-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain-a3c.py
353 lines (291 loc) · 11.8 KB
/
train-a3c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#!/usr/bin/env python
# coding: utf-8
import numpy as np
import random
import math
from tqdm import trange
import pandas as pd
import matplotlib.pyplot as plt
import os, glob, sys
import gym
import gym.envs.box2d
import cv2
import torch
import torch.autograd
import torch.optim as optim
import torch.nn as nn
import torch.multiprocessing as mp
from torchvision import transforms
from collections import deque
from os.path import join, exists
from models import *
from collections import namedtuple
from hparams import HyperParams as hp
Transition = namedtuple('Transition',
('state', 'action', 'reward', 'next_state'))
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
device = 'cpu'
logdir = 'logs'
MAX_R = 1.
transform = transforms.Compose([
# transforms.ToPILImage(),
# transforms.Resize((RED_SIZE, RED_SIZE)),
transforms.ToTensor()
])
def obs2tensor(obs):
binary_road = obs2feature(obs) # (10, 10)
s = binary_road.flatten()
s = torch.tensor(s.reshape([1, -1]), dtype=torch.float)
obs = np.ascontiguousarray(obs)
# obs = torch.tensor(obs, dtype=torch.float)
obs = transform(obs).unsqueeze(0)
return obs.to(device), s.to(device)
def obs2feature(s):
upper_field = s[:84, 6:90] # we crop side of screen as they carry little information
img = cv2.cvtColor(upper_field, cv2.COLOR_RGB2GRAY)
upper_field_bw = cv2.threshold(img, 120, 255, cv2.THRESH_BINARY)[1]
upper_field_bw = cv2.resize(upper_field_bw, (10, 10), interpolation = cv2.INTER_NEAREST) # re scaled to 7x7 pixels
upper_field_bw = upper_field_bw.astype(np.float32)/255
return upper_field_bw
def set_seed(seed, env=None):
if env is not None:
env.seed(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def train_process(global_agent, vae, rnn, update_term, pid, state_dims, hidden_dims, lr, device=None, seed=0):
set_seed(seed)
env = gym.make('CarRacing-v0')
env.verbose = 0
# time_limit = 1000
# env.render()
agent = A3C(input_dims=state_dims, hidden_dims=hidden_dims, lr=lr).to(device)
agent.load_state_dict(global_agent.state_dict())
scores = [-100,]
running_means = []
step = 0
for ep in range(max_ep):
obs = env.reset()
score = 0.
i = 0
next_hidden = [torch.zeros(1, 1, hp.rnn_hunits).to(device) for _ in range(2)]
for _ in range(5):
# env.render()
next_obs, reward, done, _ = env.step(agent.possible_actions[-2])
score += reward
next_obs, next_s = obs2tensor(next_obs)
# print(next_obs.shape)
with torch.no_grad():
next_latent_mu, _ = vae.encoder(next_obs)
while True:
# env.render()
obs = next_obs
s = next_s
hidden = next_hidden
latent_mu = next_latent_mu
# Select action about time t
if hp.use_binary_feature:
state = torch.cat([latent_mu, hidden[0].squeeze(0), s], dim=1)
else:
state = torch.cat([latent_mu, hidden[0].squeeze(0)], dim=1)
action, p = agent.select_action(state) # nparray, tensor
next_obs, reward, done, _ = env.step(action.reshape([-1]))
with torch.no_grad():
next_obs, next_s = obs2tensor(next_obs)
next_latent_mu, _ = vae.encoder(next_obs)
# MDN-RNN about time t+1
with torch.no_grad():
action = torch.tensor(action, dtype=torch.float).view(1, -1).to(device)
vision_action = torch.cat([next_latent_mu, action], dim=-1) #
vision_action = vision_action.view(1, 1, -1)
_, _, _, next_hidden = rnn.infer(vision_action, hidden) #
if hp.use_binary_feature:
next_state = torch.cat([next_latent_mu, next_hidden[0].squeeze(0), next_s], dim=1)
else:
next_state = torch.cat([next_latent_mu, next_hidden[0].squeeze(0)], dim=1)
# Scores
score += reward
if done:
reward_tensor = torch.tensor([reward/MAX_R], dtype=torch.float).to(device)
agent.replay.push(state.data, p, reward_tensor, next_state.data)
running_mean = np.mean(scores[-30:])
print('PID: {}, Ep: {}, Replays: {}, Running Mean: {:.2f}, Score: {:.2f}' .format(pid, ep, len(agent.replay), running_mean, score))
scores.append(score)
running_means.append(running_mean)
optim = torch.optim.Adam(global_agent.parameters(), lr=lr)
optim.zero_grad()
agent.update(done)
for g_param, param in zip(global_agent.parameters(), agent.parameters()):
g_param._grad = param.grad
optim.step()
agent.load_state_dict(global_agent.state_dict())
break
else:
reward_tensor = torch.tensor([reward/MAX_R], dtype=torch.float).to(device)
agent.replay.push(state.data, p, reward_tensor, next_state.data)
if len(agent.replay) == update_term:
optim = torch.optim.Adam(global_agent.parameters(), lr=lr)
optim.zero_grad()
agent.update(done)
for g_param, param in zip(global_agent.parameters(), agent.parameters()):
g_param._grad = param.grad
optim.step()
agent.load_state_dict(global_agent.state_dict())
i += 1
step += 1
# agent.update()
pdict = {
'agent': agent,
'scores': scores,
'avgs': running_means,
'step': step,
'n_episodes': ep,
'seed': seed,
'update_term': update_term,
}
env.close()
return pdict
def test_process(global_agent, vae, rnn, update_term, pid, state_dims, hidden_dims, lr, device=None, seed=0):
env = gym.make('CarRacing-v0')
set_seed(seed, env=env)
env.verbose = 0
env.render()
agent = A3C(input_dims=state_dims, hidden_dims=hidden_dims, lr=lr).to(device)
scores = [-100,]
best_score = hp.save_start_score
running_means = []
step = 0
worse = 0
best_agent_state = None
for ep in range(test_ep):
agent.load_state_dict(global_agent.state_dict())
env.reset()
score = 0.
i = 0
next_hidden = [torch.zeros(1, 1, hp.rnn_hunits).to(device) for _ in range(2)]
for _ in range(5):
env.render()
next_obs, reward, done, _ = env.step(agent.possible_actions[-2])
score += reward
next_obs, next_s = obs2tensor(next_obs)
with torch.no_grad():
next_latent_mu, _ = vae.encoder(next_obs)
while True:
env.render()
obs = next_obs
s = next_s
hidden = next_hidden
latent_mu = next_latent_mu
# Select action about time t
if hp.use_binary_feature:
state = torch.cat([latent_mu, hidden[0].squeeze(0), s], dim=1)
else:
state = torch.cat([latent_mu, hidden[0].squeeze(0)], dim=1)
action, _ = agent.select_action(state) # nparray, tensor
next_obs, reward, done, _ = env.step(action.reshape([-1]))
with torch.no_grad():
next_obs, next_s = obs2tensor(next_obs)
next_latent_mu, _ = vae.encoder(next_obs)
# MDN-RNN about time t+1
with torch.no_grad():
action = torch.tensor(action, dtype=torch.float).view(1, -1).to(device)
vision_action = torch.cat([next_latent_mu, action], dim=-1) #
vision_action = vision_action.view(1, 1, -1)
_, _, _, next_hidden = rnn.infer(vision_action, hidden) #
# next_state = torch.cat([next_latent_mu, next_hidden[0], next_s], dim=1)
# Scores
score += reward
if done:
running_mean = np.mean(scores[-30:])
scores.append(score)
running_means.append(running_mean)
print('PID: {}, Ep: {}, Replays: {}, Running Mean: {:.2f}, Score: {:.2f}'.format(pid, ep, len(agent.replay), running_mean, score))
break
i += 1
step += 1
pdict = {
'agent': agent,
'scores': scores,
'avgs': running_means,
'step': step,
'n_episodes': ep,
'seed': seed,
'update_term': update_term,
}
if score > hp.score_cut :
best_agent_state = global_agent.state_dict()
save_ckpt(pdict, 'A3C({:03d})-{}.pth.tar'.format(int(score), ep))
worse = 0
elif score > best_score:
best_score = score
best_agent_state = global_agent.state_dict()
save_ckpt(pdict, 'A3C({:03d})-{}.pth.tar'.format(int(score), ep))
worse = 0
else:
worse += 1
if worse > 50 and best_agent_state is not None:
global_agent.load_state_dict(best_agent_state)
env.close()
save_ckpt(pdict, 'A3C({:03d})-{}.pth.tar'.format(int(score), ep))
return pdict
def save_ckpt(info, filename, root='ckpt', add_prefix=None, save_model=True):
if add_prefix is None:
ckpt_dir = os.path.join(root, type(info['agent']).__name__)
else:
ckpt_dir = os.path.join(root, add_prefix, type(info['agent']).__name__)
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
if save_model:
torch.save(
info, '{}/{}.pth.tar'.format(ckpt_dir, filename)
)
plt.figure()
plt.plot(info['scores'])
plt.plot(info['avgs'])
plt.savefig('{}/scores-{}.png'.format(ckpt_dir, filename))
def save_means_plot(infos, add_prefix=None, root='ckpt'):
if add_prefix is None:
ckpt_dir = os.path.join(root, type(infos[0]['agent']).__name__)
else:
ckpt_dir = os.path.join(root, add_prefix, type(infos[0]['agent']).__name__)
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
plt.figure()
for info in infos:
plt.plot(info['avgs'])
plt.savefig('{}/total-scores.png'.format(ckpt_dir))
# ### V model & M model
vae_path = sorted(glob.glob(os.path.join(hp.ckpt_dir, 'vae', '*.pth.tar')))[-1]
vae_state = torch.load(vae_path, map_location={'cuda:0': str(device)})
rnn_path = sorted(glob.glob(os.path.join(hp.ckpt_dir, 'rnn', '*.pth.tar')))[-1]
rnn_state = torch.load(rnn_path, map_location={'cuda:0': str(device)})
vae = VAE(hp.vsize).to(device)
vae.load_state_dict(vae_state['model'])
vae.eval()
# rnn = MDNRNN(hp.vsize, hp.asize, hp.rnn_hunits, hp.n_gaussians).to(device)
rnn = RNN(hp.vsize, hp.asize, hp.rnn_hunits).to(device)
rnn.load_state_dict(rnn_state['model'])
# mdnrnn.load_state_dict({k.strip('_l0'): v for k, v in rnn_state['state_dict'].items()})
rnn.eval()
print('Loaded VAE: {}, RNN: {}'.format(vae_path, rnn_path))
# ### Environment
total_infos = []
max_ep = hp.max_ep*2
test_ep = hp.max_ep
state_dims = hp.vsize + hp.rnn_hunits + 100 if hp.use_binary_feature else hp.vsize + hp.rnn_hunits
hidden_dims = hp.ctrl_hidden_dims
lr = 1e-4
global_agent = A3C(input_dims=state_dims, hidden_dims=hidden_dims, lr=lr).to(device)
global_agent.share_memory()
update_term = 100
n_processes = 3
processes = []
for pid in range(n_processes+1):
if pid == 0:
p = mp.Process(target=test_process, args=(global_agent, vae, rnn, update_term, pid, state_dims, hidden_dims, lr,))
else:
p = mp.Process(target=train_process, args=(global_agent, vae, rnn, update_term, pid, state_dims, hidden_dims, lr,))
p.start()
processes.append(p)
for p in processes:
p.join()