi3lDzS1HlYeF/ACqvEAyhF6DFE4z/IAyqLgRqPzQ+
HkD1RcDM84Sqi4bzAY5dTDc=
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGBQAmIQDQYK0Q5guqIEQnsUofIVoqDiUP6MIlS+QjiEPgEV
P+AKoQuyIXREMYTeAdNXBqEnQOUfBEHoHwWo5nIUQvmlUPV5ENrBD5UPM88A
ap6DGyq/wRpCb0iHqi9H5TOoovIbbKDmQ/kRaOorKtDMg9mfgmY/lA8LjwvJ
UPPKUPkw/2xIgNAPIqHi3lDzS1HlYeF/ACqvEAyhF6DFE4z/IAyqLgRqPzQ+
HkD1RcDM84Sqi4bzAY5dTDc=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7],
LineBox[{{1, 2}, {1, 3}, {2, 4}, {3, 5}, {3, 6}, {4, 7}, {4, 8}, {5,
7}, {5, 9}, {6, 12}, {6, 14}, {7, 10}, {8, 11}, {8, 13}, {9, 10}, {
9, 12}, {10, 11}, {11, 12}, {13, 14}, {13, 16}, {14, 15}, {15,
17}, {15, 18}, {16, 18}, {16, 19}, {18, 22}, {19, 20}, {19, 21}, {
21, 22}, {21, 24}, {22, 23}, {23, 25}, {23, 26}, {24, 27}, {24,
28}, {25, 27}, {25, 29}, {26, 31}, {26, 34}, {27, 30}, {28, 32}, {
28, 33}, {29, 30}, {29, 31}, {30, 32}, {31, 32}, {33, 34}}]},
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}],
DiskBox[1, 0.144932860400304], DiskBox[2, 0.144932860400304],
DiskBox[3, 0.144932860400304], DiskBox[4, 0.144932860400304],
DiskBox[5, 0.144932860400304], DiskBox[6, 0.144932860400304],
DiskBox[7, 0.144932860400304], DiskBox[8, 0.144932860400304],
DiskBox[9, 0.144932860400304], DiskBox[10, 0.144932860400304],
DiskBox[11, 0.144932860400304], DiskBox[12, 0.144932860400304],
DiskBox[13, 0.144932860400304], DiskBox[14, 0.144932860400304],
DiskBox[15, 0.144932860400304], DiskBox[16, 0.144932860400304],
DiskBox[17, 0.144932860400304], DiskBox[18, 0.144932860400304],
DiskBox[19, 0.144932860400304], DiskBox[20, 0.144932860400304],
DiskBox[21, 0.144932860400304], DiskBox[22, 0.144932860400304],
DiskBox[23, 0.144932860400304], DiskBox[24, 0.144932860400304],
DiskBox[25, 0.144932860400304], DiskBox[26, 0.144932860400304],
DiskBox[27, 0.144932860400304], DiskBox[28, 0.144932860400304],
DiskBox[29, 0.144932860400304], DiskBox[30, 0.144932860400304],
DiskBox[31, 0.144932860400304], DiskBox[32, 0.144932860400304],
DiskBox[33, 0.144932860400304], DiskBox[34, 0.144932860400304]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{
"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]], "Output",
CellChangeTimes->{{3.852687300461414*^9, 3.8526873011033525`*^9}},
CellLabel->"Out[96]=",ExpressionUUID->"7411a832-9fea-418a-be22-87e363c2668c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"vC", "=",
RowBox[{"AssociationThread", "[",
RowBox[{
RowBox[{"VertexList", "[", "g", "]"}], ",",
RowBox[{"GraphEmbedding", "[", "g", "]"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]"}], "\n",
RowBox[{
RowBox[{
RowBox[{"edgesToContract", "[", "threshold_", "]"}], ":=",
RowBox[{"Select", "[",
RowBox[{
RowBox[{"EdgeList", "[", "g", "]"}], ",",
RowBox[{
RowBox[{
RowBox[{"EuclideanDistance", "@@",
RowBox[{"(",
RowBox[{
RowBox[{"List", "@@", "#"}], "/.", "vC"}], ")"}]}], "\[LessEqual]",
"threshold"}], "&"}]}], "]"}]}], "\n"}], "\[IndentingNewLine]",
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"Fold", "[",
RowBox[{"EdgeContract", ",", "g", ",",
RowBox[{"edgesToContract", "[", "10", "]"}]}], "]"}], ",",
RowBox[{"VertexSize", "\[Rule]", ".2"}], ",",
RowBox[{"VertexLabels", "\[Rule]", "Automatic"}], ",",
RowBox[{"ImageSize", "\[Rule]", "600"}], ",",
RowBox[{"VertexCoordinates", "\[Rule]",
RowBox[{"{",
RowBox[{"v_", "\[RuleDelayed]",
RowBox[{"vC", "[", "v", "]"}]}], "}"}]}]}], "]"}]}], "Input",
CellChangeTimes->{{3.8524597926308217`*^9, 3.8524597926308217`*^9}, {
3.852687313734832*^9, 3.8526873658500013`*^9}},
CellLabel->
"In[103]:=",ExpressionUUID->"4c8c85a7-3801-4b80-8061-791cd6e527cf"],
Cell[BoxData[
TemplateBox[{
"GraphComputation`GraphContractDump`messageEdgeContract","inv",
"\"The argument \\!\\(\\*RowBox[{\\\"11\\\", \\\"\[UndirectedEdge]\\\", \\\
\"14\\\"}]\\) in \\!\\(\\*RowBox[{\\\"EdgeContract\\\", \\\"[\\\", \
RowBox[{GraphicsBox[NamespaceBox[\\\"NetworkGraphics\\\", \
DynamicModuleBox[List[Set[Typeset`graph, HoldComplete[Graph[List[5, 12, 6, \
11, 8, 7, 10, 9, 14, 13, 16, 17, 15, 20, 18, 19, 22, 21, 23, 24, 25, 32, 26, \
31, 27, 28, 29, 30, 34, 33, 1, 2], List[UndirectedEdge[5, 6], \
UndirectedEdge[5, 8], UndirectedEdge[6, 7], UndirectedEdge[7, 8], \
UndirectedEdge[7, 10], UndirectedEdge[8, 9], UndirectedEdge[9, 10], \
UndirectedEdge[9, 12], UndirectedEdge[10, 11], UndirectedEdge[11, 14], \
UndirectedEdge[12, 13], UndirectedEdge[13, 14], UndirectedEdge[13, 16], \
UndirectedEdge[14, 17], UndirectedEdge[15, 16], UndirectedEdge[16, 20], \
UndirectedEdge[17, 18], UndirectedEdge[17, 20], UndirectedEdge[18, 19], \
UndirectedEdge[18, 22], UndirectedEdge[20, 21], UndirectedEdge[21, 22], \
UndirectedEdge[21, 23], UndirectedEdge[22, 24], UndirectedEdge[23, 25], \
UndirectedEdge[23, 32], UndirectedEdge[24, 26], UndirectedEdge[24, 31], \
UndirectedEdge[25, 26], UndirectedEdge[25, 27], UndirectedEdge[26, 28], \
UndirectedEdge[27, 28], UndirectedEdge[27, 29], UndirectedEdge[28, 30], \
UndirectedEdge[29, 30], UndirectedEdge[29, 32], UndirectedEdge[30, 31], \
UndirectedEdge[31, 34], UndirectedEdge[32, 33], UndirectedEdge[33, 34], \
UndirectedEdge[1, 5], UndirectedEdge[1, 12], UndirectedEdge[2, 1], \
UndirectedEdge[2, 6], UndirectedEdge[2, 11]], List[Rule[EdgeWeight, List[217, \
29, 27, 249, 28, 27, 280, 25, 24, 3, 2, 312, 28, 28, 17, 1, 1, 344, 18, 28, \
27, 312, 3, 3, 26, 134, 25, 135, 280, 27, 27, 248, 26, 27, 218, 26, 24, 4, 5, \
185, 24, 136, 184, 25, 136]], Rule[GraphLayout, List[Rule[\\\"Dimension\\\", \
2]]], Rule[VertexCoordinates, List[List[92.5`, 300.5`], List[43.5`, 219.5`], \
List[309.5`, 299.5`], List[356.5`, 220.5`], List[75.5`, 271.5`], List[324.5`, \
272.5`], List[340.5`, 244.5`], List[60.5`, 244.5`], List[356.5`, 217.5`], \
List[44.5`, 217.5`], List[27.5`, 189.5`], List[372.5`, 189.5`], List[10.5`, \
189.5`], List[28.5`, 188.5`], List[373.5`, 189.5`], List[391.5`, 189.5`], \
List[356.5`, 161.5`], List[44.5`, 161.5`], List[43.5`, 158.5`], List[357.5`, \
158.5`], List[60.5`, 133.5`], List[103.5`, 54.5`], List[340.5`, 133.5`], \
List[297.5`, 55.5`], List[76.5`, 106.5`], List[324.5`, 106.5`], List[91.5`, \
80.5`], List[309.5`, 79.5`], List[293.5`, 51.5`], List[108.5`, 51.5`], \
List[108.5`, 327.5`], List[292.5`, 327.5`]]]]]]]], \
TagBox[GraphicsGroupBox[GraphicsComplexBox[List[List[92.5`, 300.5`], \
List[43.5`, 219.5`], List[309.5`, 299.5`], List[356.5`, 220.5`], List[75.5`, \
271.5`], List[324.5`, 272.5`], List[340.5`, 244.5`], List[60.5`, 244.5`], \
List[356.5`, 217.5`], List[44.5`, 217.5`], List[27.5`, 189.5`], List[372.5`, \
189.5`], List[10.5`, 189.5`], List[28.5`, 188.5`], List[373.5`, 189.5`], \
List[391.5`, 189.5`], List[356.5`, 161.5`], List[44.5`, 161.5`], List[43.5`, \
158.5`], List[357.5`, 158.5`], List[60.5`, 133.5`], List[103.5`, 54.5`], \
List[340.5`, 133.5`], List[297.5`, 55.5`], List[76.5`, 106.5`], List[324.5`, \
106.5`], List[91.5`, 80.5`], List[309.5`, 79.5`], List[293.5`, 51.5`], \
List[108.5`, 51.5`], List[108.5`, 327.5`], List[292.5`, 327.5`]], \
List[List[Directive[Opacity[0.7`], Hue[0.6`, 0.7`, 0.5`]], \
LineBox[List[List[1, 3], List[1, 5], List[1, 31], List[2, 8], List[2, 10], \
List[2, 31], List[3, 6], List[3, 32], List[4, 7], List[4, 9], List[4, 32], \
List[5, 6], List[5, 8], List[6, 7], List[7, 8], List[9, 10], List[9, 12], \
List[10, 11], List[11, 13], List[11, 14], List[12, 14], List[12, 15], \
List[14, 18], List[15, 16], List[15, 17], List[17, 18], List[17, 20], \
List[18, 19], List[19, 21], List[19, 22], List[20, 23], List[20, 24], \
List[21, 23], List[21, 25], List[22, 27], List[22, 30], List[23, 26], \
List[24, 28], List[24, 29], List[25, 26], List[25, 27], List[26, 28], \
List[27, 28], List[29, 30], List[31, 32]]]], List[Directive[Hue[0.6`, 0.2`, \
0.8`], EdgeForm[Directive[GrayLevel[0], Opacity[0.7`]]]], DiskBox[1, \
0.144932860400304`], DiskBox[2, 0.144932860400304`], DiskBox[3, \
0.144932860400304`], DiskBox[4, 0.144932860400304`], DiskBox[5, \
0.144932860400304`], DiskBox[6, 0.144932860400304`], DiskBox[7, \
0.144932860400304`], DiskBox[8, 0.144932860400304`], DiskBox[9, \
0.144932860400304`], DiskBox[10, 0.144932860400304`], DiskBox[11, \
0.144932860400304`], DiskBox[12, 0.144932860400304`], DiskBox[13, \
0.144932860400304`], DiskBox[14, 0.144932860400304`], DiskBox[15, \
0.144932860400304`], DiskBox[16, 0.144932860400304`], DiskBox[17, \
0.144932860400304`], DiskBox[18, 0.144932860400304`], DiskBox[19, \
0.144932860400304`], DiskBox[20, 0.144932860400304`], DiskBox[21, \
0.144932860400304`], DiskBox[22, 0.144932860400304`], DiskBox[23, \
0.144932860400304`], DiskBox[24, 0.144932860400304`], DiskBox[25, \
0.144932860400304`], DiskBox[26, 0.144932860400304`], DiskBox[27, \
0.144932860400304`], DiskBox[28, 0.144932860400304`], DiskBox[29, \
0.144932860400304`], DiskBox[30, 0.144932860400304`], DiskBox[31, \
0.144932860400304`], DiskBox[32, 0.144932860400304`]]]]], MouseAppearanceTag[\
\\\"NetworkGraphics\\\"]], Rule[AllowKernelInitialization, False]]], \
List[Rule[FormatType, TraditionalForm], Rule[FrameTicks, None], \
Rule[DefaultBaseStyle, List[\\\"NetworkGraphics\\\", \
Rule[FrontEnd`GraphicsHighlightColor, Hue[0.8`, 1.`, 0.6`]]]]]], \\\",\\\", \
RowBox[{\\\"11\\\", \\\"\[UndirectedEdge]\\\", \\\"14\\\"}]}], \\\"]\\\"}]\\) \
is not a valid \\!\\(\\*RowBox[{\\\"\\\\\\\"edges\\\\\\\"\\\"}]\\).\"",2,105,
259,29373518792167390587,"Local",
"GraphComputation`GraphContractDump`messageEdgeContract"},
"MessageTemplate2"]], "Message", "MSG",
CellChangeTimes->{3.8526873668535748`*^9},
CellLabel->
"During evaluation of \
In[103]:=",ExpressionUUID->"ba6f36eb-3b33-4bc1-b8d6-1dffc51ddece"],
Cell[BoxData[
TemplateBox[{
"EdgeContract","graph",
"\"A graph object is expected at position \\!\\(\\*RowBox[{\\\"1\\\"}]\\) \
in \\!\\(\\*RowBox[{\\\"EdgeContract\\\", \\\"[\\\", \
RowBox[{RowBox[{\\\"EdgeContract\\\", \\\"[\\\", \
RowBox[{GraphicsBox[NamespaceBox[\\\"NetworkGraphics\\\", \
DynamicModuleBox[List[Set[Typeset`graph, HoldComplete[Graph[List[5, 12, 6, \
11, 8, 7, 10, 9, 14, 13, 16, 17, 15, 20, 18, 19, 22, 21, 23, 24, 25, 32, 26, \
31, 27, 28, 29, 30, 34, 33, 1, 2], List[UndirectedEdge[5, 6], \
UndirectedEdge[5, 8], UndirectedEdge[6, 7], UndirectedEdge[7, 8], \
UndirectedEdge[7, 10], UndirectedEdge[8, 9], UndirectedEdge[9, 10], \
UndirectedEdge[9, 12], UndirectedEdge[10, 11], UndirectedEdge[11, 14], \
UndirectedEdge[12, 13], UndirectedEdge[13, 14], UndirectedEdge[13, 16], \
UndirectedEdge[14, 17], UndirectedEdge[15, 16], UndirectedEdge[16, 20], \
UndirectedEdge[17, 18], UndirectedEdge[17, 20], UndirectedEdge[18, 19], \
UndirectedEdge[18, 22], UndirectedEdge[20, 21], UndirectedEdge[21, 22], \
UndirectedEdge[21, 23], UndirectedEdge[22, 24], UndirectedEdge[23, 25], \
UndirectedEdge[23, 32], UndirectedEdge[24, 26], UndirectedEdge[24, 31], \
UndirectedEdge[25, 26], UndirectedEdge[25, 27], UndirectedEdge[26, 28], \
UndirectedEdge[27, 28], UndirectedEdge[27, 29], UndirectedEdge[28, 30], \
UndirectedEdge[29, 30], UndirectedEdge[29, 32], UndirectedEdge[30, 31], \
UndirectedEdge[31, 34], UndirectedEdge[32, 33], UndirectedEdge[33, 34], \
UndirectedEdge[1, 5], UndirectedEdge[1, 12], UndirectedEdge[2, 1], \
UndirectedEdge[2, 6], UndirectedEdge[2, 11]], List[Rule[EdgeWeight, List[217, \
29, 27, 249, 28, 27, 280, 25, 24, 3, 2, 312, 28, 28, 17, 1, 1, 344, 18, 28, \
27, 312, 3, 3, 26, 134, 25, 135, 280, 27, 27, 248, 26, 27, 218, 26, 24, 4, 5, \
185, 24, 136, 184, 25, 136]], Rule[GraphLayout, List[Rule[\\\"Dimension\\\", \
2]]], Rule[VertexCoordinates, List[List[92.5`, 300.5`], List[43.5`, 219.5`], \
List[309.5`, 299.5`], List[356.5`, 220.5`], List[75.5`, 271.5`], List[324.5`, \
272.5`], List[340.5`, 244.5`], List[60.5`, 244.5`], List[356.5`, 217.5`], \
List[44.5`, 217.5`], List[27.5`, 189.5`], List[372.5`, 189.5`], List[10.5`, \
189.5`], List[28.5`, 188.5`], List[373.5`, 189.5`], List[391.5`, 189.5`], \
List[356.5`, 161.5`], List[44.5`, 161.5`], List[43.5`, 158.5`], List[357.5`, \
158.5`], List[60.5`, 133.5`], List[103.5`, 54.5`], List[340.5`, 133.5`], \
List[297.5`, 55.5`], List[76.5`, 106.5`], List[324.5`, 106.5`], List[91.5`, \
80.5`], List[309.5`, 79.5`], List[293.5`, 51.5`], List[108.5`, 51.5`], \
List[108.5`, 327.5`], List[292.5`, 327.5`]]]]]]]], \
TagBox[GraphicsGroupBox[GraphicsComplexBox[List[List[92.5`, 300.5`], \
List[43.5`, 219.5`], List[309.5`, 299.5`], List[356.5`, 220.5`], List[75.5`, \
271.5`], List[324.5`, 272.5`], List[340.5`, 244.5`], List[60.5`, 244.5`], \
List[356.5`, 217.5`], List[44.5`, 217.5`], List[27.5`, 189.5`], List[372.5`, \
189.5`], List[10.5`, 189.5`], List[28.5`, 188.5`], List[373.5`, 189.5`], \
List[391.5`, 189.5`], List[356.5`, 161.5`], List[44.5`, 161.5`], List[43.5`, \
158.5`], List[357.5`, 158.5`], List[60.5`, 133.5`], List[103.5`, 54.5`], \
List[340.5`, 133.5`], List[297.5`, 55.5`], List[76.5`, 106.5`], List[324.5`, \
106.5`], List[91.5`, 80.5`], List[309.5`, 79.5`], List[293.5`, 51.5`], \
List[108.5`, 51.5`], List[108.5`, 327.5`], List[292.5`, 327.5`]], \
List[List[Directive[Opacity[0.7`], Hue[0.6`, 0.7`, 0.5`]], \
LineBox[List[List[1, 3], List[1, 5], List[1, 31], List[2, 8], List[2, 10], \
List[2, 31], List[3, 6], List[3, 32], List[4, 7], List[4, 9], List[4, 32], \
List[5, 6], List[5, 8], List[6, 7], List[7, 8], List[9, 10], List[9, 12], \
List[10, 11], List[11, 13], List[11, 14], List[12, 14], List[12, 15], \
List[14, 18], List[15, 16], List[15, 17], List[17, 18], List[17, 20], \
List[18, 19], List[19, 21], List[19, 22], List[20, 23], List[20, 24], \
List[21, 23], List[21, 25], List[22, 27], List[22, 30], List[23, 26], \
List[24, 28], List[24, 29], List[25, 26], List[25, 27], List[26, 28], \
List[27, 28], List[29, 30], List[31, 32]]]], List[Directive[Hue[0.6`, 0.2`, \
0.8`], EdgeForm[Directive[GrayLevel[0], Opacity[0.7`]]]], DiskBox[1, \
0.144932860400304`], DiskBox[2, 0.144932860400304`], DiskBox[3, \
0.144932860400304`], DiskBox[4, 0.144932860400304`], DiskBox[5, \
0.144932860400304`], DiskBox[6, 0.144932860400304`], DiskBox[7, \
0.144932860400304`], DiskBox[8, 0.144932860400304`], DiskBox[9, \
0.144932860400304`], DiskBox[10, 0.144932860400304`], DiskBox[11, \
0.144932860400304`], DiskBox[12, 0.144932860400304`], DiskBox[13, \
0.144932860400304`], DiskBox[14, 0.144932860400304`], DiskBox[15, \
0.144932860400304`], DiskBox[16, 0.144932860400304`], DiskBox[17, \
0.144932860400304`], DiskBox[18, 0.144932860400304`], DiskBox[19, \
0.144932860400304`], DiskBox[20, 0.144932860400304`], DiskBox[21, \
0.144932860400304`], DiskBox[22, 0.144932860400304`], DiskBox[23, \
0.144932860400304`], DiskBox[24, 0.144932860400304`], DiskBox[25, \
0.144932860400304`], DiskBox[26, 0.144932860400304`], DiskBox[27, \
0.144932860400304`], DiskBox[28, 0.144932860400304`], DiskBox[29, \
0.144932860400304`], DiskBox[30, 0.144932860400304`], DiskBox[31, \
0.144932860400304`], DiskBox[32, 0.144932860400304`]]]]], MouseAppearanceTag[\
\\\"NetworkGraphics\\\"]], Rule[AllowKernelInitialization, False]]], \
List[Rule[FormatType, TraditionalForm], Rule[FrameTicks, None], \
Rule[DefaultBaseStyle, List[\\\"NetworkGraphics\\\", \
Rule[FrontEnd`GraphicsHighlightColor, Hue[0.8`, 1.`, 0.6`]]]]]], \\\",\\\", \
RowBox[{\\\"11\\\", \\\"\[UndirectedEdge]\\\", \\\"14\\\"}]}], \\\"]\\\"}], \
\\\",\\\", RowBox[{\\\"12\\\", \\\"\[UndirectedEdge]\\\", \\\"13\\\"}]}], \
\\\"]\\\"}]\\).\"",2,105,260,29373518792167390587,"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.852687366866969*^9},
CellLabel->
"During evaluation of \
In[103]:=",ExpressionUUID->"e2178367-a0a7-45ba-9f36-380c72274842"],
Cell[BoxData[
TemplateBox[{
"EdgeContract","graph",
"\"A graph object is expected at position \\!\\(\\*RowBox[{\\\"1\\\"}]\\) \
in \\!\\(\\*RowBox[{\\\"EdgeContract\\\", \\\"[\\\", \
RowBox[{RowBox[{\\\"EdgeContract\\\", \\\"[\\\", \
RowBox[{RowBox[{\\\"EdgeContract\\\", \\\"[\\\", \
RowBox[{GraphicsBox[NamespaceBox[\\\"NetworkGraphics\\\", \
DynamicModuleBox[List[Set[Typeset`graph, HoldComplete[Graph[List[5, 12, 6, \
11, 8, 7, 10, 9, 14, 13, 16, 17, 15, 20, 18, 19, 22, 21, 23, 24, 25, 32, 26, \
31, 27, 28, 29, 30, 34, 33, 1, 2], List[UndirectedEdge[5, 6], \
UndirectedEdge[5, 8], UndirectedEdge[6, 7], UndirectedEdge[7, 8], \
UndirectedEdge[7, 10], UndirectedEdge[8, 9], UndirectedEdge[9, 10], \
UndirectedEdge[9, 12], UndirectedEdge[10, 11], UndirectedEdge[11, 14], \
UndirectedEdge[12, 13], UndirectedEdge[13, 14], UndirectedEdge[13, 16], \
UndirectedEdge[14, 17], UndirectedEdge[15, 16], UndirectedEdge[16, 20], \
UndirectedEdge[17, 18], UndirectedEdge[17, 20], UndirectedEdge[18, 19], \
UndirectedEdge[18, 22], UndirectedEdge[20, 21], UndirectedEdge[21, 22], \
UndirectedEdge[21, 23], UndirectedEdge[22, 24], UndirectedEdge[23, 25], \
UndirectedEdge[23, 32], UndirectedEdge[24, 26], UndirectedEdge[24, 31], \
UndirectedEdge[25, 26], UndirectedEdge[25, 27], UndirectedEdge[26, 28], \
UndirectedEdge[27, 28], UndirectedEdge[27, 29], UndirectedEdge[28, 30], \
UndirectedEdge[29, 30], UndirectedEdge[29, 32], UndirectedEdge[30, 31], \
UndirectedEdge[31, 34], UndirectedEdge[32, 33], UndirectedEdge[33, 34], \
UndirectedEdge[1, 5], UndirectedEdge[1, 12], UndirectedEdge[2, 1], \
UndirectedEdge[2, 6], UndirectedEdge[2, 11]], List[Rule[EdgeWeight, List[217, \
29, 27, 249, 28, 27, 280, 25, 24, 3, 2, 312, 28, 28, 17, 1, 1, 344, 18, 28, \
27, 312, 3, 3, 26, 134, 25, 135, 280, 27, 27, 248, 26, 27, 218, 26, 24, 4, 5, \
185, 24, 136, 184, 25, 136]], Rule[GraphLayout, List[Rule[\\\"Dimension\\\", \
2]]], Rule[VertexCoordinates, List[List[92.5`, 300.5`], List[43.5`, 219.5`], \
List[309.5`, 299.5`], List[356.5`, 220.5`], List[75.5`, 271.5`], List[324.5`, \
272.5`], List[340.5`, 244.5`], List[60.5`, 244.5`], List[356.5`, 217.5`], \
List[44.5`, 217.5`], List[27.5`, 189.5`], List[372.5`, 189.5`], List[10.5`, \
189.5`], List[28.5`, 188.5`], List[373.5`, 189.5`], List[391.5`, 189.5`], \
List[356.5`, 161.5`], List[44.5`, 161.5`], List[43.5`, 158.5`], List[357.5`, \
158.5`], List[60.5`, 133.5`], List[103.5`, 54.5`], List[340.5`, 133.5`], \
List[297.5`, 55.5`], List[76.5`, 106.5`], List[324.5`, 106.5`], List[91.5`, \
80.5`], List[309.5`, 79.5`], List[293.5`, 51.5`], List[108.5`, 51.5`], \
List[108.5`, 327.5`], List[292.5`, 327.5`]]]]]]]], \
TagBox[GraphicsGroupBox[GraphicsComplexBox[List[List[92.5`, 300.5`], \
List[43.5`, 219.5`], List[309.5`, 299.5`], List[356.5`, 220.5`], List[75.5`, \
271.5`], List[324.5`, 272.5`], List[340.5`, 244.5`], List[60.5`, 244.5`], \
List[356.5`, 217.5`], List[44.5`, 217.5`], List[27.5`, 189.5`], List[372.5`, \
189.5`], List[10.5`, 189.5`], List[28.5`, 188.5`], List[373.5`, 189.5`], \
List[391.5`, 189.5`], List[356.5`, 161.5`], List[44.5`, 161.5`], List[43.5`, \
158.5`], List[357.5`, 158.5`], List[60.5`, 133.5`], List[103.5`, 54.5`], \
List[340.5`, 133.5`], List[297.5`, 55.5`], List[76.5`, 106.5`], List[324.5`, \
106.5`], List[91.5`, 80.5`], List[309.5`, 79.5`], List[293.5`, 51.5`], \
List[108.5`, 51.5`], List[108.5`, 327.5`], List[292.5`, 327.5`]], \
List[List[Directive[Opacity[0.7`], Hue[0.6`, 0.7`, 0.5`]], \
LineBox[List[List[1, 3], List[1, 5], List[1, 31], List[2, 8], List[2, 10], \
List[2, 31], List[3, 6], List[3, 32], List[4, 7], List[4, 9], List[4, 32], \
List[5, 6], List[5, 8], List[6, 7], List[7, 8], List[9, 10], List[9, 12], \
List[10, 11], List[11, 13], List[11, 14], List[12, 14], List[12, 15], \
List[14, 18], List[15, 16], List[15, 17], List[17, 18], List[17, 20], \
List[18, 19], List[19, 21], List[19, 22], List[20, 23], List[20, 24], \
List[21, 23], List[21, 25], List[22, 27], List[22, 30], List[23, 26], \
List[24, 28], List[24, 29], List[25, 26], List[25, 27], List[26, 28], \
List[27, 28], List[29, 30], List[31, 32]]]], List[Directive[Hue[0.6`, 0.2`, \
0.8`], EdgeForm[Directive[GrayLevel[0], Opacity[0.7`]]]], DiskBox[1, \
0.144932860400304`], DiskBox[2, 0.144932860400304`], DiskBox[3, \
0.144932860400304`], DiskBox[4, 0.144932860400304`], DiskBox[5, \
0.144932860400304`], DiskBox[6, 0.144932860400304`], DiskBox[7, \
0.144932860400304`], DiskBox[8, 0.144932860400304`], DiskBox[9, \
0.144932860400304`], DiskBox[10, 0.144932860400304`], DiskBox[11, \
0.144932860400304`], DiskBox[12, 0.144932860400304`], DiskBox[13, \
0.144932860400304`], DiskBox[14, 0.144932860400304`], DiskBox[15, \
0.144932860400304`], DiskBox[16, 0.144932860400304`], DiskBox[17, \
0.144932860400304`], DiskBox[18, 0.144932860400304`], DiskBox[19, \
0.144932860400304`], DiskBox[20, 0.144932860400304`], DiskBox[21, \
0.144932860400304`], DiskBox[22, 0.144932860400304`], DiskBox[23, \
0.144932860400304`], DiskBox[24, 0.144932860400304`], DiskBox[25, \
0.144932860400304`], DiskBox[26, 0.144932860400304`], DiskBox[27, \
0.144932860400304`], DiskBox[28, 0.144932860400304`], DiskBox[29, \
0.144932860400304`], DiskBox[30, 0.144932860400304`], DiskBox[31, \
0.144932860400304`], DiskBox[32, 0.144932860400304`]]]]], MouseAppearanceTag[\
\\\"NetworkGraphics\\\"]], Rule[AllowKernelInitialization, False]]], \
List[Rule[FormatType, TraditionalForm], Rule[FrameTicks, None], \
Rule[DefaultBaseStyle, List[\\\"NetworkGraphics\\\", \
Rule[FrontEnd`GraphicsHighlightColor, Hue[0.8`, 1.`, 0.6`]]]]]], \\\",\\\", \
RowBox[{\\\"11\\\", \\\"\[UndirectedEdge]\\\", \\\"14\\\"}]}], \\\"]\\\"}], \
\\\",\\\", RowBox[{\\\"12\\\", \\\"\[UndirectedEdge]\\\", \\\"13\\\"}]}], \
\\\"]\\\"}], \\\",\\\", RowBox[{\\\"16\\\", \\\"\[UndirectedEdge]\\\", \\\"20\
\\\"}]}], \\\"]\\\"}]\\).\"",2,105,261,29373518792167390587,"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8526873668847976`*^9},
CellLabel->
"During evaluation of \
In[103]:=",ExpressionUUID->"0f1d5ce3-f72b-4f58-b6fc-2a96e3cdc0d5"],
Cell[BoxData[
TemplateBox[{
"EdgeContract","graph",
"\"A graph object is expected at position \\!\\(\\*RowBox[{\\\"1\\\"}]\\) \
in \\!\\(\\*RowBox[{\\\"EdgeContract\\\", \\\"[\\\", \
RowBox[{RowBox[{\\\"EdgeContract\\\", \\\"[\\\", \
RowBox[{RowBox[{\\\"EdgeContract\\\", \\\"[\\\", \
RowBox[{RowBox[{\\\"EdgeContract\\\", \\\"[\\\", \
RowBox[{GraphicsBox[NamespaceBox[\\\"NetworkGraphics\\\", \
DynamicModuleBox[List[Set[Typeset`graph, HoldComplete[Graph[List[5, 12, 6, \
11, 8, 7, 10, 9, 14, 13, 16, 17, 15, 20, 18, 19, 22, 21, 23, 24, 25, 32, 26, \
31, 27, 28, 29, 30, 34, 33, 1, 2], List[UndirectedEdge[5, 6], \
UndirectedEdge[5, 8], UndirectedEdge[6, 7], UndirectedEdge[7, 8], \
UndirectedEdge[7, 10], UndirectedEdge[8, 9], UndirectedEdge[9, 10], \
UndirectedEdge[9, 12], UndirectedEdge[10, 11], UndirectedEdge[11, 14], \
UndirectedEdge[12, 13], UndirectedEdge[13, 14], UndirectedEdge[13, 16], \
UndirectedEdge[14, 17], UndirectedEdge[15, 16], UndirectedEdge[16, 20], \
UndirectedEdge[17, 18], UndirectedEdge[17, 20], UndirectedEdge[18, 19], \
UndirectedEdge[18, 22], UndirectedEdge[20, 21], UndirectedEdge[21, 22], \
UndirectedEdge[21, 23], UndirectedEdge[22, 24], UndirectedEdge[23, 25], \
UndirectedEdge[23, 32], UndirectedEdge[24, 26], UndirectedEdge[24, 31], \
UndirectedEdge[25, 26], UndirectedEdge[25, 27], UndirectedEdge[26, 28], \
UndirectedEdge[27, 28], UndirectedEdge[27, 29], UndirectedEdge[28, 30], \
UndirectedEdge[29, 30], UndirectedEdge[29, 32], UndirectedEdge[30, 31], \
UndirectedEdge[31, 34], UndirectedEdge[32, 33], UndirectedEdge[33, 34], \
UndirectedEdge[1, 5], UndirectedEdge[1, 12], UndirectedEdge[2, 1], \
UndirectedEdge[2, 6], UndirectedEdge[2, 11]], List[Rule[EdgeWeight, List[217, \
29, 27, 249, 28, 27, 280, 25, 24, 3, 2, 312, 28, 28, 17, 1, 1, 344, 18, 28, \
27, 312, 3, 3, 26, 134, 25, 135, 280, 27, 27, 248, 26, 27, 218, 26, 24, 4, 5, \
185, 24, 136, 184, 25, 136]], Rule[GraphLayout, List[Rule[\\\"Dimension\\\", \
2]]], Rule[VertexCoordinates, List[List[92.5`, 300.5`], List[43.5`, 219.5`], \
List[309.5`, 299.5`], List[356.5`, 220.5`], List[75.5`, 271.5`], List[324.5`, \
272.5`], List[340.5`, 244.5`], List[60.5`, 244.5`], List[356.5`, 217.5`], \
List[44.5`, 217.5`], List[27.5`, 189.5`], List[372.5`, 189.5`], List[10.5`, \
189.5`], List[28.5`, 188.5`], List[373.5`, 189.5`], List[391.5`, 189.5`], \
List[356.5`, 161.5`], List[44.5`, 161.5`], List[43.5`, 158.5`], List[357.5`, \
158.5`], List[60.5`, 133.5`], List[103.5`, 54.5`], List[340.5`, 133.5`], \
List[297.5`, 55.5`], List[76.5`, 106.5`], List[324.5`, 106.5`], List[91.5`, \
80.5`], List[309.5`, 79.5`], List[293.5`, 51.5`], List[108.5`, 51.5`], \
List[108.5`, 327.5`], List[292.5`, 327.5`]]]]]]]], \
TagBox[GraphicsGroupBox[GraphicsComplexBox[List[List[92.5`, 300.5`], \
List[43.5`, 219.5`], List[309.5`, 299.5`], List[356.5`, 220.5`], List[75.5`, \
271.5`], List[324.5`, 272.5`], List[340.5`, 244.5`], List[60.5`, 244.5`], \
List[356.5`, 217.5`], List[44.5`, 217.5`], List[27.5`, 189.5`], List[372.5`, \
189.5`], List[10.5`, 189.5`], List[28.5`, 188.5`], List[373.5`, 189.5`], \
List[391.5`, 189.5`], List[356.5`, 161.5`], List[44.5`, 161.5`], List[43.5`, \
158.5`], List[357.5`, 158.5`], List[60.5`, 133.5`], List[103.5`, 54.5`], \
List[340.5`, 133.5`], List[297.5`, 55.5`], List[76.5`, 106.5`], List[324.5`, \
106.5`], List[91.5`, 80.5`], List[309.5`, 79.5`], List[293.5`, 51.5`], \
List[108.5`, 51.5`], List[108.5`, 327.5`], List[292.5`, 327.5`]], \
List[List[Directive[Opacity[0.7`], Hue[0.6`, 0.7`, 0.5`]], \
LineBox[List[List[1, 3], List[1, 5], List[1, 31], List[2, 8], List[2, 10], \
List[2, 31], List[3, 6], List[3, 32], List[4, 7], List[4, 9], List[4, 32], \
List[5, 6], List[5, 8], List[6, 7], List[7, 8], List[9, 10], List[9, 12], \
List[10, 11], List[11, 13], List[11, 14], List[12, 14], List[12, 15], \
List[14, 18], List[15, 16], List[15, 17], List[17, 18], List[17, 20], \
List[18, 19], List[19, 21], List[19, 22], List[20, 23], List[20, 24], \
List[21, 23], List[21, 25], List[22, 27], List[22, 30], List[23, 26], \
List[24, 28], List[24, 29], List[25, 26], List[25, 27], List[26, 28], \
List[27, 28], List[29, 30], List[31, 32]]]], List[Directive[Hue[0.6`, 0.2`, \
0.8`], EdgeForm[Directive[GrayLevel[0], Opacity[0.7`]]]], DiskBox[1, \
0.144932860400304`], DiskBox[2, 0.144932860400304`], DiskBox[3, \
0.144932860400304`], DiskBox[4, 0.144932860400304`], DiskBox[5, \
0.144932860400304`], DiskBox[6, 0.144932860400304`], DiskBox[7, \
0.144932860400304`], DiskBox[8, 0.144932860400304`], DiskBox[9, \
0.144932860400304`], DiskBox[10, 0.144932860400304`], DiskBox[11, \
0.144932860400304`], DiskBox[12, 0.144932860400304`], DiskBox[13, \
0.144932860400304`], DiskBox[14, 0.144932860400304`], DiskBox[15, \
0.144932860400304`], DiskBox[16, 0.144932860400304`], DiskBox[17, \
0.144932860400304`], DiskBox[18, 0.144932860400304`], DiskBox[19, \
0.144932860400304`], DiskBox[20, 0.144932860400304`], DiskBox[21, \
0.144932860400304`], DiskBox[22, 0.144932860400304`], DiskBox[23, \
0.144932860400304`], DiskBox[24, 0.144932860400304`], DiskBox[25, \
0.144932860400304`], DiskBox[26, 0.144932860400304`], DiskBox[27, \
0.144932860400304`], DiskBox[28, 0.144932860400304`], DiskBox[29, \
0.144932860400304`], DiskBox[30, 0.144932860400304`], DiskBox[31, \
0.144932860400304`], DiskBox[32, 0.144932860400304`]]]]], MouseAppearanceTag[\
\\\"NetworkGraphics\\\"]], Rule[AllowKernelInitialization, False]]], \
List[Rule[FormatType, TraditionalForm], Rule[FrameTicks, None], \
Rule[DefaultBaseStyle, List[\\\"NetworkGraphics\\\", \
Rule[FrontEnd`GraphicsHighlightColor, Hue[0.8`, 1.`, 0.6`]]]]]], \\\",\\\", \
RowBox[{\\\"11\\\", \\\"\[UndirectedEdge]\\\", \\\"14\\\"}]}], \\\"]\\\"}], \
\\\",\\\", RowBox[{\\\"12\\\", \\\"\[UndirectedEdge]\\\", \\\"13\\\"}]}], \
\\\"]\\\"}], \\\",\\\", RowBox[{\\\"16\\\", \\\"\[UndirectedEdge]\\\", \\\"20\
\\\"}]}], \\\"]\\\"}], \\\",\\\", RowBox[{\\\"17\\\", \\\"\[UndirectedEdge]\\\
\", \\\"18\\\"}]}], \\\"]\\\"}]\\).\"",2,105,262,29373518792167390587,"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8526873668973293`*^9},
CellLabel->
"During evaluation of \
In[103]:=",ExpressionUUID->"9346ce66-6b74-4e3d-a383-797e8f576cce"],
Cell[BoxData[
TemplateBox[{
"General","stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"EdgeContract\\\", \
\\\"::\\\", \\\"graph\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"",2,105,263,29373518792167390587,"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.852687366912516*^9},
CellLabel->
"During evaluation of \
In[103]:=",ExpressionUUID->"cfa2f075-bf50-42fc-aa42-f57316db9962"],
Cell[BoxData[
RowBox[{"Graph", "[",
RowBox[{
RowBox[{"EdgeContract", "[",
RowBox[{
RowBox[{"EdgeContract", "[",
RowBox[{
RowBox[{"EdgeContract", "[",
RowBox[{
RowBox[{"EdgeContract", "[",
RowBox[{
RowBox[{"EdgeContract", "[",
RowBox[{
RowBox[{"EdgeContract", "[",
RowBox[{
RowBox[{"EdgeContract", "[",
RowBox[{
RowBox[{"EdgeContract", "[",
RowBox[{
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{5, 12, 6, 11, 8, 7, 10, 9, 14, 13, 16, 17, 15, 20,
18, 19, 22, 21, 23, 24, 25, 32, 26, 31, 27, 28, 29, 30,
34, 33, 1, 2}, {
Null, {{1, 3}, {1, 5}, {3, 6}, {6, 5}, {6, 7}, {5, 8}, {8,
7}, {8, 2}, {7, 4}, {4, 9}, {2, 10}, {10, 9}, {10, 11}, {
9, 12}, {13, 11}, {11, 14}, {12, 15}, {12, 14}, {15,
16}, {15, 17}, {14, 18}, {18, 17}, {18, 19}, {17, 20}, {
19, 21}, {19, 22}, {20, 23}, {20, 24}, {21, 23}, {21,
25}, {23, 26}, {25, 26}, {25, 27}, {26, 28}, {27, 28}, {
27, 22}, {28, 24}, {24, 29}, {22, 30}, {30, 29}, {31,
1}, {31, 2}, {32, 31}, {32, 3}, {32, 4}}}, {
EdgeWeight -> {217, 29, 27, 249, 28, 27, 280, 25, 24, 3,
2, 312, 28, 28, 17, 1, 1, 344, 18, 28, 27, 312, 3, 3, 26,
134, 25, 135, 280, 27, 27, 248, 26, 27, 218, 26, 24, 4, 5,
185, 24, 136, 184, 25, 136},
GraphLayout -> {"Dimension" -> 2},
VertexCoordinates -> CompressedData["
1:eJxTTMoPSmViYGBQAGIQDQYK4Q5g+kQRhD7gCqELsiF0RDGE3gGV9yiD0BOg
8g+CIPSPAqh8CYTmKITyS6Hq8yC0gx8qH2aeAdQ8BzdUfoM1hN6QDlVfjspn
UEXlN9hAzYfyI9DUV1SgmQezPwXNfigfFh4XkqHmlaHyYf7ZkAChH0RCxb2h
5peiys+AhTNUXiEYQi+IgqovQeU/CIOqC4HaD42PB1B9ETDzPKHqorHzK6Dm
ehTB+QDVVUg5
"]}]]},
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGBQAGIQDQYK4Q5g+kQRhD7gCqELsiF0RDGE3gGV9yiD0BOg
8g+CIPSPAqh8CYTmKITyS6Hq8yC0gx8qH2aeAdQ8BzdUfoM1hN6QDlVfjspn
UEXlN9hAzYfyI9DUV1SgmQezPwXNfigfFh4XkqHmlaHyYf7ZkAChH0RCxb2h
5peiys+AhTNUXiEYQi+IgqovQeU/CIOqC4HaD42PB1B9ETDzPKHqorHzK6Dm
ehTB+QDVVUg5
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7],
LineBox[{{1, 3}, {1, 5}, {1, 31}, {2, 8}, {2, 10}, {2,
31}, {3, 6}, {3, 32}, {4, 7}, {4, 9}, {4, 32}, {5, 6}, {5,
8}, {6, 7}, {7, 8}, {9, 10}, {9, 12}, {10, 11}, {11,
13}, {11, 14}, {12, 14}, {12, 15}, {14, 18}, {15, 16}, {
15, 17}, {17, 18}, {17, 20}, {18, 19}, {19, 21}, {19,
22}, {20, 23}, {20, 24}, {21, 23}, {21, 25}, {22, 27}, {