-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearner.py
37 lines (29 loc) · 1.38 KB
/
learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch.optim as optim
from config import config
from model import R2D2_agent57
class Learner:
def __init__(self, online_net, target_net, current_g_model, target_g_model, embedding_model, memory, lock):
self.online_net = online_net
self.target_net = target_net
self.current_g_model = current_g_model
self.target_g_model = target_g_model
self.embedding_model = embedding_model
self.memory = memory
self.lock = lock
self.optimizer = optim.Adam(online_net.parameters(), lr=config.lr)
self.share_exp_mem = memory
self.lock = lock
self.steps = 0
def run(self):
while True:
if self.share_exp_mem.size() > config.batch_size:
batch, indexes, lengths = self.memory.sample(config.batch_size)
for _ in range(5):
loss, td_error = R2D2_agent57.train_model(self.online_net, self.target_net, self.optimizer, batch,
lengths)
if config.enable_ngu:
_ = self.embedding_model.train_model(batch)
self.memory.update_priority(indexes, td_error.detach(), lengths)
self.steps += 1
if self.steps % config.update_target == 0:
self.target_net.load_state_dict(self.online_net.state_dict())