From bca611c861bb11ab25f71ae9e7089834bb457bc3 Mon Sep 17 00:00:00 2001 From: Martijn Visser Date: Tue, 13 Aug 2024 16:19:16 +0200 Subject: [PATCH] pixi run pre-commit --- .../01_parse_crossings.ipynb | 1494 +--------- .../01_test_parse_crossings.ipynb | 14 +- .../01b_ad_krw_to_peilgebieden.ipynb | 8 +- .../02_crossings_to_ribasim_notebook.ipynb | 295 +- src/peilbeheerst_model/03_test_outlets.ipynb | 2391 +---------------- .../AmstelGooienVecht_parametrize.ipynb | 1768 +----------- .../sturing_AmstelGooienVecht.json | 18 +- src/peilbeheerst_model/compute_voronoi.ipynb | 20 +- .../postprocess_data/post-process_WSRL.ipynb | 210 +- .../postprocess_data/post-process_agv.ipynb | 171 +- .../post-process_delfland.ipynb | 198 +- .../post-process_rijnland.ipynb | 468 +--- .../post-process_wetterskip.ipynb | 139 +- .../post-process_zuiderzeeland.ipynb | 493 +--- .../postprocess_data/post-processing_HD.ipynb | 154 +- .../post-processing_HHNK.ipynb | 198 +- .../post-processing_HHSK.ipynb | 222 +- .../post-processing_scheldestromen.ipynb | 336 +-- .../preprocess_data/AmstelGooienVecht.ipynb | 38 +- .../preprocess_data/Delfland.ipynb | 32 +- .../preprocess_data/HHNK.ipynb | 46 +- .../preprocess_data/HHSK.ipynb | 78 +- .../preprocess_data/Hollandse_Delta.ipynb | 32 +- .../preprocess_data/Rijnland.ipynb | 78 +- .../preprocess_data/Rivierenland.ipynb | 56 +- .../preprocess_data/Scheldestromen.ipynb | 50 +- .../preprocess_data/Wetterskip.ipynb | 48 +- .../preprocess_data/Zuiderzeeland.ipynb | 38 +- src/ribasim_lumping/README.md | 6 +- 29 files changed, 1001 insertions(+), 8098 deletions(-) diff --git a/src/peilbeheerst_model/01_parse_crossings.ipynb b/src/peilbeheerst_model/01_parse_crossings.ipynb index 61a978fa..026f9761 100644 --- a/src/peilbeheerst_model/01_parse_crossings.ipynb +++ b/src/peilbeheerst_model/01_parse_crossings.ipynb @@ -2,8 +2,8 @@ "cells": [ { "cell_type": "code", - "execution_count": 14, - "id": "bd2ec4f5-5df5-4c1e-a010-00e47c676d17", + "execution_count": null, + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -20,366 +20,10 @@ }, { "cell_type": "code", - "execution_count": 15, - "id": "9340d65c-0872-43ae-ada8-4a4e3ab21a9a", + "execution_count": null, + "id": "1", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "

Function init:

" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
gpkg_pathoutput_pathsearch_radius_structureagg_peilgebieden_layeragg_peilgebieden_columnkrw_pathkrw_column_idkrw_column_namekrw_min_overlap
HHNK../../../../Data_postprocessed/Waterschappen/H...../../../../Data_crossings/HHNK/hhnk_crossings...60aggregation_areacode../../../../Data_overig/KRW/KRW_lichamen_per_w...owmidentowmnaam0.025
Delfland../../../../Data_postprocessed/Waterschappen/D...../../../../Data_crossings/Delfland/delfland_c...60aggregation_areacode../../../../Data_overig/KRW/KRW_lichamen_per_w...owmidentowmnaam0.025
Hollandse Delta../../../../Data_postprocessed/Waterschappen/H...../../../../Data_crossings/Hollandse_Delta/hd_...300aggregation_areacode../../../../Data_overig/KRW/KRW_lichamen_per_w...owmidentowmnaam0.025
AmstelGooienVecht../../../../Data_postprocessed/Waterschappen/A...../../../../Data_crossings/AmstelGooienVecht/a...60aggregation_areacode../../../../Data_overig/KRW/KRW_lichamen_per_w...owmidentowmnaam0.025
HHSK../../../../Data_postprocessed/Waterschappen/H...../../../../Data_crossings/HHSK/hhsk_crossings...300aggregation_areacode../../../../Data_overig/KRW/KRW_lichamen_per_w...owmidentowmnaam0.025
Rijnland../../../../Data_postprocessed/Waterschappen/R...../../../../Data_crossings/Rijnland/rijnland_c...60aggregation_areacode../../../../Data_overig/KRW/KRW_lichamen_per_w...owmidentowmnaam0.025
Scheldestromen../../../../Data_postprocessed/Waterschappen/S...../../../../Data_crossings/Scheldestromen/sche...60aggregation_areacode../../../../Data_overig/KRW/KRW_lichamen_per_w...owmidentowmnaam0.025
Wetterskip../../../../Data_postprocessed/Waterschappen/W...../../../../Data_crossings/Wetterskip/wettersk...60aggregation_areacode../../../../Data_overig/KRW/KRW_lichamen_per_w...owmidentowmnaam0.025
WSRL../../../../Data_postprocessed/Waterschappen/W...../../../../Data_crossings/WSRL/wsrl_crossings...60aggregation_areacode../../../../Data_overig/KRW/KRW_lichamen_per_w...owmidentowmnaam0.025
Zuiderzeeland../../../../Data_postprocessed/Waterschappen/Z...../../../../Data_crossings/Zuiderzeeland/zzl_c...60aggregation_areacode../../../../Data_overig/KRW/KRW_lichamen_per_w...owmidentowmnaam0.025
\n", - "
" - ], - "text/plain": [ - " gpkg_path \\\n", - "HHNK ../../../../Data_postprocessed/Waterschappen/H... \n", - "Delfland ../../../../Data_postprocessed/Waterschappen/D... \n", - "Hollandse Delta ../../../../Data_postprocessed/Waterschappen/H... \n", - "AmstelGooienVecht ../../../../Data_postprocessed/Waterschappen/A... \n", - "HHSK ../../../../Data_postprocessed/Waterschappen/H... \n", - "Rijnland ../../../../Data_postprocessed/Waterschappen/R... \n", - "Scheldestromen ../../../../Data_postprocessed/Waterschappen/S... \n", - "Wetterskip ../../../../Data_postprocessed/Waterschappen/W... \n", - "WSRL ../../../../Data_postprocessed/Waterschappen/W... \n", - "Zuiderzeeland ../../../../Data_postprocessed/Waterschappen/Z... \n", - "\n", - " output_path \\\n", - "HHNK ../../../../Data_crossings/HHNK/hhnk_crossings... \n", - "Delfland ../../../../Data_crossings/Delfland/delfland_c... \n", - "Hollandse Delta ../../../../Data_crossings/Hollandse_Delta/hd_... \n", - "AmstelGooienVecht ../../../../Data_crossings/AmstelGooienVecht/a... \n", - "HHSK ../../../../Data_crossings/HHSK/hhsk_crossings... \n", - "Rijnland ../../../../Data_crossings/Rijnland/rijnland_c... \n", - "Scheldestromen ../../../../Data_crossings/Scheldestromen/sche... \n", - "Wetterskip ../../../../Data_crossings/Wetterskip/wettersk... \n", - "WSRL ../../../../Data_crossings/WSRL/wsrl_crossings... \n", - "Zuiderzeeland ../../../../Data_crossings/Zuiderzeeland/zzl_c... \n", - "\n", - " search_radius_structure agg_peilgebieden_layer \\\n", - "HHNK 60 aggregation_area \n", - "Delfland 60 aggregation_area \n", - "Hollandse Delta 300 aggregation_area \n", - "AmstelGooienVecht 60 aggregation_area \n", - "HHSK 300 aggregation_area \n", - "Rijnland 60 aggregation_area \n", - "Scheldestromen 60 aggregation_area \n", - "Wetterskip 60 aggregation_area \n", - "WSRL 60 aggregation_area \n", - "Zuiderzeeland 60 aggregation_area \n", - "\n", - " agg_peilgebieden_column \\\n", - "HHNK code \n", - "Delfland code \n", - "Hollandse Delta code \n", - "AmstelGooienVecht code \n", - "HHSK code \n", - "Rijnland code \n", - "Scheldestromen code \n", - "Wetterskip code \n", - "WSRL code \n", - "Zuiderzeeland code \n", - "\n", - " krw_path \\\n", - "HHNK ../../../../Data_overig/KRW/KRW_lichamen_per_w... \n", - "Delfland ../../../../Data_overig/KRW/KRW_lichamen_per_w... \n", - "Hollandse Delta ../../../../Data_overig/KRW/KRW_lichamen_per_w... \n", - "AmstelGooienVecht ../../../../Data_overig/KRW/KRW_lichamen_per_w... \n", - "HHSK ../../../../Data_overig/KRW/KRW_lichamen_per_w... \n", - "Rijnland ../../../../Data_overig/KRW/KRW_lichamen_per_w... \n", - "Scheldestromen ../../../../Data_overig/KRW/KRW_lichamen_per_w... \n", - "Wetterskip ../../../../Data_overig/KRW/KRW_lichamen_per_w... \n", - "WSRL ../../../../Data_overig/KRW/KRW_lichamen_per_w... \n", - "Zuiderzeeland ../../../../Data_overig/KRW/KRW_lichamen_per_w... \n", - "\n", - " krw_column_id krw_column_name krw_min_overlap \n", - "HHNK owmident owmnaam 0.025 \n", - "Delfland owmident owmnaam 0.025 \n", - "Hollandse Delta owmident owmnaam 0.025 \n", - "AmstelGooienVecht owmident owmnaam 0.025 \n", - "HHSK owmident owmnaam 0.025 \n", - "Rijnland owmident owmnaam 0.025 \n", - "Scheldestromen owmident owmnaam 0.025 \n", - "Wetterskip owmident owmnaam 0.025 \n", - "WSRL owmident owmnaam 0.025 \n", - "Zuiderzeeland owmident owmnaam 0.025 " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "

Function find_crossings_with_peilgebieden:

" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
filterlayergroup_stacked
HHNKduikersifonhevelTrue
DelflandduikersifonhevelTrue
Hollandse DeltaduikersifonhevelTrue
AmstelGooienVechtduikersifonhevelTrue
HHSKduikersifonhevelTrue
RijnlandduikersifonhevelTrue
ScheldestromenduikersifonhevelTrue
WetterskipduikersifonhevelTrue
WSRLduikersifonhevelTrue
ZuiderzeelandduikersifonhevelTrue
\n", - "
" - ], - "text/plain": [ - " filterlayer group_stacked\n", - "HHNK duikersifonhevel True\n", - "Delfland duikersifonhevel True\n", - "Hollandse Delta duikersifonhevel True\n", - "AmstelGooienVecht duikersifonhevel True\n", - "HHSK duikersifonhevel True\n", - "Rijnland duikersifonhevel True\n", - "Scheldestromen duikersifonhevel True\n", - "Wetterskip duikersifonhevel True\n", - "WSRL duikersifonhevel True\n", - "Zuiderzeeland duikersifonhevel True" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "with open(\"waterschappen.json\") as f:\n", " waterschap_data = json.load(f)\n", @@ -398,883 +42,10 @@ }, { "cell_type": "code", - "execution_count": 16, - "id": "816b0266-4eb7-4465-8439-316d44efd5db", + "execution_count": null, + "id": "2", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "HHNK...\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "02183bcd33bd4c9185d763aeb620c302", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Snap geometries in 'hydroobject': 0%| | 0/190044 [00:00\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
in_useagg_links_in_useagg_areas_in_use
HHNK854653265326
Delfland40802916410
Hollandse Delta313917891789
AmstelGooienVecht1476676670
HHSK1247492453
Rijnland540528331005
Scheldestromen17131172372
Wetterskip12912100612671
WSRL21211611657
Zuiderzeeland1892554527
\n", - "" - ], - "text/plain": [ - " in_use agg_links_in_use agg_areas_in_use\n", - "HHNK 8546 5326 5326\n", - "Delfland 4080 2916 410\n", - "Hollandse Delta 3139 1789 1789\n", - "AmstelGooienVecht 1476 676 670\n", - "HHSK 1247 492 453\n", - "Rijnland 5405 2833 1005\n", - "Scheldestromen 1713 1172 372\n", - "Wetterskip 12912 10061 2671\n", - "WSRL 2121 1611 657\n", - "Zuiderzeeland 1892 554 527" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
BasinsEdgesPeilgebieden
HHNK223106522649
Delfland105820283
Hollandse Delta7833578785
AmstelGooienVecht2281340228
HHSK156906157
Rijnland2852010542
Scheldestromen190744294
Wetterskip94853422158
WSRL1291314446
Zuiderzeeland2891054289
\n", - "
" - ], - "text/plain": [ - " Basins Edges Peilgebieden\n", - "HHNK 223 10652 2649\n", - "Delfland 105 820 283\n", - "Hollandse Delta 783 3578 785\n", - "AmstelGooienVecht 228 1340 228\n", - "HHSK 156 906 157\n", - "Rijnland 285 2010 542\n", - "Scheldestromen 190 744 294\n", - "Wetterskip 948 5342 2158\n", - "WSRL 129 1314 446\n", - "Zuiderzeeland 289 1054 289" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAALZCAYAAABmjZLLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfIUlEQVR4nOzdeZxO9f//8edlxjKYZmyzIUtZs69ZQtnXLCE0lLWIFCJKlBRlCS2WPqRERSqRUlmyL4WSJSVLGWMZ02DMMPP6/eE35ztXVGicy/C4327dMue8r3Pe5zrXda5znud93m+PmZkAAAAAAAAAF2XwdQUAAAAAAABw8yGUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOv8fV2B9CApKUnnzp3zdTUA4KaXMWNG+fn5+boaAAAAANIAodQ/MDNFRUXp5MmTvq4KAOD/Cw4OVlhYmDwej6+rAgAAAOA/IJT6BymBVEhIiLJmzcoFEAD4kJnpzJkzio6OliSFh4f7uEYAAAAA/gtCqb+RlJTkBFK5cuXydXUAAJICAgIkSdHR0QoJCeFRPgAAACAdo6Pzv5HSh1TWrFl9XBMAQGopx2X6+gMAAADSN0Kpf8EjewBwfeG4DAAAANwYCKUAAAAAAADgOkIpXLFZs2YpODjY19VAKh6PRx9//LGvq4ErtGLFCnk8HmeEz2vx3frtt9/k8Xi0devWy67H1SpYsKAmTpz4n5YBAAAA4OZBR+dXIbBmZ9fWFbd69hW/5sEHH9Tbb7/t/J0zZ05VrlxZY8eOVZkyZf5zndq3b68mTZr85+X4Qu1V37m6vpW1Klzxa/66/1I0bNhQS5cuTYtqpSsnazR3dX3BaxZdUfnU+8vf31/58+dX69atNXLkSGXLlu0fX1u9enUdPnxYQUFBV13ftHC91AMAAADAzYWWUjeoRo0a6fDhwzp8+LC+/vpr+fv7q1mzZmmy7ICAAIWEhKTJsnBpqfdfyn9z5871dbXwN1L216+//qpRo0bp9ddf18CBA//1dZkyZVJYWJjP+0i6XuoBAAAA4OZCKHWDypw5s8LCwhQWFqZy5cpp8ODBOnjwoI4ePSpJGjx4sIoWLaqsWbOqcOHCeuaZZ7xGstq2bZvuvvtuBQYG6pZbblHFihW1efNmSRc/YjRixAiVK1dO77zzjgoWLKigoCDdf//9iouLc8rMnz9fpUuXVkBAgHLlyqV69erp9OnT7rwZ6VDq/ZfyX44cOSRJP//8s2rVqqUsWbKoZMmSWrZs2UWvX7t2rcqVK6csWbKoUqVK+vjjjy96hOunn35SkyZNlD17doWGhioyMlLHjh1z5rPPLl/K/sqfP786duyoTp066eOPP5aZaezYsSpcuLACAgJUtmxZzZ8/33nd5Tw2N2rUKIWEhCgwMFDdu3fXkCFDVK5cOa8yM2fOVIkSJZQlSxYVL15cr7/++kXL2bVrl6pXr64sWbLojjvu0IoVK/6xHmvXrlWtWrUUEBCg/Pnzq1+/fl77Pzo6Ws2bN1dAQIAKFSqkOXPmXLTO2NhY9ezZUyEhIbrlllt0zz33aNu2bc78yzl2AAAAALhxEUrdBE6dOqU5c+bo9ttvV65cuSRJgYGBmjVrln766Se9+uqrmj59uiZMmOC8plOnTsqXL582bdqkLVu2aMiQIcqYMePfruOXX37Rxx9/rM8++0yfffaZVq5cqZdeekmSdPjwYXXo0EFdu3bVzp07tWLFCrVu3Vpmdm03/AaUnJys1q1by8/PT+vXr9ebb76pwYMHe5WJi4tT8+bNVbp0aX333Xd6/vnnLypz+PBh1a5dW+XKldPmzZu1dOlSHTlyRO3atXPms8+uXkBAgM6dO6enn35aM2fO1BtvvKEdO3bo8ccf1wMPPKCVK1de1nLmzJmjF154QWPGjNGWLVt066236o033vAqM336dA0bNkwvvPCCdu7cqdGjR+uZZ5656BHQQYMGacCAAfr+++9VvXp1tWjRQsePH7/ken/44Qc1bNhQrVu31vbt2/X+++9r9erVevTRR50yDz74oH777Td98803mj9/vl5//XVFR0c7881MTZs2VVRUlJYsWaItW7aoQoUKqlu3rk6cOOGU+6djBwAAAIAbG31K3aA+++wzZc+eXZJ0+vRphYeH67PPPlOGDBdyyKefftopW7BgQQ0YMEDvv/++nnzySUnSgQMHNGjQIBUvXlySVKRIkX9cX3JysmbNmqXAwEBJUmRkpL7++mu98MILOnz4sM6fP6/WrVurQIECkqTSpUun7QbfYFLvvxSDBw9W1apVtXPnTv3222/Kly+fJGn06NFq3LixU27OnDnyeDyaPn2605rq999/V48ePZwyb7zxhipUqKDRo0c70/73v/8pf/782rNnj06dOsU+u0obN27Ue++9p7vvvlvjx4/XN998o2rVqkmSChcurNWrV2vq1KmqXbv2vy5r8uTJ6tatmx566CFJ0vDhw/Xll1/q1KlTTpnnn39e48aNU+vWrSVJhQoV0k8//aSpU6eqS5cuTrlHH31Ubdq0kXRh/y9dulRvvfWW851P7eWXX1bHjh3Vv39/SRe+/5MmTVLt2rX1xhtv6MCBA/r888+1fv16Va1aVZL01ltvqUSJEs4yli9frh9++EHR0dHKnDmzJOmVV17Rxx9/rPnz56tnz56S/vnYAQAAAODGRih1g7r77rudFhUnTpzQ66+/rsaNG2vjxo0qUKCA5s+fr4kTJ2rv3r1OAHHLLbc4r3/iiSfUvXt3vfPOO6pXr57atm2r22677W/XV7BgQeeiUpLCw8OdVhNly5ZV3bp1Vbp0aTVs2FANGjTQfffd5zyOhoul3n8pcubMqXfeeUe33nqrE0hJcgKPFLt371aZMmWUJUsWZ1qVKlW8ymzZskXLly+/KPiSLrRcadCgAfvsCqSEiOfPn9e5c+d07733auDAgZo/f77q16/vVTYxMVHly5e/rOXu3r1bvXv39ppWpUoVffPNN5Kko0eP6uDBg+rWrZtX6Hj+/PmLOi1P/Tnx9/dXpUqVtHPnzkuud8uWLdq7d6/XI3lmpuTkZO3bt0979uxxlpGiePHiXo/1btmyRadOnXJaZ6aIj4/XL7/84vz9T8cOAAAAADc2QqkbVLZs2XT77bc7f1esWFFBQUGaPn26mjVrpvvvv18jR45Uw4YNFRQUpHnz5mncuHFO+REjRqhjx45avHixPv/8cz377LOaN2+eWrVqdcn1/fXRPo/Ho+TkZEmSn5+fli1bprVr1+rLL7/U5MmTNWzYMG3YsEGFChW6Bluf/v11/6W41ONzf+2c2swuOS215ORkNW/eXGPGjLloeeHh4eyzK5QSImbMmFERERHKmDGjNmzYIElavHix8ubN61U+peXQ5finfZnyHZs+fbrTYimFn5/fFS879XJ79eqlfv36XTTv1ltv1e7du//x9SnLCA8P9+q7KkXq8Oqfjh0AAAAAbmyEUjcJj8ejDBkyKD4+XmvWrFGBAgU0bNgwZ/7+/fsvek3RokVVtGhRPf744+rQoYNmzpz5t6HU5ay/Ro0aqlGjhoYPH64CBQpo4cKFeuKJJ656m25GJUuW1IEDB/THH38oIiJCkrRu3TqvMsWLF9ecOXOUkJDghB8pndSnqFChghYsWKCCBQvK3//ShwH22eW7VIhYsmRJZc6cWQcOHLisR/UupVixYtq4caMiIyOdaan3ZWhoqPLmzatff/1VnTp1+sdlrV+/XrVq1ZJ0oSXVli1bvPqISq1ChQrasWPHJYNRSSpRooTOnz+vzZs3O63wdu/e7dVReoUKFRQVFSV/f38VLFjwcjYXAAAAwE2GUOoGlZCQoKioKElSTEyMpkyZolOnTql58+aKjY3VgQMHNG/ePFWuXFmLFy/WwoULndfGx8dr0KBBuu+++1SoUCEdOnRImzZtcvqjuVIbNmzQ119/rQYNGigkJEQbNmzQ0aNHvfqfgbfU+y+Fv7+/6tWrp2LFiqlz584aN26c/vzzT69wUZI6duyoYcOGqWfPnhoyZIgOHDigV155RdL/tWzp06ePpk+frg4dOmjQoEHKnTu39u7dq3nz5mn69OnavHkz++w/CgwM1MCBA/X4448rOTlZNWvW1J9//qm1a9cqe/bsXv09/Z2+ffuqR48eqlSpkqpXr673339f27dvV+HChZ0yI0aMUL9+/XTLLbeocePGSkhI0ObNmxUTE+MVIL722msqUqSISpQooQkTJigmJkZdu3a95HoHDx6sO++8U3369FGPHj2ULVs27dy5U8uWLdPkyZNVrFgxNWrUSD169NC0adPk7++v/v37KyAgwFlGvXr1VK1aNbVs2VJjxoxRsWLF9Mcff2jJkiVq2bKl16N/AAAAAG5OhFI3qKVLlyo8PFzShYvj4sWL68MPP1SdOnUkSY8//rgeffRRJSQkqGnTpnrmmWc0YsQISRce+zl+/Lg6d+6sI0eOKHfu3GrdurVGjhx5VXW55ZZbtGrVKk2cOFF//vmnChQooHHjxnl1zg1vqfdfimLFimnXrl1auHChunXrpipVqqhgwYKaNGmSGjVq5JS75ZZbtGjRIj3yyCMqV66cSpcureHDh6tjx45OP1MRERFas2aNBg8erIYNGyohIUEFChRQo0aNlCFDBvZZGnn++ecVEhKiF198Ub/++quCg4NVoUIFDR069LJe36lTJ/36668aOHCgzp49q3bt2unBBx/Uxo0bnTLdu3dX1qxZ9fLLL+vJJ59UtmzZVLp0aaeT8hQvvfSSxowZo++//1633XabPvnkE+XOnfuS6y1TpoxWrlypYcOG6a677pKZ6bbbblP79u2dMjNnzlT37t1Vu3ZthYaGatSoUXrmmWec+R6PR0uWLNGwYcPUtWtXHT16VGFhYapVq5ZCQ0Ov4F0EAAAAcKPyGGO8X9LZs2e1b98+FSpUyKvDaCA9mjNnjh566CHFxsZ6tWZB+lO/fn2FhYXpnXfe8XVVfIbjMwAAAHBjoKUUcAOaPXu2ChcurLx582rbtm0aPHiw2rVrRyCVzpw5c0ZvvvmmGjZsKD8/P82dO1dfffWVli1b5uuqAQAAAMB/RigF3ICioqI0fPhwRUVFKTw8XG3bttULL7zg62rhCqU8Ajdq1CglJCSoWLFiWrBggerVq+frqgEAAADAf8bje3+Dx0MA4PrE8RkAAAC4MdBSCldsV9xpV9ZTPDCbK+sBAAAAAADuy+DrClzvaEgGANcXjssAAADAjYFQ6m9kzJhR0oWOhgEA14+U43LKcRoAAABA+sTje3/Dz89PwcHBio6OliRlzZpVHo/Hx7W6PiQnJriynrNn/VxZD4D0wcx05swZRUdHKzg4WH5+HCMAAACA9IxQ6h+EhYVJkhNM4YIjZxNdWY8nSyZX1gMgfQkODnaOzwAAAADSL0bfuwxJSUk6d+6cr6tx3YjctMOV9bxT+Q5X1gMg/ciYMSMtpAAAAIAbBC2lLoOfnx8XQalEmzuPMTLUOwAAAAAANy46OgcAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK674lBq1apVat68uSIiIuTxePTxxx97zTczjRgxQhEREQoICFCdOnW0Y8cOrzIJCQnq27evcufOrWzZsqlFixY6dOiQV5mYmBhFRkYqKChIQUFBioyM1MmTJ73KHDhwQM2bN1e2bNmUO3du9evXT4mJiVe6SQAAAAAAAHDZFYdSp0+fVtmyZTVlypRLzh87dqzGjx+vKVOmaNOmTQoLC1P9+vUVFxfnlOnfv78WLlyoefPmafXq1Tp16pSaNWumpKQkp0zHjh21detWLV26VEuXLtXWrVsVGRnpzE9KSlLTpk11+vRprV69WvPmzdOCBQs0YMCAK90kAAAAAAAAuMxjZnbVL/Z4tHDhQrVs2VLShVZSERER6t+/vwYPHizpQquo0NBQjRkzRr169VJsbKzy5Mmjd955R+3bt5ck/fHHH8qfP7+WLFmihg0baufOnSpZsqTWr1+vqlWrSpLWr1+vatWqadeuXSpWrJg+//xzNWvWTAcPHlRERIQkad68eXrwwQcVHR2tW2655b+8L/gHtVd958p6Vtaq4Mp6AAAAAACA+/zTcmH79u1TVFSUGjRo4EzLnDmzateurbVr16pXr17asmWLzp0751UmIiJCpUqV0tq1a9WwYUOtW7dOQUFBTiAlSXfeeaeCgoK0du1aFStWTOvWrVOpUqWcQEqSGjZsqISEBG3ZskV33333ZdX5P2RyuMbYNwAAAAAApE8ej+dfy6RpKBUVFSVJCg0N9ZoeGhqq/fv3O2UyZcqkHDlyXFQm5fVRUVEKCQm5aPkhISFeZf66nhw5cihTpkxOmcvx136qcP1g3wAAAAAAkD79Nfe5lDQNpVL8NQ0zs39NyP5a5lLlr6bMvwkODr7ssnAX+wYAAAAAgBtXmoZSYWFhki60YgoPD3emR0dHO62awsLClJiYqJiYGK/ULDo6WtWrV3fKHDly5KLlHz161Gs5GzZs8JofExOjc+fOXdSC6p9cSYAFd7FvAAAAAAC4cV3x6Hv/pFChQgoLC9OyZcucaYmJiVq5cqUTOFWsWFEZM2b0KnP48GH9+OOPTplq1aopNjZWGzdudMps2LBBsbGxXmV+/PFHHT582Cnz5ZdfKnPmzKpYsWJabhYAAAAAAADS2BW3lDp16pT27t3r/L1v3z5t3bpVOXPm1K233qr+/ftr9OjRKlKkiIoUKaLRo0cra9as6tixoyQpKChI3bp104ABA5QrVy7lzJlTAwcOVOnSpVWvXj1JUokSJdSoUSP16NFDU6dOlST17NlTzZo1U7FixSRJDRo0UMmSJRUZGamXX35ZJ06c0MCBA9WjRw9G3gMAAAAAALjOXXEotXnzZq+R7Z544glJUpcuXTRr1iw9+eSTio+PV+/evRUTE6OqVavqyy+/VGBgoPOaCRMmyN/fX+3atVN8fLzq1q2rWbNmyc/PzykzZ84c9evXzxmlr0WLFpoyZYoz38/PT4sXL1bv3r1Vo0YNBQQEqGPHjnrllVeu/F0AAAAAAACAqzxmZr6uBNKX2qu+c2U9K2tVcGU9AAAAAADAfWnapxQAAAAAAABwOQilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuS/NQ6vz583r66adVqFAhBQQEqHDhwnruueeUnJzslDEzjRgxQhEREQoICFCdOnW0Y8cOr+UkJCSob9++yp07t7Jly6YWLVro0KFDXmViYmIUGRmpoKAgBQUFKTIyUidPnkzrTQIAAAAAAEAaS/NQasyYMXrzzTc1ZcoU7dy5U2PHjtXLL7+syZMnO2XGjh2r8ePHa8qUKdq0aZPCwsJUv359xcXFOWX69++vhQsXat68eVq9erVOnTqlZs2aKSkpySnTsWNHbd26VUuXLtXSpUu1detWRUZGpvUmAQAAAAAAII15zMzScoHNmjVTaGio3nrrLWdamzZtlDVrVr3zzjsyM0VERKh///4aPHiwpAutokJDQzVmzBj16tVLsbGxypMnj9555x21b99ekvTHH38of/78WrJkiRo2bKidO3eqZMmSWr9+vapWrSpJWr9+vapVq6Zdu3apWLFil1XfNN78m0Kdb793ZT0r7irvynoAAAAAAEDa8ng8/1rGP61XWrNmTb355pvas2ePihYtqm3btmn16tWaOHGiJGnfvn2KiopSgwYNnNdkzpxZtWvX1tq1a9WrVy9t2bJF586d8yoTERGhUqVKae3atWrYsKHWrVunoKAgJ5CSpDvvvFNBQUFau3btZYdSPO53/WLfAAAAAACQPuXIkeNfy6R5KDV48GDFxsaqePHi8vPzU1JSkl544QV16NBBkhQVFSVJCg0N9XpdaGio9u/f75TJlCnTRRsQGhrqvD4qKkohISEXrT8kJMQpczmCg4Mvuyzcxb4BAAAAAODGleah1Pvvv693331X7733nu644w5t3bpV/fv3V0REhLp06eKU+2szLjP716Zdfy1zqfKXs5zUrqQs3MW+AQAAAADgxpXmodSgQYM0ZMgQ3X///ZKk0qVLa//+/XrxxRfVpUsXhYWFSbrQ0ik8PNx5XXR0tNN6KiwsTImJiYqJifFqLRUdHa3q1as7ZY4cOXLR+o8ePXpRKywAAAAAAABcX9J89L0zZ84oQwbvxfr5+Sk5OVmSVKhQIYWFhWnZsmXO/MTERK1cudIJnCpWrKiMGTN6lTl8+LB+/PFHp0y1atUUGxurjRs3OmU2bNig2NhYpwwAAAAAAACuT2neUqp58+Z64YUXdOutt+qOO+7Q999/r/Hjx6tr166SLjyS1b9/f40ePVpFihRRkSJFNHr0aGXNmlUdO3aUJAUFBalbt24aMGCAcuXKpZw5c2rgwIEqXbq06tWrJ0kqUaKEGjVqpB49emjq1KmSpJ49e6pZs2aX3ck5AAAAAAAAfCPNQ6nJkyfrmWeeUe/evRUdHa2IiAj16tVLw4cPd8o8+eSTio+PV+/evRUTE6OqVavqyy+/VGBgoFNmwoQJ8vf3V7t27RQfH6+6detq1qxZ8vPzc8rMmTNH/fr1c0bpa9GihaZMmZLWmwQAAAAAAIA05jEz83UlkL7UXvWdK+tZWauCK+sBAAAAAADuS/M+pQAAAAAAAIB/QygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHXXJJT6/fff9cADDyhXrlzKmjWrypUrpy1btjjzzUwjRoxQRESEAgICVKdOHe3YscNrGQkJCerbt69y586tbNmyqUWLFjp06JBXmZiYGEVGRiooKEhBQUGKjIzUyZMnr8UmAQAAAAAAIA2leSgVExOjGjVqKGPGjPr888/1008/ady4cQoODnbKjB07VuPHj9eUKVO0adMmhYWFqX79+oqLi3PK9O/fXwsXLtS8efO0evVqnTp1Ss2aNVNSUpJTpmPHjtq6dauWLl2qpUuXauvWrYqMjEzrTQIAAAAAAEAa85iZpeUChwwZojVr1ujbb7+95HwzU0REhPr376/BgwdLutAqKjQ0VGPGjFGvXr0UGxurPHny6J133lH79u0lSX/88Yfy58+vJUuWqGHDhtq5c6dKliyp9evXq2rVqpKk9evXq1q1atq1a5eKFSuWlpuFVGqv+s6V9aysVcGV9QAAAAAAAPf5p/UCP/30UzVs2FBt27bVypUrlTdvXvXu3Vs9evSQJO3bt09RUVFq0KCB85rMmTOrdu3aWrt2rXr16qUtW7bo3LlzXmUiIiJUqlQprV27Vg0bNtS6desUFBTkBFKSdOeddyooKEhr16697FAqjTM5pCH2DQAAAAAA6ZPH4/nXMmkeSv36669644039MQTT2jo0KHauHGj+vXrp8yZM6tz586KioqSJIWGhnq9LjQ0VPv375ckRUVFKVOmTMqRI8dFZVJeHxUVpZCQkIvWHxIS4pS5HPRBdf1i3wAAAAAAkD79NdO5lDQPpZKTk1WpUiWNHj1aklS+fHnt2LFDb7zxhjp37uyU+2tiZmb/mqL9tcylyl/OclJL3dcVri/sGwAAAAAAblxpHkqFh4erZMmSXtNKlCihBQsWSJLCwsIkXWjpFB4e7pSJjo52Wk+FhYUpMTFRMTExXsladHS0qlev7pQ5cuTIRes/evToRa2w/smVBFhwF/sGAAAAAIAbV5qPvlejRg3t3r3ba9qePXtUoEABSVKhQoUUFhamZcuWOfMTExO1cuVKJ3CqWLGiMmbM6FXm8OHD+vHHH50y1apVU2xsrDZu3OiU2bBhg2JjY50yAAAAAAAAuD6leUupxx9/XNWrV9fo0aPVrl07bdy4UdOmTdO0adMkXWj90r9/f40ePVpFihRRkSJFNHr0aGXNmlUdO3aUJAUFBalbt24aMGCAcuXKpZw5c2rgwIEqXbq06tWrJ+lC66tGjRqpR48emjp1qiSpZ8+eatasGSPvAQAAAAAAXOfSPJSqXLmyFi5cqKeeekrPPfecChUqpIkTJ6pTp05OmSeffFLx8fHq3bu3YmJiVLVqVX355ZcKDAx0ykyYMEH+/v5q166d4uPjVbduXc2aNUt+fn5OmTlz5qhfv37OKH0tWrTQlClT0nqTAAAAAAAAkMY8Zma+rgTSl9qrvnNlPStrVXBlPQAAAAAAwH1p3qcUAAAAAAAA8G8IpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAArvP3dQUAAAAA4GZWe9V3rqxnZa0KrqwHAC4XLaUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuO6ah1IvvviiPB6P+vfv70wzM40YMUIREREKCAhQnTp1tGPHDq/XJSQkqG/fvsqdO7eyZcumFi1a6NChQ15lYmJiFBkZqaCgIAUFBSkyMlInT5681psEAAAAAACA/+iahlKbNm3StGnTVKZMGa/pY8eO1fjx4zVlyhRt2rRJYWFhql+/vuLi4pwy/fv318KFCzVv3jytXr1ap06dUrNmzZSUlOSU6dixo7Zu3aqlS5dq6dKl2rp1qyIjI6/lJgEAAAAAACANXLNQ6tSpU+rUqZOmT5+uHDlyONPNTBMnTtSwYcPUunVrlSpVSm+//bbOnDmj9957T5IUGxurt956S+PGjVO9evVUvnx5vfvuu/rhhx/01VdfSZJ27typpUuXasaMGapWrZqqVaum6dOn67PPPtPu3buv1WYBAAAAAAAgDfhfqwX36dNHTZs2Vb169TRq1Chn+r59+xQVFaUGDRo40zJnzqzatWtr7dq16tWrl7Zs2aJz5855lYmIiFCpUqW0du1aNWzYUOvWrVNQUJCqVq3qlLnzzjsVFBSktWvXqlixYpdVTzNLg63FtcC+AQAAANIO59cA3OTxeP61zDUJpebNm6fvvvtOmzZtumheVFSUJCk0NNRremhoqPbv3++UyZQpk1cLq5QyKa+PiopSSEjIRcsPCQlxylwO+qC6frFvAAAAgLTD+TUAN/0107mUNA+lDh48qMcee0xffvmlsmTJ8rfl/pqYmdm/pmh/LXOp8peznNSCg4Mvuyzcxb4BAAAA0g7n1wCuN2keSm3ZskXR0dGqWLGiMy0pKUmrVq3SlClTnP6eoqKiFB4e7pSJjo52Wk+FhYUpMTFRMTExXsladHS0qlev7pQ5cuTIRes/evToRa2w/smVBFhwF/sGAAAASDucXwO43qR5R+d169bVDz/8oK1btzr/VapUSZ06ddLWrVtVuHBhhYWFadmyZc5rEhMTtXLlSidwqlixojJmzOhV5vDhw/rxxx+dMtWqVVNsbKw2btzolNmwYYNiY2OdMgAAAAAAALg+pXlLqcDAQJUqVcprWrZs2ZQrVy5nev/+/TV69GgVKVJERYoU0ejRo5U1a1Z17NhRkhQUFKRu3bppwIABypUrl3LmzKmBAweqdOnSqlevniSpRIkSatSokXr06KGpU6dKknr27KlmzZpddifnAAAAAAAA8I1rNvreP3nyyScVHx+v3r17KyYmRlWrVtWXX36pwMBAp8yECRPk7++vdu3aKT4+XnXr1tWsWbPk5+fnlJkzZ4769evnjNLXokULTZkyxfXtAQAAAAAAwJXxGOOC4grVXvWdK+tZWauCK+sBAAAAfInzawA3qzTvUwoAAAAAAAD4N4RSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFzn7+sKAMDNpPaq71xZz8paFVxZDwAAAABcLVpKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHX+vq4A8HdO1mjuynqC1yxyZT0AAAAAAOD/0FIKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAArvP3dQUAAAAAANfeyRrNXVlP8JpFrqwHQPpHSykAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOC6NA+lXnzxRVWuXFmBgYEKCQlRy5YttXv3bq8yZqYRI0YoIiJCAQEBqlOnjnbs2OFVJiEhQX379lXu3LmVLVs2tWjRQocOHfIqExMTo8jISAUFBSkoKEiRkZE6efJkWm8SAAAAAAAA0liah1IrV65Unz59tH79ei1btkznz59XgwYNdPr0aafM2LFjNX78eE2ZMkWbNm1SWFiY6tevr7i4OKdM//79tXDhQs2bN0+rV6/WqVOn1KxZMyUlJTllOnbsqK1bt2rp0qVaunSptm7dqsjIyLTeJAAAAAAAAKQx/7Re4NKlS73+njlzpkJCQrRlyxbVqlVLZqaJEydq2LBhat26tSTp7bffVmhoqN577z316tVLsbGxeuutt/TOO++oXr16kqR3331X+fPn11dffaWGDRtq586dWrp0qdavX6+qVatKkqZPn65q1app9+7dKlas2GXV18zScOuRHvEZwI2IzzUAAPAVzkMASJLH4/nXMmkeSv1VbGysJClnzpySpH379ikqKkoNGjRwymTOnFm1a9fW2rVr1atXL23ZskXnzp3zKhMREaFSpUpp7dq1atiwodatW6egoCAnkJKkO++8U0FBQVq7du1lh1I87gc+A7gR8bkG4LaWP+xzZT0fly7kynoAXD3OQwBIUo4cOf61zDUNpcxMTzzxhGrWrKlSpUpJkqKioiRJoaGhXmVDQ0O1f/9+p0ymTJku2oDQ0FDn9VFRUQoJCblonSEhIU6ZyxEcHHzZZXFj4jOAGxGfawA3Ko5vwPWP7ymAy3VNQ6lHH31U27dv1+rVqy+a99dmXGb2r027/lrmUuUvZzn/VA/cfPgM4EbE5xrAjYrjG3D943sK4HKleUfnKfr27atPP/1Uy5cvV758+ZzpYWFhknRRa6bo6Gin9VRYWJgSExMVExPzj2WOHDly0XqPHj16USssAAAAAAAAXF/SPJQyMz366KP66KOP9M0336hQIe/n/gsVKqSwsDAtW7bMmZaYmKiVK1eqevXqkqSKFSsqY8aMXmUOHz6sH3/80SlTrVo1xcbGauPGjU6ZDRs2KDY21ikDAAAAAACA61OaP77Xp08fvffee/rkk08UGBjotIgKCgpSQECAPB6P+vfvr9GjR6tIkSIqUqSIRo8eraxZs6pjx45O2W7dumnAgAHKlSuXcubMqYEDB6p06dLOaHwlSpRQo0aN1KNHD02dOlWS1LNnTzVr1uyyOzkHAAAAAACAb6R5KPXGG29IkurUqeM1febMmXrwwQclSU8++aTi4+PVu3dvxcTEqGrVqvryyy8VGBjolJ8wYYL8/f3Vrl07xcfHq27dupo1a5b8/PycMnPmzFG/fv2cUfpatGihKVOmpPUmAQAAAAAAII2leShlZv9axuPxaMSIERoxYsTflsmSJYsmT56syZMn/22ZnDlz6t13372aagIAAAAAAMCHrllH5wAAAAAAAMDfIZQCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4Dp/X1cAAIDrRe1V37mynpW1KriyHgAAAOB6RkspAAAAAAAAuI6WUgAAAAAA/A1aUgPXDi2lAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6/x9XQEAAAAAAICrUXvVd66sZ2WtCq6s52ZDSykAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jtH3AAAAAOASAmt2dmU9FUb3d2U9AHC9oaUUAAAAAAAAXEdLKQAAkC7UXvWdK+tZWauCK+sBAAC42dFSCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI6OzoEbDB0BAwAAAADSA1pKAQAAAAAAwHW0lAIASYE1O7uyngqj+7uynpM1mruynuA1i1xZDwAAAIAbDy2lAAAAAAAA4DpaSgEAAAA3OPqcBABcj2gpBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1/r6uAAAAAHC5TtZo7sp6gtcscmU9AADczGgpBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEdH5wAAAAAA+BgDOeBmREspAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDr/H1dAQDp08kazV1ZT/CaRa6sBwBuVIE1O7uyngqj+7uyHlzfOD8AkOJG+/3h+HZt0FIKAAAAAAAAriOUAgAAAAAAgOt4fA8AcN2j+ffVudmafwMAACB9IZS6gdxoF20AAAAAAODGRSgFAAAA+Ag3FQEANzP6lAIAAAAAAIDraCkFAAD+kxutpQd9fgEAALiDllIAAAAAAABwHS2lAAAAAADpzo3WUhe4GRFKAS7hRxMAAAAAgP/D43sAAAAAAABwXboPpV5//XUVKlRIWbJkUcWKFfXtt9/6ukoAAAAAAAD4F+k6lHr//ffVv39/DRs2TN9//73uuusuNW7cWAcOHPB11QAAAAAAAPAP0nWfUuPHj1e3bt3UvXt3SdLEiRP1xRdf6I033tCLL774r683MyUnJ1/raromW5bMrqwni8eV1chc2p6kpCRX1sP+uTrsn6vD/rk67J+rw/65Ouyfq8P+uTrsn6vD/rk67J+rw/65Ouyf65fH43H++9syZmYu1inNJCYmKmvWrPrwww/VqlUrZ/pjjz2mrVu3auXKlf+6jOTkZP3222/XsJYAAAAAAAA3p4IFCypDhr9/SC/dtpQ6duyYkpKSFBoa6jU9NDRUUVFRl7UMj8ejggULXoPaAQAAAAAA3Nz+qZWUlI5DqRR/3UAz+9eNTv3ayy0LAAAAAACAtJNuOzrPnTu3/Pz8LmoVFR0dfVHrKQAAAAAAAFxf0m0olSlTJlWsWFHLli3zmr5s2TJVr17dR7UCAAAAAADA5UjXj+898cQTioyMVKVKlVStWjVNmzZNBw4c0MMPP+zrqgEAAAAAAOAfpOtQqn379jp+/Liee+45HT58WKVKldKSJUtUoEABX1cNAAAAAAAA/8BjZubrSgAAAAAAAODmkm77lAIAAAAAAED6RSgFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRSAq8IYCQAAAACA/4JQCteFQ4cO6bfffvN1NXAF9uzZ4+sqALhMhMh/79ixY7w/6czZs2d9XQUAAK7I9u3bderUKV9X47pEKAWfi4qKUpUqVbR3715fVwWXadmyZSpRooQ++OADX1cFwN9ITk6WJCUmJsrj8UiSDhw4oPj4eF9W67ry22+/qWrVqvrpp598XRVcpsjISLVs2VJxcXG+rgp8hBAZQHrz6aefqn79+vrggw90+vRpX1fnukMoBZ8zM/n7+6tw4cK+rgou02233aZHHnlEjzzyiD788ENfVwfXUMrJ/7Fjx3T48GH9+eefPq4RLleGDBl08OBB9erVSydPntQnn3yiypUrKyoqytdVu278/PPPSkhIUIkSJbjQTSe6deumTZs26eGHHyaYugmkfC8PHDigQ4cO6fjx4/J4PE7ojrTxT+8nx8ZrIykpyddVgItatGihu+++W+PHj9cHH3xAi6m/IJSCT5mZjh07prNnzypz5sy+rg4uU+HChTV8+HB169ZN3bt312effebrKuEaMDN5PB59+umnatWqlSpWrKgHH3xQkyZN8nXVcJnWrFmjXbt2qVmzZmrfvr0mTJigQoUK+bpa142TJ08qY8aMypAhg9OaDNevpKQk1alTR4sXL9bSpUvVp08fnTx50tfVwjXk8Xi0cOFCVa9eXXXr1lWVKlW0YcMGZcjAJUxaMTPn/Zw9e7aeffZZjR8/Xhs2bJB0YR8QTKWNX375RUOGDJEk+fn5EUzdJM6dOydJmjdvnsqWLatXX31VH374IS2mUuGIDp+Ijo6WdOGHLiYmRmfOnOEHL51I+QHdv3+/cufOLT8/P7Vr106ffPKJj2uGtObxeLR48WJ16NBBLVq00Ny5cxUaGqrRo0frueee83X1cBnuv/9+3X333Vq7dq3KlCmjOnXqSPrnu+I3utSPL/r5+SlDhgw6f/68zp8/78Na4d8kJSXJz89P0oVWgAMGDNC7776rIUOG0ILzBpRyTvjbb7+pd+/eeuqppzRq1CjVqFFDtWvX5mZYGkm5+SRJw4YN0yOPPKJNmzbp5ZdfVu/evTVs2DBJBFNpwcy0du1ajR07Vv3795dEMHWz8Pf3l3ShT6nGjRvrt99+0+jRozV//nydOXPGx7W7PhBKwXUnT57Ufffdp06dOkmS8uTJoxw5cih79uySLlwscYC+fvn5+emjjz5SgwYNFBsbqwceeEBly5ZVZGSkFixY4OvqIQ3t379fzz//vMaOHatBgwapXLly+vTTT1WgQAG9/fbbBFPXuXPnzsnMFBoaqscee0xBQUHq16+fdu3apQwZMtyUwVRUVJRKlSqlpUuXSrrQ31bWrFmdE8bUF11cgF1fUgKpwYMHq3379jpx4oTq16+vt99+W4888giP8t1gPB6Pli9frk2bNumhhx5Snz591LZtW02bNk3du3dX27ZttXjxYl9XM11LHUjt2rVL3377rb766istWbJEO3bsULNmzbRs2TKNHj1akmhN+h95PB61aNFCM2bM0Hvvvae+fftKunQwdTP+Pt/IPB6PFi1apAoVKui3337TI488otDQUA0bNkwffPABwZQkGeCyEydO2KhRo6xcuXLWt29f++abb6x69er266+/mpnZuXPn7MyZM075ffv2+aimuJTY2FirWbOmPf300860HTt22MMPP2yBgYH2ySefmJlZcnKyr6qIK5SUlHTJ6YmJifbss8/azz//bH/88YcVLVrUevfubYcPH7YmTZrYLbfcYk8++aTLtcWlpHzfzp075/w7MTHRq8xbb71ltWvXtjZt2tiuXbuc6T/88IPFx8e7V1kfSkpKsubNm1vu3Lnt66+/tgkTJli1atUuKpfyHp44ccLtKuIfrFmzxoKDg2358uVmduEz/vnnn9stt9xinTp1spMnT/q2gkgzCQkJ1rJlS/N4PNa4cWOvefHx8da7d28LDAy0jz76yEc1TL+++uorr9+H0aNHW506daxBgwYWExPjTD9y5Ij17dvXateubX/++acPanpjiomJsWnTplmePHns0UcfdaannIslJiZanz59vM6zkX4lJydbXFycVa9e3QYOHOg1r02bNhYeHm4zZ860U6dO+aiG1wdCKbjm0KFDTvB0/PhxGz9+vFWqVMmKFCliHo/HihQpYgUKFLD8+fNbRESEFSxY0CIiIqx48eJcGFxHTpw4Yfnz57eXX37Za/qPP/5o5cuXt8DAQPvwww99VDtcrd9//91Wr15tZmZz5861sWPHmtn/BRvPPvustW7d2vkuPv3001asWDGrXbu2HTlyxDeVhmPt2rVef3/++efWsmVL69y5s02ePNmZ/tZbb9ndd99trVq1sg0bNtiIESMsIiLihj/Gpg7dkpOTrVOnTpYnTx5r3769hYSEWOXKla1GjRrWuHFjq1mzplWpUsVq1KhhrVq1stOnT/uw5kht2bJlljdvXueYkxIefvjhh5YhQwbr16/fDf9Zvpns37/fHnroIcuePbtt3rzZzP5vn589e9Y6d+5sYWFhN/3F3JUYNGiQtW3b1uvG4ZIlS8zj8VhAQIBt2LDBq/x3331nHo/HVq5c6XZVbwgHDhyw999/315//XX75Zdf7Pz582ZmdvLkyUsGU6dPn7ZHH33UAgICbMuWLb6qNtJYUlKSVa9e3UaOHGlmF45fKapUqWJ33HGHvfbaazf1sczf1y21cHOIi4tTnz59dPz4cc2aNUu33XabOnfuLDPT22+/rTx58uiZZ55RcnKyzp07pyxZsighIUEZMmRQjRo1lCNHDl9vAv6/HDly6O6779amTZt05MgRhYaGSpLuuOMOVahQQQcOHNDAgQPVoEEDBQYG0tw7HYiNjVXXrl0VEBCg5cuXa/jw4ZoxY4YkKWPGjJKkn376SYmJic53MS4uTl27dlXPnj0VHBzsq6pD0rp161SjRg2NGjVKQ4cO1fLly3Xvvffq/vvv1/HjxzVy5Ejt3r1bkydPVteuXZUxY0a9/fbbatWqlTJlyqSFCxfe0MfYn3/+WaNHj1bz5s3VokUL+fv7a/bs2Xr44Yc1Y8YM1ahRQ9WrV1diYqICAwOVkJAgM1P27NnVqlUrZc2a1debcFOyVI8WpShUqJCOHTum5cuXq3379s78cuXKKSQkRJMnT1ZwcLBGjhzpiyrjP0jZ33/++afOnj2r3Llz69Zbb9X48eN19OhR1a9fXytWrFCZMmVkZsqcObOmTZummJgYZcuWzdfVTzdeeuklJSUlyePxaMeOHSpYsKAaN26sVatW6e6779bEiRM1evRoFSxYUJIUGBio22+/3XnEGZdv+/btatmypXLnzq3NmzeraNGievHFF9WqVSsFBQWpffv2kuT02zV58mQNGzZM//vf/7R69WpVqFDBl9VHGrH/P5BAcHCwc46dOXNmJSQkKHPmzCpfvrxmz56tuXPnOl3b3JR8mYjh5vK///3P6tevb02bNrW9e/ea2YUWU+PGjbMKFSpc1KQRvpdyJy02NtarSffUqVOtRIkS9vLLL3u1knnkkUfstddes+PHj7tdVVyFFStWOHftVq1aZSVKlDCPx2PDhg1zyqTMT/mePvbYY9a7d2/LkSOH/fLLLz6pN7wdOXLEXnjhBcuZM6eNGTPGFixYYJMmTTKzCy0bZ82aZZkzZ7Y+ffo4r9m9e7etW7fODh486Ktqu2Lbtm2WN29e69Chg82cOdNrXkJCgvXq1cuCgoJs48aNvqkgLin1I8VxcXFe03v06GF33nmnLV682Jl+9OhR69Gjh61du9Y5ZiH9SDnX+OSTT6xu3bqWL18+u+++++yFF14wM7Njx45Zy5YtLWfOnLZ9+3av1+DynTt3zvn3+++/b/ny5bM5c+Y4rUGXLVtm/v7+1rRpU5s9e7atWLHCmjZtaqVLl+Z7dYW2bdtmAQEB9swzz1h0dLQdPHjQQkJCrGXLll7lUlpMRUREWHh4uGXNmpUWUulcyrHp8OHDdvLkSYuNjTWzC5+JHDly2EMPPeRV/oknnrCPP/7Yfv/9d9frej0hlMI1l/rE4d1337W7777bK5g6duyYjR8/3kqXLm2PPPLIJV8H3/n444+tYsWKVqZMGevSpYvTtPTpp5+2EiVKWIsWLeyZZ56xBx980EJCQpz9iuvb8uXLrWjRojZo0CA7d+6cxcfHW8mSJa1w4cLWoUMHW7FihVf5PXv22IABA6xSpUpWs2ZN+/77731TcVxSdHS0vfjii5YjRw7Lly+fVwBz5swZJ5jq16+f7yrpsr1791revHltyJAhF/WvlVrbtm0tKCjIvvrqK6/p/Ab5Rur3/cUXX7RmzZpZ3bp17YsvvrDExETbvn27tW3b1ooVK2YjR460d955x+rVq2fVq1f36lsN6cuSJUssICDAXnnlFVu/fr09/PDDlilTJvviiy/MzOyPP/6w1q1bm8fjsR9//NHHtU1//no8O3/+vDVu3NgqVKhg7733nhNMffXVV5YxY0bzeDzWtWtXe+ihh5xAimDq8vzyyy/m8Xhs0KBBZvZ/733NmjXt1ltv9brJa3bhBv2kSZOsTJkynFvdID766CMrW7asFSpUyLp37+6cU8+bN8+Cg4OtZs2a1r9/f+vUqZNlyZLF6d7mZkYohWsmKirKDh06ZAkJCV7T3333XatVq5Y1bdrUfv75ZzO7cECeOHGi5cuXz5544glfVBeXsH79esuRI4cNGTLEXnzxRcuXL59Vq1bNaV0xe/Zs69mzp5UuXdqaNGnCj2k6cvLkSRs0aJBVr17daRkVFxdny5cvtzvvvNPatGlzUTCVkJBg586do8PT60jqFiUnTpywsWPHWmBgoA0YMMCr3JkzZ2z27Nnm8Xhs8ODBblfTJ5599lm79957vfpuiIqKsi1bttjcuXO9+k6JjIyk35TrQOrP84QJEywoKMhGjBhh1apVs8KFC9srr7xiCQkJtmfPHhs5cqSFhIRYhQoVrF69ek7wSJiYviQnJ9uZM2esQ4cO9vzzz5vZhWNZRETERSF6VFSUderUyWugBlyZ4cOHOy3QUgZ+KFu2rFcwtXr1asuYMaP17dvXab3xdwOi4GKbN2+2DBkyWLdu3ZwbuWPGjDGPx2OhoaHWqVMna926tU2ePNmOHTtmiYmJlpycfFFYhfTpp59+sty5c9u4cePsueeesyZNmli1atVs2bJlZnZhcKg2bdpY48aNrUmTJrZt2zYf1/j6QCiFayLlLkFoaKhVqFDBXnvtNa+m9osXL7Z77rnHGjdubHv27DGzC83vX3vtNR4Juk789NNP9tFHHzkniWYX7lQWLlzYqlatagcOHHCmx8XF3TSjd90IUk4u//zzT3vqqaesYsWKNnToUKd1weeff27VqlWztm3bOqNcPf300/bKK6/4qsq4hJSL7/Xr19tnn31mp06dshMnTtjo0aMtS5Ys9tJLL3mVP3PmjM2dO9d27tzpi+q6Kikpydq1a2edOnVypi1YsMDatWtnOXLksCxZsljx4sVtypQpZnbhvezZsycXu9eJHTt2WM+ePZ2TeDOzxx9/3EqUKGFjx451gvHY2Fg7efIkLaRuALVq1bJPP/3UDhw4YHnz5rWePXs68z7++GNnIA5a61y+SZMm2f79+52/ExMTrX79+rZkyRJnWupgau7cuU4w9cUXX5i/v7/17NnT63wPfy91IP7tt9/aLbfcYr169bLnnnvOcubMaR9//LFt2rTJtmzZYpGRkVa1alXzeDz24IMPet08Qfq1fft2e/755726wVizZo21a9fOqlSp4nUtbGbs91QIpXBNbNy40bJnz26FCxe2Bg0aWO3atS1nzpxWuXJl69atm61bt85GjBhhbdq0sZYtWzrNFrkTc32IjY214OBg83g89thjj3nNSwmm7rrrLi7g0rGUE/vY2FgbPHiwValSxQYPHuwVTNWqVcsqVapkDRs2NH9/f/rduY6knPzOnz/fcuTIYc8995zzfTx69Ki9+OKLFhQUdFEwdaOLi4tzPsPjxo2zTJky2eTJk+3hhx+20NBQe/jhh+2LL76wo0ePWrt27axhw4Z28uRJH9caqc2fP99CQkKsYMGC9u2333rNe/zxx+2OO+6wsWPH2uHDh73mcf6QvqQcw86fP29xcXFWt25d69u3r912223WvXt3Z/6xY8esc+fONn36dPbxFdi5c6d5PB7r0qWLHTp0yJlerlw5W7hwoZn9X4iblJRkLVq0sPLly9tbb71lZ86cMbMLj/l7PB7r27cvYeC/2Ldvn40fP96rn8ZVq1ZZnjx5zOPx2KeffupVPjk52eLj423GjBnOUyNI344cOWKNGjWyXLlyWa9evbzmpQRTNWrUsPnz5/uohtc3Qimkqbi4OOdxvZUrV1rBggWtb9++tmLFCtu/f7+NHTvW7rnnHitRooSFhYVZrly5zOPxWKdOnezcuXM0u7+ObNy40YoUKWI1a9a0o0ePmpl3533BwcHWqFGjf+yrBdef1N+xlBP82NhYGzp0qFWuXNkrmPr2229t1KhR1rNnT9uxY4dP6ou/t3btWgsODrYZM2Zc1FIxpY+pXLly2fDhw31UQ3cdPHjQ6tata3PmzLHExEQ7ceKEPfbYY1a8eHErU6aMffLJJxYVFeWUHzNmjJUsWdLphBTXjy5dulimTJls9OjRFw2RPXDgQMuTJ4+9++67Pqod/ouU36ATJ06YmTnnEB999JH5+/tblSpVvMoPGzbMbr/9dlrRX4GU93j16tWWJUsW69y5s/MYXpkyZbwCkpSwKSkpyWrWrGmRkZGWlJTkLGPVqlX2008/ubwF6cv27dutaNGi1qBBA/vwww+95q1bt85y5sxpXbp0cVp4pn5/cWP56KOPrFatWlawYEFbv36917y1a9da48aNrV69ehf9roFQCmko9QVBSnPEL7/80goWLGj333+/152A77//3hYtWmQdOnSwu+66i04rfezvfhw3bdpkuXLlsjZt2jitCVLKRkVFcXcnnUnZd8uXL7chQ4ZY+/btbebMmXbmzBmLj4+3oUOHWtWqVb2CqeTkZO5OX6dGjx5tDRo08LqDnfrfJ0+etKefftpuvfVWO3bs2A1/EhwfH2+VK1e2qlWr2sKFC5334ujRo5c8Aezdu7fdf//9PHrsQ/90bOnQoYMVL17cZs+e7TxSlGLSpEm03EjHPvnkE6tcubLVqlXLhg4dan/88YeZmY0dO9Y8Ho9FRkZa9+7drXPnzhYUFGTfffedj2ucvqT+3V61apVlypTJOnToYLt377a77rrL1q1bZ2YXvn9nz5618+fPe4VTKf/nt//f7dy503LlymVPPvmkHTt27JJlVq1aZbfccot17NjRazRRpG9/d0716aefWt26da1p06YXBVMbNmzwarmI/+MxMxOQBs6ePatatWrJz89PAwcOVLNmzZQ5c2Z9/fXX6t69u6pXr67HH39clSpVcl6TkJAgScqcObOvqn3TMzN5PB5t3LhRP/30k6Kjo9W1a1flzp1bkrRx40Y1btxYd999t9566y0FBQU5r0H6s3DhQnXt2lXNmjVTeHi4JkyYoPbt22vq1KlKTk7Wiy++qJUrV6pixYqaMGGC/Pz8fF1l/EVycrIyZMigbt266dChQ/riiy+U8lOe8r3ctm2bihQponPnzun8+fPKlSuXL6t8zSUlJcnPz0+nTp1S69atdfz4cQ0dOlTNmzdXpkyZnPdMkk6fPq0XXnhBM2bM0PLly3XHHXf4uPY3p9T7ZPXq1YqOjlahQoVUoEAB5cyZU5LUrl07/fjjj3rqqafUpk0bZc2a1WsZKfsd6ce2bdt0zz336PHHH9fevXu1b98+ZcmSRbNmzVJ4eLgWLVqkt99+WwkJCSpatKi6d++uEiVK+Lra6Ubq71V8fLwCAgL07bffqm7dumrYsKE2b96smJgYlS9fXvHx8frzzz+VKVMmNW7cWBMmTLhoGfh7CQkJeuCBB5QjRw5NmzbNmX7u3DlFR0crOTlZ2bJlU86cObVq1Sq1bt1a1atX19y5c5UtWzYf1hz/Vcp10IYNG7RmzRp5PB6VKVNGdevWlSQtWLBA06ZNk7+/v5599llVqVLFxzVOB3yZiOHGkXKHJS4uzurXr28VK1a0Dz/80Gkx9dVXX1nBggWtU6dOjNB2HUlJ+RcsWGAhISFWrVo1K126tEVERNiSJUucfgU2bNhgoaGhVr9+fR51Scf27dtnxYsXtzfffNOZli1bNhs8eLBX5+f9+vWzevXqWXR0tK+qisswZcoUCwgIsC1btpjZ/32fY2NjbeDAgV6dRN/IUrY7dYehBQoUsGrVqtmCBQu8Or+eMGGCtW/f3goUKEDrCx9KfYd5yJAhljdvXitevLiFhoZav379bPPmzc78du3aWenSpe2NN96gU9h0KvX+Xr16tdcIoPPnz7fatWtb3bp1nQ61U1rG0VLnyqR+v2bMmGETJkxwRnRbs2aNZc2a1YoWLWqvvPKKffHFF/bZZ5/ZO++8YwsXLmSQgCsUHx9v586ds8qVK9usWbOc6Z9//rn17t3bAgMDLSwszFq2bOk8/vjNN99YgQIFnEcpkT6lvnbKkSOHNWnSxCpVqmTVqlXz6sdzwYIF1qRJE6tRo4bXbxoujVAK/9k/XRD8NZgqUqSItWjRwrZv3+6TuuL/pJy8rFy50vLkyWNvvfWWmV3oi8bj8ditt95q8+fPdx5tWbNmjRUuXNirE0ekL3v37nX66/j5558tb9681qNHD2d+SmD8559/EkhdR1KOsXv37rX169fb2rVrLSEhweLj461Ro0ZWunRp54TnzJkz9vTTT1tERITt27fPh7W+9vbs2WMbNmwwM/Pq227SpEkWHBxsZcuWtYoVK9qCBQssMTHRjh8/buPGjbMnnniCR499KPXF75gxYyxv3ry2cuVKMzMbMGCABQYG2gMPPOA1sELdunWtU6dON/wjqDei1H0Tvfnmm9a/f3/r3bu3V5mUYKp+/fpeo8Wxv6/OoEGDLCIiwt566y377bffnOlr1qyxTJkyWffu3S/5G08wdXkOHTpkJUuWtP3791ujRo2sbt26FhUVZSNHjrQiRYrYfffdZ7NmzbI33njDKlasaC+88IJz8z7lZi/St2+//dby5s3r3OTdsGGDBQUFWd68eb1G3nvvvfesdevWjGB5GQilcNUu94Jg/vz5TjC1ZMkSK1u2LHcJfOSdd96xt99+2/n7zJkzNn78eHv66afN7EJLmgIFCli/fv2sbdu2ljt3blu4cKFz15K+V65//3QSv3btWgsLC7MVK1bYbbfdZj169HBOlDZv3mytWrWyH374wa2q4jKkviNXvHhxK1KkiFWtWtUqVKhgJ06csPXr11u7du0sU6ZMduedd1rVqlUtJCTkpmgF1LNnT/N4PF4jtL344ouWI0cOW7dunSUnJ1v9+vWtUqVK9sknnzhBPK1tfGP8+PHOv8+fP2+///67tW7d2mbPnm1mF/oZCgoKsgcffNDy589v7du3t02bNjmvSdl/BBXpz8KFCy0gIMCKFi1q4eHhFh4e7gygkuKjjz6ycuXK2b333kt/Yf/Ba6+9ZmFhYc75eYqUVu4rVqywgIAAa9q0qdfAD7h8v//+uxUsWNAiIyNt8eLFVqRIEQsPD7fg4GCbNm2a102Pe+65x1q3bu3D2uK/GjdunH355Zde01566SXr1q2bmZn99ttvVrhwYevYsaP179/f8uTJ49ViKqWDe/wzQilctcu9IEi5U50SaPy1w1K4Y8eOHdakSROnBVuKdevW2fbt2y0uLs7uuusu6969u5ldCKiyZMli2bJlu2goW1yfUi7ajh8/bps2bbJJkybZrFmz7JdffnFO8lu1amX+/v523333eb126NChVq1aNU5SfSxlH6YOgFeuXGnZs2e3qVOnWkJCgi1atMg8Ho+99tprZnZhFKv33nvPhg8fblOmTLnhR6nat2+fnTx50uLj4y0yMtKyZctmP//8s02ePNly5MhhX3zxhVP2zJkz1rhxYytcuLAtWrTIh7W+ua1evdr8/f2tY8eOzrRTp07Z119/bcePH7fNmzdb/vz5bdKkSWZ24XiUI0cOa968uVfLah7nSj9SwsPTp0/bE088YTNnzrT4+Hj74osvrGrVqlayZMmLWut8+umnXi178O/++p3o2bOnMxz97t27bdasWVajRg0rX768rVq1yszMli1bZrVr1+b7dBVSOpEfN26cVaxY0RYuXGhHjx611atXe32ek5KSLDEx0e6//34bPnw4YXo6lZycbE2aNLHAwECnRa/ZhXOL9evXW3x8vN1111320EMPmZnZrl27LHfu3JY5c2Z79tlnnWXg3xFK4YpdzQXBbbfdZp988omZ8eX0hb59+9orr7xiq1evtg4dOljNmjVt3rx5XmW+++47K1eunPPIxA8//GAPPfSQde7c2Xbu3OmLauMKpJxc/vTTT1avXj2rVKmS5cqVyzJnzmy33XabjRw50s6fP29Lly51Rj1avXq1ffHFFzZgwAC75ZZbbNu2bT7eCphdeDSgSJEizt3Wl19+2fr06WNmZgcOHLBbb73V+dvs5nrkIjEx0erUqWMREREWExNjZ8+etfbt21uGDBksS5YsXq0DUj8u0apVK/v11199Ve2b3unTp23evHlWoEABu//++53pKXeQn332WWvVqpXTiu2FF16wGjVqWJ8+fbhwTsfWr19v4eHhVqdOHWfEN7MLIWXNmjWtZMmSF7WYwtUZP368ffHFFzZ8+HArW7asPf3001atWjW799577dFHH7W2bdtaeHi4nThxwut1fL8uz/Hjx73+PnnypJUrV84aNGhwyfLnz5+3p59+2vLly2d79uxxo4q4Rs6fP2+dOnWyHDly2IoVK7zmff/991a6dGnn5snPP/9sLVq0sJdeeumG70IhrRFK4YpwQZD+vPvuu5Y5c2anM+QdO3bYfffdd1Ew9cknn1j27Nlt/fr1dvr0aRs+fLi1adOGZvTpQMpJ5datWy1Xrlz22GOP2bp16+zEiRP2888/W4MGDSxv3rz21FNPmdmFu9EtW7a0TJkyWalSpaxmzZq2detWX24CUtm5c6cVLlzYJk6caGZmDz30kPXo0cN+//13y5cvn/Xs2dMJ9z/88EN75ZVXbqoLix9++MEqVapkpUqVshMnTtjp06etT58+ljFjRudxr5T352YK7K53Z86csblz5zqP5qX2xBNPWN26dZ1WMq1atbL33nvP2Y830+f7RvLzzz9bvXr1LEOGDF6tDJKTk23NmjVWp04dCw8Pt2PHjvmwlulT6u/E1KlTLSIiwrZv324rV660Pn36WNGiRe3ll192bjZ98MEHVq9ePTt16pSvqpxu/fLLL5YzZ05r3ry5HT582HkPt2zZYgEBAV6PapmZzZ4923r37m158uS5KR6lvxmcP3/e7r///ouCqW3btlmePHns9ddfN7MLrXybN29+UYiJf0cohSvGBUH6MmzYMLvnnnvM7EKHe99++6399NNP1q5dO7vrrrvs/fffd8rWqVPHMmfObGXKlLHg4GB+TNOBlO/aDz/8YAEBATZy5MiLysTExFiHDh0sNDTUFi5c6EzftWuXnThxwk6ePOlWdXGZ2rZtaxUrVjQzs7feesvuvvtuy5s3r9OHQXJysiUmJlrv3r3tscceuyn6e0sdUOzcudOqVatmlSpVspiYGDtz5ozdf//9li1bNluzZo1TDr7115bRp06dsrlz51q+fPm8WkzNnDnTChcubJUrV7aSJUta8eLFnfMHWlenX8nJybZ3716rXbu23XrrrXbo0CGveStWrLDGjRvb3r17fVjL9O27776zvn37evUXev78ea+RkpOSkqxx48bWpk0bvk9XYc+ePRYcHGwej8caNGhgr7zyihP2DRo0yMqXL+/87mzevNkefPBBu++++5xR93BjSEpKsrZt23oFU0ePHrVevXpZWFiYFStWzHLkyMG101UilMJl44IgfVq+fLl5PB574IEHzOPx2P/+9z8zu/DDmRJMzZkzxyk/adIkmz59Os2N05Ho6GgrVKiQVa1a1ZmW8v1L+X9cXJwVKlTIWrRo4ZM64vKk7K+Uk+DZs2fb0aNHrUSJEpYzZ07n+BoXF2dDhw618PDwG/7x2tSBW+pBNQYMGGAej8fKly9vJ06csLNnz1qHDh0sODj4oib2cF/qc4Bz585ZQkKCmXkHU+3atXPKvP322zZq1Ch75plnnECKlrrpR8o54u7du239+vW2bt0653HMAwcOWPXq1a1gwYJewZQZo5H9F6tWrbKAgAALDAy0mTNnXjQ/Li7OFi9ebPXq1bMyZco4x0+CqX/315vrr776qj3++OP29NNP28MPP2zly5e3RYsW2YYNG+yOO+6w4cOHm9mFR5WjoqK8QkGkPyn7/+jRo/bHH394PWbcpk0by5Ejhy1fvtzMzPbv32+LFy+2N95444bv0/NaIpTCv+KCIP1ZvHix199dunQxj8djbdq08ZqeOpiaO3eum1VEGjp//rw9+OCDVqNGDRs7dqzFxcWZ2f/9qKZcDI4bN85uv/12O3LkCCel14G/jiaW+u+TJ09aixYtrG3btmZ24fGBggULWoUKFaxIkSLWqFEjCw8Pv+HvyB06dMjatm1r33zzjdf0MWPGWK5cuWzGjBlWsWJFp+Xu2bNnrWnTppY3b14udq8TL730krVp08buuecep6Pls2fP2rx58y4KplKjpXX6kXIMmz9/voWFhVnx4sXN4/FY06ZN7YMPPjCzC8FUjRo1rEiRIgyPfpUu9bs9duxYy5o1qz3wwAMXva/btm2z/v3724MPPuh8n/heXZ6U86gUK1assEaNGtmSJUssPj7epkyZYsHBwfbyyy9bw4YNLTg42L7//nvfVBZpKuV79vHHH1utWrXs1ltvtaZNm9qAAQOcMvfffz/Xu2mMUAr/iAuC9GfTpk2WP39+ZySIU6dOWfXq1a1jx47m5+dnI0aM8Cq/efNm69Chg5UuXdo++ugjX1QZ/0FKkHHu3Dl7+OGHrXLlyjZ27FhnlMvUrRX69Onj1ZoKvrd371577rnnvIaQTvHRRx+Zx+Oxr776yszM/vjjD5s7d64NHTrU5syZc1P00/fLL79YtWrVrEmTJrZ69WozuzDKa86cOW3ZsmVmdqFz//Lly1u5cuXs+PHjlpCQcFFrDLgn9TFn9OjRlidPHnvsscesYcOGlilTJps+fbqZXQim3n//fStQoIDVq1fPV9VFGlm/fr0FBQXZ1KlT7eDBg7ZhwwZr3ry53XPPPc65xa+//mqlS5e2smXL0gruCqX+XiUkJHjdMH7hhRcsPDzcnn/+efvjjz+8Xnf48GHnIpv3/PIcPnzY8ufPb0OHDrX9+/c7059//nnLnTu38/uyevVq69GjhzVt2tQ8Ho81adLEzp8/z02/G8Dnn39uWbJksYkTJ9qWLVvs2WefNY/H4wzadf78eevYsaN5PB7n3AT/DaEU/hEXBOlPbGysTZw40SpWrGg9evRwpp07d84mT55sfn5+zjClKdavX28PPfQQQzGnU38XTKV0xpnSv0THjh3t2WefteTkZE6arhNPPPGE5cuXzwICAmzAgAEXtXJs1KiRRUZG3tSPAuzZs8caNWpk9957r/Xo0cPy5MnjNcqr2YXO4QsWLGjVq1fn0fHrxP79++3JJ5/0upP8zDPPmL+/v02bNs3MLgRTM2fOtJYtW7Lf0rnJkydb1apVvfbjjz/+aA0bNrRWrVqZ2YUWCPv27eNc4wqlfk9fffVVa9mypTVo0MA5xzMzGzVqlOXLl89GjRplhw8fvmgZ/OZfvpiYGBs5cqQFBwdb3bp1bcKECc68Ll26WJcuXZy+OI8cOWIrV660Zs2aMYLxDSClv87u3bs7fbRGR0dbvnz5rG/fvheV79q1q+3atcvtat6QCKXwr7ggSD9STjri4uJs0qRJVqpUKa+TlpiYmL8NplL6fkD6lHIHNHUwNWbMGCeYGjZsmBUuXJgOZa9Dv//+u02cONEqVKhgISEhdt9999knn3xiycnJ9uabb1r+/PktKirKzG7eO927d++2+vXrW0BAgL3yyivO9NS/N7t3774pWo9dj0aMGOF8Rs0ujPDp8Xgsf/78XqOumV0IpjJmzOi0mErdLQDnD+lHyvnGd999ZydOnLApU6ZY6dKlnQA95Vi1YsUK83g8XLCngSFDhlhYWJiNHTvW5s6dax6Px5o1a+Z8h0aNGmUFChSwwYMHM6JhGkgZrfr222+3OnXq2K5du+yDDz6wLl26ODfmUxD63TiSk5OtVq1aNnPmTPvjjz8sb968XtdSH3zwgX3++ec+rOGNiVAKl4ULgvQjZZ/8+eefNmnSJCtTpox17drVmR8TE2NTpkyxLFmy2KBBg3xVTVwDlwqmJk+ebE8++aRly5aN/g6uc3v37rVFixZZxYoVrXDhwlaxYkWbP3++ZcmSxfr37+/r6vnc3r17rUGDBta4cWP79ttvnekEGb6VMiLvX/uq6devn3k8Hps1a5aZeV+0jRgxwutRCKRPixYtMo/HYxs3brSvvvrKa3+n+PHHH61kyZI3/IAM19oPP/xgJUuWdDpXXrJkiWXPnt3efPNNr3IDBgywli1bEpKkkePHj9uiRYusfPnyVrhwYRsyZIhVrFjRevbs6euq4Ro5ffq0PfDAA/bwww9boUKFLrq537VrV5s0adJNe5PwWiGUwmXjguD6lvoEJOXiIC4uzqZMmWKlSpXyCqZOnjxpL7/8suXKlcuOHj3KyUs6l3r/pQ6m+vTpYzlz5rRs2bLZ5s2bfVU9/EXK/vrpp59sxYoVtmvXLq/jaGJion399dfWoUMHK1CggHk8HrvzzjudVm83s5SWuw0bNqQfh+tAym9Nymd64cKFtm/fPmd+t27dLHv27LZ06dKLXjtjxgw6XU7HYmJibNKkSV43KkeOHGmZMmWy//3vf3b48GE7c+aMPfXUU84AG7h8fx1B9+uvv7bixYubmdknn3ziFUjFxsZ6jaKc8n3k3C5t9e/f3xo1amR58+Y1j8fjtPZE+pXyHTl27JgzmrzZhT6lPB6PlStXznlUMzk52YYOHWqFChXiqYNrgFAKV4QLgutTykF12bJl1r9/f6tXr569+eab9uuvv9r58+dtypQpVrZs2YuCqRMnTviqyrgKKfv51KlTduLECa8gI/Udm9TB1NChQ7lDfR368MMPLTw83HLlymXly5e3oUOHXvICffXq1TZu3Dj2YSp79uyxZs2a2Z133mnr1q3zdXVuWm3btnVGfzx//rwdOnTIPB6PtW/f3msUsIceeuhvgykzRgNLL1IHHNu3bzd/f38rWrSovf/++870+Ph4e/75583f399uu+02K1u2rIWEhNzwo4SmtZiYGOffmzZtMrML3WTUrFnTXnjhBQsMDLSpU6c6ZTZu3GhNmjTxep8JpNJO6vdy+fLlNnjwYAsMDOR3OZ1L2a+ffvqpValSxcqUKWMFCxa0N998006dOmWzZ8+2DBky2H333Wft2rWzjh07WnBwMMeza4RQCleMC4Lr08KFCy0wMNAefvhhe+aZZyxv3rzWqFEjO3LkiPMoX8WKFZ0h5pG+pP7xbNKkid16663WpUsXrw44U6NZ8fUnZR8eOnTIatSoYTNmzLDt27fbkCFDrEqVKvbII484F+gJCQkXvQ7/Z+fOnXbfffd5jYwEd3Xq1Mn5nKYE5KtXr7Zs2bJZx44dLwqmgoOD7eOPP/ZJXXF1UvZr6t+TU6dO2cmTJ61nz57m8Xjstdde8yprZrZhwwabM2eOzZ4926vlHP7dp59+aj169LBjx45Z3759zd/f344fP26HDh2ye+65x/z8/GzIkCFO+fj4eGvatKm1adOGJxeuob/+Dt/Mg4/cSJYuXWrZsmWzcePG2f79+613797m7+/vjHr8xRdfWJ8+faxly5Y2fPhwgshriFAKV4ULguvLwYMHrWzZsvbGG2+Y2YUfz8DAQHvyySedH9LTp0/b2LFjrWbNmhcNGYz04bPPPrOAgAAbM2aMLVu2zB588EHLmjWrffPNN76uGi7Tli1brFevXta5c2fncbzTp0/bmDFjrHLlyl7BFC1I/lnq4A7u+evncsqUKfb11187+2PNmjWWOXNm69ixo9c5QsuWLa1evXqu1hX/3W+//Wbjx483M7P333/fKleubHFxcXbkyBHr0aOHZcmSxfkNOn/+PCH6f/T+++9b7ty5rVy5cpYrVy7bsWOHM2/16tVWuHBha9y4sT3//PM2bdo0u/vuu61UqVJOZ+cEU8DlSUpKsgceeMDpX/fQoUNWpEiRi/oLSwnlObZdW4RSuGpcELjv7w6IBw8etHLlytnp06dtz549F40UsW7dOktKSrK4uDge2UuHkpOT7dSpU9a6dWt76aWXzOzC45fh4eH22GOP+bZyuGyJiYnWt29fCw8PtzJlynjNO3XqlI0ZM8aqVatmkZGRtHRDunHbbbdZgQIFbPXq1ZcMplK3mOJznf48+eSTVrJkSXvggQcsY8aM9tZbbznzjh07Zg899JAFBAQ4oywSily55ORkr7C3c+fO5vF4rF27dnbw4EGvst9++6317NnTChYsaA0aNLCHHnqIGxnAZfjrNVRCQoLVqFHDvvjiCzt16pRFRER4BVKzZ8+mZZSLMgi4SpkyZfJ1FW4qycnJ8ng8OnPmjI4dO6bly5fr999/V2xsrJKSkvT7779rw4YNaty4sRo3bqw333xTkrR9+3a9+uqr+v7775U9e3blyJHDx1uCK+XxeBQQEKA//vhDFStW1MGDB3XHHXeoWbNmmjhxoiRp0aJF2rhxo28rin+UMWNGDR06VJ07d1ZUVJSeeeYZZ162bNnUp08fNWzYUL///ruOHj3qw5oCl/bll19q0KBB6tWrl+bOnStJ2rt3r8LDw9WlSxdt3LhRiYmJql69ur755hstWLBAQ4YM0cGDByVJfn5+Sk5O9uUm4AqNGTNGRYoU0Zw5c9SyZUt17drVmZcrVy69/PLLat++vZo3b66vvvpKGTJwaXGl4uLi5O/vL0n6/PPPFRwcrAkTJmjdunV64YUXtGvXLkmSmalmzZp644039MMPP2jRokX63//+J39/f50/f95ZBoC/t2PHDkkXrmNvvfVWjR8/XiVLllTLli01efJkSVJ8fLwWLlyozz77TGbmy+reNPjlANKB5ORkZciQQXv27NEjjzyiu+66S02aNNEdd9yh3r17688//1RkZKTq1q2r8uXLa/r06c6J4bx58/TLL78oIiLCx1uBK5HyI5hyARcbGyt/f3+tWrVKd999txo3bqypU6dKko4cOaL58+fr559/5sfzOpKyL37//Xf9/vvv+u233xQWFqannnpKkZGRWrZsmZ5//nmnfLZs2TRo0CB98MEHCgsL81W1gUuaPn26OnXqpL1792rTpk3q3Lmzpk2bJklat26dcufOrQcffNArmPr666/10Ucf6bnnnnOWQ2iR/gQGBqpBgwY6ePCgXnzxRcXFxUm6cIzLlSuXXnnlFdWvX1+dO3dWfHy8j2ubvqxcuVLFixfX6dOnNWDAAD355JN66qmn9Nhjj+mVV17RZ599pldffVV79uyRx+ORJC1fvlzZs2d3bg6bGYEU8DfswpNh8ng8Wrx4sUqXLq3HHntMknTfffdp3759uuWWWzR58mTnOzVq1Cht27ZNrVu3dr53uLY8xhUMcF1LCaS2b9+uRo0a6d5779Wdd96pqlWratasWZo/f74yZsyojh07ateuXdq4caPeeOMNxcbGas2aNZoxY4a+/fZblS1b1tebgsuU8uP59ddfa+nSpRo5cqSyZs2qWbNmqWvXrqpVq5ZWrFjhlB82bJjmz5+vL774QgULFvRZvfF/UvbhJ5984rSIOnTokB5++GH169dPmTNn1nPPPad169apRYsWGjp0qI9rDPy9GTNmqE+fPnrvvffUpk0b/fjjj2rcuLGKFCmihQsXKigoSJJUpUoVxcTEaObMmapcubIyZ86sVatWqU6dOlqwYIFatWrl4y3B5Ug5fm3YsEHZs2fXHXfcIUnq27ev1q9fr9atW+vRRx9VYGCgJOnkyZPy9/fXn3/+yQ2wK7RlyxYNHTpU33//vc6fP69t27Ypf/78zj748MMPNXDgQNWvX1/33nuv3nzzTW3bts1pfcgFM/D3UmIOj8ejefPmKTIyUgUKFNBdd92lmTNn6syZM3r55Zf10UcfKWvWrKpUqZL++OMPrVixQl999ZXKly/v4y24ibj/xCCAy5XSN8O2bdssa9as9tRTT13UZ8DcuXOtSpUqVrVqVZsxY4Y99NBDFhQUZKVLl7Z69erZtm3bfFF1/Efz58+3nDlz2mOPPeYMCX327FkbPny4eTwe6927t/Xr18+6du1qt9xyi33//fe+rTAu8tVXX1n27Nnttddes9jYWJs4caJ5PB5buHChmZkdPXrUBg4caEWLFrWXX37Zt5UF/sby5cvN4/HYyJEjvabffvvtdscdd9iRI0e8Bs+45557LGvWrLZ161bnN6x69er26quvulpvXJ2UflcWLFhgERER9vDDDzv9giUlJVmfPn2scuXKNmrUKDt58qQ9/fTTVr16dfoZ/Q8GDBhgHo/H8uXLZ9HR0Wbm3W/rRx99ZOXLl7c77rjD7rrrLqdTcwCX5/333zePx2OLFi2yd955x8qVK+d8j86cOWOLFy+2Ll262L333msDBw60Xbt2+bjGNx9CKeA6d+DAAcudO7e1bdvWmfbXTjHffPNNy5Url02bNs3MzH7++Wc7deqU/fnnn67XF1fu7NmzZvZ/FwObNm2yHDlyOPvzr+U++OADa9KkidWrV8/69OnjNToPfOPo0aMXTevXr5/17t3bzMx+/fVXK1q0qNcABGZmR44csaFDhzJsOq5be/bssbvuustatGjhBOStW7e2rFmzWv369e3/tXefYVGc/R7Hv0tT7MaGsWBXxBIVY0VQYwwRjTGx995iib0lxK7YEsReEeyKihVbUIpRYtcHkVjQ2At2FIE9Lzi7iSd5zkmekzgYf583yuys12+ci9nZ/9z3/65du7b5vffeM/fu3dscHh5uvnfvnrlv377WpuaHDx82V6pUyRwbG2vkYcifsGvXLrOjo6N5yZIl1lVCLVJTU81Dhw41u7q6mkuVKmXOly+f+dChQwYlfTNZPustRdvw8HBzcHCw+eOPPzYXKVLEfOHCBbPZbDYnJiZa33Pr1i3zuXPnrO9RU3ORf+/XTc3Dw8PNJpPJvHTpUrPZbDYvXbrUXLx4cXNycrIWZkhHNH1PJJ27fPkyLVq0IH/+/AwdOpTatWtbXzP/9/BuAHd3d/LkyUNwcDApKSnY2toaFVn+hGXLlhEXF8ewYcPIkSMHkNa7Zf369ezevZuEhAT27dtHYGAg58+fZ+DAgfTs2ZNnz56RKVMmNTdNB0aOHElcXByrV6/G3t4eSPvdbNiwIa1ataJ9+/YUKVKExo0bM2/ePEwmE8uWLaN48eLUqVPHOkVXJL2Ki4ujf//+2Nra8vDhQ549e0ZAQABly5blzJkzxMXFMW3aNGJiYmjevDmLFy+2vvf58+c8evSIvHnzGngE8kclJSXRt29f3nnnHaZOncqjR4+4cOECq1evJlu2bPTs2ZM8efIQGhrK7du3qVmzJsWLFzc69hvj19f7+/fv8+zZMwoWLAikNWAeMGAAFy5cICwsDGdnZwACAgJo2LChtdegPjNE/neW70cHDx7EbDaTlJREgwYNgLQeiF26dOHHH38kc+bMAGzevJmmTZsamFh0RRNJ54oUKcLKlStJSkpiwoQJRERE/O5+dnZ2ZMqUCUAFqTfIoUOH2LFjB3PnzuXBgwdA2opGe/fuZebMmTRr1oyAgABy587NRx99RO/evfnpp590rtORbt268fXXX2Nvb29t8msymahSpQr+/v44OzvTrFkzZs+ejclkIjk5md27d7Nr1y6Sk5PVE0TSvZIlS+Ln58eLFy84ffo0w4cPp1y5ctjY2FCuXDk+++wzvv/+ew4fPmxdgAHSvhhkzJhRBak3iIODA/fu3SMyMpJr164xYMAABg8eTFhYGNOnT7c2CG7YsCHt27dXQepPMJvN1mLSN998wyeffELZsmVp1aoV8+bNw9XVlenTp1OmTBlq1KjB5s2badCgAXPnzn3ld0gFKZH/nclkIjIyEk9PTx4+fEi9evWsr2XLlo1r165Z+7L5+PjQrFkzrly5YlRcQUUpkTeC5QuByWRiwoQJREZGAmkX3dTUVH7++WccHR2tTwE0APLNsXDhQho0aEBISAh+fn48fPiQJk2a8NVXXzFv3jzKlCnDmDFjWLJkCZMmTaJSpUrWlY9ATU6NlpKSQvHixalQoQJ79uyhWbNm1uW7GzVqhI2NDVmzZmXUqFHY29uTnJyMj48PkZGRdO7cGTs7O51DeSOULFmS+fPnU716dZYvX259QGJjY0NycjKOjo6UKVMGW1tbUlJSAF2f3gS/d78wYMAA7t69S7FixXjy5Al9+vThyJEj+Pv7Exsby8OHDw1I+ma7d++e9fdh3LhxzJ07l8GDBxMdHc3Vq1eZNWsWcXFxvPfee0yfPh13d3cGDx6Mra0tERER2NjY6N5O5A86f/48jx49YuLEiTRp0sT6ANdsNuPo6IitrS0ODg74+voyY8YMoqOjKVy4sMGp326avifyBrFMoTCbzYwZM8Y6lW/EiBHs2rWLbdu2WYeBS/r38uVL7O3tuXHjBoMGDeLs2bO0adOG/v37kylTJhISEsiZM6d1/5EjR7Jp0yYOHjyokQfp0Pnz53FxcaFRo0b4+/tTuHBhFi5cyNKlS7l9+zZubm48fvyYo0ePEhoaqlVd5I1k+RwCGDNmDLVq1TI4kfynLFNcIiIiCA0NJTExkXLlytGpUycePXpETEwM1apVs+7fv39/4uPjWbNmDY6OjgYmf7OEh4fTtGlTYmJiyJYtGx4eHnz11Vd4e3tz4MABvLy88Pf3p0uXLq+0ZYiPj6dQoULWwq+m6ov8327dukXRokV58eIFI0aMYOLEia+8npKSgpubGw4ODpw6dYrw8HDc3NwMSisWGikl8gb5nyOmjh8/jq+vL3PmzCEgIEAFqTeMvb09a9asoXXr1iQkJHDnzh2mTJnCrFmzePDggbUgtXfvXrp3786iRYtYs2aNClLpVKlSpYiJiSE8PJwePXpw7do1evTowezZs+nQoQOOjo7UqVOHyMhIFaTkjWX5HLK1tWXgwIGcOnXK6EjyHzKZTAQHB9OkSRPi4uJ48eIFXbp0oUePHmTKlMlakDpx4gRDhw4lMDCQ8ePHqyD1J7377rvkzp2bb775hnv37pGamoq7uzubN2/G29ubmTNn0qVLFxITE1m1ahWxsbEAODs7Y2NjQ2pqqgpSIn9Qzpw5WbZsGQUKFOD06dPW7ZZxOCkpKTx58oTo6GiOHDmiglQ6oSucyBvG8oVg0KBBfPTRRyQkJHDo0CEqVqxodDT5k06ePEnv3r2ZMWMG3t7e5MqVi+7du7Nu3TpMJhP9+vXDbDZz9uxZ7ty5w4EDB3B1dTU6tvDLCIPLly9z584d8uTJQ5YsWShVqhSHDh2ievXqdO3alQULFlC1alWqVq1qdGSRv0zJkiWZNm0aixcvply5ckbHkT/h102yL126xLBhwxg7diz9+vXj+vXrBAYG4ujoaC2CHD9+nEWLFhEVFUVYWBgVKlQwMv4bx2w24+zsTLt27di4cSP79+/n1q1bDBgwgJCQEKZOnUqvXr2AtPMRGBhI3rx5KV26tPXfUA8pkX/Pcj9mubY5ODjQsmVLTCYTnTp1ok+fPsydO9fa09PBwYHt27djZ2dHsWLFjI4v/03T90TeULGxsQwbNoxJkyapUPGG2r59O7169SIyMtI6l91sNtOpUydCQkIYOXIkffr0IWPGjCQmJpI1a1aDEwv8cgMUHBzM4MGDSU5OxsbGhtKlSzN+/HiqVavGuXPnqFGjBu7u7vj6+lKmTBmjY4v8bbQaWPq3YsUKWrZsSYYMGazn6+TJk/Ts2ZMffviB+Ph4atWqZV0lFNIenFSsWJGTJ0+SN29e8ufPb/BRvDliYmJwcXGx/vzgwQOqVavGRx99xMcff8xnn33Gp59+SmBgIGazmcTERFq0aEFSUhI7d+7UIiYif4DlfmzPnj3s2LGD06dP88knn+Dh4UGFChVYt24dnTp1okuXLvj7+wP6vEqvdEZE3lClS5dmw4YNKki9gSzPAixNrp8+fQrAixcvMJlMzJkzBwcHB+bOncu8efOwtbVVQSodMZlMREVF0b59ewYPHsz+/fuZMmUKWbJkoW3bthw5coQyZcpw+PBhtm3bho+PDy9fvjQ6tsjfRjf46dutW7f48ssvqVOnDklJSdbz9fLlSx4/fsyuXbvw9PSkUaNGzJ49G0grSH3zzTfExsZSsWJFFaT+hK1bt+Lq6oqXlxcXL17kwYMH5MiRg0WLFrFgwQL27t3LqFGjWLlyJe3ataNjx454e3sTHx/P9u3bsbW1JTU11ejDEEn3TCYTmzdvpmnTpmTIkIGKFSsSHBxM69atuXHjBp999hkBAQEEBgbSsWNHQJ9X6ZXOisgbzN7e3ugI8gf9elCqpYlpnTp1sLOzY8SIEQBkyJABgLt371K1alW8vLxo0aKFVrBKh8LDw6lXrx5ffPEFJUuWpHXr1owZMwZXV1cmTZrEgwcPKFWqFHFxcYwbN06/qyJimLx58xIaGsrDhw/x8PAgKSnJut3JyYnmzZtTvXp1FixYYJ22t2rVKhISEnjnnXeMjP5GcnZ2pmDBgkRFRfHFF1/g5+fH8ePHqVOnDj169ODHH3+kdu3abNmyhadPn2JnZ0fdunU5fvy4dZVWfXEW+fcs99Q3btxg0qRJTJs2jSlTpjB69GhOnjxJw4YNyZ8/P7a2tjRv3hx/f3/27NnDzZs3DU4u/46m74mI/M0sw4sPHDhAaGgo+fPnp2rVqlSvXp3o6Gi8vLyoUaMGPj4+ZM2alaCgIKKjo1m3bh3ZsmUzOr78jvHjxxMYGMixY8fIkiWLdfuiRYuYMGECR44cIV++fAYmFBF5darK0aNHadWqFSVLlmTz5s04ODiwYsUKhgwZQuPGjWnVqhXZsmVjzZo1LFu2jPDwcMqXL2/wEbwZLP/PycnJpKSk8N133/Ho0SNy5MhBfHw8oaGh+Pr64ujoSN++fenevTvDhw/nxYsX1gdSkNaEWVP3RH4rMDAQgPbt21u3XblyhQYNGnDgwAGeP3+Ou7s7Xl5eLFy4EIA9e/ZQuXJlcuXKxePHjzXrIB1To3MRkb+ZyWQiJCSEli1b4ubmxt27d7G3t2fcuHE0bdqU3bt306pVK5o1a0Zqaiqpqals3bpVBal0zNXVFZPJxO7du/n444/JmDEjAJUrV8be3p4HDx6oKCUihrOMtN2xYwcbNmzgnXfeYdeuXTRo0IB9+/bRoUMHXrx4wZo1a/jkk08oVaoUGTJk4MCBAypI/QnXrl2jUKFC2NnZYWdnx3vvvcekSZPw8fFhyJAhLF68mN69ezNw4EBy5cqFr68v3t7e1hYMlodXKkiJ/NbNmzdZtWoVDx8+xNHRkc8//xyAx48fkyVLFs6dO0fnzp356KOPrD3xzp07x/r168maNSu5cuVSQSqd09hQEZG/2a1btzhx4gT+/v6Eh4cTGBhIzZo16devH8HBwVSuXJnTp0+zevVqVq9eTXR0NFWqVDE6tvDLEPGLFy8SExPD0aNHAWjWrBnlypVj5MiRbNu2jfv375OamsqaNWvImDEjefLkMTK2iAiQVpTau3cvTZs2xc3NjfHjxzN79mwuXbpE7dq1SU5Opnv37qxZs4Zjx46xfft2QkNDtaLvnxAdHY2zszNDhw4lNjYWgA8//BB3d3fatGnDjRs36NatG1u2bOHWrVtkzpyZhIQE5s+fb/03NE1f5N9zcnJi3LhxFC5cGH9/f9asWQOkPSDMkSMH9erVo27duixatMha2F2+fDnHjh3D2dnZyOjyB2n6nojI3+jUqVO0a9cOOzs75s2bR7Vq1YC0lXm+/fZbduzYwaxZs6xPfST9sDy53rhxI0OGDAHS+n01aNCAGTNmULRoUT7//HPOnj3LgwcPKFOmDKdOnWLv3r1UqlTJ4PQi8jaKi4ujZMmSr2wbNWoUZ8+eZcuWLUDaVLMffviBFi1aULJkSUJDQ3FwcDAi7j/CgwcPCAwMZNy4cZQtW5aGDRsyatQoADp16kTmzJmZMmUKWbNmJSEhgUuXLrF8+XJmzpxp7eElIr/P0vTfxsaGffv2sWTJEi5evMjw4cP59NNPuXLlCi1btiQhIYHJkyeTmJjI4cOHWbZsGREREVSoUMHgI5A/QiOlRET+RgkJCRQtWpTY2FgSEhKs211cXBg4cCBNmjShY8eObNu2zcCU8ntMJhMRERF07NiRMWPGsG7dOkJDQzlx4gSdOnXi6tWrbNiwge+++45Ro0bRpk0boqOjVZASEUOEhoZSunRpNm/e/Mr2W7ducfnyZevPNjY21KhRgwEDBnDgwAHc3d2tzc/lz8uRIwf9+vUjMjKS4sWLs3jxYmrWrMnRo0dxd3fn6dOnnD17FoDs2bNTuXJl/Pz8sLOz08qsIv8Hk8mEjY0NmzdvZunSpVy6dIkff/yRsWPHsnHjRgoXLszGjRspVqwYI0eOZMKECfz0008qSL1hNFJKRORvFhkZyeTJk4mLi2PRokXUqVPH+tqZM2dYunQpvXv3/s3TbTHe1KlTCQ0NZd++fUDazdH169epXr06NWvWtA4hFxFJD3r16sWqVasICgqiSZMmAOzdu5c+ffowZswYOnToYN1306ZN+Pn5kZiYyOrVqylatKhRsf8xHj58yPHjxxk5ciR37tzh448/ZteuXXzwwQfMnTvX6Hgib4xfN/2PiorCw8MDf39/atWqxc8//4yvry9JSUkMGjSIZs2aAXD58mVy5MiBvb09mTNnNjK+/EkaKSUi8hex1PivX7/OlStXiI+PB6BWrVoMHTqUihUr0r9/f8LDw63vKVeuHFOmTFFBykCWoeEpKSkAJCcnW1+7efMmiYmJmEwmTCYTz58/591332XJkiXs3r2bc+fOWd8vImK0+fPn0759e1q1amWdrufi4kLlypVZvXo1y5cvB9Kud0eOHMHFxYWwsDAVpP4i2bNnx9PTk0OHDtGyZUvi4+O5c+cO8+fP/80INhH5rbVr1wK80vQ/PDycypUr07NnT8qVK8dHH33ExIkTMZlMjBs3znqtK1KkCDly5FBB6g2kopSIyF/A0n9oy5YtfPrpp9SqVYvOnTszduxYADw8POjTpw+lSpXiyy+/ZP/+/db3qpeHcSzLeF+8eJGJEyfSv39/oqOjra83btyYo0ePsnLlSgDrKnu2trbkzp2bLFmyWJdbFxExkqVAPmfOHDp16kTr1q3ZvHkzBQoUwMfHhxw5cjB+/HhKlCiBp6cn/v7+9O7d23pdk7+G5TxMnDiR0aNH069fP6pVq4a3t7fByUTSt/DwcL777juuXr36yvacOXPy6NEjbty4AaTdc9eoUYPBgwdz7tw5Ro4cycaNG42ILH8R3UmLiPwFTCYTO3bsoG3btrRp04bg4GDc3d0ZO3astUm2p6cnffv2JXfu3Pj4+JCYmIhmUBvHUpA6c+YMXl5e3Llzh0KFClGjRg0AEhMT8fT0pE+fPvj4+BAUFATAixcv+P7778mYMaO+zImI4SyfI78ukM+dO5f27dvTunVrNm3ahIuLC7NmzWLlypU0bdqUxo0bEx0dTfny5Y2K/Y9lY2NjPSfvv/8+48aN49ChQ9jZ2b0yEldEXlWpUiVCQkIoVKgQZ86csW4vVqwY169fZ9u2baSmplpXq8ybNy9VqlTB09OTqlWrGhVb/gLqKSUi8h+IiYmhaNGi1qLEzz//TKdOnfjkk0/o168fd+/epXLlyhQtWpRTp07RuXNnZs6cCUBERARFixalQIECRh6CALGxsdSsWZMuXbrw9ddfkzVrVgACAgI4f/48w4cP5/Hjx0yfPp05c+ZQqlQpHB0duXTpEnv27FFTcxExlGWUbmRkJBERETx8+BBXV1fatm0LpPWYCggIYPXq1TRt2tTYsG85y7kSkd/69e9HfHw83t7elC9fnlWrVgHw1VdfMXXqVPz8/Pjwww8pVKgQPj4+3Lp1i+nTp5MzZ04j48v/k4pSIiJ/gtlsZvv27TRp0oRVq1bRrFkzHBwcSEpKwtfXl1atWpElSxbq1auHh4cHkyZNYsiQISxbtowePXowf/58ow9B/ltiYiKdO3cmS5YsLFiwwNq/YNKkSYwZM4YSJUrQunVrBg8eTLZs2YiKiiIsLIzcuXNTv359ihcvbvARiIhAcHAwnTt35pNPPuHJkyfExMTg6urKhg0bAOjbty9BQUEsXryY5s2bG5xWROS3fl2USkhIYMmSJaxZs4by5cuzbNkyAHx8fPD39ydbtmxkzZqVixcvEhERwXvvvWdgcvkrqCglIvIf6NChAyEhISxYsIDGjRuTKVMmXr58ib29PdOmTePgwYMsX76cXLly4evrS1BQECkpKezduxcnJyc9LU0Hnj17RqVKlRg0aBA9e/bEbDYTHh5O/fr12b17NwcPHmTr1q14eXnRp08f8ufPb3RkEZFXXLhwgQ8//JAhQ4bQu3dvYmNjqVGjBm3btmX27NnW/dq1a8f3339PbGwsWbJkMTCxiMjv27NnD46OjtSuXZsHDx6wYsUKli5dSuXKlVm6dCmQ1nfqxo0bJCQk0KBBA4oVK2ZwavkrqKeUiMgfFBISwqFDhwBYsWIFn376KV27dmXr1q08f/4ce3t7AE6dOsXTp0/JlSsXALdu3aJt27YcPnyY/PnzqyCVDqSkpHD16lXi4uIoVaoUkNYXrE6dOpw9e5a6devi4+PDxx9/zMKFC4mMjDQ4sYjIb92+fZssWbLQu3dv4uPjadCgAS1atLAWpCzXrqCgII4ePaqClIikSy9evGD58uXUqVOHqKgocuTIQfv27enSpQvHjh2jc+fOALi7u9OiRQt69uypgtQ/iJ3RAURE0juz2cyVK1do164d3t7eODg4UKVKFetw4q5duwLQpEkTHB0dadiwIaNGjbJuDw4O5vDhw/oyYLAVK1aQlJREt27dsLW1JVu2bBQoUIDNmzdTtWpV6/kpWbIkKSkp2Nra0rp1a/bu3atRUiKSrlimupjNZt555x2io6P57LPP8PLyYs6cOQCcOHGC1atXkytXLsqUKYOTk5PBqUVEflmcwXINM5lMZMiQgcmTJ2Nvb0/dunXZt28ftWvXpn379kDaPVzLli1Zu3atkdHlb6KRUiIi/weTyYSzszObNm3iyJEjfPvtt/z4448ALFu2jObNm9O1a1dCQkJISUnhww8/pF+/fvzrX//i+vXrhIWFWUfjiDHu3LnD+vXrWbx4MStXrgQgf/781KtXj+XLl7N//36SkpKAtPNt6S8VEBCAnZ2dzp+IGMJsNlu/wP2644ZlxK2TkxMxMTFUq1YNLy+vV/rjBQQE8K9//Ys8efK8/uAiIv9DamoqkDYqynINS0xMBNKub4ULF2bChAm0aNGC+vXrExkZSc6cOenQoQPNmzfnxo0b3Lhxw7D88vdRTykRkT/A8iTn+++/p0uXLtSqVYsBAwZYl6Dt2rUra9asYcmSJbRq1cr6nmfPnpE5c2Yjo8t/O3nyJNOnT+fSpUt069aNTp068fTpUz744APi4+OZNm0aDRs2JHfu3Fy+fJnZs2ezaNEiIiIiqFChgtHxReQtlJiYiKOjI0lJSTg4OBAREcHhw4fJlCkTTZo0oUCBAmzbto1mzZrRtWtX2rVrR8aMGVm5ciVLly4lPDyc8uXLG30YIvKWS01NxcbGhri4OAYMGMDSpUu5ceMG3t7e7N27FxcXF+u99tWrVxk0aBDbtm0jIiKCKlWq8PDhQ1JTU7XK3j+UilIiIn+AZToXwP79++natevvFqY2btzId999R/PmzcmUKZORkeV3nDp1iqlTpxIfH0/Pnj1p3749ly5domvXrhw8eJCCBQuSK1cuTCYTjx49Yt26dVrVRUQMERgYyLBhwzhx4gT58uVj/fr1dOnShRIlSvD06VNSUlLYsWMHpUuXJjg4mC+//JKUlBSyZctGlixZWLhwoa5fImI4S0Hq1KlTeHh48PDhQ06cOIGdnR19+vTh6tWr1muZZd/9+/fzwQcfAGm98WrUqGHwUcjfSUUpEZH/heWpjaUoZfmw3LNnDz169PhNYapFixZERUURExND1qxZDU4vFpbzBnD8+HGmTZvG5cuX+eKLL2jTpg0Ac+bM4cqVK9y7dw8PDw88PT0pVKiQkbFF5C128OBBRowYwZMnT9ixYwd+fn64urrSrl07Tpw4gY+PD5GRkfzwww+ULl2aa9eukZCQgIODA3ny5NGIAhExnOX+68SJE9SsWZNOnToRERHBpEmT8Pb25tixY3z99decOnWK3bt3U6ZMGQDOnTuHj48P+fLlo3fv3ri4uBh8JPJ3UlFKROTfsBSk9u3bx6ZNm3jw4AFly5alW7du5M2b95XC1MCBA3FzcwPgxo0baoydTljOYUJCAiaTCUdHRzJkyEBMTAzjx48nPj6e7t2706lTJ6Ojioj8xqFDhxg2bBg3b96kcOHCzJgxwzr66aeffmLAgAFERkZy+PBhSpcubWxYEZFfsRSkTp48SY0aNRg0aBATJkygYMGCDBs2jP79+wNpizKMGTOGEydOEBISgrOzM7Nnz+bEiROsXLlSbTDeAmp0LiLyb5hMJjZv3oy3tzcvXrzg9u3bbNq0iffff58rV67QoEEDFi5cyJEjRxg/fjzHjx8H0ApH6YSlILVt2zYaNWqEp6cn5cuXJyAggOLFi/PVV19RpEgRFi9eTFBQkNFxRUSsLA2Ba9SowbRp0yhZsiQHDx7EwcHB+nqJEiX47rvv8PDwwMXFhYsXLxoZWUTkFTY2Nhw7dgx3d3e+/PJLJkyYAEDhwoV58OCBdb/33nuPyZMnU7NmTdzc3KhTpw6zZs1i7NixKki9JVSUEhH5N+7evcvYsWMZN24cixYtYvfu3SxbtoxSpUrh6enJnTt3aNCgAbNnzyY+Pp58+fIBv6yKJMYymUzs2rWLVq1a0axZM4KDg3F3d6dXr15ERUXh4uLC8OHDKVasGFOmTGHdunVGRxYRwWw2Y2Njw/nz57l8+TLVq1fn66+/pkqVKjRp0oQ7d+5gY2OD2WymRIkS+Pr60rx5c16+fGl0dBERq/v37/Phhx/SvXt3Jk6caN2eL18+zp8/D2C9bpUvX55169YRFhbG+PHjOXnyJBUrVjQkt7x+KkqJyFvPMov58ePHr/z85MkTbty48UqjWBcXF3x9fcmZMydr164lNTWVhg0bEhUVxbvvvvvas8vvM5vNJCcns3z5cr744guGDBmCo6Mj4eHhdOzYEU9PTwAqVKjAwIEDqVmzJu+//76xoUXkrWcZ4RkcHEzjxo3ZsmULt2/fpnr16syaNYv8+fPj6enJ7du3MZlMmM1mSpcuTVBQkKbviUi6kiVLFnbu3MmMGTOAtEWDAHLmzElCQgIA9vb21v1nzJhBpkyZaNasGUWKFHntecU4KkqJyFvPZDJx7949ihUrxqJFi6wjnfLnz0/BggU5cOCAdV9bW1sqVqyInZ0dsbGx1ubZjo6OhmSXX4qIAMnJyda/29nZER8fj5eXF48fP8bNzY26desyf/58AFauXMlPP/1E5cqVmT17tm6ARMRwJpOJ3bt3065dO/r370/r1q3JmzcvkDaVb+rUqeTKlYsGDRpw8+ZN6+fVr7/YiYikBw4ODtaFgH6tbNmyPHnyBPjlHs7Hx4ehQ4eSIUOG15pR0gcVpURESCsqdejQgS+++ILAwEAgbS58jRo12L9/P8HBwdZ9TSYTBQoUIEeOHJjNZuuTbXn9LP/39+7dA9IKUeHh4Zw7dw6AggULMmPGDMqXL0/Tpk2ZPXs2AM+ePWP9+vVs3boVs9ls7dMiIvK6WPpGWf4ESEpKYsmSJXTv3p2+fftaC1KWgnvNmjWZPn06KSkpfPrpp6SmpqI1i0TkTWBrawtA7ty5iY2NtS5C4+Pjg6+vL9HR0ZQvX97glGIEO6MDiIikB5kyZcLHx4fMmTPTsWNHbG1tadOmDWPHjqVNmzb4+voSHh5OzZo1OXjwIPv27WPSpEkqRhnMZDJx+/Zt2rVrR8OGDXF2dqZFixbs3LkTFxcXmjdvzqhRo8iePTtz5syxvm/ixImcOXOGmTNn6hyKyGtnWZXq8uXL7NmzBzc3NypVqoSDgwOXL1/G1dUVSJvuYmtri51d2i37tWvXeP/991m+fDm5c+e2jtYVEXlTODk5YTabyZo1KxMmTMDX15eIiAiqVKlidDQxiIpSIvLWsXwZsEhOTsbW1pZs2bIxbtw49u/fT7t27UhOTqZDhw6sWrWKKVOmEBERwfbt23FycuLAgQOUKVPGwKMQC7PZjIuLCwsXLiQ+Pp7ly5fTsGFDALy8vDh58iQhISF4enpSuXJlrl69yr59+9i3bx/FihUzOL2IvG0sn0GnT5/m888/x9XVlYIFC1pfd3R05MiRI0DayALL/levXmX16tW0bdsWNzc3o+KLiPy/lC1blpw5c/L555+zc+dOoqKiVJB6y+nxioi8dWxsbLhy5Qp+fn5A2pQvy/QHX19fzp8/T/PmzenUqRPLli3jnXfeYfLkyURERBAREcHOnTtfaX4uxjGbzeTLl49GjRoRHx+Pk5OTdSofQNasWRkxYgQTJkzAycmJ8+fPU7BgQaKioqhUqZKByUXkbWVjY8O5c+fw8PCgWbNm+Pv74+XlZX19yJAhnDlzhi+//NK6P4C/vz+rV6/WdGMReaOZTCbOnz/Pzp07OXLkiApSgsmsiegi8pZJSUlh9OjRbNq0ia5duzJs2DAAJk2axIwZM1i7di2enp6MHTuWiRMnEhAQQPv27Q1OLf+TpZ9UYmIiV69e5fz58xw4cICDBw/StGlTRo4caXREEZHfSExMpEOHDuTLlw9/f3/r9pcvX3L//n0uXLhAZGQkQUFB5MiRgwoVKnD79m1CQ0MJCwvTQxEReaOlpKQwefJkPv/8c806EEDT90TkLWRra0u/fv14/vw5wcHBZMuWjcePHzNz5kyCgoL44IMPABgxYgS2trZ07NgRBwcHWrZsaXBysbAUpHbs2MHixYuZOnUq3t7euLm58eLFCzZv3oyNjQ3Dhw8HICgoiCpVquDi4qLG9CJiKDs7O27evImHh4d1W2hoKLt27WLx4sU4OzuTKVMm/Pz8WLp0KZcuXcLJyYmoqCjKli1rYHIRkf8/W1tbRo4caW18LqKilIi8lQoUKMCIESOYOHEi3377LRcuXCA0NJR69eqRnJyMnZ0dmTNnZsiQITg4OFChQgWjI8uvmEwmgoOD6dy5M7179+bx48dAWvPMkSNHMmXKFIKDg7lw4QJ58uRh8uTJxMXFWd8rImKUxMRE7t69y6lTpzh37hybNm0iICCAcuXKMWHCBLJkycK0adPYu3cvAQEBwC8Nz0VE/gl0PZNf0/Q9EXmr3bp1i0mTJhEWFkaHDh0YPHgwgLUwBWhkTTp07tw56tevz1dffUWvXr2s2y9dukTRokV59OgRfn5+7Nmzh8TERBYuXKgpLyKSbuzfv5+GDRtSoEAB7t+/z7Rp06hfvz4lSpTg5cuXeHt7kzdvXgIDAwF9DomIyD+XRkqJyFstX758jBw5ktTUVNavX09ycjLDhw/Hzs7O+mRaXwTSn+vXr5M3b1569erF/fv32bBhA+vWrePIkSO0atUKX19fhg8fzrBhw0hMTCR79uxGRxYRsapXrx4XL17k9u3bODs7kzt3butrtra2ZM+enSJFilgX4dDnkIiI/FNppJSICHDz5k0mTpzI8ePHqV+/PmPHjjU6kvwvzp8/T5kyZWjXrh0nTpygWLFiuLi4UK5cOTp06EBISAiNGjUyOqaIyJ+SlJTE+PHjWbp0KWFhYZQsWdLoSCIiIn8rjZQSESGtF9Ho0aMZOXIkUVFR3Lt3j1y5chkdS/hl2srNmzfJnj07ycnJlCpViq1btzJv3jwaN25Mx44dKVGiBDY2NixYsIDnz58bHVtE5E8JCgoiOjqatWvXsnPnThWkRETkraCRUiIiv3Lr1i0gbVqfpB+bN29m9OjRmEwmatWqRZ8+fahYseIrvb8ARo8ezYoVK4iMjKRw4cIGJhYR+eNiY2Pp1asXOXPmZOLEibi4uBgdSURE5LVQUUpERNK12NhY6taty7Bhw7hz5w4nTpzgzp07+Pn5Ub16dQC2bNnC2rVr2b9/Pzt37qRSpUoGpxYR+XNu375NhgwZ1ANPRETeKpq+JyIi6c6vV5p6+fIln332GQMHDgQgLCwMPz8/+vbty9y5c6lWrRq2trZkzZqV77//XiMMROSNlDdvXqMjiIiIvHYaKSUiIumKpSC1f/9+Dh48yMOHD7l58yarV6+27mMpTF27dg0/Pz+qVavGixcvyJAhg4HJRURERETkz1BRSkRE0p2tW7fSokULypUrR0JCAlevXiUiIoKqVata9zl48CBjx44lJSWFXbt2kSFDBi2bLiIiIiLyBlFRSkRE0pWHDx+ycOFCcubMSbdu3YiOjmbKlClERESwbdu2VwpTERERFClShIIFCxqYWERERERE/hM2RgcQERGxOHXqFHnz5iUoKIh3330XgKpVqzJu3Dg8PDzw9vbm6NGj1v1r166tgpSIiIiIyBtKRSkREXntUlNTf/fnvHnz0q5dO06fPk1CQoL1dVdXV3x8fKhfvz7VqlXj+PHjrzWviIiIiIj89bT6noiIvHY2NjacO3eOgIAAunfvTuHChbGxscHJyYmJEyeSnJxMjx49KFq0KDVr1gTSClMjRowgY8aMZM6c2eAjEBERERGR/y/1lBIRkdcuKSmJ2rVr8+OPP1K8eHG8vb2pVq0arVq1AuDp06d069aNkJAQdu/eTa1atV55r4ODg1HRRURERETkL6KilIiIGGLatGnY2dlRvnx5IiIi+Pbbb/Hy8sLd3Z1evXrx6NEjhg0bxpo1awgJCcHT09PoyCIiIiIi8hdSUUpERAwRFhZG06ZN2bt3L25ubty4cYOFCxcyadIkKleuTIcOHShXrhyLFi1i//79/PTTT2TMmNHo2CIiIiIi8hdRo3MRETGEp6cn3bt359tvv+X58+fkz5+fmJgYihUrRpkyZdiwYQN169bFycmJH374QQUpEREREZF/GDU6FxERw1SrVo2ZM2dib29Pt27dCAsLY9++fbi6uhIXF8fevXvx8PCgYMGCRkcVEREREZG/mKbviYiIoTw8PIiIiMDJyYkdO3ZQsWJFoyOJiIiIiMhroOl7IiJiCMszkeHDh1OiRAnmzJlDxYoV0bMSEREREZG3g4pSIiJiCJPJBECVKlVITU3l6NGjr2wXEREREZF/NhWlRETEUPny5cPHx4dZs2Zx5MgRo+OIiIiIiMhroqKUiIgYrm7dulStWpV3333X6CgiIiIiIvKaqNG5iIikC8+fPydjxoxGxxARERERkddERSkREREREREREXntNH1PREREREREREReOxWlRERERERERETktVNRSkREREREREREXjsVpURERERERERE5LVTUUpERERERERERF47FaVEREREREREROS1U1FKREREREREREReOxWlRERERERERETktVNRSkREREREREREXrv/AuuTNZM2se2OAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAALZCAYAAABmjZLLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACl5ElEQVR4nOzdeZxO9f//8edlxjKYZmNmjGQpWbIPyVKUfU2E0KAFRTSfCFGiZfqkLB+0UH1CC20ULZbKNnZKstNHpIx1TINphpnX7w+/OV8XlaFxrhke99utW+ac93Wd9znXua5zzvO8z/vtMTMTAAAAAAAA4KI8vq4AAAAAAAAArj6EUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHCdv68rkBukp6fr1KlTvq4GAAC5Qt68eeXn5+fragAAACCHI5T6G2amhIQEHTt2zNdVAQAgVwkODlZkZKQ8Ho+vqwIAAIAcilDqb2QGUuHh4SpYsCAn1gAAXICZ6eTJkzp48KAkqVixYj6uEQAAAHIqQqm/kJ6e7gRSYWFhvq4OAAC5RkBAgCTp4MGDCg8P51E+AAAA/Ck6Ov8LmX1IFSxY0Mc1AQAg98k8ftInIwAAAP4KodQF8MgeAAAXj+MnAAAALoRQCgAAAAAAAK4jlAIAAAAAAIDr6Oj8EgTW7+7aspLjp1/0axo2bKhq1app/Pjx2V+hXKzB0u9cXd6S22q4urzsMHXqVMXGxurYsWOSpJEjR+rTTz/Vhg0bsvwepUqVUmxsrGJjY7O1bj179tSxY8f06aefZuv7XgmO1Wvj6vKCl891dXlXM4/Ho9mzZ6tdu3a+rgoAAACQ7QilrkCzZs1S3rx5fV0NXAEGDRqk/v37+7oakqT//Oc/MjNfVwNw1f79+xUSEuLragAAAACXBaHUFSg0NNTXVcAVonDhwipcuLCvqyFJCgoK8nUVcJVJS0tTvnz5fFqHyMhIny4fAAAAuJzoU+oK1LBhQ+fRqVKlSikuLk7333+/AgMDdd1112nKlClZep/FixfL4/E4j3JJ0oYNG+TxePTzzz9Lkvbs2aM2bdooJCREhQoV0k033aQvv/zSKb9lyxa1bNlShQsXVkREhGJiYnT48OHsWtUrzrx581S/fn0FBwcrLCxMrVu31k8//eTMX7FihapVq6YCBQqoZs2a+vTTT+XxeLwer5szZ47Kli2rgIAA3X777Zo2bdp5n2NWjRw5UtWqVXP+7tmzp9q1a6eXX35ZxYoVU1hYmPr16/e3Q76//fbbCgoK0sKFCyVJH3/8sSpXrqyAgACFhYWpcePGOnHixAXrkrnsTA0bNtSAAQM0ePBghYaGKjIyUiNHjszSev3888/nbbdjx47J4/Fo8eLFkqTExER169ZNRYsWVUBAgMqWLau3337bKf/rr7+qc+fOCgkJUVhYmO68807ne4Hz+XrfPnLkiLp06aJrr71WBQsWVOXKlTVjxgyvMg0bNtQjjzyixx57TEWKFFGTJk0kXfh37ELrlpaWpkceeUTFihVTgQIFVKpUKb3wwgtZ2m4ej8d5ZDVzv501a5Zuv/12FSxYUFWrVtXKlSuz9F7nfp8lafz48SpVqpTz9+LFi3XzzTerUKFCCg4OVr169bRnzx5n/ty5cxUdHa0CBQqoTJkyGjVqlE6fPp2l5QMAAADnIpS6CowZM0Y1a9bU999/r759++rhhx/Wtm3bsuW9+/Xrp9TUVC1dulQ//vijXnzxRadlzf79+9WgQQNVq1ZN69at07x583TgwAF16tQpW5Z9JTpx4oQee+wxrV27Vt98843y5Mmju+66SxkZGUpOTlabNm1UuXJlfffdd3r22Wc1ZMgQr9f//PPPuvvuu9WuXTtt2LBBffr00fDhw7O1josWLdJPP/2kRYsWadq0aZo6daqmTp36p2VffvllDRo0SPPnz1eTJk20f/9+denSRffff7+2bt2qxYsXq3379pf8WN60adNUqFAhrV69WqNHj9YzzzzjhF//1FNPPaUtW7boq6++0tatW/Xaa6+pSJEikqSTJ0/q9ttvV+HChbV06VLFx8ercOHCat68udLS0rJl+VcaX+/bf/zxh6Kjo/X5559r06ZN6t27t2JiYrR69WqvctOmTZO/v7+WL1+uyZMnZ+l37O/WTZImTJigOXPm6MMPP9T27dv17rvvegVBF2v48OEaNGiQNmzYoBtvvFFdunTJlmDo9OnTateunRo0aKCNGzdq5cqV6t27tzwejyRp/vz5uvfeezVgwABt2bJFkydP1tSpU/X888//42UDAADg6sTje1eBli1bqm/fvpKkIUOGaNy4cVq8eLHKly//j99779696tChgypXrixJKlOmjDPvtddeU40aNRQXF+dM++9//6sSJUpox44duvHGG//x8q80HTp08Pr7rbfeUnh4uLZs2aL4+Hh5PB698cYbKlCggCpWrKhff/1VvXr1csq//vrrKleunF566SVJUrly5bRp06ZsvWgMCQnRpEmT5Ofnp/Lly6tVq1b65ptvvOohSU888YSmTZumxYsXO/vH/v37dfr0abVv314lS5aUJGfepahSpYqefvppSVLZsmU1adIkffPNN04Ll39i7969ql69umrWrClJXiHCzJkzlSdPHr355pvOBfvbb7+t4OBgLV68WE2bNv3Hy7/S+HrfLl68uAYNGuT83b9/f82bN08fffSRateu7Uy/4YYbNHr0aOfvESNGXPB37O/WrVKlStq7d6/Kli2r+vXry+PxOPv+pRo0aJBatWolSRo1apRuuukm7dq16x//pv/+++9KSkpS69atdf3110uSKlSo4Mx//vnnNXToUPXo0UPSmd/7Z599VoMHD3a+hwAAAMDFoKXUVaBKlSrOvz0ejyIjI3Xw4MFsee8BAwboueeeU7169fT0009r48aNzrz169dr0aJFTr9EhQsXdi6azn60Bf/np59+UteuXVWmTBldc801Kl26tKQzAcn27dtVpUoVFShQwCl/8803e71++/btqlWrlte0c8v8UzfddJP8/Pycv4sVK3be/jRmzBhNnjxZ8fHxXqFT1apV1ahRI1WuXFkdO3bUG2+8ocTExEuuy9n79l/V5VI9/PDDmjlzpqpVq6bBgwdrxYoVzrz169dr165dCgwMdPbt0NBQ/fHHH+zbf8HX+3Z6erqef/55ValSRWFhYSpcuLAWLFigvXv3epXLDCEzZeV37O/WTTrz6OmGDRtUrlw5DRgwQAsWLMhyvf/M2ft9sWLFJClb9vvQ0FD17NlTzZo1U5s2bfSf//xH+/fvd+avX79ezzzzjNe26NWrl/bv36+TJ0/+4+UDAADg6kModRU4dyQ+j8fjPFbyd/LkObN7nP1o1bl9Bz344IP63//+p5iYGP3444+qWbOmJk6cKEnKyMhQmzZttGHDBq//du7cqdtuu+2frtYVqU2bNjpy5IjeeOMNrV692nm0KC0tTWbmtMrJdO5jb1kp809lZX+69dZblZ6erg8//NBrup+fnxYuXKivvvpKFStW1MSJE1WuXDnt3r37stXlz2Rl327RooX27Nmj2NhY/fbbb2rUqJHT0iYjI0PR0dHn7ds7duxQ165dL2ldrnS+3rfHjBmjcePGafDgwfr222+1YcMGNWvW7LzHLQsVKuT1d1Z+x/5u3SSpRo0a2r17t5599lmlpKSoU6dOuvvuu7Nc93Odvd9nbpOs7vfnbrNz9/u3335bK1euVN26dfXBBx/oxhtv1KpVq5xljBo1yms7/Pjjj9q5c6dXoAgAAABkFaEU/lLRokUlyetO+dmdDmcqUaKEHnroIc2aNUsDBw7UG2+8IenMhdjmzZtVqlQp3XDDDV7/nXvhhzMdMW/dulVPPvmkGjVqpAoVKni1Iipfvrw2btyo1NRUZ9q6deu83qN8+fJau3at17Rzy7jh5ptv1rx58xQXF+c8bpXJ4/GoXr16GjVqlL7//nvly5dPs2fPdrV+Wd23ixYtqp49e+rdd9/V+PHjnUECatSooZ07dyo8PPy8fZtRAs+XE/btZcuW6c4779S9996rqlWrqkyZMtq5c+cFX3eh37ELrVuma665Rp07d9Ybb7yhDz74QJ988omOHj2a5fpnh6JFiyohIcErmPqz/b569ep64okntGLFClWqVEnvv/++pDPbYvv27edthxtuuMEJegEAAICLwVkk/tINN9ygEiVKaOTIkdqxY4e++OILjRkzxqtMbGys5s+fr927d+u7777Tt99+6/RB0q9fPx09elRdunTRmjVr9L///U8LFizQ/fffr/T0dF+sUo6WOYrblClTtGvXLn377bd67LHHnPldu3ZVRkaGevfura1bt2r+/Pl6+eWXJf1fa4k+ffpo27ZtGjJkiHbs2KEPP/zQ6YT83FYml1udOnX01Vdf6ZlnntG4ceMkSatXr1ZcXJzWrVunvXv3atasWTp06JBXvzVuCAgI0C233KJ///vf2rJli5YuXaonn3zSq8yIESP02WefadeuXdq8ebM+//xzp57dunVTkSJFdOedd2rZsmXavXu3lixZokcffVT79u1zdV1yg5ywb99www1auHChVqxYoa1bt6pPnz5KSEi44Osu9Dt2oXWTpHHjxmnmzJnatm2bduzYoY8++kiRkZEKDg7O4hbMHg0bNtShQ4c0evRo/fTTT3rllVf01VdfOfN3796tJ554QitXrtSePXu0YMEC7dixw9nvR4wYoenTp2vkyJHavHmztm7dqg8++OC87w4AAACQVXR0fgmS46f7ugquyJs3r2bMmKGHH35YVatWVa1atfTcc8+pY8eOTpn09HT169dP+/bt0zXXXKPmzZs7AURUVJSWL1+uIUOGqFmzZkpNTVXJkiXVvHlzn9xVX3JbDdeXeTHy5MmjmTNnasCAAapUqZLKlSunCRMmqGHDhpLOtLSYO3euHn74YVWrVk2VK1fWiBEj1LVrV+fRmdKlS+vjjz/WwIED9Z///Ed16tTR8OHD9fDDDyt//vyur1O9evX0xRdfqGXLlvLz81OTJk20dOlSjR8/Xr///rtKliypMWPGqEWLFq7X7b///a/uv/9+1axZU+XKldPo0aO9OijPly+fnnjiCf38888KCAjQrbfeqpkzZ0qSChYsqKVLl2rIkCFq3769kpOTVbx4cTVq1EjXXHON6+sSvHyu68u8GDlh337qqae0e/duNWvWTAULFlTv3r3Vrl07JSUl/e3rLvQ75vF4/nbdJKlw4cJ68cUXtXPnTvn5+alWrVr68ssvXf8drFChgl599VXFxcXp2WefVYcOHTRo0CCnBWDBggW1bds2TZs2TUeOHFGxYsX0yCOPqE+fPpKkZs2a6fPPP9czzzyj0aNHK2/evCpfvrwefPBBV9cDAAAAVw6PZXeHM1eIP/74Q7t371bp0qXpKwM51nvvvaf77rtPSUlJCggI+NMyzz//vF5//XX98ssvLtcOuHTs27kfx1EAAABcCC2lgFxk+vTpKlOmjIoXL64ffvhBQ4YMUadOnbwu2l999VXVqlVLYWFhWr58uV566SU98sgjPqw1cGHs2wAAAMDVhz6lrmJxcXFeQ3uf/Z8vHqfChSUkJOjee+9VhQoV9K9//UsdO3Z0Hr3JtHPnTt15552qWLGinn32WQ0cOFAjR46UdGZEub/6zOPi4nywRv/nr+pVuHBhLVu27KLe67333vvL97rpppsu0xrgn7iS9+2/kt37aW7cBgAAALi68fjeX7gaHjs4evToX47+FBAQoOLFi7tcI1xuv/76q1JSUv50XmhoqEJDQ12u0f/ZtWvXX84rXrz4Xz7C9WeSk5N14MCBP52XN29elSxZ8qLrh5wtJ+/bfyW799Octg2uhuMogCtfYP3uriznaumzFgDOxeN7F3AlZ3Y59UINl09ODhpvuOGGbHuvwMBABQYGZtv7IefLyfv2X8nu/TSnbYMr+fgJAACA7MHje38hb968kqSTJ0/6uCYAAOQ+mcfPzOMpAAAAcC5aSv0FPz8/BQcH6+DBg5LODJXt8Xh8XCsAAHI2M9PJkyd18OBBBQcHy8/Pz9dVAgAAQA5FKPU3IiMjJckJpgAAQNYEBwc7x1EAAADgzxBK/Q2Px6NixYopPDxcp06d8nV1AADIFfLmzUsLKQAAAFwQoVQW+Pn5cXINAAAAAACQjejoHAAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrCKUAAAAAAADgOkIpAAAAAAAAuI5QCgAAAAAAAK4jlAIAAAAAAIDrLjqUWrp0qdq0aaOoqCh5PB59+umnzrxTp05pyJAhqly5sgoVKqSoqCh1795dv/32m9d7pKamqn///ipSpIgKFSqktm3bat++fV5lEhMTFRMTo6CgIAUFBSkmJkbHjh3zKrN37161adNGhQoVUpEiRTRgwAClpaVd7CoBAAAAAADAZRcdSp04cUJVq1bVpEmTzpt38uRJfffdd3rqqaf03XffadasWdqxY4fatm3rVS42NlazZ8/WzJkzFR8fr+PHj6t169ZKT093ynTt2lUbNmzQvHnzNG/ePG3YsEExMTHO/PT0dLVq1UonTpxQfHy8Zs6cqU8++UQDBw682FUCAAAAAACAyzxmZpf8Yo9Hs2fPVrt27f6yzNq1a3XzzTdrz549uu6665SUlKSiRYvqnXfeUefOnSVJv/32m0qUKKEvv/xSzZo109atW1WxYkWtWrVKtWvXliStWrVKderU0bZt21SuXDl99dVXat26tX755RdFRUVJkmbOnKmePXvq4MGDuuaaa7K0Dv9g9QEAAABcwa65tYcry/l92TRXlgMAbvJ4PBcs43+5K5GUlCSPx6Pg4GBJ0vr163Xq1Ck1bdrUKRMVFaVKlSppxYoVatasmVauXKmgoCAnkJKkW265RUFBQVqxYoXKlSunlStXqlKlSk4gJUnNmjVTamqq1q9fr9tvvz1L9Tv3kUAAAAAAcBPXJACuRCEhIRcsc1lDqT/++ENDhw5V165dnZZLCQkJypcv33mVi4iIUEJCglMmPDz8vPcLDw/3KhMREeE1PyQkRPny5XPKZEVmWAYAAAAAvsA1CYCr1WULpU6dOqV77rlHGRkZevXVVy9Y3sy8mnb9WTOvSylzIRdTFgAAAACyG9ckAK5WF93ReVacOnVKnTp10u7du7Vw4UKv/p0iIyOVlpamxMREr9ccPHjQafkUGRmpAwcOnPe+hw4d8ipzbouoxMREnTp16rwWVAAAAAAAAMhZsj2Uygykdu7cqa+//lphYWFe86Ojo5U3b14tXLjQmbZ//35t2rRJdevWlSTVqVNHSUlJWrNmjVNm9erVSkpK8iqzadMm7d+/3ymzYMEC5c+fX9HR0dm9WgAAAAAAAMhGF/343vHjx7Vr1y7n7927d2vDhg0KDQ1VVFSU7r77bn333Xf6/PPPlZ6e7rRmCg0NVb58+RQUFKQHHnhAAwcOVFhYmEJDQzVo0CBVrlxZjRs3liRVqFBBzZs3V69evTR58mRJUu/evdW6dWuVK1dOktS0aVNVrFhRMTExeumll3T06FENGjRIvXr1yvLIewAAAAAAAPANj5nZxbxg8eLFfzqyXY8ePTRy5EiVLl36T1+3aNEiNWzYUNKZDtAff/xxvf/++0pJSVGjRo306quvqkSJEk75o0ePasCAAZozZ44kqW3btpo0aZJXJ4B79+5V37599e233yogIEBdu3bVyy+/rPz581/MKgEAAADAeQLrd3dlOcnx011ZDgDkNBcdSgEAAADA1YBQCgAur8vS0TkAAAAAAADwdwilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuu+hQaunSpWrTpo2ioqLk8Xj06aefes03M40cOVJRUVEKCAhQw4YNtXnzZq8yqamp6t+/v4oUKaJChQqpbdu22rdvn1eZxMRExcTEKCgoSEFBQYqJidGxY8e8yuzdu1dt2rRRoUKFVKRIEQ0YMEBpaWkXu0oAAAAAAABwmf/FvuDEiROqWrWq7rvvPnXo0OG8+aNHj9bYsWM1depU3XjjjXruuefUpEkTbd++XYGBgZKk2NhYzZ07VzNnzlRYWJgGDhyo1q1ba/369fLz85Mkde3aVfv27dO8efMkSb1791ZMTIzmzp0rSUpPT1erVq1UtGhRxcfH68iRI+rRo4fMTBMnTrzkDQIAAAAAbmqw9DtXlrPkthquLAcAsspjZnbJL/Z4NHv2bLVr107SmVZSUVFRio2N1ZAhQySdaRUVERGhF198UX369FFSUpKKFi2qd955R507d5Yk/fbbbypRooS+/PJLNWvWTFu3blXFihW1atUq1a5dW5K0atUq1alTR9u2bVO5cuX01VdfqXXr1vrll18UFRUlSZo5c6Z69uypgwcP6pprrvkn2wUAAADAVS6wfndXllMjLtaV5RBKAchpLrql1N/ZvXu3EhIS1LRpU2da/vz51aBBA61YsUJ9+vTR+vXrderUKa8yUVFRqlSpklasWKFmzZpp5cqVCgoKcgIpSbrlllsUFBSkFStWqFy5clq5cqUqVarkBFKS1KxZM6Wmpmr9+vW6/fbbs1Tnf5DJAQAAAECuwbUPADd5PJ4LlsnWUCohIUGSFBER4TU9IiJCe/bsccrky5dPISEh55XJfH1CQoLCw8PPe//w8HCvMucuJyQkRPny5XPKZMW5/VQBAAAAwJWIax8Abjo39/kz2RpKZTo3DTOzCyZk55b5s/KXUuZCgoODs1wWAAAAAHIrrn0A5DTZGkpFRkZKOtOKqVixYs70gwcPOq2aIiMjlZaWpsTERK/U7ODBg6pbt65T5sCBA+e9/6FDh7zeZ/Xq1V7zExMTderUqfNaUP2diwmwAAAAACC34toHQE6TJzvfrHTp0oqMjNTChQudaWlpaVqyZIkTOEVHRytv3rxeZfbv369NmzY5ZerUqaOkpCStWbPGKbN69WolJSV5ldm0aZP279/vlFmwYIHy58+v6Ojo7FwtAAAAAAAAZLOLbil1/Phx7dq1y/l79+7d2rBhg0JDQ3XdddcpNjZWcXFxKlu2rMqWLau4uDgVLFhQXbt2lSQFBQXpgQce0MCBAxUWFqbQ0FANGjRIlStXVuPGjSVJFSpUUPPmzdWrVy9NnjxZktS7d2+1bt1a5cqVkyQ1bdpUFStWVExMjF566SUdPXpUgwYNUq9evRh5DwAAAAAAIIe76FBq3bp1XiPbPfbYY5KkHj16aOrUqRo8eLBSUlLUt29fJSYmqnbt2lqwYIECAwOd14wbN07+/v7q1KmTUlJS1KhRI02dOlV+fn5Omffee08DBgxwRulr27atJk2a5Mz38/PTF198ob59+6pevXoKCAhQ165d9fLLL1/8VgAAAAAAAICrPMa4oAAAAABwnsD63V1ZTo24WFeWs+S2Gq4sBwCyKlv7lAIAAAAAAACyglAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4zt/XFUD2Cazf3ZXlJMdPd2U5AAAAAADgykVLKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA67I9lDp9+rSefPJJlS5dWgEBASpTpoyeeeYZZWRkOGXMTCNHjlRUVJQCAgLUsGFDbd682et9UlNT1b9/fxUpUkSFChVS27ZttW/fPq8yiYmJiomJUVBQkIKCghQTE6Njx45l9yoBAAAAAAAgm2V7KPXiiy/q9ddf16RJk7R161aNHj1aL730kiZOnOiUGT16tMaOHatJkyZp7dq1ioyMVJMmTZScnOyUiY2N1ezZszVz5kzFx8fr+PHjat26tdLT050yXbt21YYNGzRv3jzNmzdPGzZsUExMTHavEgAAAAAAALKZf3a/4cqVK3XnnXeqVatWkqRSpUppxowZWrdunaQzraTGjx+v4cOHq3379pKkadOmKSIiQu+//7769OmjpKQkvfXWW3rnnXfUuHFjSdK7776rEiVK6Ouvv1azZs20detWzZs3T6tWrVLt2rUlSW+88Ybq1Kmj7du3q1y5ctm9agAAAAAAAMgm2R5K1a9fX6+//rp27NihG2+8UT/88IPi4+M1fvx4SdLu3buVkJCgpk2bOq/Jnz+/GjRooBUrVqhPnz5av369Tp065VUmKipKlSpV0ooVK9SsWTOtXLlSQUFBTiAlSbfccouCgoK0YsWKLIdSZpY9K34VYZsBAAAAuQ/n8QDc5PF4Llgm20OpIUOGKCkpSeXLl5efn5/S09P1/PPPq0uXLpKkhIQESVJERITX6yIiIrRnzx6nTL58+RQSEnJemczXJyQkKDw8/Lzlh4eHO2Wygj6oLh7bDAAAAMh9OI8H4KZzM50/k+2h1AcffKB3331X77//vm666SZt2LBBsbGxioqKUo8ePZxy5yZmZnbBFO3cMn9WPivvc7bg4OAsl8UZbDMAAAAg9+E8HkBOk+2h1OOPP66hQ4fqnnvukSRVrlxZe/bs0QsvvKAePXooMjJS0pmWTsWKFXNed/DgQaf1VGRkpNLS0pSYmOiVrB08eFB169Z1yhw4cOC85R86dOi8Vlh/52ICLJzBNgMAAAByH87jAeQ02T763smTJ5Unj/fb+vn5KSMjQ5JUunRpRUZGauHChc78tLQ0LVmyxAmcoqOjlTdvXq8y+/fv16ZNm5wyderUUVJSktasWeOUWb16tZKSkpwyAAAAAAAAyJmyvaVUmzZt9Pzzz+u6667TTTfdpO+//15jx47V/fffL+lMOh8bG6u4uDiVLVtWZcuWVVxcnAoWLKiuXbtKkoKCgvTAAw9o4MCBCgsLU2hoqAYNGqTKlSs7o/FVqFBBzZs3V69evTR58mRJUu/evdW6dWtG3gMAAAAAAMjhsj2Umjhxop566in17dtXBw8eVFRUlPr06aMRI0Y4ZQYPHqyUlBT17dtXiYmJql27thYsWKDAwECnzLhx4+Tv769OnTopJSVFjRo10tSpU+Xn5+eUee+99zRgwABnlL62bdtq0qRJ2b1KAAAAAAAAyGYeY1zQK0Zg/e6uLCc5frorywEAAAB8ya3z6xpxsa4sZ8ltNVxZDgBkVbb3KQUAAAAAAABcCKEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABw3WUJpX799Vfde++9CgsLU8GCBVWtWjWtX7/emW9mGjlypKKiohQQEKCGDRtq8+bNXu+Rmpqq/v37q0iRIipUqJDatm2rffv2eZVJTExUTEyMgoKCFBQUpJiYGB07duxyrBIAAAAAAACyUbaHUomJiapXr57y5s2rr776Slu2bNGYMWMUHBzslBk9erTGjh2rSZMmae3atYqMjFSTJk2UnJzslImNjdXs2bM1c+ZMxcfH6/jx42rdurXS09OdMl27dtWGDRs0b948zZs3Txs2bFBMTEx2rxIAAAAAAACymcfMLDvfcOjQoVq+fLmWLVv2p/PNTFFRUYqNjdWQIUMknWkVFRERoRdffFF9+vRRUlKSihYtqnfeeUedO3eWJP32228qUaKEvvzySzVr1kxbt25VxYoVtWrVKtWuXVuStGrVKtWpU0fbtm1TuXLlslTfbF59n7rm1h6uLOf3ZdNcWQ4AAADgS26dX9eIi3VlOYtvre7KcgBAkjwezwXL+Gf3QufMmaNmzZqpY8eOWrJkiYoXL66+ffuqV69ekqTdu3crISFBTZs2dV6TP39+NWjQQCtWrFCfPn20fv16nTp1yqtMVFSUKlWqpBUrVqhZs2ZauXKlgoKCnEBKkm655RYFBQVpxYoVWQ6leNzv4rHNAAAAgNyH83gAbgoJCblgmWwPpf73v//ptdde02OPPaZhw4ZpzZo1GjBggPLnz6/u3bsrISFBkhQREeH1uoiICO3Zs0eSlJCQoHz58p23AhEREc7rExISFB4eft7yw8PDnTJZcfZjhcgathkAAACQ+3AeDyCnyfZQKiMjQzVr1lRcXJwkqXr16tq8ebNee+01de/e3Sl3bjMuM7tg065zy/xZ+ay8z9kupizOYJsBAAAAuQ/n8QBymmzv6LxYsWKqWLGi17QKFSpo7969kqTIyEhJOq8108GDB53WU5GRkUpLS1NiYuLfljlw4MB5yz906NB5rbAAAAAAAACQs2R7KFWvXj1t377da9qOHTtUsmRJSVLp0qUVGRmphQsXOvPT0tK0ZMkS1a1bV5IUHR2tvHnzepXZv3+/Nm3a5JSpU6eOkpKStGbNGqfM6tWrlZSU5JQBAAAAAABAzpTtj+/961//Ut26dRUXF6dOnTppzZo1mjJliqZMmSLpTJPR2NhYxcXFqWzZsipbtqzi4uJUsGBBde3aVZIUFBSkBx54QAMHDlRYWJhCQ0M1aNAgVa5cWY0bN5Z0pvVV8+bN1atXL02ePFmS1Lt3b7Vu3TrLnZwDAAAAAADAN7I9lKpVq5Zmz56tJ554Qs8884xKly6t8ePHq1u3bk6ZwYMHKyUlRX379lViYqJq166tBQsWKDAw0Ckzbtw4+fv7q1OnTkpJSVGjRo00depU+fn5OWXee+89DRgwwBmlr23btpo0aVJ2rxIAAAAAAACymcfMzNeVQPYIrN/9woWyQXL8dFeWAwAAAPiSW+fXNeJiXVnOkttquLIcAMiqbO9TCgAAAAAAALgQQikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4zt/XFQAAAMDlE1i/uyvLSY6f7spyAADAlYOWUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA19GnFC5ag6XfubKcz5542pXlBC+f68pyAAAAAADA/6GlFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB2hFAAAAAAAAFxHKAUAAAAAAADX+V/uBbzwwgsaNmyYHn30UY0fP16SZGYaNWqUpkyZosTERNWuXVuvvPKKbrrpJud1qampGjRokGbMmKGUlBQ1atRIr776qq699lqnTGJiogYMGKA5c+ZIktq2bauJEycqODj4cq8WcNEC63d3ZTnJ8dNdWQ4AAAAAAP/EZW0ptXbtWk2ZMkVVqlTxmj569GiNHTtWkyZN0tq1axUZGakmTZooOTnZKRMbG6vZs2dr5syZio+P1/Hjx9W6dWulp6c7Zbp27aoNGzZo3rx5mjdvnjZs2KCYmJjLuUoAAAAAAADIBpetpdTx48fVrVs3vfHGG3ruueec6Wam8ePHa/jw4Wrfvr0kadq0aYqIiND777+vPn36KCkpSW+99ZbeeecdNW7cWJL07rvvqkSJEvr666/VrFkzbd26VfPmzdOqVatUu3ZtSdIbb7yhOnXqaPv27SpXrlyW6mlm2bzmyG2utH3gSlsfAEDuwPEHyPn4ngJwk8fjuWCZyxZK9evXT61atVLjxo29Qqndu3crISFBTZs2dablz59fDRo00IoVK9SnTx+tX79ep06d8ioTFRWlSpUqacWKFWrWrJlWrlypoKAgJ5CSpFtuuUVBQUFasWJFlkOpY8eO/fOVRa52pe0DV9r6AAByB44/QM7H9xSAm0JCQi5Y5rKEUjNnztR3332ntWvXnjcvISFBkhQREeE1PSIiQnv27HHK5MuX77wViIiIcF6fkJCg8PDw894/PDzcKZMV9D+FK20fuNLWBwCQO3D8AXI+vqcAcppsD6V++eUXPfroo1qwYIEKFCjwl+XObcZlZhds2nVumT8rn5X3+bt64Opzpe0DV9r6AAByB44/QM7H9xRATpPtHZ2vX79eBw8eVHR0tPz9/eXv768lS5ZowoQJ8vf3d1pIndua6eDBg868yMhIpaWlKTEx8W/LHDhw4LzlHzp06LxWWAAAAAAAAMhZsj2UatSokX788Udt2LDB+a9mzZrq1q2bNmzYoDJlyigyMlILFy50XpOWlqYlS5aobt26kqTo6GjlzZvXq8z+/fu1adMmp0ydOnWUlJSkNWvWOGVWr16tpKQkpwwAAAAAAABypmx/fC8wMFCVKlXymlaoUCGFhYU502NjYxUXF6eyZcuqbNmyiouLU8GCBdW1a1dJUlBQkB544AENHDhQYWFhCg0N1aBBg1S5cmVnNL4KFSqoefPm6tWrlyZPnixJ6t27t1q3bp3lTs4BAAAAAADgG5dt9L2/M3jwYKWkpKhv375KTExU7dq1tWDBAgUGBjplxo0bJ39/f3Xq1EkpKSlq1KiRpk6dKj8/P6fMe++9pwEDBjij9LVt21aTJk1yfX0AAAAAAABwcVwJpRYvXuz1t8fj0ciRIzVy5Mi/fE2BAgU0ceJETZw48S/LhIaG6t13382mWgIAAAAAAMAt2d6nFAAAAAAAAHAhhFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1hFIAAAAAAABwnb+vKwAAOUFg/e6uLCc5frorywEAAACAnI6WUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHCdv68rACB7NVj6nSvLWXJbDVeWAwAAAAC4MtFSCgAAAAAAAK4jlAIAAAAAAIDreHwPAAAA/xiPjwMAgItFSykAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAArvP3dQUAAAAAAJffsXptXFlO8PK5riwHQO5HSykAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOv8fV0BAAAAAAAuVmD97q4sJzl+uivLAa5GtJQCAAAAAACA67I9lHrhhRdUq1YtBQYGKjw8XO3atdP27du9ypiZRo4cqaioKAUEBKhhw4bavHmzV5nU1FT1799fRYoUUaFChdS2bVvt27fPq0xiYqJiYmIUFBSkoKAgxcTE6NixY9m9SgAAAAAAAMhm2R5KLVmyRP369dOqVau0cOFCnT59Wk2bNtWJEyecMqNHj9bYsWM1adIkrV27VpGRkWrSpImSk5OdMrGxsZo9e7Zmzpyp+Ph4HT9+XK1bt1Z6erpTpmvXrtqwYYPmzZunefPmacOGDYqJicnuVQIAAAAAAEA2y/Y+pebNm+f199tvv63w8HCtX79et912m8xM48eP1/Dhw9W+fXtJ0rRp0xQREaH3339fffr0UVJSkt566y298847aty4sSTp3XffVYkSJfT111+rWbNm2rp1q+bNm6dVq1apdu3akqQ33nhDderU0fbt21WuXLnsXjUAAAAAAABkk8ve0XlSUpIkKTQ0VJK0e/duJSQkqGnTpk6Z/Pnzq0GDBlqxYoX69Omj9evX69SpU15loqKiVKlSJa1YsULNmjXTypUrFRQU5ARSknTLLbcoKChIK1asyHIoZWbZsZrIxdgHLg3b7dKw3QDgn+F3FMj5rrTv6ZW2PoBbPB7PBctc1lDKzPTYY4+pfv36qlSpkiQpISFBkhQREeFVNiIiQnv27HHK5MuXTyEhIeeVyXx9QkKCwsPDz1tmeHi4UyYr6IMK7AOXhu12adhuAPDP8DsK5HxX2vf0SlsfwC3nZjp/5rKGUo888og2btyo+Pj48+adm5iZ2QVTtHPL/Fn5rLzP2YKDg7NcFlcm9oFLw3a7NGw3APhn+B0Fcr4r7Xt6pa0PkJNctlCqf//+mjNnjpYuXaprr73WmR4ZGSnpTEunYsWKOdMPHjzotJ6KjIxUWlqaEhMTvZK1gwcPqm7duk6ZAwcOnLfcQ4cOndcK6+9cTICFKxP7wKVhu10athsA/DP8jgI535X2Pb3S1gfISbJ99D0z0yOPPKJZs2bp22+/VenSpb3mly5dWpGRkVq4cKEzLS0tTUuWLHECp+joaOXNm9erzP79+7Vp0yanTJ06dZSUlKQ1a9Y4ZVavXq2kpCSnDAAAAAAAAHKmbG8p1a9fP73//vv67LPPFBgY6PTvFBQUpICAAHk8HsXGxiouLk5ly5ZV2bJlFRcXp4IFC6pr165O2QceeEADBw5UWFiYQkNDNWjQIFWuXNkZja9ChQpq3ry5evXqpcmTJ0uSevfurdatWzPyHgAAAAAAQA6X7aHUa6+9Jklq2LCh1/S3335bPXv2lCQNHjxYKSkp6tu3rxITE1W7dm0tWLBAgYGBTvlx48bJ399fnTp1UkpKiho1aqSpU6fKz8/PKfPee+9pwIABzih9bdu21aRJk7J7lQAAAAAAwEUIrN/dleUkx093ZTm4PLI9lMrKcJkej0cjR47UyJEj/7JMgQIFNHHiRE2cOPEvy4SGhurdd9+9lGoCAAAAAADAh7K9TykAAAAAAADgQgilAAAAAAAA4Lpsf3wPAPDXGiz9zpXlfPbE064sJ3j5XFeWAwAAAODKQ0spAAAAAAAAuI5QCgAAAAAAAK7j8T0AAADARxgyHQBwNaOlFAAAAAAAAFxHKAUAAAAAAADXEUoBAAAAAADAdYRSAAAAAAAAcB0dnQMAAAAA8BcaLP3OleUsua2GK8sBchJaSgEAAAAAAMB1hFIAAAAAAABwHaEUAAAAAAAAXEcoBQAAAAAAANcRSgEAAAAAAMB1jL4HAMjxAut3d2U5yfHTXVkOAAAAAFpKAQAAAAAAwAcIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOv8fV0BAACQuwXW7+7KcpLjp7uyHAAAALiDllIAAAAAAABwHaEUAAAAAAAAXMfjewAAAMAVrsHS71xZzpLbariyHADAlYGWUgAAAAAAAHAdoRQAAAAAAABcRygFAAAAAAAA1xFKAQAAAAAAwHWEUgAAAAAAAHAdoRQAAAAAAABc5+/rCgAAAABZdaxeG1eWE7x8rivLAQDgakZLKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACuI5QCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUAoAAAAAAACu8/d1BQAAyCkaLP3OleV89sTTriwnePlcV5YDAAAAXApCKQAAAAAAfOxYvTauLIebVshJeHwPAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6+pQCAAAAAAC5klsD1Sy5rYYry7naEEoBAAAAAAD8DTqivzx4fA8AAAAAAACuo6UUAADIFWieDwAAcGWhpRQAAAAAAABcR0spAACAs9BnBAAAgDsIpQBcEi7aAAAAAAD/BI/vAQAAAAAAwHW0lAIAAACQLWhJDQC4GLSUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAAriOUAgAAAAAAgOsIpQAAAAAAAOA6QikAAAAAAAC4jlAKAAAAAAAArsv1odSrr76q0qVLq0CBAoqOjtayZct8XSUAAAAAAABcQK4OpT744APFxsZq+PDh+v7773XrrbeqRYsW2rt3r6+rBgAAAAAAgL/h7+sK/BNjx47VAw88oAcffFCSNH78eM2fP1+vvfaaXnjhhQu+3syUkZFxuavpmkIF8ruynAIeVxYjc2l90tPTXVkOn8+l4fO5NHw+l4bP59Lw+VwaPp9Lw+dzafh8Lg2fz6Xh87k0fD6Xhs8n5/J4PM5/f1nGzMzFOmWbtLQ0FSxYUB999JHuuusuZ/qjjz6qDRs2aMmSJRd8j4yMDP3888+XsZYAAAAAAABXp1KlSilPnr9+SC/XtpQ6fPiw0tPTFRER4TU9IiJCCQkJWXoPj8ejUqVKXYbaAQAAAAAAXN3+rpWUlItDqUznrqCZXXClz35tVssCAAAAAAAg++Tajs6LFCkiPz+/81pFHTx48LzWUwAAAAAAAMhZcm0olS9fPkVHR2vhwoVe0xcuXKi6dev6qFYAAAAAAADIilz9+N5jjz2mmJgY1axZU3Xq1NGUKVO0d+9ePfTQQ76uGgAAAAAAAP5Grg6lOnfurCNHjuiZZ57R/v37ValSJX355ZcqWbKkr6sGAAAAAACAv+ExM/N1JQAAAAAAAHB1ybV9SgEAAAAAACD3IpQCAAAAAACA6wilAAAAAAAA4DpCKQAAAAAAALiOUArAJWGMBAAAAADAP0EohRxh3759+vnnn31dDVyEHTt2+LoKALKIEPmvHT58mO2Ty/zxxx++rgIAABdl48aNOn78uK+rkSMRSsHnEhISdPPNN2vXrl2+rgqyaOHChapQoYI+/PBDX1cFwF/IyMiQJKWlpcnj8UiS9u7dq5SUFF9WK0f5+eefVbt2bW3ZssXXVUEWxcTEqF27dkpOTvZ1VeAjhMgAcps5c+aoSZMm+vDDD3XixAlfVyfHIZSCz5mZ/P39VaZMGV9XBVl0/fXX6+GHH9bDDz+sjz76yNfVwWWUefJ/+PBh7d+/X7///ruPa4SsypMnj3755Rf16dNHx44d02effaZatWopISHB11XLMXbu3KnU1FRVqFCBC91c4oEHHtDatWv10EMPEUxdBTK/l3v37tW+fft05MgReTweJ3RH9vi77clv4+WRnp7u6yrARW3bttXtt9+usWPH6sMPP6TF1DkIpeBTZqbDhw/rjz/+UP78+X1dHWRRmTJlNGLECD3wwAN68MEH9fnnn/u6SrgMzEwej0dz5szRXXfdpejoaPXs2VMTJkzwddWQRcuXL9e2bdvUunVrde7cWePGjVPp0qV9Xa0c49ixY8qbN6/y5MnjtCZDzpWenq6GDRvqiy++0Lx589SvXz8dO3bM19XCZeTxeDR79mzVrVtXjRo10s0336zVq1crTx4uYbKLmTnbc/r06Xr66ac1duxYrV69WtKZz4BgKnv89NNPGjp0qCTJz8+PYOoqcerUKUnSzJkzVbVqVf3nP//RRx99RIups/CLDp84ePCgpDMHusTERJ08eZIDXi6ReQDds2ePihQpIj8/P3Xq1EmfffaZj2uG7ObxePTFF1+oS5cuatu2rWbMmKGIiAjFxcXpmWee8XX1kAX33HOPbr/9dq1YsUJVqlRRw4YNJf39XfEr3dmPL/r5+SlPnjw6ffq0Tp8+7cNa4ULS09Pl5+cn6UwrwIEDB+rdd9/V0KFDacF5Bco8J/z555/Vt29fPfHEE3ruuedUr149NWjQgJth2STz5pMkDR8+XA8//LDWrl2rl156SX379tXw4cMlEUxlBzPTihUrNHr0aMXGxkoimLpa+Pv7SzrTp1SLFi30888/Ky4uTh9//LFOnjzp49rlDIRScN2xY8d09913q1u3bpKkokWLKiQkRIULF5Z05mKJH+icy8/PT7NmzVLTpk2VlJSke++9V1WrVlVMTIw++eQTX1cP2WjPnj169tlnNXr0aD3++OOqVq2a5syZo5IlS2ratGkEUzncqVOnZGaKiIjQo48+qqCgIA0YMEDbtm1Tnjx5rspgKiEhQZUqVdK8efMknelvq2DBgs4J49kXXVyA5SyZgdSQIUPUuXNnHT16VE2aNNG0adP08MMP8yjfFcbj8WjRokVau3at7rvvPvXr108dO3bUlClT9OCDD6pjx4764osvfF3NXO3sQGrbtm1atmyZvv76a3355ZfavHmzWrdurYULFyouLk6SaE36D3k8HrVt21Zvvvmm3n//ffXv31/SnwdTV+Px+Urm8Xg0d+5c1ahRQz///LMefvhhRUREaPjw4frwww8JpiTJAJcdPXrUnnvuOatWrZr179/fvv32W6tbt67973//MzOzU6dO2cmTJ53yu3fv9lFN8WeSkpKsfv369uSTTzrTNm/ebA899JAFBgbaZ599ZmZmGRkZvqoiLlJ6evqfTk9LS7Onn37adu7cab/99pvdeOON1rdvX9u/f7+1bNnSrrnmGhs8eLDLtcWfyfy+nTp1yvl3WlqaV5m33nrLGjRoYB06dLBt27Y503/88UdLSUlxr7I+lJ6ebm3atLEiRYrYN998Y+PGjbM6deqcVy5zGx49etTtKuJvLF++3IKDg23RokVmdmYf/+qrr+yaa66xbt262bFjx3xbQWSb1NRUa9eunXk8HmvRooXXvJSUFOvbt68FBgbarFmzfFTD3Ovrr7/2Oj7ExcVZw4YNrWnTppaYmOhMP3DggPXv398aNGhgv//+uw9qemVKTEy0KVOmWNGiRe2RRx5xpmeei6WlpVm/fv28zrORe2VkZFhycrLVrVvXBg0a5DWvQ4cOVqxYMXv77bft+PHjPqphzkAoBdfs27fPCZ6OHDliY8eOtZo1a1rZsmXN4/FY2bJlrWTJklaiRAmLioqyUqVKWVRUlJUvX54Lgxzk6NGjVqJECXvppZe8pm/atMmqV69ugYGB9tFHH/modrhUv/76q8XHx5uZ2YwZM2z06NFm9n/BxtNPP23t27d3votPPvmklStXzho0aGAHDhzwTaXhWLFihdffX331lbVr1866d+9uEydOdKa/9dZbdvvtt9tdd91lq1evtpEjR1pUVNQV/xt7duiWkZFh3bp1s6JFi1rnzp0tPDzcatWqZfXq1bMWLVpY/fr17eabb7Z69erZXXfdZSdOnPBhzXG2hQsXWvHixZ3fnMzw8KOPPrI8efLYgAEDrvh9+WqyZ88eu++++6xw4cK2bt06M/u/z/yPP/6w7t27W2Rk5FV/MXcxHn/8cevYsaPXjcMvv/zSPB6PBQQE2OrVq73Kf/fdd+bxeGzJkiVuV/WKsHfvXvvggw/s1VdftZ9++slOnz5tZmbHjh3702DqxIkT9sgjj1hAQICtX7/eV9VGNktPT7e6devaqFGjzOzM71emm2++2W666SZ75ZVXrurfMn9ft9TC1SE5OVn9+vXTkSNHNHXqVF1//fXq3r27zEzTpk1T0aJF9dRTTykjI0OnTp1SgQIFlJqaqjx58qhevXoKCQnx9Srg/wsJCdHtt9+utWvX6sCBA4qIiJAk3XTTTapRo4b27t2rQYMGqWnTpgoMDKS5dy6QlJSk+++/XwEBAVq0aJFGjBihN998U5KUN29eSdKWLVuUlpbmfBeTk5N1//33q3fv3goODvZV1SFp5cqVqlevnp577jkNGzZMixYt0p133ql77rlHR44c0ahRo7R9+3ZNnDhR999/v/Lmzatp06bprrvuUr58+TR79uwr+jd2586diouLU5s2bdS2bVv5+/tr+vTpeuihh/Tmm2+qXr16qlu3rtLS0hQYGKjU1FSZmQoXLqy77rpLBQsW9PUqXJXsrEeLMpUuXVqHDx/WokWL1LlzZ2d+tWrVFB4erokTJyo4OFijRo3yRZXxD2R+3r///rv++OMPFSlSRNddd53Gjh2rQ4cOqUmTJlq8eLGqVKkiM1P+/Pk1ZcoUJSYmqlChQr6ufq7x73//W+np6fJ4PNq8ebNKlSqlFi1aaOnSpbr99ts1fvx4xcXFqVSpUpKkwMBA3XDDDc4jzsi6jRs3ql27dipSpIjWrVunG2+8US+88ILuuusuBQUFqXPnzpLk9Ns1ceJEDR8+XP/9738VHx+vGjVq+LL6yCb2/wcSCA4Ods6x8+fPr9TUVOXPn1/Vq1fX9OnTNWPGDKdrm6uSLxMxXF3++9//WpMmTaxVq1a2a9cuMzvTYmrMmDFWo0aN85o0wvcy76QlJSV5NemePHmyVahQwV566SWvVjIPP/ywvfLKK3bkyBG3q4pLsHjxYueu3dKlS61ChQrm8Xhs+PDhTpnM+Znf00cffdT69u1rISEh9tNPP/mk3vB24MABe/755y00NNRefPFF++STT2zChAlmdqZl49SpUy1//vzWr18/5zXbt2+3lStX2i+//OKrarvihx9+sOLFi1uXLl3s7bff9pqXmppqffr0saCgIFuzZo1vKog/dfYjxcnJyV7Te/XqZbfccot98cUXzvRDhw5Zr169bMWKFc5vFnKPzHONzz77zBo1amTXXnut3X333fb888+bmdnhw4etXbt2Fhoaahs3bvR6DbLu1KlTzr8/+OADu/baa+29995zWoMuXLjQ/P39rVWrVjZ9+nRbvHixtWrVyipXrsz36iL98MMPFhAQYE899ZQdPHjQfvnlFwsPD7d27dp5lctsMRUVFWXFihWzggUL0kIql8v8bdq/f78dO3bMkpKSzOzMPhESEmL33XefV/nHHnvMPv30U/v1119dr2tOQiiFy+7sE4d3333Xbr/9dq9g6vDhwzZ27FirXLmyPfzww3/6OvjOp59+atHR0ValShXr0aOH07T0ySeftAoVKljbtm3tqaeesp49e1p4eLjzuSJnW7Rokd144432+OOP26lTpywlJcUqVqxoZcqUsS5dutjixYu9yu/YscMGDhxoNWvWtPr169v333/vm4rjTx08eNBeeOEFCwkJsWuvvdYrgDl58qQTTA0YMMB3lXTZrl27rHjx4jZ06NDz+tc6W8eOHS0oKMi+/vprr+kcg3zj7O3+wgsvWOvWra1Ro0Y2f/58S0tLs40bN1rHjh2tXLlyNmrUKHvnnXescePGVrduXa++1ZC7fPnllxYQEGAvv/yyrVq1yh566CHLly+fzZ8/38zMfvvtN2vfvr15PB7btGmTj2ub+5z7e3b69Glr0aKF1ahRw95//30nmPr6668tb9685vF47P7777f77rvPCaQIprLmp59+Mo/HY48//riZ/d+2r1+/vl133XVeN3nNztygnzBhglWpUoVzqyvErFmzrGrVqla6dGl78MEHnXPqmTNnWnBwsNWvX99iY2OtW7duVqBAAad7m6sZoRQum4SEBNu3b5+lpqZ6TX/33Xfttttus1atWtnOnTvN7MwP8vjx4+3aa6+1xx57zBfVxZ9YtWqVhYSE2NChQ+2FF16wa6+91urUqeO0rpg+fbr17t3bKleubC1btuRgmoscO3bMHn/8catbt67TMio5OdkWLVpkt9xyi3Xo0OG8YCo1NdVOnTpFh6c5yNktSo4ePWqjR4+2wMBAGzhwoFe5kydP2vTp083j8diQIUPcrqZPPP3003bnnXd69d2QkJBg69evtxkzZnj1nRITE0O/KTnA2fvzuHHjLCgoyEaOHGl16tSxMmXK2Msvv2ypqam2Y8cOGzVqlIWHh1uNGjWscePGTvBImJi7ZGRk2MmTJ61Lly727LPPmtmZ37KoqKjzQvSEhATr1q2b10ANuDgjRoxwWqBlDvxQtWpVr2AqPj7e8ubNa/3793dab/zVgCg437p16yxPnjz2wAMPODdyX3zxRfN4PBYREWHdunWz9u3b28SJE+3w4cOWlpZmGRkZ54VVyJ22bNliRYoUsTFjxtgzzzxjLVu2tDp16tjChQvN7MzgUB06dLAWLVpYy5Yt7YcffvBxjXMGQilcFpl3CSIiIqxGjRr2yiuveDW1/+KLL+yOO+6wFi1a2I4dO8zsTPP7V155hUeCcogtW7bYrFmznJNEszN3KsuUKWO1a9e2vXv3OtOTk5OvmtG7rgSZJ5e///67PfHEExYdHW3Dhg1zWhd89dVXVqdOHevYsaMzytWTTz5pL7/8sq+qjD+RefG9atUq+/zzz+348eN29OhRi4uLswIFCti///1vr/InT560GTNm2NatW31RXVelp6dbp06drFu3bs60Tz75xDp16mQhISFWoEABK1++vE2aNMnMzmzL3r17c7GbQ2zevNl69+7tnMSbmf3rX/+yChUq2OjRo51gPCkpyY4dO0YLqSvAbbfdZnPmzLG9e/da8eLFrXfv3s68Tz/91BmIg9Y6WTdhwgTbs2eP83daWpo1adLEvvzyS2fa2cHUjBkznGBq/vz55u/vb7179/Y638NfOzsQX7ZsmV1zzTXWp08fe+aZZyw0NNQ+/fRTW7t2ra1fv95iYmKsdu3a5vF4rGfPnl43T5B7bdy40Z599lmvbjCWL19unTp1sptvvtnrWtjM+NzPQiiFy2LNmjVWuHBhK1OmjDVt2tQaNGhgoaGhVqtWLXvggQds5cqVNnLkSOvQoYO1a9fOabbInZicISkpyYKDg83j8dijjz7qNS8zmLr11lu5gMvFMk/sk5KSbMiQIXbzzTfbkCFDvIKp2267zWrWrGnNmjUzf39/+t3JQTJPfj/++GMLCQmxZ555xvk+Hjp0yF544QULCgo6L5i60iUnJzv78JgxYyxfvnw2ceJEe+ihhywiIsIeeughmz9/vh06dMg6depkzZo1s2PHjvm41jjbxx9/bOHh4VaqVClbtmyZ17x//etfdtNNN9no0aNt//79XvM4f8hdMn/DTp8+bcnJydaoUSPr37+/XX/99fbggw868w8fPmzdu3e3N954g8/4ImzdutU8Ho/16NHD9u3b50yvVq2azZ4928z+L8RNT0+3tm3bWvXq1e2tt96ykydPmtmZx/w9Ho/179+fMPACdu/ebWPHjvXqp3Hp0qVWtGhR83g8NmfOHK/yGRkZlpKSYm+++abz1AhytwMHDljz5s0tLCzM+vTp4zUvM5iqV6+effzxxz6qYc5GKIVslZyc7Dyut2TJEitVqpT179/fFi9ebHv27LHRo0fbHXfcYRUqVLDIyEgLCwszj8dj3bp1s1OnTtHsPgdZs2aNlS1b1urXr2+HDh0yM+/O+4KDg6158+Z/21cLcp6zv2OZJ/hJSUk2bNgwq1WrllcwtWzZMnvuueesd+/etnnzZp/UF39txYoVFhwcbG+++eZ5LRUz+5gKCwuzESNG+KiG7vrll1+sUaNG9t5771laWpodPXrUHn30UStfvrxVqVLFPvvsM0tISHDKv/jii1axYkWnE1LkHD169LB8+fJZXFzceUNkDxo0yIoWLWrvvvuuj2qHfyLzGHT06FEzM+ccYtasWebv728333yzV/nhw4fbDTfcQCv6i5C5jePj461AgQLWvXt35zG8KlWqeAUkmWFTenq61a9f32JiYiw9Pd15j6VLl9qWLVtcXoPcZePGjXbjjTda06ZN7aOPPvKat3LlSgsNDbUePXo4LTzP3r64ssyaNctuu+02K1WqlK1atcpr3ooVK6xFixbWuHHj845rIJRCNjr7giCzOeKCBQusVKlSds8993jdCfj+++9t7ty51qVLF7v11lvptNLH/urguHbtWgsLC7MOHTo4rQkyyyYkJHB3J5fJ/OwWLVpkQ4cOtc6dO9vbb79tJ0+etJSUFBs2bJjVrl3bK5jKyMjg7nQOFRcXZ02bNvW6g332v48dO2ZPPvmkXXfddXb48OEr/iQ4JSXFatWqZbVr17bZs2c72+LQoUN/egLYt29fu+eee3j02If+7relS5cuVr58eZs+fbrzSFGmCRMm0HIjF/vss8+sVq1adtttt9mwYcPst99+MzOz0aNHm8fjsZiYGHvwwQete/fuFhQUZN99952Pa5y7nH3cXrp0qeXLl8+6dOli27dvt1tvvdVWrlxpZme+f3/88YedPn3aK5zK/D/H/gvbunWrhYWF2eDBg+3w4cN/Wmbp0qV2zTXXWNeuXb1GE0Xu9lfnVHPmzLFGjRpZq1atzgumVq9e7dVyEf/HY2YmIBv88ccfuu222+Tn56dBgwapdevWyp8/v7755hs9+OCDqlu3rv71r3+pZs2azmtSU1MlSfnz5/dVta96ZiaPx6M1a9Zoy5YtOnjwoO6//34VKVJEkrRmzRq1aNFCt99+u9566y0FBQU5r0HuM3v2bN1///1q3bq1ihUrpnHjxqlz586aPHmyMjIy9MILL2jJkiWKjo7WuHHj5Ofn5+sq4xwZGRnKkyePHnjgAe3bt0/z589X5qE883v5ww8/qGzZsjp16pROnz6tsLAwX1b5sktPT5efn5+OHz+u9u3b68iRIxo2bJjatGmjfPnyOdtMkk6cOKHnn39eb775phYtWqSbbrrJx7W/Op39mcTHx+vgwYMqXbq0SpYsqdDQUElSp06dtGnTJj3xxBPq0KGDChYs6PUemZ87co8ffvhBd9xxh/71r39p165d2r17twoUKKCpU6eqWLFimjt3rqZNm6bU1FTdeOONevDBB1WhQgVfVzvXOPt7lZKSooCAAC1btkyNGjVSs2bNtG7dOiUmJqp69epKSUnR77//rnz58qlFixYaN27cee+Bv5aamqp7771XISEhmjJlijP91KlTOnjwoDIyMlSoUCGFhoZq6dKlat++verWrasZM2aoUKFCPqw5/qnM66DVq1dr+fLl8ng8qlKliho1aiRJ+uSTTzRlyhT5+/vr6aef1s033+zjGucCvkzEcOXIvMOSnJxsTZo0sejoaPvoo4+cFlNff/21lSpVyrp168YIbTlIZsr/ySefWHh4uNWpU8cqV65sUVFR9uWXXzr9CqxevdoiIiKsSZMmPOqSi+3evdvKly9vr7/+ujOtUKFCNmTIEK/OzwcMGGCNGze2gwcP+qqqyIJJkyZZQECArV+/3sz+7/uclJRkgwYN8uok+kqWud5ndxhasmRJq1Onjn3yySdenV+PGzfOOnfubCVLlqT1hQ+dfYd56NChVrx4cStfvrxFRETYgAEDbN26dc78Tp06WeXKle21116jU9hc6uzPOz4+3msE0I8//tgaNGhgjRo1cjrUzmwZR0udi3P29nrzzTdt3Lhxzohuy5cvt4IFC9qNN95oL7/8ss2fP98+//xze+edd2z27NkMEnCRUlJS7NSpU1arVi2bOnWqM/2rr76yvn37WmBgoEVGRlq7du2cxx+//fZbK1mypPMoJXKns6+dQkJCrGXLllazZk2rU6eOVz+en3zyibVs2dLq1avndUzDnyOUwj/2dxcE5wZTZcuWtbZt29rGjRt9Ulf8n8yTlyVLlljRokXtrbfeMrMzfdF4PB677rrr7OOPP3YebVm+fLmVKVPGqxNH5C67du1y+uvYuXOnFS9e3Hr16uXMzwyMf//9dwKpHCTzN3bXrl22atUqW7FihaWmplpKSoo1b97cKleu7JzwnDx50p588kmLioqy3bt3+7DWl9+OHTts9erVZmZefdtNmDDBgoODrWrVqhYdHW2ffPKJpaWl2ZEjR2zMmDH22GOP8eixD5198fviiy9a8eLFbcmSJWZmNnDgQAsMDLR7773Xa2CFRo0aWbdu3a74R1CvRGf3TfT6669bbGys9e3b16tMZjDVpEkTr9Hi+LwvzeOPP25RUVH21ltv2c8//+xMX758ueXLl88efPDBPz3GE0xlzb59+6xixYq2Z88ea968uTVq1MgSEhJs1KhRVrZsWbv77rtt6tSp9tprr1l0dLQ9//zzzs37zJu9yN2WLVtmxYsXd27yrl692oKCgqx48eJeI++9//771r59e0awzAJCKVyyrF4QfPzxx04w9eWXX1rVqlW5S+Aj77zzjk2bNs35++TJkzZ27Fh78sknzexMS5qSJUvagAEDrGPHjlakSBGbPXu2c9eSvldyvr87iV+xYoVFRkba4sWL7frrr7devXo5J0rr1q2zu+66y3788Ue3qoosOPuOXPny5a1s2bJWu3Ztq1Gjhh09etRWrVplnTp1snz58tktt9xitWvXtvDw8KuiFVDv3r3N4/F4jdD2wgsvWEhIiK1cudIyMjKsSZMmVrNmTfvss8+cIJ7WNr4xduxY59+nT5+2X3/91dq3b2/Tp083szP9DAUFBVnPnj2tRIkS1rlzZ1u7dq3zmszPj6Ai95k9e7YFBATYjTfeaMWKFbNixYo5A6hkmjVrllWrVs3uvPNO+gv7B1555RWLjIx0zs8zZbZyX7x4sQUEBFirVq28Bn5A1v36669WqlQpi4mJsS+++MLKli1rxYoVs+DgYJsyZYrXTY877rjD2rdv78Pa4p8aM2aMLViwwGvav//9b3vggQfMzOznn3+2MmXKWNeuXS02NtaKFi3q1WIqs4N7/D1CKVyyrF4QZN6pzgw0zu2wFO7YvHmztWzZ0mnBlmnlypW2ceNGS05OtltvvdUefPBBMzsTUBUoUMAKFSp03lC2yJkyL9qOHDlia9eutQkTJtjUqVPtp59+ck7y77rrLvP397e7777b67XDhg2zOnXqcJLqY5mf4dkB8JIlS6xw4cI2efJkS01Ntblz55rH47FXXnnFzM6MYvX+++/biBEjbNKkSVf8KFW7d++2Y8eOWUpKisXExFihQoVs586dNnHiRAsJCbH58+c7ZU+ePGktWrSwMmXK2Ny5c31Y66tbfHy8+fv7W9euXZ1px48ft2+++caOHDli69atsxIlStiECRPM7MzvUUhIiLVp08arZTWPc+UemeHhiRMn7LHHHrO3337bUlJSbP78+Va7dm2rWLHiea115syZ49WyBxd27neid+/eznD027dvt6lTp1q9evWsevXqtnTpUjMzW7hwoTVo0IDv0yXI7ER+zJgxFh0dbbNnz7ZDhw5ZfHy81/6cnp5uaWlpds8999iIESMI03OpjIwMa9mypQUGBjotes3OnFusWrXKUlJS7NZbb7X77rvPzMy2bdtmRYoUsfz589vTTz/tvAcujFAKF+1SLgiuv/56++yzz8yML6cv9O/f315++WWLj4+3Ll26WP369W3mzJleZb777jurVq2a88jEjz/+aPfdd591797dtm7d6otq4yJknlxu2bLFGjdubDVr1rSwsDDLnz+/XX/99TZq1Cg7ffq0zZs3zxn1KD4+3ubPn28DBw60a665xn744QcfrwXMzjwaULZsWedu60svvWT9+vUzM7O9e/fadddd5/xtdnU9cpGWlmYNGza0qKgoS0xMtD/++MM6d+5sefLksQIFCni1Djj7cYm77rrL/ve///mq2le9EydO2MyZM61kyZJ2zz33ONMz7yA//fTTdtdddzmt2J5//nmrV6+e9evXjwvnXGzVqlVWrFgxa9iwoTPim9mZkLJ+/fpWsWLF81pM4dKMHTvW5s+fbyNGjLCqVavak08+aXXq1LE777zTHnnkEevYsaMVK1bMjh496vU6vl9Zc+TIEa+/jx07ZtWqVbOmTZv+afnTp0/bk08+addee63t2LHDjSriMjl9+rR169bNQkJCbPHixV7zvv/+e6tcubJz82Tnzp3Wtm1b+/e//33Fd6GQ3QilcFG4IMh93n33XcufP7/TGfLmzZvt7rvvPi+Y+uyzz6xw4cK2atUqO3HihI0YMcI6dOhAM/pcIPOkcsOGDRYWFmaPPvqorVy50o4ePWo7d+60pk2bWvHixe2JJ54wszN3o9u1a2f58uWzSpUqWf369W3Dhg2+XAWcZevWrVamTBkbP368mZndd9991qtXL/v111/t2muvtd69ezvh/kcffWQvv/zyVXVh8eOPP1rNmjWtUqVKdvToUTtx4oT169fP8ubN6zzulbl9rqbALqc7efKkzZgxw3k072yPPfaYNWrUyGklc9ddd9n777/vfI5X0/59Jdm5c6c1btzY8uTJ49XKICMjw5YvX24NGza0YsWK2eHDh31Yy9zp7O/E5MmTLSoqyjZu3GhLliyxfv362Y033mgvvfSSc7Ppww8/tMaNG9vx48d9VeVc66effrLQ0FBr06aN7d+/39mG69evt4CAAK9HtczMpk+fbn379rWiRYteFY/SXw1Onz5t99xzz3nB1A8//GBFixa1V1991czOtPJt06bNeSEmLoxQCheNC4LcZfjw4XbHHXeY2ZkO95YtW2ZbtmyxTp062a233moffPCBU7Zhw4aWP39+q1KligUHB3MwzQUyv2s//vijBQQE2KhRo84rk5iYaF26dLGIiAibPXu2M33btm129OhRO3bsmFvVRRZ17NjRoqOjzczsrbfesttvv92KFy/u9GGQkZFhaWlp1rdvX3v00Ueviv7ezg4otm7danXq1LGaNWtaYmKinTx50u655x4rVKiQLV++3CkH3zq3ZfTx48dtxowZdu2113q1mHr77betTJkyVqtWLatYsaKVL1/eOX+gdXXulZGRYbt27bIGDRrYddddZ/v27fOat3jxYmvRooXt2rXLh7XM3b777jvr37+/V3+hp0+f9hopOT093Vq0aGEdOnTg+3QJduzYYcHBwebxeKxp06b28ssvO2Hf448/btWrV3eOO+vWrbOePXva3Xff7Yy6hytDenq6dezY0SuYOnTokPXp08ciIyOtXLlyFhISwrXTJSKUQpZxQZA7LVq0yDwej917773m8Xjsv//9r5mdOXBmBlPvvfeeU37ChAn2xhtv0Nw4Fzl48KCVLl3aateu7UzL/P5l/j85OdlKly5tbdu29UkdkTWZn1fmSfD06dPt0KFDVqFCBQsNDXV+X5OTk23YsGFWrFixK/7x2rMDt7MH1Rg4cKB5PB6rXr26HT161P744w/r0qWLBQcHn9fEHu47+xzg1KlTlpqaambewVSnTp2cMtOmTbPnnnvOnnrqKSeQoqVu7pF5jrh9+3ZbtWqVrVy50nkcc+/evVa3bl0rVaqUVzBlxmhk/8TSpUstICDAAgMD7e233z5vfnJysn3xxRfWuHFjq1KlivP7STB1YefeXP/Pf/5j//rXv+zJJ5+0hx56yKpXr25z58611atX20033WQjRowwszOPKickJHiFgsh9Mj//Q4cO2W+//eb1mHGHDh0sJCTEFi1aZGZme/bssS+++MJee+21K75Pz8uJUAoXxAVB7vPFF194/d2jRw/zeDzWoUMHr+lnB1MzZsxws4rIRqdPn7aePXtavXr1bPTo0ZacnGxm/3dQzbwYHDNmjN1www124MABTkpzgHNHEzv772PHjlnbtm2tY8eOZnbm8YFSpUpZjRo1rGzZsta8eXMrVqzYFX9Hbt++fdaxY0f79ttvvaa/+OKLFhYWZm+++aZFR0c7LXf/+OMPa9WqlRUvXpyL3Rzi3//+t3Xo0MHuuOMOp6PlP/74w2bOnHleMHU2WlrnHpm/YR9//LFFRkZa+fLlzePxWKtWrezDDz80szPBVL169axs2bIMj36J/uy4PXr0aCtYsKDde++9523XH374wWJjY61nz57O94nvVdZknkdlWrx4sTVv3ty+/PJLS0lJsUmTJllwcLC99NJL1qxZMwsODrbvv//eN5VFtsr8nn366ad222232XXXXWetWrWygQMHOmXuuecernezGaEU/hYXBLnP2rVrrUSJEs5IEMePH7e6deta165dzc/Pz0aOHOlVft26ddalSxerXLmyzZo1yxdVxj+QGWScOnXKHnroIatVq5aNHj3aGeXy7NYK/fr182pNBd/btWuXPfPMM15DSGeaNWuWeTwe+/rrr83M7LfffrMZM2bYsGHD7L333rsq+un76aefrE6dOtayZUuLj483szOjvIaGhtrChQvN7Ezn/tWrV7dq1arZkSNHLDU19bzWGHDP2b85cXFxVrRoUXv00UetWbNmli9fPnvjjTfM7Eww9cEHH1jJkiWtcePGvqoussmqVassKCjIJk+ebL/88outXr3a2rRpY3fccYdzbvG///3PKleubFWrVqUV3EU6+3uVmprqdcP4+eeft2LFitmzzz5rv/32m9fr9u/f71xks82zZv/+/VaiRAkbNmyY7dmzx5n+7LPPWpEiRZzjS3x8vPXq1ctatWplHo/HWrZsaadPn+am3xXgq6++sgIFCtj48eNt/fr19vTTT5vH43EG7Tp9+rR17drVPB6Pc26Cf4ZQCn+LC4LcJykpycaPH2/R0dHWq1cvZ9qpU6ds4sSJ5ufn5wxTmmnVqlV23333MRRzLvVXwVRmZ5yZ/Ut07drVnn76acvIyOCkKYd47LHH7Nprr7WAgAAbOHDgea0cmzdvbjExMVf1owA7duyw5s2b25133mm9evWyokWLeo3yanamc/hSpUpZ3bp1eXQ8h9izZ48NHjzY607yU089Zf7+/jZlyhQzOxNMvf3229auXTs+t1xu4sSJVrt2ba/PcdOmTdasWTO76667zOxMC4Tdu3dzrnGRzt6m//nPf6xdu3bWtGlT5xzPzOy5556za6+91p577jnbv3//ee/BMT/rEhMTbdSoURYcHGyNGjWycePGOfN69OhhPXr0cPriPHDggC1ZssRat27NCMZXgMz+Oh988EGnj9aDBw/atddea/379z+v/P3332/btm1zu5pXJEIpXBAXBLlH5klHcnKyTZgwwSpVquR10pKYmPiXwVRm3w/InTLvgJ4dTL344otOMDV8+HArU6YMHcrmQL/++quNHz/eatSoYeHh4Xb33XfbZ599ZhkZGfb6669biRIlLCEhwcyu3jvd27dvtyZNmlhAQIC9/PLLzvSzjzfbt2+/KlqP5UQjR4509lGzMyN8ejweK1GihNeoa2Zngqm8efM6LabO7haA84fcI/N847vvvrOjR4/apEmTrHLlyk6AnvlbtXjxYvN4PFywZ4OhQ4daZGSkjR492mbMmGEej8dat27tfIeee+45K1mypA0ZMoQRDbNB5mjVN9xwgzVs2NC2bdtmH374ofXo0cO5MZ+J0O/KkZGRYbfddpu9/fbb9ttvv1nx4sW9rqU+/PBD++qrr3xYwysToRSyhAuC3CPzM/n9999twoQJVqVKFbv//vud+YmJiTZp0iQrUKCAPf74476qJi6DPwumJk6caIMHD7ZChQrR30EOt2vXLps7d65FR0dbmTJlLDo62j7++GMrUKCAxcbG+rp6Prdr1y5r2rSptWjRwpYtW+ZMJ8jwrcwRec/tq2bAgAHm8Xhs6tSpZuZ90TZy5EivRyGQO82dO9c8Ho+tWbPGvv76a6/PO9OmTZusYsWKV/yADJfbjz/+aBUrVnQ6V/7yyy+tcOHC9vrrr3uVGzhwoLVr146QJJscOXLE5s6da9WrV7cyZcrY0KFDLTo62nr37u3rquEyOXHihN1777320EMPWenSpc+7uX///ffbhAkTrtqbhJcLoRSyjAuCnO3sE5DMi4Pk5GSbNGmSVapUySuYOnbsmL300ksWFhZmhw4d4uQllzv78zs7mOrXr5+FhoZaoUKFbN26db6qHs6R+Xlt2bLFFi9ebNu2bfP6HU1LS7NvvvnGunTpYiVLljSPx2O33HKL0+rtapbZcrdZs2b045ADZB5rMvfp2bNn2+7du535DzzwgBUuXNjmzZt33mvffPNNOl3OxRITE23ChAleNypHjRpl+fLls//+97+2f/9+O3nypD3xxBPOABvIunNH0P3mm2+sfPnyZmb22WefeQVSSUlJXqMoZ34fObfLXrGxsda8eXMrXry4eTwep7Uncq/M78jhw4ed0eTNzvQp5fF4rFq1as6jmhkZGTZs2DArXbo0Tx1cBoRSuChcEORMmT+qCxcutNjYWGvcuLG9/vrr9r///c9Onz5tkyZNsqpVq54XTB09etRXVcYlyPycjx8/bkePHvUKMs6+Y3N2MDVs2DDuUOdAH330kRUrVszCwsKsevXqNmzYsD+9QI+Pj7cxY8bwGZ5lx44d1rp1a7vlllts5cqVvq7OVatjx47O6I+nT5+2ffv2mcfjsc6dO3uNAnbffff9ZTBlxmhgucXZAcfGjRvN39/fbrzxRvvggw+c6SkpKfbss8+av7+/XX/99Va1alULDw+/4kcJzW6JiYnOv9euXWtmZ7rJqF+/vj3//PMWGBhokydPdsqsWbPGWrZs6bWdCaSyz9nbctGiRTZkyBALDAzkuJzLZX6uc+bMsZtvvtmqVKlipUqVstdff92OHz9u06dPtzx58tjdd99tnTp1sq5du1pwcDC/Z5cJoRQuGhcEOdPs2bMtMDDQHnroIXvqqaesePHi1rx5cztw4IDzKF90dLQzxDxyl7MPni1btrTrrrvOevTo4dUB59loVpzzZH6G+/bts3r16tmbb75pGzdutKFDh9rNN99sDz/8sHOBnpqaet7r8H+2bt1qd999t9fISHBXt27dnP00MyCPj4+3QoUKWdeuXc8LpoKDg+3TTz/1SV1xaTI/17OPJ8ePH7djx45Z7969zePx2CuvvOJV1sxs9erV9t5779n06dO9Ws7hwubMmWO9evWyw4cPW//+/c3f39+OHDli+/btszvuuMP8/Pxs6NChTvmUlBRr1aqVdejQgScXLqNzj8NX8+AjV5J58+ZZoUKFbMyYMbZnzx7r27ev+fv7O6Mez58/3/r162ft2rWzESNGEEReRoRSuCRcEOQsv/zyi1WtWtVee+01Mztz8AwMDLTBgwc7B9ITJ07Y6NGjrX79+ucNGYzc4fPPP7eAgAB78cUXbeHChdazZ08rWLCgffvtt76uGrJo/fr11qdPH+vevbvzON6JEyfsxRdftFq1ankFU7Qg+XtnB3dwz7n75aRJk+ybb75xPo/ly5db/vz5rWvXrl7nCO3atbPGjRu7Wlf8cz///LONHTvWzMw++OADq1WrliUnJ9uBAwesV69eVqBAAecYdPr0aUL0f+iDDz6wIkWKWLVq1SwsLMw2b97szIuPj7cyZcpYixYt7Nlnn7UpU6bY7bffbpUqVXI6OyeYArImPT3d7r33Xqd/3X379lnZsmXP6y8sM5Tnt+3yIpTCJeOCwH1/9YP4yy+/WLVq1ezEiRO2Y8eO80aKWLlypaWnp1tycjKP7OVCGRkZdvz4cWvfvr39+9//NrMzj18WK1bMHn30Ud9WDlmWlpZm/fv3t2LFilmVKlW85h0/ftxefPFFq1OnjsXExNDSDbnG9ddfbyVLlrT4+Pg/DabObjHFfp37DB482CpWrGj33nuv5c2b19566y1n3uHDh+2+++6zgIAAZ5RFQpGLl5GR4RX2du/e3Twej3Xq1Ml++eUXr7LLli2z3r17W6lSpaxp06Z23333cSMDyIJzr6FSU1OtXr16Nn/+fDt+/LhFRUV5BVLTp0+nZZSL8gi4RPny5fN1Fa4qGRkZ8ng8OnnypA4fPqxFixbp119/VVJSktLT0/Xrr79q9erVatGihVq0aKHXX39dkrRx40b95z//0ffff6/ChQsrJCTEx2uCi+XxeBQQEKDffvtN0dHR+uWXX3TTTTepdevWGj9+vCRp7ty5WrNmjW8rir+VN29eDRs2TN27d1dCQoKeeuopZ16hQoXUr18/NWvWTL/++qsOHTrkw5oCf27BggV6/PHH1adPH82YMUOStGvXLhUrVkw9evTQmjVrlJaWprp16+rbb7/VJ598oqFDh+qXX36RJPn5+Skj4/+1d59hVZzrGsf/i6YgoAYLVuyKWKJiUBTBQhTFEhK7IPYWS2JFTYgFC1giYq8EVGyoWFFUpBklRrBsKbGgsSAxgA1FYM4HzlqJO8k5ce/Egfj8viTMmsV1j3Mxs9Yz7/u8BWoegnhDixcvpm7dumzbto1evXoxdOhQ3WsWFhb4+fnRt29funfvTkREBHp68tXiTT158gQDAwMAjh49SpkyZVi+fDlnz57Fx8eHpKQkABRFoW3btqxZs4bLly9z8OBBNm/ejIGBAXl5ebrfIYT4Y1evXgUKv8dWr16dZcuW0bBhQ3r16sXKlSsByMnJYd++fRw6dAhFUdSM+86QO4cQxUBBQQF6enqkpKQwZswYHBwc6Nq1KzY2NowdO5bHjx/j7u5Ox44dadasGRs2bNB9MAwJCeH69etUrlxZ5aMQb0J7E9R+gcvOzsbAwICoqCjat2+Pi4sL69atAyA9PZ09e/aQmpoqN88iRHsu7t69y927d7l16xaWlpZ4eXnh7u7OiRMnmDdvnm7/UqVKMXXqVHbt2oWlpaVasYX4XRs2bGDgwIH88MMPxMfH4+Hhwfr16wE4e/Ys5cqVw9PT87XC1MmTJwkNDWXu3Lm63yNFi+LHzMyMDz/8kDt37rBw4UKePHkCFF7jLCwsWLJkCc7Oznh4eJCTk6Ny2uLlzJkzNGjQgGfPnjF58mSmTZuGl5cXEydOZMmSJRw6dIgVK1aQkpKCRqMB4PTp05iamuoeDiuKIgUpIf6AUjgzDI1Gw+HDh2ncuDETJ04E4JNPPuHmzZuYm5uzcuVK3d/U/PnzSUxMxM3NTfd3J/5eGkW+wQhRpGkLUpcuXaJLly707NmTVq1aYWdnx9atW9mzZw+GhoYMGDCApKQkzp8/z5o1a8jOziY2NpaNGzcSHR1N06ZN1T4U8Sdpb54nT57k2LFjzJkzBxMTE7Zu3crQoUNp164dkZGRuv1nzZrFnj17CA8Pp0aNGqrlFr/QnsMDBw7oRkT9+OOPjB49mgkTJlCiRAnmzp3L2bNn6dGjBzNnzlQ5sRB/bOPGjYwbN47t27fz8ccfc+XKFVxcXKhbty779u2jdOnSAHzwwQdkZmayZcsWWrZsSYkSJYiKisLJyYm9e/fy0UcfqXwk4s/QXr/OnTuHqakpNjY2AIwfP55vv/0WNzc3Pv30U8zMzADIysrCwMCAx48fywOwN3ThwgVmzpzJxYsXycvLIzExkWrVqunOwe7du5kyZQrOzs707NmTtWvXkpiYqBt9KF+Yhfhj2jKHRqMhJCQEd3d3rKyscHBwYMuWLTx//hw/Pz9CQ0MxMTHB1taWe/fuERkZSUREBM2aNVP5CN4hb3/GoBDiz9L2ZkhMTFRMTEwULy+v3/QM2LFjh/LBBx8odnZ2ysaNG5UhQ4YopUuXVho3bqx06tRJSUxMVCO6+C/t2bNHee+995SJEyfqloR+8eKF8uWXXyoajUYZO3asMmHCBGXo0KGKubm5cvHiRXUDi9+IiIhQTE1NlVWrVinZ2dnK119/rWg0GmXfvn2KoihKRkaGMmXKFKVevXqKn5+fumGF+AOnT59WNBqNMmfOnNe216lTR7GxsVHS09NfWzyjQ4cOiomJiZKQkKC7h9nb2ysrVqx4q7nFf0bbd2Xv3r1K5cqVldGjR+v6guXn5yvjxo1TWrZsqcyfP1/JyspSZs+erdjb20uf0f/C5MmTFY1Go1StWlV5+PChoiiv920NDQ1VmjVrptjY2CgODg66puZCiD9n586dikajUQ4ePKgEBQUp77//vu7v6Pnz58rhw4eVwYMHKz179lSmTJmiJCUlqZz43SNFKSGKuNu3byvlypVTevfurdv2700x165dq1hYWCjr169XFEVRUlNTladPnyqPHz9+63nFm3vx4oWiKL98GYiPj1fKli2rO5//vt+uXbuUrl27Kp06dVLGjRv32uo8Qh0ZGRm/2TZhwgRl7NixiqIoyo0bN5R69eq9tgCBoihKenq6MnPmTFk2XRRZKSkpioODg9KjRw9dgdzNzU0xMTFRnJ2dlbZt2yrvv/++MmbMGCU6Olp59OiRMm7cOF1T83PnzinNmjVTkpOT1TwM8QaOHTumGBsbK5s2bdKtEqpVUFCgTJ06VbGxsVHq1aunVKxYUTl79qxKSYsn7b1eW7SNjo5WQkNDla5duyo1atRQrl+/riiKouTk5Ojek56eriQlJeneI03Nhfhjv25qHh0drWg0GmXz5s2KoijK5s2bldq1ayt5eXmyMEMRItP3hCjibt26RZ8+fahUqRJTp06lbdu2uteU/x3eDeDg4ED58uUJDQ0lPz8ffX19tSKLN7BlyxZSU1OZNm0aZcqUAQp7t+zevZvjx4+TmZnJyZMnCQoKIiUlhUmTJjFq1CieP3+OiYmJNDctAry8vEhNTWXHjh0YGhoChX+bnTt3pl+/fri7u1OjRg26d+/OmjVr0Gg0bNmyhdq1a9OuXTvdFF0hiqrU1FQmTJiAvr4+2dnZPH/+nMDAQBo2bMiVK1dITU3Fz8+Pa9eu0bt3bzZu3Kh774sXL3j8+DEVKlRQ8QjEn5Wbm8u4ceN47733WLx4MY8fP+b69evs2LEDc3NzRo0aRfny5QkPD+fhw4fY29tTu3ZttWMXG7++3v/88888f/6cqlWrAoUNmCdOnMj169eJjIzEysoKgMDAQDp37qzrNSj3DCH+b9rvR1FRUSiKQm5uLs7OzkBhD8ShQ4fy3XffUapUKQD2799Pr169VEws5IomRBFXo0YNtm3bRm5uLvPnzycmJuZ39zMwMMDExARAClLFyNmzZzly5AirV68mKysLKFzRKCIigmXLluHm5kZgYCDlypWjS5cujBkzhh9++EHOdREyfPhwvvzySwwNDXVNfjUaDS1atCAgIAArKyvc3NxYuXIlGo2GvLw8jh8/zrFjx8jLy5OeIKLIq1u3Lv7+/rx8+ZLLly8zffp0GjVqhJ6eHo0aNeLjjz/m9OnTnDt3TrcAAxR+MShZsqQUpIoRIyMjHj16RGxsLHfv3mXixIlMnjyZyMhIlixZomsQ3LlzZ9zd3aUg9QYURdEVk7766it69uxJw4YN6devH2vWrMHGxoYlS5bQoEEDWrduzf79+3F2dmb16tWv/Q1JQUqI/5tGoyE2NhYnJyeys7Pp0KGD7jVzc3Pu3r2r68vm7e2Nm5sbt2/fViuuQIpSQhQL2i8EGo2G+fPnExsbCxRedAsKCvjxxx8xNjbWPQWQAZDFx/r163F2diYsLAx/f3+ys7Pp0aMHX3zxBWvWrKFBgwbMnj2bTZs2sWDBApo1a6Zb+Qikyana8vPzqV27Nk2aNOHEiRO4ubnplu/u1q0benp6mJmZMXPmTAwNDcnLy8Pb25vY2FiGDBmCgYGBnENRLNStW5e1a9fSqlUrtm7dqntAoqenR15eHsbGxjRo0AB9fX3y8/MBuT4VB7/3eWHixIn89NNP1KpVi6dPnzJ27FjOnz9PQEAAycnJZGdnq5C0eHv06JHu72Hu3LmsXr2ayZMnEx8fz507d1i+fDmpqam8//77LFmyBAcHByZPnoy+vj4xMTHo6enJZzsh/qSUlBQeP36Mj48PPXr00D3AVRQFY2Nj9PX1MTIywtfXl6VLlxIfH0/16tVVTv1uk+l7QhQj2ikUiqIwe/Zs3VS+GTNmcOzYMQ4dOqQbBi6KvlevXmFoaMj9+/f5/PPPuXr1KgMGDGDChAmYmJiQmZlJ2bJldft7eXmxb98+oqKiZORBEZSSkoK1tTXdunUjICCA6tWrs379ejZv3szDhw+xtbXlyZMnXLhwgfDwcFnVRRRL2vsQwOzZs2nTpo3KicR/SjvFJSYmhvDwcHJycmjUqBGenp48fvyYa9euYWdnp9t/woQJpKWlERISgrGxsYrJi5fo6Gh69erFtWvXMDc3x9HRkS+++AJXV1fOnDmDi4sLAQEBDB069LW2DGlpaVSrVk1X+JWp+kL8/9LT06lZsyYvX75kxowZ+Pj4vPZ6fn4+tra2GBkZcenSJaKjo7G1tVUprdCSkVJCFCP/PmLq4sWL+Pr6smrVKgIDA6UgVcwYGhoSEhJC//79yczMJCMjg0WLFrF8+XKysrJ0BamIiAhGjBjBhg0bCAkJkYJUEVWvXj2uXbtGdHQ0I0eO5O7du4wcOZKVK1fi4eGBsbEx7dq1IzY2VgpSotjS3of09fWZNGkSly5dUjuS+A9pNBpCQ0Pp0aMHqampvHz5kqFDhzJy5EhMTEx0BamEhASmTp1KUFAQ8+bNk4LUG6pcuTLlypXjq6++4tGjRxQUFODg4MD+/ftxdXVl2bJlDB06lJycHLZv305ycjIAVlZW6OnpUVBQIAUpIf6ksmXLsmXLFqpUqcLly5d127XjcPLz83n69Cnx8fGcP39eClJFhFzhhChmtF8IPv/8c7p06UJmZiZnz56ladOmakcTbygxMZExY8awdOlSXF1dsbCwYMSIEezatQuNRsP48eNRFIWrV6+SkZHBmTNnsLGxUTu24JcRBrdu3SIjI4Py5ctjampKvXr1OHv2LK1atWLYsGGsW7eOli1b0rJlS7UjC/GXqVu3Ln5+fmzcuJFGjRqpHUe8gV83yb558ybTpk1jzpw5jB8/nnv37hEUFISxsbGuCHLx4kU2bNhAXFwckZGRNGnSRM34xY6iKFhZWTFo0CD27t3LqVOnSE9PZ+LEiYSFhbF48WJGjx4NFJ6PoKAgKlSoQP369XW/Q3pICfHHtJ/HtNc2IyMj+vbti0ajwdPTk7Fjx7J69WpdT08jIyMOHz6MgYEBtWrVUju++F8yfU+IYio5OZlp06axYMECKVQUU4cPH2b06NHExsbq5rIrioKnpydhYWF4eXkxduxYSpYsSU5ODmZmZionFvDLB6DQ0FAmT55MXl4eenp61K9fn3nz5mFnZ0dSUhKtW7fGwcEBX19fGjRooHZsIf42shpY0ffNN9/Qt29fSpQooTtfiYmJjBo1im+//Za0tDTatGmjWyUUCh+cNG3alMTERCpUqEClSpVUPori49q1a1hbW+t+zsrKws7Oji5dutC1a1c+/vhjPvroI4KCglAUhZycHPr06UNubi5Hjx6VRUyE+BO0n8dOnDjBkSNHuHz5Mj179sTR0ZEmTZqwa9cuPD09GTp0KAEBAYDcr4oqOSNCFFP169dnz549UpAqhrTPArRNrp89ewbAy5cv0Wg0rFq1CiMjI1avXs2aNWvQ19eXglQRotFoiIuLw93dncmTJ3Pq1CkWLVqEqakpAwcO5Pz58zRo0IBz585x6NAhvL29efXqldqxhfjbyAf8oi09PZ3PPvuMdu3akZubqztfr1694smTJxw7dgwnJye6devGypUrgcKC1FdffUVycjJNmzaVgtQbOHjwIDY2Nri4uHDjxg2ysrIoU6YMGzZsYN26dURERDBz5ky2bdvGoEGDGDx4MK6urqSlpXH48GH09fUpKChQ+zCEKPI0Gg379++nV69elChRgqZNmxIaGkr//v25f/8+H3/8MYGBgQQFBTF48GBA7ldFlZwVIYoxQ0NDtSOIP+nXg1K1TUzbtWuHgYEBM2bMAKBEiRIA/PTTT7Rs2RIXFxf69OkjK1gVQdHR0XTo0IFPP/2UunXr0r9/f2bPno2NjQ0LFiwgKyuLevXqkZqayty5c+VvVQihmgoVKhAeHk52djaOjo7k5ubqtltaWtK7d29atWrFunXrdNP2tm/fTmZmJu+9956a0YslKysrqlatSlxcHJ9++in+/v5cvHiRdu3aMXLkSL777jvatm3LgQMHePbsGQYGBrRv356LFy/qVmmVL85C/DHtZ+r79++zYMEC/Pz8WLRoEbNmzSIxMZHOnTtTqVIl9PX16d27NwEBAZw4cYIHDx6onFz8EZm+J4QQfzPt8OIzZ84QHh5OpUqVaNmyJa1atSI+Ph4XFxdat26Nt7c3ZmZmBAcHEx8fz65duzA3N1c7vvgd8+bNIygoiO+//x5TU1Pd9g0bNjB//nzOnz9PxYoVVUwohBCvT1W5cOEC/fr1o27duuzfvx8jIyO++eYbpkyZQvfu3enXrx/m5uaEhISwZcsWoqOjady4scpHUDxo/53z8vLIz89nxYoVPH78mDJlypCWlkZ4eDi+vr4YGxszbtw4RowYwfTp03n58qXugRQUNmGWqXtC/FZQUBAA7u7uum23b9/G2dmZM2fO8OLFCxwcHHBxcWH9+vUAnDhxgubNm2NhYcGTJ09k1kERJo3OhRDib6bRaAgLC6Nv377Y2try008/YWhoyNy5c+nVqxfHjx+nX79+uLm5UVBQQEFBAQcPHpSCVBFmY2ODRqPh+PHjdO3alZIlSwLQvHlzDA0NycrKkqKUEEJ12pG2R44cYc+ePbz33nscO3YMZ2dnTp48iYeHBy9fviQkJISePXtSr149SpQowZkzZ6Qg9Qbu3r1LtWrVMDAwwMDAgPfff58FCxbg7e3NlClT2LhxI2PGjGHSpElYWFjg6+uLq6urrgWD9uGVFKSE+K0HDx6wfft2srOzMTY25pNPPgHgyZMnmJqakpSUxJAhQ+jSpYuuJ15SUhK7d+/GzMwMCwsLKUgVcTI2VAgh/mbp6ekkJCQQEBBAdHQ0QUFB2NvbM378eEJDQ2nevDmXL19mx44d7Nixg/j4eFq0aKF2bMEvQ8Rv3LjBtWvXuHDhAgBubm40atQILy8vDh06xM8//0xBQQEhISGULFmS8uXLqxlbCCGAwqJUREQEvXr1wtbWlnnz5rFy5Upu3rxJ27ZtycvLY8SIEYSEhPD9999z+PBhwsPDZUXfNxAfH4+VlRVTp04lOTkZgA8//BAHBwcGDBjA/fv3GT58OAcOHCA9PZ1SpUqRmZnJ2rVrdb9DpukL8ccsLS2ZO3cu1atXJyAggJCQEKDwAWGZMmXo0KED7du3Z8OGDbrC7tatW/n++++xsrJSM7r4k2T6nhBC/I0uXbrEoEGDMDAwYM2aNdjZ2QGFK/N8/fXXHDlyhOXLl+ue+oiiQ/vkeu/evUyZMgUo7Pfl7OzM0qVLqVmzJp988glXr14lKyuLBg0acOnSJSIiImjWrJnK6YUQ76LU1FTq1q372raZM2dy9epVDhw4ABRONfv222/p06cPdevWJTw8HCMjIzXi/iNkZWURFBTE3LlzadiwIZ07d2bmzJkAeHp6UqpUKRYtWoSZmRmZmZncvHmTrVu3smzZMl0PLyHE79M2/dfT0+PkyZNs2rSJGzduMH36dD766CNu375N3759yczMZOHCheTk5HDu3Dm2bNlCTEwMTZo0UfkIxJ8hI6WEEOJvlJmZSc2aNUlOTiYzM1O33dramkmTJtGjRw8GDx7MoUOHVEwpfo9GoyEmJobBgwcze/Zsdu3aRXh4OAkJCXh6enLnzh327NnDihUrmDlzJgMGDCA+Pl4KUkIIVYSHh1O/fn3279//2vb09HRu3bql+1lPT4/WrVszceJEzpw5g4ODg675uXhzZcqUYfz48cTGxlK7dm02btyIvb09Fy5cwMHBgWfPnnH16lUASpcuTfPmzfH398fAwEBWZhXi/6HRaNDT02P//v1s3ryZmzdv8t133zFnzhz27t1L9erV2bt3L7Vq1cLLy4v58+fzww8/SEGqmJGRUkII8TeLjY1l4cKFpKamsmHDBtq1a6d77cqVK2zevJkxY8b85um2UN/ixYsJDw/n5MmTQOGHo3v37tGqVSvs7e11Q8iFEKIoGD16NNu3byc4OJgePXoAEBERwdixY5k9ezYeHh66ffft24e/vz85OTns2LGDmjVrqhX7HyM7O5uLFy/i5eVFRkYGXbt25dixY3Tq1InVq1erHU+IYuPXTf/j4uJwdHQkICCANm3a8OOPP+Lr60tubi6ff/45bm5uANy6dYsyZcpgaGhIqVKl1Iwv3pCMlBJCiL+ItsZ/7949bt++TVpaGgBt2rRh6tSpNG3alAkTJhAdHa17T6NGjVi0aJEUpFSkHRqen58PQF5enu61Bw8ekJOTg0ajQaPR8OLFCypXrsymTZs4fvw4SUlJuvcLIYTa1q5di7u7O/369dNN17O2tqZ58+bs2LGDrVu3AoXXu/Pnz2NtbU1kZKQUpP4ipUuXxsnJibNnz9K3b1/S0tLIyMhg7dq1vxnBJoT4rZ07dwK81vQ/Ojqa5s2bM2rUKBo1akSXLl3w8fFBo9Ewd+5c3bWuRo0alClTRgpSxZAUpYQQ4i+g7T904MABPvroI9q0acOQIUOYM2cOAI6OjowdO5Z69erx2WefcerUKd17pZeHerTLeN+4cQMfHx8mTJhAfHy87vXu3btz4cIFtm3bBqBbZU9fX59y5cphamqqW25dCCHUpC2Qr1q1Ck9PT/r378/+/fupUqUK3t7elClThnnz5lGnTh2cnJwICAhgzJgxuuua+Gtoz4OPjw+zZs1i/Pjx2NnZ4erqqnIyIYq26OhoVqxYwZ07d17bXrZsWR4/fsz9+/eBws/crVu3ZvLkySQlJeHl5cXevXvViCz+IvJJWggh/gIajYYjR44wcOBABgwYQGhoKA4ODsyZM0fXJNvJyYlx48ZRrlw5vL29ycnJQWZQq0dbkLpy5QouLi5kZGRQrVo1WrduDUBOTg5OTk6MHTsWb29vgoODAXj58iWnT5+mZMmS8mVOCKE67X3k1wXy1atX4+7uTv/+/dm3bx/W1tYsX76cbdu20atXL7p37058fDyNGzdWK/Y/lp6enu6cfPDBB8ydO5ezZ89iYGDw2khcIcTrmjVrRlhYGNWqVePKlSu67bVq1eLevXscOnSIgoIC3WqVFSpUoEWLFjg5OdGyZUu1You/gPSUEkKI/8C1a9eoWbOmrijx448/4unpSc+ePRk/fjw//fQTzZs3p2bNmly6dIkhQ4awbNkyAGJiYqhZsyZVqlRR8xAEkJycjL29PUOHDuXLL7/EzMwMgMDAQFJSUpg+fTpPnjxhyZIlrFq1inr16mFsbMzNmzc5ceKENDUXQqhKO0o3NjaWmJgYsrOzsbGxYeDAgUBhj6nAwEB27NhBr1691A37jtOeKyHEb/367yMtLQ1XV1caN27M9u3bAfjiiy9YvHgx/v7+fPjhh1SrVg1vb2/S09NZsmQJZcuWVTO++C9JUUoIId6AoigcPnyYHj16sH37dtzc3DAyMiI3NxdfX1/69euHqakpHTp0wNHRkQULFjBlyhS2bNnCyJEjWbt2rdqHIP5XTk4OQ4YMwdTUlHXr1un6FyxYsIDZs2dTp04d+vfvz+TJkzE3NycuLo7IyEjKlStHx44dqV27tspHIIQQEBoaypAhQ+jZsydPnz7l2rVr2NjYsGfPHgDGjRtHcHAwGzdupHfv3iqnFUKI3/p1USozM5NNmzYREhJC48aN2bJlCwDe3t4EBARgbm6OmZkZN27cICYmhvfff1/F5OKvIEUpIYT4D3h4eBAWFsa6devo3r07JiYmvHr1CkNDQ/z8/IiKimLr1q1YWFjg6+tLcHAw+fn5REREYGlpKU9Li4Dnz5/TrFkzPv/8c0aNGoWiKERHR9OxY0eOHz9OVFQUBw8exMXFhbFjx1KpUiW1IwshxGuuX7/Ohx9+yJQpUxgzZgzJycm0bt2agQMHsnLlSt1+gwYN4vTp0yQnJ2NqaqpiYiGE+H0nTpzA2NiYtm3bkpWVxTfffMPmzZtp3rw5mzdvBgr7Tt2/f5/MzEycnZ2pVauWyqnFX0F6SgkhxJ8UFhbG2bNnAfjmm2/46KOPGDZsGAcPHuTFixcYGhoCcOnSJZ49e4aFhQUA6enpDBw4kHPnzlGpUiUpSBUB+fn53Llzh9TUVOrVqwcU9gVr164dV69epX379nh7e9O1a1fWr19PbGysyomFEOK3Hj58iKmpKWPGjCEtLQ1nZ2f69OmjK0hpr13BwcFcuHBBClJCiCLp5cuXbN26lXbt2hEXF0eZMmVwd3dn6NChfP/99wwZMgQABwcH+vTpw6hRo6Qg9Q9ioHYAIYQo6hRF4fbt2wwaNAhXV1eMjIxo0aKFbjjxsGHDAOjRowfGxsZ07tyZmTNn6raHhoZy7tw5+TKgsm+++Ybc3FyGDx+Ovr4+5ubmVKlShf3799OyZUvd+albty75+fno6+vTv39/IiIiZJSUEKJI0U51URSF9957j/j4eD7++GNcXFxYtWoVAAkJCezYsQMLCwsaNGiApaWlyqmFEOKXxRm01zCNRkOJEiVYuHAhhoaGtG/fnpMnT9K2bVvc3d2Bws9wffv2ZefOnWpGF38TGSklhBD/D41Gg5WVFfv27eP8+fN8/fXXfPfddwBs2bKF3r17M2zYMMLCwsjPz+fDDz9k/Pjx/Otf/+LevXtERkbqRuMIdWRkZLB79242btzItm3bAKhUqRIdOnRg69atnDp1itzcXKDwfGv7SwUGBmJgYCDnTwihCkVRdF/gft1xQzvi1tLSkmvXrmFnZ4eLi8tr/fECAwP517/+Rfny5d9+cCGE+DcFBQVA4ago7TUsJycHKLy+Va9enfnz59OnTx86duxIbGwsZcuWxcPDg969e3P//n3u37+vWn7x95GeUkII8Sdon+ScPn2aoUOH0qZNGyZOnKhbgnbYsGGEhISwadMm+vXrp3vP8+fPKVWqlJrRxf9KTExkyZIl3Lx5k+HDh+Pp6cmzZ8/o1KkTaWlp+Pn50blzZ8qVK8etW7dYuXIlGzZsICYmhiZNmqgdXwjxDsrJycHY2Jjc3FyMjIyIiYnh3LlzmJiY0KNHD6pUqcKhQ4dwc3Nj2LBhDBo0iJIlS7Jt2zY2b95MdHQ0jRs3VvswhBDvuIKCAvT09EhNTWXixIls3ryZ+/fv4+rqSkREBNbW1rrP2nfu3OHzzz/n0KFDxMTE0KJFC7KzsykoKJBV9v6hpCglhBB/gnY6F8CpU6cYNmzY7xam9u7dy4oVK+jduzcmJiZqRha/49KlSyxevJi0tDRGjRqFu7s7N2/eZNiwYURFRVG1alUsLCzQaDQ8fvyYXbt2yaouQghVBAUFMW3aNBISEqhYsSK7d+9m6NCh1KlTh2fPnpGfn8+RI0eoX78+oaGhfPbZZ+Tn52Nubo6pqSnr16+X65cQQnXagtSlS5dwdHQkOzubhIQEDAwMGDt2LHfu3NFdy7T7njp1ik6dOgGFvfFat26t8lGIv5MUpYQQ4v+gfWqjLUppb5YnTpxg5MiRvylM9enTh7i4OK5du4aZmZnK6YWW9rwBXLx4ET8/P27dusWnn37KgAEDAFi1ahW3b9/m0aNHODo64uTkRLVq1dSMLYR4h0VFRTFjxgyePn3KkSNH8Pf3x8bGhkGDBpGQkIC3tzexsbF8++231K9fn7t375KZmYmRkRHly5eXEQVCCNVpP38lJCRgb2+Pp6cnMTExLFiwAFdXV77//nu+/PJLLl26xPHjx2nQoAEASUlJeHt7U7FiRcaMGYO1tbXKRyL+TlKUEkKIP6AtSJ08eZJ9+/aRlZVFw4YNGT58OBUqVHitMDVp0iRsbW0BuH//vjTGLiK05zAzMxONRoOxsTElSpTg2rVrzJs3j7S0NEaMGIGnp6faUYUQ4jfOnj3LtGnTePDgAdWrV2fp0qW60U8//PADEydOJDY2lnPnzlG/fn11wwohxK9oC1KJiYm0bt2azz//nPnz51O1alWmTZvGhAkTgMJFGWbPnk1CQgJhYWFYWVmxcuVKEhIS2LZtm7TBeAdIo3MhhPgDGo2G/fv34+rqysuXL3n48CH79u3jgw8+4Pbt2zg7O7N+/XrOnz/PvHnzuHjxIoCscFREaAtShw4dolu3bjg5OdG4cWMCAwOpXbs2X3zxBTVq1GDjxo0EBwerHVcIIXS0DYFbt26Nn58fdevWJSoqCiMjI93rderUYcWKFTg6OmJtbc2NGzfUjCyEEK/R09Pj+++/x8HBgc8++4z58+cDUL16dbKysnT7vf/++yxcuBB7e3tsbW1p164dy5cvZ86cOVKQekdIUUoIIf7ATz/9xJw5c5g7dy4bNmzg+PHjbNmyhXr16uHk5ERGRgbOzs6sXLmStLQ0KlasCPyyKpJQl0aj4dixY/Tr1w83NzdCQ0NxcHBg9OjRxMXFYW1tzfTp06lVqxaLFi1i165dakcWQggURUFPT4+UlBRu3bpFq1at+PLLL2nRogU9evQgIyMDPT09FEWhTp06+Pr60rt3b169eqV2dCGE0Pn555/58MMPGTFiBD4+PrrtFStWJCUlBUB33WrcuDG7du0iMjKSefPmkZiYSNOmTVXJLd4+KUoJId552lnMT548ee3np0+fcv/+/dcaxVpbW+Pr60vZsmXZuXMnBQUFdO7cmbi4OCpXrvzWs4vfpygKeXl5bN26lU8//ZQpU6ZgbGxMdHQ0gwcPxsnJCYAmTZowadIk7O3t+eCDD9QNLYR452lHeIaGhtK9e3cOHDjAw4cPadWqFcuXL6dSpUo4OTnx8OFDNBoNiqJQv359goODZfqeEKJIMTU15ejRoyxduhQoXDQIoGzZsmRmZgJgaGio23/p0qWYmJjg5uZGjRo13npeoR4pSgkh3nkajYZHjx5Rq1YtNmzYoBvpVKlSJapWrcqZM2d0++rr69O0aVMMDAxITk7WNc82NjZWJbv4pYgIkJeXp/t/AwMD0tLScHFx4cmTJ9ja2tK+fXvWrl0LwLZt2/jhhx9o3rw5K1eulA9AQgjVaTQajh8/zqBBg5gwYQL9+/enQoUKQOFUvsWLF2NhYYGzszMPHjzQ3a9+/cVOCCGKAiMjI91CQL/WsGFDnj59CvzyGc7b25upU6dSokSJt5pRFA1SlBJCCAqLSh4eHnz66acEBQUBhXPhW7duzalTpwgNDdXtq9FoqFKlCmXKlEFRFN2TbfH2af/tHz16BBQWoqKjo0lKSgKgatWqLF26lMaNG9OrVy9WrlwJwPPnz9m9ezcHDx5EURRdnxYhhHhbtH2jtP8FyM3NZdOmTYwYMYJx48bpClLagru9vT1LliwhPz+fjz76iIKCAmTNIiFEcaCvrw9AuXLlSE5O1i1C4+3tja+vL/Hx8TRu3FjllEINBmoHEEKIosDExARvb29KlSrF4MGD0dfXZ8CAAcyZM4cBAwbg6+tLdHQ09vb2REVFcfLkSRYsWCDFKJVpNBoePnzIoEGD6Ny5M1ZWVvTp04ejR49ibW1N7969mTlzJqVLl2bVqlW69/n4+HDlyhWWLVsm51AI8dZpV6W6desWJ06cwNbWlmbNmmFkZMStW7ewsbEBCqe76OvrY2BQ+JH97t27fPDBB2zdupVy5crpRusKIURxYWlpiaIomJmZMX/+fHx9fYmJiaFFixZqRxMqkaKUEOKdo/0yoJWXl4e+vj7m5ubMnTuXU6dOMWjQIPLy8vDw8GD79u0sWrSImJgYDh8+jKWlJWfOnKFBgwYqHoXQUhQFa2tr1q9fT1paGlu3bqVz584AuLi4kJiYSFhYGE5OTjRv3pw7d+5w8uRJTp48Sa1atVROL4R412jvQZcvX+aTTz7BxsaGqlWr6l43Njbm/PnzQOHIAu3+d+7cYceOHQwcOBBbW1u14gshxH+lYcOGlC1blk8++YSjR48SFxcnBal3nDxeEUK8c/T09Lh9+zb+/v5A4ZQv7fQHX19fUlJS6N27N56enmzZsoX33nuPhQsXEhMTQ0xMDEePHn2t+blQj6IoVKxYkW7dupGWloalpaVuKh+AmZkZM2bMYP78+VhaWpKSkkLVqlWJi4ujWbNmKiYXQryr9PT0SEpKwtHRETc3NwICAnBxcdG9PmXKFK5cucJnn32m2x8gICCAHTt2yHRjIUSxptFoSElJ4ejRo5w/f14KUgKNIhPRhRDvmPz8fGbNmsW+ffsYNmwY06ZNA2DBggUsXbqUnTt34uTkxJw5c/Dx8SEwMBB3d3eVU4t/p+0nlZOTw507d0hJSeHMmTNERUXRq1cvvLy81I4ohBC/kZOTg4eHBxUrViQgIEC3/dWrV/z8889cv36d2NhYgoODKVOmDE2aNOHhw4eEh4cTGRkpD0WEEMVafn4+Cxcu5JNPPpFZBwKQ6XtCiHeQvr4+48eP58WLF4SGhmJubs6TJ09YtmwZwcHBdOrUCYAZM2agr6/P4MGDMTIyom/fvionF1ragtSRI0fYuHEjixcvxtXVFVtbW16+fMn+/fvR09Nj+vTpAAQHB9OiRQusra2lMb0QQlUGBgY8ePAAR0dH3bbw8HCOHTvGxo0bsbKywsTEBH9/fzZv3szNmzextLQkLi6Ohg0bqphcCCH+e/r6+nh5eekanwshRSkhxDupSpUqzJgxAx8fH77++muuX79OeHg4HTp0IC8vDwMDA0qVKsWUKVMwMjKiSZMmakcWv6LRaAgNDWXIkCGMGTOGJ0+eAIXNM728vFi0aBGhoaFcv36d8uXLs3DhQlJTU3XvFUIIteTk5PDTTz9x6dIlkpKS2LdvH4GBgTRq1Ij58+djamqKn58fERERBAYGAr80PBdCiH8CuZ6JX5Ppe0KId1p6ejoLFiwgMjISDw8PJk+eDKArTAEysqYISkpKomPHjnzxxReMHj1at/3mzZvUrFmTx48f4+/vz4kTJ8jJyWH9+vUy5UUIUWScOnWKzp07U6VKFX7++Wf8/Pzo2LEjderU4dWrV7i6ulKhQgWCgoIAuQ8JIYT455KRUkKId1rFihXx8vKioKCA3bt3k5eXx/Tp0zEwMNA9mZYvAkXPvXv3qFChAqNHj+bnn39mz5497Nq1i/Pnz9OvXz98fX2ZPn0606ZNIycnh9KlS6sdWQghdDp06MCNGzd4+PAhVlZWlCtXTveavr4+pUuXpkaNGrpFOOQ+JIQQ4p9KRkoJIQTw4MEDfHx8uHjxIh07dmTOnDlqRxL/h5SUFBo0aMCgQYNISEigVq1aWFtb06hRIzw8PAgLC6Nbt25qxxRCiDeSm5vLvHnz2Lx5M5GRkdStW1ftSEIIIcTfSkZKCSEEhb2IZs2ahZeXF3FxcTx69AgLCwu1Ywl+mbby4MEDSpcuTV5eHvXq1ePgwYOsWbOG7t27M3jwYOrUqYOenh7r1q3jxYsXascWQog3EhwcTHx8PDt37uTo0aNSkBJCCPFOkJFSQgjxK+np6UDhtD5RdOzfv59Zs2ah0Who06YNY8eOpWnTpq/1/gKYNWsW33zzDbGxsVSvXl3FxEII8eclJyczevRoypYti4+PD9bW1mpHEkIIId4KKUoJIYQo0pKTk2nfvj3Tpk0jIyODhIQEMjIy8Pf3p1WrVgAcOHCAnTt3curUKY4ePUqzZs1UTi2EEG/m4cOHlChRQnrgCSGEeKfI9D0hhBBFzq9Xmnr16hUff/wxkyZNAiAyMhJ/f3/GjRvH6tWrsbOzQ19fHzMzM06fPi0jDIQQxVKFChXUjiCEEEK8dTJSSgghRJGiLUidOnWKqKgosrOzefDgATt27NDtoy1M3b17F39/f+zs7Hj58iUlSpRQMbkQQgghhBDiTUhRSgghRJFz8OBB+vTpQ6NGjcjMzOTOnTvExMTQsmVL3T5RUVHMmTOH/Px8jh07RokSJWTZdCGEEEIIIYoRKUoJIYQoUrKzs1m/fj1ly5Zl+PDhxMfHs2jRImJiYjh06NBrhamYmBhq1KhB1apVVUwshBBCCCGE+E/oqR1ACCGE0Lp06RIVKlQgODiYypUrA9CyZUvmzp2Lo6Mjrq6uXLhwQbd/27ZtpSAlhBBCCCFEMSVFKSGEEG9dQUHB7/5coUIFBg0axOXLl8nMzNS9bmNjg7e3Nx07dsTOzo6LFy++1bxCCCGEEEKIv56svieEEOKt09PTIykpicDAQEaMGEH16tXR09PD0tISHx8f8vLyGDlyJDVr1sTe3h4oLEzNmDGDkiVLUqpUKZWPQAghhBBCCPHfkp5SQggh3rrc3Fzatm3Ld999R+3atXF1dcXOzo5+/foB8OzZM4YPH05YWBjHjx+nTZs2r73XyMhIrehCCCGEEEKIv4gUpYQQQqjCz88PAwMDGjduTExMDF9//TUuLi44ODgwevRoHj9+zLRp0wgJCSEsLAwnJye1IwshhBBCCCH+QlKUEkIIoYrIyEh69epFREQEtra23L9/n/Xr17NgwQKaN2+Oh4cHjRo1YsOGDZw6dYoffviBkiVLqh1bCCGEEEII8ReRRudCCCFU4eTkxIgRI/j666958eIFlSpV4tq1a9SqVYsGDRqwZ88e2rdvj6WlJd9++60UpIQQQgghhPiHkUbnQgghVGNnZ8eyZcswNDRk+PDhREZGcvLkSWxsbEhNTSUiIgJHR0eqVq2qdlQhhBBCCCHEX0ym7wkhhFCVo6MjMTExWFpacuTIEZo2bap2JCGEEEIIIcRbINP3hBBCqEL7TGT69OnUqVOHVatW0bRpU+RZiRBCCCGEEO8GKUoJIYRQhUajAaBFixYUFBRw4cKF17YLIYQQQggh/tmkKCWEEEJVFStWxNvbm+XLl3P+/Hm14wghhBBCCCHeEilKCSGEUF379u1p2bIllStXVjuKEEIIIYQQ4i2RRudCCCGKhBcvXlCyZEm1YwghhBBCCCHeEilKCSGEEEIIIYQQQoi3TqbvCSGEEEIIIYQQQoi3TopSQgghhBBCCCGEEOKtk6KUEEIIIYQQQgghhHjrpCglhBBCCCGEEEIIId46KUoJIYQQQgghhBBCiLdOilJCCCGEEEIIIYQQ4q2TopQQQgghhBBCCCGEeOukKCWEEEIIIYQQQggh3jopSgkhhBBCCCGEEEKIt+5/AHb/y3MByCbtAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "plt.close(\"all\")\n", "fig1, ax1 = plt.subplots(figsize=(12, 7.4), dpi=100)\n", @@ -1637,7 +171,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8980f137-8176-4156-8319-5039e61a11c5", + "id": "5", "metadata": {}, "outputs": [], "source": [] @@ -1645,7 +179,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ba8a41fb-5e6d-41e0-b0c1-2ba7bf113908", + "id": "6", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/01_test_parse_crossings.ipynb b/src/peilbeheerst_model/01_test_parse_crossings.ipynb index 10736ea3..4df0fd6a 100644 --- a/src/peilbeheerst_model/01_test_parse_crossings.ipynb +++ b/src/peilbeheerst_model/01_test_parse_crossings.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4bf1ab0f-3ade-41c7-ac67-5ccd41930481", + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -24,7 +24,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2122bf39-a6e1-4f80-a9dd-4782abe7d351", + "id": "1", "metadata": {}, "outputs": [], "source": [ @@ -340,7 +340,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8a965c64-38f9-4955-ba7e-680d52c151de", + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -399,7 +399,7 @@ { "cell_type": "code", "execution_count": null, - "id": "633f4754-9354-4f3b-8bb5-087d9de1d5a5", + "id": "3", "metadata": {}, "outputs": [], "source": [ @@ -470,7 +470,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7833bb4e-0c62-40df-a820-e5621bd924cd", + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -523,7 +523,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b2630053-7e0b-4040-abbf-c1993f1b1732", + "id": "5", "metadata": {}, "outputs": [], "source": [ @@ -569,7 +569,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4f834db9-ddfd-4ebd-8e6e-7232dd99a7cf", + "id": "6", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/01b_ad_krw_to_peilgebieden.ipynb b/src/peilbeheerst_model/01b_ad_krw_to_peilgebieden.ipynb index 8c4ef7de..edb465e8 100644 --- a/src/peilbeheerst_model/01b_ad_krw_to_peilgebieden.ipynb +++ b/src/peilbeheerst_model/01b_ad_krw_to_peilgebieden.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8e3aee81-bf33-4516-8850-26b5765669e2", + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -19,7 +19,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d037c21b-381a-4910-a801-f1d83924c555", + "id": "1", "metadata": {}, "outputs": [], "source": [ @@ -41,7 +41,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a797396c-2f6a-4c59-983f-2f195de9bf87", + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -74,7 +74,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5225ced2-77c6-4cfb-b7c5-50a4e86fb95b", + "id": "3", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/02_crossings_to_ribasim_notebook.ipynb b/src/peilbeheerst_model/02_crossings_to_ribasim_notebook.ipynb index e6b75c54..92082cb3 100644 --- a/src/peilbeheerst_model/02_crossings_to_ribasim_notebook.ipynb +++ b/src/peilbeheerst_model/02_crossings_to_ribasim_notebook.ipynb @@ -2,8 +2,8 @@ "cells": [ { "cell_type": "code", - "execution_count": 6, - "id": "698d0fb7-f655-4ef4-8f2c-4007711a6f97", + "execution_count": null, + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ }, { "cell_type": "markdown", - "id": "1727b840-0c96-4801-976f-44638063e2ef", + "id": "1", "metadata": {}, "source": [ "# Amstel, Gooi en Vecht" @@ -43,20 +43,10 @@ }, { "cell_type": "code", - "execution_count": 19, - "id": "894a203e-0681-407e-83c9-f30cff83287c", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done\n" - ] - } - ], + "execution_count": null, + "id": "2", + "metadata": {}, + "outputs": [], "source": [ "model_characteristics = {\n", " # model description\n", @@ -153,7 +143,7 @@ }, { "cell_type": "markdown", - "id": "00b919b6-92ba-4d8e-b6aa-6818ae84a9e2", + "id": "3", "metadata": {}, "source": [ "# Delfland" @@ -162,10 +152,8 @@ { "cell_type": "code", "execution_count": null, - "id": "5fc9b8a4-0ce0-46dd-9103-a10123e5bb3c", - "metadata": { - "scrolled": true - }, + "id": "4", + "metadata": {}, "outputs": [], "source": [ "model_characteristics = {\n", @@ -265,14 +253,14 @@ { "cell_type": "code", "execution_count": null, - "id": "5b309773-f18f-4d93-9986-f8a88d4c118f", + "id": "5", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", - "id": "3d1ef23c-590a-467d-a855-7c122d7b2950", + "id": "6", "metadata": {}, "source": [ "# Hollandse Delta" @@ -281,10 +269,8 @@ { "cell_type": "code", "execution_count": null, - "id": "b093ce38-a5e7-4c89-a5c8-0715a0262f32", - "metadata": { - "scrolled": true - }, + "id": "7", + "metadata": {}, "outputs": [], "source": [ "model_characteristics = {\n", @@ -383,7 +369,7 @@ }, { "cell_type": "markdown", - "id": "164a32d0-1bfa-458e-96fe-ce3e39b4f896", + "id": "8", "metadata": {}, "source": [ "# Hollands Noorderkwartier" @@ -391,18 +377,10 @@ }, { "cell_type": "code", - "execution_count": 5, - "id": "dacfbfbf-c8de-486f-a1e3-3ae0ab5084c2", + "execution_count": null, + "id": "9", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done\n" - ] - } - ], + "outputs": [], "source": [ "model_characteristics = {\n", " # model description\n", @@ -498,7 +476,7 @@ }, { "cell_type": "markdown", - "id": "1584b072-7343-45f9-931f-c47b5e017919", + "id": "10", "metadata": {}, "source": [ "# Rijnland" @@ -506,18 +484,10 @@ }, { "cell_type": "code", - "execution_count": 5, - "id": "4d849e83-6a82-4e0e-ba71-455a3ac70f1b", + "execution_count": null, + "id": "11", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done\n" - ] - } - ], + "outputs": [], "source": [ "model_characteristics = {\n", " # model description\n", @@ -617,7 +587,7 @@ }, { "cell_type": "markdown", - "id": "6bf50e62-98ed-415c-a79e-7819d010c8d5", + "id": "12", "metadata": {}, "source": [ "# Rivierenland" @@ -626,7 +596,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d1a952bc-f7d4-41da-98c1-8600f6c5b11c", + "id": "13", "metadata": {}, "outputs": [], "source": [ @@ -744,7 +714,7 @@ }, { "cell_type": "markdown", - "id": "6c079f11-7f01-44e6-8794-0eb8209b7110", + "id": "14", "metadata": {}, "source": [ "# Scheldestromen" @@ -752,18 +722,10 @@ }, { "cell_type": "code", - "execution_count": 8, - "id": "5ac210c0-151c-4490-9cd0-e708659bbe4c", + "execution_count": null, + "id": "15", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done\n" - ] - } - ], + "outputs": [], "source": [ "model_characteristics = {\n", " # model description\n", @@ -863,7 +825,7 @@ }, { "cell_type": "markdown", - "id": "0e9a9726-a95c-4f59-9d2c-cf1d1a7d557b", + "id": "16", "metadata": {}, "source": [ "# Schieland en de Krimpenerwaard" @@ -871,18 +833,10 @@ }, { "cell_type": "code", - "execution_count": 9, - "id": "44f18817-06c8-40c0-8918-750587a6f599", + "execution_count": null, + "id": "17", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done\n" - ] - } - ], + "outputs": [], "source": [ "model_characteristics = {\n", " # model description\n", @@ -981,174 +935,17 @@ }, { "cell_type": "code", - "execution_count": 15, - "id": "f96e0c9e-cf29-4eb2-abf0-6ab07873d2bb", + "execution_count": null, + "id": "18", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
TabulatedRatingCurve / static
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
node_idactivecontrol_statelevelflow_ratemeta_type_verbinding
0161<NA>NaN0.00.0Inlaat
1161<NA>NaN1.01.0Inlaat
2162<NA>NaN0.00.0NaN
3162<NA>NaN1.01.0NaN
4163<NA>NaN0.00.0Uitlaat
.....................
529607<NA>NaN1.01.0NaN
530608<NA>NaN0.00.0Inlaat
531608<NA>NaN1.01.0Inlaat
532612<NA>NaN0.00.0NaN
533612<NA>NaN1.01.0NaN
\n", - "

534 rows × 6 columns

\n", - "
" - ], - "text/plain": [ - "TabulatedRatingCurve / static\n", - " node_id active control_state level flow_rate meta_type_verbinding\n", - "0 161 NaN 0.0 0.0 Inlaat\n", - "1 161 NaN 1.0 1.0 Inlaat\n", - "2 162 NaN 0.0 0.0 NaN\n", - "3 162 NaN 1.0 1.0 NaN\n", - "4 163 NaN 0.0 0.0 Uitlaat\n", - ".. ... ... ... ... ... ...\n", - "529 607 NaN 1.0 1.0 NaN\n", - "530 608 NaN 0.0 0.0 Inlaat\n", - "531 608 NaN 1.0 1.0 Inlaat\n", - "532 612 NaN 0.0 0.0 NaN\n", - "533 612 NaN 1.0 1.0 NaN\n", - "\n", - "[534 rows x 6 columns]" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "model.tabulated_rating_curve.static" ] }, { "cell_type": "markdown", - "id": "f8176275-f42d-4ab4-923d-3b739613ea2f", + "id": "19", "metadata": {}, "source": [ "# Wetterskip" @@ -1157,7 +954,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2ad4796a-a184-4be9-8106-cd9bd62fa369", + "id": "20", "metadata": {}, "outputs": [], "source": [ @@ -1258,7 +1055,7 @@ }, { "cell_type": "markdown", - "id": "5455f6bc-88e3-43cd-922b-467b5c58a917", + "id": "21", "metadata": {}, "source": [ "# Zuiderzeeland" @@ -1266,18 +1063,10 @@ }, { "cell_type": "code", - "execution_count": 9, - "id": "c261b5e9-8c1f-44c8-9076-28003b203611", + "execution_count": null, + "id": "22", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Done\n" - ] - } - ], + "outputs": [], "source": [ "model_characteristics = {\n", " # model description\n", @@ -1376,7 +1165,7 @@ { "cell_type": "code", "execution_count": null, - "id": "03982b8e-1288-48b1-9279-eadb47d9952a", + "id": "23", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/03_test_outlets.ipynb b/src/peilbeheerst_model/03_test_outlets.ipynb index 523f9a30..d05157ba 100644 --- a/src/peilbeheerst_model/03_test_outlets.ipynb +++ b/src/peilbeheerst_model/03_test_outlets.ipynb @@ -2,19 +2,10 @@ "cells": [ { "cell_type": "code", - "execution_count": 7, - "id": "90f0b71e-aba0-4772-8931-1a22240566d8", + "execution_count": null, + "id": "0", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - } - ], + "outputs": [], "source": [ "import sys\n", "\n", @@ -28,7 +19,7 @@ }, { "cell_type": "markdown", - "id": "0eb85747-970f-4c98-a335-25e500d54863", + "id": "1", "metadata": {}, "source": [ "# Case 1" @@ -36,7 +27,7 @@ }, { "cell_type": "markdown", - "id": "7315c3e5-66a9-4b4d-a7e1-e396ec8084cf", + "id": "2", "metadata": {}, "source": [ "### Example 1: boundary and basin levels on target " @@ -44,295 +35,10 @@ }, { "cell_type": "code", - "execution_count": 15, - "id": "7c117602-860f-4b79-85f0-4baeb2b571e2", + "execution_count": null, + "id": "3", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timenode_idstoragelevelinflow_rateoutflow_ratestorage_rateprecipitationevaporationdrainageinfiltrationbalance_errorrelative_error
02024-01-01 00:00:0031250.0087502.0000000.0055500.004450-0.0000110.00.0001450.00.00.0009660.190740
12024-01-01 00:00:0041000.0090001.0000000.0044500.005304-0.0005800.00.0001160.00.0-0.000390-0.083897
22024-01-01 00:01:0031250.0080692.0000000.0047380.005262-0.0003670.00.0001450.00.0-0.000302-0.061862
32024-01-01 00:01:004999.9741960.9999830.0052620.0038040.0009480.00.0001160.00.00.0003940.095823
42024-01-01 00:02:0031249.9860761.9999910.0055170.0044830.0010210.00.0001450.00.0-0.000131-0.028820
..........................................
892752024-01-31 23:57:004999.9928100.9999920.0046960.0041460.0004120.00.0001160.00.00.0000220.005092
892762024-01-31 23:58:0031250.0052251.9999990.0050700.004930-0.0001390.00.0001450.00.00.0001350.026956
892772024-01-31 23:58:0041000.0175381.0000040.0049300.005271-0.0002690.00.0001160.00.0-0.000189-0.037547
892782024-01-31 23:59:0031249.9968611.9999950.0054070.0045930.0000830.00.0001450.00.00.0005860.116452
892792024-01-31 23:59:0041000.0014280.9999960.0045930.004688-0.0004240.00.0001160.00.00.0002130.047562
\n", - "

89280 rows × 13 columns

\n", - "
" - ], - "text/plain": [ - " time node_id storage level inflow_rate \\\n", - "0 2024-01-01 00:00:00 3 1250.008750 2.000000 0.005550 \n", - "1 2024-01-01 00:00:00 4 1000.009000 1.000000 0.004450 \n", - "2 2024-01-01 00:01:00 3 1250.008069 2.000000 0.004738 \n", - "3 2024-01-01 00:01:00 4 999.974196 0.999983 0.005262 \n", - "4 2024-01-01 00:02:00 3 1249.986076 1.999991 0.005517 \n", - "... ... ... ... ... ... \n", - "89275 2024-01-31 23:57:00 4 999.992810 0.999992 0.004696 \n", - "89276 2024-01-31 23:58:00 3 1250.005225 1.999999 0.005070 \n", - "89277 2024-01-31 23:58:00 4 1000.017538 1.000004 0.004930 \n", - "89278 2024-01-31 23:59:00 3 1249.996861 1.999995 0.005407 \n", - "89279 2024-01-31 23:59:00 4 1000.001428 0.999996 0.004593 \n", - "\n", - " outflow_rate storage_rate precipitation evaporation drainage \\\n", - "0 0.004450 -0.000011 0.0 0.000145 0.0 \n", - "1 0.005304 -0.000580 0.0 0.000116 0.0 \n", - "2 0.005262 -0.000367 0.0 0.000145 0.0 \n", - "3 0.003804 0.000948 0.0 0.000116 0.0 \n", - "4 0.004483 0.001021 0.0 0.000145 0.0 \n", - "... ... ... ... ... ... \n", - "89275 0.004146 0.000412 0.0 0.000116 0.0 \n", - "89276 0.004930 -0.000139 0.0 0.000145 0.0 \n", - "89277 0.005271 -0.000269 0.0 0.000116 0.0 \n", - "89278 0.004593 0.000083 0.0 0.000145 0.0 \n", - "89279 0.004688 -0.000424 0.0 0.000116 0.0 \n", - "\n", - " infiltration balance_error relative_error \n", - "0 0.0 0.000966 0.190740 \n", - "1 0.0 -0.000390 -0.083897 \n", - "2 0.0 -0.000302 -0.061862 \n", - "3 0.0 0.000394 0.095823 \n", - "4 0.0 -0.000131 -0.028820 \n", - "... ... ... ... \n", - "89275 0.0 0.000022 0.005092 \n", - "89276 0.0 0.000135 0.026956 \n", - "89277 0.0 -0.000189 -0.037547 \n", - "89278 0.0 0.000586 0.116452 \n", - "89279 0.0 0.000213 0.047562 \n", - "\n", - "[89280 rows x 13 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAADwCAYAAADM+pbvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTXElEQVR4nO3deVwVZd8G8GvYd5BNUNkUBS1ZFFPcQNNEUyFzKU1BzbLMpdJ8fcwtNU2z9KnHtVdQI83HPXLJDTXNBZVERURDXEJxQfb1nPv9w5eJw6KgwDkcru/nwwfPzD0zvzPdwcXMfc+RhBACREREREQaQkfdBRARERERlcSASkREREQahQGViIiIiDQKAyoRERERaRQGVCIiIiLSKAyoRERERKRRGFCJiIiISKMwoBIRERGRRtFTdwFERESkXgqFAoWFheoug7Scvr4+dHV1K9WWAZWIiKieEkLg7t27ePz4sbpLoXrCysoKDg4OkCTpqe0YUImIiOqp4nBqb28PExOTZ4YGouclhEBOTg5SU1MBAI6Ojk9tz4BKRERUDykUCjmc2tjYqLscqgeMjY0BAKmpqbC3t3/q7X5OkiIiIqqHisecmpiYqLkSqk+K+9uzxjwzoBIREdVjvK1Ptamy/Y0BlYiIiIg0CgMqERERaY3AwEBMmjRJ3WU81Y0bNyBJEmJjY9VdisZiQCUiIqI6IywsDJIklfm6du2aukujasRZ/ERERFSnBAUFITw8XGWZnZ2dmqqhmsArqERERFSnGBoawsHBQeWrokcWpaWlYcSIEWjQoAFMTEzQu3dvJCYmAnjybE47Ozts3bpVbu/j4wN7e3v59R9//AF9fX1kZWVVWE94eDhatmwJIyMjeHp6Yvny5SrrT58+DV9fXxgZGcHPzw/nz58vs49du3ahefPmMDY2Rrdu3bBu3TpIkqTyIQonTpxA165dYWxsDCcnJ0yYMAHZ2dmVOmd1DQMqERERqcgtVNTaV00LCwtDTEwMdu3ahT/++ANCCPTp0weFhYWQJAldu3ZFdHQ0gCdh9vLlyygsLMTly5cBANHR0Wjbti3MzMzK3f+aNWswffp0zJ8/H/Hx8fjyyy8xY8YMrFu3DgCQnZ2Nvn37wsPDA2fPnsXs2bMxefJklX3cuHEDAwcOREhICGJjY/H+++9j+vTpKm3i4uLQq1cvDBgwABcuXMDPP/+M33//HR999FE1nzHNwFv8REREpCJw+e+1dqxTEwOqvE1UVJRKYOzduzf++9//lmmXmJiIXbt24fjx4+jYsSMAIDIyEk5OTtixYwcGDRqEwMBArF69GgBw9OhReHt7w9nZGdHR0WjVqhWio6MRGBhYYS1z587FkiVLMGDAAACAm5sbLl++jFWrViE0NBSRkZFQKBRYu3YtTExM8NJLL+H27dv44IMP5H2sXLkSHh4eWLx4MQDAw8MDFy9exPz58+U2ixcvxtChQ+UJYM2bN8e///1vBAQEYMWKFTAyMqryedRkDKhERERUp3Tr1g0rVqyQX5uampbbLj4+Hnp6emjfvr28zMbGBh4eHoiPjwfwZNb/xIkT8eDBAxw5cgSBgYFwdnbGkSNH8N577+HEiRMVPhXg/v37uHXrFkaPHo0xY8bIy4uKimBpaSnX4O3trfKBCP7+/ir7SUhIQLt27VSWvfLKKyqvz549i2vXriEyMlJeJoSAUqlEUlISWrZsWW6NdRUDKhEREamI/rCzukt4KlNTU7i7uz+znRCiwuXFD4x/+eWXYWNjgyNHjuDIkSP44osv4OTkhPnz5+PMmTPIzc1F587lnw+lUgngyW3+kiEYgDwmtqIaKqqnotqVSiXef/99TJgwocz2zs7OzzxGXcOASkRERCqM9Sv+jPS6pFWrVigqKsKpU6fkW/wPHz7E1atX5SuOxeNQd+7ciYsXL6JLly4wNzdHYWEhVq5ciTZt2sDc3Lzc/Tds2BCNGzfGX3/9hWHDhlVYw4YNG5Cbmyt/Fv3JkydV2nh6emL37t0qy2JiYlRet2nTBpcuXapUMNcGnCRFREREWql58+YIDg7GmDFj8Pvvv+PPP//EO++8g8aNGyM4OFhuFxgYiJ9++gleXl6wsLCQQ2tkZORTx58CwOzZs7FgwQIsW7YMV69eRVxcHMLDw/HNN98AAIYOHQodHR2MHj0aly9fxu7du/H111+r7OP999/HlStXMHXqVFy9ehWbN29GREQEgH8+GnTq1Kn4448/MG7cOMTGxsrja8ePH199J0yDMKASERGR1goPD0fbtm3Rt29f+Pv7QwiB3bt3Q19fX27TrVs3KBQKlTAaEBAAhUKBgICnT+J699138cMPPyAiIgKtW7dGQEAAIiIi4ObmBgAwMzPDL7/8gsuXL8PX1xfTp0/HV199pbIPNzc3bNmyBdu2bYOXlxdWrFghz+I3NDQEAHh5eeHIkSNITExEly5d4OvrixkzZsDR0bE6TpPGkURlBkcQERGRVsnLy0NSUhLc3Ny0bga4Npg/fz5WrlyJW7duqbuUalXZfscxqERERERqtnz5crRr1w42NjY4fvw4Fi9erLXPOK0MBlQiIiIiNUtMTMS8efPw6NEjODs749NPP8W0adPUXZba8BY/ERFRPcRb/KQOle13nCRFRERERBqFAZWIiIiINAoDKhERERFpFAZUIiIiItIoDKhEREREpFEYUImIiIhqWHR0NCRJwuPHj6t1v7Nnz4aPj0+17lMTMKASERFRnXL37l2MHz8eTZs2haGhIZycnNCvXz8cPHiwWo8TGBiISZMmVes+qXL4oH4iIiKqM27cuIFOnTrBysoKixYtgpeXFwoLC7Fv3z6MGzcOV65cqdV6hBBQKBTQ02Okqk68gkpERER1xocffghJknD69GkMHDgQLVq0wEsvvYRPPvkEJ0+elNvdvHkTwcHBMDMzg4WFBQYPHox79+7J64tvjW/YsAGurq6wtLTEW2+9hczMTABAWFgYjhw5gmXLlkGSJEiShBs3bsi36vft2wc/Pz8YGhri2LFjyM/Px4QJE2Bvbw8jIyN07twZZ86cqdJ7S09Px3vvvQd7e3tYWFige/fu+PPPP1XaLFy4EA0bNoS5uTlGjx6NvLw8lfVFRUWYMGECrKysYGNjg6lTpyI0NBQhISFyGyEEFi1ahKZNm8LY2Bje3t7YsmVLlWqtaQyoREREVCc8evQIe/fuxbhx42BqalpmvZWVFYAnASwkJASPHj3CkSNHsH//fly/fh1DhgxRaX/9+nXs2LEDUVFRiIqKwpEjR7Bw4UIAwLJly+Dv748xY8YgJSUFKSkpcHJykrf97LPPsGDBAsTHx8PLywufffYZtm7dinXr1uHcuXNwd3dHr1698OjRo0q9NyEEXn/9ddy9exe7d+/G2bNn0aZNG7z66qvyPjZv3oxZs2Zh/vz5iImJgaOjI5YvX66yn6+++gqRkZEIDw/H8ePHkZGRgR07dqi0+fzzzxEeHo4VK1bg0qVL+Pjjj/HOO+/gyJEjlaq1VggiIiKqd3Jzc8Xly5dFbm5umXX5+fm19lUVp06dEgDEtm3bntrut99+E7q6uuLmzZvyskuXLgkA4vTp00IIIWbNmiVMTExERkaG3GbKlCmiffv28uuAgAAxceJElX0fPnxYABA7duyQl2VlZQl9fX0RGRkpLysoKBCNGjUSixYtUtkuLS2t3JoPHjwoLCwsRF5ensryZs2aiVWrVgkhhPD39xdjx45VWd++fXvh7e0tv27YsKFYvHix/LqoqEg4OzuL4OBguVYjIyNx4sQJlf2MHj1avP322+XWVp2e1u9K4oAJIiIiUrFgwYJaO9asWbMq3VYIAQCQJOmp7eLj4+Hk5KRyxbNVq1awsrJCfHw82rVrBwBwdXWFubm53MbR0RGpqamVqsXPz0/+9/Xr11FYWIhOnTrJy/T19fHKK68gPj6+Uvs7e/YssrKyYGNjo7I8NzcX169fl9/X2LFjVdb7+/vj8OHDAJ4MEbh37x5eeeUVeb2uri7atm0LpVIJALh8+TLy8vLQs2dPlf0UFBTA19e3UrXWBgZUIiIiqhOaN28OSZIQHx+vMqayNCFEuSG29HJ9fX2V9ZIkyUHuWUoOMagoOFdUR3mUSiUcHR0RHR1dZl3x0IXKKq+OkscBgF9//RWNGzdWaWdoaFil49QkBlQiIiJSMW3aNHWXUC5ra2v06tUL//nPfzBhwoQy41AfP34MKysrtGrVCjdv3sStW7fkq6iXL19Geno6WrZsWenjGRgYQKFQPLOdu7s7DAwM8Pvvv2Po0KEAgMLCQsTExFT6MVVt2rTB3bt3oaenB1dX13LbtGzZEidPnsSIESPkZSUnhllaWqJhw4Y4ffo0unTpAgBQKBQ4f/68/KzUVq1awdDQEDdv3kRAQEClalMHBlQiIiJSYWBgoO4SKrR8+XJ07NgRr7zyCr744gt4eXmhqKgI+/fvx4oVKxAfH48ePXrAy8sLw4YNw9KlS1FUVIQPP/wQAQEBKrfmn8XV1RWnTp3CjRs3YGZmBmtr63LbmZqa4oMPPsCUKVNgbW0NZ2dnLFq0CDk5ORg9enSljtWjRw/4+/sjJCQEX331FTw8PPD3339j9+7dCAkJgZ+fHyZOnIjQ0FD4+fmhc+fOiIyMxKVLl9C0aVN5P+PHj8eCBQvg7u4OT09PfPfdd0hLS5Ovqpqbm2Py5Mn4+OOPoVQq0blzZ2RkZODEiRMwMzNDaGhopc9PTWJAJSIiojrDzc0N586dw/z58/Hpp58iJSUFdnZ2aNu2LVasWAHgyS3uHTt2YPz48ejatSt0dHQQFBSE7777rkrHmjx5MkJDQ9GqVSvk5uYiKSmpwrYLFy6EUqnE8OHDkZmZCT8/P+zbtw8NGjSo1LEkScLu3bsxffp0jBo1Cvfv34eDgwO6du2Khg0bAgCGDBmC69evY+rUqcjLy8Obb76JDz74APv27ZP3M3XqVNy9excjRoyArq4u3nvvPfTq1Qu6urpym7lz58Le3h4LFizAX3/9BSsrK7Rp0wb/+te/qnR+apIkSg5MICIionohLy8PSUlJcHNzg5GRkbrLoRqiVCrRsmVLDB48GHPnzlV3OZXud7yCSkRERKQlkpOT8dtvvyEgIAD5+fn4/vvvkZSUJI+NrSv4oH4iIiIiLaGjo4OIiAi0a9cOnTp1QlxcHA4cOFClyWGagFdQiYiIiLSEk5MTjh8/ru4yXhivoBIRERGRRmFAJSIiIiKNwoBKRERERBqFAZWIiIiINAoDKhERERFpFAZUIiIiItIoDKhERESkNYo/5lQbREREwMrKSt1lqAUDKhEREdUZYWFhCAkJqXB9SkoKevfuXal9aVOY1TZ8UD8RERFpDQcHB3WXQNWAV1CJiIhIa5S8KlpQUICPPvoIjo6OMDIygqurKxYsWAAAcHV1BQC88cYbkCRJfg0Av/zyC9q2bQsjIyM0bdoUc+bMQVFRkcoxfvjhB7zxxhswMTFB8+bNsWvXrqfWVVBQgM8++wyNGzeGqakp2rdvj+joaJU2ERERcHZ2homJCd544w08fPiwzH7mzZsHe3t7mJub491338X//M//wMfHR6VNeHg4WrZsCSMjI3h6emL58uWVO3kahAGViIiItNK///1v7Nq1C5s3b0ZCQgJ+/PFHOYieOXMGwJMwl5KSIr/et28f3nnnHUyYMAGXL1/GqlWrEBERgfnz56vse86cORg8eDAuXLiAPn36YNiwYXj06FGFtYwcORLHjx/Hpk2bcOHCBQwaNAhBQUFITEwEAJw6dQqjRo3Chx9+iNjYWHTr1g3z5s1T2UdkZCTmz5+Pr776CmfPnoWzszNWrFih0mbNmjWYPn065s+fj/j4eHz55ZeYMWMG1q1b90LnstYJIiIiqndyc3PF5cuXRW5ubpl1+fn5FX4VFhZWum1BQcEz21ZVaGioCA4OrnA9ALF9+3YhhBDjx48X3bt3F0ql8plti3Xp0kV8+eWXKss2bNggHB0dVbb7/PPP5ddZWVlCkiSxZ8+eco9z7do1IUmSuHPnjsryV199VUybNk0IIcTbb78tgoKCVNYPGTJEWFpayq/bt28vxo0bp9KmU6dOwtvbW37t5OQkfvrpJ5U2c+fOFf7+/uXWVtue1u9K4hhUIiIiUlF8G7w8zZs3x9ChQ+XXX3/9NQoLC8tt6+LigrCwMPn1smXLkJOTo9Jm1qxZL1bsU4SFhaFnz57w8PBAUFAQ+vbti9dee+2p25w9exZnzpxRuWKqUCiQl5eHnJwcmJiYAAC8vLzk9aampjA3N0dqamq5+zx37hyEEGjRooXK8vz8fNjY2AAA4uPj8cYbb6is9/f3x969e+XXCQkJ+PDDD1XavPLKKzh06BAA4P79+7h16xZGjx6NMWPGyG2KiopgaWn51PetaRhQiYiISCu1adMGSUlJ2LNnDw4cOIDBgwejR48e2LJlS4XbKJVKzJkzBwMGDCizzsjISP63vr6+yjpJkqBUKivcp66uLs6ePQtdXV2VdWZmZgAAIUSl3pMkSSqvS25XfPw1a9agffv2Ku1KH1fTMaASERGRimnTplW4TkdHdfrK5MmTK2xbOkxNnDjxxQp7DhYWFhgyZAiGDBmCgQMHIigoCI8ePYK1tTX09fWhUChU2rdp0wYJCQlwd3evthp8fX2hUCiQmpqKLl26lNumVatWOHnypMqy0q89PDxw+vRpDB8+XF4WExMj/7thw4Zo3Lgx/vrrLwwbNqza6lcHBlQiIiJSYWBgoPa2T5Oeno7Y2FiVZdbW1nB2dlZZ9u2338LR0RE+Pj7Q0dHBf//7Xzg4OMgPv3d1dcXBgwfRqVMnGBoaokGDBpg5cyb69u0LJycnDBo0CDo6Orhw4QLi4uLKTFqqrBYtWmDYsGEYMWIElixZAl9fXzx48ACHDh1C69at0adPH0yYMAEdO3bEokWLEBISgt9++03l9j4AjB8/HmPGjIGfnx86duyIn3/+GRcuXEDTpk3lNrNnz8aECRNgYWGB3r17Iz8/HzExMUhLS8Mnn3zyXPWrA2fxExERUZ0SHR0NX19fla+ZM2eWaWdmZoavvvoKfn5+aNeuHW7cuIHdu3fLV4GXLFmC/fv3w8nJCb6+vgCAXr16ISoqCvv370e7du3QoUMHfPPNN3BxcXmhmsPDwzFixAh8+umn8PDwQP/+/XHq1Ck4OTkBADp06IAffvgB3333HXx8fPDbb7/h888/V9nHsGHDMG3aNEyePFkevhAWFqYy9ODdd9/FDz/8gIiICLRu3RoBAQGIiIiAm5vbC9Vf2yRR2UEPREREpDXy8vKQlJQENzc3lYBDdUvPnj3h4OCADRs2qLuUSqlsv+MtfiIiIqI6ICcnBytXrkSvXr2gq6uLjRs34sCBA9i/f7+6S6t2DKhEREREdYAkSdi9ezfmzZuH/Px8eHh4YOvWrejRo4e6S6t2DKhEREREdYCxsTEOHDig7jJqBSdJEREREZFGYUAlIiIiIo3CgEpEREREGoUBlYiIiIg0CgMqEREREWkUBlQiIiIi0igMqEREREQlREREwMrKSt1l1GsMqERERFSnhIWFQZIk+cvGxgZBQUG4cOFCtex/yJAhuHr1arXsi54PAyoRERHVOUFBQUhJSUFKSgoOHjwIPT099O3bt1r2bWxsDHt7+2rZFz0fBlQiIiJ6bgoFEB0NbNz45LtCUTvHNTQ0hIODAxwcHODj44OpU6fi1q1buH//PgBg6tSpaNGiBUxMTNC0aVPMmDEDhYWF8vZ//vknunXrBnNzc1hYWKBt27aIiYkBUPYW/+zZs+Hj44MNGzbA1dUVlpaWeOutt5CZmVk7b7Ye4kedEhER0XPZtg2YOBG4ffufZU2aAMuWAQMG1F4dWVlZiIyMhLu7O2xsbAAA5ubmiIiIQKNGjRAXF4cxY8bA3Nwcn332GQBg2LBh8PX1xYoVK6Crq4vY2Fjo6+tXeIzr169jx44diIqKQlpaGgYPHoyFCxdi/vz5tfIe6xsGVCIiIqqybduAgQMBIVSX37nzZPmWLTUbUqOiomBmZgYAyM7OhqOjI6KioqCj8+Tm8Oeffy63dXV1xaeffoqff/5ZDqg3b97ElClT4OnpCQBo3rz5U4+nVCoREREBc3NzAMDw4cNx8OBBBtQawlv8REREVCUKxZMrp6XDKfDPskmTavZ2f7du3RAbG4vY2FicOnUKr732Gnr37o3k5GQAwJYtW9C5c2c4ODjAzMwMM2bMwM2bN+XtP/nkE7z77rvo0aMHFi5ciOvXrz/1eK6urnI4BQBHR0ekpqbWzJsjBlQiIiKqmmPHVG/rlyYEcOvWk3Y1xdTUFO7u7nB3d8crr7yC//3f/0V2djbWrFmDkydP4q233kLv3r0RFRWF8+fPY/r06SgoKJC3nz17Ni5duoTXX38dhw4dQqtWrbB9+/YKj1f69r8kSVAqlTX2/uo73uInIiKiKklJqd521UGSJOjo6CA3NxfHjx+Hi4sLpk+fLq8vvrJaUosWLdCiRQt8/PHHePvttxEeHo433nij9oqmCjGgEhERUZU4OlZvu+eRn5+Pu3fvAgDS0tLw/fffIysrC/369UN6ejpu3ryJTZs2oV27dvj1119Vro7m5uZiypQpGDhwINzc3HD79m2cOXMGb775Zs0VTFXCgEpERERV0qXLk9n6d+6UPw5Vkp6s79Kl5mrYu3cvHP8/AZubm8PT0xP//e9/ERgYCAD4+OOP8dFHHyE/Px+vv/46ZsyYgdmzZwMAdHV18fDhQ4wYMQL37t2Dra0tBgwYgDlz5tRcwVQlkhDldS0iIiLSZnl5eUhKSoKbmxuMjIyqvH3xLH5ANaRK0pPvNT2Ln+qmyvY7TpIiIiKiKhsw4EkIbdxYdXmTJgyn9OJ4i5+IiIiey4ABQHDwk9n6KSlPxpx26QLo6qq7MqrrGFCJiIjouenqAv8/7JOo2vAWPxERERFpFAZUIiIiItIoDKhEREREpFEYUImIiIhIozCgEhEREZFGYUAlIiIiIo3CgEpERERaSZIk7NixQ91l1Cuurq5YunTpC++HAZWIiIjqlLCwMEiSBEmSoK+vj4YNG6Jnz55Yu3YtlEql3C4lJQW9e/dWW50RERGwsrJ6rm2FEFi9ejXat28PMzMzWFlZwc/PD0uXLkVOTo5G1FiTGFCJiIiozgkKCkJKSgpu3LiBPXv2oFu3bpg4cSL69u2LoqIiAICDgwMMDQ2r/dgKhUIlCNeE4cOHY9KkSQgODsbhw4cRGxuLGTNmYOfOnfjtt99q9NjlKSgoqNXjMaASERHRCxFCIDo6GkKIWjumoaEhHBwc0LhxY7Rp0wb/+te/sHPnTuzZswcREREAVG/xFxQU4KOPPoKjoyOMjIzg6uqKBQsWyPt7/Pgx3nvvPTRs2BBGRkZ4+eWXERUVBeCfq4xRUVFo1aoVDA0NkZycjIKCAnz22Wdo3LgxTE1N0b59e0RHRwMAoqOjMXLkSKSnp8tXe2fPni3XUtF2ALB582ZERkZi48aN+Ne//oV27drB1dUVwcHBOHToELp16wYAUCqV+OKLL9CkSRMYGhrCx8cHe/fulfdz48YNSJKEbdu2oVu3bjAxMYG3tzf++OOPZ9bo6uqKefPmISwsDJaWlhgzZgwAYOvWrXjppZdgaGgIV1dXLFmypDr/s/5DEBERUb2Tm5srLl++LHJzc194X7t37xYAxJ49e6qhsmcLDQ0VwcHB5a7z9vYWvXv3FkIIAUBs375dCCHE4sWLhZOTkzh69Ki4ceOGOHbsmPjpp5+EEEIoFArRoUMH8dJLL4nffvtNXL9+Xfzyyy9i9+7dQgghwsPDhb6+vujYsaM4fvy4uHLlisjKyhJDhw4VHTt2FEePHhXXrl0TixcvFoaGhuLq1asiPz9fLF26VFhYWIiUlBSRkpIiMjMzhRDiqdsJIUT//v2Fh4fHM8/DN998IywsLMTGjRvFlStXxGeffSb09fXl/SQlJQkAwtPTU0RFRYmEhAQxcOBA4eLiIgoLC59ao4uLi7CwsBCLFy8WiYmJIjExUcTExAgdHR3xxRdfiISEBBEeHi6MjY1FeHi4XJOLi4v49ttvK6y5sv2OAZWIiKgeqs6AOmrUKAFAjB49uhoqe7anBdQhQ4aIli1bCiFUA+r48eNF9+7dhVKpLLPNvn37hI6OjkhISCh3n+Hh4QKAiI2NlZddu3ZNSJIk7ty5o9L21VdfFdOmTZO3s7S0VFlfme1atmwp+vfvX/6bL6FRo0Zi/vz5KsvatWsnPvzwQyHEPwH1hx9+kNdfunRJABDx8fEV1ijEk6AZEhKismzo0KGiZ8+eKsumTJkiWrVqpbJddQRUvZq5LktERETaSqlUYsWKFXj8+DEAYMuWLfJ3Nzc3AICVlRU++OAD6OjU7mhCIQQkSSqzPCwsDD179oSHhweCgoLQt29fvPbaawCA2NhYNGnSBC1atKhwvwYGBvDy8pJfnzt3DkKIMtvk5+fDxsamwv1UZruK3kNJGRkZ+Pvvv9GpUyeV5Z06dcKff/6psqxk3Y6OjgCA1NRUeHp6PvUYfn5+Kq/j4+MRHBxc5nhLly6FQqGArq7uU/dXFQyoREREVCXZ2dmYOXMmHj16BEmS5BCalZWFGTNmQAgBa2trjBgxAubm5rVaW3x8vBySS2rTpg2SkpKwZ88eHDhwAIMHD0aPHj2wZcsWGBsbP3O/xsbGKqFRqVRCV1cXZ8+eLRPMzMzMKtxPZbZr0aIF4uPjn1kTgDJBtrxwq6+vX6Z9ZSZ5mZqaPnPfoobGHXOSFBEREVWJubk5zp8/j44dOwJ4Mqu95PeOHTsiNja21sPpoUOHEBcXhzfffLPc9RYWFhgyZAjWrFmDn3/+GVu3bsWjR4/g5eWF27dv4+rVq5U+lq+vLxQKBVJTU+Hu7q7y5eDgAODJVdfic1KV7YYOHYqrV69i586dZY4rhEB6ejosLCzQqFEj/P777yrrT5w4gZYtW1b6fZRXY0VatWpV7vFatGhRrVdPAV5BJSIioufg7OyMw4cPw9raGtnZ2fJyExMTREdHq1y1qwn5+fm4e/cuFAoF7t27h71792LBggXo27cvRowYUab9t99+C0dHR/j4+EBHRwf//e9/4eDgACsrKwQEBKBr165488038c0338Dd3R1XrlyBJEkICgoq9/gtWrTAsGHDMGLECCxZsgS+vr548OABDh06hNatW6NPnz5wdXVFVlYWDh48CG9vb5iYmFRqu8GDB2P79u14++23MWPGDPTs2RN2dnaIi4vDt99+i/HjxyMkJARTpkzBrFmz0KxZM/j4+CA8PByxsbGIjIys9Hksr0YTE5Ny23766ado164d5s6diyFDhuCPP/7A999/j+XLl1f6eJX21BGqREREpJWqY5LUsWPHBIAyX7///ns1VlpWaGiofCw9PT1hZ2cnevToIdauXSsUCoXcDiUmSa1evVr4+PgIU1NTYWFhIV599VVx7tw5ue3Dhw/FyJEjhY2NjTAyMhIvv/yyiIqKEkJUPJGooKBAzJw5U7i6ugp9fX3h4OAg3njjDXHhwgW5zdixY4WNjY0AIGbNmlXp7RQKhVixYoVo166dMDExERYWFqJt27Zi2bJlIicnR24zZ84c0bhxY6Gvry+8vb1VnqRQPEnq/Pnz8rK0tDQBQBw+fPipNVY02WnLli2iVatWQl9fXzg7O4vFixerrK+uSVKSELX40DIiIiLSCHl5eUhKSoKbmxuMjIyeax9Tp07FokWLEBISgq+//hqffvopdu7cic8++wxfffVVNVdM2qCy/Y63+ImIiOi59O/fH97e3nj77bchSRK2b9+OjRs3wsXFRd2lUR3HK6hERET1UHVcQSWqqsr2O87iJyIiIiKNwoBKRERERBqFAZWIiIiINAoDKhERERFpFAZUIiIiItIoDKhEREREpFEYUImIiIhIozCgEhEREVWBJEnYsWOHusuotNmzZ8PHx0fdZVQJAyoRERHVKWFhYQgJCVF3GTJJkuQvPT09ODs745NPPkF+fr66S6uz+FGnRERERC8oPDwcQUFBKCwsxJ9//omRI0fC1NQUc+fOVXdp1aKwsBD6+vq1djxeQSUiIqLnplAqEH0jGhvjNiL6RjQUSoVa67l8+TL69OkDMzMzNGzYEMOHD8eDBw8AAKtWrULjxo2hVCpVtunfvz9CQ0Pl17/88gvatm0LIyMjNG3aFHPmzEFRUdFTj2tlZQUHBwc4OTmhb9++6N+/P86dO6fSZsWKFWjWrBkMDAzg4eGBDRs2yOtu3LgBSZIQGxsrL3v8+DEkSUJ0dDQAIDo6GpIk4eDBg/Dz84OJiQk6duyIhIQEleMsXLgQDRs2hLm5OUaPHo28vDyV9WfOnEHPnj1ha2sLS0tLBAQElKlVkiSsXLkSwcHBMDU1xbx58+Du7o6vv/5apd3Fixeho6OD69evP/X8VBUDKhERET2XbfHb4LrMFd3WdcPQbUPRbV03uC5zxbb4bWqpJyUlBQEBAfDx8UFMTAz27t2Le/fuYfDgwQCAQYMG4cGDBzh8+LC8TVpaGvbt24dhw4YBAPbt24d33nkHEyZMwOXLl7Fq1SpERERg/vz5la7j6tWrOHz4MNq3by8v2759OyZOnIhPP/0UFy9exPvvv4+RI0eq1FJZ06dPx5IlSxATEwM9PT2MGjVKXrd582bMmjUL8+fPR0xMDBwdHbF8+XKV7TMzMxEaGopjx47h5MmTaN68Ofr06YPMzEyVdrNmzUJwcDDi4uIwatQojBo1CuHh4Spt1q5diy5duqBZs2ZVfh9PJYiIiKjeyc3NFZcvXxa5ubnPtf3Wy1uFNFsSmA2VL2m2JKTZkth6eWs1V/yP0NBQERwcXGb5jBkzxGuvvaay7NatWwKASEhIEEII0b9/fzFq1Ch5/apVq4SDg4MoKioSQgjRpUsX8eWXX6rsY8OGDcLR0VF+DUBs375d5bWRkZEwNTUVhoaGAoDo27evKCgokNt07NhRjBkzRmW/gwYNEn369BFCCJGUlCQAiPPnz8vr09LSBABx+PBhIYQQhw8fFgDEgQMH5Da//vqrACD/d/T39xdjx45VOU779u2Ft7d3mfNVrKioSJibm4tffvlF5T1NmjRJpd3ff/8tdHV1xalTp4QQQhQUFAg7OzsRERFR4b5Lq2y/4xVUIiIiqhKFUoGJeydCQJRZV7xs0t5JtX67/+zZszh8+DDMzMzkL09PTwCQb0EPGzYMW7dulScwRUZG4q233oKurq68jy+++EJlH2PGjEFKSgpycnIqPPa3336L2NhY/Pnnn4iKisLVq1cxfPhweX18fDw6deqksk2nTp0QHx9f5ffp5eUl/9vR0REAkJqaKh/H399fpX3p16mpqRg7dixatGgBS0tLWFpaIisrCzdv3lRp5+fnp/La0dERr7/+OtauXQsAiIqKQl5eHgYNGlTl9/AsnCRFREREVXLs5jHczrhd4XoBgVsZt3Ds5jEEugbWWl1KpRL9+vXDV199VWZdcZDr168flEolfv31V7Rr1w7Hjh3DN998o7KPOXPmYMCAAWX2YWRkVOGxHRwc4O7uDgDw8PBAZmYm3n77bXnsJvBkXGdJQgh5mY6OjrysWGFhYbnHKjlZqXj70uNqnyYsLAz379/H0qVL4eLiAkNDQ/j7+6OgoEClnampaZlt3333XQwfPhzffvstwsPDMWTIEJiYmFT62JXFgEpERERVkpKZUq3tqkubNm2wdetWuLq6Qk+v/IhjbGyMAQMGIDIyEteuXUOLFi3Qtm1blX0kJCTIofJ5FV+Rzc3NBQC0bNkSv//+O0aMGCG3OXHiBFq2bAkAsLOzA/BkHK2vry8AqEyYqqyWLVvi5MmTKsc5efKkSptjx45h+fLl6NOnDwDg1q1b8kSyZ+nTpw9MTU2xYsUK7NmzB0ePHq1yjZXBgEpERERV4mjuWK3tnkd6enqZAPf+++9jzZo1ePvttzFlyhTY2tri2rVr2LRpE9asWSOHxmHDhqFfv364dOkS3nnnHZV9zJw5E3379oWTkxMGDRoEHR0dXLhwAXFxcZg3b16F9Tx+/Bh3796FUqlEYmIivvjiC7Ro0UIOoFOmTMHgwYPRpk0bvPrqq/jll1+wbds2HDhwAMCT4NyhQwcsXLgQrq6uePDgAT7//PMqn5eJEyciNDQUfn5+6Ny5MyIjI3Hp0iU0bdpUbuPu7o4NGzbAz88PGRkZmDJlCoyNjSu1f11dXYSFhWHatGlwd3cvM3ygunAMKhEREVVJF+cuaGLRBBKkctdLkOBk4YQuzl1qrIbo6Gj4+vqqfM2cORPHjx+HQqFAr1698PLLL2PixImwtLSUb6EDQPfu3WFtbY2EhAQMHTpUZb+9evVCVFQU9u/fj3bt2qFDhw745ptv4OLi8tR6Ro4cCUdHRzRp0gRvv/02XnrpJezZs0e+khsSEoJly5Zh8eLFeOmll7Bq1SqEh4cjMDBQ3sfatWtRWFgIPz8/TJw48amBuCJDhgzBzJkzMXXqVLRt2xbJycn44IMPVNqsXbsWaWlp8PX1xfDhwzFhwgTY29tX+hijR49GQUGBytMDqpskSg52ICIionohLy8PSUlJcHNze+rYyopsi9+GgZsHAoDKZKni0Lpl8BYMaFl2HCfVfcePH0dgYCBu376Nhg0bVmnbyvY7XkElIiKiKhvQcgC2DN6CxhaNVZY3sWjCcKql8vPzce3aNcyYMQODBw+ucjitCo5BJSIioucyoOUABHsE49jNY0jJTIGjuSO6OHeBro6uukujGrBx40aMHj0aPj4+Kp+CVRN4i5+IiKgeetFb/ETPg7f4iYiIiKhOYkAlIiIiIo3CgEpEREREGoUBtY47evQo+vXrh0aNGkGSJOzYsUNlvRACs2fPRqNGjWBsbIzAwEBcunRJpU1+fj7Gjx8PW1tbmJqaon///rh9u+KPsCPtVx39avXq1QgMDISFhQUkScLjx49r7w2QxnrRvvXo0SOMHz8eHh4eMDExgbOzMyZMmID09PRafidEVJMYUOu47OxseHt74/vvvy93/aJFi/DNN9/g+++/x5kzZ+Dg4ICePXsiMzNTbjNp0iRs374dmzZtwu+//46srCz07dsXCoWitt4GaZjq6Fc5OTkICgrCv/71r9oqm+qAF+1bf//9N/7++298/fXXiIuLQ0REBPbu3YvRo0fX5tsgopomSGsAENu3b5dfK5VK4eDgIBYuXCgvy8vLE5aWlmLlypVCCCEeP34s9PX1xaZNm+Q2d+7cETo6OmLv3r21VjtprufpVyUdPnxYABBpaWm1UC3VJS/at4pt3rxZGBgYiMLCwposV+vk5uaKy5cvi9zcXHWXQvVIZfsdr6BqsaSkJNy9exevvfaavMzQ0BABAQE4ceIEAODs2bMoLCxUadOoUSO8/PLLchuikirTr4iex/P2rfT0dFhYWMgfKUn0osLCwhASEqLuMuo1BlQtdvfuXQAo80kPDRs2lNfdvXsXBgYGaNCgQYVtiEqqTL8ieh7P07cePnyIuXPn4v3336/x+kiz3Lp1C6NHj0ajRo1gYGAAFxcXTJw4EQ8fPqz0Pm7cuAFJkhAbG/tCtURHR3OsfTVjQK0HJElSeS2EKLOstMq0ofrtefoVUWVUtm9lZGTg9ddfR6tWrTBr1qzaKo80wF9//QU/Pz9cvXoVGzduxLVr17By5UocPHgQ/v7+ePTokbpLpBfEgKrFHBwcAKDMlYfU1FT5CoWDgwMKCgqQlpZWYRuikirTr4ieR1X6VmZmJoKCgmBmZobt27dDX1+/1uqksvKK8nAo6RDyivJq5Xjjxo2DgYEBfvvtNwQEBMDZ2Rm9e/fGgQMHcOfOHUyfPh0Ayn1ShJWVFSIiIgAAbm5uAABfX19IkoTAwMByjyeEwKJFi9C0aVMYGxvD29sbW7ZsAfDkKmy3bt0AAA0aNIAkSQgLC6v291zfMKBqMTc3Nzg4OGD//v3ysoKCAhw5cgQdO3YEALRt2xb6+voqbVJSUnDx4kW5DVFJlelXRM+jsn0rIyMDr732GgwMDLBr1y5+TKcaCSGwPX47WnzXAq+ufxUtvmuB7fHbIWrwU9QfPXqEffv24cMPP4SxsbHKOgcHBwwbNgw///xzpWo4ffo0AODAgQNISUnBtm3bym33+eefIzw8HCtWrMClS5fw8ccf45133sGRI0fg5OSErVu3AgASEhKQkpKCZcuWveC7JI4or+OysrJw7do1+XVSUhJiY2NhbW0NZ2dnTJo0CV9++SWaN2+O5s2b48svv4SJiQmGDh0KALC0tMTo0aPx6aefwsbGBtbW1pg8eTJat26NHj16qOttkZq9aL8CnlwFu3v3rryfuLg4mJubw9nZGdbW1rX+nkgzvGjfyszMxGuvvYacnBz8+OOPyMjIQEZGBgDAzs4Ourq6anlf9dGVB1cwNmosjiQfgY705HrXncw7GLB5AAJcArCy70p42npW+3ETExMhhEDLli3LXd+yZUukpaXh/v37z9yXnZ0dAMDGxka+gl9adnY2vvnmGxw6dAj+/v4AgKZNm+L333/HqlWrEBAQIP9Ms7e3h5WV1XO8KyqjZh8mQNVp9+7dAoDYs2ePvKz4ET6lv0JDQ4UQTx7bMmvWLOHg4CAMDQ1F165dRVxcnMp+c3NzxUcffSSsra2FsbGx6Nu3r7h582ZtvjVSo5rqV7NmzSp3H+Hh4bX47khdyutXQrx436poewAiKSmpFt9h3feij5ny/8Ff6M7RFZiNMl+6c3SF/w/+1VzxEydPnizziLKSlixZIgCI1NTUcttZWlrKP4eSkpIEAHH+/HmVNqGhoSI4OFgIIcTp06cFAGFqaqrypa+vL1555RUhBB+nVxWV7Xe8glqHFI932bJlC4KCggAAgYGBT72NIUkSZs+ejdmzZ1fYxsjICN999x2+++67aq2X6oaa6lfPWk/arbx+Bbx433rW9lR7MgsyoRDlf6CLQiiQWZBZ7roX5e7uDkmScPny5XIfBXXlyhU0aNAAtra2kCSpTH8pLCys0vGUSiUA4Ndff0Xjxo1V1hkaGlateKo0BlQNplQqsWLFCvmxFSV/4BcP7LayssIHH3wAHR0OJ6bKYb+imsB+RbXFxsYGPXv2xPLly/Hxxx+rjEO9e/cuIiMjMWLECEiSBDs7O6SkpMjrExMTkZOTI782MDAAgKd+cmKrVq1gaGiImzdvIiAgoNw2ldkPVQ0DqgbLzs7GzJkz8ejRI0iSJP9Qz8rKwowZMyCEgLW1NUaMGAFzc3M1V0t1BfsV1QT2K6pN33//PTp27IhevXph3rx5cHNzw6VLlzBlyhQ0btwY8+fPBwB0794d33//PTp06AClUompU6eqPPHB3t4exsbG2Lt3L5o0aQIjIyNYWlqqHMvc3ByTJ0/Gxx9/DKVSic6dOyMjIwMnTpyAmZkZQkND4eLiAkmSEBUVhT59+sDY2BhmZma1ek60Df+M1WDm5uY4f/482rZtCyGE/JdZ8feOHTsiNjaWP+ypSor7VYcOHdivqNoU96uOHTuyX9UT5gbm0JXKn5SmK+nC3KDm/ls3b94cMTExaNasGYYMGYJmzZrhvffeQ7du3fDHH3/Ik5aWLFkCJycndO3aFUOHDsXkyZNhYmIi70dPTw///ve/sWrVKjRq1AjBwcHlHm/u3LmYOXMmFixYgJYtW6JXr1745Zdf5LsDjRs3xpw5c/A///M/aNiwIT766KMae+/1hSQ4mEejJScnY926dZg3b57KuBkjIyOkp6fLtxWIqiInJwdr167FJ598otKvDAwMkJqaWuYKAlFlCCGwc+dODB48WKVfmZqaIi0tjc8q1TB5eXlISkqCm5vbcz2qq/QsfqVQyt9rchY/1W2V7Xe8gqrBkpOTERkZiRs3bpQZ1J2Xl4dly5ZxsgBVWU5ODtavX49z586V6VcFBQWYN2+eyhgtosoQQmD37t3YtWtXmX6VnZ0tP2+StIenrScOhx7G9iHb0dj8yeShJhZNsH3IdhwOPcxwSi+EAVVDFYfTwsJCpKamAgA8PT0xYcIEeZD2zp07sXv3boZUqrTicHrv3j0kJSUB+Kdf9erVCwDwxx9/YP369QypVGnF4TQmJgZXr14F8E+/6tevHwBg165d6iyRaogkSQjxDMHV8VdxcMRBJHyUgBDPEH7sMb0wTpLSUBcuXEBhYSGaNm2KwMBADB48GH/99RckScK+ffvwzTff4Nq1a7hy5Qq6du3KcV1UKTdv3sS9e/dgamqKyZMnY+TIkXK/2rlzJ8LDwxEXF4d79+7h5s2b8PTkFRB6tqysLFy5cgUA8O677+K9996T+9WiRYuwdetWuLi4qLlKqklGekbo7tZd3WWQFmFA1VCvv/46rK2t8corr0BfXx8FBQVYsGABgCd/sU6bNg1xcXFwdHRkOKVK8/T0xIABA+Do6AhbW9sy/Wrs2LG4f/8+7t69y3BKlWZubo7Q0FCkpKSgdevWZfpVyU8YIyKqDAZUDXL//n35wcI6Ojro1KnTU9u3bt26wu2JiuXk5ECpVMqPPCndb0qzs7OTP/4PeHJ1TEdHR2XmK5EQAg8ePJD7iq2tLWxtbdVcFRFpC45B1RDJyclYs2YNdu3a9VxjSq9fv47Vq1dzTCqpKB5zum7dOmRlZVV5+6ysLKxbt45jUklF8ZjT1atX4/r16+ouh4i0EAOqBig5ISojI+O5PokiMzMTRUVFiImJYUglAKoTonJzc5GXl1flfeTl5SE3Nxf37t1jSCUAqhOiioqKkJlZMx9nSUT1GwOqmpUMp02bNsVbb70FPb2qj7zw8fGRHzDMkEolw6mpqSlCQ0Of6/arra0tQkNDYWpqypBKKuEUAIKDg+Hj46PeoohIKzGgqlF54fRFHmTNkEpA+eG05JjSqrKzs2NIJYZTIqpVDKhqUt3htBhDav1W3eG0GENq/cZwSkS1jQFVTfLy8qBQKKo1nBYrGVJzc3MZUOuRwsJCFBQUVGs4LVYypBYUFKCoqKja9k2aTQiB3NxcAAynpBnCwsIgSRIkSYK+vj6aNm2KyZMnIzs7W92lUTXhY6bUxMPDA6GhoXB0dKyRz6f28fGBpaUlXFxcoKPDv0PqC0tLS4SGhqKwsLBGHvljZ2eHsLAw6Ovrw8LCotr3T5pJR0cHAwYMQNu2beHm5qbucogAAEFBQQgPD0dhYSGOHTuGd999F9nZ2VixYoW6S6NqwORSi27evIm0tDT5tbOzc42E02Jubm5yOBVCIC4ujldTtVBOTg4SExPl15aWljX6PEpbW1tYWlrKrxMTE3m7XwuV/pmho6PDcEoVKioqQlJSUq3eWTE0NISDgwOcnJwwdOhQDBs2DDt27EBYWBhCQkJU2k6aNAmBgYHy68DAQIwfPx6TJk1CgwYN0LBhQ6xevRrZ2dkYOXIkzM3N0axZM+zZs0feJjo6GpIk4ddff4W3tzeMjIzQvn17xMXF1dI7rl8YUGtJcnIyfvzxR0RERCA9Pb3Wjx8VFYVt27Zhz549DKlapHjM6caNGxEfH1/rx4+Pj8fGjRs5JlXLFI853bZtG6KiotRdDmkwIQTi4+Px3XffYf369fjuu+8QHx+vlt8zxsbGKCwsrHT7devWwdbWFqdPn8b48ePxwQcfYNCgQejYsSPOnTuHXr16Yfjw4WV+tk2ZMgVff/01zpw5A3t7e/Tv379Kx6XKYUCtBSUnRNna2qrlE3maNGkCADhz5gxDqpYoOSHKxMRELZ/iU9yfOXFKe5SeEOXk5KTmikhTPXjwAOvWrcPmzZvl5+FmZmZi8+bNWLduHR48eFBrtZw+fRo//fQTXn311Upv4+3tjc8//xzNmzfHtGnTYGxsDFtbW4wZMwbNmzfHzJkz8fDhQ1y4cEFlu1mzZqFnz55o3bo11q1bh3v37mH79u3V/ZbqPQbUGlZTs/WrytfXF/379wfAkKoNamq2flVxdr924Wx9qoqdO3fi5s2bACD/Pin+fvPmTezcubNGjx8VFQUzMzMYGRnB398fXbt2xXfffVfp7b28vOR/6+rqwsbGRuWjoBs2bAgASE1NVdnO399f/re1tTU8PDzUcgdL2zGg1iBNCafFGFK1g6aE02IMqdqB4ZSqqqCgoMLfIUIIFBQU1Ojxu3XrhtjYWCQkJCAvLw/btm2Dvb09dHR0ytRV3i340r+Pi58IUPI1ACiVymfWUtyWqg8Dag25ffu2RoXTYqVD6r59+9RcEVVFfn6+RoXTYuWF1Pz8fHWXRVWwb98+hlOqU0xNTeHu7g4XFxeV3692dnZISUlRaRsbG1ttxz158qT877S0NFy9ehWenp7Vtn96ggG1hlhbW8Pa2lqjwmmx4pCqq6sLV1dXdZdDVWBgYAAnJyeNCqfFSoZUJycnGBgYqLskqgJXV1fo6uoynFKd1717d8TExGD9+vVITEzErFmzcPHixWrb/xdffIGDBw/i4sWLCAsLg62tbZmnBtCL43NQa4iJiQlGjBgBfX19jQqnxXx9fdGsWTM+y7KOkSQJffr0QdeuXWFubq7ucsqws7PD+++/DzMzM97yqmM8PT0xYcIE/kygSjMwMIAkSeXe5pckSW1/pPbq1QszZszAZ599hry8PIwaNQojRoyotsdBLVy4EBMnTkRiYiK8vb2xa9cu/kFeAxhQq1FycjIePHiAtm3bAoBaZutXRclfRGlpafjzzz8REBDAYKFhcnJycPz4cXTv3h26urqQJEkjw2mxkrUpFAocOnQInTp10vj/H+obIQSOHDkCb29vNGjQAAAYTqlKgoODERUVheTkZDmoFn93dnZG3759a+zYERERT10/Z84czJkzp8L10dHRZZbduHGjzLLywnfnzp2r9YoslY8BtZqUnBBlZmYGDw8PdZdUaYWFhVi/fj0eP36MnJwc9O7dmyFVQ5ScEJWXl4d+/fqpu6Qq2b17N86dO4fr169jxIgRDKkaouSEqD///BMffvihRt7pIc1ma2uL0NBQJCQkYM+ePcjIyICFhQWCgoLg4eHB3yP0QhhQq0Hp2fpNmzZVd0lVoq+vj65du2LXrl04c+YMADCkaoDSs/VLPtqkrujQoQMSEhLkiVMMqepXerZ+QEAAwyk9N0mS4OnpCXd3d9y6dQtOTk7Q02O0oBfHSVIvSNMeJfW8+AgqzVI6nBYPxK9r+AgqzcJHSVFN0dPTg5ubm1aH08DAQAghYGVlpe5S6gUG1BegLeG0GEOqZtCWcFqMIVUzMJwSUV3CgPqcHj9+rFXhtFjpkHr8+HE1V1S/CCGwadMmrQmnxUqH1E2bNvGPn1p2/PhxhlMiqjMYUJ+TpaUl/P39tSqcFisOqQ0bNoSvr6+6y6lXJElC9+7d0aBBA60Jp8WKQ2qDBg3QvXt3jnGuZb6+vmjYsCHDKZXBPxapNlW2v2nvYJEaJkkSAgMDoVQqoaurq+5yqp2vry+8vLy08r1pOldXV4wbN04rz72dnZ3WvjdNZ2pqijFjxvDck6z4wkpOTg6MjY3VXA3VF8VDvJ51YY8BtQqSk5Nx4sQJvPnmm/IDirX5h33J93b27Fncu3ePs/trQE5ODrZu3YpevXrB3t4eAOpNv0pNTcW+ffvw5ptvcnZ/NRNCYM+ePWjYsKH8bGZt7ldUdbq6urCyskJqaiqAJ8/u5s93qilCCOTk5CA1NRVWVlbP/HnEgFpJJSdEHTt2DK+++qq6S6o1jx49wq+//gohBIQQ6NOnD3+IVZOSE6K2bt2KsWPH1ptzK4TA1q1bkZqaykdQVbOSE6IkSYKbmxusra3VXRZpIAcHBwCQQypRTbOyspL73dMwoFZC6dn6Xbt2VXdJtcra2hr9+vXDrl275EkWDKkvrvRs/YEDB9arcypJEgYOHIh169bxOanVqPRs/f79+zOcUoUkSYKjoyPs7e1RWFio7nJIy+nr61f6Tg4D6jNo26OknlfxZCmG1OpROpyGhobCzs5O3WXVuuKJUwyp1YOPkqLnpauryyEgpFE4i/8pGE5VlXwEVUxMDHbv3s3Zn8+B4VQVn5NaPRhOiUibMKBWQKFQYPv27QynpZQOqYmJiWquqO45ePAgw2kppUPqwYMH1V1SnZOYmMhwSkRaQxK8BFahlJQUHD9+HMHBwWoLp0IIrFu3DikpKSgoKAAAGBgYAAAcHR0RGhqqltvs58+fR1paGrp168bb/FWUn5+PHTt2oHv37moLp5rar+7fv4/Dhw8jODgYhoaGtX78ukwIgcOHD8Pa2lpt4VRT+xUR1T0cg1pKUVGR/FnCjo6OGDhwoFrrUSqVePz4sfzDHoD878ePH6vtOaylH+BfVFQEXV1d/vKpQMl+ZWhoiCFDhqi1Hk3tV3Z2dhg8eLDKspLnjlQJIaBQKKCnpyd/yIM6aWq/IqK6h7f4S0hOTsayZctw69YtdZci09XVRVBQULnrevfurRE/7AsLC/HTTz9xTGoFcnJy8MMPP+DYsWPqLkVWF/oVABw7dgw//PADx6SWo3jM6U8//aQxs6/rSr8iIs3HgPr/iidEZWVl4Y8//lB3OSo8PDzg4uIiv9bR0YGbmxtatGihxqr+cePGDSQlJXHiVDlKTog6deqURgUtTe9XOTk5OHXqFCdOlaPkhKikpCTcuHFD3SXJNL1fEVHdwICKsrP133jjDXWXpEKSJPTs2VN+LYRAUFCQxtxOb968OWf3l6O82fqa9PgkTe9XJiYmnN1fjvJm6zdv3lzNVf1D0/sVEdUN9T6g1pVHSZWcTNOmTRv5IzE1BR9BpaquPEpK0/sVH0Glqq48SkrT+xURab56HVDrSjgtTVM/yYoh9Ym6Ek5L09R+xZD6RF0Jp6Vpar8iIs1WrwPqmTNn6lw4BQAjIyN1l1ChkiH14sWLSE9PV3NFte/atWt1LpwCmt2vSofUa9euqbukWpeeno6LFy8CqDvhFNDsfkVEmqteP7slJCQEtra26NSpU50Jp3WBr68vdHR0YGdnBysrK3WXU+u8vLxQUFAAFxeXOhNO64LikJqcnAwvLy91l1PrrKysMHz4cDx48KBevn8iql/qXUB99OgRGjRoAEmSoKenh8DAQHWXpJW8vb1VXqelpcHKykprJ0rk5ORAR0dHvlrk5+en5oq0k52dnUroz8vLg1Kp1KjJZ9VJCIHHjx+jQYMGAIBGjRqhUaNGaq6KiKjm1atb/MnJyVi5ciV+++23ejk2Ul1u376NVatWYc+ePVp53ovHnG7YsAF5eXnqLqfeyMvLw4YNG7R2TGrxmNNVq1bh9u3b6i6HiKhW1ZuAWnJCVGpqKpRKpbpLqjcePnyI/Px8nDlzRutCaskJUenp6cjOzlZ3SfVGdnY20tPTtXLiVMkJUfn5+Xj48KG6SyIiqlX1IqCWN1ufn2hSe7y9veWJU9oUUsubrW9jY6PusuoNGxsbrZzdX3q2fv/+/csMmSEi0nZaH1Dr6qOktE3J2f3aEFLr6qOktI22PYKqvHDq6+ur5qqIiGqfVgdUhlPNoi0hleFUs2hLSGU4JSL6h1YH1PT0dIZTDVMypKalpdXJscC5ubnIzs5mONUgJUNqdnY2cnNz1V1SlSkUCqSlpQFgOCUi0urHTHl5ecHExAQuLi4MpxrE19cX5ubmcHV1rZNjgYvHPgohGE41SHFIlSSpTo4F1tPTw1tvvYUbN27A3d1d3eUQEamV1l1BvXXrFjIzM+XX7u7uDKcayN3dHXp6T/4+EkLgypUrGn27PycnB8nJyfJrW1tbhlMNZGdnB1tbW/l1cnKyRt/uL9339fT0GE6JiKBlATU5OVl+LmJWVpa6y6FKOnDgAH7++WeNHZNa8jmnf/31l7rLoUr666+/NPo5qcVjTn/++WccOHBA3eUQEWkUrQmoJSdEWVhYwNDQUN0lUSUVX/HSxIlTJSdEGRkZwdzcXN0lUSWZm5vDyMhIIydOlZ4QVfKqLxERaUlA5Wz9uk1TZ/dztn7dpqmz+zlbn4jo2ep8QGU41Q6aFlIZTrWDpoVUhlMiosqp0wH11q1bDKdapHRI3bt3r1rqyMvLYzjVIuWF1Ly8PLXUsnfvXoZTIqJKqNMB1dLSEmZmZgynWqQ4pEqSBEdHR7XUYGBgADs7O4ZTLVIypNrZ2cHAwEAtdTg6OkKSJIZTIqJnqNPPQbWwsMDIkSNhZGTEcKpFfH194erqigYNGqjl+Do6OnjjjTeQkZEBKysrtdRA1c/Ozg7vvvsuLCwsoKOjnr/NfXx84OLiora+TURUV9S5K6jJycm4dOmS/Nrc3JzhVAuV/AWelZWFY8eO1eiY1JycHBw5ckQ+ho6ODsOpFrKyspLDqRACR44cqdExqUIIHDt2TOWxdwynRETPppEB9ejRo+jXrx8aNWoESZKwY8cOAP9MiNq6dSuSkpLUW6SGmD17NiRJUvlycHBQd1nVRqFQYP369Th06NALT5xasWIFvLy8YGFhAQsLC/j7+2PPnj3yhKjo6Gjs37+/Gquv2+7cuYN33nkHNjY2MDExgY+PD86ePavusqrN/v37ER0dXe0TpxYsWABJkjBx4kTs3r0bhw4dwvr166FQKKrtGHWVq6trmZ9XkiRh3Lhx6i5N4yxYsADt2rWDubk57O3tERISgoSEBHWXRVRrNDKgZmdnw9vbG99//728rORsfTc3NzRp0kSNFWqWl156CSkpKfJXXFycukuqNrq6uvD39wfw4rP7mzRpgoULFyImJgYxMTHo3r07goODsXDhQnlCFMcFPpGWloZOnTpBX18fe/bsweXLl7FkyRKtuqrs6+tb7bP7z5w5g9WrV8PLyws3btyQJ0R17NixTn6sb3U7c+aMys+q4j8IBw0apObKNM+RI0cwbtw4nDx5Evv370dRURFee+01ZGdnq7s0olqhkWNQe/fujd69e8uvU1NTOVv/KfT09LTqqmlpxaFx165dOHPmDIAnfUSSpCrtp1+/fiqvp0+fjqVLl+LPP/9Ely5dOCGqhK+++gpOTk4IDw+Xl7m6uqqvoBpQPHFq3bp1ckgdMWIETExMnmt/WVlZGDZsGFavXo1PPvkE9+7dAwAEBwfDx8enGiuvu0r//7Vw4UI0a9YMAQEBaqpIc5V+ikl4eDjs7e1x9uxZdO3aVU1VEdUejbyCWtrRo0cZTp8iMTERjRo1gpubG9566y2t/DjO6n5OamZmJsaPH4/8/Hy0aNGC4bSUXbt2wc/PD4MGDYK9vT18fX2xZs0adZdV7arzOanjxo1Dnz59UFBQgMzMTAAMp09TUFCAH3/8EaNGjaryH5v1UXp6OgDA2tpazZUQ1Q6NDqgPHz4EABQVFTGcVqB9+/ZYv3499u3bhzVr1uDu3bvo2LGjfO60SemQevTo0SrvIy4uDmZmZrCyskJkZCRCQ0Px2WefMZyW8tdff2HFihVo3rw59u3bh7Fjx2LChAlYv369ukurdqVDamRkZJX/+Nm0aRPOnTuHPn36yLf1mzVrxnD6FDt27MDjx48RFham7lI0nhACn3zyCTp37oyXX35Z3eUQ1QqNDqjFfyk6ODgwnFagd+/eePPNN9G6dWv06NEDv/76KwBg3bp1aq6sZhSHVGtr6+f65e/h4YHY2Fj8/PPP6NSpE3bu3In79+9Xf6F1nFKpRJs2bfDll1/C19cX77//PsaMGYMVK1aou7QaURxSLSws0KVLlypd0bt16xYmTpyIH3/8Ee3bt4e1tTVsbW35R88z/O///i969+6NRo0aqbsUjffRRx/hwoUL2Lhxo7pLIao1GjkGtVjxL4kuXbownFaSqakpWrdujcTERHWXUmN8fX3RunVr6OlVvfsaGBjA3d0d7u7uCAkJQVBQEJYtW4ZVq1bVQKV1l6OjI1q1aqWyrGXLlti6dauaKqp5dnZ2GD9+fJX71dmzZ5Gamoq2bdvKyxQKBc6dO4fvv/8e+fn5nCBVSnJyMg4cOIBt27apuxSNN378eOzatQtHjx7l5GCqVzTuCmpycjK2b9+u8kgW/nCvvPz8fMTHx6vtU5hqS8kQcenSJezdu/ept2VzcnKwadMmpKWlqexDCIH8/PwarbUu6tSpU5lH2ly9ehUuLi5qqqh2lOxXaWlp2LRp01PHpAohoFQqsX37dsTGxspffn5+GDZsGGJjY/nzqxzFE35ef/11dZeisYQQ+Oijj7Bt2zYcOnQIbm5u6i6JqFap9QqqQqnAsZvHkJKZAkdzRzgLZ2zauAlZWVl49OiRfEUiKSkJsbGxsLa2hrOzszpLVqtCFOIWbiGvKE/+qMbJkyejX79+cHZ2RmpqKubNm4eMjAyEhoaqudrakZ6ejm3btkGpVEKpVKJ3795QKiUcOwakpACOjkDbtjmIjFyPyMhInDt3Dh988AGysrKwadMmREdHl5ktW9+U168+/vhjdOzYEV9++SUGDx6M06dPY/Xq1Vi9erWaq60dQghs3boVd+7ckWf3GxqaqPSrzp0F9u3bjbi4OOjo6KBbt26wtLQE8OROho2NDccL4skcgpIfLatUKhEeHo7Q0NDnuguibUr/Huzi3AW6OroYN24cfvrpJ+zcuRPm5ua4e/cugCcf8W1sbKzmqolqniRq8uN5nmJb/DZM3DsRtzNuy8ssYIEgBKFZfjMsWLCgzDahoaGIiIio0bqEEFAoBfR0NefishACWy5uwbvb3kUGMtDEogn+HfRvhHiG4O2338bRo0fx4MED2NnZoUOHDpg7d26Z27M1VZcmnKvz589j165dAICCgr5Yv74Nbt/+ZwyhlVUWXnvtVyQlLcHdu3dx7949WFpawsvLC1OnTkXPnj1rvEZNOVclPa1fSZKEqKgoTJs2DYmJiXBzc8Mnn3yCMWPG1Fpt6j5f9+/fx7p165CdnY2//+6AX3/tiTt3/qnH1jYX3bvvQqtWV9C/f3+VZ+gGBgbCx8cHS5curfE6NeFclSSEwMWLF+Xb9xYWFggKCoKnpyckScJvv/2GXr16ISEhAS1atKj12jTpXJX3e7CJRRMsC1qGN1u9We424eHhnFhG9YJaAuq2+G0YuHkgBMo/9M8Dfsbg1oNruaonxm6JRUpGHj4JcEfXpjZqf/zJlQdXMDZqLI4kH4EECQICOpIOlEKJAJcArOy7Ep62nmqpTZPO1fnz57Fw4VVs3lzcb0rW8qSfrV2bgZEjLWu9NkCzzhWg2f0K0Jzzdf/+fUyefALr1/f//yVl+9XixUmYPLlprddWTFPOFQA8ePAAUVFRSE5OlpdJkgQhBFxcXNC3b1/Y2tqqrT5NOlcV/R6U/r+PbRm8BQNaDlBHaUQaodYDqkKpgOsyV5W/GFUKgoTGFo0R/+F16OrU/titPmv+QE7hk/Gvvo0tMb5zUzS1Ma31Oop1W9cZMX+fgUKU/ZhEXUkXfo3a4XDo72qoTLPOlUIBNHNRIDVVH6oh4glJEmjcGIhPVEIdQwI16VwBmt2vAM05XwoF0KIpkJKig/L6FSDQpIn6+hWgOecKAH5cF46Uv/8udzy4JElwbNQI74SOVENlT2jKuVIoFfD8TzPcyaz492ATiyZImpiklt+DRJqg1gNq9I1odFvX7ZntPE2/hYU+P3YyLmMkcpVJFa431nFDa4vwCtfXFxmJlrjyH59ntvMcFwuL5uk1X5CGY7+qHParqumScRrmyoonlWXqmOCYxSu1WJFmyig8jyvZHz+z3eHQwwh0Daz5gog0UK0PxEnJTKlUu0LxqIYrIW1SmGHw7EZVaEcEsF9Rzajs77fK/r4k0ka1PoXS0bxyjz/6zxsB6OrSuYarKavkLSBdSYISAiEvO2LUKy4wN6z9Gad+a0xw+SnPkXezMUH0mNo/T4BmnaujR4CgDc9u958RHuga4FHzBZWiSecK0Ox+BWjO+dL0fgVozrkCgLVrLuHB/YqvoLrZmGIu+xWOJhchKHLuM9tV9vclkTaq9d+MXZy7oIlFE9zJuFPuJKnisTc9mgaqfeyNT2NLTA50V+tYQUtDC+hKuhWOFbQ0tICxvvrHKKn7XPXoBjRpAty5A5Q3aEWSnqzv0U1XbWMFi6n7XAF1p18B6j1fdalfAervW0aGhvKkqNIkSYKRoSH7FYAeTQMr9Xuwi3OXWq+NSFPU+i1+XR1dLAtaBuCf2YrFil8vDVqqtnDqYW8GB3NDLO73Ev4zwEutIQIA1gavRWfnJ1ccdCQdle+dnTtjbfBatdWmSedKVxdY9qRbofTE3OLXS5dCbSFCk84VoNn9CtCc86Xp/QrQnHMFAMHBwfKzqotnyBd/d3Z2RnBwsNpqAzTnXGn670EiTaBRz0F1snDC0qClan20hqY9Jw94UtPOhJ2YsGcCbmXcgrOlM5YFLUOwR7BaH5Oiiedq2zZg4kTgdonJsU5OT0LEADU+sUUTz5Wm9qvi2jTpfGlqvwI071wJIZCQkIA9e/YgIyMDlpaWCAoKgoeHB/tVKZr6e5BIE6gtoBIRERERlUcz/owkIiIiIvp/DKhEREREpFEYUImIiIhIozCgEhEREZFGYUAlIiIiIo3CgEpEREREGoUBlYiIiIg0CgMqEREREWmU/wNw1sgnNIfVMwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHhCAYAAAC84r6TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwE0lEQVR4nO3de3gU9b3H8c/knkAuBklIJECQO5RLiVUUFCxGIieC4gPn4Cmg2EcqFzXiJdgq3kA92iOUipeD4F1qBeS0lBoLJFLFkwApFCgqBIOSEAXMQgIhlzl/xCxsrrtJdn8E3q/n2Qdm5veb+c7uZPeT30x2LNu2bQEAABjiZ7oAAABwYSOMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADAqwHQB7qiqqtKhQ4cUHh4uy7JMlwMAANxg27aOHz+u+Ph4+fk1PP7RJsLIoUOHlJCQYLoMAADQDAcPHlTnzp0bXN4mwkh4eLik6p2JiIgwXA0AAHCHw+FQQkKC83O8IW0ijNScmomIiCCMAADQxjR1iQUXsAIAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjPAojCxcu1GWXXabw8HDFxMRo/Pjx2rt3b5P9MjMzNXToUIWEhKh79+566aWXml0wAAA4v3gURjIzMzVz5kxt2bJFGRkZqqioUHJyskpKShrsk5eXpxtuuEEjRozQ9u3bNW/ePM2ZM0cffPBBi4sHAABtn2Xbtt3czt99951iYmKUmZmpq6++ut42Dz74oNauXas9e/Y4582YMUP/+Mc/9Nlnn7m1HYfDocjISBUXF3NvGgAA2gh3P79bdKO84uJiSVJ0dHSDbT777DMlJye7zLv++uu1bNkylZeXKzAwsE6fsrIylZWVOacdDock6cE//kPBYe3drs+WZNuS31n35/l03xH1jYtQaKC/QgLdGxiqndYav93PmfZWrf9LUlWtehraTn1Naq+rpTzdL0nK+fqYfnJJpIID/JzrOHCkVKGBfooJD3HZt/rWX1/yPXu7TT0H9a23dpyuu9x1zsd7DuuisCBdnlj3uLUsS3sLj6tTZIjCQ9z78fAkzrvTtMq2dep0pdqHBLj1nLU2283111dX7eeissrWibIKRYYG1nvc13dMV9lSYfEpxUWF1Nn/3Ycc+rLohMYPjnfOr7Kr+9esv7Gfv6b2xbYlyzrTvqFj2N1js6Gf49rz3XnOa97Pau435slr1JzjpXZN9a2rpibJs7pq2/FNsXrFhiswwE+2bWvb18fkOFWhn/eNqbM+y7K0//sS7Ss6oSFdotShXZCz1qZuxtbo0kYWWo0srG+Tti1ty69+r2zouD/7WLMlnTxdqbAg/8YqdNk/l9Va0umKKv1pR4GG97hY0e2CnNup4W81fpzt+LZY3S9ur3bB/s711/cZaks6VV6pv+46rNF9Y9Q+uPH3ybLSE40ud+5Cc0dGbNvWuHHjdOzYMX3yyScNtuvVq5emTZumefPmOed9+umnuuqqq3To0CHFxcXV6TN//nw99thjdeYn3PMH+QWHNadcAADgY1VlpTr4wkTvjYzMmjVLO3bs0ObNm5tsWzut1uSfhlJsenq60tLSnNMOh0MJCQm6//peCm0X3tySJUmHfjil1/6ep3tG92wy0Z3Nsqw6v2E3R2utx5TdhxyyJfWPP3NQlVfa+njPYV3bJ8Y5YuJttY+dur89qd7lVba0t/C4Eju2U0A9v7LYdnXq37i3SGMGdJJfU79pteA3sca6Hjx6UiGBfs7fcHytvNJWoL/nv+PW/s0t/2ipDh4t1bBLO3i0nv3fl6iqylaPmPYu6/1XgUOJHdspyP/MceZnWapqwz9TnjrX3kNqXpvm1mTb0pGS0/rnt8Ua1SdGfpb0r4LjujSmXb0/f7YtfX+iTFvyjmpM/05uHacNlWY3MFbZcHv32+7/7oQqqmyX98qznf06llfaCvCzGn1PaGibNftw5MRpbdxbpJuGdFbQj+/DlqpHWt05ZopPluvz/UeV3D+20XaWZamw+KSCA/wVFVb3zEZtJ0uOa84LTTZr3sjI7NmztWbNGmVlZSkxMbHRtldffbWGDBmiRYsWOeetXr1aEydOVGlpab2naWrjmhEAANoedz+/Pfo11rZtzZo1S6tWrdKGDRuaDCKSNGzYMGVkZLjM++ijj5SUlORWEAEAAOc3j8LIzJkz9dZbb+mdd95ReHi4CgsLVVhYqJMnTzrbpKena8qUKc7pGTNm6Ouvv1ZaWpr27Nmj1157TcuWLdPcuXNbby8AAECb5VEYWbp0qYqLizVy5EjFxcU5HytXrnS2KSgoUH5+vnM6MTFR69at06ZNmzR48GA98cQTWrx4sSZMmNB6ewEAANqsFn3PiK9wzQgAAG2PV64ZAQAAaG2EEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRHoeRrKwspaamKj4+XpZlac2aNU32efvttzVo0CCFhYUpLi5Ot912m44cOdKcegEAwHnG4zBSUlKiQYMGacmSJW6137x5s6ZMmaLp06dr165dev/995Wdna077rjD42IBAMD5J8DTDikpKUpJSXG7/ZYtW9StWzfNmTNHkpSYmKg777xTzz77rKebBgAA5yGvXzNy5ZVX6ptvvtG6detk27YOHz6sP/7xjxo7dmyDfcrKyuRwOFweAADg/OSTMPL2229r0qRJCgoKUqdOnRQVFaXf/e53DfZZuHChIiMjnY+EhARvlwkAAAzxehjZvXu35syZo0ceeURbt27V+vXrlZeXpxkzZjTYJz09XcXFxc7HwYMHvV0mAAAwxONrRjy1cOFCXXXVVbr//vslSQMHDlS7du00YsQIPfnkk4qLi6vTJzg4WMHBwd4uDQAAnAO8PjJSWloqPz/Xzfj7+0uSbNv29uYBAMA5zuMwcuLECeXm5io3N1eSlJeXp9zcXOXn50uqPsUyZcoUZ/vU1FStWrVKS5cu1f79+/X3v/9dc+bM0c9+9jPFx8e3zl4AAIA2y+PTNDk5ORo1apRzOi0tTZI0depUrVixQgUFBc5gIknTpk3T8ePHtWTJEt13332KiorStddeq2eeeaYVygcAAG2dZbeBcyUOh0ORkZEqLi5WRESE6XIAAIAb3P385t40AADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKM8DiNZWVlKTU1VfHy8LMvSmjVrmuxTVlamhx9+WF27dlVwcLAuvfRSvfbaa82pFwAAnGcCPO1QUlKiQYMG6bbbbtOECRPc6jNx4kQdPnxYy5YtU48ePVRUVKSKigqPiwUAAOcfj8NISkqKUlJS3G6/fv16ZWZmav/+/YqOjpYkdevWzdPNAgCA85THYcRTa9euVVJSkp599lm9+eabateunW688UY98cQTCg0NrbdPWVmZysrKnNMOh8PbZQIA0GyVlZUqLy83XYbPBQYGyt/fv8Xr8XoY2b9/vzZv3qyQkBCtXr1a33//ve666y4dPXq0wetGFi5cqMcee8zbpQEA0CK2bauwsFA//PCD6VKMiYqKUqdOnWRZVrPXYdm2bTe7s2Vp9erVGj9+fINtkpOT9cknn6iwsFCRkZGSpFWrVumWW25RSUlJvaMj9Y2MJCQkqLi4WBEREc0tFwCAVlVQUKAffvhBMTExCgsLa9EHcltj27ZKS0tVVFSkqKgoxcXF1WnjcDgUGRnZ5Oe310dG4uLidMkllziDiCT17dtXtm3rm2++Uc+ePev0CQ4OVnBwsLdLAwCg2SorK51BpEOHDqbLMaJmQKGoqEgxMTHNPmXj9e8Zueqqq3To0CGdOHHCOe+LL76Qn5+fOnfu7O3NAwDgFTXXiISFhRmuxKya/W/JNTMeh5ETJ04oNzdXubm5kqS8vDzl5uYqPz9fkpSenq4pU6Y420+ePFkdOnTQbbfdpt27dysrK0v333+/br/99gYvYAUAoK24kE7N1Kc19t/jMJKTk6MhQ4ZoyJAhkqS0tDQNGTJEjzzyiKTq82c1wUSS2rdvr4yMDP3www9KSkrSrbfeqtTUVC1evLjFxQMAgLbP42tGRo4cqcaueV2xYkWdeX369FFGRoanmwIAAGeZP3++1qxZ4zw70RIHDhxQYmKitm/frsGDB9fbZtOmTRo1apSOHTumqKioFm+zIV6/gBUAAJx7EhISVFBQoIsvvth0KYQRAAAuRP7+/urUqZPpMiRx114AALxi5MiRmjNnjh544AFFR0erU6dOmj9/vnN5fn6+xo0bp/bt2ysiIsJ5H7ezPf3004qNjVV4eLimT5+uU6dO1dnO8uXL1bdvX4WEhKhPnz568cUX3arvwIEDsizL5ZTPunXr1KtXL4WGhmrUqFE6cOBAc3bdY4QRAAC85PXXX1e7du30+eef69lnn9Xjjz+ujIwM2bat8ePH6+jRo8rMzFRGRob27dunSZMmOfv+4Q9/0KOPPqqnnnpKOTk5iouLqxM0Xn31VT388MN66qmntGfPHi1YsEC/+c1v9Prrr3tc68GDB3XzzTfrhhtuUG5uru644w499NBDLX4O3MFpGgAAvGTgwIF69NFHJUk9e/bUkiVL9Le//U2StGPHDuXl5SkhIUGS9Oabb6p///7Kzs7WZZddphdeeEG333677rjjDknSk08+qY8//thldOSJJ57Q888/r5tvvlmSlJiYqN27d+vll1/W1KlTPap16dKl6t69u/77v/9blmWpd+/e2rlzp5555pkWPw9NYWQEAAAvGThwoMt0XFycioqKtGfPHiUkJDiDiCT169dPUVFR2rNnjyRpz549GjZsmEv/s6e/++47HTx4UNOnT1f79u2djyeffFL79u3zuNY9e/boiiuucPnekNrb9xZGRgAA8JLAwECXacuyVFVVJdu26/2ysIbm16eqqkpS9amayy+/3GVZc76WvQW3qmsxRkYAAPCxfv36KT8/XwcPHnTO2717t4qLi9W3b19J1fdx27Jli0u/s6djY2N1ySWXaP/+/erRo4fLIzExsVk1NbY9b2JkBAAAHxs9erQGDhyoW2+9VS+88IIqKip011136ZprrlFSUpIk6e6779bUqVOVlJSk4cOH6+2339auXbvUvXt353rmz5+vOXPmKCIiQikpKSorK1NOTo6OHTumtLQ0j2qaMWOGnn/+eaWlpenOO+/U1q1b6/0iU29gZAQAAB+zLEtr1qzRRRddpKuvvlqjR49W9+7dtXLlSmebSZMm6ZFHHtGDDz6ooUOH6uuvv9avfvUrl/Xccccd+p//+R+tWLFCP/nJT3TNNddoxYoVzRoZ6dKliz744AP97//+rwYNGqSXXnpJCxYsaPG+usOyTZ4kcpPD4VBkZKSKi4sVERFhuhwAAHTq1Cnl5eUpMTFRISEhpssxprHnwd3Pb0ZGAACAUYQRAADOQwsWLHD5k9+zHykpKabLc8EFrAAAnIdmzJihiRMn1rssNDTUx9U0jjACAMB5KDo6WtHR0abLcAunaQAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAIAL2NKlSzVw4EBFREQoIiJCw4YN01/+8hef1kAYAQDgAta5c2c9/fTTysnJUU5Ojq699lqNGzdOu3bt8lkNfOkZAAAXsNTUVJfpp556SkuXLtWWLVvUv39/n9RAGAEAwAts29bJ8koj2w4N9JdlWR73q6ys1Pvvv6+SkhINGzbMC5XVjzACAIAXnCyvVL9H/mpk27sfv15hQe5/xO/cuVPDhg3TqVOn1L59e61evVr9+vXzYoWuuGYEAIALXO/evZWbm6stW7boV7/6laZOnardu3f7bPuMjAAA4AWhgf7a/fj1xrbtiaCgIPXo0UOSlJSUpOzsbC1atEgvv/yyN8qrgzACAIAXWJbl0amSc4lt2yorK/PZ9trmswQAAFrFvHnzlJKSooSEBB0/flzvvfeeNm3apPXr1/usBsIIAAAXsMOHD+sXv/iFCgoKFBkZqYEDB2r9+vW67rrrfFYDYQQAgAvYsmXLTJfAX9MAAACzCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAABwWrhwoSzL0j333OOzbRJGAACAJCk7O1uvvPKKBg4c6NPtcqM8AAC8wbal8lIz2w4MkyzLoy4nTpzQrbfeqldffVVPPvmklwqrH2EEAABvKC+VFsSb2fa8Q1JQO4+6zJw5U2PHjtXo0aMJIwAAwLfee+89bdu2TdnZ2Ua2TxgBAMAbAsOqRyhMbdtNBw8e1N13362PPvpIISEhXiyqYYQRAAC8wbI8PlViwtatW1VUVKShQ4c651VWViorK0tLlixRWVmZ/P39vVoDYQQAgAvYz3/+c+3cudNl3m233aY+ffrowQcf9HoQkQgjAABc0MLDwzVgwACXee3atVOHDh3qzPcWvmcEAAAYxcgIAABwsWnTJp9uj5ERAABgFGEEAAAYRRgBAABGeRxGsrKylJqaqvj4eFmWpTVr1rjd9+9//7sCAgI0ePBgTzcLAADOUx6HkZKSEg0aNEhLlizxqF9xcbGmTJmin//8555uEgCAc5Zt26ZLMKo19t/jv6ZJSUlRSkqKxxu68847NXnyZPn7+3s0mgIAwLkoMDBQklRaWqrQ0FDD1ZhTWlp9Z+Ka56M5fPKnvcuXL9e+ffv01ltvuXUnwLKyMpWVlTmnHQ6HN8sDAMBj/v7+ioqKUlFRkSQpLCxMlmUZrsp3bNtWaWmpioqKFBUV1aJvavV6GPnyyy/10EMP6ZNPPlFAgHubW7hwoR577DEvVwYAQMt06tRJkpyB5EIUFRXlfB6ay6thpLKyUpMnT9Zjjz2mXr16ud0vPT1daWlpzmmHw6GEhARvlAgAQLNZlqW4uDjFxMSovLzcdDk+FxgY2Cr3rvFqGDl+/LhycnK0fft2zZo1S5JUVVUl27YVEBCgjz76SNdee22dfsHBwQoODvZmaQAAtBp/f3+f3FDufOXVMBIREVHnToAvvviiNmzYoD/+8Y9KTEz05uYBAEAb4HEYOXHihL766ivndF5ennJzcxUdHa0uXbooPT1d3377rd544w35+fnVueNfTEyMQkJCfHYnQAAAcG7zOIzk5ORo1KhRzumaazumTp2qFStWqKCgQPn5+a1XIQAAOK9Zdhv4thaHw6HIyEgVFxcrIiLCdDkAAMAN7n5+c28aAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFEeh5GsrCylpqYqPj5elmVpzZo1jbZftWqVrrvuOnXs2FEREREaNmyY/vrXvza3XgAAcJ7xOIyUlJRo0KBBWrJkiVvts7KydN1112ndunXaunWrRo0apdTUVG3fvt3jYgEAwPnHsm3bbnZny9Lq1as1fvx4j/r1799fkyZN0iOPPOJWe4fDocjISBUXFysiIqIZlQIAAF9z9/M7wIc1SZKqqqp0/PhxRUdHN9imrKxMZWVlzmmHw+GL0gAAgAE+v4D1+eefV0lJiSZOnNhgm4ULFyoyMtL5SEhI8GGFAADAl3waRt59913Nnz9fK1euVExMTIPt0tPTVVxc7HwcPHjQh1UCAABf8tlpmpUrV2r69Ol6//33NXr06EbbBgcHKzg42EeVAQAAk3wyMvLuu+9q2rRpeueddzR27FhfbBIAALQRHo+MnDhxQl999ZVzOi8vT7m5uYqOjlaXLl2Unp6ub7/9Vm+88Yak6iAyZcoULVq0SFdccYUKCwslSaGhoYqMjGyl3QAAAG2VxyMjOTk5GjJkiIYMGSJJSktL05AhQ5x/pltQUKD8/Hxn+5dfflkVFRWaOXOm4uLinI+77767lXYBAAC0ZS36nhFf4XtGAABoe9z9/ObeNAAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjPA4jWVlZSk1NVXx8vCzL0po1a5rsk5mZqaFDhyokJETdu3fXSy+91JxaAQDAecjjMFJSUqJBgwZpyZIlbrXPy8vTDTfcoBEjRmj79u2aN2+e5syZow8++MDjYgEAwPknwNMOKSkpSklJcbv9Sy+9pC5duuiFF16QJPXt21c5OTl67rnnNGHCBM82XllR/bAs1/lVlZJsyfI/M8+yJMuvbtua9XiLZUm2feb/0pnp2ss9XW/tddWef/a+Vp6W/AIbrq2xdVSWS/6BrtN+AZJdWb3egBCpqkLyDzqzvsrT1dPu7kd9bFuqKj+rbluyq6ofVZVn/n/2IziiurbG9q/+jUlqpBZP1X4O3a2jdtv6+tZp46fq+iXJqn4e6q3HOqvdWRpcv1297prldlX1dOVpyc//zM9XTfvmHst16vRAzc+6rDP7WLOOmuO09nqbfD4b2Y+m6qu9noZej4bW3djPY83rd/b7iXPdTT1vP76W9dXa2HtJffXUHAfSjz+fAW5sv9b6ah+PTR03VRXVx9zZr2/1ilz3oaHXx7alirIzx0Ptelwby639aXQdjbRp6n25sfW4zd22dj2vu9+Z46rBY/LHNmd/rlaUnfWZ28jx5ubnrcdhxFOfffaZkpOTXeZdf/31WrZsmcrLyxUYWPeFKSsrU1lZmXPa4XBU/+fZblJwcz5Aap5Av+ofJuBcZvlXBz8AHqr5fGhhSEbrKXPvtfD6BayFhYWKjY11mRcbG6uKigp9//339fZZuHChIiMjnY+EhIQWVmFXv7kTRNAWEESAZvpxhA9tjtdHRiTJqjXcZP84fFN7fo309HSlpaU5px0OR3UguXuHFBFRt8ORfdWnFaK6uM63zxrmt6sk2WeGeYPat2SXGnb2kFdrtKtR+zRMY04VSwW5UuI1DWy7kSHsmufM76xTXlWVP9ZbKTm+PTPKVH5S6tBDKi+Vvt0qdb3qTL/mDN9XVUpfb5Y6/0wKDD0zHFizPcu/+l+/H/8tPigdPyx1uLTp/ay9jzXDpX5+dev1ZHjUtus/RebOKav61ByfZw8v117/2dO1l9UeZq2qdH0tm3NqpWh39XN1cc+G27jznLX0lI4kffev6uPgoq51n+OznwvL78fjthVPxTXFtqWKU9Wvnb+bQ/Gert+yGj6VV9Omvj6evH/UbldZUX1MB4ZW/8wHBJ8Zkq9vnQ29zp7U0Fhb5/prn/KpNW1Zrj9HDak5Le3JMdzU6eaaNmc/F5XlUv6nUpdhzX9/8Iba7xH1OftUnfMz1XbvOHc4pKcTm2zm9TDSqVMnFRYWuswrKipSQECAOnToUG+f4OBgBQcH110QFi2F1RNGwqJbo9TzR1i0FN30i98s7WPqmRktRXZunfX3v8n9tlFd6gZQtL5uw01XcEbXK01XADSfJ+9v54sK92KG10/TDBs2TBkZGS7zPvroIyUlJdV7vQgAALiweBxGTpw4odzcXOXm5kqq/tPd3Nxc5efnS6o+xTJlyhRn+xkzZujrr79WWlqa9uzZo9dee03Lli3T3LlzW2cPAABAm+bxaZqcnByNGjXKOV1zbcfUqVO1YsUKFRQUOIOJJCUmJmrdunW699579fvf/17x8fFavHix53/WCwAAzkuWbbfGVWXe5XA4FBkZqeLiYkXUdwErAAA457j7+c29aQAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRXr9rb2uo+ZJYh8NhuBIAAOCums/tpr7svU2EkSNHjkiSEhISDFcCAAA8deTIEUVGRja4vE2EkejoaElSfn5+ozvTmMsuu0zZ2dnNroH+9Kc//elPf/p7pri4WF26dHF+jjekTYQRP7/qS1siIyObfaM8f3//Ft1kj/70pz/96U9/+jdPzed4g8tbtPY2ZObMmfSnP/3pT3/609/H/d1h2U1dVXIOcPcWxAAA4Nzh7ud3mxgZCQ4O1qOPPqrg4GDTpQAAADe5+/ndJkZGAADA+atNjIwAAIDzF2EEAAAYRRhBq3rxxReVmJiokJAQDR06VJ988olz2YkTJzRr1ix17txZoaGh6tu3r5YuXWqwWpwtKytLqampio+Pl2VZWrNmjcvyadOmybIsl8cVV1xhpli4WLhwoS677DKFh4crJiZG48eP1969e53Ly8vL9eCDD+onP/mJ2rVrp/j4eE2ZMkWHDh0yWDVqNPX6SdLhw4c1bdo0xcfHKywsTGPGjNGXX35pqOLWRxhBq1m5cqXuuecePfzww9q+fbtGjBihlJQU5efnS5LuvfderV+/Xm+99Zb27Nmje++9V7Nnz9aHH35ouHJIUklJiQYNGqQlS5Y02GbMmDEqKChwPtatW+fDCtGQzMxMzZw5U1u2bFFGRoYqKiqUnJyskpISSVJpaam2bdum3/zmN9q2bZtWrVqlL774QjfeeKPhyiE1/frZtq3x48dr//79+vDDD7V9+3Z17dpVo0ePdrZp82yglfzsZz+zZ8yY4TKvT58+9kMPPWTbtm3379/ffvzxx12W//SnP7V//etf+6xGuEeSvXr1apd5U6dOtceNG2ekHnimqKjIlmRnZmY22Ob//u//bEn2119/7cPK4I7ar9/evXttSfY///lPZ5uKigo7OjrafvXVV02V2aoYGUGrOH36tLZu3ark5GSX+cnJyfr0008lScOHD9fatWv17bffyrZtbdy4UV988YWuv/56EyWjGTZt2qSYmBj16tVLv/zlL1VUVGS6JNSjuLhYkhr9Cu7i4mJZlqWoqCgfVQV31X79ysrKJEkhISHONv7+/goKCtLmzZt9X6AXEEbQKr7//ntVVlYqNjbWZX5sbKwKCwslSYsXL1a/fv3UuXNnBQUFacyYMXrxxRc1fPhwEyXDQykpKXr77be1YcMGPf/888rOzta1117rfKPEucG2baWlpWn48OEaMGBAvW1OnTqlhx56SJMnT+aLJM8x9b1+ffr0UdeuXZWenq5jx47p9OnTevrpp1VYWKiCggLDFbeONnFvGrQdlmW5TNu27Zy3ePFibdmyRWvXrlXXrl2VlZWlu+66S3FxcRo9erSJcuGBSZMmOf8/YMAAJSUlqWvXrvrzn/+sm2++2WBlONusWbO0Y8eOBn9jLi8v17//+7+rqqpKL774oo+rQ1Pqe/0CAwP1wQcfaPr06YqOjpa/v79Gjx6tlJQUg5W2LsIIWsXFF18sf39/5yhIjaKiIsXGxurkyZOaN2+eVq9erbFjx0qSBg4cqNzcXD333HOEkTYoLi5OXbt2Pa+u6G/rZs+erbVr1yorK0udO3eus7y8vFwTJ05UXl6eNmzYwKjIOaax12/o0KHKzc1VcXGxTp8+rY4dO+ryyy9XUlKSoWpbF6dp0CqCgoI0dOhQZWRkuMzPyMjQlVdeqfLycpWXl9e5c6O/v7+qqqp8WSpayZEjR3Tw4EHFxcWZLuWCZ9u2Zs2apVWrVmnDhg1KTEys06YmiHz55Zf6+OOP1aFDBwOVoj7uvH41IiMj1bFjR3355ZfKycnRuHHjfFip9zAyglaTlpamX/ziF0pKStKwYcP0yiuvKD8/XzNmzFBERISuueYa3X///QoNDVXXrl2VmZmpN954Q7/97W9Nlw5Vfw/MV1995ZzOy8tTbm6uoqOjFR0drfnz52vChAmKi4vTgQMHNG/ePF188cW66aabDFYNqfququ+8844+/PBDhYeHO0coIyMjFRoaqoqKCt1yyy3atm2b/vSnP6mystLZJjo6WkFBQSbLv+A19fpJ0vvvv6+OHTuqS5cu2rlzp+6++26NHz++zh8NtFkm/5QH55/f//73dteuXe2goCD7pz/9qcufFhYUFNjTpk2z4+Pj7ZCQELt37972888/b1dVVRmsGDU2btxoS6rzmDp1ql1aWmonJyfbHTt2tAMDA+0uXbrYU6dOtfPz802XDduu93WTZC9fvty2bdvOy8trsM3GjRuN1o6mXz/btu1FixbZnTt3dv78/frXv7bLysrMFd3KuFEeAAAwimtGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhkPI9OmTdP48eNNlwEAAAwxHkYAAMCF7ZwKI+vXr9fw4cMVFRWlDh066N/+7d+0b98+5/IDBw7IsiytWrVKo0aNUlhYmAYNGqTPPvvMYNUAAKAlzqkwUlJSorS0NGVnZ+tvf/ub/Pz8dNNNN6mqqsql3cMPP6y5c+cqNzdXvXr10n/8x3+ooqLCUNUAAKAlAkwXcLYJEya4TC9btkwxMTHavXu3BgwY4Jw/d+5cjR07VpL02GOPqX///vrqq6/Up08fn9YLAABa7pwaGdm3b58mT56s7t27KyIiQomJiZKk/Px8l3YDBw50/j8uLk6SVFRU5LtCAQBAqzmnRkZSU1OVkJCgV199VfHx8aqqqtKAAQN0+vRpl3aBgYHO/1uWJUl1TuUAAIC24ZwJI0eOHNGePXv08ssva8SIEZKkzZs3G64KAAB42zkTRi666CJ16NBBr7zyiuLi4pSfn6+HHnrIdFkAAMDLjF8zUlVVpYCAAPn5+em9997T1q1bNWDAAN177736r//6L9PlAQAAL7Ns27ZNFjBmzBj16NFDS5YsMVkGAAAwxNjIyLFjx/TnP/9ZmzZt0ujRo02VAQAADDN2zcjtt9+u7Oxs3XfffRo3bpypMgAAgGHGT9MAAIALm/ELWAEAwIWNMAIAAIzySRhZuHChLrvsMoWHhysmJkbjx4/X3r17XdrYtq358+crPj5eoaGhGjlypHbt2uVcfvToUc2ePVu9e/dWWFiYunTpojlz5qi4uLjebZaVlWnw4MGyLEu5ubne3D0AANACPgkjmZmZmjlzprZs2aKMjAxVVFQoOTlZJSUlzjbPPvusfvvb32rJkiXKzs5Wp06ddN111+n48eOSpEOHDunQoUN67rnntHPnTq1YsULr16/X9OnT693mAw88oPj4eF/sHgAAaAEjF7B+9913iomJUWZmpq6++mrZtq34+Hjdc889evDBByVVj2zExsbqmWee0Z133lnvet5//33953/+p0pKShQQcOYPg/7yl78oLS1NH3zwgfr376/t27dr8ODBvtg1AADgISPXjNScWomOjpYk5eXlqbCwUMnJyc42wcHBuuaaa/Tpp582up6IiAiXIHL48GH98pe/1JtvvqmwsDAv7QEAAGgtPg8jtm0rLS1Nw4cP14ABAyRJhYWFkqTY2FiXtrGxsc5ltR05ckRPPPGEy6iJbduaNm2aZsyYoaSkJC/tAQAAaE0+/9KzWbNmaceOHfXekdeyLJdp27brzJMkh8OhsWPHql+/fnr00Ued83/3u9/J4XAoPT299QsHAABe4dORkdmzZ2vt2rXauHGjOnfu7JzfqVMnSaozClJUVFRntOT48eMaM2aM2rdvr9WrVyswMNC5bMOGDdqyZYuCg4MVEBCgHj16SJKSkpI0depUb+0WAABoAZ+EEdu2NWvWLK1atUobNmxQYmKiy/LExER16tRJGRkZznmnT59WZmamrrzySuc8h8Oh5ORkBQUFae3atQoJCXFZz+LFi/WPf/xDubm5ys3N1bp16yRJK1eu1FNPPeXFPQQAAM3lk9M0M2fO1DvvvKMPP/xQ4eHhzhGQyMhIhYaGyrIs3XPPPVqwYIF69uypnj17asGCBQoLC9PkyZMlVY+IJCcnq7S0VG+99ZYcDoccDockqWPHjvL391eXLl1cttu+fXtJ0qWXXuoyEgMAAM4dPgkjS5culSSNHDnSZf7y5cs1bdo0SdXfC3Ly5EndddddOnbsmC6//HJ99NFHCg8PlyRt3bpVn3/+uSQ5T7/UyMvLU7du3by6DwAAwDu4UR4AADCKe9MAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAsBrNm3aJMuy9MMPP5guBcA5jC89A9BqRo4cqcGDB+uFF16QVH2PqaNHjyo2NrbeO3ADgOSjr4MHcGEKCgpy3pUbABrCaRoArWLatGnKzMzUokWLZFmWLMvSihUrXE7TrFixQlFRUfrTn/6k3r17KywsTLfccotKSkr0+uuvq1u3brrooos0e/ZsVVZWOtd9+vRpPfDAA7rkkkvUrl07XX755dq0aZOZHQXQ6hgZAdAqFi1apC+++EIDBgzQ448/LknatWtXnXalpaVavHix3nvvPR0/flw333yzbr75ZkVFRWndunXav3+/JkyYoOHDh2vSpEmSpNtuu00HDhzQe++9p/j4eK1evVpjxozRzp071bNnT5/uJ4DWRxgB0CoiIyMVFBSksLAw56mZf/3rX3XalZeXa+nSpbr00kslSbfccovefPNNHT58WO3bt1e/fv00atQobdy4UZMmTdK+ffv07rvv6ptvvlF8fLwkae7cuVq/fr2WL1+uBQsW+G4nAXgFYQSAT4WFhTmDiCTFxsaqW7duat++vcu8oqIiSdK2bdtk27Z69erlsp6ysjJ16NDBN0UD8CrCCACfCgwMdJm2LKveeVVVVZKkqqoq+fv7a+vWrfL393dpd3aAAdB2EUYAtJqgoCCXC09bw5AhQ1RZWamioiKNGDGiVdcN4NzAX9MAaDXdunXT559/rgMHDuj77793jm60RK9evXTrrbdqypQpWrVqlfLy8pSdna1nnnlG69ata4WqAZhGGAHQaubOnSt/f3/169dPHTt2VH5+fqusd/ny5ZoyZYruu+8+9e7dWzfeeKM+//xzJSQktMr6AZjFN7ACAACjGBkBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAY9f8OK3i7XPBPFgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "case1_example1 = case1(\"case1_example1\")\n", "case1_example1.create_model()" @@ -340,7 +46,7 @@ }, { "cell_type": "markdown", - "id": "7e86db4e-2425-483d-9a64-380c6b69a023", + "id": "4", "metadata": {}, "source": [ "### Example 2: boundary levels below target" @@ -348,297 +54,10 @@ }, { "cell_type": "code", - "execution_count": 18, - "id": "a49607e1-2214-4b0b-953a-552a600d0f3a", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timenode_idstoragelevelinflow_rateoutflow_ratestorage_rateprecipitationevaporationdrainageinfiltrationbalance_errorrelative_error
02024-01-01 00:00:0031250.0087502.0000000.00.000000-0.0001450.00.0001450.00.0-1.268499e-08-2.0
12024-01-01 00:00:0041000.0090001.0000000.00.000014-0.0001940.00.0001160.00.06.448805e-05-2.0
22024-01-01 00:01:0031250.0000701.9999970.00.000000-0.0001450.00.0001450.00.0-3.257827e-10-2.0
32024-01-01 00:01:004999.9973380.9999940.00.000000-0.0001170.00.0001160.00.09.985815e-07-2.0
42024-01-01 00:02:0031249.9913901.9999930.00.000000-0.0001450.00.0001450.00.0-1.843947e-10-2.0
..........................................
892752024-01-31 23:57:004714.0466050.8450080.00.000000-0.0000980.00.0000980.00.0-1.265895e-10-2.0
892762024-01-31 23:58:003892.5538671.8450070.00.000000-0.0001220.00.0001220.00.0-1.582412e-10-2.0
892772024-01-31 23:58:004714.0407370.8450050.00.000000-0.0000980.00.0000980.00.0-1.265901e-10-2.0
892782024-01-31 23:59:003892.5465321.8450040.00.000000-0.0001220.00.0001220.00.0-1.582377e-10-2.0
892792024-01-31 23:59:004714.0348690.8450010.00.000000-0.0000980.00.0000980.00.0-1.265908e-10-2.0
\n", - "

89280 rows × 13 columns

\n", - "
" - ], - "text/plain": [ - " time node_id storage level inflow_rate \\\n", - "0 2024-01-01 00:00:00 3 1250.008750 2.000000 0.0 \n", - "1 2024-01-01 00:00:00 4 1000.009000 1.000000 0.0 \n", - "2 2024-01-01 00:01:00 3 1250.000070 1.999997 0.0 \n", - "3 2024-01-01 00:01:00 4 999.997338 0.999994 0.0 \n", - "4 2024-01-01 00:02:00 3 1249.991390 1.999993 0.0 \n", - "... ... ... ... ... ... \n", - "89275 2024-01-31 23:57:00 4 714.046605 0.845008 0.0 \n", - "89276 2024-01-31 23:58:00 3 892.553867 1.845007 0.0 \n", - "89277 2024-01-31 23:58:00 4 714.040737 0.845005 0.0 \n", - "89278 2024-01-31 23:59:00 3 892.546532 1.845004 0.0 \n", - "89279 2024-01-31 23:59:00 4 714.034869 0.845001 0.0 \n", - "\n", - " outflow_rate storage_rate precipitation evaporation drainage \\\n", - "0 0.000000 -0.000145 0.0 0.000145 0.0 \n", - "1 0.000014 -0.000194 0.0 0.000116 0.0 \n", - "2 0.000000 -0.000145 0.0 0.000145 0.0 \n", - "3 0.000000 -0.000117 0.0 0.000116 0.0 \n", - "4 0.000000 -0.000145 0.0 0.000145 0.0 \n", - "... ... ... ... ... ... \n", - "89275 0.000000 -0.000098 0.0 0.000098 0.0 \n", - "89276 0.000000 -0.000122 0.0 0.000122 0.0 \n", - "89277 0.000000 -0.000098 0.0 0.000098 0.0 \n", - "89278 0.000000 -0.000122 0.0 0.000122 0.0 \n", - "89279 0.000000 -0.000098 0.0 0.000098 0.0 \n", - "\n", - " infiltration balance_error relative_error \n", - "0 0.0 -1.268499e-08 -2.0 \n", - "1 0.0 6.448805e-05 -2.0 \n", - "2 0.0 -3.257827e-10 -2.0 \n", - "3 0.0 9.985815e-07 -2.0 \n", - "4 0.0 -1.843947e-10 -2.0 \n", - "... ... ... ... \n", - "89275 0.0 -1.265895e-10 -2.0 \n", - "89276 0.0 -1.582412e-10 -2.0 \n", - "89277 0.0 -1.265901e-10 -2.0 \n", - "89278 0.0 -1.582377e-10 -2.0 \n", - "89279 0.0 -1.265908e-10 -2.0 \n", - "\n", - "[89280 rows x 13 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAADwCAYAAADM+pbvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTXElEQVR4nO3deVwVZd8G8GvYd5BNUNkUBS1ZFFPcQNNEUyFzKU1BzbLMpdJ8fcwtNU2z9KnHtVdQI83HPXLJDTXNBZVERURDXEJxQfb1nPv9w5eJw6KgwDkcru/nwwfPzD0zvzPdwcXMfc+RhBACREREREQaQkfdBRARERERlcSASkREREQahQGViIiIiDQKAyoRERERaRQGVCIiIiLSKAyoRERERKRRGFCJiIiISKMwoBIRERGRRtFTdwFERESkXgqFAoWFheoug7Scvr4+dHV1K9WWAZWIiKieEkLg7t27ePz4sbpLoXrCysoKDg4OkCTpqe0YUImIiOqp4nBqb28PExOTZ4YGouclhEBOTg5SU1MBAI6Ojk9tz4BKRERUDykUCjmc2tjYqLscqgeMjY0BAKmpqbC3t3/q7X5OkiIiIqqHisecmpiYqLkSqk+K+9uzxjwzoBIREdVjvK1Ptamy/Y0BlYiIiIg0CgMqERERaY3AwEBMmjRJ3WU81Y0bNyBJEmJjY9VdisZiQCUiIqI6IywsDJIklfm6du2aukujasRZ/ERERFSnBAUFITw8XGWZnZ2dmqqhmsArqERERFSnGBoawsHBQeWrokcWpaWlYcSIEWjQoAFMTEzQu3dvJCYmAnjybE47Ozts3bpVbu/j4wN7e3v59R9//AF9fX1kZWVVWE94eDhatmwJIyMjeHp6Yvny5SrrT58+DV9fXxgZGcHPzw/nz58vs49du3ahefPmMDY2Rrdu3bBu3TpIkqTyIQonTpxA165dYWxsDCcnJ0yYMAHZ2dmVOmd1DQMqERERqcgtVNTaV00LCwtDTEwMdu3ahT/++ANCCPTp0weFhYWQJAldu3ZFdHQ0gCdh9vLlyygsLMTly5cBANHR0Wjbti3MzMzK3f+aNWswffp0zJ8/H/Hx8fjyyy8xY8YMrFu3DgCQnZ2Nvn37wsPDA2fPnsXs2bMxefJklX3cuHEDAwcOREhICGJjY/H+++9j+vTpKm3i4uLQq1cvDBgwABcuXMDPP/+M33//HR999FE1nzHNwFv8REREpCJw+e+1dqxTEwOqvE1UVJRKYOzduzf++9//lmmXmJiIXbt24fjx4+jYsSMAIDIyEk5OTtixYwcGDRqEwMBArF69GgBw9OhReHt7w9nZGdHR0WjVqhWio6MRGBhYYS1z587FkiVLMGDAAACAm5sbLl++jFWrViE0NBSRkZFQKBRYu3YtTExM8NJLL+H27dv44IMP5H2sXLkSHh4eWLx4MQDAw8MDFy9exPz58+U2ixcvxtChQ+UJYM2bN8e///1vBAQEYMWKFTAyMqryedRkDKhERERUp3Tr1g0rVqyQX5uampbbLj4+Hnp6emjfvr28zMbGBh4eHoiPjwfwZNb/xIkT8eDBAxw5cgSBgYFwdnbGkSNH8N577+HEiRMVPhXg/v37uHXrFkaPHo0xY8bIy4uKimBpaSnX4O3trfKBCP7+/ir7SUhIQLt27VSWvfLKKyqvz549i2vXriEyMlJeJoSAUqlEUlISWrZsWW6NdRUDKhEREamI/rCzukt4KlNTU7i7uz+znRCiwuXFD4x/+eWXYWNjgyNHjuDIkSP44osv4OTkhPnz5+PMmTPIzc1F587lnw+lUgngyW3+kiEYgDwmtqIaKqqnotqVSiXef/99TJgwocz2zs7OzzxGXcOASkRERCqM9Sv+jPS6pFWrVigqKsKpU6fkW/wPHz7E1atX5SuOxeNQd+7ciYsXL6JLly4wNzdHYWEhVq5ciTZt2sDc3Lzc/Tds2BCNGzfGX3/9hWHDhlVYw4YNG5Cbmyt/Fv3JkydV2nh6emL37t0qy2JiYlRet2nTBpcuXapUMNcGnCRFREREWql58+YIDg7GmDFj8Pvvv+PPP//EO++8g8aNGyM4OFhuFxgYiJ9++gleXl6wsLCQQ2tkZORTx58CwOzZs7FgwQIsW7YMV69eRVxcHMLDw/HNN98AAIYOHQodHR2MHj0aly9fxu7du/H111+r7OP999/HlStXMHXqVFy9ehWbN29GREQEgH8+GnTq1Kn4448/MG7cOMTGxsrja8ePH199J0yDMKASERGR1goPD0fbtm3Rt29f+Pv7QwiB3bt3Q19fX27TrVs3KBQKlTAaEBAAhUKBgICnT+J699138cMPPyAiIgKtW7dGQEAAIiIi4ObmBgAwMzPDL7/8gsuXL8PX1xfTp0/HV199pbIPNzc3bNmyBdu2bYOXlxdWrFghz+I3NDQEAHh5eeHIkSNITExEly5d4OvrixkzZsDR0bE6TpPGkURlBkcQERGRVsnLy0NSUhLc3Ny0bga4Npg/fz5WrlyJW7duqbuUalXZfscxqERERERqtnz5crRr1w42NjY4fvw4Fi9erLXPOK0MBlQiIiIiNUtMTMS8efPw6NEjODs749NPP8W0adPUXZba8BY/ERFRPcRb/KQOle13nCRFRERERBqFAZWIiIiINAoDKhERERFpFAZUIiIiItIoDKhEREREpFEYUImIiIhqWHR0NCRJwuPHj6t1v7Nnz4aPj0+17lMTMKASERFRnXL37l2MHz8eTZs2haGhIZycnNCvXz8cPHiwWo8TGBiISZMmVes+qXL4oH4iIiKqM27cuIFOnTrBysoKixYtgpeXFwoLC7Fv3z6MGzcOV65cqdV6hBBQKBTQ02Okqk68gkpERER1xocffghJknD69GkMHDgQLVq0wEsvvYRPPvkEJ0+elNvdvHkTwcHBMDMzg4WFBQYPHox79+7J64tvjW/YsAGurq6wtLTEW2+9hczMTABAWFgYjhw5gmXLlkGSJEiShBs3bsi36vft2wc/Pz8YGhri2LFjyM/Px4QJE2Bvbw8jIyN07twZZ86cqdJ7S09Px3vvvQd7e3tYWFige/fu+PPPP1XaLFy4EA0bNoS5uTlGjx6NvLw8lfVFRUWYMGECrKysYGNjg6lTpyI0NBQhISFyGyEEFi1ahKZNm8LY2Bje3t7YsmVLlWqtaQyoREREVCc8evQIe/fuxbhx42BqalpmvZWVFYAnASwkJASPHj3CkSNHsH//fly/fh1DhgxRaX/9+nXs2LEDUVFRiIqKwpEjR7Bw4UIAwLJly+Dv748xY8YgJSUFKSkpcHJykrf97LPPsGDBAsTHx8PLywufffYZtm7dinXr1uHcuXNwd3dHr1698OjRo0q9NyEEXn/9ddy9exe7d+/G2bNn0aZNG7z66qvyPjZv3oxZs2Zh/vz5iImJgaOjI5YvX66yn6+++gqRkZEIDw/H8ePHkZGRgR07dqi0+fzzzxEeHo4VK1bg0qVL+Pjjj/HOO+/gyJEjlaq1VggiIiKqd3Jzc8Xly5dFbm5umXX5+fm19lUVp06dEgDEtm3bntrut99+E7q6uuLmzZvyskuXLgkA4vTp00IIIWbNmiVMTExERkaG3GbKlCmiffv28uuAgAAxceJElX0fPnxYABA7duyQl2VlZQl9fX0RGRkpLysoKBCNGjUSixYtUtkuLS2t3JoPHjwoLCwsRF5ensryZs2aiVWrVgkhhPD39xdjx45VWd++fXvh7e0tv27YsKFYvHix/LqoqEg4OzuL4OBguVYjIyNx4sQJlf2MHj1avP322+XWVp2e1u9K4oAJIiIiUrFgwYJaO9asWbMq3VYIAQCQJOmp7eLj4+Hk5KRyxbNVq1awsrJCfHw82rVrBwBwdXWFubm53MbR0RGpqamVqsXPz0/+9/Xr11FYWIhOnTrJy/T19fHKK68gPj6+Uvs7e/YssrKyYGNjo7I8NzcX169fl9/X2LFjVdb7+/vj8OHDAJ4MEbh37x5eeeUVeb2uri7atm0LpVIJALh8+TLy8vLQs2dPlf0UFBTA19e3UrXWBgZUIiIiqhOaN28OSZIQHx+vMqayNCFEuSG29HJ9fX2V9ZIkyUHuWUoOMagoOFdUR3mUSiUcHR0RHR1dZl3x0IXKKq+OkscBgF9//RWNGzdWaWdoaFil49QkBlQiIiJSMW3aNHWXUC5ra2v06tUL//nPfzBhwoQy41AfP34MKysrtGrVCjdv3sStW7fkq6iXL19Geno6WrZsWenjGRgYQKFQPLOdu7s7DAwM8Pvvv2Po0KEAgMLCQsTExFT6MVVt2rTB3bt3oaenB1dX13LbtGzZEidPnsSIESPkZSUnhllaWqJhw4Y4ffo0unTpAgBQKBQ4f/68/KzUVq1awdDQEDdv3kRAQEClalMHBlQiIiJSYWBgoO4SKrR8+XJ07NgRr7zyCr744gt4eXmhqKgI+/fvx4oVKxAfH48ePXrAy8sLw4YNw9KlS1FUVIQPP/wQAQEBKrfmn8XV1RWnTp3CjRs3YGZmBmtr63LbmZqa4oMPPsCUKVNgbW0NZ2dnLFq0CDk5ORg9enSljtWjRw/4+/sjJCQEX331FTw8PPD3339j9+7dCAkJgZ+fHyZOnIjQ0FD4+fmhc+fOiIyMxKVLl9C0aVN5P+PHj8eCBQvg7u4OT09PfPfdd0hLS5Ovqpqbm2Py5Mn4+OOPoVQq0blzZ2RkZODEiRMwMzNDaGhopc9PTWJAJSIiojrDzc0N586dw/z58/Hpp58iJSUFdnZ2aNu2LVasWAHgyS3uHTt2YPz48ejatSt0dHQQFBSE7777rkrHmjx5MkJDQ9GqVSvk5uYiKSmpwrYLFy6EUqnE8OHDkZmZCT8/P+zbtw8NGjSo1LEkScLu3bsxffp0jBo1Cvfv34eDgwO6du2Khg0bAgCGDBmC69evY+rUqcjLy8Obb76JDz74APv27ZP3M3XqVNy9excjRoyArq4u3nvvPfTq1Qu6urpym7lz58Le3h4LFizAX3/9BSsrK7Rp0wb/+te/qnR+apIkSg5MICIionohLy8PSUlJcHNzg5GRkbrLoRqiVCrRsmVLDB48GHPnzlV3OZXud7yCSkRERKQlkpOT8dtvvyEgIAD5+fn4/vvvkZSUJI+NrSv4oH4iIiIiLaGjo4OIiAi0a9cOnTp1QlxcHA4cOFClyWGagFdQiYiIiLSEk5MTjh8/ru4yXhivoBIRERGRRmFAJSIiIiKNwoBKRERERBqFAZWIiIiINAoDKhERERFpFAZUIiIiItIoDKhERESkNYo/5lQbREREwMrKSt1lqAUDKhEREdUZYWFhCAkJqXB9SkoKevfuXal9aVOY1TZ8UD8RERFpDQcHB3WXQNWAV1CJiIhIa5S8KlpQUICPPvoIjo6OMDIygqurKxYsWAAAcHV1BQC88cYbkCRJfg0Av/zyC9q2bQsjIyM0bdoUc+bMQVFRkcoxfvjhB7zxxhswMTFB8+bNsWvXrqfWVVBQgM8++wyNGzeGqakp2rdvj+joaJU2ERERcHZ2homJCd544w08fPiwzH7mzZsHe3t7mJub491338X//M//wMfHR6VNeHg4WrZsCSMjI3h6emL58uWVO3kahAGViIiItNK///1v7Nq1C5s3b0ZCQgJ+/PFHOYieOXMGwJMwl5KSIr/et28f3nnnHUyYMAGXL1/GqlWrEBERgfnz56vse86cORg8eDAuXLiAPn36YNiwYXj06FGFtYwcORLHjx/Hpk2bcOHCBQwaNAhBQUFITEwEAJw6dQqjRo3Chx9+iNjYWHTr1g3z5s1T2UdkZCTmz5+Pr776CmfPnoWzszNWrFih0mbNmjWYPn065s+fj/j4eHz55ZeYMWMG1q1b90LnstYJIiIiqndyc3PF5cuXRW5ubpl1+fn5FX4VFhZWum1BQcEz21ZVaGioCA4OrnA9ALF9+3YhhBDjx48X3bt3F0ql8plti3Xp0kV8+eWXKss2bNggHB0dVbb7/PPP5ddZWVlCkiSxZ8+eco9z7do1IUmSuHPnjsryV199VUybNk0IIcTbb78tgoKCVNYPGTJEWFpayq/bt28vxo0bp9KmU6dOwtvbW37t5OQkfvrpJ5U2c+fOFf7+/uXWVtue1u9K4hhUIiIiUlF8G7w8zZs3x9ChQ+XXX3/9NQoLC8tt6+LigrCwMPn1smXLkJOTo9Jm1qxZL1bsU4SFhaFnz57w8PBAUFAQ+vbti9dee+2p25w9exZnzpxRuWKqUCiQl5eHnJwcmJiYAAC8vLzk9aampjA3N0dqamq5+zx37hyEEGjRooXK8vz8fNjY2AAA4uPj8cYbb6is9/f3x969e+XXCQkJ+PDDD1XavPLKKzh06BAA4P79+7h16xZGjx6NMWPGyG2KiopgaWn51PetaRhQiYiISCu1adMGSUlJ2LNnDw4cOIDBgwejR48e2LJlS4XbKJVKzJkzBwMGDCizzsjISP63vr6+yjpJkqBUKivcp66uLs6ePQtdXV2VdWZmZgAAIUSl3pMkSSqvS25XfPw1a9agffv2Ku1KH1fTMaASERGRimnTplW4TkdHdfrK5MmTK2xbOkxNnDjxxQp7DhYWFhgyZAiGDBmCgQMHIigoCI8ePYK1tTX09fWhUChU2rdp0wYJCQlwd3evthp8fX2hUCiQmpqKLl26lNumVatWOHnypMqy0q89PDxw+vRpDB8+XF4WExMj/7thw4Zo3Lgx/vrrLwwbNqza6lcHBlQiIiJSYWBgoPa2T5Oeno7Y2FiVZdbW1nB2dlZZ9u2338LR0RE+Pj7Q0dHBf//7Xzg4OMgPv3d1dcXBgwfRqVMnGBoaokGDBpg5cyb69u0LJycnDBo0CDo6Orhw4QLi4uLKTFqqrBYtWmDYsGEYMWIElixZAl9fXzx48ACHDh1C69at0adPH0yYMAEdO3bEokWLEBISgt9++03l9j4AjB8/HmPGjIGfnx86duyIn3/+GRcuXEDTpk3lNrNnz8aECRNgYWGB3r17Iz8/HzExMUhLS8Mnn3zyXPWrA2fxExERUZ0SHR0NX19fla+ZM2eWaWdmZoavvvoKfn5+aNeuHW7cuIHdu3fLV4GXLFmC/fv3w8nJCb6+vgCAXr16ISoqCvv370e7du3QoUMHfPPNN3BxcXmhmsPDwzFixAh8+umn8PDwQP/+/XHq1Ck4OTkBADp06IAffvgB3333HXx8fPDbb7/h888/V9nHsGHDMG3aNEyePFkevhAWFqYy9ODdd9/FDz/8gIiICLRu3RoBAQGIiIiAm5vbC9Vf2yRR2UEPREREpDXy8vKQlJQENzc3lYBDdUvPnj3h4OCADRs2qLuUSqlsv+MtfiIiIqI6ICcnBytXrkSvXr2gq6uLjRs34sCBA9i/f7+6S6t2DKhEREREdYAkSdi9ezfmzZuH/Px8eHh4YOvWrejRo4e6S6t2DKhEREREdYCxsTEOHDig7jJqBSdJEREREZFGYUAlIiIiIo3CgEpEREREGoUBlYiIiIg0CgMqEREREWkUBlQiIiIi0igMqEREREQlREREwMrKSt1l1GsMqERERFSnhIWFQZIk+cvGxgZBQUG4cOFCtex/yJAhuHr1arXsi54PAyoRERHVOUFBQUhJSUFKSgoOHjwIPT099O3bt1r2bWxsDHt7+2rZFz0fBlQiIiJ6bgoFEB0NbNz45LtCUTvHNTQ0hIODAxwcHODj44OpU6fi1q1buH//PgBg6tSpaNGiBUxMTNC0aVPMmDEDhYWF8vZ//vknunXrBnNzc1hYWKBt27aIiYkBUPYW/+zZs+Hj44MNGzbA1dUVlpaWeOutt5CZmVk7b7Ye4kedEhER0XPZtg2YOBG4ffufZU2aAMuWAQMG1F4dWVlZiIyMhLu7O2xsbAAA5ubmiIiIQKNGjRAXF4cxY8bA3Nwcn332GQBg2LBh8PX1xYoVK6Crq4vY2Fjo6+tXeIzr169jx44diIqKQlpaGgYPHoyFCxdi/vz5tfIe6xsGVCIiIqqybduAgQMBIVSX37nzZPmWLTUbUqOiomBmZgYAyM7OhqOjI6KioqCj8+Tm8Oeffy63dXV1xaeffoqff/5ZDqg3b97ElClT4OnpCQBo3rz5U4+nVCoREREBc3NzAMDw4cNx8OBBBtQawlv8REREVCUKxZMrp6XDKfDPskmTavZ2f7du3RAbG4vY2FicOnUKr732Gnr37o3k5GQAwJYtW9C5c2c4ODjAzMwMM2bMwM2bN+XtP/nkE7z77rvo0aMHFi5ciOvXrz/1eK6urnI4BQBHR0ekpqbWzJsjBlQiIiKqmmPHVG/rlyYEcOvWk3Y1xdTUFO7u7nB3d8crr7yC//3f/0V2djbWrFmDkydP4q233kLv3r0RFRWF8+fPY/r06SgoKJC3nz17Ni5duoTXX38dhw4dQqtWrbB9+/YKj1f69r8kSVAqlTX2/uo73uInIiKiKklJqd521UGSJOjo6CA3NxfHjx+Hi4sLpk+fLq8vvrJaUosWLdCiRQt8/PHHePvttxEeHo433nij9oqmCjGgEhERUZU4OlZvu+eRn5+Pu3fvAgDS0tLw/fffIysrC/369UN6ejpu3ryJTZs2oV27dvj1119Vro7m5uZiypQpGDhwINzc3HD79m2cOXMGb775Zs0VTFXCgEpERERV0qXLk9n6d+6UPw5Vkp6s79Kl5mrYu3cvHP8/AZubm8PT0xP//e9/ERgYCAD4+OOP8dFHHyE/Px+vv/46ZsyYgdmzZwMAdHV18fDhQ4wYMQL37t2Dra0tBgwYgDlz5tRcwVQlkhDldS0iIiLSZnl5eUhKSoKbmxuMjIyqvH3xLH5ANaRK0pPvNT2Ln+qmyvY7TpIiIiKiKhsw4EkIbdxYdXmTJgyn9OJ4i5+IiIiey4ABQHDwk9n6KSlPxpx26QLo6qq7MqrrGFCJiIjouenqAv8/7JOo2vAWPxERERFpFAZUIiIiItIoDKhEREREpFEYUImIiIhIozCgEhEREZFGYUAlIiIiIo3CgEpERERaSZIk7NixQ91l1Cuurq5YunTpC++HAZWIiIjqlLCwMEiSBEmSoK+vj4YNG6Jnz55Yu3YtlEql3C4lJQW9e/dWW50RERGwsrJ6rm2FEFi9ejXat28PMzMzWFlZwc/PD0uXLkVOTo5G1FiTGFCJiIiozgkKCkJKSgpu3LiBPXv2oFu3bpg4cSL69u2LoqIiAICDgwMMDQ2r/dgKhUIlCNeE4cOHY9KkSQgODsbhw4cRGxuLGTNmYOfOnfjtt99q9NjlKSgoqNXjMaASERHRCxFCIDo6GkKIWjumoaEhHBwc0LhxY7Rp0wb/+te/sHPnTuzZswcREREAVG/xFxQU4KOPPoKjoyOMjIzg6uqKBQsWyPt7/Pgx3nvvPTRs2BBGRkZ4+eWXERUVBeCfq4xRUVFo1aoVDA0NkZycjIKCAnz22Wdo3LgxTE1N0b59e0RHRwMAoqOjMXLkSKSnp8tXe2fPni3XUtF2ALB582ZERkZi48aN+Ne//oV27drB1dUVwcHBOHToELp16wYAUCqV+OKLL9CkSRMYGhrCx8cHe/fulfdz48YNSJKEbdu2oVu3bjAxMYG3tzf++OOPZ9bo6uqKefPmISwsDJaWlhgzZgwAYOvWrXjppZdgaGgIV1dXLFmypDr/s/5DEBERUb2Tm5srLl++LHJzc194X7t37xYAxJ49e6qhsmcLDQ0VwcHB5a7z9vYWvXv3FkIIAUBs375dCCHE4sWLhZOTkzh69Ki4ceOGOHbsmPjpp5+EEEIoFArRoUMH8dJLL4nffvtNXL9+Xfzyyy9i9+7dQgghwsPDhb6+vujYsaM4fvy4uHLlisjKyhJDhw4VHTt2FEePHhXXrl0TixcvFoaGhuLq1asiPz9fLF26VFhYWIiUlBSRkpIiMjMzhRDiqdsJIUT//v2Fh4fHM8/DN998IywsLMTGjRvFlStXxGeffSb09fXl/SQlJQkAwtPTU0RFRYmEhAQxcOBA4eLiIgoLC59ao4uLi7CwsBCLFy8WiYmJIjExUcTExAgdHR3xxRdfiISEBBEeHi6MjY1FeHi4XJOLi4v49ttvK6y5sv2OAZWIiKgeqs6AOmrUKAFAjB49uhoqe7anBdQhQ4aIli1bCiFUA+r48eNF9+7dhVKpLLPNvn37hI6OjkhISCh3n+Hh4QKAiI2NlZddu3ZNSJIk7ty5o9L21VdfFdOmTZO3s7S0VFlfme1atmwp+vfvX/6bL6FRo0Zi/vz5KsvatWsnPvzwQyHEPwH1hx9+kNdfunRJABDx8fEV1ijEk6AZEhKismzo0KGiZ8+eKsumTJkiWrVqpbJddQRUvZq5LktERETaSqlUYsWKFXj8+DEAYMuWLfJ3Nzc3AICVlRU++OAD6OjU7mhCIQQkSSqzPCwsDD179oSHhweCgoLQt29fvPbaawCA2NhYNGnSBC1atKhwvwYGBvDy8pJfnzt3DkKIMtvk5+fDxsamwv1UZruK3kNJGRkZ+Pvvv9GpUyeV5Z06dcKff/6psqxk3Y6OjgCA1NRUeHp6PvUYfn5+Kq/j4+MRHBxc5nhLly6FQqGArq7uU/dXFQyoREREVCXZ2dmYOXMmHj16BEmS5BCalZWFGTNmQAgBa2trjBgxAubm5rVaW3x8vBySS2rTpg2SkpKwZ88eHDhwAIMHD0aPHj2wZcsWGBsbP3O/xsbGKqFRqVRCV1cXZ8+eLRPMzMzMKtxPZbZr0aIF4uPjn1kTgDJBtrxwq6+vX6Z9ZSZ5mZqaPnPfoobGHXOSFBEREVWJubk5zp8/j44dOwJ4Mqu95PeOHTsiNja21sPpoUOHEBcXhzfffLPc9RYWFhgyZAjWrFmDn3/+GVu3bsWjR4/g5eWF27dv4+rVq5U+lq+vLxQKBVJTU+Hu7q7y5eDgAODJVdfic1KV7YYOHYqrV69i586dZY4rhEB6ejosLCzQqFEj/P777yrrT5w4gZYtW1b6fZRXY0VatWpV7vFatGhRrVdPAV5BJSIioufg7OyMw4cPw9raGtnZ2fJyExMTREdHq1y1qwn5+fm4e/cuFAoF7t27h71792LBggXo27cvRowYUab9t99+C0dHR/j4+EBHRwf//e9/4eDgACsrKwQEBKBr165488038c0338Dd3R1XrlyBJEkICgoq9/gtWrTAsGHDMGLECCxZsgS+vr548OABDh06hNatW6NPnz5wdXVFVlYWDh48CG9vb5iYmFRqu8GDB2P79u14++23MWPGDPTs2RN2dnaIi4vDt99+i/HjxyMkJARTpkzBrFmz0KxZM/j4+CA8PByxsbGIjIys9Hksr0YTE5Ny23766ado164d5s6diyFDhuCPP/7A999/j+XLl1f6eJX21BGqREREpJWqY5LUsWPHBIAyX7///ns1VlpWaGiofCw9PT1hZ2cnevToIdauXSsUCoXcDiUmSa1evVr4+PgIU1NTYWFhIV599VVx7tw5ue3Dhw/FyJEjhY2NjTAyMhIvv/yyiIqKEkJUPJGooKBAzJw5U7i6ugp9fX3h4OAg3njjDXHhwgW5zdixY4WNjY0AIGbNmlXp7RQKhVixYoVo166dMDExERYWFqJt27Zi2bJlIicnR24zZ84c0bhxY6Gvry+8vb1VnqRQPEnq/Pnz8rK0tDQBQBw+fPipNVY02WnLli2iVatWQl9fXzg7O4vFixerrK+uSVKSELX40DIiIiLSCHl5eUhKSoKbmxuMjIyeax9Tp07FokWLEBISgq+//hqffvopdu7cic8++wxfffVVNVdM2qCy/Y63+ImIiOi59O/fH97e3nj77bchSRK2b9+OjRs3wsXFRd2lUR3HK6hERET1UHVcQSWqqsr2O87iJyIiIiKNwoBKRERERBqFAZWIiIiINAoDKhERERFpFAZUIiIiItIoDKhEREREpFEYUImIiIhIozCgEhEREVWBJEnYsWOHusuotNmzZ8PHx0fdZVQJAyoRERHVKWFhYQgJCVF3GTJJkuQvPT09ODs745NPPkF+fr66S6uz+FGnRERERC8oPDwcQUFBKCwsxJ9//omRI0fC1NQUc+fOVXdp1aKwsBD6+vq1djxeQSUiIqLnplAqEH0jGhvjNiL6RjQUSoVa67l8+TL69OkDMzMzNGzYEMOHD8eDBw8AAKtWrULjxo2hVCpVtunfvz9CQ0Pl17/88gvatm0LIyMjNG3aFHPmzEFRUdFTj2tlZQUHBwc4OTmhb9++6N+/P86dO6fSZsWKFWjWrBkMDAzg4eGBDRs2yOtu3LgBSZIQGxsrL3v8+DEkSUJ0dDQAIDo6GpIk4eDBg/Dz84OJiQk6duyIhIQEleMsXLgQDRs2hLm5OUaPHo28vDyV9WfOnEHPnj1ha2sLS0tLBAQElKlVkiSsXLkSwcHBMDU1xbx58+Du7o6vv/5apd3Fixeho6OD69evP/X8VBUDKhERET2XbfHb4LrMFd3WdcPQbUPRbV03uC5zxbb4bWqpJyUlBQEBAfDx8UFMTAz27t2Le/fuYfDgwQCAQYMG4cGDBzh8+LC8TVpaGvbt24dhw4YBAPbt24d33nkHEyZMwOXLl7Fq1SpERERg/vz5la7j6tWrOHz4MNq3by8v2759OyZOnIhPP/0UFy9exPvvv4+RI0eq1FJZ06dPx5IlSxATEwM9PT2MGjVKXrd582bMmjUL8+fPR0xMDBwdHbF8+XKV7TMzMxEaGopjx47h5MmTaN68Ofr06YPMzEyVdrNmzUJwcDDi4uIwatQojBo1CuHh4Spt1q5diy5duqBZs2ZVfh9PJYiIiKjeyc3NFZcvXxa5ubnPtf3Wy1uFNFsSmA2VL2m2JKTZkth6eWs1V/yP0NBQERwcXGb5jBkzxGuvvaay7NatWwKASEhIEEII0b9/fzFq1Ch5/apVq4SDg4MoKioSQgjRpUsX8eWXX6rsY8OGDcLR0VF+DUBs375d5bWRkZEwNTUVhoaGAoDo27evKCgokNt07NhRjBkzRmW/gwYNEn369BFCCJGUlCQAiPPnz8vr09LSBABx+PBhIYQQhw8fFgDEgQMH5Da//vqrACD/d/T39xdjx45VOU779u2Ft7d3mfNVrKioSJibm4tffvlF5T1NmjRJpd3ff/8tdHV1xalTp4QQQhQUFAg7OzsRERFR4b5Lq2y/4xVUIiIiqhKFUoGJeydCQJRZV7xs0t5JtX67/+zZszh8+DDMzMzkL09PTwCQb0EPGzYMW7dulScwRUZG4q233oKurq68jy+++EJlH2PGjEFKSgpycnIqPPa3336L2NhY/Pnnn4iKisLVq1cxfPhweX18fDw6deqksk2nTp0QHx9f5ffp5eUl/9vR0REAkJqaKh/H399fpX3p16mpqRg7dixatGgBS0tLWFpaIisrCzdv3lRp5+fnp/La0dERr7/+OtauXQsAiIqKQl5eHgYNGlTl9/AsnCRFREREVXLs5jHczrhd4XoBgVsZt3Ds5jEEugbWWl1KpRL9+vXDV199VWZdcZDr168flEolfv31V7Rr1w7Hjh3DN998o7KPOXPmYMCAAWX2YWRkVOGxHRwc4O7uDgDw8PBAZmYm3n77bXnsJvBkXGdJQgh5mY6OjrysWGFhYbnHKjlZqXj70uNqnyYsLAz379/H0qVL4eLiAkNDQ/j7+6OgoEClnampaZlt3333XQwfPhzffvstwsPDMWTIEJiYmFT62JXFgEpERERVkpKZUq3tqkubNm2wdetWuLq6Qk+v/IhjbGyMAQMGIDIyEteuXUOLFi3Qtm1blX0kJCTIofJ5FV+Rzc3NBQC0bNkSv//+O0aMGCG3OXHiBFq2bAkAsLOzA/BkHK2vry8AqEyYqqyWLVvi5MmTKsc5efKkSptjx45h+fLl6NOnDwDg1q1b8kSyZ+nTpw9MTU2xYsUK7NmzB0ePHq1yjZXBgEpERERV4mjuWK3tnkd6enqZAPf+++9jzZo1ePvttzFlyhTY2tri2rVr2LRpE9asWSOHxmHDhqFfv364dOkS3nnnHZV9zJw5E3379oWTkxMGDRoEHR0dXLhwAXFxcZg3b16F9Tx+/Bh3796FUqlEYmIivvjiC7Ro0UIOoFOmTMHgwYPRpk0bvPrqq/jll1+wbds2HDhwAMCT4NyhQwcsXLgQrq6uePDgAT7//PMqn5eJEyciNDQUfn5+6Ny5MyIjI3Hp0iU0bdpUbuPu7o4NGzbAz88PGRkZmDJlCoyNjSu1f11dXYSFhWHatGlwd3cvM3ygunAMKhEREVVJF+cuaGLRBBKkctdLkOBk4YQuzl1qrIbo6Gj4+vqqfM2cORPHjx+HQqFAr1698PLLL2PixImwtLSUb6EDQPfu3WFtbY2EhAQMHTpUZb+9evVCVFQU9u/fj3bt2qFDhw745ptv4OLi8tR6Ro4cCUdHRzRp0gRvv/02XnrpJezZs0e+khsSEoJly5Zh8eLFeOmll7Bq1SqEh4cjMDBQ3sfatWtRWFgIPz8/TJw48amBuCJDhgzBzJkzMXXqVLRt2xbJycn44IMPVNqsXbsWaWlp8PX1xfDhwzFhwgTY29tX+hijR49GQUGBytMDqpskSg52ICIionohLy8PSUlJcHNze+rYyopsi9+GgZsHAoDKZKni0Lpl8BYMaFl2HCfVfcePH0dgYCBu376Nhg0bVmnbyvY7XkElIiKiKhvQcgC2DN6CxhaNVZY3sWjCcKql8vPzce3aNcyYMQODBw+ucjitCo5BJSIioucyoOUABHsE49jNY0jJTIGjuSO6OHeBro6uukujGrBx40aMHj0aPj4+Kp+CVRN4i5+IiKgeetFb/ETPg7f4iYiIiKhOYkAlIiIiIo3CgEpEREREGoUBtY47evQo+vXrh0aNGkGSJOzYsUNlvRACs2fPRqNGjWBsbIzAwEBcunRJpU1+fj7Gjx8PW1tbmJqaon///rh9u+KPsCPtVx39avXq1QgMDISFhQUkScLjx49r7w2QxnrRvvXo0SOMHz8eHh4eMDExgbOzMyZMmID09PRafidEVJMYUOu47OxseHt74/vvvy93/aJFi/DNN9/g+++/x5kzZ+Dg4ICePXsiMzNTbjNp0iRs374dmzZtwu+//46srCz07dsXCoWitt4GaZjq6Fc5OTkICgrCv/71r9oqm+qAF+1bf//9N/7++298/fXXiIuLQ0REBPbu3YvRo0fX5tsgopomSGsAENu3b5dfK5VK4eDgIBYuXCgvy8vLE5aWlmLlypVCCCEeP34s9PX1xaZNm+Q2d+7cETo6OmLv3r21VjtprufpVyUdPnxYABBpaWm1UC3VJS/at4pt3rxZGBgYiMLCwposV+vk5uaKy5cvi9zcXHWXQvVIZfsdr6BqsaSkJNy9exevvfaavMzQ0BABAQE4ceIEAODs2bMoLCxUadOoUSO8/PLLchuikirTr4iex/P2rfT0dFhYWMgfKUn0osLCwhASEqLuMuo1BlQtdvfuXQAo80kPDRs2lNfdvXsXBgYGaNCgQYVtiEqqTL8ieh7P07cePnyIuXPn4v3336/x+kiz3Lp1C6NHj0ajRo1gYGAAFxcXTJw4EQ8fPqz0Pm7cuAFJkhAbG/tCtURHR3OsfTVjQK0HJElSeS2EKLOstMq0ofrtefoVUWVUtm9lZGTg9ddfR6tWrTBr1qzaKo80wF9//QU/Pz9cvXoVGzduxLVr17By5UocPHgQ/v7+ePTokbpLpBfEgKrFHBwcAKDMlYfU1FT5CoWDgwMKCgqQlpZWYRuikirTr4ieR1X6VmZmJoKCgmBmZobt27dDX1+/1uqksvKK8nAo6RDyivJq5Xjjxo2DgYEBfvvtNwQEBMDZ2Rm9e/fGgQMHcOfOHUyfPh0Ayn1ShJWVFSIiIgAAbm5uAABfX19IkoTAwMByjyeEwKJFi9C0aVMYGxvD29sbW7ZsAfDkKmy3bt0AAA0aNIAkSQgLC6v291zfMKBqMTc3Nzg4OGD//v3ysoKCAhw5cgQdO3YEALRt2xb6+voqbVJSUnDx4kW5DVFJlelXRM+jsn0rIyMDr732GgwMDLBr1y5+TKcaCSGwPX47WnzXAq+ufxUtvmuB7fHbIWrwU9QfPXqEffv24cMPP4SxsbHKOgcHBwwbNgw///xzpWo4ffo0AODAgQNISUnBtm3bym33+eefIzw8HCtWrMClS5fw8ccf45133sGRI0fg5OSErVu3AgASEhKQkpKCZcuWveC7JI4or+OysrJw7do1+XVSUhJiY2NhbW0NZ2dnTJo0CV9++SWaN2+O5s2b48svv4SJiQmGDh0KALC0tMTo0aPx6aefwsbGBtbW1pg8eTJat26NHj16qOttkZq9aL8CnlwFu3v3rryfuLg4mJubw9nZGdbW1rX+nkgzvGjfyszMxGuvvYacnBz8+OOPyMjIQEZGBgDAzs4Ourq6anlf9dGVB1cwNmosjiQfgY705HrXncw7GLB5AAJcArCy70p42npW+3ETExMhhEDLli3LXd+yZUukpaXh/v37z9yXnZ0dAMDGxka+gl9adnY2vvnmGxw6dAj+/v4AgKZNm+L333/HqlWrEBAQIP9Ms7e3h5WV1XO8KyqjZh8mQNVp9+7dAoDYs2ePvKz4ET6lv0JDQ4UQTx7bMmvWLOHg4CAMDQ1F165dRVxcnMp+c3NzxUcffSSsra2FsbGx6Nu3r7h582ZtvjVSo5rqV7NmzSp3H+Hh4bX47khdyutXQrx436poewAiKSmpFt9h3feij5ny/8Ff6M7RFZiNMl+6c3SF/w/+1VzxEydPnizziLKSlixZIgCI1NTUcttZWlrKP4eSkpIEAHH+/HmVNqGhoSI4OFgIIcTp06cFAGFqaqrypa+vL1555RUhBB+nVxWV7Xe8glqHFI932bJlC4KCggAAgYGBT72NIUkSZs+ejdmzZ1fYxsjICN999x2+++67aq2X6oaa6lfPWk/arbx+Bbx433rW9lR7MgsyoRDlf6CLQiiQWZBZ7roX5e7uDkmScPny5XIfBXXlyhU0aNAAtra2kCSpTH8pLCys0vGUSiUA4Ndff0Xjxo1V1hkaGlateKo0BlQNplQqsWLFCvmxFSV/4BcP7LayssIHH3wAHR0OJ6bKYb+imsB+RbXFxsYGPXv2xPLly/Hxxx+rjEO9e/cuIiMjMWLECEiSBDs7O6SkpMjrExMTkZOTI782MDAAgKd+cmKrVq1gaGiImzdvIiAgoNw2ldkPVQ0DqgbLzs7GzJkz8ejRI0iSJP9Qz8rKwowZMyCEgLW1NUaMGAFzc3M1V0t1BfsV1QT2K6pN33//PTp27IhevXph3rx5cHNzw6VLlzBlyhQ0btwY8+fPBwB0794d33//PTp06AClUompU6eqPPHB3t4exsbG2Lt3L5o0aQIjIyNYWlqqHMvc3ByTJ0/Gxx9/DKVSic6dOyMjIwMnTpyAmZkZQkND4eLiAkmSEBUVhT59+sDY2BhmZma1ek60Df+M1WDm5uY4f/482rZtCyGE/JdZ8feOHTsiNjaWP+ypSor7VYcOHdivqNoU96uOHTuyX9UT5gbm0JXKn5SmK+nC3KDm/ls3b94cMTExaNasGYYMGYJmzZrhvffeQ7du3fDHH3/Ik5aWLFkCJycndO3aFUOHDsXkyZNhYmIi70dPTw///ve/sWrVKjRq1AjBwcHlHm/u3LmYOXMmFixYgJYtW6JXr1745Zdf5LsDjRs3xpw5c/A///M/aNiwIT766KMae+/1hSQ4mEejJScnY926dZg3b57KuBkjIyOkp6fLtxWIqiInJwdr167FJ598otKvDAwMkJqaWuYKAlFlCCGwc+dODB48WKVfmZqaIi0tjc8q1TB5eXlISkqCm5vbcz2qq/QsfqVQyt9rchY/1W2V7Xe8gqrBkpOTERkZiRs3bpQZ1J2Xl4dly5ZxsgBVWU5ODtavX49z586V6VcFBQWYN2+eyhgtosoQQmD37t3YtWtXmX6VnZ0tP2+StIenrScOhx7G9iHb0dj8yeShJhZNsH3IdhwOPcxwSi+EAVVDFYfTwsJCpKamAgA8PT0xYcIEeZD2zp07sXv3boZUqrTicHrv3j0kJSUB+Kdf9erVCwDwxx9/YP369QypVGnF4TQmJgZXr14F8E+/6tevHwBg165d6iyRaogkSQjxDMHV8VdxcMRBJHyUgBDPEH7sMb0wTpLSUBcuXEBhYSGaNm2KwMBADB48GH/99RckScK+ffvwzTff4Nq1a7hy5Qq6du3KcV1UKTdv3sS9e/dgamqKyZMnY+TIkXK/2rlzJ8LDwxEXF4d79+7h5s2b8PTkFRB6tqysLFy5cgUA8O677+K9996T+9WiRYuwdetWuLi4qLlKqklGekbo7tZd3WWQFmFA1VCvv/46rK2t8corr0BfXx8FBQVYsGABgCd/sU6bNg1xcXFwdHRkOKVK8/T0xIABA+Do6AhbW9sy/Wrs2LG4f/8+7t69y3BKlWZubo7Q0FCkpKSgdevWZfpVyU8YIyKqDAZUDXL//n35wcI6Ojro1KnTU9u3bt26wu2JiuXk5ECpVMqPPCndb0qzs7OTP/4PeHJ1TEdHR2XmK5EQAg8ePJD7iq2tLWxtbdVcFRFpC45B1RDJyclYs2YNdu3a9VxjSq9fv47Vq1dzTCqpKB5zum7dOmRlZVV5+6ysLKxbt45jUklF8ZjT1atX4/r16+ouh4i0EAOqBig5ISojI+O5PokiMzMTRUVFiImJYUglAKoTonJzc5GXl1flfeTl5SE3Nxf37t1jSCUAqhOiioqKkJlZMx9nSUT1GwOqmpUMp02bNsVbb70FPb2qj7zw8fGRHzDMkEolw6mpqSlCQ0Of6/arra0tQkNDYWpqypBKKuEUAIKDg+Hj46PeoohIKzGgqlF54fRFHmTNkEpA+eG05JjSqrKzs2NIJYZTIqpVDKhqUt3htBhDav1W3eG0GENq/cZwSkS1jQFVTfLy8qBQKKo1nBYrGVJzc3MZUOuRwsJCFBQUVGs4LVYypBYUFKCoqKja9k2aTQiB3NxcAAynpBnCwsIgSRIkSYK+vj6aNm2KyZMnIzs7W92lUTXhY6bUxMPDA6GhoXB0dKyRz6f28fGBpaUlXFxcoKPDv0PqC0tLS4SGhqKwsLBGHvljZ2eHsLAw6Ovrw8LCotr3T5pJR0cHAwYMQNu2beHm5qbucogAAEFBQQgPD0dhYSGOHTuGd999F9nZ2VixYoW6S6NqwORSi27evIm0tDT5tbOzc42E02Jubm5yOBVCIC4ujldTtVBOTg4SExPl15aWljX6PEpbW1tYWlrKrxMTE3m7XwuV/pmho6PDcEoVKioqQlJSUq3eWTE0NISDgwOcnJwwdOhQDBs2DDt27EBYWBhCQkJU2k6aNAmBgYHy68DAQIwfPx6TJk1CgwYN0LBhQ6xevRrZ2dkYOXIkzM3N0axZM+zZs0feJjo6GpIk4ddff4W3tzeMjIzQvn17xMXF1dI7rl8YUGtJcnIyfvzxR0RERCA9Pb3Wjx8VFYVt27Zhz549DKlapHjM6caNGxEfH1/rx4+Pj8fGjRs5JlXLFI853bZtG6KiotRdDmkwIQTi4+Px3XffYf369fjuu+8QHx+vlt8zxsbGKCwsrHT7devWwdbWFqdPn8b48ePxwQcfYNCgQejYsSPOnTuHXr16Yfjw4WV+tk2ZMgVff/01zpw5A3t7e/Tv379Kx6XKYUCtBSUnRNna2qrlE3maNGkCADhz5gxDqpYoOSHKxMRELZ/iU9yfOXFKe5SeEOXk5KTmikhTPXjwAOvWrcPmzZvl5+FmZmZi8+bNWLduHR48eFBrtZw+fRo//fQTXn311Upv4+3tjc8//xzNmzfHtGnTYGxsDFtbW4wZMwbNmzfHzJkz8fDhQ1y4cEFlu1mzZqFnz55o3bo11q1bh3v37mH79u3V/ZbqPQbUGlZTs/WrytfXF/379wfAkKoNamq2flVxdr924Wx9qoqdO3fi5s2bACD/Pin+fvPmTezcubNGjx8VFQUzMzMYGRnB398fXbt2xXfffVfp7b28vOR/6+rqwsbGRuWjoBs2bAgASE1NVdnO399f/re1tTU8PDzUcgdL2zGg1iBNCafFGFK1g6aE02IMqdqB4ZSqqqCgoMLfIUIIFBQU1Ojxu3XrhtjYWCQkJCAvLw/btm2Dvb09dHR0ytRV3i340r+Pi58IUPI1ACiVymfWUtyWqg8Dag25ffu2RoXTYqVD6r59+9RcEVVFfn6+RoXTYuWF1Pz8fHWXRVWwb98+hlOqU0xNTeHu7g4XFxeV3692dnZISUlRaRsbG1ttxz158qT877S0NFy9ehWenp7Vtn96ggG1hlhbW8Pa2lqjwmmx4pCqq6sLV1dXdZdDVWBgYAAnJyeNCqfFSoZUJycnGBgYqLskqgJXV1fo6uoynFKd1717d8TExGD9+vVITEzErFmzcPHixWrb/xdffIGDBw/i4sWLCAsLg62tbZmnBtCL43NQa4iJiQlGjBgBfX19jQqnxXx9fdGsWTM+y7KOkSQJffr0QdeuXWFubq7ucsqws7PD+++/DzMzM97yqmM8PT0xYcIE/kygSjMwMIAkSeXe5pckSW1/pPbq1QszZszAZ599hry8PIwaNQojRoyotsdBLVy4EBMnTkRiYiK8vb2xa9cu/kFeAxhQq1FycjIePHiAtm3bAoBaZutXRclfRGlpafjzzz8REBDAYKFhcnJycPz4cXTv3h26urqQJEkjw2mxkrUpFAocOnQInTp10vj/H+obIQSOHDkCb29vNGjQAAAYTqlKgoODERUVheTkZDmoFn93dnZG3759a+zYERERT10/Z84czJkzp8L10dHRZZbduHGjzLLywnfnzp2r9YoslY8BtZqUnBBlZmYGDw8PdZdUaYWFhVi/fj0eP36MnJwc9O7dmyFVQ5ScEJWXl4d+/fqpu6Qq2b17N86dO4fr169jxIgRDKkaouSEqD///BMffvihRt7pIc1ma2uL0NBQJCQkYM+ePcjIyICFhQWCgoLg4eHB3yP0QhhQq0Hp2fpNmzZVd0lVoq+vj65du2LXrl04c+YMADCkaoDSs/VLPtqkrujQoQMSEhLkiVMMqepXerZ+QEAAwyk9N0mS4OnpCXd3d9y6dQtOTk7Q02O0oBfHSVIvSNMeJfW8+AgqzVI6nBYPxK9r+AgqzcJHSVFN0dPTg5ubm1aH08DAQAghYGVlpe5S6gUG1BegLeG0GEOqZtCWcFqMIVUzMJwSUV3CgPqcHj9+rFXhtFjpkHr8+HE1V1S/CCGwadMmrQmnxUqH1E2bNvGPn1p2/PhxhlMiqjMYUJ+TpaUl/P39tSqcFisOqQ0bNoSvr6+6y6lXJElC9+7d0aBBA60Jp8WKQ2qDBg3QvXt3jnGuZb6+vmjYsCHDKZXBPxapNlW2v2nvYJEaJkkSAgMDoVQqoaurq+5yqp2vry+8vLy08r1pOldXV4wbN04rz72dnZ3WvjdNZ2pqijFjxvDck6z4wkpOTg6MjY3VXA3VF8VDvJ51YY8BtQqSk5Nx4sQJvPnmm/IDirX5h33J93b27Fncu3ePs/trQE5ODrZu3YpevXrB3t4eAOpNv0pNTcW+ffvw5ptvcnZ/NRNCYM+ePWjYsKH8bGZt7ldUdbq6urCyskJqaiqAJ8/u5s93qilCCOTk5CA1NRVWVlbP/HnEgFpJJSdEHTt2DK+++qq6S6o1jx49wq+//gohBIQQ6NOnD3+IVZOSE6K2bt2KsWPH1ptzK4TA1q1bkZqaykdQVbOSE6IkSYKbmxusra3VXRZpIAcHBwCQQypRTbOyspL73dMwoFZC6dn6Xbt2VXdJtcra2hr9+vXDrl275EkWDKkvrvRs/YEDB9arcypJEgYOHIh169bxOanVqPRs/f79+zOcUoUkSYKjoyPs7e1RWFio7nJIy+nr61f6Tg4D6jNo26OknlfxZCmG1OpROpyGhobCzs5O3WXVuuKJUwyp1YOPkqLnpauryyEgpFE4i/8pGE5VlXwEVUxMDHbv3s3Zn8+B4VQVn5NaPRhOiUibMKBWQKFQYPv27QynpZQOqYmJiWquqO45ePAgw2kppUPqwYMH1V1SnZOYmMhwSkRaQxK8BFahlJQUHD9+HMHBwWoLp0IIrFu3DikpKSgoKAAAGBgYAAAcHR0RGhqqltvs58+fR1paGrp168bb/FWUn5+PHTt2oHv37moLp5rar+7fv4/Dhw8jODgYhoaGtX78ukwIgcOHD8Pa2lpt4VRT+xUR1T0cg1pKUVGR/FnCjo6OGDhwoFrrUSqVePz4sfzDHoD878ePH6vtOaylH+BfVFQEXV1d/vKpQMl+ZWhoiCFDhqi1Hk3tV3Z2dhg8eLDKspLnjlQJIaBQKKCnpyd/yIM6aWq/IqK6h7f4S0hOTsayZctw69YtdZci09XVRVBQULnrevfurRE/7AsLC/HTTz9xTGoFcnJy8MMPP+DYsWPqLkVWF/oVABw7dgw//PADx6SWo3jM6U8//aQxs6/rSr8iIs3HgPr/iidEZWVl4Y8//lB3OSo8PDzg4uIiv9bR0YGbmxtatGihxqr+cePGDSQlJXHiVDlKTog6deqURgUtTe9XOTk5OHXqFCdOlaPkhKikpCTcuHFD3SXJNL1fEVHdwICKsrP133jjDXWXpEKSJPTs2VN+LYRAUFCQxtxOb968OWf3l6O82fqa9PgkTe9XJiYmnN1fjvJm6zdv3lzNVf1D0/sVEdUN9T6g1pVHSZWcTNOmTRv5IzE1BR9BpaquPEpK0/sVH0Glqq48SkrT+xURab56HVDrSjgtTVM/yYoh9Ym6Ek5L09R+xZD6RF0Jp6Vpar8iIs1WrwPqmTNn6lw4BQAjIyN1l1ChkiH14sWLSE9PV3NFte/atWt1LpwCmt2vSofUa9euqbukWpeeno6LFy8CqDvhFNDsfkVEmqteP7slJCQEtra26NSpU50Jp3WBr68vdHR0YGdnBysrK3WXU+u8vLxQUFAAFxeXOhNO64LikJqcnAwvLy91l1PrrKysMHz4cDx48KBevn8iql/qXUB99OgRGjRoAEmSoKenh8DAQHWXpJW8vb1VXqelpcHKykprJ0rk5ORAR0dHvlrk5+en5oq0k52dnUroz8vLg1Kp1KjJZ9VJCIHHjx+jQYMGAIBGjRqhUaNGaq6KiKjm1atb/MnJyVi5ciV+++23ejk2Ul1u376NVatWYc+ePVp53ovHnG7YsAF5eXnqLqfeyMvLw4YNG7R2TGrxmNNVq1bh9u3b6i6HiKhW1ZuAWnJCVGpqKpRKpbpLqjcePnyI/Px8nDlzRutCaskJUenp6cjOzlZ3SfVGdnY20tPTtXLiVMkJUfn5+Xj48KG6SyIiqlX1IqCWN1ufn2hSe7y9veWJU9oUUsubrW9jY6PusuoNGxsbrZzdX3q2fv/+/csMmSEi0nZaH1Dr6qOktE3J2f3aEFLr6qOktI22PYKqvHDq6+ur5qqIiGqfVgdUhlPNoi0hleFUs2hLSGU4JSL6h1YH1PT0dIZTDVMypKalpdXJscC5ubnIzs5mONUgJUNqdnY2cnNz1V1SlSkUCqSlpQFgOCUi0urHTHl5ecHExAQuLi4MpxrE19cX5ubmcHV1rZNjgYvHPgohGE41SHFIlSSpTo4F1tPTw1tvvYUbN27A3d1d3eUQEamV1l1BvXXrFjIzM+XX7u7uDKcayN3dHXp6T/4+EkLgypUrGn27PycnB8nJyfJrW1tbhlMNZGdnB1tbW/l1cnKyRt/uL9339fT0GE6JiKBlATU5OVl+LmJWVpa6y6FKOnDgAH7++WeNHZNa8jmnf/31l7rLoUr666+/NPo5qcVjTn/++WccOHBA3eUQEWkUrQmoJSdEWVhYwNDQUN0lUSUVX/HSxIlTJSdEGRkZwdzcXN0lUSWZm5vDyMhIIydOlZ4QVfKqLxERaUlA5Wz9uk1TZ/dztn7dpqmz+zlbn4jo2ep8QGU41Q6aFlIZTrWDpoVUhlMiosqp0wH11q1bDKdapHRI3bt3r1rqyMvLYzjVIuWF1Ly8PLXUsnfvXoZTIqJKqNMB1dLSEmZmZgynWqQ4pEqSBEdHR7XUYGBgADs7O4ZTLVIypNrZ2cHAwEAtdTg6OkKSJIZTIqJnqNPPQbWwsMDIkSNhZGTEcKpFfH194erqigYNGqjl+Do6OnjjjTeQkZEBKysrtdRA1c/Ozg7vvvsuLCwsoKOjnr/NfXx84OLiora+TURUV9S5K6jJycm4dOmS/Nrc3JzhVAuV/AWelZWFY8eO1eiY1JycHBw5ckQ+ho6ODsOpFrKyspLDqRACR44cqdExqUIIHDt2TOWxdwynRETPppEB9ejRo+jXrx8aNWoESZKwY8cOAP9MiNq6dSuSkpLUW6SGmD17NiRJUvlycHBQd1nVRqFQYP369Th06NALT5xasWIFvLy8YGFhAQsLC/j7+2PPnj3yhKjo6Gjs37+/Gquv2+7cuYN33nkHNjY2MDExgY+PD86ePavusqrN/v37ER0dXe0TpxYsWABJkjBx4kTs3r0bhw4dwvr166FQKKrtGHWVq6trmZ9XkiRh3Lhx6i5N4yxYsADt2rWDubk57O3tERISgoSEBHWXRVRrNDKgZmdnw9vbG99//728rORsfTc3NzRp0kSNFWqWl156CSkpKfJXXFycukuqNrq6uvD39wfw4rP7mzRpgoULFyImJgYxMTHo3r07goODsXDhQnlCFMcFPpGWloZOnTpBX18fe/bsweXLl7FkyRKtuqrs6+tb7bP7z5w5g9WrV8PLyws3btyQJ0R17NixTn6sb3U7c+aMys+q4j8IBw0apObKNM+RI0cwbtw4nDx5Evv370dRURFee+01ZGdnq7s0olqhkWNQe/fujd69e8uvU1NTOVv/KfT09LTqqmlpxaFx165dOHPmDIAnfUSSpCrtp1+/fiqvp0+fjqVLl+LPP/9Ely5dOCGqhK+++gpOTk4IDw+Xl7m6uqqvoBpQPHFq3bp1ckgdMWIETExMnmt/WVlZGDZsGFavXo1PPvkE9+7dAwAEBwfDx8enGiuvu0r//7Vw4UI0a9YMAQEBaqpIc5V+ikl4eDjs7e1x9uxZdO3aVU1VEdUejbyCWtrRo0cZTp8iMTERjRo1gpubG9566y2t/DjO6n5OamZmJsaPH4/8/Hy0aNGC4bSUXbt2wc/PD4MGDYK9vT18fX2xZs0adZdV7arzOanjxo1Dnz59UFBQgMzMTAAMp09TUFCAH3/8EaNGjaryH5v1UXp6OgDA2tpazZUQ1Q6NDqgPHz4EABQVFTGcVqB9+/ZYv3499u3bhzVr1uDu3bvo2LGjfO60SemQevTo0SrvIy4uDmZmZrCyskJkZCRCQ0Px2WefMZyW8tdff2HFihVo3rw59u3bh7Fjx2LChAlYv369ukurdqVDamRkZJX/+Nm0aRPOnTuHPn36yLf1mzVrxnD6FDt27MDjx48RFham7lI0nhACn3zyCTp37oyXX35Z3eUQ1QqNDqjFfyk6ODgwnFagd+/eePPNN9G6dWv06NEDv/76KwBg3bp1aq6sZhSHVGtr6+f65e/h4YHY2Fj8/PPP6NSpE3bu3In79+9Xf6F1nFKpRJs2bfDll1/C19cX77//PsaMGYMVK1aou7QaURxSLSws0KVLlypd0bt16xYmTpyIH3/8Ee3bt4e1tTVsbW35R88z/O///i969+6NRo0aqbsUjffRRx/hwoUL2Lhxo7pLIao1GjkGtVjxL4kuXbownFaSqakpWrdujcTERHWXUmN8fX3RunVr6OlVvfsaGBjA3d0d7u7uCAkJQVBQEJYtW4ZVq1bVQKV1l6OjI1q1aqWyrGXLlti6dauaKqp5dnZ2GD9+fJX71dmzZ5Gamoq2bdvKyxQKBc6dO4fvv/8e+fn5nCBVSnJyMg4cOIBt27apuxSNN378eOzatQtHjx7l5GCqVzTuCmpycjK2b9+u8kgW/nCvvPz8fMTHx6vtU5hqS8kQcenSJezdu/ept2VzcnKwadMmpKWlqexDCIH8/PwarbUu6tSpU5lH2ly9ehUuLi5qqqh2lOxXaWlp2LRp01PHpAohoFQqsX37dsTGxspffn5+GDZsGGJjY/nzqxzFE35ef/11dZeisYQQ+Oijj7Bt2zYcOnQIbm5u6i6JqFap9QqqQqnAsZvHkJKZAkdzRzgLZ2zauAlZWVl49OiRfEUiKSkJsbGxsLa2hrOzszpLVqtCFOIWbiGvKE/+qMbJkyejX79+cHZ2RmpqKubNm4eMjAyEhoaqudrakZ6ejm3btkGpVEKpVKJ3795QKiUcOwakpACOjkDbtjmIjFyPyMhInDt3Dh988AGysrKwadMmREdHl5ktW9+U168+/vhjdOzYEV9++SUGDx6M06dPY/Xq1Vi9erWaq60dQghs3boVd+7ckWf3GxqaqPSrzp0F9u3bjbi4OOjo6KBbt26wtLQE8OROho2NDccL4skcgpIfLatUKhEeHo7Q0NDnuguibUr/Huzi3AW6OroYN24cfvrpJ+zcuRPm5ua4e/cugCcf8W1sbKzmqolqniRq8uN5nmJb/DZM3DsRtzNuy8ssYIEgBKFZfjMsWLCgzDahoaGIiIio0bqEEFAoBfR0NefishACWy5uwbvb3kUGMtDEogn+HfRvhHiG4O2338bRo0fx4MED2NnZoUOHDpg7d26Z27M1VZcmnKvz589j165dAICCgr5Yv74Nbt/+ZwyhlVUWXnvtVyQlLcHdu3dx7949WFpawsvLC1OnTkXPnj1rvEZNOVclPa1fSZKEqKgoTJs2DYmJiXBzc8Mnn3yCMWPG1Fpt6j5f9+/fx7p165CdnY2//+6AX3/tiTt3/qnH1jYX3bvvQqtWV9C/f3+VZ+gGBgbCx8cHS5curfE6NeFclSSEwMWLF+Xb9xYWFggKCoKnpyckScJvv/2GXr16ISEhAS1atKj12jTpXJX3e7CJRRMsC1qGN1u9We424eHhnFhG9YJaAuq2+G0YuHkgBMo/9M8Dfsbg1oNruaonxm6JRUpGHj4JcEfXpjZqf/zJlQdXMDZqLI4kH4EECQICOpIOlEKJAJcArOy7Ep62nmqpTZPO1fnz57Fw4VVs3lzcb0rW8qSfrV2bgZEjLWu9NkCzzhWg2f0K0Jzzdf/+fUyefALr1/f//yVl+9XixUmYPLlprddWTFPOFQA8ePAAUVFRSE5OlpdJkgQhBFxcXNC3b1/Y2tqqrT5NOlcV/R6U/r+PbRm8BQNaDlBHaUQaodYDqkKpgOsyV5W/GFUKgoTGFo0R/+F16OrU/titPmv+QE7hk/Gvvo0tMb5zUzS1Ma31Oop1W9cZMX+fgUKU/ZhEXUkXfo3a4XDo72qoTLPOlUIBNHNRIDVVH6oh4glJEmjcGIhPVEIdQwI16VwBmt2vAM05XwoF0KIpkJKig/L6FSDQpIn6+hWgOecKAH5cF46Uv/8udzy4JElwbNQI74SOVENlT2jKuVIoFfD8TzPcyaz492ATiyZImpiklt+DRJqg1gNq9I1odFvX7ZntPE2/hYU+P3YyLmMkcpVJFa431nFDa4vwCtfXFxmJlrjyH59ntvMcFwuL5uk1X5CGY7+qHParqumScRrmyoonlWXqmOCYxSu1WJFmyig8jyvZHz+z3eHQwwh0Daz5gog0UK0PxEnJTKlUu0LxqIYrIW1SmGHw7EZVaEcEsF9Rzajs77fK/r4k0ka1PoXS0bxyjz/6zxsB6OrSuYarKavkLSBdSYISAiEvO2LUKy4wN6z9Gad+a0xw+SnPkXezMUH0mNo/T4BmnaujR4CgDc9u958RHuga4FHzBZWiSecK0Ox+BWjO+dL0fgVozrkCgLVrLuHB/YqvoLrZmGIu+xWOJhchKHLuM9tV9vclkTaq9d+MXZy7oIlFE9zJuFPuJKnisTc9mgaqfeyNT2NLTA50V+tYQUtDC+hKuhWOFbQ0tICxvvrHKKn7XPXoBjRpAty5A5Q3aEWSnqzv0U1XbWMFi6n7XAF1p18B6j1fdalfAervW0aGhvKkqNIkSYKRoSH7FYAeTQMr9Xuwi3OXWq+NSFPU+i1+XR1dLAtaBuCf2YrFil8vDVqqtnDqYW8GB3NDLO73Ev4zwEutIQIA1gavRWfnJ1ccdCQdle+dnTtjbfBatdWmSedKVxdY9qRbofTE3OLXS5dCbSFCk84VoNn9CtCc86Xp/QrQnHMFAMHBwfKzqotnyBd/d3Z2RnBwsNpqAzTnXGn670EiTaBRz0F1snDC0qClan20hqY9Jw94UtPOhJ2YsGcCbmXcgrOlM5YFLUOwR7BaH5Oiiedq2zZg4kTgdonJsU5OT0LEADU+sUUTz5Wm9qvi2jTpfGlqvwI071wJIZCQkIA9e/YgIyMDlpaWCAoKgoeHB/tVKZr6e5BIE6gtoBIRERERlUcz/owkIiIiIvp/DKhEREREpFEYUImIiIhIozCgEhEREZFGYUAlIiIiIo3CgEpEREREGoUBlYiIiIg0CgMqEREREWmU/wNw1sgnNIfVMwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHhCAYAAAC84r6TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAu8ElEQVR4nO3de3xU9Z3/8feQe0gyMUBuEiCoIJCClHjBgopiJLIpKD5kF1cIgj9SbmK8QKRVtErUVVcxBS/LErWoLAqILaWmRRKpYBMklQXWC4QGJSGCmiFBhlzO7w/K1DEJZJLMfHN5PR+P83g4Z86Z8xny2M5rz5yZsVmWZQkAAMCQbqYHAAAAXRsxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKP8TQ/QHPX19Tp8+LDCw8Nls9lMjwMAAJrBsiwdP35c8fHx6tat6fMfHSJGDh8+rISEBNNjAACAFjh06JB69+7d5P0dIkbCw8MlnX4yERERhqcBAADN4XA4lJCQ4Hodb0qHiJEzb81EREQQIwAAdDDnusSCC1gBAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRHsVIdna2Lr30UoWHhys6OloTJ07Up59+es798vPzNWLECAUHB6t///564YUXWjwwAADoXDyKkfz8fM2ZM0c7duxQXl6eamtrlZKSourq6ib3KSkp0Y033qjRo0dr165deuCBBzR//ny9/fbbrR4eAAB0fDbLsqyW7vz1118rOjpa+fn5uuqqqxrdZuHChdq4caP27dvnWpeRkaG//e1v2r59e7OO43A4ZLfbVVlZyW/TAADQQTT39btVP5RXWVkpSYqKimpym+3btyslJcVt3Q033KCVK1eqpqZGAQEBDfZxOp1yOp2u2w6HQ5L02O/36vzoHuoVHqSeYUHqGRaonmFB6hUepOAAv9Y8FQAAYEiLY8SyLGVmZmrUqFFKSkpqcrvy8nLFxMS4rYuJiVFtba2OHj2quLi4BvtkZ2fr4YcfbrD+jb8eUregY40eJzzIXz3Dg9QrLEg9wwP/EStBhAsAAO1ci2Nk7ty5+uSTT7Rt27Zzbvvjnw4+885QUz8pnJWVpczMTNdth8OhhIQE3Tk6UVX1gTpa5dTXVU4dPe7U0apTOlVXr+POWh131qrkaNPXr5xBuAAA0H60KEbmzZunjRs3qqCgQL179z7rtrGxsSovL3dbV1FRIX9/f/Xo0aPRfYKCghQUFNRg/V1jBzR4z8myLDlO1urr404drTq9uP77+CnCBQCAds6jGLEsS/PmzdP69eu1detWJSYmnnOfkSNH6t1333Vb99577yk5ObnR60U8ZbPZZA8JkD0kQBdGh511W8IFAID2x6NP08yePVuvv/663nnnHQ0cONC13m63KyQkRNLpt1i++uorvfrqq5JOf7Q3KSlJs2bN0p133qnt27crIyNDb7zxhiZNmtSs45r4NE1LwsUThAsAoLNr7uu3RzHS1DUeq1atUnp6uiQpPT1dBw8e1NatW1335+fn6+6779aePXsUHx+vhQsXKiMjo7mHbfcf7SVcAABoyCsxYkp7jxFPEC4AgK7CJ98zAs9xjQsAAO6IkXaMcAEAdAXESCdBuAAAOipipAsiXAAA7QkxgrMiXAAA3kaMoM0QLgCAliBGYAThAgA4gxhBu9cew6VnWOAPYoVwAYDWIEbQqRAuANDxECPoslobLkePn4kVwgUAWoMYAZqBcAEA7yFGgDZGuACAZ4gRwCDCBQCIEaDDIFwAdFbECNAJES4AOhJiBOjiCBcAphEjAJqNcAHgDcQIAK8gXAA0FzECwDjCBejaiBEAHQrhAnQ+xAiATotwAToGYgQARLgAJhEjAOChjhAu/4wXwgXtHzECAF5EuADnRowAQDvR1uFytMr5j/sJF7RvxAgAdECECzoTYgQAOjnCBe0dMQIAcCFcYAIxAgBoEcIFbYUYAQB4HeGCsyFGAADtCuHS9RAjAIAOi3DpHIgRAECXQLi0X8QIAAA/Qrj4FjECAEArEC6tR4wAAOAjhEvjiBEAANqhrhQuxAgAAB1cew0Xu19Ns+YnRgAA6EJ8GS71zhPNmokYAQAAjWpJuPwzTpw6VH5Us58993GIEQAA0Go/DJcLep0OF0e/MM1uxr7dvDsaAADA2REjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIzyOEYKCgqUlpam+Ph42Ww2bdiw4Zz7rF69WsOGDVNoaKji4uI0ffp0HTt2rCXzAgCATsbjGKmurtawYcOUk5PTrO23bdumqVOnasaMGdqzZ4/Wrl2rwsJCzZw50+NhAQBA5+Pxl56lpqYqNTW12dvv2LFD/fr10/z58yVJiYmJmjVrlp588klPDw0AADohr18zcuWVV+rLL7/Upk2bZFmWjhw5orfeekvjx4/39qEBAEAH4JMYWb16tSZPnqzAwEDFxsYqMjJSzz//fJP7OJ1OORwOtwUAAHROXo+RvXv3av78+XrwwQe1c+dObd68WSUlJcrIyGhyn+zsbNntdteSkJDg7TEBAIAhNsuyrBbvbLNp/fr1mjhxYpPb3H777Tp58qTWrl3rWrdt2zaNHj1ahw8fVlxcXIN9nE6nnE6n67bD4VBCQoIqKysVERHR0nEBAIAPORwO2e32c75+e/1Xe0+cOCF/f/fD+Pn5STr9c8ONCQoKUlBQkLdHAwAA7YDHb9NUVVWpuLhYxcXFkqSSkhIVFxertLRUkpSVlaWpU6e6tk9LS9O6deu0YsUKHThwQH/5y180f/58XXbZZYqPj2+bZwEAADosj8+MFBUVacyYMa7bmZmZkqRp06YpNzdXZWVlrjCRpPT0dB0/flw5OTm65557FBkZqWuvvVZPPPFEG4wPAAA6ulZdM+IrzX3PCQAAtB/Nff3mt2kAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACM8jhGCgoKlJaWpvj4eNlsNm3YsOGc+zidTi1evFh9+/ZVUFCQLrjgAv33f/93S+YFAACdjL+nO1RXV2vYsGGaPn26Jk2a1Kx9br31Vh05ckQrV67UhRdeqIqKCtXW1no8LAAA6Hw8jpHU1FSlpqY2e/vNmzcrPz9fBw4cUFRUlCSpX79+nh4WAAB0Ul6/ZmTjxo1KTk7Wk08+qfPPP18DBgzQvffeq++//77JfZxOpxwOh9sCAAA6J4/PjHjqwIED2rZtm4KDg7V+/XodPXpUs2fP1jfffNPkdSPZ2dl6+OGHvT0aAABoB7x+ZqS+vl42m02rV6/WZZddphtvvFHPPPOMcnNzmzw7kpWVpcrKStdy6NAhb48JAAAM8fqZkbi4OJ1//vmy2+2udYMGDZJlWfryyy910UUXNdgnKChIQUFB3h4NAAC0A14/M/Kzn/1Mhw8fVlVVlWvdZ599pm7duql3797ePjwAAGjnPI6RqqoqFRcXq7i4WJJUUlKi4uJilZaWSjr9FsvUqVNd20+ZMkU9evTQ9OnTtXfvXhUUFOi+++7THXfcoZCQkLZ5FgAAoMPyOEaKioo0fPhwDR8+XJKUmZmp4cOH68EHH5QklZWVucJEksLCwpSXl6fvvvtOycnJuu2225SWlqZly5a10VMAAAAdmc2yLMv0EOficDhkt9tVWVmpiIgI0+MAAIBmaO7rN79NAwAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUf6mBwAAoKOrq6tTTU2N6TF8LiAgQH5+fq1+HGIEAIAWsixL5eXl+u6770yPYkxkZKRiY2Nls9la/BjECAAALXQmRKKjoxUaGtqqF+SOxrIsnThxQhUVFZKkuLi4Fj8WMQIAQAvU1dW5QqRHjx6mxzEiJCREklRRUaHo6OgWv2XDBawAALTAmWtEQkNDDU9i1pnn35prZogRAABaoSu9NdOYtnj+xAgAADCKGAEAoINYsmSJLrnkkjZ5rIMHD8pms6m4uLjJbbZu3Sqbzeb1TwtxASsAAF1QQkKCysrK1LNnT9OjECMAAHRFfn5+io2NNT2GJN6mAQDAK6655hrNnz9f999/v6KiohQbG6slS5a47i8tLdWECRMUFhamiIgI3XrrrTpy5IjbYzz++OOKiYlReHi4ZsyYoZMnTzY4zqpVqzRo0CAFBwfr4osv1vLly5s1X2Nv02zatEkDBgxQSEiIxowZo4MHD7bkqXuMGAEAwEteeeUVde/eXR999JGefPJJPfLII8rLy5NlWZo4caK++eYb5efnKy8vT/v379fkyZNd+/7P//yPHnroIT322GMqKipSXFxcg9B4+eWXtXjxYj322GPat2+fli5dql/96ld65ZVXPJ710KFDuvnmm3XjjTequLhYM2fO1KJFi1r9b9AcvE0DAICXDB06VA899JAk6aKLLlJOTo7+/Oc/S5I++eQTlZSUKCEhQZL02muvaciQISosLNSll16qZ599VnfccYdmzpwpSXr00Uf1pz/9ye3syK9//Ws9/fTTuvnmmyVJiYmJ2rt3r1588UVNmzbNo1lXrFih/v376z//8z9ls9k0cOBA7d69W0888USr/x3OhTMjAAB4ydChQ91ux8XFqaKiQvv27VNCQoIrRCRp8ODBioyM1L59+yRJ+/bt08iRI932/+Htr7/+WocOHdKMGTMUFhbmWh599FHt37/f41n37dunK664wu17Q358fG/hzAgAAF4SEBDgdttms6m+vl6WZTX6ZWFNrW9MfX29pNNv1Vx++eVu97Xka9kty/J4n7bCmREAAHxs8ODBKi0t1aFDh1zr9u7dq8rKSg0aNEiSNGjQIO3YscNtvx/ejomJ0fnnn68DBw7owgsvdFsSExNbNNPZjudNnBkBAMDHxo4dq6FDh+q2227Ts88+q9raWs2ePVtXX321kpOTJUl33XWXpk2bpuTkZI0aNUqrV6/Wnj171L9/f9fjLFmyRPPnz1dERIRSU1PldDpVVFSkb7/9VpmZmR7NlJGRoaefflqZmZmaNWuWdu7cqdzc3LZ82k3izAgAAD5ms9m0YcMGnXfeebrqqqs0duxY9e/fX2vWrHFtM3nyZD344INauHChRowYob///e/6xS9+4fY4M2fO1H/9138pNzdXP/nJT3T11VcrNze3RWdG+vTpo7ffflvvvvuuhg0bphdeeEFLly5t9XNtDptl8k2iZnI4HLLb7aqsrFRERITpcQAA0MmTJ1VSUqLExEQFBwebHseYs/07NPf1mzMjAADAKGIEAIBOaOnSpW4f+f3hkpqaano8N1zACgBAJ5SRkaFbb7210ftCQkJ8PM3ZESMAAHRCUVFRioqKMj1Gs/A2DQAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAQBe2YsUKDR06VBEREYqIiNDIkSP1hz/8waczECMAAHRhvXv31uOPP66ioiIVFRXp2muv1YQJE7Rnzx6fzcCXngEA0IWlpaW53X7ssce0YsUK7dixQ0OGDPHJDMQIAABeYFmWvq+pM3LskAA/2Ww2j/erq6vT2rVrVV1drZEjR3phssYRIwAAeMH3NXUa/OAfjRx77yM3KDSw+S/xu3fv1siRI3Xy5EmFhYVp/fr1Gjx4sBcndMc1IwAAdHEDBw5UcXGxduzYoV/84heaNm2a9u7d67Pjc2YEAAAvCAnw095HbjB2bE8EBgbqwgsvlCQlJyersLBQzz33nF588UVvjNcAMQIAgBfYbDaP3ippTyzLktPp9NnxPH6bpqCgQGlpaYqPj5fNZtOGDRuave9f/vIX+fv765JLLvH0sAAAwAseeOABffDBBzp48KB2796txYsXa+vWrbrtttt8NoPHMVJdXa1hw4YpJyfHo/0qKys1depUXXfddZ4eEgAAeMmRI0d0++23a+DAgbruuuv00UcfafPmzbr++ut9NoPH549SU1OVmprq8YFmzZqlKVOmyM/Pz6OzKQAAwHtWrlxpegTffJpm1apV2r9/vx566KFmbe90OuVwONwWAADQOXk9Rj7//HMtWrRIq1evlr9/807EZGdny263u5aEhAQvTwkAAEzxaozU1dVpypQpevjhhzVgwIBm75eVlaXKykrXcujQIS9OCQAATPLqZ46OHz+uoqIi7dq1S3PnzpUk1dfXy7Is+fv767333tO1117bYL+goCAFBQV5czQAANBOeDVGIiIitHv3brd1y5cv15YtW/TWW28pMTHRm4cHAAAdgMcxUlVVpS+++MJ1u6SkRMXFxYqKilKfPn2UlZWlr776Sq+++qq6deumpKQkt/2jo6MVHBzcYD0AAOiaPI6RoqIijRkzxnU7MzNTkjRt2jTl5uaqrKxMpaWlbTchAADo1GyWZVmmhzgXh8Mhu92uyspKRUREmB4HAACdPHlSJSUlSkxMVHBwsOlxjDnbv0NzX7/51V4AAGAUMQIAAIwiRgAAgEt2drZsNpsWLFjgs2MSIwAAQJJUWFiol156SUOHDvXpcb36PSMAAHRZliXVnDBz7IBQyWbzaJeqqirddtttevnll/Xoo496abDGESMAAHhDzQlpabyZYz9wWArs7tEuc+bM0fjx4zV27FhiBAAA+Nabb76pjz/+WIWFhUaOT4wAAOANAaGnz1CYOnYzHTp0SHfddZfee+89Y9+XQowAAOANNpvHb5WYsHPnTlVUVGjEiBGudXV1dSooKFBOTo6cTqf8/Py8OgMxAgBAF3bdddc1+FHb6dOn6+KLL9bChQu9HiISMQIAQJcWHh7e4Mdru3fvrh49evjsR235nhEAAGAUZ0YAAICbrVu3+vR4nBkBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAWsGyLNMjGNUWz58YAQCgBQICAiRJJ04Y+mXeduLM8z/z79ESfLQXAIAW8PPzU2RkpCoqKiRJoaGhstlshqfyHcuydOLECVVUVCgyMrJV39RKjAAA0EKxsbGS5AqSrigyMtL179BSxAgAAC1ks9kUFxen6Oho1dTUmB7H5wICAtrkt2uIEQAAWsnPz88nPyjXWXEBKwAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFEex0hBQYHS0tIUHx8vm82mDRs2nHX7devW6frrr1evXr0UERGhkSNH6o9//GNL5wUAAJ2MxzFSXV2tYcOGKScnp1nbFxQU6Prrr9emTZu0c+dOjRkzRmlpadq1a5fHwwIAgM7HZlmW1eKdbTatX79eEydO9Gi/IUOGaPLkyXrwwQebtb3D4ZDdbldlZaUiIiJaMCkAAPC15r5++/twJklSfX29jh8/rqioqCa3cTqdcjqdrtsOh8MXowEAAAN8fgHr008/rerqat16661NbpOdnS273e5aEhISfDghAADwJZ/GyBtvvKElS5ZozZo1io6ObnK7rKwsVVZWupZDhw75cEoAAOBLPnubZs2aNZoxY4bWrl2rsWPHnnXboKAgBQUF+WgyAABgkk/OjLzxxhtKT0/X66+/rvHjx/vikAAAoIPw+MxIVVWVvvjiC9ftkpISFRcXKyoqSn369FFWVpa++uorvfrqq5JOh8jUqVP13HPP6YorrlB5ebkkKSQkRHa7vY2eBgAA6Kg8PjNSVFSk4cOHa/jw4ZKkzMxMDR8+3PUx3bKyMpWWlrq2f/HFF1VbW6s5c+YoLi7Otdx1111t9BQAAEBH1qrvGfEVvmcEAICOp7mv3/w2DQAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIzyOEYKCgqUlpam+Ph42Ww2bdiw4Zz75Ofna8SIEQoODlb//v31wgsvtGRWAADQCXkcI9XV1Ro2bJhycnKatX1JSYluvPFGjR49Wrt27dIDDzyg+fPn6+233/Z4WAAA0Pn4e7pDamqqUlNTm739Cy+8oD59+ujZZ5+VJA0aNEhFRUV66qmnNGnSJE8PDwAAOhmPY8RT27dvV0pKitu6G264QStXrlRNTY0CAgIa7ON0OuV0Ol23HQ7H6f9Y9/+kXr2lsBgprJfUPVoK+8fSPVoKCPbqcwEAAG3P6zFSXl6umJgYt3UxMTGqra3V0aNHFRcX12Cf7OxsPfzwww0f7NNN0kFb0wcLipC69/pRrBAuAAC0Z16PEUmy2dwDwrKsRtefkZWVpczMTNdth8OhhIQE6fpHJOu4VHVEqv5aqqo4vVRXSHWnJKfj9PLN/nMPRbgAANAueD1GYmNjVV5e7rauoqJC/v7+6tGjR6P7BAUFKSgoqOEdyXdIEREN11uWdLLyH4Fy5B+B8uP/JlwAAGiPvB4jI0eO1Lvvvuu27r333lNycnKj14u0iM0mhUSeXnpedPZtCRcAANoVj2OkqqpKX3zxhet2SUmJiouLFRUVpT59+igrK0tfffWVXn31VUlSRkaGcnJylJmZqTvvvFPbt2/XypUr9cYbb7Tds/AE4QIAQLvicYwUFRVpzJgxrttnru2YNm2acnNzVVZWptLSUtf9iYmJ2rRpk+6++2795je/UXx8vJYtW9YxPtZLuAAA4HU268zVpO2Yw+GQ3W5XZWWlIhq7ZqSjaUm4eIJwAQC0A819/fbJp2nwI5xxAQDAhRhp7wgXAEAnR4x0JoQLAKADIka6KsIFANBOECM4N8IFAOBFxAjaFuECAPAQMQJzWhIuZ8KEcAGAToMYQcfww3DpNeDs2xIuANChECPofAgXAOhQiBF0bYQLABhHjADNRbgAgFcQI4A3EC4A0GzECGAa4QKgiyNGgI6EcAHQCREjQGfV7sPlB7FCuABdGjECgHABYBQxAsAzhAuANkaMAPCeNg+XI1LV14QL0MkQIwDaB8IF6LKIEQAdD+ECdCrECIDOjXAB2j1iBADOIFwAI4gRAGgJwgVoM8QIAHgb4QKcFTECAO0J4YIuiBgBgI6KcEEnQYwAQFdAuKAdI0YAAO4IF/gYMQIAaDnCBW2AGAEA+EZrw6XRiCFcOgNiBADQ/hAuXQoxAgDo2AiXDo8YAQB0HYRLu0SMAADQGMLFZ4gRAABai3BpFWIEAABfIlwaIEYAAGivuki4ECMAAHQG7TFc/Ho0a3RiBACArsZX4eL8olnjECMAAKBprQmX8oPS47ef8xDECAAAaBs/Dpeooc3arZtXhwIAADgHYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUS2KkeXLlysxMVHBwcEaMWKEPvjgg7Nuv3r1ag0bNkyhoaGKi4vT9OnTdezYsRYNDAAAOhePY2TNmjVasGCBFi9erF27dmn06NFKTU1VaWlpo9tv27ZNU6dO1YwZM7Rnzx6tXbtWhYWFmjlzZquHBwAAHZ/HMfLMM89oxowZmjlzpgYNGqRnn31WCQkJWrFiRaPb79ixQ/369dP8+fOVmJioUaNGadasWSoqKmr18AAAoOPzKEZOnTqlnTt3KiUlxW19SkqKPvzww0b3ufLKK/Xll19q06ZNsixLR44c0VtvvaXx48c3eRyn0ymHw+G2AACAzsmjGDl69Kjq6uoUExPjtj4mJkbl5eWN7nPllVdq9erVmjx5sgIDAxUbG6vIyEg9//zzTR4nOztbdrvdtSQkJHgyJgAA6EBadAGrzWZzu21ZVoN1Z+zdu1fz58/Xgw8+qJ07d2rz5s0qKSlRRkZGk4+flZWlyspK13Lo0KGWjAkAADoAj34or2fPnvLz82twFqSioqLB2ZIzsrOz9bOf/Uz33XefJGno0KHq3r27Ro8erUcffVRxcXEN9gkKClJQUJAnowEAgA7KoxgJDAzUiBEjlJeXp5tuusm1Pi8vTxMmTGh0nxMnTsjf3/0wfn5+kk6fUWmOM9tx7QgAAB3Hmdftc77eWx568803rYCAAGvlypXW3r17rQULFljdu3e3Dh48aFmWZS1atMi6/fbbXduvWrXK8vf3t5YvX27t37/f2rZtm5WcnGxddtllzT7m/v37LUksLCwsLCwsHXDZv3//WV/nPTozIkmTJ0/WsWPH9Mgjj6isrExJSUnatGmT+vbtK0kqKytz+86R9PR0HT9+XDk5ObrnnnsUGRmpa6+9Vk888USzjxkVFSVJKi0tld1u93RkSdKll16qwsLCFu3L/uzP/uzP/uzP/p6rrKxUnz59XK/jTfE4RiRp9uzZmj17dqP35ebmNlg3b948zZs3ryWHkiR163b6Olu73a6IiIgWPYafn1+L92V/9md/9md/9mf/ljvzOt7k/a169A5kzpw57M/+7M/+7M/+7O/j/ZvDZjX3KlKDHA6H7Ha7KisrW11nAADAN5r7+t0hzowEBQXpoYce4uO+AAB0IM19/e4QZ0YAAEDn1SHOjAAAgM6LGAEAAEYRI2hTy5cvV2JiooKDgzVixAh98MEHrvuqqqo0d+5c9e7dWyEhIRo0aJBWrFhhcFr8UEFBgdLS0hQfHy+bzaYNGza43Z+eni6bzea2XHHFFWaGhZvs7GxdeumlCg8PV3R0tCZOnKhPP/3UdX9NTY0WLlyon/zkJ+revbvi4+M1depUHT582ODUOONcfz9JOnLkiNLT0xUfH6/Q0FCNGzdOn3/+uaGJ2x4xgjazZs0aLViwQIsXL9auXbs0evRopaamur4E7+6779bmzZv129/+Vvv27dPdd9+tefPm6Z133jE8OSSpurpaw4YNU05OTpPbjBs3TmVlZa5l06ZNPpwQTcnPz9ecOXO0Y8cO5eXlqba2VikpKaqurpZ0+mc5Pv74Y/3qV7/Sxx9/rHXr1umzzz7Tz3/+c8OTQzr338+yLE2cOFEHDhzQO++8o127dqlv374aO3asa5sOz9Ovgweactlll1kZGRlu6y6++GJr0aJFlmVZ1pAhQ6xHHnnE7f6f/vSn1i9/+UufzYjmkWStX7/ebd20adOsCRMmGJkHnqmoqLAkWfn5+U1u89e//tWSZP3973/34WRojh///T799FNLkvW///u/rm1qa2utqKgo6+WXXzY1ZpvizAjaxKlTp7Rz506lpKS4rU9JSdGHH34oSRo1apQ2btyor776SpZl6f3339dnn32mG264wcTIaIGtW7cqOjpaAwYM0J133qmKigrTI6ERlZWVknTWr+CurKyUzWZTZGSkj6ZCc/347+d0OiVJwcHBrm38/PwUGBiobdu2+X5ALyBG0CaOHj2quro6xcTEuK2PiYlReXm5JGnZsmUaPHiwevfurcDAQI0bN07Lly/XqFGjTIwMD6Wmpmr16tXasmWLnn76aRUWFuraa691/Q8l2gfLspSZmalRo0YpKSmp0W1OnjypRYsWacqUKXyRZDvT2N/v4osvVt++fZWVlaVvv/1Wp06d0uOPP67y8nKVlZUZnrhttOi3aYCm2Gw2t9uWZbnWLVu2TDt27NDGjRvVt29fFRQUaPbs2YqLi9PYsWNNjAsPTJ482fXfSUlJSk5OVt++ffX73/9eN998s8HJ8ENz587VJ5980uT/x1xTU6N//dd/VX19vZYvX+7j6XAujf39AgIC9Pbbb2vGjBmKioqSn5+fxo4dq9TUVIOTti1iBG2iZ8+e8vPzc50FOaOiokIxMTH6/vvv9cADD2j9+vUaP368JGno0KEqLi7WU089RYx0QHFxcerbt2+nuqK/o5s3b542btyogoIC9e7du8H9NTU1uvXWW1VSUqItW7ZwVqSdOdvfb8SIESouLlZlZaVOnTqlXr166fLLL1dycrKhadsWb9OgTQQGBmrEiBHKy8tzW5+Xl6crr7xSNTU1qqmpafDLjX5+fqqvr/flqGgjx44d06FDhxQXF2d6lC7PsizNnTtX69at05YtW5SYmNhgmzMh8vnnn+tPf/qTevToYWBSNKY5f78z7Ha7evXqpc8//1xFRUWaMGGCDyf1Hs6MoM1kZmbq9ttvV3JyskaOHKmXXnpJpaWlysjIUEREhK6++mrdd999CgkJUd++fZWfn69XX31VzzzzjOnRodPfA/PFF1+4bpeUlKi4uFhRUVGKiorSkiVLNGnSJMXFxengwYN64IEH1LNnT910000Gp4Z0+ldVX3/9db3zzjsKDw93naG02+0KCQlRbW2tbrnlFn388cf63e9+p7q6Otc2UVFRCgwMNDl+l3euv58krV27Vr169VKfPn20e/du3XXXXZo4cWKDDw10WCY/yoPO5ze/+Y3Vt29fKzAw0PrpT3/q9tHCsrIyKz093YqPj7eCg4OtgQMHWk8//bRVX19vcGKc8f7771uSGizTpk2zTpw4YaWkpFi9evWyAgICrD59+ljTpk2zSktLTY8Ny2r07ybJWrVqlWVZllVSUtLkNu+//77R2XHuv59lWdZzzz1n9e7d2/V/f7/85S8tp9Npbug2xg/lAQAAo7hmBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwCjjMZKenq6JEyeaHgMAABhiPEYAAEDX1q5iZPPmzRo1apQiIyPVo0cP/cu//Iv279/vuv/gwYOy2Wxat26dxowZo9DQUA0bNkzbt283ODUAAGiNdhUj1dXVyszMVGFhof785z+rW7duuummm1RfX++23eLFi3XvvfequLhYAwYM0L/927+ptrbW0NQAAKA1/E0P8EOTJk1yu71y5UpFR0dr7969SkpKcq2/9957NX78eEnSww8/rCFDhuiLL77QxRdf7NN5AQBA67WrMyP79+/XlClT1L9/f0VERCgxMVGSVFpa6rbd0KFDXf8dFxcnSaqoqPDdoAAAoM20qzMjaWlpSkhI0Msvv6z4+HjV19crKSlJp06dctsuICDA9d82m02SGryVAwAAOoZ2EyPHjh3Tvn379OKLL2r06NGSpG3bthmeCgAAeFu7iZHzzjtPPXr00EsvvaS4uDiVlpZq0aJFpscCAABeZvyakfr6evn7+6tbt2568803tXPnTiUlJenuu+/Wf/zHf5geDwAAeJnNsizL5ADjxo3ThRdeqJycHJNjAAAAQ4ydGfn222/1+9//Xlu3btXYsWNNjQEAAAwzds3IHXfcocLCQt1zzz2aMGGCqTEAAIBhxt+mAQAAXZvxC1gBAEDXRowAAACjfBIj2dnZuvTSSxUeHq7o6GhNnDhRn376qds2lmVpyZIlio+PV0hIiK655hrt2bPHdf8333yjefPmaeDAgQoNDVWfPn00f/58VVZWNnpMp9OpSy65RDabTcXFxd58egAAoBV8EiP5+fmaM2eOduzYoby8PNXW1iolJUXV1dWubZ588kk988wzysnJUWFhoWJjY3X99dfr+PHjkqTDhw/r8OHDeuqpp7R7927l5uZq8+bNmjFjRqPHvP/++xUfH++LpwcAAFrByAWsX3/9taKjo5Wfn6+rrrpKlmUpPj5eCxYs0MKFCyWdPrMRExOjJ554QrNmzWr0cdauXat///d/V3V1tfz9//nBoD/84Q/KzMzU22+/rSFDhmjXrl265JJLfPHUAACAh4xcM3LmrZWoqChJUklJicrLy5WSkuLaJigoSFdffbU+/PDDsz5ORESEW4gcOXJEd955p1577TWFhoZ66RkAAIC24vMYsSxLmZmZGjVqlJKSkiRJ5eXlkqSYmBi3bWNiYlz3/dixY8f061//2u2siWVZSk9PV0ZGhpKTk730DAAAQFvy+ZeezZ07V5988kmjv8hrs9ncbluW1WCdJDkcDo0fP16DBw/WQw895Fr//PPPy+FwKCsrq+0HBwAAXuHTMyPz5s3Txo0b9f7776t3796u9bGxsZLU4CxIRUVFg7Mlx48f17hx4xQWFqb169crICDAdd+WLVu0Y8cOBQUFyd/fXxdeeKEkKTk5WdOmTfPW0wIAAK3gkxixLEtz587VunXrtGXLFiUmJrrdn5iYqNjYWOXl5bnWnTp1Svn5+bryyitd6xwOh1JSUhQYGKiNGzcqODjY7XGWLVumv/3tbyouLlZxcbE2bdokSVqzZo0ee+wxLz5DAADQUj55m2bOnDl6/fXX9c477yg8PNx1BsRutyskJEQ2m00LFizQ0qVLddFFF+miiy7S0qVLFRoaqilTpkg6fUYkJSVFJ06c0G9/+1s5HA45HA5JUq9eveTn56c+ffq4HTcsLEySdMEFF7idiQEAAO2HT2JkxYoVkqRrrrnGbf2qVauUnp4u6fT3gnz//feaPXu2vv32W11++eV67733FB4eLknauXOnPvroI0lyvf1yRklJifr16+fV5wAAALyDH8oDAABG8ds0AADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAeA1W7dulc1m03fffWd6FADtGF96BqDNXHPNNbrkkkv07LPPSjr9G1PffPONYmJiGv0FbgCQfPR18AC6psDAQNevcgNAU3ibBkCbSE9PV35+vp577jnZbDbZbDbl5ua6vU2Tm5uryMhI/e53v9PAgQMVGhqqW265RdXV1XrllVfUr18/nXfeeZo3b57q6upcj33q1Cndf//9Ov/889W9e3ddfvnl2rp1q5knCqDNcWYEQJt47rnn9NlnnykpKUmPPPKIJGnPnj0Ntjtx4oSWLVumN998U8ePH9fNN9+sm2++WZGRkdq0aZMOHDigSZMmadSoUZo8ebIkafr06Tp48KDefPNNxcfHa/369Ro3bpx2796tiy66yKfPE0DbI0YAtAm73a7AwECFhoa63pr5v//7vwbb1dTUaMWKFbrgggskSbfccotee+01HTlyRGFhYRo8eLDGjBmj999/X5MnT9b+/fv1xhtv6Msvv1R8fLwk6d5779XmzZu1atUqLV261HdPEoBXECMAfCo0NNQVIpIUExOjfv36KSwszG1dRUWFJOnjjz+WZVkaMGCA2+M4nU716NHDN0MD8CpiBIBPBQQEuN222WyNrquvr5ck1dfXy8/PTzt37pSfn5/bdj8MGAAdFzECoM0EBga6XXjaFoYPH666ujpVVFRo9OjRbfrYANoHPk0DoM3069dPH330kQ4ePKijR4+6zm60xoABA3Tbbbdp6tSpWrdunUpKSlRYWKgnnnhCmzZtaoOpAZhGjABoM/fee6/8/Pw0ePBg9erVS6WlpW3yuKtWrdLUqVN1zz33aODAgfr5z3+ujz76SAkJCW3y+ADM4htYAQCAUZwZAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACj/j91BYVeCrm7BgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "5", + "metadata": {}, + "outputs": [], "source": [ "case1_example2 = case1(\"case1_example2\")\n", "case1_example2.create_model()" @@ -646,7 +65,7 @@ }, { "cell_type": "markdown", - "id": "f65cb535-55c1-4a83-b97c-224b8b1aceb7", + "id": "6", "metadata": {}, "source": [ "### Example 3: boundary levels on target, initial state below target" @@ -654,295 +73,10 @@ }, { "cell_type": "code", - "execution_count": 20, - "id": "88d99768-cab2-4bdf-943a-d6ce6975cde0", + "execution_count": null, + "id": "7", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timenode_idstoragelevelinflow_rateoutflow_ratestorage_rateprecipitationevaporationdrainageinfiltrationbalance_errorrelative_error
02024-01-01 00:00:0030.0000001.0000000.0100000.0000000.0105780.0005791.840109e-070.00.06.906490e-080.316024
12024-01-01 00:00:0040.0000000.0000000.0000000.0000000.0005790.0005792.925180e-090.00.01.169242e-090.333136
22024-01-01 00:01:0030.6347071.0225300.0100000.0000000.0105780.0005797.583603e-070.00.01.609514e-070.191875
32024-01-01 00:01:0040.0347220.0058880.0000000.0000000.0005790.0005791.274586e-080.00.02.839159e-090.200429
42024-01-01 00:02:0031.2693741.0318630.0100000.0000000.0105770.0005791.507221e-060.00.02.753056e-070.167372
..........................................
892752024-01-31 23:57:0041000.0096721.0000000.0052050.006290-0.0003510.0005791.157395e-040.00.0-2.707639e-04-0.045742
892762024-01-31 23:58:0031249.9874281.9999910.0055190.0044810.0002310.0005791.446765e-040.00.01.241401e-030.236630
892772024-01-31 23:58:004999.9886400.9999900.0044810.0052030.0002310.0005791.157402e-040.00.0-4.899401e-04-0.096563
892782024-01-31 23:59:0031250.0012901.9999970.0053360.0046640.0002070.0005791.446766e-040.00.08.995734e-040.171079
892792024-01-31 23:59:0041000.0024810.9999970.0046640.005471-0.0000630.0005791.157402e-040.00.0-2.811831e-04-0.052235
\n", - "

89280 rows × 13 columns

\n", - "
" - ], - "text/plain": [ - " time node_id storage level inflow_rate \\\n", - "0 2024-01-01 00:00:00 3 0.000000 1.000000 0.010000 \n", - "1 2024-01-01 00:00:00 4 0.000000 0.000000 0.000000 \n", - "2 2024-01-01 00:01:00 3 0.634707 1.022530 0.010000 \n", - "3 2024-01-01 00:01:00 4 0.034722 0.005888 0.000000 \n", - "4 2024-01-01 00:02:00 3 1.269374 1.031863 0.010000 \n", - "... ... ... ... ... ... \n", - "89275 2024-01-31 23:57:00 4 1000.009672 1.000000 0.005205 \n", - "89276 2024-01-31 23:58:00 3 1249.987428 1.999991 0.005519 \n", - "89277 2024-01-31 23:58:00 4 999.988640 0.999990 0.004481 \n", - "89278 2024-01-31 23:59:00 3 1250.001290 1.999997 0.005336 \n", - "89279 2024-01-31 23:59:00 4 1000.002481 0.999997 0.004664 \n", - "\n", - " outflow_rate storage_rate precipitation evaporation drainage \\\n", - "0 0.000000 0.010578 0.000579 1.840109e-07 0.0 \n", - "1 0.000000 0.000579 0.000579 2.925180e-09 0.0 \n", - "2 0.000000 0.010578 0.000579 7.583603e-07 0.0 \n", - "3 0.000000 0.000579 0.000579 1.274586e-08 0.0 \n", - "4 0.000000 0.010577 0.000579 1.507221e-06 0.0 \n", - "... ... ... ... ... ... \n", - "89275 0.006290 -0.000351 0.000579 1.157395e-04 0.0 \n", - "89276 0.004481 0.000231 0.000579 1.446765e-04 0.0 \n", - "89277 0.005203 0.000231 0.000579 1.157402e-04 0.0 \n", - "89278 0.004664 0.000207 0.000579 1.446766e-04 0.0 \n", - "89279 0.005471 -0.000063 0.000579 1.157402e-04 0.0 \n", - "\n", - " infiltration balance_error relative_error \n", - "0 0.0 6.906490e-08 0.316024 \n", - "1 0.0 1.169242e-09 0.333136 \n", - "2 0.0 1.609514e-07 0.191875 \n", - "3 0.0 2.839159e-09 0.200429 \n", - "4 0.0 2.753056e-07 0.167372 \n", - "... ... ... ... \n", - "89275 0.0 -2.707639e-04 -0.045742 \n", - "89276 0.0 1.241401e-03 0.236630 \n", - "89277 0.0 -4.899401e-04 -0.096563 \n", - "89278 0.0 8.995734e-04 0.171079 \n", - "89279 0.0 -2.811831e-04 -0.052235 \n", - "\n", - "[89280 rows x 13 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAADwCAYAAADM+pbvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTXElEQVR4nO3deVwVZd8G8GvYd5BNUNkUBS1ZFFPcQNNEUyFzKU1BzbLMpdJ8fcwtNU2z9KnHtVdQI83HPXLJDTXNBZVERURDXEJxQfb1nPv9w5eJw6KgwDkcru/nwwfPzD0zvzPdwcXMfc+RhBACREREREQaQkfdBRARERERlcSASkREREQahQGViIiIiDQKAyoRERERaRQGVCIiIiLSKAyoRERERKRRGFCJiIiISKMwoBIRERGRRtFTdwFERESkXgqFAoWFheoug7Scvr4+dHV1K9WWAZWIiKieEkLg7t27ePz4sbpLoXrCysoKDg4OkCTpqe0YUImIiOqp4nBqb28PExOTZ4YGouclhEBOTg5SU1MBAI6Ojk9tz4BKRERUDykUCjmc2tjYqLscqgeMjY0BAKmpqbC3t3/q7X5OkiIiIqqHisecmpiYqLkSqk+K+9uzxjwzoBIREdVjvK1Ptamy/Y0BlYiIiIg0CgMqERERaY3AwEBMmjRJ3WU81Y0bNyBJEmJjY9VdisZiQCUiIqI6IywsDJIklfm6du2aukujasRZ/ERERFSnBAUFITw8XGWZnZ2dmqqhmsArqERERFSnGBoawsHBQeWrokcWpaWlYcSIEWjQoAFMTEzQu3dvJCYmAnjybE47Ozts3bpVbu/j4wN7e3v59R9//AF9fX1kZWVVWE94eDhatmwJIyMjeHp6Yvny5SrrT58+DV9fXxgZGcHPzw/nz58vs49du3ahefPmMDY2Rrdu3bBu3TpIkqTyIQonTpxA165dYWxsDCcnJ0yYMAHZ2dmVOmd1DQMqERERqcgtVNTaV00LCwtDTEwMdu3ahT/++ANCCPTp0weFhYWQJAldu3ZFdHQ0gCdh9vLlyygsLMTly5cBANHR0Wjbti3MzMzK3f+aNWswffp0zJ8/H/Hx8fjyyy8xY8YMrFu3DgCQnZ2Nvn37wsPDA2fPnsXs2bMxefJklX3cuHEDAwcOREhICGJjY/H+++9j+vTpKm3i4uLQq1cvDBgwABcuXMDPP/+M33//HR999FE1nzHNwFv8REREpCJw+e+1dqxTEwOqvE1UVJRKYOzduzf++9//lmmXmJiIXbt24fjx4+jYsSMAIDIyEk5OTtixYwcGDRqEwMBArF69GgBw9OhReHt7w9nZGdHR0WjVqhWio6MRGBhYYS1z587FkiVLMGDAAACAm5sbLl++jFWrViE0NBSRkZFQKBRYu3YtTExM8NJLL+H27dv44IMP5H2sXLkSHh4eWLx4MQDAw8MDFy9exPz58+U2ixcvxtChQ+UJYM2bN8e///1vBAQEYMWKFTAyMqryedRkDKhERERUp3Tr1g0rVqyQX5uampbbLj4+Hnp6emjfvr28zMbGBh4eHoiPjwfwZNb/xIkT8eDBAxw5cgSBgYFwdnbGkSNH8N577+HEiRMVPhXg/v37uHXrFkaPHo0xY8bIy4uKimBpaSnX4O3trfKBCP7+/ir7SUhIQLt27VSWvfLKKyqvz549i2vXriEyMlJeJoSAUqlEUlISWrZsWW6NdRUDKhEREamI/rCzukt4KlNTU7i7uz+znRCiwuXFD4x/+eWXYWNjgyNHjuDIkSP44osv4OTkhPnz5+PMmTPIzc1F587lnw+lUgngyW3+kiEYgDwmtqIaKqqnotqVSiXef/99TJgwocz2zs7OzzxGXcOASkRERCqM9Sv+jPS6pFWrVigqKsKpU6fkW/wPHz7E1atX5SuOxeNQd+7ciYsXL6JLly4wNzdHYWEhVq5ciTZt2sDc3Lzc/Tds2BCNGzfGX3/9hWHDhlVYw4YNG5Cbmyt/Fv3JkydV2nh6emL37t0qy2JiYlRet2nTBpcuXapUMNcGnCRFREREWql58+YIDg7GmDFj8Pvvv+PPP//EO++8g8aNGyM4OFhuFxgYiJ9++gleXl6wsLCQQ2tkZORTx58CwOzZs7FgwQIsW7YMV69eRVxcHMLDw/HNN98AAIYOHQodHR2MHj0aly9fxu7du/H111+r7OP999/HlStXMHXqVFy9ehWbN29GREQEgH8+GnTq1Kn4448/MG7cOMTGxsrja8ePH199J0yDMKASERGR1goPD0fbtm3Rt29f+Pv7QwiB3bt3Q19fX27TrVs3KBQKlTAaEBAAhUKBgICnT+J699138cMPPyAiIgKtW7dGQEAAIiIi4ObmBgAwMzPDL7/8gsuXL8PX1xfTp0/HV199pbIPNzc3bNmyBdu2bYOXlxdWrFghz+I3NDQEAHh5eeHIkSNITExEly5d4OvrixkzZsDR0bE6TpPGkURlBkcQERGRVsnLy0NSUhLc3Ny0bga4Npg/fz5WrlyJW7duqbuUalXZfscxqERERERqtnz5crRr1w42NjY4fvw4Fi9erLXPOK0MBlQiIiIiNUtMTMS8efPw6NEjODs749NPP8W0adPUXZba8BY/ERFRPcRb/KQOle13nCRFRERERBqFAZWIiIiINAoDKhERERFpFAZUIiIiItIoDKhEREREpFEYUImIiIhqWHR0NCRJwuPHj6t1v7Nnz4aPj0+17lMTMKASERFRnXL37l2MHz8eTZs2haGhIZycnNCvXz8cPHiwWo8TGBiISZMmVes+qXL4oH4iIiKqM27cuIFOnTrBysoKixYtgpeXFwoLC7Fv3z6MGzcOV65cqdV6hBBQKBTQ02Okqk68gkpERER1xocffghJknD69GkMHDgQLVq0wEsvvYRPPvkEJ0+elNvdvHkTwcHBMDMzg4WFBQYPHox79+7J64tvjW/YsAGurq6wtLTEW2+9hczMTABAWFgYjhw5gmXLlkGSJEiShBs3bsi36vft2wc/Pz8YGhri2LFjyM/Px4QJE2Bvbw8jIyN07twZZ86cqdJ7S09Px3vvvQd7e3tYWFige/fu+PPPP1XaLFy4EA0bNoS5uTlGjx6NvLw8lfVFRUWYMGECrKysYGNjg6lTpyI0NBQhISFyGyEEFi1ahKZNm8LY2Bje3t7YsmVLlWqtaQyoREREVCc8evQIe/fuxbhx42BqalpmvZWVFYAnASwkJASPHj3CkSNHsH//fly/fh1DhgxRaX/9+nXs2LEDUVFRiIqKwpEjR7Bw4UIAwLJly+Dv748xY8YgJSUFKSkpcHJykrf97LPPsGDBAsTHx8PLywufffYZtm7dinXr1uHcuXNwd3dHr1698OjRo0q9NyEEXn/9ddy9exe7d+/G2bNn0aZNG7z66qvyPjZv3oxZs2Zh/vz5iImJgaOjI5YvX66yn6+++gqRkZEIDw/H8ePHkZGRgR07dqi0+fzzzxEeHo4VK1bg0qVL+Pjjj/HOO+/gyJEjlaq1VggiIiKqd3Jzc8Xly5dFbm5umXX5+fm19lUVp06dEgDEtm3bntrut99+E7q6uuLmzZvyskuXLgkA4vTp00IIIWbNmiVMTExERkaG3GbKlCmiffv28uuAgAAxceJElX0fPnxYABA7duyQl2VlZQl9fX0RGRkpLysoKBCNGjUSixYtUtkuLS2t3JoPHjwoLCwsRF5ensryZs2aiVWrVgkhhPD39xdjx45VWd++fXvh7e0tv27YsKFYvHix/LqoqEg4OzuL4OBguVYjIyNx4sQJlf2MHj1avP322+XWVp2e1u9K4oAJIiIiUrFgwYJaO9asWbMq3VYIAQCQJOmp7eLj4+Hk5KRyxbNVq1awsrJCfHw82rVrBwBwdXWFubm53MbR0RGpqamVqsXPz0/+9/Xr11FYWIhOnTrJy/T19fHKK68gPj6+Uvs7e/YssrKyYGNjo7I8NzcX169fl9/X2LFjVdb7+/vj8OHDAJ4MEbh37x5eeeUVeb2uri7atm0LpVIJALh8+TLy8vLQs2dPlf0UFBTA19e3UrXWBgZUIiIiqhOaN28OSZIQHx+vMqayNCFEuSG29HJ9fX2V9ZIkyUHuWUoOMagoOFdUR3mUSiUcHR0RHR1dZl3x0IXKKq+OkscBgF9//RWNGzdWaWdoaFil49QkBlQiIiJSMW3aNHWXUC5ra2v06tUL//nPfzBhwoQy41AfP34MKysrtGrVCjdv3sStW7fkq6iXL19Geno6WrZsWenjGRgYQKFQPLOdu7s7DAwM8Pvvv2Po0KEAgMLCQsTExFT6MVVt2rTB3bt3oaenB1dX13LbtGzZEidPnsSIESPkZSUnhllaWqJhw4Y4ffo0unTpAgBQKBQ4f/68/KzUVq1awdDQEDdv3kRAQEClalMHBlQiIiJSYWBgoO4SKrR8+XJ07NgRr7zyCr744gt4eXmhqKgI+/fvx4oVKxAfH48ePXrAy8sLw4YNw9KlS1FUVIQPP/wQAQEBKrfmn8XV1RWnTp3CjRs3YGZmBmtr63LbmZqa4oMPPsCUKVNgbW0NZ2dnLFq0CDk5ORg9enSljtWjRw/4+/sjJCQEX331FTw8PPD3339j9+7dCAkJgZ+fHyZOnIjQ0FD4+fmhc+fOiIyMxKVLl9C0aVN5P+PHj8eCBQvg7u4OT09PfPfdd0hLS5Ovqpqbm2Py5Mn4+OOPoVQq0blzZ2RkZODEiRMwMzNDaGhopc9PTWJAJSIiojrDzc0N586dw/z58/Hpp58iJSUFdnZ2aNu2LVasWAHgyS3uHTt2YPz48ejatSt0dHQQFBSE7777rkrHmjx5MkJDQ9GqVSvk5uYiKSmpwrYLFy6EUqnE8OHDkZmZCT8/P+zbtw8NGjSo1LEkScLu3bsxffp0jBo1Cvfv34eDgwO6du2Khg0bAgCGDBmC69evY+rUqcjLy8Obb76JDz74APv27ZP3M3XqVNy9excjRoyArq4u3nvvPfTq1Qu6urpym7lz58Le3h4LFizAX3/9BSsrK7Rp0wb/+te/qnR+apIkSg5MICIionohLy8PSUlJcHNzg5GRkbrLoRqiVCrRsmVLDB48GHPnzlV3OZXud7yCSkRERKQlkpOT8dtvvyEgIAD5+fn4/vvvkZSUJI+NrSv4oH4iIiIiLaGjo4OIiAi0a9cOnTp1QlxcHA4cOFClyWGagFdQiYiIiLSEk5MTjh8/ru4yXhivoBIRERGRRmFAJSIiIiKNwoBKRERERBqFAZWIiIiINAoDKhERERFpFAZUIiIiItIoDKhERESkNYo/5lQbREREwMrKSt1lqAUDKhEREdUZYWFhCAkJqXB9SkoKevfuXal9aVOY1TZ8UD8RERFpDQcHB3WXQNWAV1CJiIhIa5S8KlpQUICPPvoIjo6OMDIygqurKxYsWAAAcHV1BQC88cYbkCRJfg0Av/zyC9q2bQsjIyM0bdoUc+bMQVFRkcoxfvjhB7zxxhswMTFB8+bNsWvXrqfWVVBQgM8++wyNGzeGqakp2rdvj+joaJU2ERERcHZ2homJCd544w08fPiwzH7mzZsHe3t7mJub491338X//M//wMfHR6VNeHg4WrZsCSMjI3h6emL58uWVO3kahAGViIiItNK///1v7Nq1C5s3b0ZCQgJ+/PFHOYieOXMGwJMwl5KSIr/et28f3nnnHUyYMAGXL1/GqlWrEBERgfnz56vse86cORg8eDAuXLiAPn36YNiwYXj06FGFtYwcORLHjx/Hpk2bcOHCBQwaNAhBQUFITEwEAJw6dQqjRo3Chx9+iNjYWHTr1g3z5s1T2UdkZCTmz5+Pr776CmfPnoWzszNWrFih0mbNmjWYPn065s+fj/j4eHz55ZeYMWMG1q1b90LnstYJIiIiqndyc3PF5cuXRW5ubpl1+fn5FX4VFhZWum1BQcEz21ZVaGioCA4OrnA9ALF9+3YhhBDjx48X3bt3F0ql8plti3Xp0kV8+eWXKss2bNggHB0dVbb7/PPP5ddZWVlCkiSxZ8+eco9z7do1IUmSuHPnjsryV199VUybNk0IIcTbb78tgoKCVNYPGTJEWFpayq/bt28vxo0bp9KmU6dOwtvbW37t5OQkfvrpJ5U2c+fOFf7+/uXWVtue1u9K4hhUIiIiUlF8G7w8zZs3x9ChQ+XXX3/9NQoLC8tt6+LigrCwMPn1smXLkJOTo9Jm1qxZL1bsU4SFhaFnz57w8PBAUFAQ+vbti9dee+2p25w9exZnzpxRuWKqUCiQl5eHnJwcmJiYAAC8vLzk9aampjA3N0dqamq5+zx37hyEEGjRooXK8vz8fNjY2AAA4uPj8cYbb6is9/f3x969e+XXCQkJ+PDDD1XavPLKKzh06BAA4P79+7h16xZGjx6NMWPGyG2KiopgaWn51PetaRhQiYiISCu1adMGSUlJ2LNnDw4cOIDBgwejR48e2LJlS4XbKJVKzJkzBwMGDCizzsjISP63vr6+yjpJkqBUKivcp66uLs6ePQtdXV2VdWZmZgAAIUSl3pMkSSqvS25XfPw1a9agffv2Ku1KH1fTMaASERGRimnTplW4TkdHdfrK5MmTK2xbOkxNnDjxxQp7DhYWFhgyZAiGDBmCgQMHIigoCI8ePYK1tTX09fWhUChU2rdp0wYJCQlwd3evthp8fX2hUCiQmpqKLl26lNumVatWOHnypMqy0q89PDxw+vRpDB8+XF4WExMj/7thw4Zo3Lgx/vrrLwwbNqza6lcHBlQiIiJSYWBgoPa2T5Oeno7Y2FiVZdbW1nB2dlZZ9u2338LR0RE+Pj7Q0dHBf//7Xzg4OMgPv3d1dcXBgwfRqVMnGBoaokGDBpg5cyb69u0LJycnDBo0CDo6Orhw4QLi4uLKTFqqrBYtWmDYsGEYMWIElixZAl9fXzx48ACHDh1C69at0adPH0yYMAEdO3bEokWLEBISgt9++03l9j4AjB8/HmPGjIGfnx86duyIn3/+GRcuXEDTpk3lNrNnz8aECRNgYWGB3r17Iz8/HzExMUhLS8Mnn3zyXPWrA2fxExERUZ0SHR0NX19fla+ZM2eWaWdmZoavvvoKfn5+aNeuHW7cuIHdu3fLV4GXLFmC/fv3w8nJCb6+vgCAXr16ISoqCvv370e7du3QoUMHfPPNN3BxcXmhmsPDwzFixAh8+umn8PDwQP/+/XHq1Ck4OTkBADp06IAffvgB3333HXx8fPDbb7/h888/V9nHsGHDMG3aNEyePFkevhAWFqYy9ODdd9/FDz/8gIiICLRu3RoBAQGIiIiAm5vbC9Vf2yRR2UEPREREpDXy8vKQlJQENzc3lYBDdUvPnj3h4OCADRs2qLuUSqlsv+MtfiIiIqI6ICcnBytXrkSvXr2gq6uLjRs34sCBA9i/f7+6S6t2DKhEREREdYAkSdi9ezfmzZuH/Px8eHh4YOvWrejRo4e6S6t2DKhEREREdYCxsTEOHDig7jJqBSdJEREREZFGYUAlIiIiIo3CgEpEREREGoUBlYiIiIg0CgMqEREREWkUBlQiIiIi0igMqEREREQlREREwMrKSt1l1GsMqERERFSnhIWFQZIk+cvGxgZBQUG4cOFCtex/yJAhuHr1arXsi54PAyoRERHVOUFBQUhJSUFKSgoOHjwIPT099O3bt1r2bWxsDHt7+2rZFz0fBlQiIiJ6bgoFEB0NbNz45LtCUTvHNTQ0hIODAxwcHODj44OpU6fi1q1buH//PgBg6tSpaNGiBUxMTNC0aVPMmDEDhYWF8vZ//vknunXrBnNzc1hYWKBt27aIiYkBUPYW/+zZs+Hj44MNGzbA1dUVlpaWeOutt5CZmVk7b7Ye4kedEhER0XPZtg2YOBG4ffufZU2aAMuWAQMG1F4dWVlZiIyMhLu7O2xsbAAA5ubmiIiIQKNGjRAXF4cxY8bA3Nwcn332GQBg2LBh8PX1xYoVK6Crq4vY2Fjo6+tXeIzr169jx44diIqKQlpaGgYPHoyFCxdi/vz5tfIe6xsGVCIiIqqybduAgQMBIVSX37nzZPmWLTUbUqOiomBmZgYAyM7OhqOjI6KioqCj8+Tm8Oeffy63dXV1xaeffoqff/5ZDqg3b97ElClT4OnpCQBo3rz5U4+nVCoREREBc3NzAMDw4cNx8OBBBtQawlv8REREVCUKxZMrp6XDKfDPskmTavZ2f7du3RAbG4vY2FicOnUKr732Gnr37o3k5GQAwJYtW9C5c2c4ODjAzMwMM2bMwM2bN+XtP/nkE7z77rvo0aMHFi5ciOvXrz/1eK6urnI4BQBHR0ekpqbWzJsjBlQiIiKqmmPHVG/rlyYEcOvWk3Y1xdTUFO7u7nB3d8crr7yC//3f/0V2djbWrFmDkydP4q233kLv3r0RFRWF8+fPY/r06SgoKJC3nz17Ni5duoTXX38dhw4dQqtWrbB9+/YKj1f69r8kSVAqlTX2/uo73uInIiKiKklJqd521UGSJOjo6CA3NxfHjx+Hi4sLpk+fLq8vvrJaUosWLdCiRQt8/PHHePvttxEeHo433nij9oqmCjGgEhERUZU4OlZvu+eRn5+Pu3fvAgDS0tLw/fffIysrC/369UN6ejpu3ryJTZs2oV27dvj1119Vro7m5uZiypQpGDhwINzc3HD79m2cOXMGb775Zs0VTFXCgEpERERV0qXLk9n6d+6UPw5Vkp6s79Kl5mrYu3cvHP8/AZubm8PT0xP//e9/ERgYCAD4+OOP8dFHHyE/Px+vv/46ZsyYgdmzZwMAdHV18fDhQ4wYMQL37t2Dra0tBgwYgDlz5tRcwVQlkhDldS0iIiLSZnl5eUhKSoKbmxuMjIyqvH3xLH5ANaRK0pPvNT2Ln+qmyvY7TpIiIiKiKhsw4EkIbdxYdXmTJgyn9OJ4i5+IiIiey4ABQHDwk9n6KSlPxpx26QLo6qq7MqrrGFCJiIjouenqAv8/7JOo2vAWPxERERFpFAZUIiIiItIoDKhEREREpFEYUImIiIhIozCgEhEREZFGYUAlIiIiIo3CgEpERERaSZIk7NixQ91l1Cuurq5YunTpC++HAZWIiIjqlLCwMEiSBEmSoK+vj4YNG6Jnz55Yu3YtlEql3C4lJQW9e/dWW50RERGwsrJ6rm2FEFi9ejXat28PMzMzWFlZwc/PD0uXLkVOTo5G1FiTGFCJiIiozgkKCkJKSgpu3LiBPXv2oFu3bpg4cSL69u2LoqIiAICDgwMMDQ2r/dgKhUIlCNeE4cOHY9KkSQgODsbhw4cRGxuLGTNmYOfOnfjtt99q9NjlKSgoqNXjMaASERHRCxFCIDo6GkKIWjumoaEhHBwc0LhxY7Rp0wb/+te/sHPnTuzZswcREREAVG/xFxQU4KOPPoKjoyOMjIzg6uqKBQsWyPt7/Pgx3nvvPTRs2BBGRkZ4+eWXERUVBeCfq4xRUVFo1aoVDA0NkZycjIKCAnz22Wdo3LgxTE1N0b59e0RHRwMAoqOjMXLkSKSnp8tXe2fPni3XUtF2ALB582ZERkZi48aN+Ne//oV27drB1dUVwcHBOHToELp16wYAUCqV+OKLL9CkSRMYGhrCx8cHe/fulfdz48YNSJKEbdu2oVu3bjAxMYG3tzf++OOPZ9bo6uqKefPmISwsDJaWlhgzZgwAYOvWrXjppZdgaGgIV1dXLFmypDr/s/5DEBERUb2Tm5srLl++LHJzc194X7t37xYAxJ49e6qhsmcLDQ0VwcHB5a7z9vYWvXv3FkIIAUBs375dCCHE4sWLhZOTkzh69Ki4ceOGOHbsmPjpp5+EEEIoFArRoUMH8dJLL4nffvtNXL9+Xfzyyy9i9+7dQgghwsPDhb6+vujYsaM4fvy4uHLlisjKyhJDhw4VHTt2FEePHhXXrl0TixcvFoaGhuLq1asiPz9fLF26VFhYWIiUlBSRkpIiMjMzhRDiqdsJIUT//v2Fh4fHM8/DN998IywsLMTGjRvFlStXxGeffSb09fXl/SQlJQkAwtPTU0RFRYmEhAQxcOBA4eLiIgoLC59ao4uLi7CwsBCLFy8WiYmJIjExUcTExAgdHR3xxRdfiISEBBEeHi6MjY1FeHi4XJOLi4v49ttvK6y5sv2OAZWIiKgeqs6AOmrUKAFAjB49uhoqe7anBdQhQ4aIli1bCiFUA+r48eNF9+7dhVKpLLPNvn37hI6OjkhISCh3n+Hh4QKAiI2NlZddu3ZNSJIk7ty5o9L21VdfFdOmTZO3s7S0VFlfme1atmwp+vfvX/6bL6FRo0Zi/vz5KsvatWsnPvzwQyHEPwH1hx9+kNdfunRJABDx8fEV1ijEk6AZEhKismzo0KGiZ8+eKsumTJkiWrVqpbJddQRUvZq5LktERETaSqlUYsWKFXj8+DEAYMuWLfJ3Nzc3AICVlRU++OAD6OjU7mhCIQQkSSqzPCwsDD179oSHhweCgoLQt29fvPbaawCA2NhYNGnSBC1atKhwvwYGBvDy8pJfnzt3DkKIMtvk5+fDxsamwv1UZruK3kNJGRkZ+Pvvv9GpUyeV5Z06dcKff/6psqxk3Y6OjgCA1NRUeHp6PvUYfn5+Kq/j4+MRHBxc5nhLly6FQqGArq7uU/dXFQyoREREVCXZ2dmYOXMmHj16BEmS5BCalZWFGTNmQAgBa2trjBgxAubm5rVaW3x8vBySS2rTpg2SkpKwZ88eHDhwAIMHD0aPHj2wZcsWGBsbP3O/xsbGKqFRqVRCV1cXZ8+eLRPMzMzMKtxPZbZr0aIF4uPjn1kTgDJBtrxwq6+vX6Z9ZSZ5mZqaPnPfoobGHXOSFBEREVWJubk5zp8/j44dOwJ4Mqu95PeOHTsiNja21sPpoUOHEBcXhzfffLPc9RYWFhgyZAjWrFmDn3/+GVu3bsWjR4/g5eWF27dv4+rVq5U+lq+vLxQKBVJTU+Hu7q7y5eDgAODJVdfic1KV7YYOHYqrV69i586dZY4rhEB6ejosLCzQqFEj/P777yrrT5w4gZYtW1b6fZRXY0VatWpV7vFatGhRrVdPAV5BJSIioufg7OyMw4cPw9raGtnZ2fJyExMTREdHq1y1qwn5+fm4e/cuFAoF7t27h71792LBggXo27cvRowYUab9t99+C0dHR/j4+EBHRwf//e9/4eDgACsrKwQEBKBr165488038c0338Dd3R1XrlyBJEkICgoq9/gtWrTAsGHDMGLECCxZsgS+vr548OABDh06hNatW6NPnz5wdXVFVlYWDh48CG9vb5iYmFRqu8GDB2P79u14++23MWPGDPTs2RN2dnaIi4vDt99+i/HjxyMkJARTpkzBrFmz0KxZM/j4+CA8PByxsbGIjIys9Hksr0YTE5Ny23766ado164d5s6diyFDhuCPP/7A999/j+XLl1f6eJX21BGqREREpJWqY5LUsWPHBIAyX7///ns1VlpWaGiofCw9PT1hZ2cnevToIdauXSsUCoXcDiUmSa1evVr4+PgIU1NTYWFhIV599VVx7tw5ue3Dhw/FyJEjhY2NjTAyMhIvv/yyiIqKEkJUPJGooKBAzJw5U7i6ugp9fX3h4OAg3njjDXHhwgW5zdixY4WNjY0AIGbNmlXp7RQKhVixYoVo166dMDExERYWFqJt27Zi2bJlIicnR24zZ84c0bhxY6Gvry+8vb1VnqRQPEnq/Pnz8rK0tDQBQBw+fPipNVY02WnLli2iVatWQl9fXzg7O4vFixerrK+uSVKSELX40DIiIiLSCHl5eUhKSoKbmxuMjIyeax9Tp07FokWLEBISgq+//hqffvopdu7cic8++wxfffVVNVdM2qCy/Y63+ImIiOi59O/fH97e3nj77bchSRK2b9+OjRs3wsXFRd2lUR3HK6hERET1UHVcQSWqqsr2O87iJyIiIiKNwoBKRERERBqFAZWIiIiINAoDKhERERFpFAZUIiIiItIoDKhEREREpFEYUImIiIhIozCgEhEREVWBJEnYsWOHusuotNmzZ8PHx0fdZVQJAyoRERHVKWFhYQgJCVF3GTJJkuQvPT09ODs745NPPkF+fr66S6uz+FGnRERERC8oPDwcQUFBKCwsxJ9//omRI0fC1NQUc+fOVXdp1aKwsBD6+vq1djxeQSUiIqLnplAqEH0jGhvjNiL6RjQUSoVa67l8+TL69OkDMzMzNGzYEMOHD8eDBw8AAKtWrULjxo2hVCpVtunfvz9CQ0Pl17/88gvatm0LIyMjNG3aFHPmzEFRUdFTj2tlZQUHBwc4OTmhb9++6N+/P86dO6fSZsWKFWjWrBkMDAzg4eGBDRs2yOtu3LgBSZIQGxsrL3v8+DEkSUJ0dDQAIDo6GpIk4eDBg/Dz84OJiQk6duyIhIQEleMsXLgQDRs2hLm5OUaPHo28vDyV9WfOnEHPnj1ha2sLS0tLBAQElKlVkiSsXLkSwcHBMDU1xbx58+Du7o6vv/5apd3Fixeho6OD69evP/X8VBUDKhERET2XbfHb4LrMFd3WdcPQbUPRbV03uC5zxbb4bWqpJyUlBQEBAfDx8UFMTAz27t2Le/fuYfDgwQCAQYMG4cGDBzh8+LC8TVpaGvbt24dhw4YBAPbt24d33nkHEyZMwOXLl7Fq1SpERERg/vz5la7j6tWrOHz4MNq3by8v2759OyZOnIhPP/0UFy9exPvvv4+RI0eq1FJZ06dPx5IlSxATEwM9PT2MGjVKXrd582bMmjUL8+fPR0xMDBwdHbF8+XKV7TMzMxEaGopjx47h5MmTaN68Ofr06YPMzEyVdrNmzUJwcDDi4uIwatQojBo1CuHh4Spt1q5diy5duqBZs2ZVfh9PJYiIiKjeyc3NFZcvXxa5ubnPtf3Wy1uFNFsSmA2VL2m2JKTZkth6eWs1V/yP0NBQERwcXGb5jBkzxGuvvaay7NatWwKASEhIEEII0b9/fzFq1Ch5/apVq4SDg4MoKioSQgjRpUsX8eWXX6rsY8OGDcLR0VF+DUBs375d5bWRkZEwNTUVhoaGAoDo27evKCgokNt07NhRjBkzRmW/gwYNEn369BFCCJGUlCQAiPPnz8vr09LSBABx+PBhIYQQhw8fFgDEgQMH5Da//vqrACD/d/T39xdjx45VOU779u2Ft7d3mfNVrKioSJibm4tffvlF5T1NmjRJpd3ff/8tdHV1xalTp4QQQhQUFAg7OzsRERFR4b5Lq2y/4xVUIiIiqhKFUoGJeydCQJRZV7xs0t5JtX67/+zZszh8+DDMzMzkL09PTwCQb0EPGzYMW7dulScwRUZG4q233oKurq68jy+++EJlH2PGjEFKSgpycnIqPPa3336L2NhY/Pnnn4iKisLVq1cxfPhweX18fDw6deqksk2nTp0QHx9f5ffp5eUl/9vR0REAkJqaKh/H399fpX3p16mpqRg7dixatGgBS0tLWFpaIisrCzdv3lRp5+fnp/La0dERr7/+OtauXQsAiIqKQl5eHgYNGlTl9/AsnCRFREREVXLs5jHczrhd4XoBgVsZt3Ds5jEEugbWWl1KpRL9+vXDV199VWZdcZDr168flEolfv31V7Rr1w7Hjh3DN998o7KPOXPmYMCAAWX2YWRkVOGxHRwc4O7uDgDw8PBAZmYm3n77bXnsJvBkXGdJQgh5mY6OjrysWGFhYbnHKjlZqXj70uNqnyYsLAz379/H0qVL4eLiAkNDQ/j7+6OgoEClnampaZlt3333XQwfPhzffvstwsPDMWTIEJiYmFT62JXFgEpERERVkpKZUq3tqkubNm2wdetWuLq6Qk+v/IhjbGyMAQMGIDIyEteuXUOLFi3Qtm1blX0kJCTIofJ5FV+Rzc3NBQC0bNkSv//+O0aMGCG3OXHiBFq2bAkAsLOzA/BkHK2vry8AqEyYqqyWLVvi5MmTKsc5efKkSptjx45h+fLl6NOnDwDg1q1b8kSyZ+nTpw9MTU2xYsUK7NmzB0ePHq1yjZXBgEpERERV4mjuWK3tnkd6enqZAPf+++9jzZo1ePvttzFlyhTY2tri2rVr2LRpE9asWSOHxmHDhqFfv364dOkS3nnnHZV9zJw5E3379oWTkxMGDRoEHR0dXLhwAXFxcZg3b16F9Tx+/Bh3796FUqlEYmIivvjiC7Ro0UIOoFOmTMHgwYPRpk0bvPrqq/jll1+wbds2HDhwAMCT4NyhQwcsXLgQrq6uePDgAT7//PMqn5eJEyciNDQUfn5+6Ny5MyIjI3Hp0iU0bdpUbuPu7o4NGzbAz88PGRkZmDJlCoyNjSu1f11dXYSFhWHatGlwd3cvM3ygunAMKhEREVVJF+cuaGLRBBKkctdLkOBk4YQuzl1qrIbo6Gj4+vqqfM2cORPHjx+HQqFAr1698PLLL2PixImwtLSUb6EDQPfu3WFtbY2EhAQMHTpUZb+9evVCVFQU9u/fj3bt2qFDhw745ptv4OLi8tR6Ro4cCUdHRzRp0gRvv/02XnrpJezZs0e+khsSEoJly5Zh8eLFeOmll7Bq1SqEh4cjMDBQ3sfatWtRWFgIPz8/TJw48amBuCJDhgzBzJkzMXXqVLRt2xbJycn44IMPVNqsXbsWaWlp8PX1xfDhwzFhwgTY29tX+hijR49GQUGBytMDqpskSg52ICIionohLy8PSUlJcHNze+rYyopsi9+GgZsHAoDKZKni0Lpl8BYMaFl2HCfVfcePH0dgYCBu376Nhg0bVmnbyvY7XkElIiKiKhvQcgC2DN6CxhaNVZY3sWjCcKql8vPzce3aNcyYMQODBw+ucjitCo5BJSIioucyoOUABHsE49jNY0jJTIGjuSO6OHeBro6uukujGrBx40aMHj0aPj4+Kp+CVRN4i5+IiKgeetFb/ETPg7f4iYiIiKhOYkAlIiIiIo3CgEpEREREGoUBtY47evQo+vXrh0aNGkGSJOzYsUNlvRACs2fPRqNGjWBsbIzAwEBcunRJpU1+fj7Gjx8PW1tbmJqaon///rh9u+KPsCPtVx39avXq1QgMDISFhQUkScLjx49r7w2QxnrRvvXo0SOMHz8eHh4eMDExgbOzMyZMmID09PRafidEVJMYUOu47OxseHt74/vvvy93/aJFi/DNN9/g+++/x5kzZ+Dg4ICePXsiMzNTbjNp0iRs374dmzZtwu+//46srCz07dsXCoWitt4GaZjq6Fc5OTkICgrCv/71r9oqm+qAF+1bf//9N/7++298/fXXiIuLQ0REBPbu3YvRo0fX5tsgopomSGsAENu3b5dfK5VK4eDgIBYuXCgvy8vLE5aWlmLlypVCCCEeP34s9PX1xaZNm+Q2d+7cETo6OmLv3r21VjtprufpVyUdPnxYABBpaWm1UC3VJS/at4pt3rxZGBgYiMLCwposV+vk5uaKy5cvi9zcXHWXQvVIZfsdr6BqsaSkJNy9exevvfaavMzQ0BABAQE4ceIEAODs2bMoLCxUadOoUSO8/PLLchuikirTr4iex/P2rfT0dFhYWMgfKUn0osLCwhASEqLuMuo1BlQtdvfuXQAo80kPDRs2lNfdvXsXBgYGaNCgQYVtiEqqTL8ieh7P07cePnyIuXPn4v3336/x+kiz3Lp1C6NHj0ajRo1gYGAAFxcXTJw4EQ8fPqz0Pm7cuAFJkhAbG/tCtURHR3OsfTVjQK0HJElSeS2EKLOstMq0ofrtefoVUWVUtm9lZGTg9ddfR6tWrTBr1qzaKo80wF9//QU/Pz9cvXoVGzduxLVr17By5UocPHgQ/v7+ePTokbpLpBfEgKrFHBwcAKDMlYfU1FT5CoWDgwMKCgqQlpZWYRuikirTr4ieR1X6VmZmJoKCgmBmZobt27dDX1+/1uqksvKK8nAo6RDyivJq5Xjjxo2DgYEBfvvtNwQEBMDZ2Rm9e/fGgQMHcOfOHUyfPh0Ayn1ShJWVFSIiIgAAbm5uAABfX19IkoTAwMByjyeEwKJFi9C0aVMYGxvD29sbW7ZsAfDkKmy3bt0AAA0aNIAkSQgLC6v291zfMKBqMTc3Nzg4OGD//v3ysoKCAhw5cgQdO3YEALRt2xb6+voqbVJSUnDx4kW5DVFJlelXRM+jsn0rIyMDr732GgwMDLBr1y5+TKcaCSGwPX47WnzXAq+ufxUtvmuB7fHbIWrwU9QfPXqEffv24cMPP4SxsbHKOgcHBwwbNgw///xzpWo4ffo0AODAgQNISUnBtm3bym33+eefIzw8HCtWrMClS5fw8ccf45133sGRI0fg5OSErVu3AgASEhKQkpKCZcuWveC7JI4or+OysrJw7do1+XVSUhJiY2NhbW0NZ2dnTJo0CV9++SWaN2+O5s2b48svv4SJiQmGDh0KALC0tMTo0aPx6aefwsbGBtbW1pg8eTJat26NHj16qOttkZq9aL8CnlwFu3v3rryfuLg4mJubw9nZGdbW1rX+nkgzvGjfyszMxGuvvYacnBz8+OOPyMjIQEZGBgDAzs4Ourq6anlf9dGVB1cwNmosjiQfgY705HrXncw7GLB5AAJcArCy70p42npW+3ETExMhhEDLli3LXd+yZUukpaXh/v37z9yXnZ0dAMDGxka+gl9adnY2vvnmGxw6dAj+/v4AgKZNm+L333/HqlWrEBAQIP9Ms7e3h5WV1XO8KyqjZh8mQNVp9+7dAoDYs2ePvKz4ET6lv0JDQ4UQTx7bMmvWLOHg4CAMDQ1F165dRVxcnMp+c3NzxUcffSSsra2FsbGx6Nu3r7h582ZtvjVSo5rqV7NmzSp3H+Hh4bX47khdyutXQrx436poewAiKSmpFt9h3feij5ny/8Ff6M7RFZiNMl+6c3SF/w/+1VzxEydPnizziLKSlixZIgCI1NTUcttZWlrKP4eSkpIEAHH+/HmVNqGhoSI4OFgIIcTp06cFAGFqaqrypa+vL1555RUhBB+nVxWV7Xe8glqHFI932bJlC4KCggAAgYGBT72NIUkSZs+ejdmzZ1fYxsjICN999x2+++67aq2X6oaa6lfPWk/arbx+Bbx433rW9lR7MgsyoRDlf6CLQiiQWZBZ7roX5e7uDkmScPny5XIfBXXlyhU0aNAAtra2kCSpTH8pLCys0vGUSiUA4Ndff0Xjxo1V1hkaGlateKo0BlQNplQqsWLFCvmxFSV/4BcP7LayssIHH3wAHR0OJ6bKYb+imsB+RbXFxsYGPXv2xPLly/Hxxx+rjEO9e/cuIiMjMWLECEiSBDs7O6SkpMjrExMTkZOTI782MDAAgKd+cmKrVq1gaGiImzdvIiAgoNw2ldkPVQ0DqgbLzs7GzJkz8ejRI0iSJP9Qz8rKwowZMyCEgLW1NUaMGAFzc3M1V0t1BfsV1QT2K6pN33//PTp27IhevXph3rx5cHNzw6VLlzBlyhQ0btwY8+fPBwB0794d33//PTp06AClUompU6eqPPHB3t4exsbG2Lt3L5o0aQIjIyNYWlqqHMvc3ByTJ0/Gxx9/DKVSic6dOyMjIwMnTpyAmZkZQkND4eLiAkmSEBUVhT59+sDY2BhmZma1ek60Df+M1WDm5uY4f/482rZtCyGE/JdZ8feOHTsiNjaWP+ypSor7VYcOHdivqNoU96uOHTuyX9UT5gbm0JXKn5SmK+nC3KDm/ls3b94cMTExaNasGYYMGYJmzZrhvffeQ7du3fDHH3/Ik5aWLFkCJycndO3aFUOHDsXkyZNhYmIi70dPTw///ve/sWrVKjRq1AjBwcHlHm/u3LmYOXMmFixYgJYtW6JXr1745Zdf5LsDjRs3xpw5c/A///M/aNiwIT766KMae+/1hSQ4mEejJScnY926dZg3b57KuBkjIyOkp6fLtxWIqiInJwdr167FJ598otKvDAwMkJqaWuYKAlFlCCGwc+dODB48WKVfmZqaIi0tjc8q1TB5eXlISkqCm5vbcz2qq/QsfqVQyt9rchY/1W2V7Xe8gqrBkpOTERkZiRs3bpQZ1J2Xl4dly5ZxsgBVWU5ODtavX49z586V6VcFBQWYN2+eyhgtosoQQmD37t3YtWtXmX6VnZ0tP2+StIenrScOhx7G9iHb0dj8yeShJhZNsH3IdhwOPcxwSi+EAVVDFYfTwsJCpKamAgA8PT0xYcIEeZD2zp07sXv3boZUqrTicHrv3j0kJSUB+Kdf9erVCwDwxx9/YP369QypVGnF4TQmJgZXr14F8E+/6tevHwBg165d6iyRaogkSQjxDMHV8VdxcMRBJHyUgBDPEH7sMb0wTpLSUBcuXEBhYSGaNm2KwMBADB48GH/99RckScK+ffvwzTff4Nq1a7hy5Qq6du3KcV1UKTdv3sS9e/dgamqKyZMnY+TIkXK/2rlzJ8LDwxEXF4d79+7h5s2b8PTkFRB6tqysLFy5cgUA8O677+K9996T+9WiRYuwdetWuLi4qLlKqklGekbo7tZd3WWQFmFA1VCvv/46rK2t8corr0BfXx8FBQVYsGABgCd/sU6bNg1xcXFwdHRkOKVK8/T0xIABA+Do6AhbW9sy/Wrs2LG4f/8+7t69y3BKlWZubo7Q0FCkpKSgdevWZfpVyU8YIyKqDAZUDXL//n35wcI6Ojro1KnTU9u3bt26wu2JiuXk5ECpVMqPPCndb0qzs7OTP/4PeHJ1TEdHR2XmK5EQAg8ePJD7iq2tLWxtbdVcFRFpC45B1RDJyclYs2YNdu3a9VxjSq9fv47Vq1dzTCqpKB5zum7dOmRlZVV5+6ysLKxbt45jUklF8ZjT1atX4/r16+ouh4i0EAOqBig5ISojI+O5PokiMzMTRUVFiImJYUglAKoTonJzc5GXl1flfeTl5SE3Nxf37t1jSCUAqhOiioqKkJlZMx9nSUT1GwOqmpUMp02bNsVbb70FPb2qj7zw8fGRHzDMkEolw6mpqSlCQ0Of6/arra0tQkNDYWpqypBKKuEUAIKDg+Hj46PeoohIKzGgqlF54fRFHmTNkEpA+eG05JjSqrKzs2NIJYZTIqpVDKhqUt3htBhDav1W3eG0GENq/cZwSkS1jQFVTfLy8qBQKKo1nBYrGVJzc3MZUOuRwsJCFBQUVGs4LVYypBYUFKCoqKja9k2aTQiB3NxcAAynpBnCwsIgSRIkSYK+vj6aNm2KyZMnIzs7W92lUTXhY6bUxMPDA6GhoXB0dKyRz6f28fGBpaUlXFxcoKPDv0PqC0tLS4SGhqKwsLBGHvljZ2eHsLAw6Ovrw8LCotr3T5pJR0cHAwYMQNu2beHm5qbucogAAEFBQQgPD0dhYSGOHTuGd999F9nZ2VixYoW6S6NqwORSi27evIm0tDT5tbOzc42E02Jubm5yOBVCIC4ujldTtVBOTg4SExPl15aWljX6PEpbW1tYWlrKrxMTE3m7XwuV/pmho6PDcEoVKioqQlJSUq3eWTE0NISDgwOcnJwwdOhQDBs2DDt27EBYWBhCQkJU2k6aNAmBgYHy68DAQIwfPx6TJk1CgwYN0LBhQ6xevRrZ2dkYOXIkzM3N0axZM+zZs0feJjo6GpIk4ddff4W3tzeMjIzQvn17xMXF1dI7rl8YUGtJcnIyfvzxR0RERCA9Pb3Wjx8VFYVt27Zhz549DKlapHjM6caNGxEfH1/rx4+Pj8fGjRs5JlXLFI853bZtG6KiotRdDmkwIQTi4+Px3XffYf369fjuu+8QHx+vlt8zxsbGKCwsrHT7devWwdbWFqdPn8b48ePxwQcfYNCgQejYsSPOnTuHXr16Yfjw4WV+tk2ZMgVff/01zpw5A3t7e/Tv379Kx6XKYUCtBSUnRNna2qrlE3maNGkCADhz5gxDqpYoOSHKxMRELZ/iU9yfOXFKe5SeEOXk5KTmikhTPXjwAOvWrcPmzZvl5+FmZmZi8+bNWLduHR48eFBrtZw+fRo//fQTXn311Upv4+3tjc8//xzNmzfHtGnTYGxsDFtbW4wZMwbNmzfHzJkz8fDhQ1y4cEFlu1mzZqFnz55o3bo11q1bh3v37mH79u3V/ZbqPQbUGlZTs/WrytfXF/379wfAkKoNamq2flVxdr924Wx9qoqdO3fi5s2bACD/Pin+fvPmTezcubNGjx8VFQUzMzMYGRnB398fXbt2xXfffVfp7b28vOR/6+rqwsbGRuWjoBs2bAgASE1NVdnO399f/re1tTU8PDzUcgdL2zGg1iBNCafFGFK1g6aE02IMqdqB4ZSqqqCgoMLfIUIIFBQU1Ojxu3XrhtjYWCQkJCAvLw/btm2Dvb09dHR0ytRV3i340r+Pi58IUPI1ACiVymfWUtyWqg8Dag25ffu2RoXTYqVD6r59+9RcEVVFfn6+RoXTYuWF1Pz8fHWXRVWwb98+hlOqU0xNTeHu7g4XFxeV3692dnZISUlRaRsbG1ttxz158qT877S0NFy9ehWenp7Vtn96ggG1hlhbW8Pa2lqjwmmx4pCqq6sLV1dXdZdDVWBgYAAnJyeNCqfFSoZUJycnGBgYqLskqgJXV1fo6uoynFKd1717d8TExGD9+vVITEzErFmzcPHixWrb/xdffIGDBw/i4sWLCAsLg62tbZmnBtCL43NQa4iJiQlGjBgBfX19jQqnxXx9fdGsWTM+y7KOkSQJffr0QdeuXWFubq7ucsqws7PD+++/DzMzM97yqmM8PT0xYcIE/kygSjMwMIAkSeXe5pckSW1/pPbq1QszZszAZ599hry8PIwaNQojRoyotsdBLVy4EBMnTkRiYiK8vb2xa9cu/kFeAxhQq1FycjIePHiAtm3bAoBaZutXRclfRGlpafjzzz8REBDAYKFhcnJycPz4cXTv3h26urqQJEkjw2mxkrUpFAocOnQInTp10vj/H+obIQSOHDkCb29vNGjQAAAYTqlKgoODERUVheTkZDmoFn93dnZG3759a+zYERERT10/Z84czJkzp8L10dHRZZbduHGjzLLywnfnzp2r9YoslY8BtZqUnBBlZmYGDw8PdZdUaYWFhVi/fj0eP36MnJwc9O7dmyFVQ5ScEJWXl4d+/fqpu6Qq2b17N86dO4fr169jxIgRDKkaouSEqD///BMffvihRt7pIc1ma2uL0NBQJCQkYM+ePcjIyICFhQWCgoLg4eHB3yP0QhhQq0Hp2fpNmzZVd0lVoq+vj65du2LXrl04c+YMADCkaoDSs/VLPtqkrujQoQMSEhLkiVMMqepXerZ+QEAAwyk9N0mS4OnpCXd3d9y6dQtOTk7Q02O0oBfHSVIvSNMeJfW8+AgqzVI6nBYPxK9r+AgqzcJHSVFN0dPTg5ubm1aH08DAQAghYGVlpe5S6gUG1BegLeG0GEOqZtCWcFqMIVUzMJwSUV3CgPqcHj9+rFXhtFjpkHr8+HE1V1S/CCGwadMmrQmnxUqH1E2bNvGPn1p2/PhxhlMiqjMYUJ+TpaUl/P39tSqcFisOqQ0bNoSvr6+6y6lXJElC9+7d0aBBA60Jp8WKQ2qDBg3QvXt3jnGuZb6+vmjYsCHDKZXBPxapNlW2v2nvYJEaJkkSAgMDoVQqoaurq+5yqp2vry+8vLy08r1pOldXV4wbN04rz72dnZ3WvjdNZ2pqijFjxvDck6z4wkpOTg6MjY3VXA3VF8VDvJ51YY8BtQqSk5Nx4sQJvPnmm/IDirX5h33J93b27Fncu3ePs/trQE5ODrZu3YpevXrB3t4eAOpNv0pNTcW+ffvw5ptvcnZ/NRNCYM+ePWjYsKH8bGZt7ldUdbq6urCyskJqaiqAJ8/u5s93qilCCOTk5CA1NRVWVlbP/HnEgFpJJSdEHTt2DK+++qq6S6o1jx49wq+//gohBIQQ6NOnD3+IVZOSE6K2bt2KsWPH1ptzK4TA1q1bkZqaykdQVbOSE6IkSYKbmxusra3VXRZpIAcHBwCQQypRTbOyspL73dMwoFZC6dn6Xbt2VXdJtcra2hr9+vXDrl275EkWDKkvrvRs/YEDB9arcypJEgYOHIh169bxOanVqPRs/f79+zOcUoUkSYKjoyPs7e1RWFio7nJIy+nr61f6Tg4D6jNo26OknlfxZCmG1OpROpyGhobCzs5O3WXVuuKJUwyp1YOPkqLnpauryyEgpFE4i/8pGE5VlXwEVUxMDHbv3s3Zn8+B4VQVn5NaPRhOiUibMKBWQKFQYPv27QynpZQOqYmJiWquqO45ePAgw2kppUPqwYMH1V1SnZOYmMhwSkRaQxK8BFahlJQUHD9+HMHBwWoLp0IIrFu3DikpKSgoKAAAGBgYAAAcHR0RGhqqltvs58+fR1paGrp168bb/FWUn5+PHTt2oHv37moLp5rar+7fv4/Dhw8jODgYhoaGtX78ukwIgcOHD8Pa2lpt4VRT+xUR1T0cg1pKUVGR/FnCjo6OGDhwoFrrUSqVePz4sfzDHoD878ePH6vtOaylH+BfVFQEXV1d/vKpQMl+ZWhoiCFDhqi1Hk3tV3Z2dhg8eLDKspLnjlQJIaBQKKCnpyd/yIM6aWq/IqK6h7f4S0hOTsayZctw69YtdZci09XVRVBQULnrevfurRE/7AsLC/HTTz9xTGoFcnJy8MMPP+DYsWPqLkVWF/oVABw7dgw//PADx6SWo3jM6U8//aQxs6/rSr8iIs3HgPr/iidEZWVl4Y8//lB3OSo8PDzg4uIiv9bR0YGbmxtatGihxqr+cePGDSQlJXHiVDlKTog6deqURgUtTe9XOTk5OHXqFCdOlaPkhKikpCTcuHFD3SXJNL1fEVHdwICKsrP133jjDXWXpEKSJPTs2VN+LYRAUFCQxtxOb968OWf3l6O82fqa9PgkTe9XJiYmnN1fjvJm6zdv3lzNVf1D0/sVEdUN9T6g1pVHSZWcTNOmTRv5IzE1BR9BpaquPEpK0/sVH0Glqq48SkrT+xURab56HVDrSjgtTVM/yYoh9Ym6Ek5L09R+xZD6RF0Jp6Vpar8iIs1WrwPqmTNn6lw4BQAjIyN1l1ChkiH14sWLSE9PV3NFte/atWt1LpwCmt2vSofUa9euqbukWpeeno6LFy8CqDvhFNDsfkVEmqteP7slJCQEtra26NSpU50Jp3WBr68vdHR0YGdnBysrK3WXU+u8vLxQUFAAFxeXOhNO64LikJqcnAwvLy91l1PrrKysMHz4cDx48KBevn8iql/qXUB99OgRGjRoAEmSoKenh8DAQHWXpJW8vb1VXqelpcHKykprJ0rk5ORAR0dHvlrk5+en5oq0k52dnUroz8vLg1Kp1KjJZ9VJCIHHjx+jQYMGAIBGjRqhUaNGaq6KiKjm1atb/MnJyVi5ciV+++23ejk2Ul1u376NVatWYc+ePVp53ovHnG7YsAF5eXnqLqfeyMvLw4YNG7R2TGrxmNNVq1bh9u3b6i6HiKhW1ZuAWnJCVGpqKpRKpbpLqjcePnyI/Px8nDlzRutCaskJUenp6cjOzlZ3SfVGdnY20tPTtXLiVMkJUfn5+Xj48KG6SyIiqlX1IqCWN1ufn2hSe7y9veWJU9oUUsubrW9jY6PusuoNGxsbrZzdX3q2fv/+/csMmSEi0nZaH1Dr6qOktE3J2f3aEFLr6qOktI22PYKqvHDq6+ur5qqIiGqfVgdUhlPNoi0hleFUs2hLSGU4JSL6h1YH1PT0dIZTDVMypKalpdXJscC5ubnIzs5mONUgJUNqdnY2cnNz1V1SlSkUCqSlpQFgOCUi0urHTHl5ecHExAQuLi4MpxrE19cX5ubmcHV1rZNjgYvHPgohGE41SHFIlSSpTo4F1tPTw1tvvYUbN27A3d1d3eUQEamV1l1BvXXrFjIzM+XX7u7uDKcayN3dHXp6T/4+EkLgypUrGn27PycnB8nJyfJrW1tbhlMNZGdnB1tbW/l1cnKyRt/uL9339fT0GE6JiKBlATU5OVl+LmJWVpa6y6FKOnDgAH7++WeNHZNa8jmnf/31l7rLoUr666+/NPo5qcVjTn/++WccOHBA3eUQEWkUrQmoJSdEWVhYwNDQUN0lUSUVX/HSxIlTJSdEGRkZwdzcXN0lUSWZm5vDyMhIIydOlZ4QVfKqLxERaUlA5Wz9uk1TZ/dztn7dpqmz+zlbn4jo2ep8QGU41Q6aFlIZTrWDpoVUhlMiosqp0wH11q1bDKdapHRI3bt3r1rqyMvLYzjVIuWF1Ly8PLXUsnfvXoZTIqJKqNMB1dLSEmZmZgynWqQ4pEqSBEdHR7XUYGBgADs7O4ZTLVIypNrZ2cHAwEAtdTg6OkKSJIZTIqJnqNPPQbWwsMDIkSNhZGTEcKpFfH194erqigYNGqjl+Do6OnjjjTeQkZEBKysrtdRA1c/Ozg7vvvsuLCwsoKOjnr/NfXx84OLiora+TURUV9S5K6jJycm4dOmS/Nrc3JzhVAuV/AWelZWFY8eO1eiY1JycHBw5ckQ+ho6ODsOpFrKyspLDqRACR44cqdExqUIIHDt2TOWxdwynRETPppEB9ejRo+jXrx8aNWoESZKwY8cOAP9MiNq6dSuSkpLUW6SGmD17NiRJUvlycHBQd1nVRqFQYP369Th06NALT5xasWIFvLy8YGFhAQsLC/j7+2PPnj3yhKjo6Gjs37+/Gquv2+7cuYN33nkHNjY2MDExgY+PD86ePavusqrN/v37ER0dXe0TpxYsWABJkjBx4kTs3r0bhw4dwvr166FQKKrtGHWVq6trmZ9XkiRh3Lhx6i5N4yxYsADt2rWDubk57O3tERISgoSEBHWXRVRrNDKgZmdnw9vbG99//728rORsfTc3NzRp0kSNFWqWl156CSkpKfJXXFycukuqNrq6uvD39wfw4rP7mzRpgoULFyImJgYxMTHo3r07goODsXDhQnlCFMcFPpGWloZOnTpBX18fe/bsweXLl7FkyRKtuqrs6+tb7bP7z5w5g9WrV8PLyws3btyQJ0R17NixTn6sb3U7c+aMys+q4j8IBw0apObKNM+RI0cwbtw4nDx5Evv370dRURFee+01ZGdnq7s0olqhkWNQe/fujd69e8uvU1NTOVv/KfT09LTqqmlpxaFx165dOHPmDIAnfUSSpCrtp1+/fiqvp0+fjqVLl+LPP/9Ely5dOCGqhK+++gpOTk4IDw+Xl7m6uqqvoBpQPHFq3bp1ckgdMWIETExMnmt/WVlZGDZsGFavXo1PPvkE9+7dAwAEBwfDx8enGiuvu0r//7Vw4UI0a9YMAQEBaqpIc5V+ikl4eDjs7e1x9uxZdO3aVU1VEdUejbyCWtrRo0cZTp8iMTERjRo1gpubG9566y2t/DjO6n5OamZmJsaPH4/8/Hy0aNGC4bSUXbt2wc/PD4MGDYK9vT18fX2xZs0adZdV7arzOanjxo1Dnz59UFBQgMzMTAAMp09TUFCAH3/8EaNGjaryH5v1UXp6OgDA2tpazZUQ1Q6NDqgPHz4EABQVFTGcVqB9+/ZYv3499u3bhzVr1uDu3bvo2LGjfO60SemQevTo0SrvIy4uDmZmZrCyskJkZCRCQ0Px2WefMZyW8tdff2HFihVo3rw59u3bh7Fjx2LChAlYv369ukurdqVDamRkZJX/+Nm0aRPOnTuHPn36yLf1mzVrxnD6FDt27MDjx48RFham7lI0nhACn3zyCTp37oyXX35Z3eUQ1QqNDqjFfyk6ODgwnFagd+/eePPNN9G6dWv06NEDv/76KwBg3bp1aq6sZhSHVGtr6+f65e/h4YHY2Fj8/PPP6NSpE3bu3In79+9Xf6F1nFKpRJs2bfDll1/C19cX77//PsaMGYMVK1aou7QaURxSLSws0KVLlypd0bt16xYmTpyIH3/8Ee3bt4e1tTVsbW35R88z/O///i969+6NRo0aqbsUjffRRx/hwoUL2Lhxo7pLIao1GjkGtVjxL4kuXbownFaSqakpWrdujcTERHWXUmN8fX3RunVr6OlVvfsaGBjA3d0d7u7uCAkJQVBQEJYtW4ZVq1bVQKV1l6OjI1q1aqWyrGXLlti6dauaKqp5dnZ2GD9+fJX71dmzZ5Gamoq2bdvKyxQKBc6dO4fvv/8e+fn5nCBVSnJyMg4cOIBt27apuxSNN378eOzatQtHjx7l5GCqVzTuCmpycjK2b9+u8kgW/nCvvPz8fMTHx6vtU5hqS8kQcenSJezdu/ept2VzcnKwadMmpKWlqexDCIH8/PwarbUu6tSpU5lH2ly9ehUuLi5qqqh2lOxXaWlp2LRp01PHpAohoFQqsX37dsTGxspffn5+GDZsGGJjY/nzqxzFE35ef/11dZeisYQQ+Oijj7Bt2zYcOnQIbm5u6i6JqFap9QqqQqnAsZvHkJKZAkdzRzgLZ2zauAlZWVl49OiRfEUiKSkJsbGxsLa2hrOzszpLVqtCFOIWbiGvKE/+qMbJkyejX79+cHZ2RmpqKubNm4eMjAyEhoaqudrakZ6ejm3btkGpVEKpVKJ3795QKiUcOwakpACOjkDbtjmIjFyPyMhInDt3Dh988AGysrKwadMmREdHl5ktW9+U168+/vhjdOzYEV9++SUGDx6M06dPY/Xq1Vi9erWaq60dQghs3boVd+7ckWf3GxqaqPSrzp0F9u3bjbi4OOjo6KBbt26wtLQE8OROho2NDccL4skcgpIfLatUKhEeHo7Q0NDnuguibUr/Huzi3AW6OroYN24cfvrpJ+zcuRPm5ua4e/cugCcf8W1sbKzmqolqniRq8uN5nmJb/DZM3DsRtzNuy8ssYIEgBKFZfjMsWLCgzDahoaGIiIio0bqEEFAoBfR0NefishACWy5uwbvb3kUGMtDEogn+HfRvhHiG4O2338bRo0fx4MED2NnZoUOHDpg7d26Z27M1VZcmnKvz589j165dAICCgr5Yv74Nbt/+ZwyhlVUWXnvtVyQlLcHdu3dx7949WFpawsvLC1OnTkXPnj1rvEZNOVclPa1fSZKEqKgoTJs2DYmJiXBzc8Mnn3yCMWPG1Fpt6j5f9+/fx7p165CdnY2//+6AX3/tiTt3/qnH1jYX3bvvQqtWV9C/f3+VZ+gGBgbCx8cHS5curfE6NeFclSSEwMWLF+Xb9xYWFggKCoKnpyckScJvv/2GXr16ISEhAS1atKj12jTpXJX3e7CJRRMsC1qGN1u9We424eHhnFhG9YJaAuq2+G0YuHkgBMo/9M8Dfsbg1oNruaonxm6JRUpGHj4JcEfXpjZqf/zJlQdXMDZqLI4kH4EECQICOpIOlEKJAJcArOy7Ep62nmqpTZPO1fnz57Fw4VVs3lzcb0rW8qSfrV2bgZEjLWu9NkCzzhWg2f0K0Jzzdf/+fUyefALr1/f//yVl+9XixUmYPLlprddWTFPOFQA8ePAAUVFRSE5OlpdJkgQhBFxcXNC3b1/Y2tqqrT5NOlcV/R6U/r+PbRm8BQNaDlBHaUQaodYDqkKpgOsyV5W/GFUKgoTGFo0R/+F16OrU/titPmv+QE7hk/Gvvo0tMb5zUzS1Ma31Oop1W9cZMX+fgUKU/ZhEXUkXfo3a4XDo72qoTLPOlUIBNHNRIDVVH6oh4glJEmjcGIhPVEIdQwI16VwBmt2vAM05XwoF0KIpkJKig/L6FSDQpIn6+hWgOecKAH5cF46Uv/8udzy4JElwbNQI74SOVENlT2jKuVIoFfD8TzPcyaz492ATiyZImpiklt+DRJqg1gNq9I1odFvX7ZntPE2/hYU+P3YyLmMkcpVJFa431nFDa4vwCtfXFxmJlrjyH59ntvMcFwuL5uk1X5CGY7+qHParqumScRrmyoonlWXqmOCYxSu1WJFmyig8jyvZHz+z3eHQwwh0Daz5gog0UK0PxEnJTKlUu0LxqIYrIW1SmGHw7EZVaEcEsF9Rzajs77fK/r4k0ka1PoXS0bxyjz/6zxsB6OrSuYarKavkLSBdSYISAiEvO2LUKy4wN6z9Gad+a0xw+SnPkXezMUH0mNo/T4BmnaujR4CgDc9u958RHuga4FHzBZWiSecK0Ox+BWjO+dL0fgVozrkCgLVrLuHB/YqvoLrZmGIu+xWOJhchKHLuM9tV9vclkTaq9d+MXZy7oIlFE9zJuFPuJKnisTc9mgaqfeyNT2NLTA50V+tYQUtDC+hKuhWOFbQ0tICxvvrHKKn7XPXoBjRpAty5A5Q3aEWSnqzv0U1XbWMFi6n7XAF1p18B6j1fdalfAervW0aGhvKkqNIkSYKRoSH7FYAeTQMr9Xuwi3OXWq+NSFPU+i1+XR1dLAtaBuCf2YrFil8vDVqqtnDqYW8GB3NDLO73Ev4zwEutIQIA1gavRWfnJ1ccdCQdle+dnTtjbfBatdWmSedKVxdY9qRbofTE3OLXS5dCbSFCk84VoNn9CtCc86Xp/QrQnHMFAMHBwfKzqotnyBd/d3Z2RnBwsNpqAzTnXGn670EiTaBRz0F1snDC0qClan20hqY9Jw94UtPOhJ2YsGcCbmXcgrOlM5YFLUOwR7BaH5Oiiedq2zZg4kTgdonJsU5OT0LEADU+sUUTz5Wm9qvi2jTpfGlqvwI071wJIZCQkIA9e/YgIyMDlpaWCAoKgoeHB/tVKZr6e5BIE6gtoBIRERERlUcz/owkIiIiIvp/DKhEREREpFEYUImIiIhIozCgEhEREZFGYUAlIiIiIo3CgEpEREREGoUBlYiIiIg0CgMqEREREWmU/wNw1sgnNIfVMwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHhCAYAAABN6eUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFjUlEQVR4nO3deXxU5d3///cQshBIBgJkKyFEZAuRRUAIAkrFCCoFtSVdDOKNenMXFUz9FuNSt0pKq/4AUSotklpvIPoNWysosUpSvwYETKhVRMBgIiZGtgwEyHp+fwyZMmRhJtuZTF7Px2MeM3PmOmc+ZxKYd67rOudYDMMwBAAA4ME6mV0AAADA5RBYAACAxyOwAAAAj0dgAQAAHo/AAgAAPB6BBQAAeDwCCwAA8HgEFgAA4PE6m11AS6mpqdG3336roKAgWSwWs8sBAAAuMAxDp0+fVmRkpDp1argfxWsCy7fffquoqCizywAAAE1QWFioPn36NPi61wSWoKAgSfYdDg4ONrkaAADgCpvNpqioKMf3eEO8JrDUDgMFBwcTWAAAaGcuN52DSbcAAMDjEVgAAIDHI7AAAACPR2ABAAAej8ACAAA8HoEFAAB4PAILAADweAQWAADg8QgsAADA47kVWFJTUzVmzBgFBQUpNDRUM2fO1IEDBy67XlZWlkaNGqWAgABdccUV+uMf/1inTUZGhmJjY+Xv76/Y2Fht3LjRndIAAIAXcyuwZGVlaf78+dq5c6cyMzNVVVWlhIQElZWVNbhOfn6+br75Zk2cOFG5ubl69NFH9eCDDyojI8PRJicnR4mJiUpKStK+ffuUlJSkWbNmadeuXU3fMwAA4DUshmEYTV35+++/V2hoqLKysjRp0qR62yxatEhbtmzR/v37HcvmzZunffv2KScnR5KUmJgom82mbdu2OdpMnTpVPXr00Lp161yqxWazyWq1qrS0lGsJAQDQTrj6/d2six+WlpZKkkJCQhpsk5OTo4SEBKdlN910k1avXq3Kykr5+voqJydHDz30UJ02S5cubXC75eXlKi8vdzy32WxN2IPGVdcYWvLOF/rq+zPqdJmLMrnKYpE6WSyqrDZUVVMj/85Nm0bkbsxsofJbpA5X1rlcvRdvo7G2jb3Xxes1Pbb/Z1u126jdVCt95C5prZ93S6rvM2/OZ1e7z839WV7uPVp7+/VpzfdsSHP+fbT259Ramvp/yeW20xqfhav/Vlz5d9FS++3u9mu3XXHujEvbaXJgMQxDycnJmjBhguLi4hpsV1xcrLCwMKdlYWFhqqqq0rFjxxQREdFgm+Li4ga3m5qaqqeffrqp5bvk/S9KtCr7q1Z9DwAAOrKa8rMutWtyYLn//vv1r3/9Sx9++OFl2156yejaUaiLl9fXprFLTaekpCg5Odnx3GazKSoqyqXaXfXR4WMXapN+O7PhUOYqw7iQig1DNYZ09NQ5hQcHyN+3eQdrWS5kbEPm/UljuSjnX1qHRRZTa2sJhuFar09r92w09jl7i5b4ffGG37n6NOd3zHKZv8Vb+/Oq/Zlcro62ULuvbfl/p6v73ZTa2vvv+9my07pv6eXbNSmwPPDAA9qyZYuys7PVp0+fRtuGh4fX6SkpKSlR586d1bNnz0bbXNrrcjF/f3/5+/s3pXyX5Rw+Lkla8bOrdcuwiFZ9LwAAOiKbzab7XGjn1p/2hmHo/vvv14YNG/T+++8rJibmsuvEx8crMzPTadn27ds1evRo+fr6Ntpm/Pjx7pTXoo6fKdcXxaclSeOuaHiODgAAaH1uBZb58+frjTfe0Nq1axUUFKTi4mIVFxfr3LlzjjYpKSmaPXu24/m8efP09ddfKzk5Wfv379drr72m1atX6+GHH3a0WbBggbZv364lS5boiy++0JIlS/Tee+9p4cKFzd/DJtr51QlJ0qCwIPXs1ro9OQAAoHFuBZaVK1eqtLRU119/vSIiIhy39PR0R5uioiIVFBQ4nsfExGjr1q3asWOHRowYoWeffVbLly/XHXfc4Wgzfvx4rV+/XmvWrNGwYcOUlpam9PR0jR07tgV2sWlyvrLPX4nv39O0GgAAgF2zzsPiSVr6PCw3vLBDh78v06tJo3TT0PAWqBAAAFzK1e9vriVUj+9s53X4+zJZLNK4GHpYAAAwG4GlHju/sh8dNDQyWNZAX5OrAQAABJZ61B7OHH8FvSsAAHgCAks9ProQWMb372VyJQAAQCKw1FFUek4FJ86qk0Ua3a+H2eUAAAARWOrYfeSkJGlopFVBAcxfAQDAExBYLrE7337COHpXAADwHASWS+w+Yg8s1/TjdPwAAHgKAstFSs9W6sB39usHjSawAADgMQgsF9lbcEKGIV3Rq6t6B3H9IAAAPAWB5SIf59sn3DJ/BQAAz0JguUjt/JUxDAcBAOBRCCwXnK+s1r++OSVJuiaGwAIAgCchsFywr/CUKqsN9Q7yV9+QQLPLAQAAFyGwXHDx4cwWi8XkagAAwMUILBd8fOEMt2OYcAsAgMchsEiqqTGUW1B7hBDzVwAA8DQEFkmHvz+j0+er1MXXR4PDg8wuBwAAXILAIim38JQkaVgfqzr78JEAAOBp+HaWlFtwSpI0si/zVwAA8EQEFskxf2VEVHdzCwEAAPXq8IHlTHmVvrxwwcORfbubWwwAAKhXhw8s//rmlGoM6QfduygsOMDscgAAQD06fGCpnb8ygt4VAAA8FoGldsIt81cAAPBYHTqwGIahvEL7hFuOEAIAwHN16MDyzclzOnamQr4+Fg2NDDa7HAAA0IAOHVg+uXA4c2ykVQG+PiZXAwAAGtKhA8u+wlJJ0og+VpMrAQAAjenQgeXfR+2B5ao+3c0tBAAANKrDBpaaGkOffXshsPyAHhYAADyZ24ElOztb06dPV2RkpCwWizZt2tRo+zlz5shisdS5DR061NEmLS2t3jbnz593e4dc9dWxMpVVVCvAt5P69+7aau8DAACaz+3AUlZWpuHDh2vFihUutV+2bJmKiooct8LCQoWEhOgnP/mJU7vg4GCndkVFRQoIaL0zz9YOB8VGBHOFZgAAPFxnd1eYNm2apk2b5nJ7q9Uqq/U/Qy6bNm3SyZMndffddzu1s1gsCg8Pd7ecJvv0KMNBAAC0F23etbB69WpNmTJF0dHRTsvPnDmj6Oho9enTR7feeqtyc3Mb3U55eblsNpvTzR21gSWOwAIAgMdr08BSVFSkbdu26Z577nFaPnjwYKWlpWnLli1at26dAgICdO211+rgwYMNbis1NdXRe2O1WhUVFeVyHTU1hj7/1h5wruKQZgAAPF6bBpa0tDR1795dM2fOdFo+btw43XnnnRo+fLgmTpyoN998UwMHDtRLL73U4LZSUlJUWlrquBUWFrpcR/7xMp0pr1KAbydd2btbU3cHAAC0EbfnsDSVYRh67bXXlJSUJD8/v0bbdurUSWPGjGm0h8Xf31/+/v5NqqV2wu0QJtwCANAutNm3dVZWlg4dOqS5c+detq1hGMrLy1NERESr1PLpN0y4BQCgPXG7h+XMmTM6dOiQ43l+fr7y8vIUEhKivn37KiUlRUePHtXrr7/utN7q1as1duxYxcXF1dnm008/rXHjxmnAgAGy2Wxavny58vLy9PLLLzdhly6PCbcAALQvbgeWPXv2aPLkyY7nycnJkqS77rpLaWlpKioqUkFBgdM6paWlysjI0LJly+rd5qlTp3TfffepuLhYVqtVI0eOVHZ2tq655hp3y7sswzD0eZF9wm1cJIEFAID2wGIYhmF2ES3BZrPJarWqtLRUwcHBDbY7euqcrv3d++rcyaLPn5kqv87MYQEAwCyufn93uG/rLy70rlwZ2o2wAgBAO9HhvrG/KD4tyX6EEAAAaB86XGCpnb8yODzI5EoAAICrOlxgqR0SGkwPCwAA7UaHCiznK6uVf6xMkjSEHhYAANqNDhVYDn53RjWGFNLVT72DmnaWXAAA0PY6VGDZX/yf+SsWi8XkagAAgKs6VGD5oogjhAAAaI86VmAp5gghAADaow4TWAzD4BwsAAC0Ux0msBw7U6ETZRXqZLGf5RYAALQfHSawHCo5I0mKCglUgK+PydUAAAB3dKDAYh8OGkDvCgAA7U4HCiz2Hpb+BBYAANqdDhNYDl4ILFf2JrAAANDedJjAUtvDMiCMQ5oBAGhvOkRgKT1XqZLT5ZKk/r27mlwNAABwV4cILLW9K+HBAQoK8DW5GgAA4K4OEVgOO4aDmL8CAEB71CECy6HvLxwhxIRbAADapQ4RWA5+Zz8HC2e4BQCgfeoQgaW2h4WTxgEA0D55fWA5X1mtb06ekyRdwZAQAADtktcHlm9OnpVhSN38O6tXNz+zywEAAE3g9YEl/9hZSVK/XoGyWCwmVwMAAJrC6wPL18fLJEnRPTlhHAAA7ZXXB5b8Y/bAEkNgAQCg3fL6wPL1cfuQUHTPQJMrAQAATeX1gcXRw9KLHhYAANorrw4s5VXV+rbUfkgzc1gAAGi/vDqwFJ7gkGYAALyB24ElOztb06dPV2RkpCwWizZt2tRo+x07dshisdS5ffHFF07tMjIyFBsbK39/f8XGxmrjxo3ullbHkWP/mb/CIc0AALRfbgeWsrIyDR8+XCtWrHBrvQMHDqioqMhxGzBggOO1nJwcJSYmKikpSfv27VNSUpJmzZqlXbt2uVuekyMXDmnux/wVAADatc7urjBt2jRNmzbN7TcKDQ1V9+7d631t6dKluvHGG5WSkiJJSklJUVZWlpYuXap169a5/V61HIGFI4QAAGjX2mwOy8iRIxUREaEbbrhBH3zwgdNrOTk5SkhIcFp200036aOPPmpwe+Xl5bLZbE63SxWcsE+47RtCYAEAoD1r9cASERGhVatWKSMjQxs2bNCgQYN0ww03KDs729GmuLhYYWFhTuuFhYWpuLi4we2mpqbKarU6blFRUXXaHD1pn8MS1YPAAgBAe+b2kJC7Bg0apEGDBjmex8fHq7CwUM8//7wmTZrkWH7ppFjDMBqdKJuSkqLk5GTHc5vN5hRaDMNwXKX5Bz26NHs/AACAeUw5rHncuHE6ePCg43l4eHid3pSSkpI6vS4X8/f3V3BwsNPtYsfOVKi8qkYWixRhJbAAANCemRJYcnNzFRER4XgeHx+vzMxMpzbbt2/X+PHjm/we31wYDgoPDpBfZ68+3QwAAF7P7SGhM2fO6NChQ47n+fn5ysvLU0hIiPr27auUlBQdPXpUr7/+uiT7EUD9+vXT0KFDVVFRoTfeeEMZGRnKyMhwbGPBggWaNGmSlixZohkzZmjz5s1677339OGHHzZ5x46esg8H9WE4CACAds/twLJnzx5NnjzZ8bx2Hsldd92ltLQ0FRUVqaCgwPF6RUWFHn74YR09elRdunTR0KFD9fbbb+vmm292tBk/frzWr1+vxx9/XE888YT69++v9PR0jR07tsk75pi/0p3AAgBAe2cxDMMwu4iWYLPZZLVaVVpaquDgYD2+6VO9sbNA90++Ug/fNOjyGwAAAG3u0u/vhnjt5I7aHhaGhAAAaP+8NrAcdQQWzsECAEB755WBhXOwAADgXbwysJwoq9C5ympJUmT3AJOrAQAAzeWVgaWo9LwkqVc3f/l39jG5GgAA0FxeGVi+s9kDS7jV3+RKAABAS/DKwFJcG1iCGQ4CAMAbeGVg+e7CkFAYgQUAAK/glYGFHhYAALyLlwaWcklSmJXAAgCAN/DKwFI7JEQPCwAA3sErA4tjSIgeFgAAvILXBZbzldUqPVcpiUm3AAB4C68LLLXnYOni66PggM4mVwMAAFqC1wWWkgsTbsOtAbJYLCZXAwAAWoL3BZbT9h6W0CDOcgsAgLfwusBy7Iy9hyWU+SsAAHgNrwssJ8rsE257dvUzuRIAANBSvDCw2HtYenUjsAAA4C28MLBUSJJ6dWMOCwAA3sLrAsvx2iEhAgsAAF7D+wLLhUm3PRkSAgDAa3hdYDlx9sKQUFd6WAAA8BZeF1jKK2sk0cMCAIA38brAIkkBvp0U6OdjdhkAAKCFeGVg6dXNn9PyAwDgRbwysHCEEAAA3sU7AwtnuQUAwKt4ZWDpEUhgAQDAm3hlYLF28TW7BAAA0IIILAAAwOO5HViys7M1ffp0RUZGymKxaNOmTY2237Bhg2688Ub17t1bwcHBio+P17vvvuvUJi0tTRaLpc7t/Pnz7pYnSeoeSGABAMCbuB1YysrKNHz4cK1YscKl9tnZ2brxxhu1detW7d27V5MnT9b06dOVm5vr1C44OFhFRUVOt4CAAHfLk0QPCwAA3qazuytMmzZN06ZNc7n90qVLnZ4vXrxYmzdv1t/+9jeNHDnSsdxisSg8PNzdcupFYAEAwLu0+RyWmpoanT59WiEhIU7Lz5w5o+joaPXp00e33nprnR6YS5WXl8tmszndalkZEgIAwKu0eWB54YUXVFZWplmzZjmWDR48WGlpadqyZYvWrVungIAAXXvttTp48GCD20lNTZXVanXcoqKiHK/RwwIAgHexGIZhNHlli0UbN27UzJkzXWq/bt063XPPPdq8ebOmTJnSYLuamhpdffXVmjRpkpYvX15vm/LycpWXlzue22w2RUVFKWrhm/rk2R+pF2e7BQDA49lsNlmtVpWWlio4OLjBdm7PYWmq9PR0zZ07V2+99VajYUWSOnXqpDFjxjTaw+Lv7y9///pDCT0sAAB4lzYZElq3bp3mzJmjtWvX6pZbbrlse8MwlJeXp4iICLffK9Cvk3x9vPL0MgAAdFhu97CcOXNGhw4dcjzPz89XXl6eQkJC1LdvX6WkpOjo0aN6/fXXJdnDyuzZs7Vs2TKNGzdOxcXFkqQuXbrIarVKkp5++mmNGzdOAwYMkM1m0/Lly5WXl6eXX37Z7R0KDqB3BQAAb+N2V8SePXs0cuRIxyHJycnJGjlypH7zm99IkoqKilRQUOBo/+qrr6qqqkrz589XRESE47ZgwQJHm1OnTum+++7TkCFDlJCQoKNHjyo7O1vXXHON2zvULaDNRrkAAEAbadakW09SO2nnluff1d9/lWB2OQAAwAWuTrr1uskeXf3pYQEAwNt4XWAJ9PO6XQIAoMPzum/3QD96WAAA8DZeF1i6ElgAAPA6XhdYApnDAgCA1/G6wNLVz8fsEgAAQAvzusASSGABAMDreF1gYQ4LAADex/sCC3NYAADwOl4XWLr4MyQEAIC38brAEuBDYAEAwNt4XWDx87WYXQIAAGhhXhdY/Dt73S4BANDhed23u19nhoQAAPA2XhdY/H28bpcAAOjwvO7b3d/X63YJAIAOz+u+3RkSAgDA+3hdYGHSLQAA3sfrvt39mMMCAIDX8bpv906dOA8LAADexusCCwAA8D4EFgAA4PEILAAAwOMRWAAAgMcjsAAAAI9HYAEAAB6PwAIAADwegQUAAHg8AgsAAPB4BBYAAODxCCwAAMDjuR1YsrOzNX36dEVGRspisWjTpk2XXScrK0ujRo1SQECArrjiCv3xj3+s0yYjI0OxsbHy9/dXbGysNm7c6G5pAADAS7kdWMrKyjR8+HCtWLHCpfb5+fm6+eabNXHiROXm5urRRx/Vgw8+qIyMDEebnJwcJSYmKikpSfv27VNSUpJmzZqlXbt2uVseAADwQhbDMIwmr2yxaOPGjZo5c2aDbRYtWqQtW7Zo//79jmXz5s3Tvn37lJOTI0lKTEyUzWbTtm3bHG2mTp2qHj16aN26dS7VYrPZZLVaVVpaquDg4KbtEAAAaFOufn93bu1CcnJylJCQ4LTspptu0urVq1VZWSlfX1/l5OTooYceqtNm6dKlDW63vLxc5eXljuc2m61F6zbdvnTps42Smpwngeap/VvGYmmd7bbGttuDxj5Xw2j9z+TSv1Gb+n717Ud9f/+21u9PW/zuNPbzcPVv/bb+HW96H0TLc3Xfz1a61KzVA0txcbHCwsKcloWFhamqqkrHjh1TREREg22Ki4sb3G5qaqqefvrpVqnZdKXfSFvul6orzK4EAIDWVe5ayGr1wCLZh44uVjsKdfHy+tpcuuxiKSkpSk5Odjy32WyKiopqiXLNt/cv9rDi102amirJIntPSwf8a7RBzf0r4uLP0mhg+cWvX+6zv7RNS/+8Lt1fy0XLXam59nntdtz9narv83Zlf+tbfvGyi+txR2v/e6jv85Pqfm7u/txd+V1r6LXGtl9fTQ1t69LXG2vT0Pbr09DvVEPruvNvqrHP9eL9ac1/c2rC9uv7rBvTlP3w1O8GN/6PPnNO+t28yzZr9cASHh5ep6ekpKREnTt3Vs+ePRttc2mvy8X8/f3l7+/f8gWbraZG2ndh3s70ZdJVPza3HgAAWpPNJunygaXVz8MSHx+vzMxMp2Xbt2/X6NGj5evr22ib8ePHt3Z5nic/SyotlAKs0uBbza4GAACP4HYPy5kzZ3To0CHH8/z8fOXl5SkkJER9+/ZVSkqKjh49qtdff12S/YigFStWKDk5Wffee69ycnK0evVqp6N/FixYoEmTJmnJkiWaMWOGNm/erPfee08ffvhhC+xiO5O31n4f92PJN8DcWgAA8BBu97Ds2bNHI0eO1MiRIyVJycnJGjlypH7zm99IkoqKilRQUOBoHxMTo61bt2rHjh0aMWKEnn32WS1fvlx33HGHo8348eO1fv16rVmzRsOGDVNaWprS09M1duzY5u5f+3K+VNq/xf54xC/MrQUAAA/SrPOweBKvOA/L3jTpbwuk3oOlX+7smId8AgA6FFe/v7mWkCfJ/V/7/YhfEFYAALgIgcVTHD8sffOxZOkkDZtldjUAAHgUAoun+Fe6/b7/D6WgcHNrAQDAwxBYPIFh/CewDPupubUAAOCBCCye4Jvd0skjkm9XafDNZlcDAIDHIbB4gn3r7fdDpkt+Xc2tBQAAD0RgMVtVhfTZBvtjJtsCAFAvAovZDr0nnTspdQuTrrje7GoAAPBIBBaz1U62veonUicfc2sBAMBDEVjMVH5G+vJd+2OuygwAQIMILGY6+K5UdU7qESNFjDC7GgAAPBaBxUyfbbTfD72NU/EDANAIAotZyk9LBzPtj4feZm4tAAB4OAKLWQ68I1Wdl3peKYVfZXY1AAB4NAKLWRgOAgDAZQQWM5y3SYcYDgIAwFUEFjMc2CpVV0i9BkmhsWZXAwCAxyOwmIHhIAAA3EJgaWvnTkmH/mF/PHSmmZUAANBuEFja2oGtUk2l1HuIFDrE7GoAAGgXCCxt7d8Xrswcd7u5dQAA0I4QWNrS+VLpqx32x7EzzawEAIB2hcDSlg79wz4c1Gug1Hug2dUAANBuEFja0oFt9vuBU82tAwCAdobA0laqq6SD2+2PB91sbi0AALQzBJa2UrhTOn9K6hIiRV1jdjUAALQrBJa24hgOuknq5GNuLQAAtDMElrZgGPbzr0jSoGnm1gIAQDtEYGkLxw5KJ76SfPyk/j80uxoAANodAktbqO1d6TdR8g8ytxYAANohAktb+PId+z3DQQAANEmTAssrr7yimJgYBQQEaNSoUfrnP//ZYNs5c+bIYrHUuQ0dOtTRJi0trd4258+fb0p5nqXsuFS4y/6Y868AANAkbgeW9PR0LVy4UI899phyc3M1ceJETZs2TQUFBfW2X7ZsmYqKihy3wsJChYSE6Cc/+YlTu+DgYKd2RUVFCggIaNpeeZKD2yWjRgq7SuoeZXY1AAC0S24HlhdffFFz587VPffcoyFDhmjp0qWKiorSypUr621vtVoVHh7uuO3Zs0cnT57U3Xff7dTOYrE4tQsPD2/aHnkajg4CAKDZ3AosFRUV2rt3rxISEpyWJyQk6KOPPnJpG6tXr9aUKVMUHR3ttPzMmTOKjo5Wnz59dOuttyo3N7fR7ZSXl8tmszndPE5VuXT4ffvjQQwHAQDQVG4FlmPHjqm6ulphYWFOy8PCwlRcXHzZ9YuKirRt2zbdc889TssHDx6stLQ0bdmyRevWrVNAQICuvfZaHTx4sMFtpaamymq1Om5RUR443HLkn1LFGalbuBQx0uxqAABot5o06dZisTg9NwyjzrL6pKWlqXv37po5c6bT8nHjxunOO+/U8OHDNXHiRL355psaOHCgXnrppQa3lZKSotLSUsetsLCwKbvSumrPbjtoqtSJA7IAAGiqzu407tWrl3x8fOr0ppSUlNTpdbmUYRh67bXXlJSUJD8/v0bbdurUSWPGjGm0h8Xf31/+/v6uF9/WDEP68l3744HMXwEAoDnc+rPfz89Po0aNUmZmptPyzMxMjR8/vtF1s7KydOjQIc2dO/ey72MYhvLy8hQREeFOeZ7l2EGptFDy8ZdiJpldDQAA7ZpbPSySlJycrKSkJI0ePVrx8fFatWqVCgoKNG/ePEn2oZqjR4/q9ddfd1pv9erVGjt2rOLi4ups8+mnn9a4ceM0YMAA2Ww2LV++XHl5eXr55ZebuFseoHaybXS85Bdobi0AALRzbgeWxMREHT9+XM8884yKiooUFxenrVu3Oo76KSoqqnNOltLSUmVkZGjZsmX1bvPUqVO67777VFxcLKvVqpEjRyo7O1vXXHNNE3bJQ9QGFq4dBABAs1kMwzDMLqIl2Gw2Wa1WlZaWKjg42NxiqsqlJf2kyrPSvA+l8KvMrQcAAA/l6vc3h660hsKP7WGla6gUOvTy7QEAQKMILK3BMRw0mcOZAQBoAXybtgZHYLnB3DoAAPASBJaWVnZMKtpnf3zF9aaWAgCAtyCwtLT8LEmGFBYnBTV+Mj0AAOAaAktLy/+n/T7mOnPrAADAixBYWlp+tv0+ZqK5dQAA4EUILC2p9Kh04rBk6SRFN36pAgAA4DoCS0s6cmE4KGKEFGA1tRQAALwJgaUlOeavMBwEAEBLIrC0pCMX5q/04+rMAAC0JAJLSzn5tXSqQOrUWeo7zuxqAADwKgSWllKQY7+PHCn5dzO3FgAAvAyBpaXUBhZ6VwAAaHEElpZSsNN+3zfe3DoAAPBCBJaWcPaE9P0X9sdRY82tBQAAL0RgaQmFu+z3vQZKXXuZWwsAAF6IwNISmL8CAECrIrC0BOavAADQqggszVV5Xvo21/6Y+SsAALQKAktzfZsrVVdIXUOlkCvMrgYAAK9EYGmui+evWCzm1gIAgJcisDSXY/4KE24BAGgtBJbmMAzp6F77Y+avAADQaggszXGqQDp7TOrkK4XFmV0NAABei8DSHLW9K+Fxkm+AubUAAODFCCzNURtYfjDK3DoAAPByBJbmOPqJ/Z7AAgBAqyKwNFV1lVSUZ38cebWppQAA4O0ILE31/RdS5VnJL0jqNcDsagAA8GoElqb69sJwUOQIqZOPqaUAAODtmhRYXnnlFcXExCggIECjRo3SP//5zwbb7tixQxaLpc7tiy++cGqXkZGh2NhY+fv7KzY2Vhs3bmxKaW3HMeGW4SAAAFqb24ElPT1dCxcu1GOPPabc3FxNnDhR06ZNU0FBQaPrHThwQEVFRY7bgAH/GUbJyclRYmKikpKStG/fPiUlJWnWrFnatWuX+3vUVoo/td9HjjS3DgAAOgCLYRiGOyuMHTtWV199tVauXOlYNmTIEM2cOVOpqal12u/YsUOTJ0/WyZMn1b1793q3mZiYKJvNpm3btjmWTZ06VT169NC6detcqstms8lqtaq0tFTBwcHu7JL7qquk1B9IVeel+/dKva5s3fcDAMBLufr97VYPS0VFhfbu3auEhASn5QkJCfroo48aXXfkyJGKiIjQDTfcoA8++MDptZycnDrbvOmmmxrdZnl5uWw2m9OtzZw4bA8rvl2lkJi2e18AADootwLLsWPHVF1drbCwMKflYWFhKi4urnediIgIrVq1ShkZGdqwYYMGDRqkG264QdnZ2Y42xcXFbm1TklJTU2W1Wh23qKgod3aleWqHg8KGMuEWAIA20LkpK1ksFqfnhmHUWVZr0KBBGjRokON5fHy8CgsL9fzzz2vSpElN2qYkpaSkKDk52fHcZrO1XWipDSzhXD8IAIC24FYPS69eveTj41On56OkpKROD0ljxo0bp4MHDzqeh4eHu71Nf39/BQcHO93ajCOwXNV27wkAQAfmVmDx8/PTqFGjlJmZ6bQ8MzNT48ePd3k7ubm5ioiIcDyPj4+vs83t27e7tc025Qgsw8ytAwCADsLtIaHk5GQlJSVp9OjRio+P16pVq1RQUKB58+ZJsg/VHD16VK+//rokaenSperXr5+GDh2qiooKvfHGG8rIyFBGRoZjmwsWLNCkSZO0ZMkSzZgxQ5s3b9Z7772nDz/8sIV2swWd/k4qK5EsnaTQWLOrAQCgQ3A7sCQmJur48eN65plnVFRUpLi4OG3dulXR0dGSpKKiIqdzslRUVOjhhx/W0aNH1aVLFw0dOlRvv/22br75Zkeb8ePHa/369Xr88cf1xBNPqH///kpPT9fYsWNbYBdb2HcXeldC+kt+gebWAgBAB+H2eVg8VZudh+XD/0967ylp6O3ST9a03vsAANABtMp5WCAm3AIAYAICi7uYcAsAQJsjsLijqkI6ftj+OHSIubUAANCBEFjcceKwZFRLfkFScKTZ1QAA0GEQWNzx/QH7fa8BUiNn4QUAAC2LwOKOY1/a73sParwdAABoUQQWd9T2sBBYAABoUwQWdxyrHRIisAAA0JYILK6qqZGOHbI/pocFAIA2RWBxVWmBVHVO8vGTukebXQ0AAB0KgcVVtfNXel4p+bh9CSYAANAMBBZXOQ5pHmhuHQAAdEAEFleduHCG214DzK0DAIAOiMDiqhP59vuQK8ytAwCADojA4qrawNIjxtw6AADogAgsrqiqkGzf2B/TwwIAQJsjsLjiVIFk1Ei+XaVuoWZXAwBAh0NgccWJr+z3Pfpx0UMAAExAYHHFydoJt8xfAQDADJwBzRUnCCwAgOaprq5WZWWl2WW0OV9fX/n4+DR7OwQWV9QOCTHhFgDgJsMwVFxcrFOnTpldimm6d++u8PBwWZoxrYLA4oqTR+z3PfqZWQUAoB2qDSuhoaEKDAxs1pd2e2MYhs6ePauSkhJJUkRERJO3RWC5HMOQSi8c0sxFDwEAbqiurnaElZ49e5pdjim6dOkiSSopKVFoaGiTh4eYdHs5505KlWX2x8GR5tYCAGhXauesBAYGmlyJuWr3vzlzeAgsl2M7ar8P7CX5djG3FgBAu9SRhoHq0xL7T2C5nNrhIGsfc+sAAKADI7BcDoEFANCOPPXUUxoxYkSLbOvIkSOyWCzKy8trsM2OHTtksVha/SgoJt1eDoEFANBBRUVFqaioSL169TK7FALLZdUGluAfmFsHAABtzMfHR+Hh4WaXIYkhocujhwUA0Equv/56Pfjgg/r1r3+tkJAQhYeH66mnnnK8XlBQoBkzZqhbt24KDg7WrFmz9N133zlt43e/+53CwsIUFBSkuXPn6vz583XeZ82aNRoyZIgCAgI0ePBgvfLKKy7VV9+Q0NatWzVw4EB16dJFkydP1pEjR5qy624jsFxO7VFCBBYAQCv4y1/+oq5du2rXrl36/e9/r2eeeUaZmZkyDEMzZ87UiRMnlJWVpczMTB0+fFiJiYmOdd988009+eSTeu6557Rnzx5FRETUCSN/+tOf9Nhjj+m5557T/v37tXjxYj3xxBP6y1/+4nathYWFuv3223XzzTcrLy9P99xzjx555JFmfwYuMZrg5ZdfNvr162f4+/sbV199tZGdnd1g24yMDGPKlClGr169jKCgIGPcuHHGO++849RmzZo1hqQ6t3PnzrlcU2lpqSHJKC0tbcou1a+6yjCe6mEYTwYbxqlvWm67AIAO4dy5c8bnn3/e4PfZddddZ0yYMMFp2ZgxY4xFixYZ27dvN3x8fIyCggLHa5999pkhyfj4448NwzCM+Ph4Y968eU7rjx071hg+fLjjeVRUlLF27VqnNs8++6wRHx9/2frz8/MNSUZubq5hGIaRkpJiDBkyxKipqXG0WbRokSHJOHnyZIPbaexzcPX72+0elvT0dC1cuFCPPfaYcnNzNXHiRE2bNk0FBQX1ts/OztaNN96orVu3au/evZo8ebKmT5+u3Nxcp3bBwcEqKipyugUEBLhbXssqOyYZ1ZIsUrcwc2sBAHilYcOGOT2PiIhQSUmJ9u/fr6ioKEVFRTlei42NVffu3bV//35J0v79+xUfH++0/sXPv//+exUWFmru3Lnq1q2b4/bb3/5Whw8fdrvW/fv3a9y4cU7nVbn0/VuL25NuX3zxRc2dO1f33HOPJGnp0qV69913tXLlSqWmptZpv3TpUqfnixcv1ubNm/W3v/1NI0eOdCy3WCweM7HH4fD79vtuoZIP85MBAC3P19fX6bnFYlFNTY0Mw6j3hGsNLa9PTU2NJPuw0NixY51ea8op8g3DcHudluJWD0tFRYX27t2rhIQEp+UJCQn66KOPXNpGTU2NTp8+rZCQEKflZ86cUXR0tPr06aNbb721Tg/MpcrLy2Wz2ZxuLeqrHdLfF9ofD0horCUAAC0uNjZWBQUFKiwsdCz7/PPPVVpaqiFDhkiShgwZop07dzqtd/HzsLAw/eAHP9BXX32lK6+80ukWExPTpJoae7/W5FZgOXbsmKqrqxUW5jw8EhYWpuLiYpe28cILL6isrEyzZs1yLBs8eLDS0tK0ZcsWrVu3TgEBAbr22mt18ODBBreTmpoqq9XquF3cZdZsR/6ftPanUtV5aeA06ZYXWm7bAAC4YMqUKRo2bJh+8Ytf6JNPPtHHH3+s2bNn67rrrtPo0aMlSQsWLNBrr72m1157TV9++aWefPJJffbZZ07beeqpp5Samqply5bpyy+/1Keffqo1a9boxRdfdLumefPm6fDhw0pOTtaBAwe0du1apaWltcTuXlaTjhK6tCvK1e6pdevW6amnnlJ6erpCQ0Mdy8eNG6c777xTw4cP18SJE/Xmm29q4MCBeumllxrcVkpKikpLSx23ixNosxR+LK2dJVWdk668UZr1F6mzf8tsGwAAF1ksFm3atEk9evTQpEmTNGXKFF1xxRVKT093tElMTNRvfvMbLVq0SKNGjdLXX3+t//mf/3Hazj333KM///nPSktL01VXXaXrrrtOaWlpTeph6du3rzIyMvS3v/1Nw4cP1x//+EctXry42fvqCovhxoBURUWFAgMD9dZbb+m2225zLF+wYIHy8vKUlZXV4Lrp6em6++679dZbb+mWW2657Hvde++9+uabb7Rt2zaXarPZbLJarSotLVVwcLBL69TxbZ70l+lSuU264nrpZ+u54CEAoMnOnz+v/Px8xcTEmH8giYka+xxc/f52q4fFz89Po0aNUmZmptPyzMxMjR8/vsH11q1bpzlz5mjt2rUuhRXDMJSXl6eIiAh3ymuek0ek//2JPaxEXyv9dC1hBQAAD+H2kFBycrL+/Oc/67XXXtP+/fv10EMPqaCgQPPmzZNkH6qZPXu2o/26des0e/ZsvfDCCxo3bpyKi4tVXFys0tJSR5unn35a7777rr766ivl5eVp7ty5ysvLc2yz1ZUdl964QyorkcLipJ+tk/y6ts17AwBgksWLFzsd7nzxbdq0aWaX58TtY3UTExN1/PhxPfPMMyoqKlJcXJy2bt2q6OhoSVJRUZHTOVleffVVVVVVaf78+Zo/f75j+V133eWYqHPq1Cndd999Ki4ultVq1ciRI5Wdna1rrrmmmbvngspz0rqfSscPSdYo6Rf/Vwqwtv77AgBgsnnz5jkdBHOxLl08a5TBrTksnqxJc1gMQ8q4R/r3hZDyX9ul0MGtWygAoMNgDotdm89h8TofvWQPK5062+esEFYAAPBIHTewHPqH9N6T9sdTfyf1m2BuPQAAoEEdM7CcKpT+739JRo008k5pzD1mVwQAABrR8QJLdZW04V7p/Ckp8mrp5hckF6/JAAAAzNHxAss/n5cKciS/IOnHr0m+HXcSFAAA7UXHCiwFO6WsJfbHt74ohbh/WmIAAND2Ok5gqTwvbZ5vn7cy7KfSsPqPOwcAAM5WrlypYcOGKTg4WMHBwYqPj3f50jktpeMEluzf208O1y1cmrbE7GoAAGg3+vTpo9/97nfas2eP9uzZox/+8IeaMWNGnStDtya3z3TbLhV/Kv2/ZfbHtzwvdeluajkAALQn06dPd3r+3HPPaeXKldq5c6eGDh3aJjV4f2AxDOnth6WaKmnIdPsNAAAPYBiGzlVWm/LeXXx9ZGnCUbLV1dV66623VFZWpvj4+FaorH7eH1g+3yQV7pQ6d5Gm/d7sagAAcDhXWa3Y37xrynt//sxNCvRzPQZ8+umnio+P1/nz59WtWzdt3LhRsbGxrVihM++ew1JVLmVeOJvttQuk4Ehz6wEAoJ0aNGiQ8vLytHPnTv3P//yP7rrrLn3++edt9v7e3cOy+8/Sqa/tE22vfdDsagAAcNLF10efP3OTae/tDj8/P1155ZWSpNGjR2v37t1atmyZXn311dYorw7vDSyV5/8z0XZyiuTX1dx6AAC4hMVicWtYxpMYhqHy8vI2e7/2+Sm5Ivev0pnvpOA+0vCfm10NAADt1qOPPqpp06YpKipKp0+f1vr167Vjxw698847bVaDdwaW6qr/9K5MWCh19jO1HAAA2rPvvvtOSUlJKioqktVq1bBhw/TOO+/oxhtvbLMavDOwHNgqlRZKgb2kkUlmVwMAQLu2evVqs0vw0qOE9lz4YK+ezcUNAQDwAt4XWI4flr7aIckijZpjcjEAAKAleF9g+Wyj/f7KKVKPaHNrAQAALcL7Asv+v9vvr/qJuXUAAIAW432B5cQhycdPGjTV7EoAAEAL8b7AIkn9fygFWM2uAgAAtBAvDSw3mF0BAABoQd4ZWK64zuwKAABAC/K+wNI1VOo10OwqAABAC/K+wBIxQrJYzK4CAAC0IO8LLGGxZlcAAIBXS01NlcVi0cKFC9vsPb0vsIQSWAAAaC27d+/WqlWrNGzYsDZ9X+8LLD36mV0BAABe6cyZM/rFL36hP/3pT+rRo0ebvrf3Xa05ONLsCgAAcI1hSJVnzXlv30C353zOnz9ft9xyi6ZMmaLf/va3rVRY/ZoUWF555RX94Q9/UFFRkYYOHaqlS5dq4sSJDbbPyspScnKyPvvsM0VGRurXv/615s2b59QmIyNDTzzxhA4fPqz+/fvrueee02233eZ+cZwwDgDQXlSelRab9If2o99Kfl1dbr5+/Xp98skn2r17dysW1TC3h4TS09O1cOFCPfbYY8rNzdXEiRM1bdo0FRQU1Ns+Pz9fN998syZOnKjc3Fw9+uijevDBB5WRkeFok5OTo8TERCUlJWnfvn1KSkrSrFmztGvXLvf3iCOEAABoUYWFhVqwYIHeeOMNBQQEmFKDxTAMw50Vxo4dq6uvvlorV650LBsyZIhmzpyp1NTUOu0XLVqkLVu2aP/+/Y5l8+bN0759+5STkyNJSkxMlM1m07Zt2xxtpk6dqh49emjdunUu1WWz2WS1WlVaWqrg4GB3dgkAgFZx/vx55efnKyYmpv4v+nYyJLRp0ybddttt8vHxcSyrrq6WxWJRp06dVF5e7vTapRr7HFz9/nZrSKiiokJ79+7VI4884rQ8ISFBH330Ub3r5OTkKCEhwWnZTTfdpNWrV6uyslK+vr7KycnRQw89VKfN0qVLG6ylvLxc5eXljuc2m82dXQEAwHwWi1vDMma54YYb9Omnnzotu/vuuzV48GAtWrSo0bDSUtwKLMeOHVN1dbXCwsKcloeFham4uLjedYqLi+ttX1VVpWPHjikiIqLBNg1tU7IfA/7000+7Uz4AAGiCoKAgxcXFOS3r2rWrevbsWWd5a2nSYc2WS7qQDMOos+xy7S9d7u42U1JSVFpa6rgVFha6XD8AAGhf3Oph6dWrl3x8fOr0fJSUlNTpIakVHh5eb/vOnTurZ8+ejbZpaJuS5O/vL39/f3fKBwAALWTHjh1t+n5u9bD4+flp1KhRyszMdFqemZmp8ePH17tOfHx8nfbbt2/X6NGj5evr22ibhrYJAAA6FrfPw5KcnKykpCSNHj1a8fHxWrVqlQoKChznVUlJSdHRo0f1+uuvS7IfEbRixQolJyfr3nvvVU5OjlavXu109M+CBQs0adIkLVmyRDNmzNDmzZv13nvv6cMPP2yh3QQAAO2Z24ElMTFRx48f1zPPPKOioiLFxcVp69atio6OliQVFRU5nZMlJiZGW7du1UMPPaSXX35ZkZGRWr58ue644w5Hm/Hjx2v9+vV6/PHH9cQTT6h///5KT0/X2LFjW2AXAQBAe+f2eVg8FedhAQB4msueh6WDaInzsHjfxQ8BAPAwXtI30GQtsf8EFgAAWkntwSVnz5p0NlsPUbv/tZ9HU3jf1ZoBAPAQPj4+6t69u0pKSiRJgYGBjZ5jzNsYhqGzZ8+qpKRE3bt3b9YZcQksAAC0ovDwcElyhJaOqHv37o7PoakILAAAtCKLxaKIiAiFhoaqsrLS7HLanK+vb4tca4jAAgBAG/Dx8WmTiwR6KybdAgAAj0dgAQAAHo/AAgAAPJ7XzGGpPSmNzWYzuRIAAOCq2u/ty51czmsCy/HjxyVJUVFRJlcCAADcdfz4cVmt1gZf95rAEhISIkkqKChodIcbM2bMGO3evbvJNbA+67M+67M+67O+e0pLS9W3b1/H93hDvCawdOpkn45jtVqbfPFDHx+fZl04kfVZn/VZn/VZn/WbpvZ7vMHXm7V1LzN//nzWZ33WZ33WZ33Wb+P1XWExvOQSkq5enhoAAHgOV7+/vaaHxd/fX08++aT8/f3NLgUAALjI1e9vr+lhAQAA3strelgAAID3IrAAAACPR2BBm3vllVcUExOjgIAAjRo1Sv/85z8dr505c0b333+/+vTpoy5dumjIkCFauXKlidWiVnZ2tqZPn67IyEhZLBZt2rTJ6fU5c+bIYrE43caNG2dOsagjNTVVY8aMUVBQkEJDQzVz5kwdOHDA8XplZaUWLVqkq666Sl27dlVkZKRmz56tb7/91sSqUetyPz9J+u677zRnzhxFRkYqMDBQU6dO1cGDB02quOURWNCm0tPTtXDhQj322GPKzc3VxIkTNW3aNBUUFEiSHnroIb3zzjt64403tH//fj300EN64IEHtHnzZpMrR1lZmYYPH64VK1Y02Gbq1KkqKipy3LZu3dqGFaIxWVlZmj9/vnbu3KnMzExVVVUpISFBZWVlkqSzZ8/qk08+0RNPPKFPPvlEGzZs0Jdffqkf/ehHJlcO6fI/P8MwNHPmTH311VfavHmzcnNzFR0drSlTpjjatHsG0IauueYaY968eU7LBg8ebDzyyCOGYRjG0KFDjWeeecbp9auvvtp4/PHH26xGXJ4kY+PGjU7L7rrrLmPGjBmm1AP3lZSUGJKMrKysBtt8/PHHhiTj66+/bsPK4IpLf34HDhwwJBn//ve/HW2qqqqMkJAQ409/+pNZZbYoeljQZioqKrR3714lJCQ4LU9ISNBHH30kSZowYYK2bNmio0ePyjAMffDBB/ryyy910003mVEy3LRjxw6FhoZq4MCBuvfee1VSUmJ2SWhAaWmpJDV6OvTS0lJZLBZ17969jaqCqy79+ZWXl0uSAgICHG18fHzk5+enDz/8sO0LbAUEFrSZY8eOqbq6WmFhYU7Lw8LCVFxcLElavny5YmNj1adPH/n5+Wnq1Kl65ZVXNGHCBDNKhhumTZum//3f/9X777+vF154Qbt379YPf/hDx3+k8ByGYSg5OVkTJkxQXFxcvW3Onz+vRx55RD//+c85GaeHqe/nN3jwYEVHRyslJUUnT55URUWFfve736m4uFhFRUUmV9wyvOZaQmg/LBaL03PDMBzLli9frp07d2rLli2Kjo5Wdna2fvnLXyoiIkJTpkwxo1y4KDEx0fE4Li5Oo0ePVnR0tN5++23dfvvtJlaGS91///3617/+1eBf3pWVlfrpT3+qmpoavfLKK21cHS6nvp+fr6+vMjIyNHfuXIWEhMjHx0dTpkzRtGnTTKy0ZRFY0GZ69eolHx8fR29KrZKSEoWFhencuXN69NFHtXHjRt1yyy2SpGHDhikvL0/PP/88gaWdiYiIUHR0tFcdpeANHnjgAW3ZskXZ2dnq06dPndcrKys1a9Ys5efn6/3336d3xcM09vMbNWqU8vLyVFpaqoqKCvXu3Vtjx47V6NGjTaq2ZTEkhDbj5+enUaNGKTMz02l5Zmamxo8fr8rKSlVWVta5YqePj49qamraslS0gOPHj6uwsFARERFmlwLZezLvv/9+bdiwQe+//75iYmLqtKkNKwcPHtR7772nnj17mlAp6uPKz6+W1WpV7969dfDgQe3Zs0czZsxow0pbDz0saFPJyclKSkrS6NGjFR8fr1WrVqmgoEDz5s1TcHCwrrvuOv2f//N/1KVLF0VHRysrK0uvv/66XnzxRbNL7/DOnDmjQ4cOOZ7n5+crLy9PISEhCgkJ0VNPPaU77rhDEREROnLkiB599FH16tVLt912m4lVo9b8+fO1du1abd68WUFBQY6eTqvVqi5duqiqqko//vGP9cknn+jvf/+7qqurHW1CQkLk5+dnZvkd3uV+fpL01ltvqXfv3urbt68+/fRTLViwQDNnzqxzoEO7ZeYhSuiYXn75ZSM6Otrw8/Mzrr76aqfDKouKiow5c+YYkZGRRkBAgDFo0CDjhRdeMGpqakysGIZhGB988IEhqc7trrvuMs6ePWskJCQYvXv3Nnx9fY2+ffsad911l1FQUGB22bigvp+dJGPNmjWGYRhGfn5+g20++OADU2vH5X9+hmEYy5YtM/r06eP4N/j4448b5eXl5hXdwrj4IQAA8HjMYQEAAB6PwAIAADwegQUAAHg8AgsAAPB4BBYAAODxCCwAAMDjEVgAAIDHI7AAAACPR2ABAAAej8ACAAA8HoEFAAB4PAILAADweAQWAADg8QgsAADA4xFYAACAxyOwAAAAj0dgAQAAHo/AAgAAPB6BBQAAeDwCCwAA8HgEFgAA4PEILAAAwOMRWAAAgMcjsAAAAI/XLgLLnDlzNHPmTLPLAAAAJmkXgQUAAHRs7S6wvPPOO5owYYK6d++unj176tZbb9Xhw4cdrx85ckQWi0UbNmzQ5MmTFRgYqOHDhysnJ8fEqgEAQHO0u8BSVlam5ORk7d69W//4xz/UqVMn3XbbbaqpqXFq99hjj+nhhx9WXl6eBg4cqJ/97GeqqqoyqWoAANAcnc0uwF133HGH0/PVq1crNDRUn3/+ueLi4hzLH374Yd1yyy2SpKefflpDhw7VoUOHNHjw4DatFwAANF+762E5fPiwfv7zn+uKK65QcHCwYmJiJEkFBQVO7YYNG+Z4HBERIUkqKSlpu0IBAECLaXc9LNOnT1dUVJT+9Kc/KTIyUjU1NYqLi1NFRYVTO19fX8dji8UiSXWGjQAAQPvQrgLL8ePHtX//fr366quaOHGiJOnDDz80uSoAANDa2lVg6dGjh3r27KlVq1YpIiJCBQUFeuSRR8wuCwAAtLJ2MYelpqZGnTt3VqdOnbR+/Xrt3btXcXFxeuihh/SHP/zB7PIAAEArsxiGYZhdxOVMnTpVV155pVasWGF2KQAAwAQe3cNy8uRJvf3229qxY4emTJlidjkAAMAkHj2H5b/+67+0e/du/epXv9KMGTPMLgcAAJikXQwJAQCAjs2jh4QAAAAkAgsAAGgHPCawpKamasyYMQoKClJoaKhmzpypAwcOOLUxDENPPfWUIiMj1aVLF11//fX67LPPHK+fOHFCDzzwgAYNGqTAwED17dtXDz74oEpLS+t9z/Lyco0YMUIWi0V5eXmtuXsAAKAZPCawZGVlaf78+dq5c6cyMzNVVVWlhIQElZWVOdr8/ve/14svvqgVK1Zo9+7dCg8P14033qjTp09Lkr799lt9++23ev755/Xpp58qLS1N77zzjubOnVvve/76179WZGRkm+wfAABoOo+ddPv9998rNDRUWVlZmjRpkgzDUGRkpBYuXKhFixZJsveQhIWFacmSJfrv//7verfz1ltv6c4771RZWZk6d/7PQVHbtm1TcnKyMjIyNHToUOXm5mrEiBFtsWsAAMBNHtPDcqnaYZyQkBBJUn5+voqLi5WQkOBo4+/vr+uuu04fffRRo9sJDg52Civfffed7r33Xv31r39VYGBgK+0BAABoKR4ZWAzDUHJysiZMmKC4uDhJUnFxsSQpLCzMqW1YWJjjtUsdP35czz77rFPvi2EYmjNnjubNm6fRo0e30h4AAICW5JEnjrv//vv1r3/9q94rMVssFqfnhmHUWSZJNptNt9xyi2JjY/Xkk086lr/00kuy2WxKSUlp+cIBAECr8LgelgceeEBbtmzRBx98oD59+jiWh4eHS1Kd3pSSkpI6vS6nT5/W1KlT1a1bN23cuFG+vr6O195//33t3LlT/v7+6ty5s6688kpJ0ujRo3XXXXe11m4BAIBm8JjAYhiG7r//fm3YsEHvv/++YmJinF6PiYlReHi4MjMzHcsqKiqUlZWl8ePHO5bZbDYlJCTIz89PW7ZsUUBAgNN2li9frn379ikvL095eXnaunWrJCk9PV3PPfdcK+4hAABoKo8ZEpo/f77Wrl2rzZs3KygoyNGTYrVa1aVLF1ksFi1cuFCLFy/WgAEDNGDAAC1evFiBgYH6+c9/Lsnes5KQkKCzZ8/qjTfekM1mk81mkyT17t1bPj4+6tu3r9P7duvWTZLUv39/px4dAADgOTwmsKxcuVKSdP311zstX7NmjebMmSPJft6Uc+fO6Ze//KVOnjypsWPHavv27QoKCpIk7d27V7t27ZIkx1BPrfz8fPXr169V9wEAALQOjz0PCwAAQC2PmcMCAADQEAILAADweAQWAADg8QgsAADA4xFYAACAxyOwAAAAj0dgAQAAHo/AAsA0O3bskMVi0alTp8wuBYCH48RxANrM9ddfrxEjRmjp0qWS7NcDO3HihMLCwuq96joA1PKYU/MD6Hj8/PwcV2IHgMYwJASgTcyZM0dZWVlatmyZLBaLLBaL0tLSnIaE0tLS1L17d/3973/XoEGDFBgYqB//+McqKyvTX/7yF/Xr1089evTQAw88oOrqase2Kyoq9Otf/1o/+MEP1LVrV40dO1Y7duwwZ0cBtAp6WAC0iWXLlunLL79UXFycnnnmGUnSZ599Vqfd2bNntXz5cq1fv16nT5/W7bffrttvv13du3fX1q1b9dVXX+mOO+7QhAkTlJiYKEm6++67deTIEa1fv16RkZHauHGjpk6dqk8//VQDBgxo0/0E0DoILADahNVqlZ+fnwIDAx3DQF988UWddpWVlVq5cqX69+8vSfrxj3+sv/71r/ruu+/UrVs3xcbGavLkyfrggw+UmJiow4cPa926dfrmm28UGRkpSXr44Yf1zjvvaM2aNVq8eHHb7SSAVkNgAeBRAgMDHWFFksLCwtSvXz9169bNaVlJSYkk6ZNPPpFhGBo4cKDTdsrLy9WzZ8+2KRpAqyOwAPAovr6+Ts8tFku9y2pqaiRJNTU18vHx0d69e+Xj4+PU7uKQA6B9I7AAaDN+fn5Ok2VbwsiRI1VdXa2SkhJNnDixRbcNwHNwlBCANtOvXz/t2rVLR44c0bFjxxy9JM0xcOBA/eIXv9Ds2bO1YcMG5efna/fu3VqyZIm2bt3aAlUD8AQEFgBt5uGHH5aPj49iY2PVu3dvFRQUtMh216xZo9mzZ+tXv/qVBg0apB/96EfatWuXoqKiWmT7AMzHmW4BAIDHo4cFAAB4PAILAADweAQWAADg8QgsAADA4xFYAACAxyOwAAAAj0dgAQAAHo/AAgAAPB6BBQAAeDwCCwAA8HgEFgAA4PEILAAAwOP9/773BQEPKCkrAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "case1_example3 = case1(\"case1_example3\")\n", "case1_example3.create_model()" @@ -950,7 +84,7 @@ }, { "cell_type": "markdown", - "id": "67bf3197-b08b-43b2-977c-c49b16b4741d", + "id": "8", "metadata": {}, "source": [ "### Example 4: boundary levels on target, initial state above target" @@ -958,295 +92,10 @@ }, { "cell_type": "code", - "execution_count": 21, - "id": "3fbb8789-ac5e-492a-be94-add01dcf779a", + "execution_count": null, + "id": "9", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timenode_idstoragelevelinflow_rateoutflow_ratestorage_rateprecipitationevaporationdrainageinfiltrationbalance_errorrelative_error
02024-01-01 00:00:003101249.98875010.0000000.000000e+003.209287e-07-0.0007230.0005790.0013020.00.0-9.478442e-07-1.636535e-03
12024-01-01 00:00:004100000.00000010.0000003.209287e-071.666667e-01-0.1669770.0005790.0011570.00.0-2.679622e-04-3.758205e-01
22024-01-01 00:01:003101249.9453859.9999980.000000e+001.856004e-06-0.0007250.0005790.0013020.00.01.486129e-072.568361e-04
32024-01-01 00:01:00499989.9813779.9994991.856004e-061.666667e-01-0.1672080.0005790.0011570.00.0-3.493134e-05-5.841113e-02
42024-01-01 00:02:003101249.9018629.9999960.000000e+004.820334e-06-0.0007280.0005790.0013020.00.02.231118e-073.856115e-04
..........................................
892752024-01-31 23:57:004999.9898400.9999901.000000e-029.348269e-03-0.0000080.0005790.0001160.00.01.123059e-031.121133e-01
892762024-01-31 23:58:00372849.1470478.6340890.000000e+001.000000e-02-0.0105260.0005790.0011040.00.0-8.461456e-11-1.462140e-07
892772024-01-31 23:58:004999.9893380.9999901.000000e-028.271165e-030.0008540.0005790.0001160.00.01.338075e-031.477566e-01
892782024-01-31 23:59:00372848.5155028.6340560.000000e+001.000000e-02-0.0105260.0005790.0011040.00.0-7.554613e-11-1.305437e-07
892792024-01-31 23:59:0041000.0405621.0000161.000000e-021.033537e-02-0.0006860.0005790.0001160.00.08.132637e-047.995064e-02
\n", - "

89280 rows × 13 columns

\n", - "
" - ], - "text/plain": [ - " time node_id storage level inflow_rate \\\n", - "0 2024-01-01 00:00:00 3 101249.988750 10.000000 0.000000e+00 \n", - "1 2024-01-01 00:00:00 4 100000.000000 10.000000 3.209287e-07 \n", - "2 2024-01-01 00:01:00 3 101249.945385 9.999998 0.000000e+00 \n", - "3 2024-01-01 00:01:00 4 99989.981377 9.999499 1.856004e-06 \n", - "4 2024-01-01 00:02:00 3 101249.901862 9.999996 0.000000e+00 \n", - "... ... ... ... ... ... \n", - "89275 2024-01-31 23:57:00 4 999.989840 0.999990 1.000000e-02 \n", - "89276 2024-01-31 23:58:00 3 72849.147047 8.634089 0.000000e+00 \n", - "89277 2024-01-31 23:58:00 4 999.989338 0.999990 1.000000e-02 \n", - "89278 2024-01-31 23:59:00 3 72848.515502 8.634056 0.000000e+00 \n", - "89279 2024-01-31 23:59:00 4 1000.040562 1.000016 1.000000e-02 \n", - "\n", - " outflow_rate storage_rate precipitation evaporation drainage \\\n", - "0 3.209287e-07 -0.000723 0.000579 0.001302 0.0 \n", - "1 1.666667e-01 -0.166977 0.000579 0.001157 0.0 \n", - "2 1.856004e-06 -0.000725 0.000579 0.001302 0.0 \n", - "3 1.666667e-01 -0.167208 0.000579 0.001157 0.0 \n", - "4 4.820334e-06 -0.000728 0.000579 0.001302 0.0 \n", - "... ... ... ... ... ... \n", - "89275 9.348269e-03 -0.000008 0.000579 0.000116 0.0 \n", - "89276 1.000000e-02 -0.010526 0.000579 0.001104 0.0 \n", - "89277 8.271165e-03 0.000854 0.000579 0.000116 0.0 \n", - "89278 1.000000e-02 -0.010526 0.000579 0.001104 0.0 \n", - "89279 1.033537e-02 -0.000686 0.000579 0.000116 0.0 \n", - "\n", - " infiltration balance_error relative_error \n", - "0 0.0 -9.478442e-07 -1.636535e-03 \n", - "1 0.0 -2.679622e-04 -3.758205e-01 \n", - "2 0.0 1.486129e-07 2.568361e-04 \n", - "3 0.0 -3.493134e-05 -5.841113e-02 \n", - "4 0.0 2.231118e-07 3.856115e-04 \n", - "... ... ... ... \n", - "89275 0.0 1.123059e-03 1.121133e-01 \n", - "89276 0.0 -8.461456e-11 -1.462140e-07 \n", - "89277 0.0 1.338075e-03 1.477566e-01 \n", - "89278 0.0 -7.554613e-11 -1.305437e-07 \n", - "89279 0.0 8.132637e-04 7.995064e-02 \n", - "\n", - "[89280 rows x 13 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAADwCAYAAADM+pbvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTXElEQVR4nO3deVwVZd8G8GvYd5BNUNkUBS1ZFFPcQNNEUyFzKU1BzbLMpdJ8fcwtNU2z9KnHtVdQI83HPXLJDTXNBZVERURDXEJxQfb1nPv9w5eJw6KgwDkcru/nwwfPzD0zvzPdwcXMfc+RhBACREREREQaQkfdBRARERERlcSASkREREQahQGViIiIiDQKAyoRERERaRQGVCIiIiLSKAyoRERERKRRGFCJiIiISKMwoBIRERGRRtFTdwFERESkXgqFAoWFheoug7Scvr4+dHV1K9WWAZWIiKieEkLg7t27ePz4sbpLoXrCysoKDg4OkCTpqe0YUImIiOqp4nBqb28PExOTZ4YGouclhEBOTg5SU1MBAI6Ojk9tz4BKRERUDykUCjmc2tjYqLscqgeMjY0BAKmpqbC3t3/q7X5OkiIiIqqHisecmpiYqLkSqk+K+9uzxjwzoBIREdVjvK1Ptamy/Y0BlYiIiIg0CgMqERERaY3AwEBMmjRJ3WU81Y0bNyBJEmJjY9VdisZiQCUiIqI6IywsDJIklfm6du2aukujasRZ/ERERFSnBAUFITw8XGWZnZ2dmqqhmsArqERERFSnGBoawsHBQeWrokcWpaWlYcSIEWjQoAFMTEzQu3dvJCYmAnjybE47Ozts3bpVbu/j4wN7e3v59R9//AF9fX1kZWVVWE94eDhatmwJIyMjeHp6Yvny5SrrT58+DV9fXxgZGcHPzw/nz58vs49du3ahefPmMDY2Rrdu3bBu3TpIkqTyIQonTpxA165dYWxsDCcnJ0yYMAHZ2dmVOmd1DQMqERERqcgtVNTaV00LCwtDTEwMdu3ahT/++ANCCPTp0weFhYWQJAldu3ZFdHQ0gCdh9vLlyygsLMTly5cBANHR0Wjbti3MzMzK3f+aNWswffp0zJ8/H/Hx8fjyyy8xY8YMrFu3DgCQnZ2Nvn37wsPDA2fPnsXs2bMxefJklX3cuHEDAwcOREhICGJjY/H+++9j+vTpKm3i4uLQq1cvDBgwABcuXMDPP/+M33//HR999FE1nzHNwFv8REREpCJw+e+1dqxTEwOqvE1UVJRKYOzduzf++9//lmmXmJiIXbt24fjx4+jYsSMAIDIyEk5OTtixYwcGDRqEwMBArF69GgBw9OhReHt7w9nZGdHR0WjVqhWio6MRGBhYYS1z587FkiVLMGDAAACAm5sbLl++jFWrViE0NBSRkZFQKBRYu3YtTExM8NJLL+H27dv44IMP5H2sXLkSHh4eWLx4MQDAw8MDFy9exPz58+U2ixcvxtChQ+UJYM2bN8e///1vBAQEYMWKFTAyMqryedRkDKhERERUp3Tr1g0rVqyQX5uampbbLj4+Hnp6emjfvr28zMbGBh4eHoiPjwfwZNb/xIkT8eDBAxw5cgSBgYFwdnbGkSNH8N577+HEiRMVPhXg/v37uHXrFkaPHo0xY8bIy4uKimBpaSnX4O3trfKBCP7+/ir7SUhIQLt27VSWvfLKKyqvz549i2vXriEyMlJeJoSAUqlEUlISWrZsWW6NdRUDKhEREamI/rCzukt4KlNTU7i7uz+znRCiwuXFD4x/+eWXYWNjgyNHjuDIkSP44osv4OTkhPnz5+PMmTPIzc1F587lnw+lUgngyW3+kiEYgDwmtqIaKqqnotqVSiXef/99TJgwocz2zs7OzzxGXcOASkRERCqM9Sv+jPS6pFWrVigqKsKpU6fkW/wPHz7E1atX5SuOxeNQd+7ciYsXL6JLly4wNzdHYWEhVq5ciTZt2sDc3Lzc/Tds2BCNGzfGX3/9hWHDhlVYw4YNG5Cbmyt/Fv3JkydV2nh6emL37t0qy2JiYlRet2nTBpcuXapUMNcGnCRFREREWql58+YIDg7GmDFj8Pvvv+PPP//EO++8g8aNGyM4OFhuFxgYiJ9++gleXl6wsLCQQ2tkZORTx58CwOzZs7FgwQIsW7YMV69eRVxcHMLDw/HNN98AAIYOHQodHR2MHj0aly9fxu7du/H111+r7OP999/HlStXMHXqVFy9ehWbN29GREQEgH8+GnTq1Kn4448/MG7cOMTGxsrja8ePH199J0yDMKASERGR1goPD0fbtm3Rt29f+Pv7QwiB3bt3Q19fX27TrVs3KBQKlTAaEBAAhUKBgICnT+J699138cMPPyAiIgKtW7dGQEAAIiIi4ObmBgAwMzPDL7/8gsuXL8PX1xfTp0/HV199pbIPNzc3bNmyBdu2bYOXlxdWrFghz+I3NDQEAHh5eeHIkSNITExEly5d4OvrixkzZsDR0bE6TpPGkURlBkcQERGRVsnLy0NSUhLc3Ny0bga4Npg/fz5WrlyJW7duqbuUalXZfscxqERERERqtnz5crRr1w42NjY4fvw4Fi9erLXPOK0MBlQiIiIiNUtMTMS8efPw6NEjODs749NPP8W0adPUXZba8BY/ERFRPcRb/KQOle13nCRFRERERBqFAZWIiIiINAoDKhERERFpFAZUIiIiItIoDKhEREREpFEYUImIiIhqWHR0NCRJwuPHj6t1v7Nnz4aPj0+17lMTMKASERFRnXL37l2MHz8eTZs2haGhIZycnNCvXz8cPHiwWo8TGBiISZMmVes+qXL4oH4iIiKqM27cuIFOnTrBysoKixYtgpeXFwoLC7Fv3z6MGzcOV65cqdV6hBBQKBTQ02Okqk68gkpERER1xocffghJknD69GkMHDgQLVq0wEsvvYRPPvkEJ0+elNvdvHkTwcHBMDMzg4WFBQYPHox79+7J64tvjW/YsAGurq6wtLTEW2+9hczMTABAWFgYjhw5gmXLlkGSJEiShBs3bsi36vft2wc/Pz8YGhri2LFjyM/Px4QJE2Bvbw8jIyN07twZZ86cqdJ7S09Px3vvvQd7e3tYWFige/fu+PPPP1XaLFy4EA0bNoS5uTlGjx6NvLw8lfVFRUWYMGECrKysYGNjg6lTpyI0NBQhISFyGyEEFi1ahKZNm8LY2Bje3t7YsmVLlWqtaQyoREREVCc8evQIe/fuxbhx42BqalpmvZWVFYAnASwkJASPHj3CkSNHsH//fly/fh1DhgxRaX/9+nXs2LEDUVFRiIqKwpEjR7Bw4UIAwLJly+Dv748xY8YgJSUFKSkpcHJykrf97LPPsGDBAsTHx8PLywufffYZtm7dinXr1uHcuXNwd3dHr1698OjRo0q9NyEEXn/9ddy9exe7d+/G2bNn0aZNG7z66qvyPjZv3oxZs2Zh/vz5iImJgaOjI5YvX66yn6+++gqRkZEIDw/H8ePHkZGRgR07dqi0+fzzzxEeHo4VK1bg0qVL+Pjjj/HOO+/gyJEjlaq1VggiIiKqd3Jzc8Xly5dFbm5umXX5+fm19lUVp06dEgDEtm3bntrut99+E7q6uuLmzZvyskuXLgkA4vTp00IIIWbNmiVMTExERkaG3GbKlCmiffv28uuAgAAxceJElX0fPnxYABA7duyQl2VlZQl9fX0RGRkpLysoKBCNGjUSixYtUtkuLS2t3JoPHjwoLCwsRF5ensryZs2aiVWrVgkhhPD39xdjx45VWd++fXvh7e0tv27YsKFYvHix/LqoqEg4OzuL4OBguVYjIyNx4sQJlf2MHj1avP322+XWVp2e1u9K4oAJIiIiUrFgwYJaO9asWbMq3VYIAQCQJOmp7eLj4+Hk5KRyxbNVq1awsrJCfHw82rVrBwBwdXWFubm53MbR0RGpqamVqsXPz0/+9/Xr11FYWIhOnTrJy/T19fHKK68gPj6+Uvs7e/YssrKyYGNjo7I8NzcX169fl9/X2LFjVdb7+/vj8OHDAJ4MEbh37x5eeeUVeb2uri7atm0LpVIJALh8+TLy8vLQs2dPlf0UFBTA19e3UrXWBgZUIiIiqhOaN28OSZIQHx+vMqayNCFEuSG29HJ9fX2V9ZIkyUHuWUoOMagoOFdUR3mUSiUcHR0RHR1dZl3x0IXKKq+OkscBgF9//RWNGzdWaWdoaFil49QkBlQiIiJSMW3aNHWXUC5ra2v06tUL//nPfzBhwoQy41AfP34MKysrtGrVCjdv3sStW7fkq6iXL19Geno6WrZsWenjGRgYQKFQPLOdu7s7DAwM8Pvvv2Po0KEAgMLCQsTExFT6MVVt2rTB3bt3oaenB1dX13LbtGzZEidPnsSIESPkZSUnhllaWqJhw4Y4ffo0unTpAgBQKBQ4f/68/KzUVq1awdDQEDdv3kRAQEClalMHBlQiIiJSYWBgoO4SKrR8+XJ07NgRr7zyCr744gt4eXmhqKgI+/fvx4oVKxAfH48ePXrAy8sLw4YNw9KlS1FUVIQPP/wQAQEBKrfmn8XV1RWnTp3CjRs3YGZmBmtr63LbmZqa4oMPPsCUKVNgbW0NZ2dnLFq0CDk5ORg9enSljtWjRw/4+/sjJCQEX331FTw8PPD3339j9+7dCAkJgZ+fHyZOnIjQ0FD4+fmhc+fOiIyMxKVLl9C0aVN5P+PHj8eCBQvg7u4OT09PfPfdd0hLS5Ovqpqbm2Py5Mn4+OOPoVQq0blzZ2RkZODEiRMwMzNDaGhopc9PTWJAJSIiojrDzc0N586dw/z58/Hpp58iJSUFdnZ2aNu2LVasWAHgyS3uHTt2YPz48ejatSt0dHQQFBSE7777rkrHmjx5MkJDQ9GqVSvk5uYiKSmpwrYLFy6EUqnE8OHDkZmZCT8/P+zbtw8NGjSo1LEkScLu3bsxffp0jBo1Cvfv34eDgwO6du2Khg0bAgCGDBmC69evY+rUqcjLy8Obb76JDz74APv27ZP3M3XqVNy9excjRoyArq4u3nvvPfTq1Qu6urpym7lz58Le3h4LFizAX3/9BSsrK7Rp0wb/+te/qnR+apIkSg5MICIionohLy8PSUlJcHNzg5GRkbrLoRqiVCrRsmVLDB48GHPnzlV3OZXud7yCSkRERKQlkpOT8dtvvyEgIAD5+fn4/vvvkZSUJI+NrSv4oH4iIiIiLaGjo4OIiAi0a9cOnTp1QlxcHA4cOFClyWGagFdQiYiIiLSEk5MTjh8/ru4yXhivoBIRERGRRmFAJSIiIiKNwoBKRERERBqFAZWIiIiINAoDKhERERFpFAZUIiIiItIoDKhERESkNYo/5lQbREREwMrKSt1lqAUDKhEREdUZYWFhCAkJqXB9SkoKevfuXal9aVOY1TZ8UD8RERFpDQcHB3WXQNWAV1CJiIhIa5S8KlpQUICPPvoIjo6OMDIygqurKxYsWAAAcHV1BQC88cYbkCRJfg0Av/zyC9q2bQsjIyM0bdoUc+bMQVFRkcoxfvjhB7zxxhswMTFB8+bNsWvXrqfWVVBQgM8++wyNGzeGqakp2rdvj+joaJU2ERERcHZ2homJCd544w08fPiwzH7mzZsHe3t7mJub491338X//M//wMfHR6VNeHg4WrZsCSMjI3h6emL58uWVO3kahAGViIiItNK///1v7Nq1C5s3b0ZCQgJ+/PFHOYieOXMGwJMwl5KSIr/et28f3nnnHUyYMAGXL1/GqlWrEBERgfnz56vse86cORg8eDAuXLiAPn36YNiwYXj06FGFtYwcORLHjx/Hpk2bcOHCBQwaNAhBQUFITEwEAJw6dQqjRo3Chx9+iNjYWHTr1g3z5s1T2UdkZCTmz5+Pr776CmfPnoWzszNWrFih0mbNmjWYPn065s+fj/j4eHz55ZeYMWMG1q1b90LnstYJIiIiqndyc3PF5cuXRW5ubpl1+fn5FX4VFhZWum1BQcEz21ZVaGioCA4OrnA9ALF9+3YhhBDjx48X3bt3F0ql8plti3Xp0kV8+eWXKss2bNggHB0dVbb7/PPP5ddZWVlCkiSxZ8+eco9z7do1IUmSuHPnjsryV199VUybNk0IIcTbb78tgoKCVNYPGTJEWFpayq/bt28vxo0bp9KmU6dOwtvbW37t5OQkfvrpJ5U2c+fOFf7+/uXWVtue1u9K4hhUIiIiUlF8G7w8zZs3x9ChQ+XXX3/9NQoLC8tt6+LigrCwMPn1smXLkJOTo9Jm1qxZL1bsU4SFhaFnz57w8PBAUFAQ+vbti9dee+2p25w9exZnzpxRuWKqUCiQl5eHnJwcmJiYAAC8vLzk9aampjA3N0dqamq5+zx37hyEEGjRooXK8vz8fNjY2AAA4uPj8cYbb6is9/f3x969e+XXCQkJ+PDDD1XavPLKKzh06BAA4P79+7h16xZGjx6NMWPGyG2KiopgaWn51PetaRhQiYiISCu1adMGSUlJ2LNnDw4cOIDBgwejR48e2LJlS4XbKJVKzJkzBwMGDCizzsjISP63vr6+yjpJkqBUKivcp66uLs6ePQtdXV2VdWZmZgAAIUSl3pMkSSqvS25XfPw1a9agffv2Ku1KH1fTMaASERGRimnTplW4TkdHdfrK5MmTK2xbOkxNnDjxxQp7DhYWFhgyZAiGDBmCgQMHIigoCI8ePYK1tTX09fWhUChU2rdp0wYJCQlwd3evthp8fX2hUCiQmpqKLl26lNumVatWOHnypMqy0q89PDxw+vRpDB8+XF4WExMj/7thw4Zo3Lgx/vrrLwwbNqza6lcHBlQiIiJSYWBgoPa2T5Oeno7Y2FiVZdbW1nB2dlZZ9u2338LR0RE+Pj7Q0dHBf//7Xzg4OMgPv3d1dcXBgwfRqVMnGBoaokGDBpg5cyb69u0LJycnDBo0CDo6Orhw4QLi4uLKTFqqrBYtWmDYsGEYMWIElixZAl9fXzx48ACHDh1C69at0adPH0yYMAEdO3bEokWLEBISgt9++03l9j4AjB8/HmPGjIGfnx86duyIn3/+GRcuXEDTpk3lNrNnz8aECRNgYWGB3r17Iz8/HzExMUhLS8Mnn3zyXPWrA2fxExERUZ0SHR0NX19fla+ZM2eWaWdmZoavvvoKfn5+aNeuHW7cuIHdu3fLV4GXLFmC/fv3w8nJCb6+vgCAXr16ISoqCvv370e7du3QoUMHfPPNN3BxcXmhmsPDwzFixAh8+umn8PDwQP/+/XHq1Ck4OTkBADp06IAffvgB3333HXx8fPDbb7/h888/V9nHsGHDMG3aNEyePFkevhAWFqYy9ODdd9/FDz/8gIiICLRu3RoBAQGIiIiAm5vbC9Vf2yRR2UEPREREpDXy8vKQlJQENzc3lYBDdUvPnj3h4OCADRs2qLuUSqlsv+MtfiIiIqI6ICcnBytXrkSvXr2gq6uLjRs34sCBA9i/f7+6S6t2DKhEREREdYAkSdi9ezfmzZuH/Px8eHh4YOvWrejRo4e6S6t2DKhEREREdYCxsTEOHDig7jJqBSdJEREREZFGYUAlIiIiIo3CgEpEREREGoUBlYiIiIg0CgMqEREREWkUBlQiIiIi0igMqEREREQlREREwMrKSt1l1GsMqERERFSnhIWFQZIk+cvGxgZBQUG4cOFCtex/yJAhuHr1arXsi54PAyoRERHVOUFBQUhJSUFKSgoOHjwIPT099O3bt1r2bWxsDHt7+2rZFz0fBlQiIiJ6bgoFEB0NbNz45LtCUTvHNTQ0hIODAxwcHODj44OpU6fi1q1buH//PgBg6tSpaNGiBUxMTNC0aVPMmDEDhYWF8vZ//vknunXrBnNzc1hYWKBt27aIiYkBUPYW/+zZs+Hj44MNGzbA1dUVlpaWeOutt5CZmVk7b7Ye4kedEhER0XPZtg2YOBG4ffufZU2aAMuWAQMG1F4dWVlZiIyMhLu7O2xsbAAA5ubmiIiIQKNGjRAXF4cxY8bA3Nwcn332GQBg2LBh8PX1xYoVK6Crq4vY2Fjo6+tXeIzr169jx44diIqKQlpaGgYPHoyFCxdi/vz5tfIe6xsGVCIiIqqybduAgQMBIVSX37nzZPmWLTUbUqOiomBmZgYAyM7OhqOjI6KioqCj8+Tm8Oeffy63dXV1xaeffoqff/5ZDqg3b97ElClT4OnpCQBo3rz5U4+nVCoREREBc3NzAMDw4cNx8OBBBtQawlv8REREVCUKxZMrp6XDKfDPskmTavZ2f7du3RAbG4vY2FicOnUKr732Gnr37o3k5GQAwJYtW9C5c2c4ODjAzMwMM2bMwM2bN+XtP/nkE7z77rvo0aMHFi5ciOvXrz/1eK6urnI4BQBHR0ekpqbWzJsjBlQiIiKqmmPHVG/rlyYEcOvWk3Y1xdTUFO7u7nB3d8crr7yC//3f/0V2djbWrFmDkydP4q233kLv3r0RFRWF8+fPY/r06SgoKJC3nz17Ni5duoTXX38dhw4dQqtWrbB9+/YKj1f69r8kSVAqlTX2/uo73uInIiKiKklJqd521UGSJOjo6CA3NxfHjx+Hi4sLpk+fLq8vvrJaUosWLdCiRQt8/PHHePvttxEeHo433nij9oqmCjGgEhERUZU4OlZvu+eRn5+Pu3fvAgDS0tLw/fffIysrC/369UN6ejpu3ryJTZs2oV27dvj1119Vro7m5uZiypQpGDhwINzc3HD79m2cOXMGb775Zs0VTFXCgEpERERV0qXLk9n6d+6UPw5Vkp6s79Kl5mrYu3cvHP8/AZubm8PT0xP//e9/ERgYCAD4+OOP8dFHHyE/Px+vv/46ZsyYgdmzZwMAdHV18fDhQ4wYMQL37t2Dra0tBgwYgDlz5tRcwVQlkhDldS0iIiLSZnl5eUhKSoKbmxuMjIyqvH3xLH5ANaRK0pPvNT2Ln+qmyvY7TpIiIiKiKhsw4EkIbdxYdXmTJgyn9OJ4i5+IiIiey4ABQHDwk9n6KSlPxpx26QLo6qq7MqrrGFCJiIjouenqAv8/7JOo2vAWPxERERFpFAZUIiIiItIoDKhEREREpFEYUImIiIhIozCgEhEREZFGYUAlIiIiIo3CgEpERERaSZIk7NixQ91l1Cuurq5YunTpC++HAZWIiIjqlLCwMEiSBEmSoK+vj4YNG6Jnz55Yu3YtlEql3C4lJQW9e/dWW50RERGwsrJ6rm2FEFi9ejXat28PMzMzWFlZwc/PD0uXLkVOTo5G1FiTGFCJiIiozgkKCkJKSgpu3LiBPXv2oFu3bpg4cSL69u2LoqIiAICDgwMMDQ2r/dgKhUIlCNeE4cOHY9KkSQgODsbhw4cRGxuLGTNmYOfOnfjtt99q9NjlKSgoqNXjMaASERHRCxFCIDo6GkKIWjumoaEhHBwc0LhxY7Rp0wb/+te/sHPnTuzZswcREREAVG/xFxQU4KOPPoKjoyOMjIzg6uqKBQsWyPt7/Pgx3nvvPTRs2BBGRkZ4+eWXERUVBeCfq4xRUVFo1aoVDA0NkZycjIKCAnz22Wdo3LgxTE1N0b59e0RHRwMAoqOjMXLkSKSnp8tXe2fPni3XUtF2ALB582ZERkZi48aN+Ne//oV27drB1dUVwcHBOHToELp16wYAUCqV+OKLL9CkSRMYGhrCx8cHe/fulfdz48YNSJKEbdu2oVu3bjAxMYG3tzf++OOPZ9bo6uqKefPmISwsDJaWlhgzZgwAYOvWrXjppZdgaGgIV1dXLFmypDr/s/5DEBERUb2Tm5srLl++LHJzc194X7t37xYAxJ49e6qhsmcLDQ0VwcHB5a7z9vYWvXv3FkIIAUBs375dCCHE4sWLhZOTkzh69Ki4ceOGOHbsmPjpp5+EEEIoFArRoUMH8dJLL4nffvtNXL9+Xfzyyy9i9+7dQgghwsPDhb6+vujYsaM4fvy4uHLlisjKyhJDhw4VHTt2FEePHhXXrl0TixcvFoaGhuLq1asiPz9fLF26VFhYWIiUlBSRkpIiMjMzhRDiqdsJIUT//v2Fh4fHM8/DN998IywsLMTGjRvFlStXxGeffSb09fXl/SQlJQkAwtPTU0RFRYmEhAQxcOBA4eLiIgoLC59ao4uLi7CwsBCLFy8WiYmJIjExUcTExAgdHR3xxRdfiISEBBEeHi6MjY1FeHi4XJOLi4v49ttvK6y5sv2OAZWIiKgeqs6AOmrUKAFAjB49uhoqe7anBdQhQ4aIli1bCiFUA+r48eNF9+7dhVKpLLPNvn37hI6OjkhISCh3n+Hh4QKAiI2NlZddu3ZNSJIk7ty5o9L21VdfFdOmTZO3s7S0VFlfme1atmwp+vfvX/6bL6FRo0Zi/vz5KsvatWsnPvzwQyHEPwH1hx9+kNdfunRJABDx8fEV1ijEk6AZEhKismzo0KGiZ8+eKsumTJkiWrVqpbJddQRUvZq5LktERETaSqlUYsWKFXj8+DEAYMuWLfJ3Nzc3AICVlRU++OAD6OjU7mhCIQQkSSqzPCwsDD179oSHhweCgoLQt29fvPbaawCA2NhYNGnSBC1atKhwvwYGBvDy8pJfnzt3DkKIMtvk5+fDxsamwv1UZruK3kNJGRkZ+Pvvv9GpUyeV5Z06dcKff/6psqxk3Y6OjgCA1NRUeHp6PvUYfn5+Kq/j4+MRHBxc5nhLly6FQqGArq7uU/dXFQyoREREVCXZ2dmYOXMmHj16BEmS5BCalZWFGTNmQAgBa2trjBgxAubm5rVaW3x8vBySS2rTpg2SkpKwZ88eHDhwAIMHD0aPHj2wZcsWGBsbP3O/xsbGKqFRqVRCV1cXZ8+eLRPMzMzMKtxPZbZr0aIF4uPjn1kTgDJBtrxwq6+vX6Z9ZSZ5mZqaPnPfoobGHXOSFBEREVWJubk5zp8/j44dOwJ4Mqu95PeOHTsiNja21sPpoUOHEBcXhzfffLPc9RYWFhgyZAjWrFmDn3/+GVu3bsWjR4/g5eWF27dv4+rVq5U+lq+vLxQKBVJTU+Hu7q7y5eDgAODJVdfic1KV7YYOHYqrV69i586dZY4rhEB6ejosLCzQqFEj/P777yrrT5w4gZYtW1b6fZRXY0VatWpV7vFatGhRrVdPAV5BJSIioufg7OyMw4cPw9raGtnZ2fJyExMTREdHq1y1qwn5+fm4e/cuFAoF7t27h71792LBggXo27cvRowYUab9t99+C0dHR/j4+EBHRwf//e9/4eDgACsrKwQEBKBr165488038c0338Dd3R1XrlyBJEkICgoq9/gtWrTAsGHDMGLECCxZsgS+vr548OABDh06hNatW6NPnz5wdXVFVlYWDh48CG9vb5iYmFRqu8GDB2P79u14++23MWPGDPTs2RN2dnaIi4vDt99+i/HjxyMkJARTpkzBrFmz0KxZM/j4+CA8PByxsbGIjIys9Hksr0YTE5Ny23766ado164d5s6diyFDhuCPP/7A999/j+XLl1f6eJX21BGqREREpJWqY5LUsWPHBIAyX7///ns1VlpWaGiofCw9PT1hZ2cnevToIdauXSsUCoXcDiUmSa1evVr4+PgIU1NTYWFhIV599VVx7tw5ue3Dhw/FyJEjhY2NjTAyMhIvv/yyiIqKEkJUPJGooKBAzJw5U7i6ugp9fX3h4OAg3njjDXHhwgW5zdixY4WNjY0AIGbNmlXp7RQKhVixYoVo166dMDExERYWFqJt27Zi2bJlIicnR24zZ84c0bhxY6Gvry+8vb1VnqRQPEnq/Pnz8rK0tDQBQBw+fPipNVY02WnLli2iVatWQl9fXzg7O4vFixerrK+uSVKSELX40DIiIiLSCHl5eUhKSoKbmxuMjIyeax9Tp07FokWLEBISgq+//hqffvopdu7cic8++wxfffVVNVdM2qCy/Y63+ImIiOi59O/fH97e3nj77bchSRK2b9+OjRs3wsXFRd2lUR3HK6hERET1UHVcQSWqqsr2O87iJyIiIiKNwoBKRERERBqFAZWIiIiINAoDKhERERFpFAZUIiIiItIoDKhEREREpFEYUImIiIhIozCgEhEREVWBJEnYsWOHusuotNmzZ8PHx0fdZVQJAyoRERHVKWFhYQgJCVF3GTJJkuQvPT09ODs745NPPkF+fr66S6uz+FGnRERERC8oPDwcQUFBKCwsxJ9//omRI0fC1NQUc+fOVXdp1aKwsBD6+vq1djxeQSUiIqLnplAqEH0jGhvjNiL6RjQUSoVa67l8+TL69OkDMzMzNGzYEMOHD8eDBw8AAKtWrULjxo2hVCpVtunfvz9CQ0Pl17/88gvatm0LIyMjNG3aFHPmzEFRUdFTj2tlZQUHBwc4OTmhb9++6N+/P86dO6fSZsWKFWjWrBkMDAzg4eGBDRs2yOtu3LgBSZIQGxsrL3v8+DEkSUJ0dDQAIDo6GpIk4eDBg/Dz84OJiQk6duyIhIQEleMsXLgQDRs2hLm5OUaPHo28vDyV9WfOnEHPnj1ha2sLS0tLBAQElKlVkiSsXLkSwcHBMDU1xbx58+Du7o6vv/5apd3Fixeho6OD69evP/X8VBUDKhERET2XbfHb4LrMFd3WdcPQbUPRbV03uC5zxbb4bWqpJyUlBQEBAfDx8UFMTAz27t2Le/fuYfDgwQCAQYMG4cGDBzh8+LC8TVpaGvbt24dhw4YBAPbt24d33nkHEyZMwOXLl7Fq1SpERERg/vz5la7j6tWrOHz4MNq3by8v2759OyZOnIhPP/0UFy9exPvvv4+RI0eq1FJZ06dPx5IlSxATEwM9PT2MGjVKXrd582bMmjUL8+fPR0xMDBwdHbF8+XKV7TMzMxEaGopjx47h5MmTaN68Ofr06YPMzEyVdrNmzUJwcDDi4uIwatQojBo1CuHh4Spt1q5diy5duqBZs2ZVfh9PJYiIiKjeyc3NFZcvXxa5ubnPtf3Wy1uFNFsSmA2VL2m2JKTZkth6eWs1V/yP0NBQERwcXGb5jBkzxGuvvaay7NatWwKASEhIEEII0b9/fzFq1Ch5/apVq4SDg4MoKioSQgjRpUsX8eWXX6rsY8OGDcLR0VF+DUBs375d5bWRkZEwNTUVhoaGAoDo27evKCgokNt07NhRjBkzRmW/gwYNEn369BFCCJGUlCQAiPPnz8vr09LSBABx+PBhIYQQhw8fFgDEgQMH5Da//vqrACD/d/T39xdjx45VOU779u2Ft7d3mfNVrKioSJibm4tffvlF5T1NmjRJpd3ff/8tdHV1xalTp4QQQhQUFAg7OzsRERFR4b5Lq2y/4xVUIiIiqhKFUoGJeydCQJRZV7xs0t5JtX67/+zZszh8+DDMzMzkL09PTwCQb0EPGzYMW7dulScwRUZG4q233oKurq68jy+++EJlH2PGjEFKSgpycnIqPPa3336L2NhY/Pnnn4iKisLVq1cxfPhweX18fDw6deqksk2nTp0QHx9f5ffp5eUl/9vR0REAkJqaKh/H399fpX3p16mpqRg7dixatGgBS0tLWFpaIisrCzdv3lRp5+fnp/La0dERr7/+OtauXQsAiIqKQl5eHgYNGlTl9/AsnCRFREREVXLs5jHczrhd4XoBgVsZt3Ds5jEEugbWWl1KpRL9+vXDV199VWZdcZDr168flEolfv31V7Rr1w7Hjh3DN998o7KPOXPmYMCAAWX2YWRkVOGxHRwc4O7uDgDw8PBAZmYm3n77bXnsJvBkXGdJQgh5mY6OjrysWGFhYbnHKjlZqXj70uNqnyYsLAz379/H0qVL4eLiAkNDQ/j7+6OgoEClnampaZlt3333XQwfPhzffvstwsPDMWTIEJiYmFT62JXFgEpERERVkpKZUq3tqkubNm2wdetWuLq6Qk+v/IhjbGyMAQMGIDIyEteuXUOLFi3Qtm1blX0kJCTIofJ5FV+Rzc3NBQC0bNkSv//+O0aMGCG3OXHiBFq2bAkAsLOzA/BkHK2vry8AqEyYqqyWLVvi5MmTKsc5efKkSptjx45h+fLl6NOnDwDg1q1b8kSyZ+nTpw9MTU2xYsUK7NmzB0ePHq1yjZXBgEpERERV4mjuWK3tnkd6enqZAPf+++9jzZo1ePvttzFlyhTY2tri2rVr2LRpE9asWSOHxmHDhqFfv364dOkS3nnnHZV9zJw5E3379oWTkxMGDRoEHR0dXLhwAXFxcZg3b16F9Tx+/Bh3796FUqlEYmIivvjiC7Ro0UIOoFOmTMHgwYPRpk0bvPrqq/jll1+wbds2HDhwAMCT4NyhQwcsXLgQrq6uePDgAT7//PMqn5eJEyciNDQUfn5+6Ny5MyIjI3Hp0iU0bdpUbuPu7o4NGzbAz88PGRkZmDJlCoyNjSu1f11dXYSFhWHatGlwd3cvM3ygunAMKhEREVVJF+cuaGLRBBKkctdLkOBk4YQuzl1qrIbo6Gj4+vqqfM2cORPHjx+HQqFAr1698PLLL2PixImwtLSUb6EDQPfu3WFtbY2EhAQMHTpUZb+9evVCVFQU9u/fj3bt2qFDhw745ptv4OLi8tR6Ro4cCUdHRzRp0gRvv/02XnrpJezZs0e+khsSEoJly5Zh8eLFeOmll7Bq1SqEh4cjMDBQ3sfatWtRWFgIPz8/TJw48amBuCJDhgzBzJkzMXXqVLRt2xbJycn44IMPVNqsXbsWaWlp8PX1xfDhwzFhwgTY29tX+hijR49GQUGBytMDqpskSg52ICIionohLy8PSUlJcHNze+rYyopsi9+GgZsHAoDKZKni0Lpl8BYMaFl2HCfVfcePH0dgYCBu376Nhg0bVmnbyvY7XkElIiKiKhvQcgC2DN6CxhaNVZY3sWjCcKql8vPzce3aNcyYMQODBw+ucjitCo5BJSIioucyoOUABHsE49jNY0jJTIGjuSO6OHeBro6uukujGrBx40aMHj0aPj4+Kp+CVRN4i5+IiKgeetFb/ETPg7f4iYiIiKhOYkAlIiIiIo3CgEpEREREGoUBtY47evQo+vXrh0aNGkGSJOzYsUNlvRACs2fPRqNGjWBsbIzAwEBcunRJpU1+fj7Gjx8PW1tbmJqaon///rh9u+KPsCPtVx39avXq1QgMDISFhQUkScLjx49r7w2QxnrRvvXo0SOMHz8eHh4eMDExgbOzMyZMmID09PRafidEVJMYUOu47OxseHt74/vvvy93/aJFi/DNN9/g+++/x5kzZ+Dg4ICePXsiMzNTbjNp0iRs374dmzZtwu+//46srCz07dsXCoWitt4GaZjq6Fc5OTkICgrCv/71r9oqm+qAF+1bf//9N/7++298/fXXiIuLQ0REBPbu3YvRo0fX5tsgopomSGsAENu3b5dfK5VK4eDgIBYuXCgvy8vLE5aWlmLlypVCCCEeP34s9PX1xaZNm+Q2d+7cETo6OmLv3r21VjtprufpVyUdPnxYABBpaWm1UC3VJS/at4pt3rxZGBgYiMLCwposV+vk5uaKy5cvi9zcXHWXQvVIZfsdr6BqsaSkJNy9exevvfaavMzQ0BABAQE4ceIEAODs2bMoLCxUadOoUSO8/PLLchuikirTr4iex/P2rfT0dFhYWMgfKUn0osLCwhASEqLuMuo1BlQtdvfuXQAo80kPDRs2lNfdvXsXBgYGaNCgQYVtiEqqTL8ieh7P07cePnyIuXPn4v3336/x+kiz3Lp1C6NHj0ajRo1gYGAAFxcXTJw4EQ8fPqz0Pm7cuAFJkhAbG/tCtURHR3OsfTVjQK0HJElSeS2EKLOstMq0ofrtefoVUWVUtm9lZGTg9ddfR6tWrTBr1qzaKo80wF9//QU/Pz9cvXoVGzduxLVr17By5UocPHgQ/v7+ePTokbpLpBfEgKrFHBwcAKDMlYfU1FT5CoWDgwMKCgqQlpZWYRuikirTr4ieR1X6VmZmJoKCgmBmZobt27dDX1+/1uqksvKK8nAo6RDyivJq5Xjjxo2DgYEBfvvtNwQEBMDZ2Rm9e/fGgQMHcOfOHUyfPh0Ayn1ShJWVFSIiIgAAbm5uAABfX19IkoTAwMByjyeEwKJFi9C0aVMYGxvD29sbW7ZsAfDkKmy3bt0AAA0aNIAkSQgLC6v291zfMKBqMTc3Nzg4OGD//v3ysoKCAhw5cgQdO3YEALRt2xb6+voqbVJSUnDx4kW5DVFJlelXRM+jsn0rIyMDr732GgwMDLBr1y5+TKcaCSGwPX47WnzXAq+ufxUtvmuB7fHbIWrwU9QfPXqEffv24cMPP4SxsbHKOgcHBwwbNgw///xzpWo4ffo0AODAgQNISUnBtm3bym33+eefIzw8HCtWrMClS5fw8ccf45133sGRI0fg5OSErVu3AgASEhKQkpKCZcuWveC7JI4or+OysrJw7do1+XVSUhJiY2NhbW0NZ2dnTJo0CV9++SWaN2+O5s2b48svv4SJiQmGDh0KALC0tMTo0aPx6aefwsbGBtbW1pg8eTJat26NHj16qOttkZq9aL8CnlwFu3v3rryfuLg4mJubw9nZGdbW1rX+nkgzvGjfyszMxGuvvYacnBz8+OOPyMjIQEZGBgDAzs4Ourq6anlf9dGVB1cwNmosjiQfgY705HrXncw7GLB5AAJcArCy70p42npW+3ETExMhhEDLli3LXd+yZUukpaXh/v37z9yXnZ0dAMDGxka+gl9adnY2vvnmGxw6dAj+/v4AgKZNm+L333/HqlWrEBAQIP9Ms7e3h5WV1XO8KyqjZh8mQNVp9+7dAoDYs2ePvKz4ET6lv0JDQ4UQTx7bMmvWLOHg4CAMDQ1F165dRVxcnMp+c3NzxUcffSSsra2FsbGx6Nu3r7h582ZtvjVSo5rqV7NmzSp3H+Hh4bX47khdyutXQrx436poewAiKSmpFt9h3feij5ny/8Ff6M7RFZiNMl+6c3SF/w/+1VzxEydPnizziLKSlixZIgCI1NTUcttZWlrKP4eSkpIEAHH+/HmVNqGhoSI4OFgIIcTp06cFAGFqaqrypa+vL1555RUhBB+nVxWV7Xe8glqHFI932bJlC4KCggAAgYGBT72NIUkSZs+ejdmzZ1fYxsjICN999x2+++67aq2X6oaa6lfPWk/arbx+Bbx433rW9lR7MgsyoRDlf6CLQiiQWZBZ7roX5e7uDkmScPny5XIfBXXlyhU0aNAAtra2kCSpTH8pLCys0vGUSiUA4Ndff0Xjxo1V1hkaGlateKo0BlQNplQqsWLFCvmxFSV/4BcP7LayssIHH3wAHR0OJ6bKYb+imsB+RbXFxsYGPXv2xPLly/Hxxx+rjEO9e/cuIiMjMWLECEiSBDs7O6SkpMjrExMTkZOTI782MDAAgKd+cmKrVq1gaGiImzdvIiAgoNw2ldkPVQ0DqgbLzs7GzJkz8ejRI0iSJP9Qz8rKwowZMyCEgLW1NUaMGAFzc3M1V0t1BfsV1QT2K6pN33//PTp27IhevXph3rx5cHNzw6VLlzBlyhQ0btwY8+fPBwB0794d33//PTp06AClUompU6eqPPHB3t4exsbG2Lt3L5o0aQIjIyNYWlqqHMvc3ByTJ0/Gxx9/DKVSic6dOyMjIwMnTpyAmZkZQkND4eLiAkmSEBUVhT59+sDY2BhmZma1ek60Df+M1WDm5uY4f/482rZtCyGE/JdZ8feOHTsiNjaWP+ypSor7VYcOHdivqNoU96uOHTuyX9UT5gbm0JXKn5SmK+nC3KDm/ls3b94cMTExaNasGYYMGYJmzZrhvffeQ7du3fDHH3/Ik5aWLFkCJycndO3aFUOHDsXkyZNhYmIi70dPTw///ve/sWrVKjRq1AjBwcHlHm/u3LmYOXMmFixYgJYtW6JXr1745Zdf5LsDjRs3xpw5c/A///M/aNiwIT766KMae+/1hSQ4mEejJScnY926dZg3b57KuBkjIyOkp6fLtxWIqiInJwdr167FJ598otKvDAwMkJqaWuYKAlFlCCGwc+dODB48WKVfmZqaIi0tjc8q1TB5eXlISkqCm5vbcz2qq/QsfqVQyt9rchY/1W2V7Xe8gqrBkpOTERkZiRs3bpQZ1J2Xl4dly5ZxsgBVWU5ODtavX49z586V6VcFBQWYN2+eyhgtosoQQmD37t3YtWtXmX6VnZ0tP2+StIenrScOhx7G9iHb0dj8yeShJhZNsH3IdhwOPcxwSi+EAVVDFYfTwsJCpKamAgA8PT0xYcIEeZD2zp07sXv3boZUqrTicHrv3j0kJSUB+Kdf9erVCwDwxx9/YP369QypVGnF4TQmJgZXr14F8E+/6tevHwBg165d6iyRaogkSQjxDMHV8VdxcMRBJHyUgBDPEH7sMb0wTpLSUBcuXEBhYSGaNm2KwMBADB48GH/99RckScK+ffvwzTff4Nq1a7hy5Qq6du3KcV1UKTdv3sS9e/dgamqKyZMnY+TIkXK/2rlzJ8LDwxEXF4d79+7h5s2b8PTkFRB6tqysLFy5cgUA8O677+K9996T+9WiRYuwdetWuLi4qLlKqklGekbo7tZd3WWQFmFA1VCvv/46rK2t8corr0BfXx8FBQVYsGABgCd/sU6bNg1xcXFwdHRkOKVK8/T0xIABA+Do6AhbW9sy/Wrs2LG4f/8+7t69y3BKlWZubo7Q0FCkpKSgdevWZfpVyU8YIyKqDAZUDXL//n35wcI6Ojro1KnTU9u3bt26wu2JiuXk5ECpVMqPPCndb0qzs7OTP/4PeHJ1TEdHR2XmK5EQAg8ePJD7iq2tLWxtbdVcFRFpC45B1RDJyclYs2YNdu3a9VxjSq9fv47Vq1dzTCqpKB5zum7dOmRlZVV5+6ysLKxbt45jUklF8ZjT1atX4/r16+ouh4i0EAOqBig5ISojI+O5PokiMzMTRUVFiImJYUglAKoTonJzc5GXl1flfeTl5SE3Nxf37t1jSCUAqhOiioqKkJlZMx9nSUT1GwOqmpUMp02bNsVbb70FPb2qj7zw8fGRHzDMkEolw6mpqSlCQ0Of6/arra0tQkNDYWpqypBKKuEUAIKDg+Hj46PeoohIKzGgqlF54fRFHmTNkEpA+eG05JjSqrKzs2NIJYZTIqpVDKhqUt3htBhDav1W3eG0GENq/cZwSkS1jQFVTfLy8qBQKKo1nBYrGVJzc3MZUOuRwsJCFBQUVGs4LVYypBYUFKCoqKja9k2aTQiB3NxcAAynpBnCwsIgSRIkSYK+vj6aNm2KyZMnIzs7W92lUTXhY6bUxMPDA6GhoXB0dKyRz6f28fGBpaUlXFxcoKPDv0PqC0tLS4SGhqKwsLBGHvljZ2eHsLAw6Ovrw8LCotr3T5pJR0cHAwYMQNu2beHm5qbucogAAEFBQQgPD0dhYSGOHTuGd999F9nZ2VixYoW6S6NqwORSi27evIm0tDT5tbOzc42E02Jubm5yOBVCIC4ujldTtVBOTg4SExPl15aWljX6PEpbW1tYWlrKrxMTE3m7XwuV/pmho6PDcEoVKioqQlJSUq3eWTE0NISDgwOcnJwwdOhQDBs2DDt27EBYWBhCQkJU2k6aNAmBgYHy68DAQIwfPx6TJk1CgwYN0LBhQ6xevRrZ2dkYOXIkzM3N0axZM+zZs0feJjo6GpIk4ddff4W3tzeMjIzQvn17xMXF1dI7rl8YUGtJcnIyfvzxR0RERCA9Pb3Wjx8VFYVt27Zhz549DKlapHjM6caNGxEfH1/rx4+Pj8fGjRs5JlXLFI853bZtG6KiotRdDmkwIQTi4+Px3XffYf369fjuu+8QHx+vlt8zxsbGKCwsrHT7devWwdbWFqdPn8b48ePxwQcfYNCgQejYsSPOnTuHXr16Yfjw4WV+tk2ZMgVff/01zpw5A3t7e/Tv379Kx6XKYUCtBSUnRNna2qrlE3maNGkCADhz5gxDqpYoOSHKxMRELZ/iU9yfOXFKe5SeEOXk5KTmikhTPXjwAOvWrcPmzZvl5+FmZmZi8+bNWLduHR48eFBrtZw+fRo//fQTXn311Upv4+3tjc8//xzNmzfHtGnTYGxsDFtbW4wZMwbNmzfHzJkz8fDhQ1y4cEFlu1mzZqFnz55o3bo11q1bh3v37mH79u3V/ZbqPQbUGlZTs/WrytfXF/379wfAkKoNamq2flVxdr924Wx9qoqdO3fi5s2bACD/Pin+fvPmTezcubNGjx8VFQUzMzMYGRnB398fXbt2xXfffVfp7b28vOR/6+rqwsbGRuWjoBs2bAgASE1NVdnO399f/re1tTU8PDzUcgdL2zGg1iBNCafFGFK1g6aE02IMqdqB4ZSqqqCgoMLfIUIIFBQU1Ojxu3XrhtjYWCQkJCAvLw/btm2Dvb09dHR0ytRV3i340r+Pi58IUPI1ACiVymfWUtyWqg8Dag25ffu2RoXTYqVD6r59+9RcEVVFfn6+RoXTYuWF1Pz8fHWXRVWwb98+hlOqU0xNTeHu7g4XFxeV3692dnZISUlRaRsbG1ttxz158qT877S0NFy9ehWenp7Vtn96ggG1hlhbW8Pa2lqjwmmx4pCqq6sLV1dXdZdDVWBgYAAnJyeNCqfFSoZUJycnGBgYqLskqgJXV1fo6uoynFKd1717d8TExGD9+vVITEzErFmzcPHixWrb/xdffIGDBw/i4sWLCAsLg62tbZmnBtCL43NQa4iJiQlGjBgBfX19jQqnxXx9fdGsWTM+y7KOkSQJffr0QdeuXWFubq7ucsqws7PD+++/DzMzM97yqmM8PT0xYcIE/kygSjMwMIAkSeXe5pckSW1/pPbq1QszZszAZ599hry8PIwaNQojRoyotsdBLVy4EBMnTkRiYiK8vb2xa9cu/kFeAxhQq1FycjIePHiAtm3bAoBaZutXRclfRGlpafjzzz8REBDAYKFhcnJycPz4cXTv3h26urqQJEkjw2mxkrUpFAocOnQInTp10vj/H+obIQSOHDkCb29vNGjQAAAYTqlKgoODERUVheTkZDmoFn93dnZG3759a+zYERERT10/Z84czJkzp8L10dHRZZbduHGjzLLywnfnzp2r9YoslY8BtZqUnBBlZmYGDw8PdZdUaYWFhVi/fj0eP36MnJwc9O7dmyFVQ5ScEJWXl4d+/fqpu6Qq2b17N86dO4fr169jxIgRDKkaouSEqD///BMffvihRt7pIc1ma2uL0NBQJCQkYM+ePcjIyICFhQWCgoLg4eHB3yP0QhhQq0Hp2fpNmzZVd0lVoq+vj65du2LXrl04c+YMADCkaoDSs/VLPtqkrujQoQMSEhLkiVMMqepXerZ+QEAAwyk9N0mS4OnpCXd3d9y6dQtOTk7Q02O0oBfHSVIvSNMeJfW8+AgqzVI6nBYPxK9r+AgqzcJHSVFN0dPTg5ubm1aH08DAQAghYGVlpe5S6gUG1BegLeG0GEOqZtCWcFqMIVUzMJwSUV3CgPqcHj9+rFXhtFjpkHr8+HE1V1S/CCGwadMmrQmnxUqH1E2bNvGPn1p2/PhxhlMiqjMYUJ+TpaUl/P39tSqcFisOqQ0bNoSvr6+6y6lXJElC9+7d0aBBA60Jp8WKQ2qDBg3QvXt3jnGuZb6+vmjYsCHDKZXBPxapNlW2v2nvYJEaJkkSAgMDoVQqoaurq+5yqp2vry+8vLy08r1pOldXV4wbN04rz72dnZ3WvjdNZ2pqijFjxvDck6z4wkpOTg6MjY3VXA3VF8VDvJ51YY8BtQqSk5Nx4sQJvPnmm/IDirX5h33J93b27Fncu3ePs/trQE5ODrZu3YpevXrB3t4eAOpNv0pNTcW+ffvw5ptvcnZ/NRNCYM+ePWjYsKH8bGZt7ldUdbq6urCyskJqaiqAJ8/u5s93qilCCOTk5CA1NRVWVlbP/HnEgFpJJSdEHTt2DK+++qq6S6o1jx49wq+//gohBIQQ6NOnD3+IVZOSE6K2bt2KsWPH1ptzK4TA1q1bkZqaykdQVbOSE6IkSYKbmxusra3VXRZpIAcHBwCQQypRTbOyspL73dMwoFZC6dn6Xbt2VXdJtcra2hr9+vXDrl275EkWDKkvrvRs/YEDB9arcypJEgYOHIh169bxOanVqPRs/f79+zOcUoUkSYKjoyPs7e1RWFio7nJIy+nr61f6Tg4D6jNo26OknlfxZCmG1OpROpyGhobCzs5O3WXVuuKJUwyp1YOPkqLnpauryyEgpFE4i/8pGE5VlXwEVUxMDHbv3s3Zn8+B4VQVn5NaPRhOiUibMKBWQKFQYPv27QynpZQOqYmJiWquqO45ePAgw2kppUPqwYMH1V1SnZOYmMhwSkRaQxK8BFahlJQUHD9+HMHBwWoLp0IIrFu3DikpKSgoKAAAGBgYAAAcHR0RGhqqltvs58+fR1paGrp168bb/FWUn5+PHTt2oHv37moLp5rar+7fv4/Dhw8jODgYhoaGtX78ukwIgcOHD8Pa2lpt4VRT+xUR1T0cg1pKUVGR/FnCjo6OGDhwoFrrUSqVePz4sfzDHoD878ePH6vtOaylH+BfVFQEXV1d/vKpQMl+ZWhoiCFDhqi1Hk3tV3Z2dhg8eLDKspLnjlQJIaBQKKCnpyd/yIM6aWq/IqK6h7f4S0hOTsayZctw69YtdZci09XVRVBQULnrevfurRE/7AsLC/HTTz9xTGoFcnJy8MMPP+DYsWPqLkVWF/oVABw7dgw//PADx6SWo3jM6U8//aQxs6/rSr8iIs3HgPr/iidEZWVl4Y8//lB3OSo8PDzg4uIiv9bR0YGbmxtatGihxqr+cePGDSQlJXHiVDlKTog6deqURgUtTe9XOTk5OHXqFCdOlaPkhKikpCTcuHFD3SXJNL1fEVHdwICKsrP133jjDXWXpEKSJPTs2VN+LYRAUFCQxtxOb968OWf3l6O82fqa9PgkTe9XJiYmnN1fjvJm6zdv3lzNVf1D0/sVEdUN9T6g1pVHSZWcTNOmTRv5IzE1BR9BpaquPEpK0/sVH0Glqq48SkrT+xURab56HVDrSjgtTVM/yYoh9Ym6Ek5L09R+xZD6RF0Jp6Vpar8iIs1WrwPqmTNn6lw4BQAjIyN1l1ChkiH14sWLSE9PV3NFte/atWt1LpwCmt2vSofUa9euqbukWpeeno6LFy8CqDvhFNDsfkVEmqteP7slJCQEtra26NSpU50Jp3WBr68vdHR0YGdnBysrK3WXU+u8vLxQUFAAFxeXOhNO64LikJqcnAwvLy91l1PrrKysMHz4cDx48KBevn8iql/qXUB99OgRGjRoAEmSoKenh8DAQHWXpJW8vb1VXqelpcHKykprJ0rk5ORAR0dHvlrk5+en5oq0k52dnUroz8vLg1Kp1KjJZ9VJCIHHjx+jQYMGAIBGjRqhUaNGaq6KiKjm1atb/MnJyVi5ciV+++23ejk2Ul1u376NVatWYc+ePVp53ovHnG7YsAF5eXnqLqfeyMvLw4YNG7R2TGrxmNNVq1bh9u3b6i6HiKhW1ZuAWnJCVGpqKpRKpbpLqjcePnyI/Px8nDlzRutCaskJUenp6cjOzlZ3SfVGdnY20tPTtXLiVMkJUfn5+Xj48KG6SyIiqlX1IqCWN1ufn2hSe7y9veWJU9oUUsubrW9jY6PusuoNGxsbrZzdX3q2fv/+/csMmSEi0nZaH1Dr6qOktE3J2f3aEFLr6qOktI22PYKqvHDq6+ur5qqIiGqfVgdUhlPNoi0hleFUs2hLSGU4JSL6h1YH1PT0dIZTDVMypKalpdXJscC5ubnIzs5mONUgJUNqdnY2cnNz1V1SlSkUCqSlpQFgOCUi0urHTHl5ecHExAQuLi4MpxrE19cX5ubmcHV1rZNjgYvHPgohGE41SHFIlSSpTo4F1tPTw1tvvYUbN27A3d1d3eUQEamV1l1BvXXrFjIzM+XX7u7uDKcayN3dHXp6T/4+EkLgypUrGn27PycnB8nJyfJrW1tbhlMNZGdnB1tbW/l1cnKyRt/uL9339fT0GE6JiKBlATU5OVl+LmJWVpa6y6FKOnDgAH7++WeNHZNa8jmnf/31l7rLoUr666+/NPo5qcVjTn/++WccOHBA3eUQEWkUrQmoJSdEWVhYwNDQUN0lUSUVX/HSxIlTJSdEGRkZwdzcXN0lUSWZm5vDyMhIIydOlZ4QVfKqLxERaUlA5Wz9uk1TZ/dztn7dpqmz+zlbn4jo2ep8QGU41Q6aFlIZTrWDpoVUhlMiosqp0wH11q1bDKdapHRI3bt3r1rqyMvLYzjVIuWF1Ly8PLXUsnfvXoZTIqJKqNMB1dLSEmZmZgynWqQ4pEqSBEdHR7XUYGBgADs7O4ZTLVIypNrZ2cHAwEAtdTg6OkKSJIZTIqJnqNPPQbWwsMDIkSNhZGTEcKpFfH194erqigYNGqjl+Do6OnjjjTeQkZEBKysrtdRA1c/Ozg7vvvsuLCwsoKOjnr/NfXx84OLiora+TURUV9S5K6jJycm4dOmS/Nrc3JzhVAuV/AWelZWFY8eO1eiY1JycHBw5ckQ+ho6ODsOpFrKyspLDqRACR44cqdExqUIIHDt2TOWxdwynRETPppEB9ejRo+jXrx8aNWoESZKwY8cOAP9MiNq6dSuSkpLUW6SGmD17NiRJUvlycHBQd1nVRqFQYP369Th06NALT5xasWIFvLy8YGFhAQsLC/j7+2PPnj3yhKjo6Gjs37+/Gquv2+7cuYN33nkHNjY2MDExgY+PD86ePavusqrN/v37ER0dXe0TpxYsWABJkjBx4kTs3r0bhw4dwvr166FQKKrtGHWVq6trmZ9XkiRh3Lhx6i5N4yxYsADt2rWDubk57O3tERISgoSEBHWXRVRrNDKgZmdnw9vbG99//728rORsfTc3NzRp0kSNFWqWl156CSkpKfJXXFycukuqNrq6uvD39wfw4rP7mzRpgoULFyImJgYxMTHo3r07goODsXDhQnlCFMcFPpGWloZOnTpBX18fe/bsweXLl7FkyRKtuqrs6+tb7bP7z5w5g9WrV8PLyws3btyQJ0R17NixTn6sb3U7c+aMys+q4j8IBw0apObKNM+RI0cwbtw4nDx5Evv370dRURFee+01ZGdnq7s0olqhkWNQe/fujd69e8uvU1NTOVv/KfT09LTqqmlpxaFx165dOHPmDIAnfUSSpCrtp1+/fiqvp0+fjqVLl+LPP/9Ely5dOCGqhK+++gpOTk4IDw+Xl7m6uqqvoBpQPHFq3bp1ckgdMWIETExMnmt/WVlZGDZsGFavXo1PPvkE9+7dAwAEBwfDx8enGiuvu0r//7Vw4UI0a9YMAQEBaqpIc5V+ikl4eDjs7e1x9uxZdO3aVU1VEdUejbyCWtrRo0cZTp8iMTERjRo1gpubG9566y2t/DjO6n5OamZmJsaPH4/8/Hy0aNGC4bSUXbt2wc/PD4MGDYK9vT18fX2xZs0adZdV7arzOanjxo1Dnz59UFBQgMzMTAAMp09TUFCAH3/8EaNGjaryH5v1UXp6OgDA2tpazZUQ1Q6NDqgPHz4EABQVFTGcVqB9+/ZYv3499u3bhzVr1uDu3bvo2LGjfO60SemQevTo0SrvIy4uDmZmZrCyskJkZCRCQ0Px2WefMZyW8tdff2HFihVo3rw59u3bh7Fjx2LChAlYv369ukurdqVDamRkZJX/+Nm0aRPOnTuHPn36yLf1mzVrxnD6FDt27MDjx48RFham7lI0nhACn3zyCTp37oyXX35Z3eUQ1QqNDqjFfyk6ODgwnFagd+/eePPNN9G6dWv06NEDv/76KwBg3bp1aq6sZhSHVGtr6+f65e/h4YHY2Fj8/PPP6NSpE3bu3In79+9Xf6F1nFKpRJs2bfDll1/C19cX77//PsaMGYMVK1aou7QaURxSLSws0KVLlypd0bt16xYmTpyIH3/8Ee3bt4e1tTVsbW35R88z/O///i969+6NRo0aqbsUjffRRx/hwoUL2Lhxo7pLIao1GjkGtVjxL4kuXbownFaSqakpWrdujcTERHWXUmN8fX3RunVr6OlVvfsaGBjA3d0d7u7uCAkJQVBQEJYtW4ZVq1bVQKV1l6OjI1q1aqWyrGXLlti6dauaKqp5dnZ2GD9+fJX71dmzZ5Gamoq2bdvKyxQKBc6dO4fvv/8e+fn5nCBVSnJyMg4cOIBt27apuxSNN378eOzatQtHjx7l5GCqVzTuCmpycjK2b9+u8kgW/nCvvPz8fMTHx6vtU5hqS8kQcenSJezdu/ept2VzcnKwadMmpKWlqexDCIH8/PwarbUu6tSpU5lH2ly9ehUuLi5qqqh2lOxXaWlp2LRp01PHpAohoFQqsX37dsTGxspffn5+GDZsGGJjY/nzqxzFE35ef/11dZeisYQQ+Oijj7Bt2zYcOnQIbm5u6i6JqFap9QqqQqnAsZvHkJKZAkdzRzgLZ2zauAlZWVl49OiRfEUiKSkJsbGxsLa2hrOzszpLVqtCFOIWbiGvKE/+qMbJkyejX79+cHZ2RmpqKubNm4eMjAyEhoaqudrakZ6ejm3btkGpVEKpVKJ3795QKiUcOwakpACOjkDbtjmIjFyPyMhInDt3Dh988AGysrKwadMmREdHl5ktW9+U168+/vhjdOzYEV9++SUGDx6M06dPY/Xq1Vi9erWaq60dQghs3boVd+7ckWf3GxqaqPSrzp0F9u3bjbi4OOjo6KBbt26wtLQE8OROho2NDccL4skcgpIfLatUKhEeHo7Q0NDnuguibUr/Huzi3AW6OroYN24cfvrpJ+zcuRPm5ua4e/cugCcf8W1sbKzmqolqniRq8uN5nmJb/DZM3DsRtzNuy8ssYIEgBKFZfjMsWLCgzDahoaGIiIio0bqEEFAoBfR0NefishACWy5uwbvb3kUGMtDEogn+HfRvhHiG4O2338bRo0fx4MED2NnZoUOHDpg7d26Z27M1VZcmnKvz589j165dAICCgr5Yv74Nbt/+ZwyhlVUWXnvtVyQlLcHdu3dx7949WFpawsvLC1OnTkXPnj1rvEZNOVclPa1fSZKEqKgoTJs2DYmJiXBzc8Mnn3yCMWPG1Fpt6j5f9+/fx7p165CdnY2//+6AX3/tiTt3/qnH1jYX3bvvQqtWV9C/f3+VZ+gGBgbCx8cHS5curfE6NeFclSSEwMWLF+Xb9xYWFggKCoKnpyckScJvv/2GXr16ISEhAS1atKj12jTpXJX3e7CJRRMsC1qGN1u9We424eHhnFhG9YJaAuq2+G0YuHkgBMo/9M8Dfsbg1oNruaonxm6JRUpGHj4JcEfXpjZqf/zJlQdXMDZqLI4kH4EECQICOpIOlEKJAJcArOy7Ep62nmqpTZPO1fnz57Fw4VVs3lzcb0rW8qSfrV2bgZEjLWu9NkCzzhWg2f0K0Jzzdf/+fUyefALr1/f//yVl+9XixUmYPLlprddWTFPOFQA8ePAAUVFRSE5OlpdJkgQhBFxcXNC3b1/Y2tqqrT5NOlcV/R6U/r+PbRm8BQNaDlBHaUQaodYDqkKpgOsyV5W/GFUKgoTGFo0R/+F16OrU/titPmv+QE7hk/Gvvo0tMb5zUzS1Ma31Oop1W9cZMX+fgUKU/ZhEXUkXfo3a4XDo72qoTLPOlUIBNHNRIDVVH6oh4glJEmjcGIhPVEIdQwI16VwBmt2vAM05XwoF0KIpkJKig/L6FSDQpIn6+hWgOecKAH5cF46Uv/8udzy4JElwbNQI74SOVENlT2jKuVIoFfD8TzPcyaz492ATiyZImpiklt+DRJqg1gNq9I1odFvX7ZntPE2/hYU+P3YyLmMkcpVJFa431nFDa4vwCtfXFxmJlrjyH59ntvMcFwuL5uk1X5CGY7+qHParqumScRrmyoonlWXqmOCYxSu1WJFmyig8jyvZHz+z3eHQwwh0Daz5gog0UK0PxEnJTKlUu0LxqIYrIW1SmGHw7EZVaEcEsF9Rzajs77fK/r4k0ka1PoXS0bxyjz/6zxsB6OrSuYarKavkLSBdSYISAiEvO2LUKy4wN6z9Gad+a0xw+SnPkXezMUH0mNo/T4BmnaujR4CgDc9u958RHuga4FHzBZWiSecK0Ox+BWjO+dL0fgVozrkCgLVrLuHB/YqvoLrZmGIu+xWOJhchKHLuM9tV9vclkTaq9d+MXZy7oIlFE9zJuFPuJKnisTc9mgaqfeyNT2NLTA50V+tYQUtDC+hKuhWOFbQ0tICxvvrHKKn7XPXoBjRpAty5A5Q3aEWSnqzv0U1XbWMFi6n7XAF1p18B6j1fdalfAervW0aGhvKkqNIkSYKRoSH7FYAeTQMr9Xuwi3OXWq+NSFPU+i1+XR1dLAtaBuCf2YrFil8vDVqqtnDqYW8GB3NDLO73Ev4zwEutIQIA1gavRWfnJ1ccdCQdle+dnTtjbfBatdWmSedKVxdY9qRbofTE3OLXS5dCbSFCk84VoNn9CtCc86Xp/QrQnHMFAMHBwfKzqotnyBd/d3Z2RnBwsNpqAzTnXGn670EiTaBRz0F1snDC0qClan20hqY9Jw94UtPOhJ2YsGcCbmXcgrOlM5YFLUOwR7BaH5Oiiedq2zZg4kTgdonJsU5OT0LEADU+sUUTz5Wm9qvi2jTpfGlqvwI071wJIZCQkIA9e/YgIyMDlpaWCAoKgoeHB/tVKZr6e5BIE6gtoBIRERERlUcz/owkIiIiIvp/DKhEREREpFEYUImIiIhIozCgEhEREZFGYUAlIiIiIo3CgEpEREREGoUBlYiIiIg0CgMqEREREWmU/wNw1sgnNIfVMwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAHhCAYAAADOLdwlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/20lEQVR4nO3deXxU9b3/8fdksi+TkEA2CZtsQkQQEBcUrEhBasHlulbBWn8ugCJ6XeuuoFa9alGq3l6wpVbrVZRblRZFQKvYAKIICIJgUAhhzWQhk2XO74+TGTKQwCTMzJnl9Xw85nG+M3POnE+S1nnz/X7P99gMwzAEAAAQInFWFwAAAGIL4QMAAIQU4QMAAIQU4QMAAIQU4QMAAIQU4QMAAIQU4QMAAIQU4QMAAIRUvNUFHMrtdmv79u3KyMiQzWazuhwAAOAHwzBUWVmpwsJCxcUduW8j7MLH9u3bVVRUZHUZAACgHbZt26bOnTsfcZ+wCx8ZGRmSzOIdDofF1QAAAH84nU4VFRV5v8ePJOzCh2eoxeFwED4AAIgw/kyZYMIpAAAIKcIHAAAIKcIHAAAIKcIHAAAIKcIHAAAIKcIHAAAIKcIHAAAIKcIHAAAIKcIHAAAIqTaHj2XLlun8889XYWGhbDab3nnnHZ/3DcPQgw8+qMLCQqWkpGjkyJFau3ZtoOoFAAARrs3ho7q6WieddJJmzZrV4vtPPvmknnnmGc2aNUslJSXKz8/Xueeeq8rKymMuFgAARL4239tl7NixGjt2bIvvGYahZ599Vvfee68uvPBCSdKrr76qvLw8vfbaa7r++uuPrVoAABDxAnpjuS1btqisrEyjR4/2vpaUlKQRI0bos88+azF8uFwuuVwu73On0ylJeuZPf1N13lBlpyWqU0aSch3Jys1IMh+OZKUnhd098QAAgB8C+g1eVlYmScrLy/N5PS8vTz/88EOLx8ycOVMPPfTQYa+P3vacfvXjDLlbGRlKTbQrNyPJDCYZyU0BxWznNmt3SE3w6w57AAAgNILSfXDol71hGK0GgLvvvlvTp0/3Pnc6nSoqKlJx3A+a03+NlmZOUHllrcorXdpV6VK5s1bVdY2qqWvU1j012rqn5oi1JNht6pRuhpROGclNoeTwkNIxPVHxdi7+AQAg2AIaPvLz8yWZPSAFBQXe18vLyw/rDfFISkpSUlJSi++N2DZbI8ZfK2X4HlvtajgYRiprVe50qbypbQYUs72vpl71jYa2V9Rqe0WtpIpWa7fZpJy0RHVMP2SIx2fIxwwvyQn2Nv5mAACAR0DDR/fu3ZWfn69FixZp0KBBkqS6ujotXbpUTzzxRNs+LH+AtG+N9I97pIv/6PNWWlK8uifFq3vHtCN+RF2DW7uqDvaYmAHFpV2HBJbdVXVqdBvaXVWn3VV1+rbsyFfmZCTFq1MrPSiedqeMZDmS4xnyAQDgEG0OH1VVVdq0aZP3+ZYtW7R69WplZ2erS5cumjZtmmbMmKFevXqpV69emjFjhlJTU3XFFVe07URjZkqv/1L65n+lQb+Sjj+7raUqMT5Ox2Wl6LislCPu1+g2tLe67mBPSuXhgcXTw+JqcKvS1aDKXQ36flf1ET83KT6uaU7KwV4TT7t5eMlOS5Q9jpACAIgNNsMwjLYcsGTJEp199uFBYOLEiZo7d64Mw9BDDz2kl156Sfv27dOwYcP0wgsvqLi42K/PdzqdyszMVEVFhRyfPiL9+2Upp6d042dSfMvDM6FiGIactQ3ekNJ8iKf8kHZlbYPfn2uPsyknLdG39yQjSZ0OucKnY3qikuIZ8gEAhB+f72+H44j7tjl8BJtP8YmGNGuoVLVTOvteacQdVpfnt9r6xhbnpBxsm8M/e6rr1Ja/QFZqgs9wT6dDAkuuw7zyh0uRAQChFD3hw+GQ1vyv9Na1kj1Jmrxcyu5hdYkB1dDo1p7qulZ7UMorXdrlrNWuKpfqG/3/U3kuRT50iOfgnBQuRQYABE50hQ/DkP40XtqyVOo1Wrrib+alKTHGMAztr6lvoQelaY5Ks8BSU9fo9+d6L0X2ucLn4PyUvKbXc9KTmJcCAGhVdIUPSdr9nfTiaZK7Xrp0nnTC+dYWGeY8lyIfOmF21yGXJO+rqff7M+NsUsf0g2Ek15GsvKYhn+ZbQgoAxKa2hI/ImBjQsZd0xi3SJ09JH9wl9ThbSkq3uqqw5e+lyK6GRu2uqvO9DLmFK3x2V7nkNuR9/Ug8ISXXkaQ8bw9Ksvd5nsNs56SxqBsAxKrI6PmQpLoa6cVh0v5SM4ic+7B1RcaYhka39lbXaafTpZ1N4cSzLW/23BNS/BFnk3LSk3x6TTplHN6bwsqzABAZom/YxWPDQumvl0px8dINn0q5J1hTJFrU6Da0p8rlE05aCim7Kv0PKebKs2ZIaT7k03w+Sp6DkAIAVove8CFJf71C2vCe1PUMadJ7MTn5NNI1ug3tqT54Vc9Op9ne6Z1Ia253VbnU6GdK8YQUM4w06z1pHlQcSeqYnqQEQgoABFx0h4/9pdKsU6SGA9IFL0knXRb6IhESnpVnPb0lLfWm7GxXSEn0mYeSe2hIabpbMiEFAPwX3eFDkj55RvroISmtkzSlRErpENoiEVbcbsNcK6VZz8lOn60ZVHZVutTQxpBycB5Ky8M+hBQAMEV/+Giok/5whrR7ozT0N9K4p0NbJCKS221ob02dd4hn1xEm0PobUiRPSPGdg+IzgdaRrE7pSUqMJ6QAiF7RHz4kacsy6dXzJdmk6z6SjhscshoR3dxuQ/tq6ry9Jy31pniWzm/LqrPZaYkH10hpWmm2eW9KPj0pACJYbIQPSXrrOmnN36SCgdJ1i6U4brqG0HG7De0/UO/Te+Kdm3LIBFp/Q0rzOSl5jiTlZyY3tZMPXvHjSFJOGou5AQgvsRM+KndKs4ZILqf0i2elIdeEpEagLQzD0L6a+mZX9vhOmG1PSLHH2Xx6UTzhxNOD4nmemcK9ewCERuyED0n6/EXpH3dLKdnS1JVSanbwiwSCoPlwjxlIar0Lu+1s1m7LYm6J8XFmj0lGsvIyk5tWmT3Yg5LXFFbSuAsygGMUW+GjsV76w3Bp17fSKf9POu93wS8SsJDnTshlFU2hxNuL4htW2nLvnvSk+GZL4Ht6UnyHezplJCk5gaFNAC2LrfAhSd8vlf70S8kWJ13/iZRfHNwigQhQW9/onRi70+kyw0rTEE/z3pQqV4Pfn5mVmqB8R/IRh3tYbRaITbEXPiTpb1dL695l5VOgjapcDd4hHjOo1Kqswnfop8xZq7oGt1+fZ/PeAfnIwz3ZqYmKY9IsEDViM3w0X/n0oj9KJ14cvCKBGGMYhpwHGlTm7TE5eIWP2aNycCKtv6vNJthth9zx+PAJs7mOZDmS45k0C0SA2AwfkrTkCWnJDCmjUJq6Qko88i3lAQRW8yXxm89BaT70U15Zq91VdX5/ZnJCnO8clIzDJ8zmOZKVksh8FMBKsRs+6g9IL5xi9oKceZt0zv3BKRLAMalvdHvXRDn0ip6DQz+1ctb6Px8lIzn+4ARZ73CPJ6gkN62ZwiJuQLDEbviQpPV/l964UrInSjctl3KOD3yRAELiQF2jt9dkZ7Mhn53NlsYvq6jVgfpGvz7Pc/fj/Mwkb4+Jd5gn02znO5LlSGGoB2ir2A4fhiHNu1DavFjqPUa64o3AFwkgbBiGocpmk2YPHe4xL0k2n/t7z57khLhmc0/MXhNPUMnP9CyLn8z9eoBmYjt8SNKujdLs0yR3g3TFm1Lv0YEtEkDE8dz92NN7Uuas1c4Kc1vmdHnbFQf8Xx8lJy2x1XDieZ6VyiqziA2ED0n6x73S57Ok7OOlmz6X4pMCVySAqFVb3+idc+K5uqeswuUTWsqdLtU1+nfpcVJ83MHhncxk5TdbxC2/aagn15GkpHgmzCKyET4kqdZp3velaqd07sPSGbcErkgAMc0wzKt6WgsnntVn27LKbLanF6WFcOJpd6AXBWGM8OHx5V+kd2+SkhzS1FVSeqfAFAkAfvCsMts8kDTvUWnrAm6J9jjlOpKa9aIk+7Q9C7mxDD6sQPjwcLulV0ZKO76SBl8jnf9sIEoEgIAxDEP7a+qb5p4cnIfimSTrCS17qv1fG8WzDH5eK+EkP5MVZhF4hI/mtv5Lmnueed+XGz6V8vof+2cCQIi5Ghqb3ZfH1WzIp9an7fKzF8WzwmzzeSf5h02epRcF/iN8HOqNq6T1C6QeI6Wr3uG+LwCiUvNl8H2v5jHv01PWND9lT7VL/v6XPzMl4WCPiWceSmaztiNZ2WmJzEUB4eMwe7eYK5821kmXvyH1GROYzwWACFTf6PYu0NbSpceepfD9XbwtMT7OO//ksHCSmayCzGR1Sk/ibsdRri3f3/Ehqsla2d2lU2+U/vWc9M97pZ7nSPYEq6sCAEsk2ON0XFaKjstKaXUfz+Jt3t6TiuZX87hU5jygsgqXdle5VNfgVuneGpXurWn18+JsUqeMJJ8ek/zMlKbVZlO8r3GPntgQGz0fknnp7fODpJrd0pjHzTACADgmdQ1ub+/JjoqDW09g8YQWf1eX9UyWPXRox9uL4khh+fswxbBLa1bMkf4+TUrOkm7+UkrNDuznAwAO43Yb2l3t0s4Kl3ZUHDg8oDRta+r8G+ZJTohTQWZKq3NQCjKTlZOeJDtX84QU4aM17kbpD2dK5WulU66XznsysJ8PAGgXwzDkrG042INS0TygHFCZ06WyigN+L9xmj7OZdzVumnNiDu0kmUM9TQGFlWUDi/BxJN8vkf40XrLZzbveduod+HMAAILCs/y9zxBPhW8PSnllrfwc5fHen6eglYmyeY5kZSQzR9AfhI+jee0yaeMHUq+fS1f+LTjnAABYoqHRrd1VdS0P8TRr+7smSnpSvPIcSeZQTytzUVi0jatdjm70o9KmRdJ3/5A2fWRe/QIAiArx9jhvKGiNZ2XZwyfJHhziKauolbO2QVWuBlXtatDmXdWtfp5n6XtPb4nZk+I7LyU3I0kJXG4sKVbDR8ee0tDrpC9mS4seMBcfi2PcDwBihc1mU4e0RHVIS1S/wtb/lV5T1+DtMWlpkmyZs9a83LjRrR/3HdCP+w4c4ZxSx3QzoJiPFO/wjjkPJUV5mbExDyU2h10kqWav9NxAyVUhTfiDNPDy4J0LABC16hrcKq9sfQ6KZ/n7+kb/vm47pic2DeukmCEl6+CkWc/clHBc9p45H/769L+kDx+UHJ2lqSukhNYX3AEAoL3cbkN7a+q0Y//B4Z0dTb0pO5qGeHa0YR5Kdlqi96odb+9JZooKvc9TQr5gG+HDX/UHpN8Plpw/SaMekoZPC+75AABohWceyvZmYaTskICyveKAauv9CyiZKQneIZ78zBSfoOIZ9klLCtzsC8JHW6x+TXrnRikpU7plNQuPAQDClufmgTucB7RjvyegHPDOR9m+32z7u2BbRnL8wXDiaDbE0yysOPy81Jjw0RbuRumlEdLONdKpk6UxM4J/TgAAgsRzX56DvScHtH1/Uy9KsyGfytoGvz4vPSn+kImxTeGkKah4lryvrKwkfLTJpo+keRdKcQnm3I8O3UJzXgAALFLlavCZe1LWNLzTfLin4oB/K8qmJNjVKalRn9z3C9b58FvPc6QeZ0vffyx99Ih08R+trggAgKBKT4pXz9wM9czNaHWfmroGnzDiO1G21rvk/YH6Rm2tav2uxoei58Njx1fm8IsM6bqPpeNODt25AQCIULX1jSqrqNV3P5Zr9KAefn1/s9SaR8FJ0oBLzfai+6XwymQAAISl5AS7unVM07AeOX4fQ/ho7mf3SvYkaesn0neLrK4GAICoRPhoLquLNOx6s73ofvNKGAAAEFCEj0OdOV1KzpJ2rZe+fsPqagAAiDqEj0OldJCG32q2P54pNbisrQcAgChD+GjJKf9PSs+XKkqllXOtrgYAgKhC+GhJYqo04j/N9rLfSa4qa+sBACCKED5aM+hqc6XT6l3SF3+wuhoAAKIG4aM18YnS2fea7X89L9XstbYeAACiBOHjSIovlnL7S64K6V/PWV0NAABRgfBxJHFx0jn3me0vXpIqy6ytBwCAKED4OJreY6TOp0gNB6SlT1pdDQAAEY/wcTQ2m3TO/WZ71avS3i3W1gMAQIQjfPij+5nS8T+T3A3SkplWVwMAQEQjfPjL0/vx9d+knWutrQUAgAhG+PBX4SCp33hJhvTxDKurAQAgYhE+2uLseyXZpG//Lm1fbXU1AABEJMJHW3TqI514sdle8ri1tQAAEKECHj4aGhr029/+Vt27d1dKSop69Oihhx9+WG63O9CnssaIOyVbnLTxA+mnVVZXAwBAxAl4+HjiiSf0hz/8QbNmzdL69ev15JNP6ne/+51+//vfB/pU1ujYSzrxErPNlS8AALRZwMPH559/rvHjx2vcuHHq1q2bLr74Yo0ePVorVqwI9KmsM+IOyWaXvvun9GMU/VwAAIRAwMPH8OHD9dFHH2njxo2SpK+++kqffvqpzjvvvBb3d7lccjqdPo+wl3O8dNLlZpsrXwAAaJOAh48777xTl19+ufr27auEhAQNGjRI06ZN0+WXX97i/jNnzlRmZqb3UVRUFOiSguOs26W4eGnzR1LpF1ZXAwBAxAh4+HjjjTc0b948vfbaa1q1apVeffVVPfXUU3r11Vdb3P/uu+9WRUWF97Ft27ZAlxQc2d2lgVeY7SX0fgAA4C+bYRhGID+wqKhId911lyZPnux97dFHH9W8efP07bffHvV4p9OpzMxMVVRUyOFwBLK0wNv3g/T7k81l16/5QOp6utUVAQBgibZ8fwe856OmpkZxcb4fa7fbo+dS2+Y6dJUGXWW2mfsBAIBfAh4+zj//fD322GN67733tHXrVs2fP1/PPPOMLrjggkCfKjyceZtkT5S2fiJtWWZ1NQAAhL2AD7tUVlbqvvvu0/z581VeXq7CwkJdfvnluv/++5WYmHjU4yNq2MXjvdukkv+Wup4hXfO+1dUAABBybfn+Dnj4OFYRGT4qfpKeHyg11jH3AwAQkyyd8xGTMo+TBl5ptpf9ztpaAAAIc4SPQBk+zVz1dPNi6ceVVlcDAEDYInwESodu0oBLzfYnT1laCgAA4YzwEUhn3ibJJm14XypbY3U1AACEJcJHIHXsKRVfaLaX0fsBAEBLCB+BduZt5nbdu9KuDdbWAgBAGCJ8BFpef6nvLyQZ0idPW10NAABhh/ARDGfdbm7XvCnt/d7aWgAACDOEj2AoHCT1Gi0ZbunT/7K6GgAAwgrhI1jO+k9zu/qv0v5t1tYCAEAYIXwES9EpUvezJHe99K/nrK4GAICwQfgIpjOb5n58OU+q3m1tLQAAhAnCRzB1P8uc/9FwQPriJaurAQAgLBA+gslmk86YZrb//bLkqrK0HAAAwgHhI9hOOF/KPl6q3S+t+pPV1QAAYDnCR7DF2aXTp5rtz1+QGuqsrQcAAIsRPkLhpMul9DzJ+aP0zf9aXQ0AAJYifIRCQrJ06o1m+1/PSW63tfUAAGAhwkeoDPm1lOSQdn0rffcPq6sBAMAyhI9QSc6Uhlxjtj991tJSAACwEuEjlE69SbInStuWS6XLra4GAABLED5CKSNfOukys03vBwAgRhE+Qu30WyTZpI0fSOXrra4GAICQI3yEWseeUt9xZnv5i9bWAgCABQgfVvAsOvbVG1LVLmtrAQAgxAgfVigaJhWeLDW6pBV/tLoaAABCivBhBZtNOm2y2f73K1J9rbX1AAAQQoQPq/QbLzk6SzW7pTVvWl0NAAAhQ/iwij1BGna92f78BckwrK0HAIAQIXxY6eSrpcR0add6afNiq6sBACAkCB9WSsmSBl1ltj9/wdJSAAAIFcKH1YZdL9nipM0fsegYACAmED6slt1d6vsLs82iYwCAGED4CAenTTG3LDoGAIgBhI9wUHSKdNwQFh0DAMQEwkc4sNmkU2802yv+R2qos7YeAACCiPARLvqNl9Lzpaqd0voFVlcDAEDQED7ChT1BGvJrs/3FS9bWAgBAEBE+wsngSVJcgvTjv6XtX1pdDQAAQUH4CCcZeVL/CWb7369YWgoAAMFC+Ag3pzTd72XN/0rVu62tBQCAICB8hJvOQ6TCQeZlt6tetboaAAACjvARbmy2g70fJf8jNTZYWw8AAAFG+AhH/S+QUnMk54/ShvetrgYAgIAifISjhGTzyhdJ+vfLlpYCAECgET7C1ZBfSza7tPUTaedaq6sBACBgCB/hKrOz1Hec2eayWwBAFCF8hLNT/p+5XfOm5Kq0thYAAAKE8BHOug2XcnpJdVXS13+zuhoAAAKC8BHObLaD93tZMUcyDGvrAQAgAAgf4e6kyyR7krRzjfTTSqurAQDgmBE+wl1qtlR8odle8T/W1gIAQAAQPiKBZ+jlm7elA/usrQUAgGNE+IgEnYdKuf2lhgPSV29YXQ0AAMeE8BEJbDZpyDVmeyUTTwEAkY3wESkGXCIlpEq7vpVKP7e6GgAA2o3wESmSM6UTLzbbK+ZYWwsAAMeA8BFJPBNP170jVe+xtBQAANqL8BFJCgdJBQOlxjrpq9esrgYAgHYhfESawZPM7ao/M/EUABCRCB+RpvgiKT5F2r1B+rHE6moAAGgzwkekSXZI/SeY7S//bGkpAAC0B+EjEg26ytx+87ZUV21tLQAAtBHhIxJ1PV3K7iHVVUlr37G6GgAA2iQo4eOnn37Sr371K+Xk5Cg1NVUDBw7UypXckTVgbDZp0K/M9pfzrK0FAIA2Cnj42Ldvn8444wwlJCTogw8+0Lp16/T0008rKysr0KeKbSddLtnipNLPpN2brK4GAAC/xQf6A5944gkVFRVpzpyDq3B269Yt0KeBo1DqOUr67p/S6nnSqAetrggAAL8EvOdjwYIFGjJkiP7jP/5Dubm5GjRokF555ZVW93e5XHI6nT4P+Mkz8XT1X6XGBmtrAQDATwEPH99//71mz56tXr166R//+IduuOEG3XzzzfrTn/7U4v4zZ85UZmam91FUVBTokqJX7zFSao5UVSZt+tDqagAA8IvNMAK7TGZiYqKGDBmizz77zPvazTffrJKSEn3++eF3Y3W5XHK5XN7nTqdTRUVFqqiokMPhCGRp0WnhPdLyF6S+v5Au+4vV1QAAYpTT6VRmZqZf398B7/koKChQv379fF474YQTVFpa2uL+SUlJcjgcPg+0geeql40Lpapd1tYCAIAfAh4+zjjjDG3YsMHntY0bN6pr166BPhUkKa+fecM5d4P0zVtWVwMAwFEFPHzceuutWr58uWbMmKFNmzbptdde08svv6zJkycH+lTwOOlyc/v169bWAQCAHwIePoYOHar58+frr3/9q4qLi/XII4/o2Wef1ZVXXhnoU8Gj+CIpLl7a/qW0a8PR9wcAwEIBn3B6rNoyYQXNvHapOe9j+HRp1ANWVwMAiDGWTjiFRQZcam7XvCm53dbWAgDAERA+okWfsVJSplSxTfrhX1ZXAwBAqwgf0SIhReo/3mx/xcRTAED4InxEkwGXmdt170p1NdbWAgBAKwgf0aTLaVJmF6muUtrwvtXVAADQIsJHNImLk05qmnj69RvW1gIAQCsIH9HGM/Sy6SOpqtzaWgAAaAHhI9p07CkdN1gyGlluHQAQlggf0ejES8wt4QMAEIYIH9Go/wWSLU76sUTat9XqagAA8EH4iEYZeVK34WZ77XxrawEA4BCEj2hVfJG5ZegFABBmCB/R6oRfmne6LVsj7dpodTUAAHgRPqJVarZ0/M/M9tq3ra0FAIBmCB/RrPhic/vNW5JhWFsLAABNCB/RrM9YKT5Z2r1R2vmN1dUAACCJ8BHdkh1Sr9Fme83/WlsLAABNCB/RznvVy9sMvQAAwgLhI9r1Gi0lpksVpdKPK6yuBgAAwkfUS0yV+pxntrnqBQAQBggfsaD/BHO7/v8YegEAWI7wEQuO/5mUkCZVbJO2r7K6GgBAjCN8xIKEFKl301Uv6xZYWwsAIOYRPmLFCb80t+sXMPQCALAU4SNW9BptLji293tp51qrqwEAxDDCR6xISpeOP8dsr2foBQBgHcJHLOnXNPTCvA8AgIUIH7Gk9xgpLkHatV7a/Z3V1QAAYhThI5akZEk9Rpjtde9aWgoAIHYRPmJN86teAACwAOEj1vQdJ9nipB1fSfu2Wl0NACAGET5iTVpHqesZZvvb962tBQAQkwgfsajvOHO7gfABAAg9wkcs6j3G3P7wmXRgn7W1AABiDuEjFmV3l3L7SUaj9N2HVlcDAIgxhI9Y1WesuWXoBQAQYoSPWNXnPHO76UOpoc7aWgAAMYXwEasKT5bSciWXU/rhX1ZXAwCIIYSPWBUXJ/Vpmni64QNrawEAxBTCRyzr7Zn38YFkGNbWAgCIGYSPWNZjpBSfLFWUSjvXWl0NACBGED5iWWKq1ONss83QCwAgRAgfsc57ye171tYBAIgZhI9Y51ntdPuXUlW5tbUAAGIC4SPWZeRJ+QPM9ubF1tYCAIgJhA9Ivc41t98tsrYOAEBMIHxA6jnK3G7+SHI3WlsLACDqET4gdT5FSso073D70yqrqwEARDnCByR7vHT8SLO9iaEXAEBwET5g6tk072PTh9bWAQCIeoQPmDzzPn5aJVXvtrYWAEBUI3zA5CiQ8k6UZHDJLQAgqAgfOKhXU+8Hl9wCAIKI8IGDPPM+Nn8kud3W1gIAiFqEDxxUdIqU5JBq9kg7vrS6GgBAlCJ84CB7gtT9LLP9/RJLSwEARC/CB3z1GGluCR8AgCAhfMCXJ3yULpfqaiwtBQAQnQgf8JXTU3IcJzXWSduWW10NACAKET7gy2Zj6AUAEFSEDxzOGz6WWloGACA6ET5wuO4jzO2Or6SavdbWAgCIOoQPHC4jT+p0giRD2rLM6moAAFEm6OFj5syZstlsmjZtWrBPhUBi3gcAIEiCGj5KSkr08ssva8CAAcE8DYKB8AEACJKghY+qqipdeeWVeuWVV9ShQ4dgnQbB0u0MyWaX9m2R9m21uhoAQBQJWviYPHmyxo0bp1GjRh1xP5fLJafT6fNAGEjKkDoPMdvM+wAABFBQwsfrr7+uVatWaebMmUfdd+bMmcrMzPQ+ioqKglES2qPbcHP7w2fW1gEAiCoBDx/btm3TLbfconnz5ik5Ofmo+999992qqKjwPrZt2xboktBeXc8wt1v/ZW0dAICoEh/oD1y5cqXKy8s1ePBg72uNjY1atmyZZs2aJZfLJbvd7n0vKSlJSUlJgS4DgVA0zJz3UVEq7S+VsrpYXREAIAoEPHycc845WrNmjc9r11xzjfr27as777zTJ3ggzCWlS4UDpZ9WmkMvhA8AQAAEPHxkZGSouLjY57W0tDTl5OQc9joiQNczzPCx9VPppMusrgYAEAVY4RRH5p10yrwPAEBgBLznoyVLliwJxWkQDF1OlWxx0t7vJecOyVFgdUUAgAhHzweOLDlTyj/RbNP7AQAIAMIHjs5zyS3hAwAQAIQPHB3rfQAAAojwgaPrerq53b1BqtplbS0AgIhH+MDRpWZLuf3M9rYvrK0FABDxCB/wT+eh5vbHf1tbBwAg4hE+4J+iYeZ2G+EDAHBsCB/wjyd8/LRKaqizthYAQEQjfMA/OcdLKdlSo0sqW3P0/QEAaAXhA/6x2aSiU8w2k04BAMeA8AH/ET4AAAFA+ID/PPM+fiyxtg4AQEQjfMB/hYMkm11y/iRV/Gh1NQCACEX4gP8S0w7eZI6hFwBAOxE+0Dbe9T4YegEAtA/hA23DpFMAwDEifKBtjhtsbnd+w2JjAIB2IXygbTp0k1I6SI11ZgABAKCNCB9oG5vNvOpFkrZ/aW0tAICIRPhA2xWebG63r7K2DgBARCJ8oO08PR8/0fMBAGg7wgfa7rimno9d66W6GmtrAQBEHMIH2s5RKKXnS4ZbKvva6moAABGG8IH28Q69MO8DANA2hA+0j2fohSteAABtRPhA+3DFCwCgnQgfaB/PsMueTdKB/ZaWAgCILIQPtE9ajpTZxWwz6RQA0AaED7Rf/onmtoxl1gEA/iN8oP084YN7vAAA2oDwgfbz9nww7AIA8B/hA+2XX2xuy7+VGuqsrQUAEDEIH2i/rK5SkkNy10u7N1hdDQAgQhA+0H42G5NOAQBtRvjAsfGGjzXW1gEAiBiEDxybvKZ5H0w6BQD4ifCBY9P8clvDsLYWAEBEIHzg2HTqK8XFSwf2Sc6frK4GABABCB84NgnJUsfeZpt5HwAAPxA+cOxy+5nb8vXW1gEAiAiEDxy73L7mdte31tYBAIgIhA8cu04nmFt6PgAAfiB84Nh1aur52L1RcjdaWwsAIOwRPnDssrtL9iSpoVba/4PV1QAAwhzhA8cuzn7wipdy5n0AAI6M8IHA6NTH3DLpFABwFIQPBAZXvAAA/BRvdQHt1djYqPr6eqvLCLmEhATZ7XaryzgcV7wAAPwUceHDMAyVlZVp//79VpdimaysLOXn58tms1ldykG5TeHDc8VLXBgGJABAWIi48OEJHrm5uUpNTQ2vL+AgMwxDNTU1Ki8vlyQVFBRYXFEzHbr5XvGS3cPqigAAYSqiwkdjY6M3eOTk5FhdjiVSUlIkSeXl5crNzQ2fIZg4u9Sxl3l3210bCR8AgFZF1IRTzxyP1NRUiyuxlufnD7s5Lzk9ze3ezdbWAQAIaxEVPjxiaailJWH78+ccb273bLK2DgBAWIvI8IEw5en5IHwAAI6A8HEUDz74oAYOHBiQz9q6datsNptWr17d6j5LliyRzWaLzKt5vOHje2vrAACEtYiacBrpioqKtGPHDnXs2NHqUoIju2nYxfmjVFcjJcb23BwAQMvo+Qghu92u/Px8xcdHaeZLzZaSs8z2Xno/AAAti6rwMXLkSN1888264447lJ2drfz8fD344IPe90tLSzV+/Hilp6fL4XDokksu0c6dO30+4/HHH1deXp4yMjJ07bXXqra29rDzzJkzRyeccIKSk5PVt29fvfjii37V19Kwy/vvv6/evXsrJSVFZ599trZu3dqeHz082GwHJ51yxQsAoBVRFT4k6dVXX1VaWpq++OILPfnkk3r44Ye1aNEiGYahCRMmaO/evVq6dKkWLVqkzZs369JLL/Ue+7e//U0PPPCAHnvsMa1YsUIFBQWHBYtXXnlF9957rx577DGtX79eM2bM0H333adXX321zbVu27ZNF154oc477zytXr1av/nNb3TXXXcd8+/AUkw6BQAcRdT1/w8YMEAPPPCAJKlXr16aNWuWPvroI0nS119/rS1btqioqEiS9Oc//1n9+/dXSUmJhg4dqmeffVa//vWv9Zvf/EaS9Oijj+rDDz/06f145JFH9PTTT+vCCy+UJHXv3l3r1q3TSy+9pIkTJ7ap1tmzZ6tHjx76r//6L9lsNvXp00dr1qzRE088ccy/B8t4wwc9HwCAlkVdz8eAAQN8nhcUFKi8vFzr169XUVGRN3hIUr9+/ZSVlaX1682boa1fv16nnXaaz/HNn+/atUvbtm3Ttddeq/T0dO/j0Ucf1ebNbf+yXb9+vU499VSfdTsOPX/E8axsSvgAALQi6no+EhISfJ7bbDa53W4ZhtHi4lytvd4St9styRx6GTZsmM977Vnm3DCMNh8T9hh2AQAcRdT1fLSmX79+Ki0t1bZt27yvrVu3ThUVFTrhBPOOrCeccIKWL1/uc1zz53l5eTruuOP0/fffq2fPnj6P7t27t6umI50vInXoZm5rdkuuKktLAQCEp6jr+WjNqFGjNGDAAF155ZV69tln1dDQoJtuukkjRozQkCFDJEm33HKLJk6cqCFDhmj48OH6y1/+orVr16pHj4M3SXvwwQd18803y+FwaOzYsXK5XFqxYoX27dun6dOnt6mmG264QU8//bSmT5+u66+/XitXrtTcuXMD+WOHXkqWlJwp1VZI+0ulvH5WVwQACDMB7/mYOXOmhg4dqoyMDOXm5mrChAnasGFDoE/TZjabTe+88446dOigs846S6NGjVKPHj30xhtvePe59NJLdf/99+vOO+/U4MGD9cMPP+jGG2/0+Zzf/OY3+u///m/NnTtXJ554okaMGKG5c+e2q+ejS5cueuutt/R///d/Oumkk/SHP/xBM2bMOOaf1XJZXc3t/h+srQMAEJZsRoAnHowZM0aXXXaZhg4dqoaGBt17771as2aN1q1bp7S0tKMe73Q6lZmZqYqKCjkcDp/3amtrtWXLFnXv3l3JycmBLDuihP3v4Y1fSev/TxrzhHTqDVZXAwAIgSN9fx8q4MMuCxcu9Hk+Z84c5ebmauXKlTrrrLMCfTqEI2/PR6m1dQAAwlLQJ5xWVFRIkrKzs1t83+Vyyel0+jwi1YwZM3wuwW3+GDt2rNXlhQ7DLgCAIwjqhFPDMDR9+nQNHz5cxcXFLe4zc+ZMPfTQQ8EsI2RuuOEGXXLJJS2+l5KSEuJqLNShKXzsI3wAAA4X1PAxZcoUff311/r0009b3efuu+/2uUrE6XT6LAQWSbKzs1vt4YkpWV3MLcMuAIAWBC18TJ06VQsWLNCyZcvUuXPnVvdLSkpSUlJSsMqAFTzhw1UhHdgnpXSwth4AQFgJ+JwPwzA0ZcoUvf3221q8eHG7LkFFhEtMk9I6mW16PwAAhwh4+Jg8ebLmzZun1157TRkZGSorK1NZWZkOHDgQ6FMhnGUx7wMA0LKAh4/Zs2eroqJCI0eOVEFBgffRfDEvxICspnk79HwAAA4R8DkfUXmzNLSd4zhzW7nD2joAAGEnZm4shxBzFJpb53Zr6wAAhB3ChwVmz56tAQMGyOFwyOFw6LTTTtMHH3xgdVmBRfgAALSC8GGBzp076/HHH9eKFSu0YsUK/exnP9P48eO1du1aq0sLHM+wC+EDAHCIoC4yhpadf/75Ps8fe+wxzZ49W8uXL1f//v0tqirAMgrMbeUOye2W4si5AABTVIUPwzB0oL7RknOnJNhls9nafFxjY6PefPNNVVdX67TTTgtCZRbJyJdkk9z1Us1uKT3X6ooAAGEiqsLHgfpG9bv/H5ace93DP1dqov+/zjVr1ui0005TbW2t0tPTNX/+fPXr1y+IFYaYPUFKz5OqyiTnT4QPAIAXfeEW6dOnj1avXq3ly5frxhtv1MSJE7Vu3TqrywosR9PQi5PLbQEAB0VVz0dKgl3rHv65Zedui8TERPXs2VOSNGTIEJWUlOi5557TSy+9FIzyrOE4Ttr+pdnzAQBAk6gKHzabrU1DH+HEMAy5XC6rywgsLrcFALQgMr+pI9w999yjsWPHqqioSJWVlXr99de1ZMkSLVy40OrSAstzxQvhAwDQDOHDAjt37tRVV12lHTt2KDMzUwMGDNDChQt17rnnWl1aYGXkm9vqcmvrAACEFcKHBf74xz9aXUJopDVd4VK1y9o6AABhhatdEDxpHc0tPR8AgGYIHwgez9oe1bvNVU4BABDhA8GU1sncGo3SgX3W1gIACBuEDwSPPUFK6WC2GXoBADQhfCC4PL0f1Uw6BQCYCB8ILu8VL/R8AABMhA8EVzo9HwAAX4QPBJen54PwAQBoQvhAcHnmfDDsAgBoQvhAcHmHXXZbWwcAIGwQPsLAzJkzZbPZNG3aNKtLCbzUHHN7YK+1dQAAwgbhw2IlJSV6+eWXNWDAAKtLCQ5P+KDnAwDQhPBhoaqqKl155ZV65ZVX1KFDB6vLCQ5P+KjZY20dAICwEV13tTUMqb7GmnMnpEo2W5sOmTx5ssaNG6dRo0bp0UcfDVJhFvOEj9r9UmODZI+u/8kBANouur4J6mukGYXWnPue7VJimt+7v/7661q1apVKSkqCWFQYSM6SZJNkmPd38UxABQDErOgKHxFi27ZtuuWWW/TPf/5TycnJVpcTXPZ4KSXLDB41ewgfAIAoCx8JqWYPhFXn9tPKlStVXl6uwYMHe19rbGzUsmXLNGvWLLlcLtnt9mBUaY3UnIPhAwAQ86IrfNhsbRr6sMo555yjNWvW+Lx2zTXXqG/fvrrzzjujK3hIZvjYs0mae57UdXjTi4Y5R8fDZjOf2+IOvq8jzaHxHN90TPP2EY+LBM1+N7ZD54Qf8nMfdqhx+GtSs/lInu2h+wX6d3a0vx+AqHOg3u9doyt8RIiMjAwVFxf7vJaWlqacnJzDXo8KnfpI274w2z98am0tAIDgcLXyj58WED4QfKMflfqcJ8kmNRxo9oatqcfDffC551/khuHH1UPN/xV/6GdFMU+Px1F7OdRsv+a9KTbf369fv+s2CsZnAghvVTXS47/ya1fCR5hYsmSJ1SUET3Km1Ges1VUAAILJ6fR7VxYZAwAAIUX4AAAAIUX4AAAAIUX4AAAAIRWR4cNobZZ/jIj1nx8AENkiKnwkJCRIkmpqLLp5XJjw/Pye3wcAAJEkoi61tdvtysrKUnl5uSQpNTVVthhaS8AwDNXU1Ki8vFxZWVnRtxIqACAmRFT4kKT8/HxJ8gaQWJSVleX9PQAAEGkiLnzYbDYVFBQoNzdX9fX+ryMfLRISEujxAABEtIgLHx52u50vYQAAIlBETTgFAACRj/ABAABCivABAABCKuzmfHgW0HK24e54AADAWp7vbX8Wwgy78LFnzx5JUlFRkcWVAACAttqzZ48yMzOPuE/YhY/s7GxJUmlp6VGLb83QoUNVUlLS7ho4nuM5nuM5nuM5vm0qKirUpUsX7/f4kYRd+IiLM6ehZGZmyuFwtOsz7HZ7u4/leI7neI7neI7n+PbzfI8fcZ9jOkOYmjx5MsdzPMdzPMdzPMeH+Hh/2Ywwu0Wq0+lUZmamKioqjjl9AQCA0GjL93fY9XwkJSXpgQceUFJSktWlAAAAP7Xl+zvsej4AAEB0C7ueDwAAEN0IHwAAIKQIH2i3F198Ud27d1dycrIGDx6sTz75xPteVVWVpkyZos6dOyslJUUnnHCCZs+ebWG1aG7ZsmU6//zzVVhYKJvNpnfeecfn/UmTJslms/k8Tj31VGuKxWFmzpypoUOHKiMjQ7m5uZowYYI2bNjgfb++vl533nmnTjzxRKWlpamwsFBXX321tm/fbmHV8Dja30+Sdu7cqUmTJqmwsFCpqakaM2aMvvvuO4sqDjzCB9rljTfe0LRp03Tvvffqyy+/1JlnnqmxY8eqtLRUknTrrbdq4cKFmjdvntavX69bb71VU6dO1bvvvmtx5ZCk6upqnXTSSZo1a1ar+4wZM0Y7duzwPt5///0QVogjWbp0qSZPnqzly5dr0aJFamho0OjRo1VdXS1Jqqmp0apVq3Tfffdp1apVevvtt7Vx40b98pe/tLhySEf/+xmGoQkTJuj777/Xu+++qy+//FJdu3bVqFGjvPtEPANoh1NOOcW44YYbfF7r27evcddddxmGYRj9+/c3Hn74YZ/3Tz75ZOO3v/1tyGqEfyQZ8+fP93lt4sSJxvjx4y2pB21XXl5uSDKWLl3a6j7//ve/DUnGDz/8EMLK4I9D/34bNmwwJBnffPONd5+GhgYjOzvbeOWVV6wqM6Do+UCb1dXVaeXKlRo9erTP66NHj9Znn30mSRo+fLgWLFign376SYZh6OOPP9bGjRv185//3IqS0Q5LlixRbm6uevfureuuu07l5eVWl4RWVFRUSNIRl7WuqKiQzWZTVlZWiKqCvw79+7lcLklScnKydx+73a7ExER9+umnoS8wCAgfaLPdu3ersbFReXl5Pq/n5eWprKxMkvT888+rX79+6ty5sxITEzVmzBi9+OKLGj58uBUlo43Gjh2rv/zlL1q8eLGefvpplZSU6Gc/+5n3P4oIH4ZhaPr06Ro+fLiKi4tb3Ke2tlZ33XWXrrjiChZvDDMt/f369u2rrl276u6779a+fftUV1enxx9/XGVlZdqxY4fFFQdG2N3bBZHDZrP5PDcMw/va888/r+XLl2vBggXq2rWrli1bpptuukkFBQUaNWqUFeWiDS699FJvu7i4WEOGDFHXrl313nvv6cILL7SwMhxqypQp+vrrr1v9F3F9fb0uu+wyud1uvfjiiyGuDkfT0t8vISFBb731lq699lplZ2fLbrdr1KhRGjt2rIWVBhbhA23WsWNH2e12by+HR3l5ufLy8nTgwAHdc889mj9/vsaNGydJGjBggFavXq2nnnqK8BGBCgoK1LVr16iabR8Npk6dqgULFmjZsmXq3LnzYe/X19frkksu0ZYtW7R48WJ6PcLMkf5+gwcP1urVq1VRUaG6ujp16tRJw4YN05AhQyyqNrAYdkGbJSYmavDgwVq0aJHP64sWLdLpp5+u+vp61dfXH3ZnQ7vdLrfbHcpSESB79uzRtm3bVFBQYHUpkNnLOGXKFL399ttavHixunfvftg+nuDx3Xff6cMPP1ROTo4FlaIl/vz9PDIzM9WpUyd99913WrFihcaPHx/CSoOHng+0y/Tp03XVVVdpyJAhOu200/Tyyy+rtLRUN9xwgxwOh0aMGKH//M//VEpKirp27aqlS5fqT3/6k5555hmrS4fMdVg2bdrkfb5lyxatXr1a2dnZys7O1oMPPqiLLrpIBQUF2rp1q+655x517NhRF1xwgYVVw2Py5Ml67bXX9O677yojI8PbC5mZmamUlBQ1NDTo4osv1qpVq/T3v/9djY2N3n2ys7OVmJhoZfkx72h/P0l688031alTJ3Xp0kVr1qzRLbfcogkTJhw20T9iWXmpDSLbCy+8YHTt2tVITEw0Tj75ZJ/L/Hbs2GFMmjTJKCwsNJKTk40+ffoYTz/9tOF2uy2sGB4ff/yxIemwx8SJE42amhpj9OjRRqdOnYyEhASjS5cuxsSJE43S0lKry0aTlv52kow5c+YYhmEYW7ZsaXWfjz/+2NLacfS/n2EYxnPPPWd07tzZ+//B3/72t4bL5bKu6ADjxnIAACCkmPMBAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCivABAABCKuThY9KkSZowYUKoTwsAAMIEPR8AACCkLA0fCxcu1PDhw5WVlaWcnBz94he/0ObNm73vb926VTabTW+//bbOPvtspaam6qSTTtLnn39uYdUAAOBYWBo+qqurNX36dJWUlOijjz5SXFycLrjgArndbp/97r33Xt1+++1avXq1evfurcsvv1wNDQ0WVQ0AAI5FvJUnv+iii3ye//GPf1Rubq7WrVun4uJi7+u33367xo0bJ0l66KGH1L9/f23atEl9+/YNab0AAODYWdrzsXnzZl1xxRXq0aOHHA6HunfvLkkqLS312W/AgAHedkFBgSSpvLw8dIUCAICAsbTn4/zzz1dRUZFeeeUVFRYWyu12q7i4WHV1dT77JSQkeNs2m02SDhuaAQAAkcGy8LFnzx6tX79eL730ks4880xJ0qeffmpVOQAAIEQsCx8dOnRQTk6OXn75ZRUUFKi0tFR33XWXVeUAAIAQCfmcD7fbrfj4eMXFxen111/XypUrVVxcrFtvvVW/+93vQl0OAAAIMZthGEYoTzhmzBj17NlTs2bNCuVpAQBAmAhZz8e+ffv03nvvacmSJRo1alSoTgsAAMJMyOZ8/PrXv1ZJSYluu+02jR8/PlSnBQAAYSbkwy4AACC2cWM5AAAQUoQPAAAQUkEJHzNnztTQoUOVkZGh3NxcTZgwQRs2bPDZxzAMPfjggyosLFRKSopGjhyptWvXet/fu3evpk6dqj59+ig1NVVdunTRzTffrIqKihbP6XK5NHDgQNlsNq1evToYPxYAAAiAoISPpUuXavLkyVq+fLkWLVqkhoYGjR49WtXV1d59nnzyST3zzDOaNWuWSkpKlJ+fr3PPPVeVlZWSpO3bt2v79u166qmntGbNGs2dO1cLFy7Utdde2+I577jjDhUWFgbjxwEAAAEUkgmnu3btUm5urpYuXaqzzjpLhmGosLBQ06ZN05133inJ7LnIy8vTE088oeuvv77Fz3nzzTf1q1/9StXV1YqPP3ihzgcffKDp06frrbfeUv/+/fXll19q4MCBwf6xAABAO4RkzodnqCQ7O1uStGXLFpWVlWn06NHefZKSkjRixAh99tlnR/wch8PhEzx27typ6667Tn/+85+VmpoapJ8AAAAEStDDh2EYmj59uoYPH67i4mJJUllZmSQpLy/PZ9+8vDzve4fas2ePHnnkEZ9eEcMwNGnSJN1www0aMmRIkH4CAAAQSEFfZGzKlCn6+uuvW7xjrc1m83luGMZhr0mS0+nUuHHj1K9fPz3wwAPe13//+9/L6XTq7rvvDnzhAAAgKILa8zF16lQtWLBAH3/8sTp37ux9PT8/X5IO6+UoLy8/rDeksrJSY8aMUXp6uubPn6+EhATve4sXL9by5cuVlJSk+Ph49ezZU5I0ZMgQTZw4MVg/FgAAOAZBCR+GYWjKlCl6++23tXjxYnXv3t3n/e7duys/P1+LFi3yvlZXV6elS5fq9NNP977mdDo1evRoJSYmasGCBUpOTvb5nOeff15fffWVVq9erdWrV+v999+XJL3xxht67LHHgvGjAQCAYxSUYZfJkyfrtdde07vvvquMjAxvD0dmZqZSUlJks9k0bdo0zZgxQ7169VKvXr00Y8YMpaam6oorrpBk9niMHj1aNTU1mjdvnpxOp5xOpySpU6dOstvt6tKli89509PTJUnHH3+8T08LAAAIH0EJH7Nnz5YkjRw50uf1OXPmaNKkSZLMdTkOHDigm266Sfv27dOwYcP0z3/+UxkZGZKklStX6osvvpAk73CKx5YtW9StW7dglA4AAIKMG8sBAICQ4t4uAAAgpAgfAAAgpAgfAAAgpAgfAAAgpAgfAAAgpAgfAAAgpAgfAAAgpAgfAAJiyZIlstls2r9/v9WlAAhzLDIGoF1GjhypgQMH6tlnn5Vk3p9p7969ysvLa/Hu1ADgEZTl1QHEnsTERO8dqwHgSBh2AdBmkyZN0tKlS/Xcc8/JZrPJZrNp7ty5PsMuc+fOVVZWlv7+97+rT58+Sk1N1cUXX6zq6mq9+uqr6tatmzp06KCpU6eqsbHR+9l1dXW64447dNxxxyktLU3Dhg3TkiVLrPlBAQQFPR8A2uy5557Txo0bVVxcrIcffliStHbt2sP2q6mp0fPPP6/XX39dlZWVuvDCC3XhhRcqKytL77//vr7//ntddNFFGj58uC699FJJ0jXXXKOtW7fq9ddfV2FhoebPn68xY8ZozZo16tWrV0h/TgDBQfgA0GaZmZlKTExUamqqd6jl22+/PWy/+vp6zZ49W8cff7wk6eKLL9af//xn7dy5U+np6erXr5/OPvtsffzxx7r00ku1efNm/fWvf9WPP/6owsJCSdLtt9+uhQsXas6cOZoxY0bofkgAQUP4ABA0qamp3uAhSXl5eerWrZvS09N9XisvL5ckrVq1SoZhqHfv3j6f43K5lJOTE5qiAQQd4QNA0CQkJPg8t9lsLb7mdrslSW63W3a7XStXrpTdbvfZr3lgARDZCB8A2iUxMdFnomggDBo0SI2NjSovL9eZZ54Z0M8GED642gVAu3Tr1k1ffPGFtm7dqt27d3t7L45F7969deWVV+rqq6/W22+/rS1btqikpERPPPGE3n///QBUDSAcED4AtMvtt98uu92ufv36qVOnTiotLQ3I586ZM0dXX321brvtNvXp00e//OUv9cUXX6ioqCggnw/AeqxwCgAAQoqeDwAAEFKEDwAAEFKEDwAAEFKEDwAAEFKEDwAAEFKEDwAAEFKEDwAAEFKEDwAAEFKEDwAAEFKEDwAAEFKEDwAAEFKEDwAAEFL/Hwyagsb0ZlmiAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "case1_example1 = case1(\"case1_example4\")\n", "case1_example1.create_model()" @@ -1254,7 +103,7 @@ }, { "cell_type": "markdown", - "id": "e907351e-2d44-4031-8201-5effcb6a232b", + "id": "10", "metadata": {}, "source": [ "# Case 2" @@ -1262,7 +111,7 @@ }, { "cell_type": "markdown", - "id": "64862d6c-7da0-41a4-9285-105749b91ef6", + "id": "11", "metadata": {}, "source": [ "### Example 1: boundary and basin levels on target " @@ -1270,297 +119,10 @@ }, { "cell_type": "code", - "execution_count": 23, - "id": "029f65b0-0158-46b1-be23-79564bc49f20", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timenode_idstoragelevelinflow_rateoutflow_ratestorage_rateprecipitationevaporationdrainageinfiltrationbalance_errorrelative_error
02024-01-01 00:00:0031250.0087502.0000000.0055500.004450-0.0000110.00.0001450.00.00.0009660.190740
12024-01-01 00:00:0041000.0090001.0000000.0044500.005304-0.0005800.00.0001160.00.0-0.000390-0.083897
22024-01-01 00:01:0031250.0080692.0000000.0047380.005262-0.0003670.00.0001450.00.0-0.000302-0.061862
32024-01-01 00:01:004999.9741960.9999830.0052620.0038040.0009480.00.0001160.00.00.0003940.095823
42024-01-01 00:02:0031249.9860761.9999910.0055170.0044830.0010210.00.0001450.00.0-0.000131-0.028820
..........................................
28752024-01-01 23:57:0041000.0077360.9999990.0056270.005870-0.0001500.00.0001160.00.0-0.000209-0.036459
28762024-01-01 23:58:0031249.9969351.9999950.0050940.0049060.0002990.00.0001450.00.0-0.000256-0.052041
28772024-01-01 23:58:004999.9987530.9999950.0049060.004242-0.0000020.00.0001160.00.00.0005500.118730
28782024-01-01 23:59:0031250.0148712.0000020.0057830.0042170.0000060.00.0001450.00.00.0014160.279322
28792024-01-01 23:59:004999.9986590.9999950.0042170.004927-0.0004760.00.0001160.00.0-0.000350-0.079689
\n", - "

2880 rows × 13 columns

\n", - "
" - ], - "text/plain": [ - " time node_id storage level inflow_rate \\\n", - "0 2024-01-01 00:00:00 3 1250.008750 2.000000 0.005550 \n", - "1 2024-01-01 00:00:00 4 1000.009000 1.000000 0.004450 \n", - "2 2024-01-01 00:01:00 3 1250.008069 2.000000 0.004738 \n", - "3 2024-01-01 00:01:00 4 999.974196 0.999983 0.005262 \n", - "4 2024-01-01 00:02:00 3 1249.986076 1.999991 0.005517 \n", - "... ... ... ... ... ... \n", - "2875 2024-01-01 23:57:00 4 1000.007736 0.999999 0.005627 \n", - "2876 2024-01-01 23:58:00 3 1249.996935 1.999995 0.005094 \n", - "2877 2024-01-01 23:58:00 4 999.998753 0.999995 0.004906 \n", - "2878 2024-01-01 23:59:00 3 1250.014871 2.000002 0.005783 \n", - "2879 2024-01-01 23:59:00 4 999.998659 0.999995 0.004217 \n", - "\n", - " outflow_rate storage_rate precipitation evaporation drainage \\\n", - "0 0.004450 -0.000011 0.0 0.000145 0.0 \n", - "1 0.005304 -0.000580 0.0 0.000116 0.0 \n", - "2 0.005262 -0.000367 0.0 0.000145 0.0 \n", - "3 0.003804 0.000948 0.0 0.000116 0.0 \n", - "4 0.004483 0.001021 0.0 0.000145 0.0 \n", - "... ... ... ... ... ... \n", - "2875 0.005870 -0.000150 0.0 0.000116 0.0 \n", - "2876 0.004906 0.000299 0.0 0.000145 0.0 \n", - "2877 0.004242 -0.000002 0.0 0.000116 0.0 \n", - "2878 0.004217 0.000006 0.0 0.000145 0.0 \n", - "2879 0.004927 -0.000476 0.0 0.000116 0.0 \n", - "\n", - " infiltration balance_error relative_error \n", - "0 0.0 0.000966 0.190740 \n", - "1 0.0 -0.000390 -0.083897 \n", - "2 0.0 -0.000302 -0.061862 \n", - "3 0.0 0.000394 0.095823 \n", - "4 0.0 -0.000131 -0.028820 \n", - "... ... ... ... \n", - "2875 0.0 -0.000209 -0.036459 \n", - "2876 0.0 -0.000256 -0.052041 \n", - "2877 0.0 0.000550 0.118730 \n", - "2878 0.0 0.001416 0.279322 \n", - "2879 0.0 -0.000350 -0.079689 \n", - "\n", - "[2880 rows x 13 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAFCCAYAAAA9jy8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIaklEQVR4nO3dd1wT9/8H8NcR9paNMhUE3AO14gA3Wq17W8X1tXZIW7XWX2sdrau2VlurbW0L1oV71D3B2YoKioIoCoIC4mAjK7nfHzQngQABktwlvJ+PBw8ludy9c37MvfO+z2BYlmVBCCGEEEKIQOjwHQAhhBBCCCHlUYJKCCGEEEIEhRJUQgghhBAiKJSgEkIIIYQQQaEElRBCCCGECAolqIQQQgghRFAoQSWEEEIIIYKiy3cAhBBCCOGXWCxGSUkJ32EQLaenpweRSKTQtpSgEkIIIQ0Uy7JIT09HVlYW36GQBsLS0hIODg5gGKba7ShBJYQQQhooaXJqZ2cHY2PjGpMGQuqKZVkUFBQgIyMDAODo6Fjt9pSgEkIIIQ2QWCzmklNra2u+wyENgJGREQAgIyMDdnZ21d7up0FShBBCSAMk7XNqbGzMcySkIZG2t5r6PFOCSgghhDRgdFufqJOi7Y0SVEIIIYQQIiiUoBJCCCGEEEGhBJUQQgghWiMgIAAff/wx32FUKykpCQzDIDo6mu9QBIsSVEIIIYRojKCgIDAMU+knISGB79CIEtE0U4QQQgjRKIGBgQgJCZF5zNbWlqdoiCpQBZUQQgghMl6XiNX2UxcGBgZwcHCQ+alqTs3MzExMnjwZjRo1grGxMQYOHIgHDx4AKJs83tbWFvv27eO2b9euHezs7Ljfr169Cj09PeTl5VUZT0hICHx8fGBoaAhvb29s3LhR5vlr166hffv2MDQ0hK+vL6Kioirt4/Dhw/D09ISRkRF69eqFLVu2gGEYmVW+rly5gp49e8LIyAjOzs6YM2cO8vPzFTpnmoYqqIQQQgiREbDxktqO9W+wv0r3HxQUhAcPHuDw4cMwNzfHggULMGjQIMTGxkJPTw89e/ZEeHg4Ro4ciczMTMTGxsLExASxsbFo0aIFwsPD0bFjR5iamsrd/+bNm7F48WJs2LAB7du3R1RUFGbOnAkTExNMmTIF+fn5GDx4MHr37o1t27YhMTERwcHBMvtISkrCqFGjEBwcjBkzZiAqKgrz5s2T2SYmJgYDBgzA119/jT/++APPnz/Hhx9+iA8//LBSNVkbUIJKCCGEEI1y5MgRmYRx4MCB2LNnT6XtpInp5cuX4efnBwDYvn07nJ2dcfDgQYwePRoBAQH47bffAAAXLlxA27Zt4eLigvDwcC5BDQgIqDKWr7/+Gt9//z1GjBgBAHB3d0dsbCx+/fVXTJkyBdu3b4dYLMaff/4JY2NjtGzZEk+ePMHs2bO5ffzyyy/w8vLCmjVrAABeXl64c+cOli9fzm2zZs0aTJgwgRsA5unpiR9//BH+/v7YtGkTDA0N63YyBYoSVEIIIYTICH+/O98hVKtXr17YtGkT97uJiYnc7eLi4qCrq4suXbpwj1lbW8PLywtxcXEAykb9BwcH48WLF4iIiEBAQABcXFwQERGB//3vf7hy5UqVswI8f/4cKSkpmD59OmbOnMk9XlpaCgsLCy6Gtm3byqzY1bVrV5n9xMfHo1OnTjKPde7cWeb3GzduICEhAdu3b+ceY1kWEokEiYmJ8PHxkRujpqIElRBCCCEyjPSqXiNdCExMTODh4VHjdizLVvm4dEWjVq1awdraGhEREYiIiMCyZcvg7OyM5cuXIzIyEq9fv0b37vITdolEAqDsNn/5JBgA1ye2qhiqiqeq2CUSCWbNmoU5c+ZUer2Li0uNx9A0lKASQgghRCu1aNECpaWl+Pfff7lb/C9fvsT9+/e5iiPDMOjZsycOHTqEO3fuoEePHjAzM0NJSQl++eUXdOjQAWZmZnL3b29vjyZNmuDRo0eYOHFilTFs3boVr1+/hpGREQDgn3/+kdnG29sbx44dk3ns+vXrMr936NABd+/eVSgx1wY0ip8QQgghWsnT0xNDhw7FzJkzcenSJdy6dQuTJk1CkyZNMHToUG67gIAA7NixA23atIG5uTmXtG7fvr3a/qcAsGTJEqxcuRLr16/H/fv3ERMTg5CQEKxduxYAMGHCBOjo6GD69OmIjY3FsWPH8N1338nsY9asWbh37x4WLFiA+/fvY/fu3QgNDQXwZu36BQsW4OrVq/jggw8QHR3N9a/96KOPlHfCBIQSVEIIIYRorZCQEHTs2BGDBw9G165dwbIsjh07Bj09PW6bXr16QSwWyySj/v7+EIvF8PevfpaBGTNm4Pfff0doaChat24Nf39/hIaGwt3dHQBgamqKv//+G7GxsWjfvj2++OILrF69WmYf7u7u2Lt3L/bv3482bdpg06ZN+OKLLwCUTakFAG3atEFERAQePHiAHj16oH379li0aBEcHR2VcZoEh2EV6RxBCCGEEK1SWFiIxMREuLu7a90IcG2wfPly/PLLL0hJSeE7FKVStN1RH1RCCCGEEJ5t3LgRnTp1grW1NS5fvow1a9bgww8/5Dss3lCCSgghhBDCswcPHuCbb77Bq1ev4OLigrlz52LhwoV8h8UbusVPCCGENEB0i5/wQdF2R4OkCCGEEEKIoFCCSgghhBBCBIUSVEIIIYQQIiiUoBJCCCGEEEGhBJUQQgghhAgKJaiEEEIIISoWHh4OhmGQlZWl1P0uWbIE7dq1U+o+hYASVEIIIYRolPT0dHz00Udo2rQpDAwM4OzsjCFDhuDs2bNKPU5AQAA+/vhjpe6TKIYm6ieEEEKIxkhKSkK3bt1gaWmJb7/9Fm3atEFJSQlOnjyJDz74APfu3VNrPCzLQiwWQ1eXUiplogoqIYQQQjTG+++/D4ZhcO3aNYwaNQrNmzdHy5Yt8emnn+Kff/7htktOTsbQoUNhamoKc3NzjBkzBs+ePeOel94a37p1K9zc3GBhYYFx48YhNzcXABAUFISIiAisX78eDMOAYRgkJSVxt+pPnjwJX19fGBgY4OLFiygqKsKcOXNgZ2cHQ0NDdO/eHZGRkbV6b9nZ2fjf//4HOzs7mJubo3fv3rh165bMNqtWrYK9vT3MzMwwffp0FBYWyjxfWlqKOXPmwNLSEtbW1liwYAGmTJmCYcOGcduwLItvv/0WTZs2hZGREdq2bYu9e/fWKlZVowSVEEIIITKKi4vV9lMbr169wokTJ/DBBx/AxMSk0vOWlpYAyhKwYcOG4dWrV4iIiMDp06fx8OFDjB07Vmb7hw8f4uDBgzhy5AiOHDmCiIgIrFq1CgCwfv16dO3aFTNnzkRaWhrS0tLg7OzMvfazzz7DypUrERcXhzZt2uCzzz7Dvn37sGXLFty8eRMeHh4YMGAAXr16pdB7Y1kWb7/9NtLT03Hs2DHcuHEDHTp0QJ8+fbh97N69G4sXL8by5ctx/fp1ODo6YuPGjTL7Wb16NbZv346QkBBcvnwZOTk5OHjwoMw2X375JUJCQrBp0ybcvXsXn3zyCSZNmoSIiAiFYlUHqkcTQgghRMbKlSvVdqzFixcrvG1CQgJYloW3t3e12505cwa3b99GYmIil1Ru3boVLVu2RGRkJDp16gQAkEgkCA0NhZmZGQDg3XffxdmzZ7F8+XJYWFhAX18fxsbGcHBwqHSMZcuWoV+/fgCA/Px8bNq0CaGhoRg4cCAAYPPmzTh9+jT++OMPzJ8/v8b3dv78ecTExCAjIwMGBgYAgO+++w4HDx7E3r178b///Q/r1q3DtGnTMGPGDADAN998gzNnzshUUX/66ScsXLgQw4cPBwBs2LABx44d457Pz8/H2rVrce7cOXTt2hUA0LRpU1y6dAm//vor/P39a4xVHShBJYQQQohGYFkWAMAwTLXbxcXFwdnZWabi2aJFC1haWiIuLo5LUN3c3LjkFAAcHR2RkZGhUCy+vr7c3x8+fIiSkhJ069aNe0xPTw+dO3dGXFycQvu7ceMG8vLyYG1tLfP469ev8fDhQ+59vffeezLPd+3aFefPnwdQ1kXg2bNn6Ny5M/e8SCRCx44dIZFIAACxsbEoLCzkkmup4uJitG/fXqFY1YESVEIIIYTIWLhwId8hyOXp6QmGYRAXFyfTp7IilmXlJrEVH9fT05N5nmEYLpGrSfkuBlUlzlXFIY9EIoGjoyPCw8MrPSftuqAoeXGUPw4AHD16FE2aNJHZTlq5FQLqg0oIIYQQGfr6+mr7qQ0rKysMGDAAP//8M/Lz8ys9L51jtEWLFkhOTkZKSgr3XGxsLLKzs+Hj41Or8yAWi2vczsPDA/r6+rh06RL3WElJCa5fv67w8Tp06ID09HTo6urCw8ND5sfGxgYA4OPjIzMQDIDM7xYWFrC3t8e1a9e4x8RiMaKiorjfW7RoAQMDAyQnJ1c6TvmKM9+ogkoIIYQQjbFx40b4+fmhc+fOWLZsGdq0aYPS0lKcPn0amzZtQlxcHPr27Ys2bdpg4sSJWLduHUpLS/H+++/D399f5tZ8Tdzc3PDvv/8iKSkJpqamsLKykrudiYkJZs+ejfnz58PKygouLi749ttvUVBQgOnTpyt0rL59+6Jr164YNmwYVq9eDS8vL6SmpuLYsWMYNmwYfH19ERwcjClTpsDX1xfdu3fH9u3bcffuXTRt2pTbz0cffYSVK1fCw8MD3t7e+Omnn5CZmclVVc3MzDBv3jx88sknkEgk6N69O3JycnDlyhWYmppiypQpCp8fVaIElRBCCCEaw93dHTdv3sTy5csxd+5cpKWlwdbWFh07dsSmTZsAlN3iPnjwID766CP07NkTOjo6CAwMxE8//VSrY82bNw9TpkxBixYt8Pr1ayQmJla57apVqyCRSPDuu+8iNzcXvr6+OHnyJBo1aqTQsRiGwbFjx/DFF19g2rRpeP78ORwcHNCzZ0/Y29sDAMaOHYuHDx9iwYIFKCwsxMiRIzF79mycPHmS28+CBQuQnp6OyZMnQyQS4X//+x8GDBgAkUjEbfP111/Dzs4OK1euxKNHj2BpaYkOHTrg//7v/2p1flSJYct3TCCEEEJIg1BYWIjExES4u7vD0NCQ73CIikgkEvj4+GDMmDH4+uuv+Q5H4XZHFVRCCCGEEC3x+PFjnDp1Cv7+/igqKsKGDRuQmJiICRMm8B1ardAgKUIIIYQQLaGjo4PQ0FB06tQJ3bp1Q0xMDM6cOVOrwWFCQBVUQgghhBAt4ezsjMuXL/MdRr1RBZUQQgghhAgKJaiEEEIIIURQKEElhBBCCCGCQgkqIYQQQggRFEpQCSGEEEKIoFCCSgghhBBCBIUSVEIIIYRoDekyp9ogNDQUlpaWfIfBC0pQCSGEEKIxgoKCMGzYsCqfT0tLw8CBAxXalzYls9qGJuonhBBCiNZwcHDgOwSiBFRBJYQQQojWKF8VLS4uxocffghHR0cYGhrCzc0NK1euBAC4ubkBAIYPHw6GYbjfAeDvv/9Gx44dYWhoiKZNm2Lp0qUoLS2VOcbvv/+O4cOHw9jYGJ6enjh8+HC1cRUXF+Ozzz5DkyZNYGJigi5duiA8PFxmm9DQULi4uMDY2BjDhw/Hy5cvK+3nm2++gZ2dHczMzDBjxgx8/vnnaNeuncw2ISEh8PHxgaGhIby9vbFx40bFTp6AUIJKCCGEEBnFxcVV/pRP1GratqSkpMZtVenHH3/E4cOHsXv3bsTHx2Pbtm1cIhoZGQmgLJlLS0vjfj958iQmTZqEOXPmIDY2Fr/++itCQ0OxfPlymX0vXboUY8aMwe3btzFo0CBMnDgRr169qjKWqVOn4vLlywgLC8Pt27cxevRoBAYG4sGDBwCAf//9F9OmTcP777+P6Oho9OrVC998843MPrZv347ly5dj9erVuHHjBlxcXLBp0yaZbTZv3owvvvgCy5cvR1xcHFasWIFFixZhy5Yt9TqX6sawLMvyHQQhhBBC1KuwsBCJiYlwd3eHoaGhzHNLly6t8nWenp6YMGEC9/uKFSsqJaJSrq6uCAoK4n5fs2YNCgoKZLZZvHhxreIOCgpCVlZWlX1HGYbBgQMHMGzYMMyZMwd3797FmTNnwDBMtdtK9ezZEwMHDsTChQu5x7Zt24bPPvsMqamp3Ou+/PJLfP311wCA/Px8mJmZ4dixYwgMDKx0nIcPH8LT0xNPnjxB48aNucf79u2Lzp07Y8WKFZgwYQIyMzNx/Phx7vlx48bhxIkTyMrKAgC89dZb8PX1xYYNG7htunfvjry8PERHRwMAXFxcsHr1aowfP57b5ptvvsGxY8dw5cqVKs6q+lTX7sqjCqqGu3DhAoYMGYLGjRvL7ezNsiyWLFmCxo0bw8jICAEBAbh7967MNkVFRfjoo49gY2MDExMTvPPOO3jy5Ika3wURGmW0q99++w0BAQEwNzcHwzDcByxp2Orbtl69eoWPPvoIXl5eMDY2houLC+bMmYPs7Gw1vxOiCYKCghAdHQ0vLy/MmTMHp06dqvE1N27cwLJly2Bqasr9zJw5E2lpaTLJdZs2bbi/m5iYwMzMDBkZGXL3efPmTbAsi+bNm8vsNyIiAg8fPgQAxMXFoWvXrjKvq/h7fHw8OnfuLPNY+d+fP3+OlJQUTJ8+XeY433zzDXccTUGDpDRcfn4+2rZti6lTp2LkyJGVnv/222+xdu1ahIaGonnz5vjmm2/Qr18/xMfHw8zMDADw8ccf4++//0ZYWBisra0xd+5cDB48GDdu3IBIJFL3WyICoIx2VVBQgMDAQAQGBspUIkjDVt+2lZqaitTUVHz33Xdo0aIFHj9+jPfeew+pqanYu3cvD+9IO1X3f1ZHR7a2NW/evCq3rVi1DA4Orl9gtdShQwckJibi+PHjOHPmDMaMGYO+fftW21YkEgmWLl2KESNGVHqufMVPT09P5jmGYSCRSKrcp0gkkntdNTU1BVD25UwRFc9p+ddJj79582Z06dJFZjuNu56zRGsAYA8cOMD9LpFIWAcHB3bVqlXcY4WFhayFhQX7yy+/sCzLsllZWayenh4bFhbGbfP06VNWR0eHPXHihNpiJ8JVl3ZV3vnz51kAbGZmphqiJZqkvm1Lavfu3ay+vj5bUlKiynC1zuvXr9nY2Fj29evXfIdSK1OmTGGHDh1a5fMV21V5J06cYAGwL1++ZFmWZfX09Ni9e/fKbOPn58dOmzat2hjkHcPCwoINCQmRu318fDwLgL1w4UKV+xw/fjw7cOBAmcfGjRvHWlhYcL936dKF/fDDD2W26d69O9u2bVvu9yZNmrDLli2rNn4+KdruqIKqxRITE5Geno7+/ftzjxkYGMDf3x9XrlzBrFmzcOPGDZSUlMhs07hxY7Rq1QpXrlzBgAED+AidCJgi7YqQuqhr28rOzoa5uTl0demS1lBkZ2dzfS6lrKys4OLiIvPYDz/8AEdHR7Rr1w46OjrYs2cPHBwcuMnv3dzccPbsWXTr1g0GBgZo1KgRvvrqKwwePBjOzs4YPXo0dHR0cPv2bcTExFQatKSo5s2bY+LEiZg8eTK+//57tG/fHi9evMC5c+fQunVrDBo0CHPmzIGfnx++/fZbDBs2DKdOncKJEydk9vPRRx9h5syZ8PX1hZ+fH3bt2oXbt2+jadOm3DZLlizBnDlzYG5ujoEDB6KoqAjXr19HZmYmPv300zrFzwfqg6rF0tPTAQD29vYyj9vb23PPpaenQ19fH40aNapyG0LKU6RdEVIXdWlbL1++xNdff01fjBqY8PBwtG/fXubnq6++qrSdqakpVq9eDV9fX3Tq1AlJSUk4duwY103h+++/x+nTp+Hs7Iz27dsDAAYMGIAjR47g9OnT6NSpE9566y2sXbsWrq6u9Yo5JCQEkydPxty5c+Hl5YV33nkH//77L5ydnQGUDYD6/fff8dNPP6Fdu3Y4deoUvvzyS5l9TJw4EQsXLsS8efO47gtBQUEyXQ9mzJiB33//HaGhoWjdujX8/f0RGhoKd3f3esWvbvR1swGQ119F3mjG2m5DGra6tCtCFKFo28rJycHbb7+NFi1a1HokONFcoaGhCA0NrfJ5tlyfzJkzZ2LmzJlVbjtkyBAMGTKk0uMDBgyo9g4iK6e/aE0DQfX09LB06dJqZ0iYNm0apk2bJvPY3LlzZX5ftGgRFi1axP3er18/eHh4yGwzYcIEmZkWNBFVULWYdDWNipWHjIwMrkLh4OCA4uJiZGZmVrkNIeUp0q4IqYvatK3c3FwEBgbC1NQUBw4cqDRghRBtVFBQgLVr1+Lu3bu4d+8eFi9ejDNnzmDKlCl8h6Z0lKBqEJZlER4ervBIP3d3dzg4OOD06dPcY8XFxYiIiICfnx8AoGPHjtDT05PZJi0tDXfu3OG2IdpNFe2KkNq2K0DxtpWTk4P+/ftDX18fhw8frnYuRUK0CcMwOHbsGHr06IGOHTvi77//xr59+9C3b1++Q1M6usWvQU6cOIFBgwbh+PHj3ETAeXl5SEhI4LZJTExEdHQ011n8448/xooVK+Dp6QlPT0+sWLECxsbGXOnfwsIC06dPx9y5c2FtbQ0rKyvMmzcPrVu31soGTypTRbsCyqpg6enp3H5iYmJgZmYGFxcXWFlZqfdNErWT166A+ret3Nxc9O/fHwUFBdi2bRtycnKQk5MDALC1tdW8qXQIqQUjIyOcOXOG7zDUQ4UzCRAlmzZtGguAnT59OveYdAqfij9TpkxhWbZs2pbFixezDg4OrIGBAduzZ082JiZGZr+vX79mP/zwQ9bKyoo1MjJiBw8ezCYnJ6vzrREeqapdLV68WO4+qpqGhWgXee2KZevftqp6PQA2MTFRje9Q82nqNFNEsyna7mipUwGTSCTYtGkT1/H622+/RU5ODiwsLDB//nwAgKWlJWbPnl1p4mRCqkLtiqgCtSvNo+iSk4Qok6LtjhJUAcvNzYWbmxtevXoFhmGgo6MDsVgMkUgEiUQClmVhZWWFpKQkbvUeQmpC7YqoArUrzUMJKuGDou2OvsYKmJmZGaKiotC5c2ewLAuxWAwA3J9+fn6Ijo6mD3tSK9J21bVrV2pXRGmk7crPz4/aFSGk3ihBFTgzMzOMGjWq0hQqhoaGCA8P5yb4JaQ2mjRpgvfff79Su9LX18fZs2epXZE6cXFxwZo1ayq1K2NjY/q8IoTUCiWoApaZmYnQ0FDExcWhpKRE5rnXr19jy5YtPEVGNJlYLMaePXtw7ty5Su2qqKgIq1ev5qpehNRGZGQkfv/990rtKj8/H9euXeMpKkKIJqIEVaCkyWlOTg5SUlIAAN7e3pgzZw66du0KoGw1jcjISD7DJBpGmpzGx8dzU/1I21WfPn0AAKdPn8aePXsoSSW1EhkZiWPHjuH+/fsA3rQr6So9hw8f5jM8QmolNDQUlpaWfIfRoFGCKlBnzpxBTk4ObGxs8Nlnn2HLli0YO3YsrKyscO7cOXz++efw8vLCqVOnkJuby3e4REPcuXMH8fHx0NXVxYcffijTro4ePYq1a9fCx8cH8fHxuHPnDt/hEg2Rm5uLU6dOAQBGjRqF0NBQrl3t2bMH27dvxzvvvMNzlESbBAUFgWEY7sfa2hqBgYG4ffu2UvY/duxY7ssW4QdN1C9QQ4YMga6uLvr27QszMzMUFxdj5cqVAAAdHR2sWLEC58+fh5ubGw06IApr06YNXr58CVdXVzRr1kymXTEMg08++QQPHz7E48eP0aZNG56jJZrCzMwM48ePR1JSEnr16oWSkhKZdqXpa4KT6onFwMWLQFoa4OgI9OgBqGO9hMDAQISEhAAoWxjkyy+/xODBg5GcnFzvfRsZGcHIyKje+yF1RxVUASkqKuL+bmhoiOHDh1eZfDIMg969e6Np06ZyX0+IlFgs5voESttNs2bNqty+WbNm6N27NxiGAQCUlJTQ7X4iV/nPnKZNm8q0G9Iw7N8PuLkBvXoBEyaU/enmVva4qhkYGMDBwQEODg5o164dFixYgJSUFDx//hwAsGDBAjRv3hzGxsZo2rQpFi1aJNM/+tatW+jVqxfMzMxgbm6Ojh074vr16wAq3+JfsmQJ2rVrh61bt8LNzQ0WFhYYN24c3cFUIUpQBSIzMxMbN27ElStX6vT6Fy9eYMOGDdQnlciQ9jndtWtXpYEriigpKcGuXbuoTyqpJDIyEhs2bMCLFy/4DoXwZP9+YNQo4MkT2cefPi17XB1JqlReXh62b98ODw8PWFtbAyir7IeGhiI2Nhbr16/H5s2b8cMPP3CvmThxIpycnBAZGYkbN27g888/rzQDRXkPHz7EwYMHceTIERw5cgQRERFYtWqVyt9bQ0UJqgCUHxAVFRVVp0QiNjYWeXl5OHbsGCWpBIDsgKikpCQ8e/as1vt49uwZkpKSEB8fT0kq4UgHROXl5SE2NpbvcAgPxGIgOBiQt9SP9LGPPy7bTlWOHDkCU1NTmJqawszMDIcPH8auXbu4lcq+/PJL+Pn5wc3NDUOGDMHcuXOxe/du7vXJycno27cvvL294enpidGjR6Nt27ZVHk8ikSA0NBStWrVCjx498O677+Ls2bOqe4MNHCWoPCufnNrY2GDy5MnVfoOrSo8ePeDn5wcAlKQSmeRUJBJh/PjxcHJyqvV+nJycMH78eIhEIkpSCYA3ySlQNvl+jx49eI6I8OHixcqV0/JYFkhJKdtOVXr16oXo6GhER0fj33//Rf/+/TFw4EA8fvwYALB37150794dDg4OMDU1xaJFi2T6p3766aeYMWMG+vbti1WrVuHhw4fVHq/imA9HR0dkZGSo5s0RSlD5JC85reuAJ4Zh0LdvX0pSidzktLo+pzVp1qwZJakEQOXktG/fvtTntIFKS1PudnVhYmICDw8PeHh4oHPnzvjjjz+Qn5+PzZs3459//sG4ceMwcOBAHDlyBFFRUfjiiy9QXFzMvX7JkiW4e/cu3n77bZw7dw4tWrTAgQMHqjxexeIRwzCQSCQqe38NHSWoPFFmcipFSSpRdnIqRUkqoeSUlOfoqNztlIFhGOjo6OD169e4fPkyXF1d8cUXX8DX1xeenp5cZbW85s2b45NPPsGpU6cwYsQIblYAwj9KUHny8OFDpSanUhWT1Fu3btE3vAbk1atXSEpKUmpyKlU+SU1KSsKrV6+Utm8ibBKJBLdu3QJAySkp06MH4OQEVNUMGAZwdi7bTlWKioqQnp6O9PR0xMXF4aOPPkJeXh6GDBkCDw8PJCcnIywsDA8fPsSPP/4oUx19/fo1PvzwQ4SHh+Px48e4fPkyIiMj4ePjo7qASa3QPKg88fX1hY6ODjw9PZU+j6k0SbWwsECbNm24DuNE+9na2uLdd99FYWGhUpNTKWmSamhoCFtbW6XvnwiTjo4OJk2ahNu3b6NTp06UnBKIRMD69WWj9RlGdrCUtHmsW6fa+VBPnDgBx/9KtGZmZvD29saePXsQEBAAAPjkk0/w4YcfoqioCG+//TYWLVqEJUuW/Be/CC9fvsTkyZPx7Nkz2NjYYMSIEVi6dKnqAia1wrCsvDF4RBWysrJgaGgIQ0PDWr+2/ITqCxcuhL6+fq338ezZM9jb29f6dUTYxGIxXr16VaeEURnt6vnz57CysoJIHTNzE7Wq62eGMtoVUb3CwkIkJibC3d29TtcloGwqqeBg2QFTzs5lyemIEcqJk2gXRdsdldbUJDMzEyEhIdi+fTsKCwvVfvyrV6/il19+oT6pWkba5/SPP/5Aamqq2o+fmpqKP/74g/qkaqHIyEj88ssvuHr1Kt+hEAEbMQJISgLOnwd27Cj7MzGRklNSf3SLXw3KD4jS19dHaWmp2mOQrnYhHeTQqVMntcdAlKvigKjXr1+rPYbXr1+jtLSUGzg1evRoqqRqgfIDovLy8niOhgidSAT8d1edEKWhCqqKyRutb2pqqvY4+vXrh65duwKg0f3aQFWj9WuLRvdrH3mj9QkhRN0oQVUhVUwlVVcMw1CSqiWEkpxKUZKqPWgqKUKIUFCCqiJCSk6lKEnVfEJLTqUoSdV8lJwSQoSEElQVKS0thVgsFkxyKlUxSS2/qgYRPolEgpKSEkElp1Llk9SSkhKaf1fDFBUVAaDklBAiDDRISkVsbW0RFBQEAwMDwSSnUtIktXnz5nBzc+M7HFILenp6GDduHJ49ewYnJye+w6mkWbNmCAoKgr29faVlAYmwde/eHU5OTnB1daXklBDCO6qgKlFmZiaSkpK4321sbASXnEoxDCOTnBYVFSE2Npa/gEiVxGIxbt++DemUxXp6eoJMTqWcnJy45JRlWdy+fZtu9wtUbGwsVzkFADc3N0pOCSGCQAmqkkj7nG7fvl3uer9CVlJSgm3btmHPnj3UJ1VgpH1ODxw4gPDwcL7DqbXw8HAcOHCA+qQKUGRkJPbs2YNt27ahpKSE73AIIUQGJahKUH5AlKWlJaysrPgOqVZ0dXXh7OwMgAZOCUn5AVG6urpwcXHhO6Rac3FxoYFTAlR+QJSLiwt0dam3F9FODMPg4MGDfIfRoLi5uWHdunX13g8lqPUkxNH6tUWj+4WnYnI6btw4QQ2IUhSN7hceGq1PtEFQUBAYhgHDMNDT04O9vT369euHP//8U2aAZlpaGgYOHMhbnKGhobC0tKzTa1mWxW+//YYuXbrA1NQUlpaW8PX1xbp161BQUCCIGFWJEtR60IbkVIqSVOHQluRUipJU4aDklKgKy7IIDw/n+sqrQ2BgINLS0pCUlITjx4+jV69eCA4OxuDBg7kVGx0cHGBgYKD0Y4vFYpXPVPLuu+/i448/xtChQ3H+/HlER0dj0aJFOHToEE6dOqXSY8uj7ll/KEGto5ycHK1JTqXkJalRUVE8R9WwsCyLvXv3ak1yKlUxSd27d69aL2QEiIqKouSUqMyJEyfQq1cvnDx5Um3HNDAwgIODA5o0aYIOHTrg//7v/3Do0CEcP34coaGhAGRv8RcXF+PDDz+Eo6MjDA0N4ebmhpUrV3L7y8rKwv/+9z/Y29vD0NAQrVq1wpEjRwC8qTIeOXIELVq0gIGBAR4/fozi4mJ89tlnaNKkCUxMTNClSxduvEB4eDimTp2K7Oxsrtq7ZMkSLpaqXgcAu3fvxvbt27Fz50783//9Hzp16gQ3NzcMHToU586dQ69evQCUTT24bNkyODk5wcDAAO3atcOJEye4/SQlJYFhGOzfvx+9evWCsbEx2rZti6tXr9YYo5ubG7755hsEBQXBwsICM2fOBADs27cPLVu2hIGBAdzc3PD9998r85+VQwlqHZmYmMDJyUlrklOp8kmqiYkJmjRpwndIDQrDMPD09NSq5FRKmqTq6urC09OTkiM1k14IKTklqrB3716ZP/nSu3dvtG3bFvv376/03I8//ojDhw9j9+7diI+Px7Zt27jZbCQSCQYOHIgrV65g27ZtiI2NxapVqyASibjXFxQUYOXKlfj9999x9+5d2NnZYerUqbh8+TLCwsJw+/ZtjB49GoGBgXjw4AH8/Pywbt06mJubIy0tDWlpaZg3bx4AVPs6ANi+fTu8vLwwdOjQSu+DYRhYWFgAANavX4/vv/8e3333HW7fvo0BAwbgnXfe4fYj9cUXX2DevHmIjo5G8+bNMX78eJSWllYbIwCsWbMGrVq1wo0bN7Bo0SLcuHEDY8aMwbhx4xATE4MlS5Zg0aJF3BcCZaKe8XUkEokwYsQIFBYWwsTEhO9wlKp8kqotibcm6dChAzw9PbXy3Ddr1gxz5szRyvcmdHZ2dpg1axZMTU0pOSX1JpFIsGnTJmRlZQGQTVDd3d0BAJaWlpg9ezZ0dNRbC/P29sbt27crPZ6cnAxPT090794dDMPA1dWVe+7MmTO4du0a4uLi0Lx5cwBA06ZNZV5fUlKCjRs3om3btgCAhw8fYufOnXjy5AkaN24MAJg3bx5OnDiBkJAQrFixAhYWFmAYBg4ODtx+FHndgwcP4OXlVeN7/e6777BgwQKMGzcOALB69WqcP38e69atw88//8xtN2/ePLz99tsAgKVLl6Jly5ZISEiAt7e33BilevfuLZOwTpw4EX369MGiRYsAAM2bN0dsbCzWrFmDoKCgGuOtDUpQayEzMxM3b95E7969wTAMRCKR1iWnUgzDyCQRiYmJePnyJXx9fXmMSjuJxWKcOXMG3bt359qTNidw5d9bfn4+Ll26hL59+8pUKohyXL9+HdbW1lzCoM3tiqhXfn4+vvrqK7x69QoMw3BJaF5eHhYtWgSWZWFlZcXLHUaWZeV+CQsKCkK/fv3g5eWFwMBADB48GP379wcAREdHw8nJiUtO5dHX10ebNm2432/evAmWZSu9pqioCNbW1lXuR5HXVfUeysvJyUFqaiq6desm83i3bt1w69YtmcfKx+3o6AgAyMjIgLe3d7XHqHjNj4uLq1TV7datG9atWwexWKzUz3FKUBVUfkCUSCRCQEAA3yGpzatXr7Bjxw6UlpaCZVl06tSJ75C0RvkBUcnJyZgxY0aDqW6xLIsdO3YgNTUVmZmZGD16NCWpSiQdEKWrq4vZs2dr3PR3RNjMzMwQFRWF8ePH4+rVq9zAR7FYDIZh4Ofnh7CwMF6+FMXFxXFfysrr0KEDEhMTcfz4cZw5cwZjxoxB3759sXfvXhgZGdW4XyMjI5nPZ4lEApFIhBs3blT67DI1Na1yP4q8rnnz5oiLi6sxJgCVrhnyktvyK/tJn1NkkFfFIpy8fatqPAH1QVVAxdH6HTt25DsktWrUqBGXlNLofuUpn5yKRCKuMt9QMAyD3r170+h+FSg/Wr9z585o1KgRzxERbeTi4oLz58/D2NhY5nFjY2OEh4dz82ur07lz5xATE4ORI0fKfd7c3Bxjx47F5s2bsWvXLuzbtw+vXr1CmzZt8OTJE9y/f1/hY7Vv3x5isRgZGRnw8PCQ+ZHeLtfX16/0uabI6yZMmID79+/j0KFDlY7Lsiyys7Nhbm6Oxo0b49KlSzLPX7lyBT4+Pgq/D3kxVqVFixZyj9e8eXOlFxgoQa2BNk0lVVc0BZXyVUxOx48fr1UDohRFU1ApH00lRdTp2rVryM/Pl3ksPz8f165dU/mxi4qKkJ6ejqdPn+LmzZtYsWIFhg4disGDB2Py5MmVtv/hhx8QFhaGe/fu4f79+9izZw8cHBxgaWkJf39/9OzZEyNHjsTp06e5Smv5EfEVNW/eHBMnTsTkyZOxf/9+JCYmIjIyEqtXr+b+D7q5uSEvLw9nz57FixcvUFBQoNDrxowZg7Fjx2L8+PFYuXIlrl+/jsePH+PIkSPo27cvzp8/DwCYP38+Vq9ejV27diE+Ph6ff/45oqOjERwcrPB5lBdjVebOnYuzZ8/i66+/xv3797FlyxZs2LBBpp+qslCCWg1KTt+gJFV5KDmVRUmq8lByStTt77//BgAMGzYMCQkJXP/Ew4cPq/zYJ06cgKOjI9zc3BAYGIjz58/jxx9/xKFDh+RW80xNTbF69Wr4+vqiU6dOSEpKwrFjx7j+s/v27UOnTp0wfvx4tGjRAp999lmNn0UhISGYPHky5s6dCy8vL7zzzjv4999/ueqxn58f3nvvPYwdOxa2trb49ttvFXodwzDYsWMH1q5diwMHDsDf3x9t2rTBkiVLMHToUAwYMAAAMGfOHMydOxdz585F69atceLECRw+fBienp4Kn8eqYpSnQ4cO2L17N8LCwtCqVSt89dVXWLZsmdIHSAEAw9JkhHKVlpZi48aNyMzMFERyWlxczM3XtnDhQujr6/MSB8uyOH36NDeH2sSJE+Hh4cFLLJrq6NGjuH79uiCSU6G0K+DNyFaxWAxfX19uxClRzIMHD7Bjxw4A/CenQmpXpGqFhYVITEyEu7s7DA0N67SPy5cv4/Hjxxg/fjwYhgHLsti5cydcXV0rDd4hBFC83VGCWo24uDiEh4dj0qRJvCWnLMtiy5YtSEtL41ZxkH7YOzo6YsqUKWq/CEmT1KysLIwcOZIGttRSVlYWtm/fjsDAQN6SUyG2K6AsST1x4gQmTpwoyKX3hEwsFmPfvn1o1KgRb8mpUNsVkU8ZCSohtaVou6NR/NXw8fGBl5eX2udwK08ikSArK0tmiTHp37OysrjRgOokvd3Psiyv50ZT8TU3YHlCbFdA2e1+vs+NphKJRBg1ahS3GgwfhNquCCGah64C5Uj7nEonHgbA+4VSJBIhMDBQ7nMDBw7k7cO+/Lx3LMviyJEj1Ce1CtI+p+WnDKF2VbXy5yYuLo76pFYjMjISR48e5aZ50dHR4bVCKeR2RQjRLJSg/keanD5+/BhHjx7lOxwZXl5eMite6OjowN3dvdoJhdXp3r17uHHjBg2ckkOanMbGxuLgwYPVjo5UN6G3q4KCAhw8eBCxsbGUpMohHRB1/fp13Lt3j+9wOEJvV4QQzUAJKiqP1n/nnXf4DkmG9Ja6FMuyCAwMFExfLm9vbxrdL0fF0fpjxoypNF8gn4TeroyNjTFmzBga3S9HxdH6Na0Go05Cb1eEEM3Q4BNUTZlKytbWlvt7hw4dYGdnx2M0smgKqso0ZSopIbcrgKagkkcTppISersihAhfg05QNSU5rahnz558h1AJJalvaEpyWpEQ2xVASWp5mpCcViTUdkUIEbYGnaAeO3ZM45JTAIKdDqRiknrixAlkZmbyHJX6RUVFaVxyCgi3XQGVk9SoqCi+Q1K7zMxMblUbTUlOAWG3K0KIcDXoaaaGDRuGo0ePYuDAgRqTnAqdNEnV0dFB48aNG+Qa4B07dkRGRga8vLw0JjnVBNIkNT4+Hh07duQ7HLVr1KgRRo4cidTUVPTp00cjklNCCKmrBldBLSkp4f5uYmKCMWPGUHKqZAzDoG/fvmjRogX3WPnzro3EYjEkEgmAsvc/aNAgSk5VoFmzZhg0aBCXnEkkEq2/3V/+/06LFi00pnJKiDZjGAYHDx7kOwyFLVmyBO3ateM7jFppUAlqZmYmfv755wZ5e5BP2dnZ2LRpk9b2SZX2Od23bx+XpBLVk0gk2Ldvn1b3SY2MjMSmTZuQnZ3NdyiECEpQUBCGDRvGdxgc6QIZDMNAV1cXLi4u+PTTT1FUVMR3aBqrwSSo0gFR2dnZuHr1KkpLS/kOqcGIiYlBZmamVg6cKj8gKj4+Hs+ePeM7pAbj2bNn3HnXxiRVOiAqMzMTMTExfIdDSJXEEjHCk8KxM2YnwpPCIZZo1/9FRYWEhCAtLQ2JiYnYuHEjtm7dim+++YbvsJRG3XdCG0SCWnG0/rvvvgtd3Qbd/VatunXrppWj++WN1nd0dOQ7rAbD0dFRa0f3lx+t37VrV3Tr1o3niAiRb3/cfritd0OvLb0wYf8E9NrSC27r3bA/bj9vMcXGxmLQoEEwNTWFvb093n33Xbx48QIA8Ouvv6JJkyaV7na98847mDJlCvf733//jY4dO8LQ0BBNmzbF0qVLayxsWVpawsHBAc7Ozhg8eDDeeecd3Lx5U2abTZs2oVmzZtDX14eXlxe2bt3KPZeUlASGYRAdHc09lpWVBYZhEB4eDgAIDw8HwzA4e/YsfH19YWxsDD8/P8THx8scZ9WqVbC3t4eZmRmmT5+OwsJCmecjIyPRr18/2NjYwMLCAv7+/pViZRgGv/zyC4YOHQoTExN888038PDwwHfffSez3Z07d6Cjo4OHDx9We35qS+sTVE2dSkqbaOMUVJo6lZS20cYpqComp/369aM+p0SQ9sftx6jdo/Ak54nM409znmLU7lG8JKlpaWnw9/dHu3btcP36dZw4cQLPnj3DmDFjAACjR4/GixcvcP78ee41mZmZOHnyJCZOnAgAOHnyJCZNmoQ5c+YgNjYWv/76K0JDQ7F8+XKF47h//z7Onz+PLl26cI8dOHAAwcHBmDt3Lu7cuYNZs2Zh6tSpMrEo6osvvsD333+P69evQ1dXF9OmTeOe2717NxYvXozly5fj+vXrcHR0xMaNG2Ven5ubiylTpuDixYv4559/4OnpiUGDBiE3N1dmu8WLF2Po0KGIiYnBtGnTMG3aNISEhMhs8+eff6JHjx5KvwZqdYJKyalwaFOSSsmpsGhTkkrJKdEUYokYwSeCwYKt9Jz0sY9PfKz22/2bNm1Chw4dsGLFCnh7e6N9+/b4888/cf78edy/fx9WVlYIDAzEjh07uNfs2bMHVlZW6NOnDwBg+fLl+PzzzzFlyhQ0bdoU/fr1w9dff41ff/212mOPHz8epqamMDQ0hJeXF1q2bImFCxdyz3/33XcICgrC+++/j+bNm+PTTz/FiBEjKlUkFbF8+XL4+/ujRYsW+Pzzz3HlyhWuSrpu3TpMmzYNM2bMgJeXF7755huZQcsA0Lt3b0yaNAk+Pj7w8fHBr7/+ioKCAkRERMhsN2HCBEybNg1NmzaFq6srpk6divj4eFy7dg1A2W3/bdu2ySTIyqLVCWpsbCwlpwJSMUmNjIzUyL7AGRkZePjwISWnAlI+SX348CEyMjL4DqnWSktLuS9tlJwSobuYfLFS5bQ8FixSclJwMfmiGqMCbty4gfPnz8PU1JT7kS4FLL0FPXHiROzbt48bwLR9+3aMGzcOIpGI28eyZctk9jFz5kykpaWhoKCgymP/8MMPiI6Oxq1bt3DkyBHcv38f7777Lvd8XFxcpe463bp1Q1xcXK3fZ5s2bbi/S7uWST/34uLiuOusVMXfMzIy8N5776F58+awsLCAhYUF8vLykJycLLOdr6+vzO+Ojo54++238eeffwIAjhw5gsLCQowePbrW76EmWt0R08/PDzo6OmjVqhUlpwIhTVLNzMzQunVrjewLLO37yLIsJacCIk1SGYbRyL7Aurq6mDx5MmJiYvDWW29RckoELS03TanbKYtEIsGQIUOwevXqSs9JPxeGDBkCiUSCo0ePolOnTrh48SLWrl0rs4+lS5dixIgRlfZR3cITDg4O8PDwAAB4eXkhNzcX48eP5/puAqj0/5plWe4xHR0d7jGpqgYm6enpcX8vP+2eooKCgvD8+XOsW7cOrq6uMDAwQNeuXVFcXCyznYmJSaXXzpgxA++++y5++OEHhISEYOzYsTA2Nlb42IrSvOygBtnZ2TA2Noaenh4Yhqn0rYHwT96/y8uXL2Ftbc1TRDUTi8XIycnhFh5o2rQpzxEReSp+YcjMzIS5uTlXGRGi8m3f1NSUPrOIRnA0U+xLoKLbKUuHDh2wb98+uLm5VVkAMTIywogRI7B9+3YkJCSgefPmMot/dOjQAfHx8VxSWVfSz53Xr18DAHx8fHDp0iVMnjyZ2+bKlSvw8fEBANja2gIo60fbvn17AJAZMKUoHx8f/PPPPzLH+eeff2S2uXjxIjZu3IhBgwYBAFJSUriBZDUZNGgQTExMsGnTJhw/fhwXLlyodYyK0KoENTMzE1u2bIG1tTXGjRsn8w2DCFd0dDQOHz6MgQMHolOnTnyHU4m0z+mTJ08QFBQEGxsbvkMiCnj+/Dm2bNkCJycnjB49WpBJamRkJI4fP4533nlH4ybRJg1bD5cecDJ3wtOcp3L7oTJg4GTuhB4uPVQWQ3Z2dqUEbtasWdi8eTPGjx+P+fPnw8bGBgkJCQgLC8PmzZu5z4GJEydiyJAhuHv3LiZNmiSzj6+++gqDBw+Gs7MzRo8eDR0dHdy+fRsxMTHVThuVlZWF9PR0SCQSPHjwAMuWLUPz5s25BHT+/PkYM2YMOnTogD59+uDvv//G/v37cebMGQBlifNbb72FVatWwc3NDS9evMCXX35Z6/MSHByMKVOmwNfXF927d8f27dtx9+5dmcKKh4cHtm7dCl9fX+Tk5GD+/PkwMjJSaP8ikQhBQUFYuHAhPDw8VPalWmv6oEqT0+zsbGRnZ9PkuBrk+fPnYFlWkAOnyg+IKiwspAnTNUhOTg4KCwsFO3BKOiCKZVk8f/6c73AIqRWRjgjrA9cDKEtGy5P+vi5wHUQ6qvtiGB4ejvbt28v8fPXVV7h8+TLEYjEGDBiAVq1aITg4GBYWFtwtdKBskJCVlRXi4+MxYcIEmf0OGDAAR44cwenTp9GpUye89dZbWLt2LVxdXauNZ+rUqXB0dISTkxPGjx+Pli1b4vjx41wld9iwYVi/fj3WrFmDli1b4tdff0VISAgCAgK4ffz5558oKSmBr68vgoOD6zSP6tixY/HVV19hwYIF6NixIx4/fozZs2fLbPPnn38iMzMT7du3x7vvvos5c+bAzs5O4WNMnz4dxcXFKhkcJcWw5Ts7aKjyyam1tTWmTJmidX1Oi4uLsXLlSgDAwoULoa+vz3NEysOyLE6fPo2rV68CKLt9IIRKakMYra/N7QoAVzkRi8Xw8vISTCVV20fra3u70haFhYVITEyEu7t7tX0rq7M/bj+CTwTLDJhyNnfGusB1GOFTuQ8n0Q6XL19GQEAAnjx5Ant7+1q9VtF2p/G3+BtCcqrtpAOnAODq1avchZvPJLUhJKcNgYeHB8aNG4ewsDCuksp3kqrtySlpWEb4jMBQr6G4mHwRablpcDRzRA+XHiqtnBL+FBUVISUlBYsWLcKYMWNqnZzWhkbf4qfkVHsIaZ5USk61izRJFcI8qZScEm0k0hEhwC0A41uPR4BbACWnWmznzp3w8vJCdnY2vv32W5UeS6MT1NevX6OwsJCSUy1RMUnlq79naWkp8vLyKDnVIuWT1Ly8PN7m35W2aUpOCSGaKCgoCGKxGDdu3ECTJk1UeiyNvsXfuHFjTJkyBaamppScaglpkuru7l7vKT7qysDAAJMmTUJGRgZcXFx4iYEon4eHByZPngw7OzsYGBjwEkOfPn3g6uoKDw8PSk4JIaQaGldBzczMxNOnT7nfHR0dKTnVMgzDwNPTk7uAl5aWIj4+XqXHFIvFMqt5GBoaUnKqhVxcXGQ65cfFxan8dn98fDxXsa3YtgkhhMinUQlqZmYmQkNDsXXrVqSmpvIdDlEDsViMsLAwhIWFqaxPqrTP6e7du7mZBIj2u3r1Knbv3q3SPqmRkZFc+xXaNFeEECJkgkxQL1y4gCFDhqBx48ZgGAYHDx7kktOcnByYmZlR1fQ/S5YsAcMwMj8ODg58h6U0Ojo63Nxs9R04tWnTJrRp0wbm5uYwNzdH165dceTIEZkBUbWZB07bPX36FJMmTYK1tTWMjY3Rrl073Lhxg++wlMbOzk4lA6dWrlwJhmEwfvx4bkCUvb29zByMDZWbm1ulzyuGYfDBBx/wHZrgrFy5Ep06dYKZmRns7OwwbNgwld9JIkRIBPmJmZ+fj7Zt22LDhg0AgLy8PC45tbGxweTJkylBLadly5ZIS0vjfmJiYvgOSWmUObrfyckJq1atwvXr13H9+nUEBARg2LBhuHjxIg2IqiAzMxPdunWDnp4ejh8/jtjYWHz//fewtLTkOzSladasGcaPH6/UJDUyMhK//fYbPDw8kJiYCADw8/ND37596bY+ys5P+c+q06dPAwBGjx7Nc2TCExERgQ8++AD//PMPTp8+jdLSUvTv3x/5+fl8h0aIWghykNTAgQMxcOBA7vdz587B1dWVktMq6OrqalXVtCJlzZM6ZMgQ7u9isRht27aFnp4eUlNT8emnn1JyWs7q1avh7OyMkJAQ7jE3Nzf+AlIRaZK6c+fOes+TmpeXh4kTJ2LevHlYs2YNAEpOK5KuNS61atUqNGvWDP7+/jxFJFwnTpyQ+T0kJAR2dna4ceMGevbsyVNUhKiPICuoUtIpWQoKCig5rcaDBw/QuHFjuLu7Y9y4cXj06BHfISmdvEpqXW83syyLXbt2Ye/evSgpKcGsWbMoOa3g8OHD8PX1xejRo2FnZ4f27dtj8+bNfIelEvIqqXVZYO+DDz6Ar68vXrx4AaBslhFKTqtWXFyMbdu2Ydq0aXSOFCC9HlpZWfEcScMQFBSEYcOG8R1GgyboBNXY2BgAYG5uTslpFbp06YK//voLJ0+exObNm5Geng4/Pz+8fPmS79CUrnySamBgUKcVLGJiYmBmZobJkyfj6NGj+PXXXxEYGKiCaDXbo0ePsGnTJnh6euLkyZN47733MGfOHPz11198h6YS0iRVV1cXzs7OtU6YwsLCcPPmTSxbtgwGBgawsLCo034akoMHDyIrKwtBQUF8hyJ4LMvi008/Rffu3dGqVSu+wxGMlJQUTJ8+HY0bN4a+vj5cXV0RHBxcq+tfUlISGIZBdHR0vWIJDw8HwzDIysqq137IG4K8xS+lp6cHAOjVqxclp1Uo3xWidevW6Nq1K5o1a4YtW7bg008/5TEy1ZAmqZ07d65Tf0gvLy9ER0cjKysL27dvx+eff46uXbuiRYsWyg9Wg0kkEvj6+mLFihUAgPbt2+Pu3bvYtGkTJk+ezHN0qtGsWTN88MEHtW5XKSkpCA4OxqlTp+Dh4YH33nsPJ06coOS0Bn/88QcGDhyIxo0b8x2K4H344Ye4ffs2Ll26xHcoVSosLcSVlCvwc/aDoW7V66sry6NHj9C1a1c0b94cO3fuhLu7O+7evYv58+fj+PHj+Oeff6jarOEEV0HNzMzE5cuXZW6xGRkZ8RiRZjExMUHr1q3x4MEDvkNRGYZhZJKI1NRU3Lx5s9rXiMVinDt3DhKJBB4eHvD19cUPP/yAtm3bYv369SqOWPM4OjpWStp9fHyQnJzMU0TqUb5dFRYW4ty5czUOnNq9ezcyMjLQsWNH6OrqwsbGBhEREfjxxx+hq6tL00vJ8fjxY5w5cwYzZszgOxTB++ijj3D48GGcP38eTk5OfIdTCcuyOBB3AM1/ao4+f/VB85+a40DcgTp1k6mNDz74APr6+jh16hT8/f3h4uKCgQMH4syZM3j69Cm++OILAOBmAirP0tISoaGhAAB3d3cAZV/CGYZBQECA3OOxLItvv/0WTZs2hZGREdq2bYu9e/cCKKvC9urVCwDQqFEjMAxDdwaUgNcKqlgixsXki0jLTYOjmSNambXC1r+2IicnBzo6Olx/Q1KmBCVIQQoKSwuhr68vd5uioiLExcWhR48eao6OH9nZ2fjrr79QVFQEsViMTp06QSwGLl4E0tIAR0fAz0+M/fvLppJKSUnB5MmTueoWy7IoKiri+V3wS1676tatW6Upbe7fvw9XV1c+QlQ7aT/lpKQkZGRk/DfKXCTTrnr0AG7ejMTLly8RHByMsWPHcnd6pk6dCm9vbyxYsKBOA660SWlpaaXPK+mAn7fffpunqISj4nWwh0sPiHREYFkWH330EQ4cOIDw8HAukRKSey/u4b0j7yHicQR0mLJ619PcpxixewT8Xf3xy+Bf4G3jrfTjvnr1CidPnsTy5csrFbAcHBwwceJE7Nq1Cxs3bqxxX9euXUPnzp1x5swZtGzZsspr65dffon9+/dzXZ8uXLiASZMmwdbWFt27d8e+ffswcuRIxMfHw9zcnAprSsBbgro/bj+CTwTjSc4T7jELxgID2AHobNoZEomE6xOSmJiI6OhoWFlZqXx1H5ZlIZaw0BUJp7jMsiwOxR/CT/gJOcjBuV/P4cfAHzHMexjmz5+PIUOGwMXFBRkZGfjmm2+Qk5ODKVOmqCUuvs+Vubk5OnTowI3uP3++EX76yQNP3jQrWFkVoW9fBunp5zB79mw8fvwYubm5CAsLQ3h4eKXRsqoghHNVUXXt6pNPPoGfnx9WrFiBMWPG4Nq1a/jtt9/w22+/qS02Ps8XwzDo1q0bUlJSEB8fj/nzr2LPnm548uTNbXs7uyIEBDxCixYGCAgIwFtvvcV98TExMYG1tbVa+gvyfa4qYllW5suNtJ+3t7c3GIaBRCJBSEgIpkyZAl1d9V6ChHau5F0HncydsD5wPc78dAY7duzAoUOHYGZmhvT0dACAhYWFYJKfaYem4drTawAACSuR+fNS8iVMOzQNV6ZfUfpxHzx4AJZl4ePjI/d5Hx8fZGZm4vnz5zXuSzqzhLW1dZWz4eTn52Pt2rU4d+4cVzhr2rQpLl26hF9//RX+/v5cdwI7Ozutmo6PT7wkqPvj9mPU7lFgIXsLIJvNxm7shoeZB7p37849Lu1LOWXKFK4sryqz991CWk4hPvX3QM+m1rz3Iyv/DZVBWSypuancN1Tjh8bYMX4HXrx4AVtbW7z11lv4559/1FLpEsK5Kj8F1R9/ZGL37mYAWABvYnn1ygi7d49B166H8PnnnyMtLQ0WFhZo06YNTpw4wb1elYRwrsqrqV39MvgXHDhwAAsXLsSyZcvg7u6OdevWYeLEiWqJTwjny8PDA+PGjcOiRVEIC+tW6fmMDH3s3j0GixbdQr9+bXn7NxXCuZJ68eIFjhw5gsePH3OP5ebmYvfu3XB1dcXgwYNx8+ZNJCcnY9q0aWqPT0jnqqrr4NOcp2WPbyp7vOIt55CQEMHcPs4tzoWYld+FRcyKkVucq+aIyki7Fyjr3zc2NhaFhYWVrhXFxcVo3769Uo5BKlN7giqWiBF8IrjSf0opBgz+yv8LuYVFEOlUvjX2ukTF62Zn5KGgRIzPjtxF+yYW+Kh7UzS1NlHpMasTdHAqrqeWTUwvPWflv6H6vt0JD3enVHqdqs8TIKxz1bVHb0ycWPrfbxU/lBgwDIuUlO2IeyBBxTuuDe1cATW3q6CDU3F+yiVcGzBQ5nXqOFeAcM6Xg5M7zodLv+xVblcAi5CQtvjs/2Tb1fHTZwE0vLZ14OBBpFVYhlqaLCQnJ+PAwYOYNGUqCorL/q+qqz1JCeVciSVizDku/zrIggUDBs5rnZEYnCj3OtjQeXh4gGEYxMbGyp0K6t69e2jUqBFsbGzAMEyl/rAlJSW1Op5EUvbZePToUTRp0kTmOQMDg9oFTxSm9gT1YvJFmdsZFbFg8STnCTr9tBHmevx+M4l6mo1pu6J4jSEm51m131Bvpz1DwEb+R3byfa5yHljgxYt2VT7PsgyePAE6zYuBuWe2+gKTg+9zBWhOuwL4PV85DyzwLL1dNVsIp10B/LetHjmZMKticAzLsohPy6R2BSCnJApP86u/DqbkpOBi8kUEuAWoLzANYW1tjX79+mHjxo345JNPZLo8pKenY/v27dxYA1tbW6SlpXHPP3jwAAUFBdzv0j6n1Q1mbNGiBQwMDJCcnFzlohKK7IfUjto74qTlptW8EYAS9pWKIyHapCRHfsf2um5HCEDtiqiGotc3Ra+XfDHTN4OIkV/hFTEimOmrbnrIDRs2oKioCAMGDMCFCxeQkpLCddlq0qQJli9fDgDo3bs3NmzYgJs3b+L69et47733uCksgbI+o0ZGRjhx4gSePXvGLYhQnpmZGebNm4dPPvkEW7ZswcOHDxEVFYWff/4ZW7ZsAQC4urqCYRgcOXIEz58/R15ensree0Oh9gqqo5mjQtv9PNwfPV2717yhkg3afBUF/912EjEMJGAxrJUjpnV2hZmB+rvs+m42Rmw1/bzdrY0RPlP95wkQ1rm6EAEEbq15u58ne6Gnv5fqA6pASOcKEHa7AoRzvoTergDhnCsA+HPzXbx4XlDl8+7WJvia2hUuPC5F4Pava9xO0eslX/4c+qfMKH4JK+H+7O7SHb8M/kVlx/b09MT169exZMkSjB07Fi9fvoSDgwOGDRuGxYsXc4OWvv/+e0ydOhU9e/ZE48aNsX79eplVCHV1dfHjjz9i2bJl+Oqrr9CjRw+Eh4dXOt7XX38NOzs7rFy5Eo8ePYKlpSU6dOiA//u//wMANGnSBEuXLsXnn3+OqVOnYvLkySofM6Pt1H5l7OHSA07mTnia87TKfqiWBo7o4dITRnr89r1p18QC8wI8eO0raGFgDhEjkns7VsSIYGFgzvt5Avg/V317AU5OwNOngLw7jAxT9nzfXqJKfVDVje9zBWhOuwL4PV9v2hULlq084EJI7Qrgv20ZGhjI7fMHlA1YMTQwaPDtqqhUgvg0F+gztihm5X9LZMDAydwJPVyEPV2gt403zk85j0PxhzDn+Byk5KRwsxAM9Rqq8kForq6uCAkJqXabxo0b4+TJkzKPVVztacaMGZXm5K2YXDIMgzlz5mDOnDlVHmvRokVYtGhRzYEThaj9Fr9IR4T1gWUTozNyBx0ANqLZmLorGnfSc9QcHeBlZwoHMwOsGdISP49ow2sSAZR9Q+3uUlZxkM4zJ/2zu0t3/Dn0T95iE9K5EokA6Xz7DFPx4lj2+7p14C2JENK5AoTdrgDhnC9puyrLt2TblfTay2e7AoRzrgBg6NCh3FSA0uRE+qeLiwuGDh3KW2wA/+fqTnoOJu+4ge03U+Fi9BHKroKy10Hp7+sC12nEACmGYTDMexjuf3QfZyefRfyH8RjmPYz3mUqI5mNYVS/3UIX9cfsx5/gcPM19yj3mbO6Mme2W4UpCc7wqKIEOA0zs4IyZb7nBQFc9ubTQ5skD3sxXKf2G6mLhorZvqDXFJbRztX8/MGcOi6dP35wXA8tC/PqzCFMm6FXzStUS4rkSaruSxiaU8/Uyvxg9ghPwcG9TFGe/WcLR2bksOR0xgr/YAGGdK+DNPKjHjx9HTk4OLCwsEBgYCC8vrwbbropKJdj8TxK230yBhAWsjfXxeR9PvCi6IPc6uC5wHUb4qL5hFRYWIjExEe7u7jA0VP3ypIQAirc73hJUAHhd+BqzV89GHvIwa8Is9G7WGyIdEbILS7A2PAEn4jMAAG5WxljUzwutHMz5ClUQ1L3WsaZ6/boYs2fvQF6eGV77tMBzqwxM7OiE4J7N+A5NkKhdVW/dhQTsjHqKVrbGEJ+6i7w8M8ya9Q5699YTxG19oSotLUVKSgqcnZ3VPiG/kNxJz8HXp+KRlFnWNzfQ2w6f+nvAwrDsC3NV10F1oASV8EHRdsfrp4ZIRwR3lC3f5u/qz/2ntDDUw9JAH/T2tMWqc/eR9KoAM3dHqb2aKjSGuobo7d6b7zAETyQC3N3LJgrvM7E75h7NwL6YVEzq6AxrExptXRG1q6q9zC/G/ttlI6mndnbB2QfHAAD+/kMoOa2Brq6uIJfnVJeqqqY9m9rIbFfVdZCQho7XBFVHRweenp7c3yvyb2aDdk0suGrq1hspuJj4kqqppFrl21UXVyu0cjDDnfRcbLuRQlVUUitbbySjSCxBa0dzdHG1QnI1n1eESNVUNS2vpusgIQ0Vr7f4ayPi4QusOneft76pRHP98/gVgg/GwEBXBweCulAVlSjkZX4xhof8iyKxBOuHtcZbrlZ8h0QETtGqqVDQLX7CB0XbncZkd/7NbBD2bicEetlBwgJbb6Rg8s4bvIz0J5qli0sjtHIwQ1GpBNtuVF4WlhB5ZKqnLo34DocInHSE/tYbZclpoLcddr7rK9jklBCh05gEFXjTN/XbwS1hZazH9U3dcOkRikolfIdHBIphGMx8yw0AsC8mFS/zi/kNiAhe+b6nM7q48j76nAhXUakEGy49wszdUUjKLIC1sT7WDGmJpQN85N7SJ4QohtcEtbi4GCtWrMCKFStQXKx40kDVVFIdee2KqqikNuRVT+v6eUW0lzKqptSuCJGP9wpqSUkJSkpKav06qqaS6lRsV1RFJYqqrnpa188rol2UXTWldkVIZbwnqPVF1VSiKKqiEkVQ31NSHeprKgxBQUFgGAYMw0BPTw9NmzbFvHnzkJ+fz3doREk0PkEFqJpKFENVVFIT6ntKqkJ9TatXWlqKxMRElJaWqu2YgYGBSEtLw6NHj/DNN99g48aNmDdvntqOT1RLKxJUKaqmkppQFZVUh6qnRB6qmlaNZVnExcXhp59+wl9//YWffvoJcXFxUMcMlgYGBnBwcICzszMmTJiAiRMn4uDBgwgKCsKwYcNktv34448REBDA/R4QEICPPvoIH3/8MRo1agR7e3v89ttvyM/Px9SpU2FmZoZmzZrh+PHj3GvCw8PBMAyOHj2Ktm3bwtDQEF26dEFMTIzK32tDpFUJKkDVVFI9qqKSqlD1lFREVdPqvXjxAlu2bMHu3buRm5sLAMjNzcXu3buxZcsWvHjxQq3xGBkZ1aov75YtW2BjY4Nr167ho48+wuzZszF69Gj4+fnh5s2bGDBgAN59910UFBTIvG7+/Pn47rvvEBkZCTs7O7zzzjvUh1gFtC5BlaJqKqkKVVGJPFQ9JeVR1bRmhw4dQnJyMgBwFVPpn8nJyTh06JDaYrl27Rp27NiBPn36KPyatm3b4ssvv4SnpycWLlwIIyMj2NjYYObMmfD09MRXX32Fly9f4vbt2zKvW7x4Mfr164fWrVtjy5YtePbsGQ4cOKDst9Tg8ZqgMgwDV1dXuLqqplpB1dSGqaZ2RVVUUpEi1VNVf14RYVB31VST21VxcXGVt/JZllX5tFlHjhyBqakpDA0N0bVrV/Ts2RM//fSTwq9v06YN93eRSARra2u0bt2ae8ze3h4AkJGRIfO6rl27cn+3srKCl5cX4uLi6vo2SBV0+Ty4np4egoKCVH4c/2Y2aNfEAmvDE3AiPgNbb6TgYuJLfNXPCy0dzFV+fKJeirQraRX1Tnoutt1IQXDPZuoJjgiSItVTdX1eEf7cSc/B16fjkfSq7JZuoLcdPvX3UOntfGpXdderVy9s2rQJenp6aNy4MfT0yv6ddHR0KiXO8m7BS7eXks4IUP53AJBIai5oadqXC02gtbf4K5JXTZ2xOwo/UzW1QaIqKpGivqdEpmr6ivqaagoTExN4eHjA1dVVJrG0tbVFWlqazLbR0dFKO+4///zD/T0zMxP379+Ht7e30vZPyjSYBFWqYt/Uv/7rm3qX+qY2ONQXlQDU97Shu5Oeg8k7qa9pXejr61f5hY5hGOjr66s5ojK9e/fG9evX8ddff+HBgwdYvHgx7ty5o7T9L1u2DGfPnsWdO3cQFBQEGxubSrMGkPrjfanTNWvWYM2aNWpd4o2qqdpN0XZFVVRSm+opX59XRDWEUjXV5HY1dOhQuLi4AHhzi1v6p4uLC4YOHcpLXAMGDMCiRYvw2WefoVOnTsjNzcXkyZOVtv9Vq1YhODgYHTt2RFpaGg4fPsxbMq7NeO2DCqDS9A3qVLFv6l83UnCB+qZqBUXbFfVFbdhqWz3l8/OKKA8ffU2ro6ntysbGBlOmTEF8fDyOHz+OnJwcmJubIzAwEF5eXirtLhMaGlrt80uXLsXSpUurfD48PLzSY0lJSZUekzcIrHv37kqtyBL5eE9Q+Satpvb2tMWqc/e5auqkDs6Y8ZYbDHQbXC+IBkVaRQ0+GIN9MamY1NEZ1ib0TbghoL6nDU9RqQSb/0nC9ptlt/OtjfXxeR9Pup1fDwzDwNvbGx4eHkhJSYGzszN0dRt8akGUgLKv/1Df1IaL+qI2TNT3tGGhvqaqpaurC3d3d0pOidJQgloO9U1tmKgvasND1dOGQyh9TYnmCwgIAMuysLS05DuUBoESVDmomtrwUBW1YaHqacNAVVNCNBclqFWgamrDQlXUhoOqp9qPqqa1U9VqUISogqLtjdfOIgzDoHHjxtzfhYhG+mueurYrGtHfMNS1eqoJn1dEeCP0a8Jnu5JObl9QUAAjIyO1Hps0XNJZKyqu5FURw9JXJ4VFPHyBVefu41VBCXQY0Eh/LfTP41cIPhgDA10dHAjqQiP6tczL/GIMD/kXRWIJ1g9rjbdcrfgOiSgJjdCvm7S0NGRlZcHOzg7Gxsb05YuoDMuyKCgoQEZGBiwtLeHo6Fjt9pSg1lJ2YQlXTQUANytjqqZqEZZlMWN3FO6k52JCeyeqomqZdRcSsDPqKVo7mmPz6HZ0MdYSmlY1FRKWZZGeno6srCy+QyENhKWlJRwcHGr8/KUEtY6omqq9qIqqnah6qn2oaqo8YrEYJSUlfIdBtJyenh5EIpFC2/KaoJaUlODnn38GAHzwwQc19kcQGqqmClN92xVVUbVTfaunmv55pW20pWpK7YoQ+Xgt97Esi+zsbGRnZ2vkKEJFRvpLWBbhCS+QllPIc7QNR33bVfkR/XtvP8XjV5q5DCF542V+MfbdSgVQ95H7mv55pS20bYQ+tStC5KP70UpQ3bype2+lYsHRu/j6dDzfYZJakI7oLxazGL/tOvbeegoJXTw0koRlsehELIolLCwMdWneUw12Oy0bE7dfp3lNCWkAaE0yJZFWU3t72mLVuftIelWA6buiIC3U3HiShdup2WjT2ILfQIlCpFXU4IMxELMs1oQn4PT951jUzwtOljQdi6Z4kvUaX52Iw91nuQAAQz0RDYzSECzLYvHJe7j/PA+5RaXIel2CUknZl0QRw2Dl2z7wb2bLc5SEEFWhCqqSSaupA5rbggXw3+cpdBhg879JfIZGaqmLSyPo6rxJZmLScjB+WyTCop5QNVXgJCyLsKgnGLctErH/JacAIJbQv5umyC0qxfmE50h8VYAX+cVccgoA7ZtYUHJKiJajBFUFLAz10MpRtlIqYYFryVmIepLFT1Ck1hiGgU65apuYZVEsZvHDhYe4+Oglj5GRmlx4+BI/XHiIEjGL8ilpQbGYt5hI7RjoitC2ijtOs7u5qzkaQoi6UYKqAjmFJfjp0kO5z318KAZ303PUHBGpCwnLokT8Zllbaara2aURvO1M+QmKKMTH3hSd5fQ1fV0ipuq3BriTnoPJO28gMiULwJv/eyKGQWcXS7SimVII0Xq8JqgMw8DW1ha2trZa1S/MzEAXvT1t0dTaGLam+jDWezPnV2GpBNN3yY70J8qlrHZVUCxGxVRm7Tut8NPwNrA3M6xfkESl7M0MsaS/N/TKddFgALCoexVVWz+vhETeCP0FvT2hJyo732KWxf/+m2FDW1C7IkQ+mqhfTSQsi7ScQmy8nIgzD54DoHlTha6wRIwP9t+Csb4IL/KK8ehVAc2LqkHKz3s6p3tTbP43CQXFYvw8oi0M9RSbKJqoT3Xzmu6OforvIxLQ0ckSG0e25TlSQog6UILKA1qFSnOwLAuGYWh1KQ1T1apR0n9PIhyKrAYlYVlcfPQSXramcDCnuxeENASUEfGgunlTibBIkxnpvKhFpRJsu5HCc1SkJltvJKNILEFrR3OZeU8pORUWaV/TmuY11WEY+DezoeSUkAaE96VON2/eDACYOXNmg1zijaqpyqeqdkVVVM1QVfW0vujzSnkUqZo2FNSuCJGP14n6WZbF8+fPub83RP7NbNCuiQXWhifgRHwG/rqRgguJL6lvaj2oql1Jq6h30nOx7UYK9UUVqKqqp/VFn1fKUV1f04aI2hUh8lGZTgCkq1B9O7glrIz1kPSqADN200h/oZGuLgUA+2JS8TK/mN+ASCUv84ux/3YaAGBGF1e6pS8g8kborxnSEksH+DTY5JQQUjVKUAWE+qYKH/VFFTZVVU9J/Sja15QQQqQoQRUYqqYKG1VRhYuqp8JDVVNCSF1RgipQVE0VLqqiChNVT4WFqqaEkPqgBFXAqJoqTFRFFR6qngoHVU0JIcrA+1KnFhYWsLCwoAtKNaiaWjvqaFdURRUWdVRP6fOqZlQ1rT1qV4TIRytJaRiaN1U4aF5UYVDVvKdEcTSvKSFE2Sir0TBUTRUOqqIKA/U95RdVTQkhqkAVVA1G1VT+URWVX1Q95Q9VTQkhqsRrJiNd4m3z5s0oKSnhMxSNRNVU+dTZrqiKyi91Vk/p8+qNu1Q1VRpqV4TIx2uCyrIsUlNTkZqaSku81VGVI/0vN9yR/upsVzSinz/qHrlPn1dlVdOfLz3CDBqhrzTUrgiRj+4Fa4lK1dTrKZhC1VS1oCoqP6jvqXpJq6Z/UdWUEKIGlKBqkYrV1ESqpqoFVVHVj+Y9VR+qmhJC+EAJqhaiaqr6URVVvah6qh5UNSWE8IUSVC1F1VT1oiqq+lD1VPWoakoI4RslqFqOqqnqQ1VU9aDqqWpR1ZQQIgS8J6jGxsYwNjbmOwyt1hCrqXy0K6qiqh7f1VNt/ryiqil/tLldEVJnLGlQsl4Xs18dj2U7rwtnO68LZ8f+dY29k5at9OPk5OSwwcHBrIuLC2toaMh27dqVvXbtmtKPUxsRERHs4MGDWUdHRxYAe+DAAZnnJRIJu3jxYtbR0ZE1NDRk/f392Tt37sjdl0QiYQMDAyvtRyKRsNPCbrCd14Wz6yIS1B6Xtvvwx+2sZcuurHEjG7nnat++fWz//v1Za2trFgAbFRWl8piU8e/n7+/PApD5GTt2rMriKi4uZj/77DO2VatWrLGxMWtr78C6dhvItlu6l+28Lpz96kQsm/W6uF7HJ4SQ+uC9gkrUS13V1BkzZuD06dPYunUrYmJi0L9/f/Tt2xdPnz5V2jFqKz8/H23btsWGDRvkPv/tt99i7dq12LBhAyIjI+Hg4IB+/fohNze30rbr1q2TW72rSxVVmXFps5f5xTgf+xTGjZth0crv5G6Tn5+Pbt26YdWqVWqLS1n/fjNnzkRaWhr38+uvv6osroKCAty8eROf/98XmLv5EOwmLMKLJ0l49OeXVDUlhAgD3xky4Y+qqqkFBQWsSCRijxw5IvN427Zt2S+++KLe+1cGyKl8Ojg4sKtWreIeKywsZC0sLNhffvlF5rXR0dGsk5MTm5aWVmXFrLZVVGXEpe1+iHjAdl4Xzk7fdZOVSCRyz71UYmKi2iqo5dX138/f358NDg5WW1wsy7J30rLZMX9d4/7/T1+/iwXAPn78WGVxEEKIonhf6jQ0NBShoaG0xBsPVFVNLS0thVgshqGhoczjRkZGuHTpUn3DrlFd2lViYiLS09PRv39/7jEDAwP4+/vjypUr3GMFBQUYP348NmzYAAcHB7n7UmZfVEXj0nZ89z0FVNuuAGD79u2wsbFBy5YtMW/ePJVVyKvqazquhRUYhoGlpaVKjkvko+sgIfLp8nlwlmXx+PFj7u+EH/7NbNCuiQXWhifgRHwG/rqegouPXmJRPy+0dDCv9f7MzMzQtWtXfP311/Dx8YG9vT127tyJf//9F56enip4B7Lq0q7S09MBAPb29jKP29vbc/sCgE8++QR+fn4YOnRotfuTjui/k56LbTdSENyzWW3eQq3j0nZCGLmvynY1ceJEuLu7w8HBAXfu3MHChQtx69YtnD59WknRl7mbnoNlp+OR9KoAQNkI/U/9PWAAMbqP+RwTJkyAuXnt/8+TuqPrICHy8ZqgEuGQVlN7e9pi1bn7XDV1UkdnzOjiBgPd2hXbt27dimnTpqFJkyYQiUTo0KEDJkyYgJs3b6roHShHxcocy7LcY4cPH8a5c+cQFRWl0H5mvuWG4IMx2BeTikkdnWFtoq+SuLSdEKqn9VXTv9/MmTO5v7dq1Qqenp7w9fXFzZs30aFDB6XEcCw2HTHJUZCwgLWxPj7v44meTW1QUlKC0aPHQSKRYOPGjUo5FiGE1BcNkiIylDVvarNmzRAREYG8vDykpKTg2rVrKCkpgbu7u4oirx/p7XppxUsqIyODq36dO3cODx8+hKWlJXR1daGrW/b9buTIkQgICKi0T2XMi6pIXNpOCNXTuqrrv1+HDh2gp6eHBw8e1DsG6f/d8IcvKs1rWlJSgjFjxiAxMRGnT5+m6ikhRDAoQSWVKLNvqomJCRwdHZGZmYmTJ0/WeGucL9Lbq+VvqRYXFyMiIgJ+fn4AgM8//xy3b99GdHQ09wMAP/zwA0JCQirtUxl9URWJS5tpevW0rv9+d+/eRUlJCRwdHet87PJ9TQHAzEBXZoS+NDl98OABzpw5A2tr6zofixBClI1u8ZMqKdI3tbC0EFdSrsDP2Q+Gum8GRZ08eRIsy8LLywsJCQmYP38+vLy8MHXqVLXEzrIskpKSZPp05eXlISEhgfs9MTER0dHRsLKygouLCz7++GOsWLECnp6e8PT0xIoVK2BsbIwJEyYAKKuGyRsY5eLiUmVluHxf1JBrCejgll7pXNU3Lm1VWFqIr87swetSe7RtbIsuLo1qPFevXr1CcnIyUlNTAQDx8fEAqv63qy1VtKuHDx9i+/btGDRoEGxsbBAbG4u5c+eiffv26Natm0JxlZaWIiUlBc7OztDV1cXd9Bws+jsK9++/qcCOdNOFec4TJCcXoHHjxhg1ahRu3ryJI0eOQCwWc1VeKysr6OvXvTsKIYQohfonDnijqKiIXbJkCbtkyRK2qKiIz1BIDcITnrOBv11mO68LZ99aH87+dDGB3RWzl3Ve68xiCVjntc7s/tj9rEQiYVmWZXft2sU2bdqU1dfXZx0cHNgPPviAzcrKUkusRUVF7MSJE1kA7OHDh7nHz58/X2kydADslClTWJZ9M6G6g4MDa2BgwPbs2ZO9ffs2W1paWuWxUM1UR1JXEl+wHt9+zRoss5N7ruoSV0xMTL3OkZBJJBJ2f+x+tsn3TiyWgNVfaseujNjCSiSSGs9VSEiI3OcXL17MlpaWcue8LpTZrsr/+yUnJ7M9e/ZkraysWH19fbZZs2bsnDlz2JcvXyp0rmJjY9m1a9eyS5YsYb9fu5b9ft959q1151nvD36oMi7pNFzyfs6fP1/nc0Rqj66DhMjHsCx/wwaLi4vx3XdlE27PmzePvrULXHZhCdaGJ+BAbCSSCtYiV3wLOtCBBBLoMDqQsBL4u/rjl8G/wNvGm7c4i4uL4efnhxs3bmDq1Kn4888/67yv0NBQZGVlITAwEF5eXrW+xXzvxT28d+Q9RDyOAMAAYAV1roSm/PlioAMWEkjPW13PF8uyiI+Px4kTJ2BpaYmgoKA6xabMdqUML168wJEjR/D48WMwDAOWZcGi7Gy9FFmgUauu+DSwA024L3B0HSREPl4TVKKZWv3cCXdf3ARQuT+qiBGhc5POuDJdvXN0SiQSbNq0CVlZWQDKVu/JycmBubk55s6dCwCwsLDArFmzoKOjeNfr77//HsXFZX1HXV1d0a9fP9ja2ir8ev+//BGZGgkxK670HF/nSsj8/vDDtafXqjxfnRp3QsTkCIX39/z5c5w6dQrJyckAAH19fa49KEIikeDXX39FdnY2AOC7775Dbm4uLCwsMH/+fACApaUlZs+eXat2pQx//PEHnj59Kn9qIoaBU5MmmD59ulpjIoQQZaE+qKTWGJ1CyEtOAUDMipFbrP4lOPPz8/HVV1/h1atXYBiGSxZyc3OxePFiAGULBTx79gwGBgZ1Osbjx4/x+++/1+o1j/AIYlROtgD+zpWQ5Rbnyk1OgbLz9ejpI6xcubLO+y8uLq7V64uKirBu3Tq8fv0awJvpovLy8rBo0SKwLAsrKytMnjwZZmZmdY6rLoqLi6ueN5NluS9WhBCiiWgUP6m1mlY7kfBQlDczM0NUVBQ3MlosLktypBdwZ2dnvPfee3VOTknDZGBggFmzZsHZ2RnAm/YkbV9+fn6Ijo5We3JaVCrBy/witR6TEELUidcKamlpKXbv3g0AGDNmDDevJBEmsViMixcvIjMzs9rtnmS9xt30nDqtQlUfLi4uOH/+PKysrJCfn889rqenhyNHjsDbu/Z9Pcvf4tfR0QHLsujQoQN69uxZaSlXefZs3oOMFxm1Pi6Rz9bGFgtnLqxxu8LCQly4cIFbGEKaWNb2Fj9QNsrewsICK1askPlyZmxsjPDwcOjpqbePp3Q1KOfXJaguLc7Ly4NYLIZIJFJbbKT26DpIiHy8/k+QSCTcRNQSSd3Xfieql56ejoMHD+LZs2fQhz43OKoyHUgkRvVahao+rl27JpOcAmUV359++gkLFiyAh4dHnfft4uKCgQMHws7OTuHXmBuaQ8SIquxTaaav3sqb0BnpmqLsxo78/s3mhuYKDSLR19fH4MGD0blzZxw/fhxJSUkyzykqISEB+/btQ3JycqU7B/n5+bh27ZrCU0HVV1GpBL//k4RtN1MgYQFnkR7AMkAVdywKCgqwefNmDBs2TClTbBHVoOsgIfLRLX5SLbFYjPDwcGzevBnPnj2DkZERfu73M3q49gAA6DA6Mn92d+6Od1uurtcqVPXx999/AwCGDRuGhIQEvPPOOwCAuLg4hIWFcfNjKsrR0REWFhYYN24cJk+eXKvkFAD+HPonurt0B/DmHJWNswbcLXzx51B+R4ILTR+nJTATtQYgp225dK/1+bKzs8PkyZMxduxYWFhY1Gri+9TUVISFhUEsFuPFixcA3rQr6YIThw8frlU8dXU3PQeTd97AXzfKktNALzt8MGUsXF1cALzpGyv908bGBgYGBnj27Bk2b96M8PBwrlsCIYRoAt6nmZIOWFi4cCFNryEw5aumAODj44O3334bJiYmYFkWh+IPYc7xOUjJSYGLhQvWB67HUK+hYBgGEQ9fYNW5+3hVUAIdBmqrpl6+fBmPHz/G+PHjual3tm/fjkePHsHb2xsjR46s1S1PlmUhkUjqdZu04rmyN3GCOTsL9kY9cXDqW7A2oXYPlK0aNTzkXxSWijGyQwp+vvGF3LZVV2KxGDo6OgrvQywWY9++fWBZFo6Ojnjy5IlMu9q5cydcXV1VWkGtWDW1MtbD572bw7+ZDYA3U2gdP34cOTk5sLCw4KZEy8/Px7FjxxAXFwcAsLe3p2qqANF1kBD5KEEllUj7ml68eBESiQRGRkYYNGgQWrZsWeniXtVKUgCQ/boE30ck4GR8WR9MdytjmVWo1ElaPeKzP570XHV16ooP9sfhbnouJrR3QnDPZrzFJCTrLiRgZ9RTtHIww+9j2qNIXFRl21IXPtuNtK9p0qsCAGVV008DPOTOa1pxJSkplmVx9+5dHDt2DK9fv4aOjg569OiBHj16UN9UgaDrICHy0S1+IiM9PR2bN29GREQEJBIJfHx88MEHH6BVq1ZyK0+Guobo7d5bbgJhYaSHZYE++HZwS1gZ6yHxVQFm7I7Cz5cfoahUvX2tRCIRd0FmWRbHjx+XWZ5SHaTnykjPCDO7uAEA9sWk4mU+TQf0Mr8Y+2+nAQBmvuUGhmGqbVuqkpCQgOPHj3ODqsq3G3UpKpXg50uPMGN3FJJeFcDKWA/fDm6JpYE+VU66r6urC3d390oDbBiGQatWrfD+++/Dx8cHEokEERER2Lx5M7e0KSGECBElqASA/L6mI0eOxOjRo2FiYlKvffs3s0HYpE4Y4GXHW9/U8m7evIlr164hLCxM7Umq1FuujdDSwQxFpRJsu5HCSwxCsvVGMorEErRyMEMXl0a8xJCQkICwsDBcu3aNG/2vbvL6moa924m7pV9XpqamGD16NEaOHMnNB0x9UwkhQkYJKql11bQuhFRNbdeuHby9vSEWi3lLUhmGoSrqf+RVT9VNmpyKxWJ4e3ujXbt2aj1+XaqmtUXVVEKIJqGlThuw2vQ1VSYh9E0Vi8XYu3cv7t27B5FIhHHjxtVrCqq6YFkW03dHNfi+qBX7nqo7Qa2YnI4aNUqtt/Vr09dUWahvKiFE6ChBbaCqG6GvLnyN9JcSQpJ6NekVPj4UAwNdHRwI6tLgRvRLR+4XiSVYP6w13nK1Uuvx+UxOaxqhrw55eXk00p8QIkiUoDYwfFVNq8J3NbV8kqqvr4/g4GAYGxur5dgAVVH5rJ4WFBRg3bp1KCkpUXtyykfVtCpUTSWECBGvCWppaSkOHDgAABg+fDgt8aZiQqiaVoXPaqpYLMaBAwfQokULtGjRQuXHq6ihVlH5rp4CQGxsLGJjYzF8+HC1JGNCqJpWhaqp/KDrICHy0TyoDYDQqqZV4buaWp5EIoGOjnq6GjTUKipf1VN1/tuWJ6SqaVWomqp+dB0kRD4axa/l1DFCX1mEMtI/OzsbmzZtUtvo/oY4op+vkfsJCQnYtGkTsrOz1XI8QD0j9JWFRvoTQoSCElQtpcp5TVWN73lTr1y5ghcvXqh1CqqGNi8qH/OeSgdEvXjxAleuXFHLMVU1r6mq0byphBC+UYKqhTSpaloVPqup/fv3V/s8qQ2pispH9bTiaP3+/fur9HiaVDWtClVTCSF8ogRVi2hy1bQqfFRTRSIRRo0apfYktaFUUdVdPVX3VFKaWjWtClVTCSF8oARVS2hD1bQqfFRT+UhSG0IVVd3VU3Ump9pQNa0KVVMJIepGCaqG08aqaVXUXU2tmKSeO3cOqp70QturqOqsnrIsi7Nnz6olOdW2qmlVqJpKCFEXXqeZYlkWJSUlAAA9PT2Nr/Spm5DnNVU1dc6bKhaLcfbsWfj5+cHU1FTp+69IW+dF5WPe07y8PFy5cgV9+vRRSXIq5HlNVY3mTVUOug4SIh+tJKWBNGVeU1Xjc97U3NxcmJmZqWTf2jovqrrmPVXlv015mjCvqarRvKmEEFWhBFXDNOSqaVXUvQpVVFQUjh07hrFjx8LDw0Mlx9C2Kqq6qqcJCQnYtWsXBg0ahPbt26vkGA25aloVqqYSQpSN96VOjxw5AgAYPHgwLfFWDaqaVk9d1VSWZbFnzx7ExcVBJBJh3LhxKklSta2Kqo7qafkBUS1atMCoUaOUfhyqmlaNqql1Q9dBQuTjdZCURCLBrVu3cOvWLUgk6lspSNNo8wh9ZVHXSH+GYTBy5EiVj+7XphH96hi5X3G0/ogRI5R6HG0eoa8sNNK/bug6SIh8NIpfwBrSCH1lUcdIf3VNQaUtI/pVPXJf1VNJNZQR+spCI/0JIcpACapAUdW07tRRTVVHkqoNVVRVV09VmZxS1bTuqJpKCKkvSlAFhqqmyqPqamrFJDU5OVkp+y1P06uoqq6eJicnqyQ5paqpclA1lRBSV9QbW0BohL7ySaupfTxtsercfa6aqqyR/tIk9c6dO2jTpo2Son5DWkX9+FAM9sWkYlJHZ40Z0a+Ovqe9evWCtbU1WrVqpZTklEboK5+0murm5saN9I+IiMC9e/dopD8hpEpUQRUAqpqqniqrqSKRCG3btuUSsNLSUjx58qTe+5XS1CqqqqqnT548QWlpKYCy5Kdt27ZKSU6paqpaVE0lhNQGJag8o76m6qOOvqmlpaUICwtDaGio0vqkamJfVFVVTxMSEhAaGoqwsDAuSa0v6muqPtQ3lRCiKN6XOi0oKJtP0NjYuEElZDSvKb9UNW+qWCzG3r17ce/ePaXOk6pp86KqYt5TVQyIonlN+UPzppZpyNdBQqpDK0nxgPqaCocqVqFSVZKqKatLqWLVKGUnp9TXVDhoFSpCiDyUoKoRVU2FqaZqqoRlceHhS3jZmcLR3FChfaoiSS1fRR3VujHm9/as1/5URVo9bWlvij/Gdqh321Z2ckpVU+GhaiohpCLelzo9efIkAGDAgAFavcRbWloaDhw4gOfPnwOgqqkQVVVNPXQnDd9HJKCjkyU2jmyr8P5UkaRKq6gA8L6fO971dYaOgL7cPM8rwrA//0Upy6JDEwtsGtWuXvtTZnL6ukSMTZcTsfvWU7CgqqkQVaym2tnZYdCgQXBxcdHaL/EN6TpISG3w+j9BIpHg+vXrAIB+/frxGYpSsSyLAwcOID09HYWFhcjPz+eWsGMYBsOHD6dBUALk38wG7RpbcNXUv66n4NyD53iWWwQAuPEkC7dTs9GmsYVC+5NOQbV3714kJibC0FCx6mt13nJtBH2RDorFEmy8kogrSa+wqJ8XnCyN6r3v+nqS9Rqz9kaj9L/vvK9el9R7n4aGhtDV1YWnp2etklOWZbH45D3cf56HvKJS5BSVygyEG9DcFnN7eVLVVGCkI/3v3r2Lo0ePIiMjA6GhoQAAPT09GBoawtDQEA4ODhg+fLhWfIZq63WQkPqir2oqUFhYiLi4OLmjjF1dXdG6dWseoiKKKD9v6sqz8XiSXcg9J2KAzf8m4afhildRpUnqq1evYGtrW+/4GIaBoW5ZggoAt9OyMX5bJD7o1hRj2jXhpZoqYVnsjn6KDZceoUTy5oZMXlH9R9k7OTlh+vTpsLKyqlXlNLeoFOcTnqNYXPkGUXNbEywb2KLesRHVKD9v6i+//IL8/HwAQElJCUpKSpCbm4vMzEwMHDgQRkb8fzEjhKgGTTOlAvr6+nBzc5P7XJ8+fdQbDKkT/2Y2GN/eWeYxMQtcS87CnVrOnSoSiWSS09TU1HpNQVUieVMJlLBAsZjFDxce4uKjl3XeZ31cePgSP1x4KJOcAkBBcd3mtkxISEBqair3u62tba1v65sb6mFUmyZyn1vQu3md4iLqZWpqirFjx8p9rk+fPpScEqLlKEFVMum8phUTEB0dHTRt2hROTk48RUZqI6ewBL//myT3uUXH4+o8b+qLFy/w119/ISwsrE5JqoRlUVhS+didXRrB2860TjHVl4+9Kdo3qdzt4XWJGJJadnGX9jn966+/8OLFizrFI53XdGeU7GIJIoZBZxdLtKrnVGJEfZydneHu7l7pVn5UVBTNm0qIlqMEVUnkrQY1YMAArvIjkUgQEBDAb5BEYWYGuujtaYum1sawNdWHkd6b/yqpOYWYvON6nVahatSoEdzd3SEWi+uUpBYUi8ECKH+57t/cFj8NbwN7s/r3ca0LezNDLjk20S9r7wwAFrWropYfEOXu7o5GjWq/+lT51aBYAD3craAnKjtbYpbF/95yq/U+Cb969eoF6VheHR0dGBgYICMjg1ahIkTLUR9UJZA3r+mgQYNgamoKhmFw4sQJuLm5wdnZuYY9EaFgGAZLB/jIPCZhWZyKz8C6CwlIynyNGbujaj1vavmBU/fu3UNYWFitRvfr6jBo5WAGY31d+LlaYd3Fh4h49BIv84t5mxe1/KpRKwa1gIm+CL/9k4SCYjF0dRTrE1vf0frVzWu6O/opNwtDa0fFBrgR4XB2doabmxuSkpIwYMAAtGjRAkePHsW9e/cQERGBe/fu0byphGghXqeZKi4uxsqVKwEACxcuhL6+MCcer4oi85qyLIv4+Hg4OjrCwoIujtpAGatQ1WcKKpZlwTCMYFaXqmrVKGmcNalvclpxXtMBXnaY6+8BC6OyEfoSlsXFRy/hZWsKBwXnsSXCkp2djbS0NHh5eXFtX1vmTdX06yAhqsL7UqfZ2dkAAAsLC42aMqS6qilpGOq7ClXFJHXKlCm1rrLzvbpUfVeNSklJwZYtW+qUnNJqUCQvL4+rpgKauQqVJl8HCVElWkmqlmg1KFJefaup0iS1uLgY48aNg55e7ebl5LuKWlX1VFElJSUICwuDvr5+rZLTmqqmpOHQpmoqIeQNSlBrgaqmpCr1qaaKxWJIJJJaJ6dSfFVR61s9lSopKYGOjo5CyQRVTUlVtKGaSgh5g9cEVSwW4+zZswDK5rUT6rddqpoSRSijbyrLsggPD4ezs3Ot+qTyUUWta/U0ISEBKSkpCAgIqNX/H6qakppoYjVVU66DhKgbr6P4xWIxrl69CgAICAgQ5H9MqpoSRZVfhWrVuftIfFVQ65H+d+7cwYULF2o1cIphGMzs4oaPD8VgX0wqJnV0VnkVtfzI/ZlvudUqOZUOiLKxsVFoVTWqmhJFlV+FSlNG+mvCdZAQPtA8qFWQN6/pyJEjMXr0aEpOSbX8m9kgbFInDPCyg4QF/rqegik7byg0b2qLFi3g7e1d63lS33JthJYOZigqlWDbjZT6voUabb2RjCKxBK0czNDFRbH5SiuO1m/RoublRsvPayphy6qmYZM6UXJKqmVqaooxY8Zg5MiRMDIywrNnz2jeVEI0DCWockhXg4qIiIBEIoGPjw/ef/99tGrVim7pE4VIq6nfDm4JK2M9rpr68+VH1a5CJZ0ntbZJqrSKCgD7YlLxMr9YWW+lkrpUT2s7lZR0NagZu6OQ9KoAVsZ6+HZwSywL9KFb+kQh0mrq+++/D29vb0gkEkRERGDz5s20ChUhGoAS1HKoakqUrS7V1Lomqeqqota2elrb5JSqpkSZqJpKiGaiBPU/VDUlqlKXamrFJHXXrl3Izc2t9jjqqKLWtnqam5uLXbt2KZScUtWUqApVUwnRPA0+QaWqKVGX2lZTpUmqj48PBg4cCDMzsxqPoeoqam2rp2ZmZhg4cCB8fHyqTU6pakrUgaqphGgOXkfx841G6BN1q+1If5FIhNGjR8tUKqtbQlSVI/prUz0tH2OHDh3Qvr38aahohD5RN00c6U9IQ8T7UqfPnz8HANja2qrtVjrNa0qEoC7zpubn52PHjh3o1atXlVNQqWpeVEXnPU1ISMD58+cxYcIEmJiYVLk/mteU8E0I86bydR0kROga3EpSVDUlQlObVahOnTqFq1ev1jhPqrJXl1J01ajyA6K6du2K/v37V9qGqqZEaGgVKkKEp8EkqFQ1JUKmaDVVLBZj7969uHfvXrVJqrKrqIpUTxUZrU9VUyJUQqimEkLe4H2p04sXLwKASj8EqGpKNIUi1VRFk1RlVVEVqZ7WlJxS1ZRoCnVXU9V1HSRE0/A6il8sFiMiIgIREREqGUFJI/SJplFkpL+i86Qqa0R/TSP3a0pOaYQ+0STqHumv6usgIZpKa6eZonlNiaZSZN7UiknqiRMnIJHIzqmqjHlRaxq5L5FIcOLECbnJKc1rSjQVzZtKCP+0LkGlqinRFjVVU6VJaqdOnTBp0iTo6FT+71zfKmpN1VMdHR1MmjQJnTp1kklOqWpKtAHNm0oIf7QqQaWqKdE2NVVTRSIRBg0aBEtLS+41BQUF3N/rU0Wtrnpa/hiWlpYYNGgQRCIRVU2J1qFqKiH80IoElaqmRNspugpVXFwc1q9fL9Mnta5V1KqqpwkJCVi/fj03iESKqqZEm1E1lRD10vgElaqmpKFQpG/q3bt3UVxcLDNwqi5V1Kqqp9IBUcXFxbhz5w4A6mtKGg6qphKiPoJMUC9cuIAhQ4agcePGYBgGBw8elHmeZVl89dVXsLGxgbOzM1atWoXs7GyZqumsWbPQrFkzGBkZwdbWFkOHDq1U8SFEE1VXTR0+fLjc0f21raKG/vsIDw//htjlE9DLuwmaNm2K4OBg7NixgxsQNXz4cKqakgZJXdVURa6FS5YsQePGjWFkZISAgADcvXu30n6uXr2K3r17w8TEBJaWlggICMDr16+VFichqsBrgqqrq4sZM2ZgxowZ0NXV5R7Pz89H27ZtsWHDBrmvW7RoEdasWYM+ffpg5syZaNy4MXbu3AlXV1eu0tOxY0eEhIQgLi4OJ0+eBMuy6N+/P92KIVqhqmrqL/88xpBhIyolqbWpor7ML8ZPP3yPjCuHsWT194iLi8Mnn3yCX375BVevXoW3tzeGDBuBX64+pqopabCUVU2t6joI1Hwt/Pbbb7F27Vps2LABkZGRcHBwQL9+/ZCbm8ttc/XqVQQGBqJ///64du0aIiMj8eGHH8odVEmIkAh+JSmGYXDgwAEMGzYMYrEYFy5cwDvvvIO33noL/fr1w6BBg+Dh4QEHBwesXr0as2bNkruf27dvo23btkhISECzZspZm5wQIZC3CtUXvT0Qe+mUzGT+zZo1U2h1qXUXErBk9ruws7NH/LkDePjwIcLCwrBjxw5YW1tjY9hhfHMugVaDIuQ/6liFqvy1UHrMxo0b4+OPP8aCBQsAAEVFRbC3t5e5FkqvlV9//bVS4iBEXTTmK5S0r+nBgweRl5eHvn37cn1NDQ0N4e/vjytXrsh9bX5+PkJCQuDu7g5nZ2c1R06Iasmrpv5v3208b9wBzb28IBaLER8fr1AVVdr31Kxpa+Q+uIkHDx4gPj4eT58+xdOnT9Gs1wj8b99tqpoSUg4ffVMTExORnp6O/v37c48ZGBjIXAszMjLw77//ws7ODn5+frC3t4e/vz8uXbqkkpgIUSbdmjdRHbFYjH/++QdA2be8qr5p3rlzBzExMZBIJCgpKQEATJo0SWaEvr29PR4/fizzuo0bN+Kzzz5Dfn4+vL29cfr0aejr1225R0KEzr+ZDdo1tuCqqVtvpsK9kTsm9GiCQb26A3jTF/Vuei623UipVEWVjtzvN3EW7FpawdvbGyKRCGKxGK1Gvoc46w4AS1VTQuSR9k2VVlOlfVOrq6Yqeh2sSJr42tvbyzxe/lr46NEjAMCSJUvw3XffoV27dvjrr7/Qp08f3LlzB56ennV+r4SoGu9LnZ45cwZnzpyR2zdU+h/wzp073Aj9ESNGAECl/jMsy1YatT9x4kRERUUhIiICnp6eGDNmDAoLC1X0bgjhX6VqamYhVt6RYOOVRBSVSsCyLMZ6GAOoXEUtP3Lf/lE4tm/fji1bt2H+74fRdOJCxB7bjtfRp6lqSkg1altNrek6qMjxyit/LZSuLjdr1ixMnToV7du3xw8//AAvLy/8+eefdXh3hKiPIG/xl5/XFCi7bSEdod+0aVMAqPQfPSMjo9I3SQsLC3h6eqJnz57Yu3cv7t27hwMHDqjnTRDCI7kj/XdEImR7GCKP70VH09eVRvRLq6e+pq+xcfUy9OzdB0fEzXA2yxjWvv3RY1QQCq/soRH6hChA1SP9HRwcAFR/LXR0dAQAtGjRQmYbHx8fJCcn1zsGQlSJ9wSVZVkkJiZCOlar4rymABAYGMjNa+ru7g4HBwecPn2a20dxcTEiIiLg5+dX47GKiopU92YIEZCK1dSkVwW4kZIJsVgMx9TrsCl5ib23UnHoeAl+CynFn/sKYF30Eg6p11FSUoKUrEI8LtfXtL+3AyDsMZWECIqi1dSK10FFKHItdHNzQ+PGjREfHy/z2vv378PV1bWe744Q1eK1DypQNvH39u3bMXz4cFhYWODixYt4/fo1CgoK0L17Wb+59PR0REdHw8rKCi4uLvj444+xYsUKeHp6wtPTEytWrICxsTEmTJgAoKzfza5du9C/f3/Y2tri6dOnWL16NYyMjDBo0CA+3y4hale+b+qpe0D7glg4lLyAyXUxzp3oiGHZ0lv1bfDY3BVmgSVw9m6DfyLOYmTHACwM7IOHty9i7dq1mDZtGq/vhRBNVF3f1C5dunDXwZEjR2LIkCHc6/Ly8mRWhUtMTKzVtZBhGMyfPx+LFy9G27Zt0a5dO2zZsgX37t3D3r171X4eCKkVlkdFRUVs+/btWQCsn58fu2TJEnbJkiXsV199xQKo9DNlyhSWZVlWIpGwixcvZh0cHFgDAwO2Z8+ebExMDLffp0+fsgMHDmTt7OxYPT091snJiZ0wYQJ77949nt4pIcIQnvCcHfjrRbb/hGMsIPnvhy33U/ZYm6mR7Mig/7EuLi6soaEh27RpU/aLL75gi4qK+H4LhGi03NxcNiwsjLvebdy4kbsOTp06VWbb8+fP1+taKLVy5UrWycmJNTY2Zrt27cpevHhRHW+VkHpR+zyoEokEmzZtQlZWFkpLS7Fy5UoUFRVx02N4enrC29sb77//PnR0dCAWi6vtr6Orq8sNmBLCthKJBKWlpVVuKxKJuFGaQtiWZVluZoT6bqujo8NNNK2qbYGy21jK2JZhGOjp6dVp25KSkipvx6lqWwAys1DUZtvS0lKuy0xmXgk8m+sh96UeAHnLAbNo0oTFgwelEInonFa1bflzWt9t9fT0uIEtqtq2ps+x2mxLn7v127a0tBSLFi3CzZs3UVpaisuXL6OoqAjm5ub47LPPAACWlpaYPXs2TahPGiy1J6i5ublwc3PDq1evuA9D9r9Rh9JQLC0tkZycDDMzM4SHhyMiIqLK/c2YMQNNmjQBAFy+fBlnzpypctspU6bAzc0NAHDt2jUcP368ym3Hjx+P5s2bAwCio6Nx6NChKrcdNWoUWrZsCaBsLfTqbp0MHToU7dq1A1DWD2jnzp1Vbjtw4EB07twZAJCUlIQtW7ZUuW3fvn3RrVs3AMDTp0/x+++/V7mtv78/AgICAJR1qN+0aVOV23bt2pWbZy8rKwvr16+vcltfX1+8/fbbAMrmnv3uu++q3LZt27bchNPFxcVYuXJlldu2aNECo0eP5n5funRpldt6enpyt7cAYMWKFVUmv66urggKCuJ+X7NmDQoKCuRu27hxY8ycOZP7fd26dcjOzpa7ra2tLd5//33u940bN+L58+dyt7WwsMDHH3/M/b5582akpqbK3dbY2Bjz58/nfg8NDa00tZqUnp4e/u///o/7fceOHXjw4AEAIDHRFVu2BMl9XXlTpoTC3f0xndP/VHdO5Vm8eDH39z179iA2NrbKbRcuXMgltAcPHsStW7eq3HbevHkwMTEBABw9ehTXr1+vctvg4GBYWloCAE6dOoWrV69Wue3s2bNhZ2cHAPS5q+LP3UePHqFVq1bccqPS659IJIJEUjbbhpWVFZKSkmBmZlblPgnRZmr/amZmZoaoqCiuE7c0KZX+6ezsjHPnztF/SkJUJC9Psf9bim5HCKkdU1NTzJo1i1s4Rnr9k1aM/fz8EB0dTddB0qDxttRpcXExrKyskJ+fzz1mYmKCZ8+ewdjYmG41qWlbusXf8G5HR0Qw6N+/5jlMT50qgb8/S+e0im3pFj997tb3c7e4uBgODg6VroOZmZkybZiQhoi3BPXSpUvo0aOH3Melt0wIIconFgNubsDTp/JnjWIYwMkJSEwElLSMOCFEDroOElI13npf//333wCAYcOGISEhAUOHDgUAHD58mK+QCGkQRCJA2pW4wiI03O/r1lFySoiq0XWQkKrxVkG9fPkyHj9+jPHjx3MdxHfu3AlXV1f65kiIGuzfDwQHA0+evHnM2bksOf1vRWFCiArRdZCQqvGWoBJC+CcWAxcvAmlpgKMj0KMHVU4JIYTwjxJUQgghhBAiKDQDMCGEEEIIERRKUAkhhBBCiKBQgkoIIYQQQgSFElRCCCGEECIolKASQgghhBBBoQSVEEIIIYQICiWohBBCCCFEUChBJYQQQgghgkIJKiGEEEIIERRKUAkhhBBCiKBQgkoIIYQQQgSFElRCCCGEECIolKASQgghhBBBoQSVEEIIIYQIyv8Dm6GYWLHOA9YAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHRCAYAAAC4mLk+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzh0lEQVR4nO3deXRV1f3//9c1IwkZDJgJAgRRAZFBokALAhaC0cVQ7BInBgutKIOYWiXSymAFZClFRED5UFCLQpXhQ5XyIa2QaBFKMKko1AGCoZIQQcklQS6B7N8f/LhfrxCSG3Lv5obnY62ses7ZZ5/9TlLuK/tMDmOMEQAAgCVX2B4AAAC4vBFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFgVbHsAtVFVVaWDBw8qKipKDofD9nAAAEAtGGN07NgxJScn64orqp//CIgwcvDgQaWkpNgeBgAAqIMDBw6oefPm1W4PiDASFRUl6Uwx0dHRlkcDAABqw+l0KiUlxf05Xp2ACCNnT81ER0cTRgAACDA1XWLBBawAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKq/CyKxZs3TTTTcpKipK8fHxGjJkiD777LMa98vJyVHXrl0VHh6u1q1ba/HixXUeMAAAaFi8CiM5OTkaN26ctm3bpuzsbJ06dUrp6emqqKiodp/CwkLdfvvt6tWrl/Lz8/Xkk09q4sSJWr169UUPHgAABD6HMcbUdedvvvlG8fHxysnJ0S233HLeNk888YTWr1+vPXv2uNeNHTtW//73v/Xhhx/W6jhOp1MxMTEqKyvj3TQAAASI2n5+X9SL8srKyiRJcXFx1bb58MMPlZ6e7rFuwIABWrp0qSorKxUSElLr4y1470uFRzau22ABAP5V9791A0cNL4C73J2oKK9VuzqHEWOMMjMz1bNnT3Xo0KHadiUlJUpISPBYl5CQoFOnTunw4cNKSko6Zx+XyyWXy+VedjqdkqTFOXt1RVhEXYcMAAD8qMp1vFbt6hxGxo8fr48//lgffPBBjW1//Orgs2eGqnul8KxZszR9+vRz1t9zc4rCIpgZAYBAUdt5g0t5DqW6Gn445tpOAl1uEymu4+WaU4t2dQojEyZM0Pr165Wbm6vmzZtfsG1iYqJKSko81pWWlio4OFhNmjQ57z5ZWVnKzMx0LzudTqWkpGjKHe25ZgQAgADhdDrrP4wYYzRhwgStXbtWW7ZsUWpqao379OjRQ3/961891m3atElpaWnVXi8SFhamsLAwb4YGAAAClFe39o4bN05//vOf9cYbbygqKkolJSUqKSnR999/726TlZWlESNGuJfHjh2rr776SpmZmdqzZ4/+9Kc/aenSpXrsscfqrwoAABCwvAojixYtUllZmfr06aOkpCT316pVq9xtiouLVVRU5F5OTU3Vhg0btGXLFnXu3FlPP/205s+frzvvvLP+qgAAAAHrop4z4i88ZwQAgMBT289v3k0DAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsMrrMJKbm6uBAwcqOTlZDodD69atq3GfFStWqFOnToqIiFBSUpIeeOABHTlypC7jBQAADYzXYaSiokKdOnXSggULatX+gw8+0IgRIzR69Gh9+umneuutt7Rjxw6NGTPG68ECAICGJ9jbHTIyMpSRkVHr9tu2bVOrVq00ceJESVJqaqoefPBBzZkzx9tDAwCABsjn14z85Cc/0X//+19t2LBBxhgdOnRIb7/9tu644w5fHxoAAAQAv4SRFStWaNiwYQoNDVViYqJiY2P14osvVruPy+WS0+n0+AIAAA2Tz8PI7t27NXHiRD311FPauXOnNm7cqMLCQo0dO7bafWbNmqWYmBj3V0pKiq+HCQAALHEYY0ydd3Y4tHbtWg0ZMqTaNsOHD9eJEyf01ltvudd98MEH6tWrlw4ePKikpKRz9nG5XHK5XO5lp9OplJQUlZWVKTo6uq7DBQAAfuR0OhUTE1Pj57fXF7B66/jx4woO9jxMUFCQJKm6HBQWFqawsDBfDw0AAFwCvD5NU15eroKCAhUUFEiSCgsLVVBQoKKiIklSVlaWRowY4W4/cOBArVmzRosWLdK+ffv0z3/+UxMnTtTNN9+s5OTk+qkCAAAELK9nRvLy8tS3b1/3cmZmpiRp5MiRWr58uYqLi93BRJJGjRqlY8eOacGCBfrNb36j2NhY3XrrrXr22WfrYfgAACDQXdQ1I/5S23NOAADg0lHbz2/eTQMAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACs8jqM5ObmauDAgUpOTpbD4dC6detq3MflcmnKlClq2bKlwsLCdPXVV+tPf/pTXcYLAAAamGBvd6ioqFCnTp30wAMP6M4776zVPnfddZcOHTqkpUuXqk2bNiotLdWpU6e8HiwAAGh4vA4jGRkZysjIqHX7jRs3KicnR/v27VNcXJwkqVWrVt4eFgAANFBehxFvrV+/XmlpaZozZ45ef/11RUZGatCgQXr66afVqFGj8+7jcrnkcrncy06n09fDBACgzk6fPq3Kykrbw/C7kJAQBQUFXXQ/Pg8j+/bt0wcffKDw8HCtXbtWhw8f1sMPP6xvv/222utGZs2apenTp/t6aAAAXBRjjEpKSnT06FHbQ7EmNjZWiYmJcjgcde7DYYwxdd7Z4dDatWs1ZMiQatukp6fr/fffV0lJiWJiYiRJa9as0S9+8QtVVFScd3bkfDMjKSkpKisrU3R0dF2HCwBAvSouLtbRo0cVHx+viIiIi/pADjTGGB0/flylpaWKjY1VUlLSOW2cTqdiYmJq/Pz2+cxIUlKSmjVr5g4iktSuXTsZY/Tf//5X11xzzTn7hIWFKSwszNdDAwCgzk6fPu0OIk2aNLE9HCvOTiiUlpYqPj6+zqdsfP6ckZ/+9Kc6ePCgysvL3es+//xzXXHFFWrevLmvDw8AgE+cvUYkIiLC8kjsOlv/xVwz43UYKS8vV0FBgQoKCiRJhYWFKigoUFFRkSQpKytLI0aMcLe/99571aRJEz3wwAPavXu3cnNz9dvf/la//OUvq72AFQCAQHE5nZo5n/qo3+swkpeXpy5duqhLly6SpMzMTHXp0kVPPfWUpDPnz84GE0lq3LixsrOzdfToUaWlpem+++7TwIEDNX/+/IsePAAACHxeXzPSp08fXeia1+XLl5+zrm3btsrOzvb2UAAA4AemTZumdevWuc9OXIz9+/crNTVV+fn56ty583nbbNmyRX379tV3332n2NjYiz5mdXx+ASsAALj0pKSkqLi4WE2bNrU9FMIIAACXo6CgICUmJtoehiTe2gsAgE/06dNHEydO1OOPP664uDglJiZq2rRp7u1FRUUaPHiwGjdurOjoaPd73H5o9uzZSkhIUFRUlEaPHq0TJ06cc5xly5apXbt2Cg8PV9u2bbVw4cJajW///v1yOBwep3w2bNiga6+9Vo0aNVLfvn21f//+upTuNcIIAAA+8uqrryoyMlLbt2/XnDlzNGPGDGVnZ8sYoyFDhujbb79VTk6OsrOztXfvXg0bNsy971/+8hdNnTpVzzzzjPLy8pSUlHRO0FiyZImmTJmiZ555Rnv27NHMmTP1+9//Xq+++qrXYz1w4ICGDh2q22+/XQUFBRozZowmT5580d+D2uA0DQAAPtKxY0dNnTpVknTNNddowYIF+sc//iFJ+vjjj1VYWKiUlBRJ0uuvv67rr79eO3bs0E033aR58+bpl7/8pcaMGSNJ+sMf/qC///3vHrMjTz/9tJ5//nkNHTpUkpSamqrdu3fr5Zdf1siRI70a66JFi9S6dWv98Y9/lMPh0HXXXaddu3bp2WefvejvQ02YGQEAwEc6duzosZyUlKTS0lLt2bNHKSkp7iAiSe3bt1dsbKz27NkjSdqzZ4969Ojhsf8Pl7/55hsdOHBAo0ePVuPGjd1ff/jDH7R3716vx7pnzx51797d47khPz6+rzAzAgCAj4SEhHgsOxwOVVVVyRhz3oeFVbf+fKqqqiSdOVXTrVs3j211eSz7Rbyq7qIxMwIAgJ+1b99eRUVFOnDggHvd7t27VVZWpnbt2kk68x63bdu2eez3w+WEhAQ1a9ZM+/btU5s2bTy+UlNT6zSmCx3Pl5gZAQDAz/r166eOHTvqvvvu07x583Tq1Ck9/PDD6t27t9LS0iRJjzzyiEaOHKm0tDT17NlTK1as0KeffqrWrVu7+5k2bZomTpyo6OhoZWRkyOVyKS8vT999950yMzO9GtPYsWP1/PPPKzMzUw8++KB27tx53geZ+gIzIwAA+JnD4dC6det05ZVX6pZbblG/fv3UunVrrVq1yt1m2LBheuqpp/TEE0+oa9eu+uqrr/TQQw959DNmzBj9z//8j5YvX64bbrhBvXv31vLly+s0M9KiRQutXr1af/3rX9WpUyctXrxYM2fOvOhaa8NhbJ4kqiWn06mYmBiVlZUpOjra9nAAANCJEydUWFio1NRUhYeH2x6ONRf6PtT285uZEQAAYBVhBACABmjmzJket/z+8CsjI8P28DxwASsAAA3Q2LFjddddd513W6NGjfw8mgsjjAAA0ADFxcUpLi7O9jBqhdM0AADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAwGVs0aJF6tixo6KjoxUdHa0ePXrob3/7m1/HQBgBAOAy1rx5c82ePVt5eXnKy8vTrbfeqsGDB+vTTz/12xh46BkAAJexgQMHeiw/88wzWrRokbZt26brr7/eL2MgjAAA4APGGH1fedrKsRuFBMnhcHi93+nTp/XWW2+poqJCPXr08MHIzo8wAgCAD3xfeVrtn/o/K8fePWOAIkJr/xG/a9cu9ejRQydOnFDjxo21du1atW/f3ocj9MQ1IwAAXOauu+46FRQUaNu2bXrooYc0cuRI7d6922/HZ2YEAAAfaBQSpN0zBlg7tjdCQ0PVpk0bSVJaWpp27NihF154QS+//LIvhncOwggAAD7gcDi8OlVyKTHGyOVy+e14gfldAgAA9eLJJ59URkaGUlJSdOzYMa1cuVJbtmzRxo0b/TYGwggAAJexQ4cOafjw4SouLlZMTIw6duyojRs3qn///n4bA2EEAIDL2NKlS20PgbtpAACAXYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAuM2aNUsOh0OTJk3y2zEJIwAAQJK0Y8cOvfLKK+rYsaNfj0sYAQAAKi8v13333aclS5boyiuv9OuxeWsvAAC+YIxUedzOsUMiJIfDq13GjRunO+64Q/369dMf/vAHHw3s/AgjAAD4QuVxaWaynWM/eVAKjax185UrV+qjjz7Sjh07fDio6hFGAAC4jB04cECPPPKINm3apPDwcCtjIIwAAOALIRFnZihsHbuWdu7cqdLSUnXt2tW97vTp08rNzdWCBQvkcrkUFBTki1G6EUYAAPAFh8OrUyW2/OxnP9OuXbs81j3wwANq27atnnjiCZ8HEYkwAgDAZS0qKkodOnTwWBcZGakmTZqcs95XuLUXAABYxcwIAADwsGXLFr8ej5kRAABgFWEEAABYRRgBAABWeR1GcnNzNXDgQCUnJ8vhcGjdunW13vef//yngoOD1blzZ28PCwAAGiivw0hFRYU6deqkBQsWeLVfWVmZRowYoZ/97GfeHhIAgEuWMcb2EKyqj/q9vpsmIyNDGRkZXh/owQcf1L333qugoCCvZlMAALgUhYSESJKOHz+uRo0aWR6NPcePn3kZ4NnvR1345dbeZcuWae/evfrzn/9cqzcBulwuuVwu97LT6fTl8AAA8FpQUJBiY2NVWloqSYqIiJDDyzflBjJjjI4fP67S0lLFxsZe1JNafR5GvvjiC02ePFnvv/++goNrd7hZs2Zp+vTpPh4ZAAAXJzExUZLcgeRyFBsb6/4+1JVPw8jp06d17733avr06br22mtrvV9WVpYyMzPdy06nUykpKb4YIgAAdeZwOJSUlKT4+HhVVlbaHo7fhYSE1Mu7a3waRo4dO6a8vDzl5+dr/PjxkqSqqioZYxQcHKxNmzbp1ltvPWe/sLAwhYWF+XJoAADUm6CgIL+8UK6h8mkYiY6OPudNgAsXLtR7772nt99+W6mpqb48PAAACABeh5Hy8nJ9+eWX7uXCwkIVFBQoLi5OLVq0UFZWlr7++mu99tpruuKKK8554198fLzCw8P99iZAAABwafM6jOTl5alv377u5bPXdowcOVLLly9XcXGxioqK6m+EAACgQXOYAHhai9PpVExMjMrKyhQdHW17OAAAoBZq+/nNu2kAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVnkdRnJzczVw4EAlJyfL4XBo3bp1F2y/Zs0a9e/fX1dddZWio6PVo0cP/d///V9dxwsAABoYr8NIRUWFOnXqpAULFtSqfW5urvr3768NGzZo586d6tu3rwYOHKj8/HyvBwsAABoehzHG1Hlnh0Nr167VkCFDvNrv+uuv17Bhw/TUU0/Vqr3T6VRMTIzKysoUHR1dh5ECAAB/q+3nd7AfxyRJqqqq0rFjxxQXF1dtG5fLJZfL5V52Op3+GBoAALDA7xewPv/886qoqNBdd91VbZtZs2YpJibG/ZWSkuLHEQIAAH/yaxh58803NW3aNK1atUrx8fHVtsvKylJZWZn768CBA34cJQAA8Ce/naZZtWqVRo8erbfeekv9+vW7YNuwsDCFhYX5aWQAAMAmv8yMvPnmmxo1apTeeOMN3XHHHf44JAAACBBez4yUl5fryy+/dC8XFhaqoKBAcXFxatGihbKysvT111/rtddek3QmiIwYMUIvvPCCunfvrpKSEklSo0aNFBMTU09lAACAQOX1zEheXp66dOmiLl26SJIyMzPVpUsX9226xcXFKioqcrd/+eWXderUKY0bN05JSUnur0ceeaSeSgAAAIHsop4z4i88ZwQAgMBT289v3k0DAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwijAAAAKsIIwAAwCrCCAAAsMrrMJKbm6uBAwcqOTlZDodD69atq3GfnJwcde3aVeHh4WrdurUWL15cl7ECAIAGyOswUlFRoU6dOmnBggW1al9YWKjbb79dvXr1Un5+vp588klNnDhRq1ev9nqwAACg4Qn2doeMjAxlZGTUuv3ixYvVokULzZs3T5LUrl075eXl6bnnntOdd97p7eEBAEAD43UY8daHH36o9PR0j3UDBgzQ0qVLVVlZqZCQkHP2cblccrlc7mWn03nmP/6nv9TI50P2A4fH/8jU1L6GBqbGDn5waMcPF+p2zBqPdwnuW+P+DXHfC2++JH9OjiukmBSpUax0rFiqOl1D3xc6luNHv+9oeALt5+vFv9VWne/7Wsexf3+qVs18/sleUlKihIQEj3UJCQk6deqUDh8+rKSkpHP2mTVrlqZPn35uZ9/skcIC7ZcPgFecX9seAYD64qpdiPHLNIPjR3+dmP//r5sfrz8rKytLmZmZ7mWn06mUlBRp2AopKtJ3A62ViwlD5gd/2f34B1RDvzX+hefNuH5wbGMu0PcF+ryY8djat8b9G+K+F958yf2cvs6Tyr6WYppJUclScGjN+1Z3LGN05nedP2AaJnPhn7G3s2K1mtGrh98lf87WVfvvuxez4hf8jKiFYxXS7EE1NvN5GElMTFRJSYnHutLSUgUHB6tJkybn3ScsLExhYWHnbmjdW4qO9sUwAVwKkjraHgGA+nT2Mosa+Pw5Iz169FB2drbHuk2bNiktLe2814sAAIDLi9dhpLy8XAUFBSooKJB05tbdgoICFRUVSTpzimXEiBHu9mPHjtVXX32lzMxM7dmzR3/605+0dOlSPfbYY/VTAQAACGhen6bJy8tT37593ctnr+0YOXKkli9fruLiYncwkaTU1FRt2LBBjz76qF566SUlJydr/vz53NYLAAAkSQ5jvLkv1A6n06mYmBiVlZUpmmtGAAAICLX9/ObdNAAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqn7+1tz6cfUiss5Zv/wMAAPad/dyu6WHvARFGjhw5IklKSUmxPBIAAOCtI0eOKCYmptrtARFG4uLiJElFRUUXLKYhuummm7Rjxw7bw/A76r68UPflhbovH2VlZWrRooX7c7w6ARFGrrjizKUtMTExl92L8oKCgi67miXqvtxQ9+WFui8/Zz/Hq93up3GgjsaNG2d7CFZQ9+WFui8v1I0fc5iariq5BNT2FcQAAODSUdvP74CYGQkLC9PUqVMVFhZmeygAAKCWavv5HRAzIwAAoOEKiJkRAADQcBFGAACAVYQRH1q4cKFSU1MVHh6url276v3333dvmzZtmtq2bavIyEhdeeWV6tevn7Zv315jn7t27VLv3r3VqFEjNWvWTDNmzDjnyXY5OTnq2rWrwsPD1bp1ay1evLjea7uQC9UtSXv27NGgQYMUExOjqKgode/eXUVFRRfsM9DrPnTokEaNGqXk5GRFRETotttu0xdffFFjn5d63bm5uRo4cKCSk5PlcDi0bt0697bKyko98cQTuuGGGxQZGank5GSNGDFCBw8erLHfQK5bkkaNGiWHw+Hx1b179xr7DfS6y8vLNX78eDVv3lyNGjVSu3bttGjRohr7vZTrnjVrlm666SZFRUUpPj5eQ4YM0WeffebRZs2aNRowYICaNm0qh8OhgoKCWvV9KdftdwY+sXLlShMSEmKWLFlidu/ebR555BETGRlpvvrqK2OMMStWrDDZ2dlm79695pNPPjGjR4820dHRprS0tNo+y8rKTEJCgrn77rvNrl27zOrVq01UVJR57rnn3G327dtnIiIizCOPPGJ2795tlixZYkJCQszbb7/t85qNqbnuL7/80sTFxZnf/va35qOPPjJ79+4177zzjjl06FC1fQZ63VVVVaZ79+6mV69e5l//+pf5z3/+Y37961+bFi1amPLy8mr7DIS6N2zYYKZMmWJWr15tJJm1a9e6tx09etT069fPrFq1yvznP/8xH374oenWrZvp2rXrBfsM9LqNMWbkyJHmtttuM8XFxe6vI0eOXLDPhlD3mDFjzNVXX202b95sCgsLzcsvv2yCgoLMunXrqu3zUq97wIABZtmyZeaTTz4xBQUF5o477jjn/7uvvfaamT59ulmyZImRZPLz82vs91Kv29/8EkZeeukl06pVKxMWFmZuvPFGk5ub695WVVVlpk6dapKSkkx4eLjp3bu3+eSTT2rs8+OPPza33HKLCQ8PN8nJyWb69OmmqqrKo82WLVvMjTfeaMLCwkxqaqpZtGhRvddWnZtvvtmMHTvWY13btm3N5MmTz9u+rKzMSDJ///vfq+1z4cKFJiYmxpw4ccK9btasWSY5Odld++OPP27atm3rsd+DDz5ounfvXtdSvFJT3cOGDTP333+/V30Get2fffaZkeTxe33q1CkTFxdnlixZUm2fgVD3D53vw+nH/vWvfxlJ7nB6Pg2h7pEjR5rBgwd71U9DqPv66683M2bM8Fh34403mt/97nfV9hNodZeWlhpJJicn55xthYWFtQ4jgVa3r/n8NM2qVas0adIkTZkyRfn5+erVq5cyMjLc0/Jz5szR3LlztWDBAu3YsUOJiYnq37+/jh07Vm2fTqdT/fv3V3Jysnbs2KEXX3xRzz33nObOnetuU1hYqNtvv129evVSfn6+nnzySU2cOFGrV6/2dck6efKkdu7cqfT0dI/16enp2rp163nbv/LKK4qJiVGnTp3c60eNGqU+ffq4lz/88EP17t3b4xapAQMG6ODBg9q/f7+7zY+PO2DAAOXl5amysrIeqqteTXVXVVXp3Xff1bXXXqsBAwYoPj5e3bp1O+8Ud0Oq2+VySZLCw8Pd24KCghQaGqoPPvjAvS7Q6q6LsrIyORwOxcbGutc11Lq3bNmi+Ph4XXvttfrVr36l0tJSj+0Nse6ePXtq/fr1+vrrr2WM0ebNm/X5559rwIAB7jaBXndZWZkk1fh48x8L9Lp9zedhZO7cuRo9erTGjBmjdu3aad68eUpJSdGiRYtkjNG8efM0ZcoUDR06VB06dNCrr76q48eP64033qi2zxUrVujEiRNavny5OnTooKFDh+rJJ5/U3Llz3efbFi9erBYtWmjevHlq166dxowZo1/+8pd67rnnfF2yDh8+rNOnTyshIcFjfUJCgkpKStzL77zzjho3bqzw8HD98Y9/VHZ2tpo2berenpSUpBYtWriXS0pKztvn2W0XanPq1CkdPny4fgqsRk11l5aWqry8XLNnz9Ztt92mTZs26ec//7mGDh2qnJwcd/uGVnfbtm3VsmVLZWVl6bvvvtPJkyc1e/ZslZSUqLi42N0+0Or21okTJzR58mTde++9Hg8/aoh1Z2RkaMWKFXrvvff0/PPPa8eOHbr11lvdwVRqmHXPnz9f7du3V/PmzRUaGqrbbrtNCxcuVM+ePd1tArluY4wyMzPVs2dPdejQwat9A7luf/Dpu2nO/sU4efJkj/Vn/2IsLCxUSUmJR/ILCwtT7969tXXrVj344IOSziTK/fv3a8uWLZKqT5RZWVnav3+/UlNTq02US5cuVWVlpUJCQnxU9f/jcDg8lo0xHuv69u2rgoICHT58WEuWLNFdd92l7du3Kz4+XtKZC6dq0+eP19emjS9VV3dVVZUkafDgwXr00UclSZ07d9bWrVu1ePFi9e7dW1LDqzskJESrV6/W6NGjFRcXp6CgIPXr108ZGRke7QO17tqorKzU3XffraqqKi1cuNBjW0Ose9iwYe7/7tChg9LS0tSyZUu9++67Gjp0qKSGWff8+fO1bds2rV+/Xi1btlRubq4efvhhJSUlqV+/fpICu+7x48fr448/9pjRrK1ArtsffDozUtNfjGfTX00zCIGWKJs2baqgoCCPGiSptLTUY0yRkZFq06aNunfvrqVLlyo4OFhLly6ttt/ExMTz9in9v/qraxMcHKwmTZpcVF01qanupk2bKjg4WO3bt/fY3q5duwveTRPodUtS165dVVBQoKNHj6q4uFgbN27UkSNHlJqaWm2/l3rdtVVZWam77rpLhYWFys7OrvGVDg2l7h9KSkpSy5YtL3gHVaDX/f3337tnqAcOHKiOHTtq/PjxGjZs2AVnpAOl7gkTJmj9+vXavHmzmjdvftH9BUrd/uKXW3trmiGoafusWbP02muv1djnj9fbSpShoaHq2rWrsrOzPdZnZ2frJz/5SbX7GWM8pnF/rEePHsrNzdXJkyfd6zZt2qTk5GS1atXK3ebHx920aZPS0tJ8PhtUU92hoaG66aabzrkt7vPPP1fLli2r7TfQ6/6hmJgYXXXVVfriiy+Ul5enwYMHV9vvpV53bZwNIl988YX+/ve/1+of0IZQ948dOXJEBw4cUFJSUrVtAr3uyspKVVZWnvN21qCgIPes6Plc6nUbYzR+/HitWbNG77333gX/gPDGpV633/ny6liXy2WCgoLMmjVrPNZPnDjR3HLLLWbv3r1Gkvnoo488tg8aNMiMGDGi2n6HDx9uBg0a5LHuo48+MpLMvn37jDHG9OrVy0ycONGjzZo1a0xwcLA5efLkxZRVK2dv9Vy6dKnZvXu3mTRpkomMjDT79+835eXlJisry3z44Ydm//79ZufOnWb06NEmLCzM446LyZMnm+HDh7uXjx49ahISEsw999xjdu3aZdasWWOio6PPeyvYo48+anbv3m2WLl1q5RbX89VtzJmfQUhIiHnllVfMF198YV588UUTFBRk3n///QZd91/+8hezefNms3fvXrNu3TrTsmVLM3ToUI8+ArHuY8eOmfz8fJOfn28kmblz55r8/Hzz1VdfmcrKSjNo0CDTvHlzU1BQ4HGbq8vlarB1Hzt2zPzmN78xW7duNYWFhWbz5s2mR48eplmzZsbpdDbYuo0xpnfv3ub66683mzdvNvv27TPLli0z4eHhZuHChQFb90MPPWRiYmLMli1bPH6Hjx8/7m5z5MgRk5+fb959910jyaxcudLk5+eb4uLigK3b33x+a+/NN99sHnroIY917dq1M5MnTzZVVVUmMTHRPPvss+5tLpfLxMTEmMWLF1fb58KFC01sbKzHP2izZ88+55aodu3aeew3duxYv94S9dJLL5mWLVua0NBQc+ONN7pvBfv+++/Nz3/+c5OcnGxCQ0NNUlKSGTRokPnXv/7lsf/IkSNN7969PdZ9/PHHplevXiYsLMwkJiaaadOmnfeW5i5dupjQ0FDTqlUrv97SbEz1dZ+1dOlS06ZNGxMeHm46dep0zjMIGmLdL7zwgmnevLkJCQkxLVq0ML/73e88fn+NCcy6N2/ebCSd8zVy5Ej3bY7n+9q8ebO7j4ZW9/Hjx016erq56qqr3D/vkSNHmqKiIo8+GlrdxhhTXFxsRo0aZZKTk014eLi57rrrzPPPP+9RQ6DVXd3v8LJly9xtli1bdt42U6dOdbcJtLr9zedhpKa/GGfPnm1iYmLMmjVrzK5du8w999xjkpKSAv4vCAAAUDs+vZtGOnNV+ZEjRzRjxgwVFxerQ4cO2rBhg/sagccff1zff/+9Hn74YX333Xfq1q2bNm3apKioKHcfxcXFHhc4xsTEKDs7W+PGjVNaWpquvPJKZWZmKjMz090mNTVVGzZs0KOPPqqXXnpJycnJmj9/vu68805flwwAALzgMOZHD8IHAADwI16UBwAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrfBZGFi5cqNTUVIWHh6tr1656//333dvWrFmjAQMGqGnTpnI4HCooKKhVn1u2bJHD4dDRo0d9M2gAAOB3Pgkjq1at0qRJkzRlyhTl5+erV69eysjIcD+4rKKiQj/96U81e/ZsXxweAAAEEJ+Ekblz52r06NEaM2aM2rVrp3nz5iklJUWLFi2SJA0fPlxPPfWU+vXrd1HHOXLkiO655x41b95cERERuuGGG/Tmm296tOnTp48mTpyoxx9/XHFxcUpMTNS0adMu6rgAAKD+1HsYOXnypHbu3Kn09HSP9enp6dq6dWu9HuvEiRPq2rWr3nnnHX3yySf69a9/reHDh2v79u0e7V599VVFRkZq+/btmjNnjmbMmHHOa5kBAIAd9R5GDh8+rNOnTyshIcFjfUJCgkpKSur1WM2aNdNjjz2mzp07q3Xr1powYYIGDBigt956y6Ndx44dNXXqVF1zzTUaMWKE0tLS9I9//KNexwIAAOrGZxewOhwOj2VjzDnrqjN27Fg1btzY/VWd06dP65lnnlHHjh3VpEkTNW7cWJs2bfJ4qZ50Joz8UFJSkkpLS2tZCQAA8KV6f2tv06ZNFRQUdM4sSGlp6TmzJdWZMWOGHnvssRrbPf/88/rjH/+oefPm6YYbblBkZKQmTZqkkydPerQLCQnxWHY4HKqqqqrVWAAAgG/VexgJDQ1V165dlZ2drZ///Ofu9dnZ2Ro8eHCt+oiPj1d8fHyN7d5//30NHjxY999/vySpqqpKX3zxhdq1a1e3wQMAAL+r9zAiSZmZmRo+fLjS0tLUo0cPvfLKKyoqKtLYsWMlSd9++62Kiop08OBBSdJnn30mSUpMTFRiYmKtj9OmTRutXr1aW7du1ZVXXqm5c+eqpKSEMAIAQADxSRgZNmyYjhw5ohkzZqi4uFgdOnTQhg0b1LJlS0nS+vXr9cADD7jb33333ZKkqVOnXvC227OnVoKDzwz797//vQoLCzVgwABFRETo17/+tYYMGaKysjJflAUAAHzAYYwxtgdRWytXrtSYMWNUXl5ueygAAKCe+GRmpL65XC7t3btXCxYsuOgHpQEAgEtLQLwo729/+5u6deumyMhIzZ8/3/ZwAABAPQqo0zQAAKDhCYiZEQAA0HARRgAAgFV+CSOzZs3STTfdpKioKMXHx2vIkCHuZ4ucZYzRtGnTlJycrEaNGqlPnz769NNP3du//fZbTZgwQdddd50iIiLUokULTZw4sdrbeF0ulzp37iyHw6GCggJflgcAAC6CX8JITk6Oxo0bp23btik7O1unTp1Senq6Kioq3G3mzJmjuXPnasGCBdqxY4cSExPVv39/HTt2TJJ08OBBHTx4UM8995x27dql5cuXa+PGjRo9evR5j/n4448rOTnZH+UBAICLYOUC1m+++Ubx8fHKycnRLbfcImOMkpOTNWnSJD3xxBOSzsxsJCQk6Nlnn9WDDz543n7eeust3X///aqoqHA/CE06c/dNZmamVq9ereuvv175+fnq3LmzP0oDAABesnLNyNlTK3FxcZKkwsJClZSUKD093d0mLCxMvXv31tatWy/YT3R0tEcQOXTokH71q1/p9ddfV0REhI8qAAAA9cXvYcQYo8zMTPXs2VMdOnSQJPcbfn/8Vt+EhIRz3v571pEjR/T00097zJoYYzRq1CiNHTtWaWlpPqoAAADUJ78/gXX8+PH6+OOP9cEHH5yzzeFweCwbY85ZJ0lOp1N33HGH2rdvr6lTp7rXv/jii3I6ncrKyqr/gQMAAJ/w68zIhAkTtH79em3evFnNmzd3rz/7pt4fz4KUlpaeM1ty7Ngx3XbbbWrcuLHWrl2rkJAQ97b33ntP27ZtU1hYmIKDg9WmTRtJUlpamkaOHOmrsgAAwEXwSxgxxmj8+PFas2aN3nvvPaWmpnpsT01NVWJiorKzs93rTp48qZycHP3kJz9xr3M6nUpPT1doaKjWr1+v8PBwj37mz5+vf//73yooKFBBQYE2bNggSVq1apWeeeYZH1YIAADqyi+nacaNG6c33nhD//u//6uoqCj3DEhMTIwaNWokh8OhSZMmaebMmbrmmmt0zTXXaObMmYqIiNC9994r6cyMSHp6uo4fP64///nPcjqdcjqdkqSrrrpKQUFBatGihcdxGzduLEm6+uqrPWZiAADApcMvYWTRokWSpD59+nisX7ZsmUaNGiXpzHNBvv/+ez388MP67rvv1K1bN23atElRUVGSpJ07d2r79u2S5D79clZhYaFatWrl0xoAAIBv8KI8AABgFe+mAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQSAz2zZskUOh0NHjx61PRQAlzAeegag3vTp00edO3fWvHnzJJ15x9S3336rhISE876BGwAkPz0OHsDlKTQ01P1WbgCoDqdpANSLUaNGKScnRy+88IIcDoccDoeWL1/ucZpm+fLlio2N1TvvvKPrrrtOERER+sUvfqGKigq9+uqratWqla688kpNmDBBp0+fdvd98uRJPf7442rWrJkiIyPVrVs3bdmyxU6hAOodMyMA6sULL7ygzz//XB06dNCMGTMkSZ9++uk57Y4fP6758+dr5cqVOnbsmIYOHaqhQ4cqNjZWGzZs0L59+3TnnXeqZ8+eGjZsmCTpgQce0P79+7Vy5UolJydr7dq1uu2227Rr1y5dc801fq0TQP0jjACoFzExMQoNDVVERIT71Mx//vOfc9pVVlZq0aJFuvrqqyVJv/jFL/T666/r0KFDaty4sdq3b6++fftq8+bNGjZsmPbu3as333xT//3vf5WcnCxJeuyxx7Rx40YtW7ZMM2fO9F+RAHyCMALAryIiItxBRJISEhLUqlUrNW7c2GNdaWmpJOmjjz6SMUbXXnutRz8ul0tNmjTxz6AB+BRhBIBfhYSEeCw7HI7zrquqqpIkVVVVKSgoSDt37lRQUJBHux8GGACBizACoN6EhoZ6XHhaH7p06aLTp0+rtLRUvXr1qte+AVwauJsGQL1p1aqVtm/frv379+vw4cPu2Y2Lce211+q+++7TiBEjtGbNGhUWFmrHjh169tlntWHDhnoYNQDbCCMA6s1jjz2moKAgtW/fXldddZWKiorqpd9ly5ZpxIgR+s1vfqPrrrtOgwYN0vbt25WSklIv/QOwiyewAgAAq5gZAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWPX/AVAA2DjCsx/ZAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "12", + "metadata": {}, + "outputs": [], "source": [ "# first, load in the simple model of case 1. Copy it.\n", "case2_example1 = case1(\"case2_example1\")\n", @@ -1573,7 +135,7 @@ }, { "cell_type": "markdown", - "id": "5c22f340-c381-4992-91db-f6186c4e3c80", + "id": "13", "metadata": {}, "source": [ "### Example 2: boundary and basins below target, third basin above\n", @@ -1582,297 +144,10 @@ }, { "cell_type": "code", - "execution_count": 25, - "id": "a37e627d-2f8a-4d19-9ee6-f535420d277c", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timenode_idstoragelevelinflow_rateoutflow_ratestorage_rateprecipitationevaporationdrainageinfiltrationbalance_errorrelative_error
02024-01-01 00:00:0030.0000001.0000000.010.0000000.0100000.01.679887e-070.00.06.045863e-080.305011
12024-01-01 00:00:0040.0000000.0000000.010.0000000.0100000.01.845589e-070.00.06.611968e-080.303833
22024-01-01 00:00:008100000.00000010.0000000.000.186667-0.1878240.01.157374e-030.00.0-3.483442e-08-2.000000
32024-01-01 00:01:0030.5999861.0219050.010.0000000.0099990.07.009689e-070.00.01.399768e-070.181562
42024-01-01 00:01:0040.5999850.0244900.010.0000000.0099990.07.624346e-070.00.01.508812e-070.180076
..........................................
1339152024-01-31 23:58:004763.8048150.8739550.000.000000-0.0001010.01.011524e-040.00.0-1.265898e-10-2.000000
1339162024-01-31 23:58:0085635.4363652.3739040.000.000000-0.0002750.02.747575e-040.00.0-1.265873e-10-2.000000
1339172024-01-31 23:59:003953.2532341.8732680.000.000000-0.0001260.01.263410e-040.00.0-1.582402e-10-2.000000
1339182024-01-31 23:59:004763.7987450.8739510.000.000000-0.0001010.01.011520e-040.00.0-1.265904e-10-2.000000
1339192024-01-31 23:59:0085635.4198792.3739000.000.000000-0.0002750.02.747571e-040.00.0-1.265705e-10-2.000000
\n", - "

133920 rows × 13 columns

\n", - "
" - ], - "text/plain": [ - " time node_id storage level inflow_rate \\\n", - "0 2024-01-01 00:00:00 3 0.000000 1.000000 0.01 \n", - "1 2024-01-01 00:00:00 4 0.000000 0.000000 0.01 \n", - "2 2024-01-01 00:00:00 8 100000.000000 10.000000 0.00 \n", - "3 2024-01-01 00:01:00 3 0.599986 1.021905 0.01 \n", - "4 2024-01-01 00:01:00 4 0.599985 0.024490 0.01 \n", - "... ... ... ... ... ... \n", - "133915 2024-01-31 23:58:00 4 763.804815 0.873955 0.00 \n", - "133916 2024-01-31 23:58:00 8 5635.436365 2.373904 0.00 \n", - "133917 2024-01-31 23:59:00 3 953.253234 1.873268 0.00 \n", - "133918 2024-01-31 23:59:00 4 763.798745 0.873951 0.00 \n", - "133919 2024-01-31 23:59:00 8 5635.419879 2.373900 0.00 \n", - "\n", - " outflow_rate storage_rate precipitation evaporation drainage \\\n", - "0 0.000000 0.010000 0.0 1.679887e-07 0.0 \n", - "1 0.000000 0.010000 0.0 1.845589e-07 0.0 \n", - "2 0.186667 -0.187824 0.0 1.157374e-03 0.0 \n", - "3 0.000000 0.009999 0.0 7.009689e-07 0.0 \n", - "4 0.000000 0.009999 0.0 7.624346e-07 0.0 \n", - "... ... ... ... ... ... \n", - "133915 0.000000 -0.000101 0.0 1.011524e-04 0.0 \n", - "133916 0.000000 -0.000275 0.0 2.747575e-04 0.0 \n", - "133917 0.000000 -0.000126 0.0 1.263410e-04 0.0 \n", - "133918 0.000000 -0.000101 0.0 1.011520e-04 0.0 \n", - "133919 0.000000 -0.000275 0.0 2.747571e-04 0.0 \n", - "\n", - " infiltration balance_error relative_error \n", - "0 0.0 6.045863e-08 0.305011 \n", - "1 0.0 6.611968e-08 0.303833 \n", - "2 0.0 -3.483442e-08 -2.000000 \n", - "3 0.0 1.399768e-07 0.181562 \n", - "4 0.0 1.508812e-07 0.180076 \n", - "... ... ... ... \n", - "133915 0.0 -1.265898e-10 -2.000000 \n", - "133916 0.0 -1.265873e-10 -2.000000 \n", - "133917 0.0 -1.582402e-10 -2.000000 \n", - "133918 0.0 -1.265904e-10 -2.000000 \n", - "133919 0.0 -1.265705e-10 -2.000000 \n", - "\n", - "[133920 rows x 13 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAFCCAYAAAA9jy8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIaklEQVR4nO3dd1wT9/8H8NcR9paNMhUE3AO14gA3Wq17W8X1tXZIW7XWX2sdrau2VlurbW0L1oV71D3B2YoKioIoCoIC4mAjK7nfHzQngQABktwlvJ+PBw8ludy9c37MvfO+z2BYlmVBCCGEEEKIQOjwHQAhhBBCCCHlUYJKCCGEEEIEhRJUQgghhBAiKJSgEkIIIYQQQaEElRBCCCGECAolqIQQQgghRFAoQSWEEEIIIYKiy3cAhBBCCOGXWCxGSUkJ32EQLaenpweRSKTQtpSgEkIIIQ0Uy7JIT09HVlYW36GQBsLS0hIODg5gGKba7ShBJYQQQhooaXJqZ2cHY2PjGpMGQuqKZVkUFBQgIyMDAODo6Fjt9pSgEkIIIQ2QWCzmklNra2u+wyENgJGREQAgIyMDdnZ21d7up0FShBBCSAMk7XNqbGzMcySkIZG2t5r6PFOCSgghhDRgdFufqJOi7Y0SVEIIIYQQIiiUoBJCCCGEEEGhBJUQQgghWiMgIAAff/wx32FUKykpCQzDIDo6mu9QBIsSVEIIIYRojKCgIDAMU+knISGB79CIEtE0U4QQQgjRKIGBgQgJCZF5zNbWlqdoiCpQBZUQQgghMl6XiNX2UxcGBgZwcHCQ+alqTs3MzExMnjwZjRo1grGxMQYOHIgHDx4AKJs83tbWFvv27eO2b9euHezs7Ljfr169Cj09PeTl5VUZT0hICHx8fGBoaAhvb29s3LhR5vlr166hffv2MDQ0hK+vL6Kioirt4/Dhw/D09ISRkRF69eqFLVu2gGEYmVW+rly5gp49e8LIyAjOzs6YM2cO8vPzFTpnmoYqqIQQQgiREbDxktqO9W+wv0r3HxQUhAcPHuDw4cMwNzfHggULMGjQIMTGxkJPTw89e/ZEeHg4Ro4ciczMTMTGxsLExASxsbFo0aIFwsPD0bFjR5iamsrd/+bNm7F48WJs2LAB7du3R1RUFGbOnAkTExNMmTIF+fn5GDx4MHr37o1t27YhMTERwcHBMvtISkrCqFGjEBwcjBkzZiAqKgrz5s2T2SYmJgYDBgzA119/jT/++APPnz/Hhx9+iA8//LBSNVkbUIJKCCGEEI1y5MgRmYRx4MCB2LNnT6XtpInp5cuX4efnBwDYvn07nJ2dcfDgQYwePRoBAQH47bffAAAXLlxA27Zt4eLigvDwcC5BDQgIqDKWr7/+Gt9//z1GjBgBAHB3d0dsbCx+/fVXTJkyBdu3b4dYLMaff/4JY2NjtGzZEk+ePMHs2bO5ffzyyy/w8vLCmjVrAABeXl64c+cOli9fzm2zZs0aTJgwgRsA5unpiR9//BH+/v7YtGkTDA0N63YyBYoSVEIIIYTICH+/O98hVKtXr17YtGkT97uJiYnc7eLi4qCrq4suXbpwj1lbW8PLywtxcXEAykb9BwcH48WLF4iIiEBAQABcXFwQERGB//3vf7hy5UqVswI8f/4cKSkpmD59OmbOnMk9XlpaCgsLCy6Gtm3byqzY1bVrV5n9xMfHo1OnTjKPde7cWeb3GzduICEhAdu3b+ceY1kWEokEiYmJ8PHxkRujpqIElRBCCCEyjPSqXiNdCExMTODh4VHjdizLVvm4dEWjVq1awdraGhEREYiIiMCyZcvg7OyM5cuXIzIyEq9fv0b37vITdolEAqDsNn/5JBgA1ye2qhiqiqeq2CUSCWbNmoU5c+ZUer2Li0uNx9A0lKASQgghRCu1aNECpaWl+Pfff7lb/C9fvsT9+/e5iiPDMOjZsycOHTqEO3fuoEePHjAzM0NJSQl++eUXdOjQAWZmZnL3b29vjyZNmuDRo0eYOHFilTFs3boVr1+/hpGREQDgn3/+kdnG29sbx44dk3ns+vXrMr936NABd+/eVSgx1wY0ip8QQgghWsnT0xNDhw7FzJkzcenSJdy6dQuTJk1CkyZNMHToUG67gIAA7NixA23atIG5uTmXtG7fvr3a/qcAsGTJEqxcuRLr16/H/fv3ERMTg5CQEKxduxYAMGHCBOjo6GD69OmIjY3FsWPH8N1338nsY9asWbh37x4WLFiA+/fvY/fu3QgNDQXwZu36BQsW4OrVq/jggw8QHR3N9a/96KOPlHfCBIQSVEIIIYRorZCQEHTs2BGDBw9G165dwbIsjh07Bj09PW6bXr16QSwWyySj/v7+EIvF8PevfpaBGTNm4Pfff0doaChat24Nf39/hIaGwt3dHQBgamqKv//+G7GxsWjfvj2++OILrF69WmYf7u7u2Lt3L/bv3482bdpg06ZN+OKLLwCUTakFAG3atEFERAQePHiAHj16oH379li0aBEcHR2VcZoEh2EV6RxBCCGEEK1SWFiIxMREuLu7a90IcG2wfPly/PLLL0hJSeE7FKVStN1RH1RCCCGEEJ5t3LgRnTp1grW1NS5fvow1a9bgww8/5Dss3lCCSgghhBDCswcPHuCbb77Bq1ev4OLigrlz52LhwoV8h8UbusVPCCGENEB0i5/wQdF2R4OkCCGEEEKIoFCCSgghhBBCBIUSVEIIIYQQIiiUoBJCCCGEEEGhBJUQQgghhAgKJaiEEEIIISoWHh4OhmGQlZWl1P0uWbIE7dq1U+o+hYASVEIIIYRolPT0dHz00Udo2rQpDAwM4OzsjCFDhuDs2bNKPU5AQAA+/vhjpe6TKIYm6ieEEEKIxkhKSkK3bt1gaWmJb7/9Fm3atEFJSQlOnjyJDz74APfu3VNrPCzLQiwWQ1eXUiplogoqIYQQQjTG+++/D4ZhcO3aNYwaNQrNmzdHy5Yt8emnn+Kff/7htktOTsbQoUNhamoKc3NzjBkzBs+ePeOel94a37p1K9zc3GBhYYFx48YhNzcXABAUFISIiAisX78eDMOAYRgkJSVxt+pPnjwJX19fGBgY4OLFiygqKsKcOXNgZ2cHQ0NDdO/eHZGRkbV6b9nZ2fjf//4HOzs7mJubo3fv3rh165bMNqtWrYK9vT3MzMwwffp0FBYWyjxfWlqKOXPmwNLSEtbW1liwYAGmTJmCYcOGcduwLItvv/0WTZs2hZGREdq2bYu9e/fWKlZVowSVEEIIITKKi4vV9lMbr169wokTJ/DBBx/AxMSk0vOWlpYAyhKwYcOG4dWrV4iIiMDp06fx8OFDjB07Vmb7hw8f4uDBgzhy5AiOHDmCiIgIrFq1CgCwfv16dO3aFTNnzkRaWhrS0tLg7OzMvfazzz7DypUrERcXhzZt2uCzzz7Dvn37sGXLFty8eRMeHh4YMGAAXr16pdB7Y1kWb7/9NtLT03Hs2DHcuHEDHTp0QJ8+fbh97N69G4sXL8by5ctx/fp1ODo6YuPGjTL7Wb16NbZv346QkBBcvnwZOTk5OHjwoMw2X375JUJCQrBp0ybcvXsXn3zyCSZNmoSIiAiFYlUHqkcTQgghRMbKlSvVdqzFixcrvG1CQgJYloW3t3e12505cwa3b99GYmIil1Ru3boVLVu2RGRkJDp16gQAkEgkCA0NhZmZGQDg3XffxdmzZ7F8+XJYWFhAX18fxsbGcHBwqHSMZcuWoV+/fgCA/Px8bNq0CaGhoRg4cCAAYPPmzTh9+jT++OMPzJ8/v8b3dv78ecTExCAjIwMGBgYAgO+++w4HDx7E3r178b///Q/r1q3DtGnTMGPGDADAN998gzNnzshUUX/66ScsXLgQw4cPBwBs2LABx44d457Pz8/H2rVrce7cOXTt2hUA0LRpU1y6dAm//vor/P39a4xVHShBJYQQQohGYFkWAMAwTLXbxcXFwdnZWabi2aJFC1haWiIuLo5LUN3c3LjkFAAcHR2RkZGhUCy+vr7c3x8+fIiSkhJ069aNe0xPTw+dO3dGXFycQvu7ceMG8vLyYG1tLfP469ev8fDhQ+59vffeezLPd+3aFefPnwdQ1kXg2bNn6Ny5M/e8SCRCx44dIZFIAACxsbEoLCzkkmup4uJitG/fXqFY1YESVEIIIYTIWLhwId8hyOXp6QmGYRAXFyfTp7IilmXlJrEVH9fT05N5nmEYLpGrSfkuBlUlzlXFIY9EIoGjoyPCw8MrPSftuqAoeXGUPw4AHD16FE2aNJHZTlq5FQLqg0oIIYQQGfr6+mr7qQ0rKysMGDAAP//8M/Lz8ys9L51jtEWLFkhOTkZKSgr3XGxsLLKzs+Hj41Or8yAWi2vczsPDA/r6+rh06RL3WElJCa5fv67w8Tp06ID09HTo6urCw8ND5sfGxgYA4OPjIzMQDIDM7xYWFrC3t8e1a9e4x8RiMaKiorjfW7RoAQMDAyQnJ1c6TvmKM9+ogkoIIYQQjbFx40b4+fmhc+fOWLZsGdq0aYPS0lKcPn0amzZtQlxcHPr27Ys2bdpg4sSJWLduHUpLS/H+++/D399f5tZ8Tdzc3PDvv/8iKSkJpqamsLKykrudiYkJZs+ejfnz58PKygouLi749ttvUVBQgOnTpyt0rL59+6Jr164YNmwYVq9eDS8vL6SmpuLYsWMYNmwYfH19ERwcjClTpsDX1xfdu3fH9u3bcffuXTRt2pTbz0cffYSVK1fCw8MD3t7e+Omnn5CZmclVVc3MzDBv3jx88sknkEgk6N69O3JycnDlyhWYmppiypQpCp8fVaIElRBCCCEaw93dHTdv3sTy5csxd+5cpKWlwdbWFh07dsSmTZsAlN3iPnjwID766CP07NkTOjo6CAwMxE8//VSrY82bNw9TpkxBixYt8Pr1ayQmJla57apVqyCRSPDuu+8iNzcXvr6+OHnyJBo1aqTQsRiGwbFjx/DFF19g2rRpeP78ORwcHNCzZ0/Y29sDAMaOHYuHDx9iwYIFKCwsxMiRIzF79mycPHmS28+CBQuQnp6OyZMnQyQS4X//+x8GDBgAkUjEbfP111/Dzs4OK1euxKNHj2BpaYkOHTrg//7v/2p1flSJYct3TCCEEEJIg1BYWIjExES4u7vD0NCQ73CIikgkEvj4+GDMmDH4+uuv+Q5H4XZHFVRCCCGEEC3x+PFjnDp1Cv7+/igqKsKGDRuQmJiICRMm8B1ardAgKUIIIYQQLaGjo4PQ0FB06tQJ3bp1Q0xMDM6cOVOrwWFCQBVUQgghhBAt4ezsjMuXL/MdRr1RBZUQQgghhAgKJaiEEEIIIURQKEElhBBCCCGCQgkqIYQQQggRFEpQCSGEEEKIoFCCSgghhBBCBIUSVEIIIYRoDekyp9ogNDQUlpaWfIfBC0pQCSGEEKIxgoKCMGzYsCqfT0tLw8CBAxXalzYls9qGJuonhBBCiNZwcHDgOwSiBFRBJYQQQojWKF8VLS4uxocffghHR0cYGhrCzc0NK1euBAC4ubkBAIYPHw6GYbjfAeDvv/9Gx44dYWhoiKZNm2Lp0qUoLS2VOcbvv/+O4cOHw9jYGJ6enjh8+HC1cRUXF+Ozzz5DkyZNYGJigi5duiA8PFxmm9DQULi4uMDY2BjDhw/Hy5cvK+3nm2++gZ2dHczMzDBjxgx8/vnnaNeuncw2ISEh8PHxgaGhIby9vbFx40bFTp6AUIJKCCGEEBnFxcVV/pRP1GratqSkpMZtVenHH3/E4cOHsXv3bsTHx2Pbtm1cIhoZGQmgLJlLS0vjfj958iQmTZqEOXPmIDY2Fr/++itCQ0OxfPlymX0vXboUY8aMwe3btzFo0CBMnDgRr169qjKWqVOn4vLlywgLC8Pt27cxevRoBAYG4sGDBwCAf//9F9OmTcP777+P6Oho9OrVC998843MPrZv347ly5dj9erVuHHjBlxcXLBp0yaZbTZv3owvvvgCy5cvR1xcHFasWIFFixZhy5Yt9TqX6sawLMvyHQQhhBBC1KuwsBCJiYlwd3eHoaGhzHNLly6t8nWenp6YMGEC9/uKFSsqJaJSrq6uCAoK4n5fs2YNCgoKZLZZvHhxreIOCgpCVlZWlX1HGYbBgQMHMGzYMMyZMwd3797FmTNnwDBMtdtK9ezZEwMHDsTChQu5x7Zt24bPPvsMqamp3Ou+/PJLfP311wCA/Px8mJmZ4dixYwgMDKx0nIcPH8LT0xNPnjxB48aNucf79u2Lzp07Y8WKFZgwYQIyMzNx/Phx7vlx48bhxIkTyMrKAgC89dZb8PX1xYYNG7htunfvjry8PERHRwMAXFxcsHr1aowfP57b5ptvvsGxY8dw5cqVKs6q+lTX7sqjCqqGu3DhAoYMGYLGjRvL7ezNsiyWLFmCxo0bw8jICAEBAbh7967MNkVFRfjoo49gY2MDExMTvPPOO3jy5Ika3wURGmW0q99++w0BAQEwNzcHwzDcByxp2Orbtl69eoWPPvoIXl5eMDY2houLC+bMmYPs7Gw1vxOiCYKCghAdHQ0vLy/MmTMHp06dqvE1N27cwLJly2Bqasr9zJw5E2lpaTLJdZs2bbi/m5iYwMzMDBkZGXL3efPmTbAsi+bNm8vsNyIiAg8fPgQAxMXFoWvXrjKvq/h7fHw8OnfuLPNY+d+fP3+OlJQUTJ8+XeY433zzDXccTUGDpDRcfn4+2rZti6lTp2LkyJGVnv/222+xdu1ahIaGonnz5vjmm2/Qr18/xMfHw8zMDADw8ccf4++//0ZYWBisra0xd+5cDB48GDdu3IBIJFL3WyICoIx2VVBQgMDAQAQGBspUIkjDVt+2lZqaitTUVHz33Xdo0aIFHj9+jPfeew+pqanYu3cvD+9IO1X3f1ZHR7a2NW/evCq3rVi1DA4Orl9gtdShQwckJibi+PHjOHPmDMaMGYO+fftW21YkEgmWLl2KESNGVHqufMVPT09P5jmGYSCRSKrcp0gkkntdNTU1BVD25UwRFc9p+ddJj79582Z06dJFZjuNu56zRGsAYA8cOMD9LpFIWAcHB3bVqlXcY4WFhayFhQX7yy+/sCzLsllZWayenh4bFhbGbfP06VNWR0eHPXHihNpiJ8JVl3ZV3vnz51kAbGZmphqiJZqkvm1Lavfu3ay+vj5bUlKiynC1zuvXr9nY2Fj29evXfIdSK1OmTGGHDh1a5fMV21V5J06cYAGwL1++ZFmWZfX09Ni9e/fKbOPn58dOmzat2hjkHcPCwoINCQmRu318fDwLgL1w4UKV+xw/fjw7cOBAmcfGjRvHWlhYcL936dKF/fDDD2W26d69O9u2bVvu9yZNmrDLli2rNn4+KdruqIKqxRITE5Geno7+/ftzjxkYGMDf3x9XrlzBrFmzcOPGDZSUlMhs07hxY7Rq1QpXrlzBgAED+AidCJgi7YqQuqhr28rOzoa5uTl0demS1lBkZ2dzfS6lrKys4OLiIvPYDz/8AEdHR7Rr1w46OjrYs2cPHBwcuMnv3dzccPbsWXTr1g0GBgZo1KgRvvrqKwwePBjOzs4YPXo0dHR0cPv2bcTExFQatKSo5s2bY+LEiZg8eTK+//57tG/fHi9evMC5c+fQunVrDBo0CHPmzIGfnx++/fZbDBs2DKdOncKJEydk9vPRRx9h5syZ8PX1hZ+fH3bt2oXbt2+jadOm3DZLlizBnDlzYG5ujoEDB6KoqAjXr19HZmYmPv300zrFzwfqg6rF0tPTAQD29vYyj9vb23PPpaenQ19fH40aNapyG0LKU6RdEVIXdWlbL1++xNdff01fjBqY8PBwtG/fXubnq6++qrSdqakpVq9eDV9fX3Tq1AlJSUk4duwY103h+++/x+nTp+Hs7Iz27dsDAAYMGIAjR47g9OnT6NSpE9566y2sXbsWrq6u9Yo5JCQEkydPxty5c+Hl5YV33nkH//77L5ydnQGUDYD6/fff8dNPP6Fdu3Y4deoUvvzyS5l9TJw4EQsXLsS8efO47gtBQUEyXQ9mzJiB33//HaGhoWjdujX8/f0RGhoKd3f3esWvbvR1swGQ119F3mjG2m5DGra6tCtCFKFo28rJycHbb7+NFi1a1HokONFcoaGhCA0NrfJ5tlyfzJkzZ2LmzJlVbjtkyBAMGTKk0uMDBgyo9g4iK6e/aE0DQfX09LB06dJqZ0iYNm0apk2bJvPY3LlzZX5ftGgRFi1axP3er18/eHh4yGwzYcIEmZkWNBFVULWYdDWNipWHjIwMrkLh4OCA4uJiZGZmVrkNIeUp0q4IqYvatK3c3FwEBgbC1NQUBw4cqDRghRBtVFBQgLVr1+Lu3bu4d+8eFi9ejDNnzmDKlCl8h6Z0lKBqEJZlER4ervBIP3d3dzg4OOD06dPcY8XFxYiIiICfnx8AoGPHjtDT05PZJi0tDXfu3OG2IdpNFe2KkNq2K0DxtpWTk4P+/ftDX18fhw8frnYuRUK0CcMwOHbsGHr06IGOHTvi77//xr59+9C3b1++Q1M6usWvQU6cOIFBgwbh+PHj3ETAeXl5SEhI4LZJTExEdHQ011n8448/xooVK+Dp6QlPT0+sWLECxsbGXOnfwsIC06dPx9y5c2FtbQ0rKyvMmzcPrVu31soGTypTRbsCyqpg6enp3H5iYmJgZmYGFxcXWFlZqfdNErWT166A+ret3Nxc9O/fHwUFBdi2bRtycnKQk5MDALC1tdW8qXQIqQUjIyOcOXOG7zDUQ4UzCRAlmzZtGguAnT59OveYdAqfij9TpkxhWbZs2pbFixezDg4OrIGBAduzZ082JiZGZr+vX79mP/zwQ9bKyoo1MjJiBw8ezCYnJ6vzrREeqapdLV68WO4+qpqGhWgXee2KZevftqp6PQA2MTFRje9Q82nqNFNEsyna7mipUwGTSCTYtGkT1/H622+/RU5ODiwsLDB//nwAgKWlJWbPnl1p4mRCqkLtiqgCtSvNo+iSk4Qok6LtjhJUAcvNzYWbmxtevXoFhmGgo6MDsVgMkUgEiUQClmVhZWWFpKQkbvUeQmpC7YqoArUrzUMJKuGDou2OvsYKmJmZGaKiotC5c2ewLAuxWAwA3J9+fn6Ijo6mD3tSK9J21bVrV2pXRGmk7crPz4/aFSGk3ihBFTgzMzOMGjWq0hQqhoaGCA8P5yb4JaQ2mjRpgvfff79Su9LX18fZs2epXZE6cXFxwZo1ayq1K2NjY/q8IoTUCiWoApaZmYnQ0FDExcWhpKRE5rnXr19jy5YtPEVGNJlYLMaePXtw7ty5Su2qqKgIq1ev5qpehNRGZGQkfv/990rtKj8/H9euXeMpKkKIJqIEVaCkyWlOTg5SUlIAAN7e3pgzZw66du0KoGw1jcjISD7DJBpGmpzGx8dzU/1I21WfPn0AAKdPn8aePXsoSSW1EhkZiWPHjuH+/fsA3rQr6So9hw8f5jM8QmolNDQUlpaWfIfRoFGCKlBnzpxBTk4ObGxs8Nlnn2HLli0YO3YsrKyscO7cOXz++efw8vLCqVOnkJuby3e4REPcuXMH8fHx0NXVxYcffijTro4ePYq1a9fCx8cH8fHxuHPnDt/hEg2Rm5uLU6dOAQBGjRqF0NBQrl3t2bMH27dvxzvvvMNzlESbBAUFgWEY7sfa2hqBgYG4ffu2UvY/duxY7ssW4QdN1C9QQ4YMga6uLvr27QszMzMUFxdj5cqVAAAdHR2sWLEC58+fh5ubGw06IApr06YNXr58CVdXVzRr1kymXTEMg08++QQPHz7E48eP0aZNG56jJZrCzMwM48ePR1JSEnr16oWSkhKZdqXpa4KT6onFwMWLQFoa4OgI9OgBqGO9hMDAQISEhAAoWxjkyy+/xODBg5GcnFzvfRsZGcHIyKje+yF1RxVUASkqKuL+bmhoiOHDh1eZfDIMg969e6Np06ZyX0+IlFgs5voESttNs2bNqty+WbNm6N27NxiGAQCUlJTQ7X4iV/nPnKZNm8q0G9Iw7N8PuLkBvXoBEyaU/enmVva4qhkYGMDBwQEODg5o164dFixYgJSUFDx//hwAsGDBAjRv3hzGxsZo2rQpFi1aJNM/+tatW+jVqxfMzMxgbm6Ojh074vr16wAq3+JfsmQJ2rVrh61bt8LNzQ0WFhYYN24c3cFUIUpQBSIzMxMbN27ElStX6vT6Fy9eYMOGDdQnlciQ9jndtWtXpYEriigpKcGuXbuoTyqpJDIyEhs2bMCLFy/4DoXwZP9+YNQo4MkT2cefPi17XB1JqlReXh62b98ODw8PWFtbAyir7IeGhiI2Nhbr16/H5s2b8cMPP3CvmThxIpycnBAZGYkbN27g888/rzQDRXkPHz7EwYMHceTIERw5cgQRERFYtWqVyt9bQ0UJqgCUHxAVFRVVp0QiNjYWeXl5OHbsGCWpBIDsgKikpCQ8e/as1vt49uwZkpKSEB8fT0kq4UgHROXl5SE2NpbvcAgPxGIgOBiQt9SP9LGPPy7bTlWOHDkCU1NTmJqawszMDIcPH8auXbu4lcq+/PJL+Pn5wc3NDUOGDMHcuXOxe/du7vXJycno27cvvL294enpidGjR6Nt27ZVHk8ikSA0NBStWrVCjx498O677+Ls2bOqe4MNHCWoPCufnNrY2GDy5MnVfoOrSo8ePeDn5wcAlKQSmeRUJBJh/PjxcHJyqvV+nJycMH78eIhEIkpSCYA3ySlQNvl+jx49eI6I8OHixcqV0/JYFkhJKdtOVXr16oXo6GhER0fj33//Rf/+/TFw4EA8fvwYALB37150794dDg4OMDU1xaJFi2T6p3766aeYMWMG+vbti1WrVuHhw4fVHq/imA9HR0dkZGSo5s0RSlD5JC85reuAJ4Zh0LdvX0pSidzktLo+pzVp1qwZJakEQOXktG/fvtTntIFKS1PudnVhYmICDw8PeHh4oHPnzvjjjz+Qn5+PzZs3459//sG4ceMwcOBAHDlyBFFRUfjiiy9QXFzMvX7JkiW4e/cu3n77bZw7dw4tWrTAgQMHqjxexeIRwzCQSCQqe38NHSWoPFFmcipFSSpRdnIqRUkqoeSUlOfoqNztlIFhGOjo6OD169e4fPkyXF1d8cUXX8DX1xeenp5cZbW85s2b45NPPsGpU6cwYsQIblYAwj9KUHny8OFDpSanUhWT1Fu3btE3vAbk1atXSEpKUmpyKlU+SU1KSsKrV6+Utm8ibBKJBLdu3QJAySkp06MH4OQEVNUMGAZwdi7bTlWKioqQnp6O9PR0xMXF4aOPPkJeXh6GDBkCDw8PJCcnIywsDA8fPsSPP/4oUx19/fo1PvzwQ4SHh+Px48e4fPkyIiMj4ePjo7qASa3QPKg88fX1hY6ODjw9PZU+j6k0SbWwsECbNm24DuNE+9na2uLdd99FYWGhUpNTKWmSamhoCFtbW6XvnwiTjo4OJk2ahNu3b6NTp06UnBKIRMD69WWj9RlGdrCUtHmsW6fa+VBPnDgBx/9KtGZmZvD29saePXsQEBAAAPjkk0/w4YcfoqioCG+//TYWLVqEJUuW/Be/CC9fvsTkyZPx7Nkz2NjYYMSIEVi6dKnqAia1wrCsvDF4RBWysrJgaGgIQ0PDWr+2/ITqCxcuhL6+fq338ezZM9jb29f6dUTYxGIxXr16VaeEURnt6vnz57CysoJIHTNzE7Wq62eGMtoVUb3CwkIkJibC3d29TtcloGwqqeBg2QFTzs5lyemIEcqJk2gXRdsdldbUJDMzEyEhIdi+fTsKCwvVfvyrV6/il19+oT6pWkba5/SPP/5Aamqq2o+fmpqKP/74g/qkaqHIyEj88ssvuHr1Kt+hEAEbMQJISgLOnwd27Cj7MzGRklNSf3SLXw3KD4jS19dHaWmp2mOQrnYhHeTQqVMntcdAlKvigKjXr1+rPYbXr1+jtLSUGzg1evRoqqRqgfIDovLy8niOhgidSAT8d1edEKWhCqqKyRutb2pqqvY4+vXrh65duwKg0f3aQFWj9WuLRvdrH3mj9QkhRN0oQVUhVUwlVVcMw1CSqiWEkpxKUZKqPWgqKUKIUFCCqiJCSk6lKEnVfEJLTqUoSdV8lJwSQoSEElQVKS0thVgsFkxyKlUxSS2/qgYRPolEgpKSEkElp1Llk9SSkhKaf1fDFBUVAaDklBAiDDRISkVsbW0RFBQEAwMDwSSnUtIktXnz5nBzc+M7HFILenp6GDduHJ49ewYnJye+w6mkWbNmCAoKgr29faVlAYmwde/eHU5OTnB1daXklBDCO6qgKlFmZiaSkpK4321sbASXnEoxDCOTnBYVFSE2Npa/gEiVxGIxbt++DemUxXp6eoJMTqWcnJy45JRlWdy+fZtu9wtUbGwsVzkFADc3N0pOCSGCQAmqkkj7nG7fvl3uer9CVlJSgm3btmHPnj3UJ1VgpH1ODxw4gPDwcL7DqbXw8HAcOHCA+qQKUGRkJPbs2YNt27ahpKSE73AIIUQGJahKUH5AlKWlJaysrPgOqVZ0dXXh7OwMgAZOCUn5AVG6urpwcXHhO6Rac3FxoYFTAlR+QJSLiwt0dam3F9FODMPg4MGDfIfRoLi5uWHdunX13g8lqPUkxNH6tUWj+4WnYnI6btw4QQ2IUhSN7hceGq1PtEFQUBAYhgHDMNDT04O9vT369euHP//8U2aAZlpaGgYOHMhbnKGhobC0tKzTa1mWxW+//YYuXbrA1NQUlpaW8PX1xbp161BQUCCIGFWJEtR60IbkVIqSVOHQluRUipJU4aDklKgKy7IIDw/n+sqrQ2BgINLS0pCUlITjx4+jV69eCA4OxuDBg7kVGx0cHGBgYKD0Y4vFYpXPVPLuu+/i448/xtChQ3H+/HlER0dj0aJFOHToEE6dOqXSY8uj7ll/KEGto5ycHK1JTqXkJalRUVE8R9WwsCyLvXv3ak1yKlUxSd27d69aL2QEiIqKouSUqMyJEyfQq1cvnDx5Um3HNDAwgIODA5o0aYIOHTrg//7v/3Do0CEcP34coaGhAGRv8RcXF+PDDz+Eo6MjDA0N4ebmhpUrV3L7y8rKwv/+9z/Y29vD0NAQrVq1wpEjRwC8qTIeOXIELVq0gIGBAR4/fozi4mJ89tlnaNKkCUxMTNClSxduvEB4eDimTp2K7Oxsrtq7ZMkSLpaqXgcAu3fvxvbt27Fz50783//9Hzp16gQ3NzcMHToU586dQ69evQCUTT24bNkyODk5wcDAAO3atcOJEye4/SQlJYFhGOzfvx+9evWCsbEx2rZti6tXr9YYo5ubG7755hsEBQXBwsICM2fOBADs27cPLVu2hIGBAdzc3PD9998r85+VQwlqHZmYmMDJyUlrklOp8kmqiYkJmjRpwndIDQrDMPD09NSq5FRKmqTq6urC09OTkiM1k14IKTklqrB3716ZP/nSu3dvtG3bFvv376/03I8//ojDhw9j9+7diI+Px7Zt27jZbCQSCQYOHIgrV65g27ZtiI2NxapVqyASibjXFxQUYOXKlfj9999x9+5d2NnZYerUqbh8+TLCwsJw+/ZtjB49GoGBgXjw4AH8/Pywbt06mJubIy0tDWlpaZg3bx4AVPs6ANi+fTu8vLwwdOjQSu+DYRhYWFgAANavX4/vv/8e3333HW7fvo0BAwbgnXfe4fYj9cUXX2DevHmIjo5G8+bNMX78eJSWllYbIwCsWbMGrVq1wo0bN7Bo0SLcuHEDY8aMwbhx4xATE4MlS5Zg0aJF3BcCZaKe8XUkEokwYsQIFBYWwsTEhO9wlKp8kqotibcm6dChAzw9PbXy3Ddr1gxz5szRyvcmdHZ2dpg1axZMTU0pOSX1JpFIsGnTJmRlZQGQTVDd3d0BAJaWlpg9ezZ0dNRbC/P29sbt27crPZ6cnAxPT090794dDMPA1dWVe+7MmTO4du0a4uLi0Lx5cwBA06ZNZV5fUlKCjRs3om3btgCAhw8fYufOnXjy5AkaN24MAJg3bx5OnDiBkJAQrFixAhYWFmAYBg4ODtx+FHndgwcP4OXlVeN7/e6777BgwQKMGzcOALB69WqcP38e69atw88//8xtN2/ePLz99tsAgKVLl6Jly5ZISEiAt7e33BilevfuLZOwTpw4EX369MGiRYsAAM2bN0dsbCzWrFmDoKCgGuOtDUpQayEzMxM3b95E7969wTAMRCKR1iWnUgzDyCQRiYmJePnyJXx9fXmMSjuJxWKcOXMG3bt359qTNidw5d9bfn4+Ll26hL59+8pUKohyXL9+HdbW1lzCoM3tiqhXfn4+vvrqK7x69QoMw3BJaF5eHhYtWgSWZWFlZcXLHUaWZeV+CQsKCkK/fv3g5eWFwMBADB48GP379wcAREdHw8nJiUtO5dHX10ebNm2432/evAmWZSu9pqioCNbW1lXuR5HXVfUeysvJyUFqaiq6desm83i3bt1w69YtmcfKx+3o6AgAyMjIgLe3d7XHqHjNj4uLq1TV7datG9atWwexWKzUz3FKUBVUfkCUSCRCQEAA3yGpzatXr7Bjxw6UlpaCZVl06tSJ75C0RvkBUcnJyZgxY0aDqW6xLIsdO3YgNTUVmZmZGD16NCWpSiQdEKWrq4vZs2dr3PR3RNjMzMwQFRWF8ePH4+rVq9zAR7FYDIZh4Ofnh7CwMF6+FMXFxXFfysrr0KEDEhMTcfz4cZw5cwZjxoxB3759sXfvXhgZGdW4XyMjI5nPZ4lEApFIhBs3blT67DI1Na1yP4q8rnnz5oiLi6sxJgCVrhnyktvyK/tJn1NkkFfFIpy8fatqPAH1QVVAxdH6HTt25DsktWrUqBGXlNLofuUpn5yKRCKuMt9QMAyD3r170+h+FSg/Wr9z585o1KgRzxERbeTi4oLz58/D2NhY5nFjY2OEh4dz82ur07lz5xATE4ORI0fKfd7c3Bxjx47F5s2bsWvXLuzbtw+vXr1CmzZt8OTJE9y/f1/hY7Vv3x5isRgZGRnw8PCQ+ZHeLtfX16/0uabI6yZMmID79+/j0KFDlY7Lsiyys7Nhbm6Oxo0b49KlSzLPX7lyBT4+Pgq/D3kxVqVFixZyj9e8eXOlFxgoQa2BNk0lVVc0BZXyVUxOx48fr1UDohRFU1ApH00lRdTp2rVryM/Pl3ksPz8f165dU/mxi4qKkJ6ejqdPn+LmzZtYsWIFhg4disGDB2Py5MmVtv/hhx8QFhaGe/fu4f79+9izZw8cHBxgaWkJf39/9OzZEyNHjsTp06e5Smv5EfEVNW/eHBMnTsTkyZOxf/9+JCYmIjIyEqtXr+b+D7q5uSEvLw9nz57FixcvUFBQoNDrxowZg7Fjx2L8+PFYuXIlrl+/jsePH+PIkSPo27cvzp8/DwCYP38+Vq9ejV27diE+Ph6ff/45oqOjERwcrPB5lBdjVebOnYuzZ8/i66+/xv3797FlyxZs2LBBpp+qslCCWg1KTt+gJFV5KDmVRUmq8lByStTt77//BgAMGzYMCQkJXP/Ew4cPq/zYJ06cgKOjI9zc3BAYGIjz58/jxx9/xKFDh+RW80xNTbF69Wr4+vqiU6dOSEpKwrFjx7j+s/v27UOnTp0wfvx4tGjRAp999lmNn0UhISGYPHky5s6dCy8vL7zzzjv4999/ueqxn58f3nvvPYwdOxa2trb49ttvFXodwzDYsWMH1q5diwMHDsDf3x9t2rTBkiVLMHToUAwYMAAAMGfOHMydOxdz585F69atceLECRw+fBienp4Kn8eqYpSnQ4cO2L17N8LCwtCqVSt89dVXWLZsmdIHSAEAw9JkhHKVlpZi48aNyMzMFERyWlxczM3XtnDhQujr6/MSB8uyOH36NDeH2sSJE+Hh4cFLLJrq6NGjuH79uiCSU6G0K+DNyFaxWAxfX19uxClRzIMHD7Bjxw4A/CenQmpXpGqFhYVITEyEu7s7DA0N67SPy5cv4/Hjxxg/fjwYhgHLsti5cydcXV0rDd4hBFC83VGCWo24uDiEh4dj0qRJvCWnLMtiy5YtSEtL41ZxkH7YOzo6YsqUKWq/CEmT1KysLIwcOZIGttRSVlYWtm/fjsDAQN6SUyG2K6AsST1x4gQmTpwoyKX3hEwsFmPfvn1o1KgRb8mpUNsVkU8ZCSohtaVou6NR/NXw8fGBl5eX2udwK08ikSArK0tmiTHp37OysrjRgOokvd3Psiyv50ZT8TU3YHlCbFdA2e1+vs+NphKJRBg1ahS3GgwfhNquCCGah64C5Uj7nEonHgbA+4VSJBIhMDBQ7nMDBw7k7cO+/Lx3LMviyJEj1Ce1CtI+p+WnDKF2VbXy5yYuLo76pFYjMjISR48e5aZ50dHR4bVCKeR2RQjRLJSg/keanD5+/BhHjx7lOxwZXl5eMite6OjowN3dvdoJhdXp3r17uHHjBg2ckkOanMbGxuLgwYPVjo5UN6G3q4KCAhw8eBCxsbGUpMohHRB1/fp13Lt3j+9wOEJvV4QQzUAJKiqP1n/nnXf4DkmG9Ja6FMuyCAwMFExfLm9vbxrdL0fF0fpjxoypNF8gn4TeroyNjTFmzBga3S9HxdH6Na0Go05Cb1eEEM3Q4BNUTZlKytbWlvt7hw4dYGdnx2M0smgKqso0ZSopIbcrgKagkkcTppISersihAhfg05QNSU5rahnz558h1AJJalvaEpyWpEQ2xVASWp5mpCcViTUdkUIEbYGnaAeO3ZM45JTAIKdDqRiknrixAlkZmbyHJX6RUVFaVxyCgi3XQGVk9SoqCi+Q1K7zMxMblUbTUlOAWG3K0KIcDXoaaaGDRuGo0ePYuDAgRqTnAqdNEnV0dFB48aNG+Qa4B07dkRGRga8vLw0JjnVBNIkNT4+Hh07duQ7HLVr1KgRRo4cidTUVPTp00cjklNCCKmrBldBLSkp4f5uYmKCMWPGUHKqZAzDoG/fvmjRogX3WPnzro3EYjEkEgmAsvc/aNAgSk5VoFmzZhg0aBCXnEkkEq2/3V/+/06LFi00pnJKiDZjGAYHDx7kOwyFLVmyBO3ateM7jFppUAlqZmYmfv755wZ5e5BP2dnZ2LRpk9b2SZX2Od23bx+XpBLVk0gk2Ldvn1b3SY2MjMSmTZuQnZ3NdyiECEpQUBCGDRvGdxgc6QIZDMNAV1cXLi4u+PTTT1FUVMR3aBqrwSSo0gFR2dnZuHr1KkpLS/kOqcGIiYlBZmamVg6cKj8gKj4+Hs+ePeM7pAbj2bNn3HnXxiRVOiAqMzMTMTExfIdDSJXEEjHCk8KxM2YnwpPCIZZo1/9FRYWEhCAtLQ2JiYnYuHEjtm7dim+++YbvsJRG3XdCG0SCWnG0/rvvvgtd3Qbd/VatunXrppWj++WN1nd0dOQ7rAbD0dFRa0f3lx+t37VrV3Tr1o3niAiRb3/cfritd0OvLb0wYf8E9NrSC27r3bA/bj9vMcXGxmLQoEEwNTWFvb093n33Xbx48QIA8Ouvv6JJkyaV7na98847mDJlCvf733//jY4dO8LQ0BBNmzbF0qVLayxsWVpawsHBAc7Ozhg8eDDeeecd3Lx5U2abTZs2oVmzZtDX14eXlxe2bt3KPZeUlASGYRAdHc09lpWVBYZhEB4eDgAIDw8HwzA4e/YsfH19YWxsDD8/P8THx8scZ9WqVbC3t4eZmRmmT5+OwsJCmecjIyPRr18/2NjYwMLCAv7+/pViZRgGv/zyC4YOHQoTExN888038PDwwHfffSez3Z07d6Cjo4OHDx9We35qS+sTVE2dSkqbaOMUVJo6lZS20cYpqComp/369aM+p0SQ9sftx6jdo/Ak54nM409znmLU7lG8JKlpaWnw9/dHu3btcP36dZw4cQLPnj3DmDFjAACjR4/GixcvcP78ee41mZmZOHnyJCZOnAgAOHnyJCZNmoQ5c+YgNjYWv/76K0JDQ7F8+XKF47h//z7Onz+PLl26cI8dOHAAwcHBmDt3Lu7cuYNZs2Zh6tSpMrEo6osvvsD333+P69evQ1dXF9OmTeOe2717NxYvXozly5fj+vXrcHR0xMaNG2Ven5ubiylTpuDixYv4559/4OnpiUGDBiE3N1dmu8WLF2Po0KGIiYnBtGnTMG3aNISEhMhs8+eff6JHjx5KvwZqdYJKyalwaFOSSsmpsGhTkkrJKdEUYokYwSeCwYKt9Jz0sY9PfKz22/2bNm1Chw4dsGLFCnh7e6N9+/b4888/cf78edy/fx9WVlYIDAzEjh07uNfs2bMHVlZW6NOnDwBg+fLl+PzzzzFlyhQ0bdoU/fr1w9dff41ff/212mOPHz8epqamMDQ0hJeXF1q2bImFCxdyz3/33XcICgrC+++/j+bNm+PTTz/FiBEjKlUkFbF8+XL4+/ujRYsW+Pzzz3HlyhWuSrpu3TpMmzYNM2bMgJeXF7755huZQcsA0Lt3b0yaNAk+Pj7w8fHBr7/+ioKCAkRERMhsN2HCBEybNg1NmzaFq6srpk6divj4eFy7dg1A2W3/bdu2ySTIyqLVCWpsbCwlpwJSMUmNjIzUyL7AGRkZePjwISWnAlI+SX348CEyMjL4DqnWSktLuS9tlJwSobuYfLFS5bQ8FixSclJwMfmiGqMCbty4gfPnz8PU1JT7kS4FLL0FPXHiROzbt48bwLR9+3aMGzcOIpGI28eyZctk9jFz5kykpaWhoKCgymP/8MMPiI6Oxq1bt3DkyBHcv38f7777Lvd8XFxcpe463bp1Q1xcXK3fZ5s2bbi/S7uWST/34uLiuOusVMXfMzIy8N5776F58+awsLCAhYUF8vLykJycLLOdr6+vzO+Ojo54++238eeffwIAjhw5gsLCQowePbrW76EmWt0R08/PDzo6OmjVqhUlpwIhTVLNzMzQunVrjewLLO37yLIsJacCIk1SGYbRyL7Aurq6mDx5MmJiYvDWW29RckoELS03TanbKYtEIsGQIUOwevXqSs9JPxeGDBkCiUSCo0ePolOnTrh48SLWrl0rs4+lS5dixIgRlfZR3cITDg4O8PDwAAB4eXkhNzcX48eP5/puAqj0/5plWe4xHR0d7jGpqgYm6enpcX8vP+2eooKCgvD8+XOsW7cOrq6uMDAwQNeuXVFcXCyznYmJSaXXzpgxA++++y5++OEHhISEYOzYsTA2Nlb42IrSvOygBtnZ2TA2Noaenh4Yhqn0rYHwT96/y8uXL2Ftbc1TRDUTi8XIycnhFh5o2rQpzxEReSp+YcjMzIS5uTlXGRGi8m3f1NSUPrOIRnA0U+xLoKLbKUuHDh2wb98+uLm5VVkAMTIywogRI7B9+3YkJCSgefPmMot/dOjQAfHx8VxSWVfSz53Xr18DAHx8fHDp0iVMnjyZ2+bKlSvw8fEBANja2gIo60fbvn17AJAZMKUoHx8f/PPPPzLH+eeff2S2uXjxIjZu3IhBgwYBAFJSUriBZDUZNGgQTExMsGnTJhw/fhwXLlyodYyK0KoENTMzE1u2bIG1tTXGjRsn8w2DCFd0dDQOHz6MgQMHolOnTnyHU4m0z+mTJ08QFBQEGxsbvkMiCnj+/Dm2bNkCJycnjB49WpBJamRkJI4fP4533nlH4ybRJg1bD5cecDJ3wtOcp3L7oTJg4GTuhB4uPVQWQ3Z2dqUEbtasWdi8eTPGjx+P+fPnw8bGBgkJCQgLC8PmzZu5z4GJEydiyJAhuHv3LiZNmiSzj6+++gqDBw+Gs7MzRo8eDR0dHdy+fRsxMTHVThuVlZWF9PR0SCQSPHjwAMuWLUPz5s25BHT+/PkYM2YMOnTogD59+uDvv//G/v37cebMGQBlifNbb72FVatWwc3NDS9evMCXX35Z6/MSHByMKVOmwNfXF927d8f27dtx9+5dmcKKh4cHtm7dCl9fX+Tk5GD+/PkwMjJSaP8ikQhBQUFYuHAhPDw8VPalWmv6oEqT0+zsbGRnZ9PkuBrk+fPnYFlWkAOnyg+IKiwspAnTNUhOTg4KCwsFO3BKOiCKZVk8f/6c73AIqRWRjgjrA9cDKEtGy5P+vi5wHUQ6qvtiGB4ejvbt28v8fPXVV7h8+TLEYjEGDBiAVq1aITg4GBYWFtwtdKBskJCVlRXi4+MxYcIEmf0OGDAAR44cwenTp9GpUye89dZbWLt2LVxdXauNZ+rUqXB0dISTkxPGjx+Pli1b4vjx41wld9iwYVi/fj3WrFmDli1b4tdff0VISAgCAgK4ffz5558oKSmBr68vgoOD6zSP6tixY/HVV19hwYIF6NixIx4/fozZs2fLbPPnn38iMzMT7du3x7vvvos5c+bAzs5O4WNMnz4dxcXFKhkcJcWw5Ts7aKjyyam1tTWmTJmidX1Oi4uLsXLlSgDAwoULoa+vz3NEysOyLE6fPo2rV68CKLt9IIRKakMYra/N7QoAVzkRi8Xw8vISTCVV20fra3u70haFhYVITEyEu7t7tX0rq7M/bj+CTwTLDJhyNnfGusB1GOFTuQ8n0Q6XL19GQEAAnjx5Ant7+1q9VtF2p/G3+BtCcqrtpAOnAODq1avchZvPJLUhJKcNgYeHB8aNG4ewsDCuksp3kqrtySlpWEb4jMBQr6G4mHwRablpcDRzRA+XHiqtnBL+FBUVISUlBYsWLcKYMWNqnZzWhkbf4qfkVHsIaZ5USk61izRJFcI8qZScEm0k0hEhwC0A41uPR4BbACWnWmznzp3w8vJCdnY2vv32W5UeS6MT1NevX6OwsJCSUy1RMUnlq79naWkp8vLyKDnVIuWT1Ly8PN7m35W2aUpOCSGaKCgoCGKxGDdu3ECTJk1UeiyNvsXfuHFjTJkyBaamppScaglpkuru7l7vKT7qysDAAJMmTUJGRgZcXFx4iYEon4eHByZPngw7OzsYGBjwEkOfPn3g6uoKDw8PSk4JIaQaGldBzczMxNOnT7nfHR0dKTnVMgzDwNPTk7uAl5aWIj4+XqXHFIvFMqt5GBoaUnKqhVxcXGQ65cfFxan8dn98fDxXsa3YtgkhhMinUQlqZmYmQkNDsXXrVqSmpvIdDlEDsViMsLAwhIWFqaxPqrTP6e7du7mZBIj2u3r1Knbv3q3SPqmRkZFc+xXaNFeEECJkgkxQL1y4gCFDhqBx48ZgGAYHDx7kktOcnByYmZlR1fQ/S5YsAcMwMj8ODg58h6U0Ojo63Nxs9R04tWnTJrRp0wbm5uYwNzdH165dceTIEZkBUbWZB07bPX36FJMmTYK1tTWMjY3Rrl073Lhxg++wlMbOzk4lA6dWrlwJhmEwfvx4bkCUvb29zByMDZWbm1ulzyuGYfDBBx/wHZrgrFy5Ep06dYKZmRns7OwwbNgwld9JIkRIBPmJmZ+fj7Zt22LDhg0AgLy8PC45tbGxweTJkylBLadly5ZIS0vjfmJiYvgOSWmUObrfyckJq1atwvXr13H9+nUEBARg2LBhuHjxIg2IqiAzMxPdunWDnp4ejh8/jtjYWHz//fewtLTkOzSladasGcaPH6/UJDUyMhK//fYbPDw8kJiYCADw8/ND37596bY+ys5P+c+q06dPAwBGjx7Nc2TCExERgQ8++AD//PMPTp8+jdLSUvTv3x/5+fl8h0aIWghykNTAgQMxcOBA7vdz587B1dWVktMq6OrqalXVtCJlzZM6ZMgQ7u9isRht27aFnp4eUlNT8emnn1JyWs7q1avh7OyMkJAQ7jE3Nzf+AlIRaZK6c+fOes+TmpeXh4kTJ2LevHlYs2YNAEpOK5KuNS61atUqNGvWDP7+/jxFJFwnTpyQ+T0kJAR2dna4ceMGevbsyVNUhKiPICuoUtIpWQoKCig5rcaDBw/QuHFjuLu7Y9y4cXj06BHfISmdvEpqXW83syyLXbt2Ye/evSgpKcGsWbMoOa3g8OHD8PX1xejRo2FnZ4f27dtj8+bNfIelEvIqqXVZYO+DDz6Ar68vXrx4AaBslhFKTqtWXFyMbdu2Ydq0aXSOFCC9HlpZWfEcScMQFBSEYcOG8R1GgyboBNXY2BgAYG5uTslpFbp06YK//voLJ0+exObNm5Geng4/Pz+8fPmS79CUrnySamBgUKcVLGJiYmBmZobJkyfj6NGj+PXXXxEYGKiCaDXbo0ePsGnTJnh6euLkyZN47733MGfOHPz11198h6YS0iRVV1cXzs7OtU6YwsLCcPPmTSxbtgwGBgawsLCo034akoMHDyIrKwtBQUF8hyJ4LMvi008/Rffu3dGqVSu+wxGMlJQUTJ8+HY0bN4a+vj5cXV0RHBxcq+tfUlISGIZBdHR0vWIJDw8HwzDIysqq137IG4K8xS+lp6cHAOjVqxclp1Uo3xWidevW6Nq1K5o1a4YtW7bg008/5TEy1ZAmqZ07d65Tf0gvLy9ER0cjKysL27dvx+eff46uXbuiRYsWyg9Wg0kkEvj6+mLFihUAgPbt2+Pu3bvYtGkTJk+ezHN0qtGsWTN88MEHtW5XKSkpCA4OxqlTp+Dh4YH33nsPJ06coOS0Bn/88QcGDhyIxo0b8x2K4H344Ye4ffs2Ll26xHcoVSosLcSVlCvwc/aDoW7V66sry6NHj9C1a1c0b94cO3fuhLu7O+7evYv58+fj+PHj+Oeff6jarOEEV0HNzMzE5cuXZW6xGRkZ8RiRZjExMUHr1q3x4MEDvkNRGYZhZJKI1NRU3Lx5s9rXiMVinDt3DhKJBB4eHvD19cUPP/yAtm3bYv369SqOWPM4OjpWStp9fHyQnJzMU0TqUb5dFRYW4ty5czUOnNq9ezcyMjLQsWNH6OrqwsbGBhEREfjxxx+hq6tL00vJ8fjxY5w5cwYzZszgOxTB++ijj3D48GGcP38eTk5OfIdTCcuyOBB3AM1/ao4+f/VB85+a40DcgTp1k6mNDz74APr6+jh16hT8/f3h4uKCgQMH4syZM3j69Cm++OILAOBmAirP0tISoaGhAAB3d3cAZV/CGYZBQECA3OOxLItvv/0WTZs2hZGREdq2bYu9e/cCKKvC9urVCwDQqFEjMAxDdwaUgNcKqlgixsXki0jLTYOjmSNambXC1r+2IicnBzo6Olx/Q1KmBCVIQQoKSwuhr68vd5uioiLExcWhR48eao6OH9nZ2fjrr79QVFQEsViMTp06QSwGLl4E0tIAR0fAz0+M/fvLppJKSUnB5MmTueoWy7IoKiri+V3wS1676tatW6Upbe7fvw9XV1c+QlQ7aT/lpKQkZGRk/DfKXCTTrnr0AG7ejMTLly8RHByMsWPHcnd6pk6dCm9vbyxYsKBOA660SWlpaaXPK+mAn7fffpunqISj4nWwh0sPiHREYFkWH330EQ4cOIDw8HAukRKSey/u4b0j7yHicQR0mLJ619PcpxixewT8Xf3xy+Bf4G3jrfTjvnr1CidPnsTy5csrFbAcHBwwceJE7Nq1Cxs3bqxxX9euXUPnzp1x5swZtGzZsspr65dffon9+/dzXZ8uXLiASZMmwdbWFt27d8e+ffswcuRIxMfHw9zcnAprSsBbgro/bj+CTwTjSc4T7jELxgID2AHobNoZEomE6xOSmJiI6OhoWFlZqXx1H5ZlIZaw0BUJp7jMsiwOxR/CT/gJOcjBuV/P4cfAHzHMexjmz5+PIUOGwMXFBRkZGfjmm2+Qk5ODKVOmqCUuvs+Vubk5OnTowI3uP3++EX76yQNP3jQrWFkVoW9fBunp5zB79mw8fvwYubm5CAsLQ3h4eKXRsqoghHNVUXXt6pNPPoGfnx9WrFiBMWPG4Nq1a/jtt9/w22+/qS02Ps8XwzDo1q0bUlJSEB8fj/nzr2LPnm548uTNbXs7uyIEBDxCixYGCAgIwFtvvcV98TExMYG1tbVa+gvyfa4qYllW5suNtJ+3t7c3GIaBRCJBSEgIpkyZAl1d9V6ChHau5F0HncydsD5wPc78dAY7duzAoUOHYGZmhvT0dACAhYWFYJKfaYem4drTawAACSuR+fNS8iVMOzQNV6ZfUfpxHzx4AJZl4ePjI/d5Hx8fZGZm4vnz5zXuSzqzhLW1dZWz4eTn52Pt2rU4d+4cVzhr2rQpLl26hF9//RX+/v5cdwI7Ozutmo6PT7wkqPvj9mPU7lFgIXsLIJvNxm7shoeZB7p37849Lu1LOWXKFK4sryqz991CWk4hPvX3QM+m1rz3Iyv/DZVBWSypuancN1Tjh8bYMX4HXrx4AVtbW7z11lv4559/1FLpEsK5Kj8F1R9/ZGL37mYAWABvYnn1ygi7d49B166H8PnnnyMtLQ0WFhZo06YNTpw4wb1elYRwrsqrqV39MvgXHDhwAAsXLsSyZcvg7u6OdevWYeLEiWqJTwjny8PDA+PGjcOiRVEIC+tW6fmMDH3s3j0GixbdQr9+bXn7NxXCuZJ68eIFjhw5gsePH3OP5ebmYvfu3XB1dcXgwYNx8+ZNJCcnY9q0aWqPT0jnqqrr4NOcp2WPbyp7vOIt55CQEMHcPs4tzoWYld+FRcyKkVucq+aIyki7Fyjr3zc2NhaFhYWVrhXFxcVo3769Uo5BKlN7giqWiBF8IrjSf0opBgz+yv8LuYVFEOlUvjX2ukTF62Zn5KGgRIzPjtxF+yYW+Kh7UzS1NlHpMasTdHAqrqeWTUwvPWflv6H6vt0JD3enVHqdqs8TIKxz1bVHb0ycWPrfbxU/lBgwDIuUlO2IeyBBxTuuDe1cATW3q6CDU3F+yiVcGzBQ5nXqOFeAcM6Xg5M7zodLv+xVblcAi5CQtvjs/2Tb1fHTZwE0vLZ14OBBpFVYhlqaLCQnJ+PAwYOYNGUqCorL/q+qqz1JCeVciSVizDku/zrIggUDBs5rnZEYnCj3OtjQeXh4gGEYxMbGyp0K6t69e2jUqBFsbGzAMEyl/rAlJSW1Op5EUvbZePToUTRp0kTmOQMDg9oFTxSm9gT1YvJFmdsZFbFg8STnCTr9tBHmevx+M4l6mo1pu6J4jSEm51m131Bvpz1DwEb+R3byfa5yHljgxYt2VT7PsgyePAE6zYuBuWe2+gKTg+9zBWhOuwL4PV85DyzwLL1dNVsIp10B/LetHjmZMKticAzLsohPy6R2BSCnJApP86u/DqbkpOBi8kUEuAWoLzANYW1tjX79+mHjxo345JNPZLo8pKenY/v27dxYA1tbW6SlpXHPP3jwAAUFBdzv0j6n1Q1mbNGiBQwMDJCcnFzlohKK7IfUjto74qTlptW8EYAS9pWKIyHapCRHfsf2um5HCEDtiqiGotc3Ra+XfDHTN4OIkV/hFTEimOmrbnrIDRs2oKioCAMGDMCFCxeQkpLCddlq0qQJli9fDgDo3bs3NmzYgJs3b+L69et47733uCksgbI+o0ZGRjhx4gSePXvGLYhQnpmZGebNm4dPPvkEW7ZswcOHDxEVFYWff/4ZW7ZsAQC4urqCYRgcOXIEz58/R15ensree0Oh9gqqo5mjQtv9PNwfPV2717yhkg3afBUF/912EjEMJGAxrJUjpnV2hZmB+rvs+m42Rmw1/bzdrY0RPlP95wkQ1rm6EAEEbq15u58ne6Gnv5fqA6pASOcKEHa7AoRzvoTergDhnCsA+HPzXbx4XlDl8+7WJvia2hUuPC5F4Pava9xO0eslX/4c+qfMKH4JK+H+7O7SHb8M/kVlx/b09MT169exZMkSjB07Fi9fvoSDgwOGDRuGxYsXc4OWvv/+e0ydOhU9e/ZE48aNsX79eplVCHV1dfHjjz9i2bJl+Oqrr9CjRw+Eh4dXOt7XX38NOzs7rFy5Eo8ePYKlpSU6dOiA//u//wMANGnSBEuXLsXnn3+OqVOnYvLkySofM6Pt1H5l7OHSA07mTnia87TKfqiWBo7o4dITRnr89r1p18QC8wI8eO0raGFgDhEjkns7VsSIYGFgzvt5Avg/V317AU5OwNOngLw7jAxT9nzfXqJKfVDVje9zBWhOuwL4PV9v2hULlq084EJI7Qrgv20ZGhjI7fMHlA1YMTQwaPDtqqhUgvg0F+gztihm5X9LZMDAydwJPVyEPV2gt403zk85j0PxhzDn+Byk5KRwsxAM9Rqq8kForq6uCAkJqXabxo0b4+TJkzKPVVztacaMGZXm5K2YXDIMgzlz5mDOnDlVHmvRokVYtGhRzYEThaj9Fr9IR4T1gWUTozNyBx0ANqLZmLorGnfSc9QcHeBlZwoHMwOsGdISP49ow2sSAZR9Q+3uUlZxkM4zJ/2zu0t3/Dn0T95iE9K5EokA6Xz7DFPx4lj2+7p14C2JENK5AoTdrgDhnC9puyrLt2TblfTay2e7AoRzrgBg6NCh3FSA0uRE+qeLiwuGDh3KW2wA/+fqTnoOJu+4ge03U+Fi9BHKroKy10Hp7+sC12nEACmGYTDMexjuf3QfZyefRfyH8RjmPYz3mUqI5mNYVS/3UIX9cfsx5/gcPM19yj3mbO6Mme2W4UpCc7wqKIEOA0zs4IyZb7nBQFc9ubTQ5skD3sxXKf2G6mLhorZvqDXFJbRztX8/MGcOi6dP35wXA8tC/PqzCFMm6FXzStUS4rkSaruSxiaU8/Uyvxg9ghPwcG9TFGe/WcLR2bksOR0xgr/YAGGdK+DNPKjHjx9HTk4OLCwsEBgYCC8vrwbbropKJdj8TxK230yBhAWsjfXxeR9PvCi6IPc6uC5wHUb4qL5hFRYWIjExEe7u7jA0VP3ypIQAirc73hJUAHhd+BqzV89GHvIwa8Is9G7WGyIdEbILS7A2PAEn4jMAAG5WxljUzwutHMz5ClUQ1L3WsaZ6/boYs2fvQF6eGV77tMBzqwxM7OiE4J7N+A5NkKhdVW/dhQTsjHqKVrbGEJ+6i7w8M8ya9Q5699YTxG19oSotLUVKSgqcnZ3VPiG/kNxJz8HXp+KRlFnWNzfQ2w6f+nvAwrDsC3NV10F1oASV8EHRdsfrp4ZIRwR3lC3f5u/qz/2ntDDUw9JAH/T2tMWqc/eR9KoAM3dHqb2aKjSGuobo7d6b7zAETyQC3N3LJgrvM7E75h7NwL6YVEzq6AxrExptXRG1q6q9zC/G/ttlI6mndnbB2QfHAAD+/kMoOa2Brq6uIJfnVJeqqqY9m9rIbFfVdZCQho7XBFVHRweenp7c3yvyb2aDdk0suGrq1hspuJj4kqqppFrl21UXVyu0cjDDnfRcbLuRQlVUUitbbySjSCxBa0dzdHG1QnI1n1eESNVUNS2vpusgIQ0Vr7f4ayPi4QusOneft76pRHP98/gVgg/GwEBXBweCulAVlSjkZX4xhof8iyKxBOuHtcZbrlZ8h0QETtGqqVDQLX7CB0XbncZkd/7NbBD2bicEetlBwgJbb6Rg8s4bvIz0J5qli0sjtHIwQ1GpBNtuVF4WlhB5ZKqnLo34DocInHSE/tYbZclpoLcddr7rK9jklBCh05gEFXjTN/XbwS1hZazH9U3dcOkRikolfIdHBIphGMx8yw0AsC8mFS/zi/kNiAhe+b6nM7q48j76nAhXUakEGy49wszdUUjKLIC1sT7WDGmJpQN85N7SJ4QohtcEtbi4GCtWrMCKFStQXKx40kDVVFIdee2KqqikNuRVT+v6eUW0lzKqptSuCJGP9wpqSUkJSkpKav06qqaS6lRsV1RFJYqqrnpa188rol2UXTWldkVIZbwnqPVF1VSiKKqiEkVQ31NSHeprKgxBQUFgGAYMw0BPTw9NmzbFvHnzkJ+fz3doREk0PkEFqJpKFENVVFIT6ntKqkJ9TatXWlqKxMRElJaWqu2YgYGBSEtLw6NHj/DNN99g48aNmDdvntqOT1RLKxJUKaqmkppQFZVUh6qnRB6qmlaNZVnExcXhp59+wl9//YWffvoJcXFxUMcMlgYGBnBwcICzszMmTJiAiRMn4uDBgwgKCsKwYcNktv34448REBDA/R4QEICPPvoIH3/8MRo1agR7e3v89ttvyM/Px9SpU2FmZoZmzZrh+PHj3GvCw8PBMAyOHj2Ktm3bwtDQEF26dEFMTIzK32tDpFUJKkDVVFI9qqKSqlD1lFREVdPqvXjxAlu2bMHu3buRm5sLAMjNzcXu3buxZcsWvHjxQq3xGBkZ1aov75YtW2BjY4Nr167ho48+wuzZszF69Gj4+fnh5s2bGDBgAN59910UFBTIvG7+/Pn47rvvEBkZCTs7O7zzzjvUh1gFtC5BlaJqKqkKVVGJPFQ9JeVR1bRmhw4dQnJyMgBwFVPpn8nJyTh06JDaYrl27Rp27NiBPn36KPyatm3b4ssvv4SnpycWLlwIIyMj2NjYYObMmfD09MRXX32Fly9f4vbt2zKvW7x4Mfr164fWrVtjy5YtePbsGQ4cOKDst9Tg8ZqgMgwDV1dXuLqqplpB1dSGqaZ2RVVUUpEi1VNVf14RYVB31VST21VxcXGVt/JZllX5tFlHjhyBqakpDA0N0bVrV/Ts2RM//fSTwq9v06YN93eRSARra2u0bt2ae8ze3h4AkJGRIfO6rl27cn+3srKCl5cX4uLi6vo2SBV0+Ty4np4egoKCVH4c/2Y2aNfEAmvDE3AiPgNbb6TgYuJLfNXPCy0dzFV+fKJeirQraRX1Tnoutt1IQXDPZuoJjgiSItVTdX1eEf7cSc/B16fjkfSq7JZuoLcdPvX3UOntfGpXdderVy9s2rQJenp6aNy4MfT0yv6ddHR0KiXO8m7BS7eXks4IUP53AJBIai5oadqXC02gtbf4K5JXTZ2xOwo/UzW1QaIqKpGivqdEpmr6ivqaagoTExN4eHjA1dVVJrG0tbVFWlqazLbR0dFKO+4///zD/T0zMxP379+Ht7e30vZPyjSYBFWqYt/Uv/7rm3qX+qY2ONQXlQDU97Shu5Oeg8k7qa9pXejr61f5hY5hGOjr66s5ojK9e/fG9evX8ddff+HBgwdYvHgx7ty5o7T9L1u2DGfPnsWdO3cQFBQEGxubSrMGkPrjfanTNWvWYM2aNWpd4o2qqdpN0XZFVVRSm+opX59XRDWEUjXV5HY1dOhQuLi4AHhzi1v6p4uLC4YOHcpLXAMGDMCiRYvw2WefoVOnTsjNzcXkyZOVtv9Vq1YhODgYHTt2RFpaGg4fPsxbMq7NeO2DCqDS9A3qVLFv6l83UnCB+qZqBUXbFfVFbdhqWz3l8/OKKA8ffU2ro6ntysbGBlOmTEF8fDyOHz+OnJwcmJubIzAwEF5eXirtLhMaGlrt80uXLsXSpUurfD48PLzSY0lJSZUekzcIrHv37kqtyBL5eE9Q+Satpvb2tMWqc/e5auqkDs6Y8ZYbDHQbXC+IBkVaRQ0+GIN9MamY1NEZ1ib0TbghoL6nDU9RqQSb/0nC9ptlt/OtjfXxeR9Pup1fDwzDwNvbGx4eHkhJSYGzszN0dRt8akGUgLKv/1Df1IaL+qI2TNT3tGGhvqaqpaurC3d3d0pOidJQgloO9U1tmKgvasND1dOGQyh9TYnmCwgIAMuysLS05DuUBoESVDmomtrwUBW1YaHqacNAVVNCNBclqFWgamrDQlXUhoOqp9qPqqa1U9VqUISogqLtjdfOIgzDoHHjxtzfhYhG+mueurYrGtHfMNS1eqoJn1dEeCP0a8Jnu5JObl9QUAAjIyO1Hps0XNJZKyqu5FURw9JXJ4VFPHyBVefu41VBCXQY0Eh/LfTP41cIPhgDA10dHAjqQiP6tczL/GIMD/kXRWIJ1g9rjbdcrfgOiSgJjdCvm7S0NGRlZcHOzg7Gxsb05YuoDMuyKCgoQEZGBiwtLeHo6Fjt9pSg1lJ2YQlXTQUANytjqqZqEZZlMWN3FO6k52JCeyeqomqZdRcSsDPqKVo7mmPz6HZ0MdYSmlY1FRKWZZGeno6srCy+QyENhKWlJRwcHGr8/KUEtY6omqq9qIqqnah6qn2oaqo8YrEYJSUlfIdBtJyenh5EIpFC2/KaoJaUlODnn38GAHzwwQc19kcQGqqmClN92xVVUbVTfaunmv55pW20pWpK7YoQ+Xgt97Esi+zsbGRnZ2vkKEJFRvpLWBbhCS+QllPIc7QNR33bVfkR/XtvP8XjV5q5DCF542V+MfbdSgVQ95H7mv55pS20bYQ+tStC5KP70UpQ3bype2+lYsHRu/j6dDzfYZJakI7oLxazGL/tOvbeegoJXTw0koRlsehELIolLCwMdWneUw12Oy0bE7dfp3lNCWkAaE0yJZFWU3t72mLVuftIelWA6buiIC3U3HiShdup2WjT2ILfQIlCpFXU4IMxELMs1oQn4PT951jUzwtOljQdi6Z4kvUaX52Iw91nuQAAQz0RDYzSECzLYvHJe7j/PA+5RaXIel2CUknZl0QRw2Dl2z7wb2bLc5SEEFWhCqqSSaupA5rbggXw3+cpdBhg879JfIZGaqmLSyPo6rxJZmLScjB+WyTCop5QNVXgJCyLsKgnGLctErH/JacAIJbQv5umyC0qxfmE50h8VYAX+cVccgoA7ZtYUHJKiJajBFUFLAz10MpRtlIqYYFryVmIepLFT1Ck1hiGgU65apuYZVEsZvHDhYe4+Oglj5GRmlx4+BI/XHiIEjGL8ilpQbGYt5hI7RjoitC2ijtOs7u5qzkaQoi6UYKqAjmFJfjp0kO5z318KAZ303PUHBGpCwnLokT8Zllbaara2aURvO1M+QmKKMTH3hSd5fQ1fV0ipuq3BriTnoPJO28gMiULwJv/eyKGQWcXS7SimVII0Xq8JqgMw8DW1ha2trZa1S/MzEAXvT1t0dTaGLam+jDWezPnV2GpBNN3yY70J8qlrHZVUCxGxVRm7Tut8NPwNrA3M6xfkESl7M0MsaS/N/TKddFgALCoexVVWz+vhETeCP0FvT2hJyo732KWxf/+m2FDW1C7IkQ+mqhfTSQsi7ScQmy8nIgzD54DoHlTha6wRIwP9t+Csb4IL/KK8ehVAc2LqkHKz3s6p3tTbP43CQXFYvw8oi0M9RSbKJqoT3Xzmu6OforvIxLQ0ckSG0e25TlSQog6UILKA1qFSnOwLAuGYWh1KQ1T1apR0n9PIhyKrAYlYVlcfPQSXramcDCnuxeENASUEfGgunlTibBIkxnpvKhFpRJsu5HCc1SkJltvJKNILEFrR3OZeU8pORUWaV/TmuY11WEY+DezoeSUkAaE96VON2/eDACYOXNmg1zijaqpyqeqdkVVVM1QVfW0vujzSnkUqZo2FNSuCJGP14n6WZbF8+fPub83RP7NbNCuiQXWhifgRHwG/rqRgguJL6lvaj2oql1Jq6h30nOx7UYK9UUVqKqqp/VFn1fKUV1f04aI2hUh8lGZTgCkq1B9O7glrIz1kPSqADN200h/oZGuLgUA+2JS8TK/mN+ASCUv84ux/3YaAGBGF1e6pS8g8kborxnSEksH+DTY5JQQUjVKUAWE+qYKH/VFFTZVVU9J/Sja15QQQqQoQRUYqqYKG1VRhYuqp8JDVVNCSF1RgipQVE0VLqqiChNVT4WFqqaEkPqgBFXAqJoqTFRFFR6qngoHVU0JIcrA+1KnFhYWsLCwoAtKNaiaWjvqaFdURRUWdVRP6fOqZlQ1rT1qV4TIRytJaRiaN1U4aF5UYVDVvKdEcTSvKSFE2Sir0TBUTRUOqqIKA/U95RdVTQkhqkAVVA1G1VT+URWVX1Q95Q9VTQkhqsRrJiNd4m3z5s0oKSnhMxSNRNVU+dTZrqiKyi91Vk/p8+qNu1Q1VRpqV4TIx2uCyrIsUlNTkZqaSku81VGVI/0vN9yR/upsVzSinz/qHrlPn1dlVdOfLz3CDBqhrzTUrgiRj+4Fa4lK1dTrKZhC1VS1oCoqP6jvqXpJq6Z/UdWUEKIGlKBqkYrV1ESqpqoFVVHVj+Y9VR+qmhJC+EAJqhaiaqr6URVVvah6qh5UNSWE8IUSVC1F1VT1oiqq+lD1VPWoakoI4RslqFqOqqnqQ1VU9aDqqWpR1ZQQIgS8J6jGxsYwNjbmOwyt1hCrqXy0K6qiqh7f1VNt/ryiqil/tLldEVJnLGlQsl4Xs18dj2U7rwtnO68LZ8f+dY29k5at9OPk5OSwwcHBrIuLC2toaMh27dqVvXbtmtKPUxsRERHs4MGDWUdHRxYAe+DAAZnnJRIJu3jxYtbR0ZE1NDRk/f392Tt37sjdl0QiYQMDAyvtRyKRsNPCbrCd14Wz6yIS1B6Xtvvwx+2sZcuurHEjG7nnat++fWz//v1Za2trFgAbFRWl8piU8e/n7+/PApD5GTt2rMriKi4uZj/77DO2VatWrLGxMWtr78C6dhvItlu6l+28Lpz96kQsm/W6uF7HJ4SQ+uC9gkrUS13V1BkzZuD06dPYunUrYmJi0L9/f/Tt2xdPnz5V2jFqKz8/H23btsWGDRvkPv/tt99i7dq12LBhAyIjI+Hg4IB+/fohNze30rbr1q2TW72rSxVVmXFps5f5xTgf+xTGjZth0crv5G6Tn5+Pbt26YdWqVWqLS1n/fjNnzkRaWhr38+uvv6osroKCAty8eROf/98XmLv5EOwmLMKLJ0l49OeXVDUlhAgD3xky4Y+qqqkFBQWsSCRijxw5IvN427Zt2S+++KLe+1cGyKl8Ojg4sKtWreIeKywsZC0sLNhffvlF5rXR0dGsk5MTm5aWVmXFrLZVVGXEpe1+iHjAdl4Xzk7fdZOVSCRyz71UYmKi2iqo5dX138/f358NDg5WW1wsy7J30rLZMX9d4/7/T1+/iwXAPn78WGVxEEKIonhf6jQ0NBShoaG0xBsPVFVNLS0thVgshqGhoczjRkZGuHTpUn3DrlFd2lViYiLS09PRv39/7jEDAwP4+/vjypUr3GMFBQUYP348NmzYAAcHB7n7UmZfVEXj0nZ89z0FVNuuAGD79u2wsbFBy5YtMW/ePJVVyKvqazquhRUYhoGlpaVKjkvko+sgIfLp8nlwlmXx+PFj7u+EH/7NbNCuiQXWhifgRHwG/rqegouPXmJRPy+0dDCv9f7MzMzQtWtXfP311/Dx8YG9vT127tyJf//9F56enip4B7Lq0q7S09MBAPb29jKP29vbc/sCgE8++QR+fn4YOnRotfuTjui/k56LbTdSENyzWW3eQq3j0nZCGLmvynY1ceJEuLu7w8HBAXfu3MHChQtx69YtnD59WknRl7mbnoNlp+OR9KoAQNkI/U/9PWAAMbqP+RwTJkyAuXnt/8+TuqPrICHy8ZqgEuGQVlN7e9pi1bn7XDV1UkdnzOjiBgPd2hXbt27dimnTpqFJkyYQiUTo0KEDJkyYgJs3b6roHShHxcocy7LcY4cPH8a5c+cQFRWl0H5mvuWG4IMx2BeTikkdnWFtoq+SuLSdEKqn9VXTv9/MmTO5v7dq1Qqenp7w9fXFzZs30aFDB6XEcCw2HTHJUZCwgLWxPj7v44meTW1QUlKC0aPHQSKRYOPGjUo5FiGE1BcNkiIylDVvarNmzRAREYG8vDykpKTg2rVrKCkpgbu7u4oirx/p7XppxUsqIyODq36dO3cODx8+hKWlJXR1daGrW/b9buTIkQgICKi0T2XMi6pIXNpOCNXTuqrrv1+HDh2gp6eHBw8e1DsG6f/d8IcvKs1rWlJSgjFjxiAxMRGnT5+m6ikhRDAoQSWVKLNvqomJCRwdHZGZmYmTJ0/WeGucL9Lbq+VvqRYXFyMiIgJ+fn4AgM8//xy3b99GdHQ09wMAP/zwA0JCQirtUxl9URWJS5tpevW0rv9+d+/eRUlJCRwdHet87PJ9TQHAzEBXZoS+NDl98OABzpw5A2tr6zofixBClI1u8ZMqKdI3tbC0EFdSrsDP2Q+Gum8GRZ08eRIsy8LLywsJCQmYP38+vLy8MHXqVLXEzrIskpKSZPp05eXlISEhgfs9MTER0dHRsLKygouLCz7++GOsWLECnp6e8PT0xIoVK2BsbIwJEyYAKKuGyRsY5eLiUmVluHxf1JBrCejgll7pXNU3Lm1VWFqIr87swetSe7RtbIsuLo1qPFevXr1CcnIyUlNTAQDx8fEAqv63qy1VtKuHDx9i+/btGDRoEGxsbBAbG4u5c+eiffv26Natm0JxlZaWIiUlBc7OztDV1cXd9Bws+jsK9++/qcCOdNOFec4TJCcXoHHjxhg1ahRu3ryJI0eOQCwWc1VeKysr6OvXvTsKIYQohfonDnijqKiIXbJkCbtkyRK2qKiIz1BIDcITnrOBv11mO68LZ99aH87+dDGB3RWzl3Ve68xiCVjntc7s/tj9rEQiYVmWZXft2sU2bdqU1dfXZx0cHNgPPviAzcrKUkusRUVF7MSJE1kA7OHDh7nHz58/X2kydADslClTWJZ9M6G6g4MDa2BgwPbs2ZO9ffs2W1paWuWxUM1UR1JXEl+wHt9+zRoss5N7ruoSV0xMTL3OkZBJJBJ2f+x+tsn3TiyWgNVfaseujNjCSiSSGs9VSEiI3OcXL17MlpaWcue8LpTZrsr/+yUnJ7M9e/ZkraysWH19fbZZs2bsnDlz2JcvXyp0rmJjY9m1a9eyS5YsYb9fu5b9ft959q1151nvD36oMi7pNFzyfs6fP1/nc0Rqj66DhMjHsCx/wwaLi4vx3XdlE27PmzePvrULXHZhCdaGJ+BAbCSSCtYiV3wLOtCBBBLoMDqQsBL4u/rjl8G/wNvGm7c4i4uL4efnhxs3bmDq1Kn4888/67yv0NBQZGVlITAwEF5eXrW+xXzvxT28d+Q9RDyOAMAAYAV1roSm/PlioAMWEkjPW13PF8uyiI+Px4kTJ2BpaYmgoKA6xabMdqUML168wJEjR/D48WMwDAOWZcGi7Gy9FFmgUauu+DSwA024L3B0HSREPl4TVKKZWv3cCXdf3ARQuT+qiBGhc5POuDJdvXN0SiQSbNq0CVlZWQDKVu/JycmBubk55s6dCwCwsLDArFmzoKOjeNfr77//HsXFZX1HXV1d0a9fP9ja2ir8ev+//BGZGgkxK670HF/nSsj8/vDDtafXqjxfnRp3QsTkCIX39/z5c5w6dQrJyckAAH19fa49KEIikeDXX39FdnY2AOC7775Dbm4uLCwsMH/+fACApaUlZs+eXat2pQx//PEHnj59Kn9qIoaBU5MmmD59ulpjIoQQZaE+qKTWGJ1CyEtOAUDMipFbrP4lOPPz8/HVV1/h1atXYBiGSxZyc3OxePFiAGULBTx79gwGBgZ1Osbjx4/x+++/1+o1j/AIYlROtgD+zpWQ5Rbnyk1OgbLz9ejpI6xcubLO+y8uLq7V64uKirBu3Tq8fv0awJvpovLy8rBo0SKwLAsrKytMnjwZZmZmdY6rLoqLi6ueN5NluS9WhBCiiWgUP6m1mlY7kfBQlDczM0NUVBQ3MlosLktypBdwZ2dnvPfee3VOTknDZGBggFmzZsHZ2RnAm/YkbV9+fn6Ijo5We3JaVCrBy/witR6TEELUidcKamlpKXbv3g0AGDNmDDevJBEmsViMixcvIjMzs9rtnmS9xt30nDqtQlUfLi4uOH/+PKysrJCfn889rqenhyNHjsDbu/Z9Pcvf4tfR0QHLsujQoQN69uxZaSlXefZs3oOMFxm1Pi6Rz9bGFgtnLqxxu8LCQly4cIFbGEKaWNb2Fj9QNsrewsICK1askPlyZmxsjPDwcOjpqbePp3Q1KOfXJaguLc7Ly4NYLIZIJFJbbKT26DpIiHy8/k+QSCTcRNQSSd3Xfieql56ejoMHD+LZs2fQhz43OKoyHUgkRvVahao+rl27JpOcAmUV359++gkLFiyAh4dHnfft4uKCgQMHws7OTuHXmBuaQ8SIquxTaaav3sqb0BnpmqLsxo78/s3mhuYKDSLR19fH4MGD0blzZxw/fhxJSUkyzykqISEB+/btQ3JycqU7B/n5+bh27ZrCU0HVV1GpBL//k4RtN1MgYQFnkR7AMkAVdywKCgqwefNmDBs2TClTbBHVoOsgIfLRLX5SLbFYjPDwcGzevBnPnj2DkZERfu73M3q49gAA6DA6Mn92d+6Od1uurtcqVPXx999/AwCGDRuGhIQEvPPOOwCAuLg4hIWFcfNjKsrR0REWFhYYN24cJk+eXKvkFAD+HPonurt0B/DmHJWNswbcLXzx51B+R4ILTR+nJTATtQYgp225dK/1+bKzs8PkyZMxduxYWFhY1Gri+9TUVISFhUEsFuPFixcA3rQr6YIThw8frlU8dXU3PQeTd97AXzfKktNALzt8MGUsXF1cALzpGyv908bGBgYGBnj27Bk2b96M8PBwrlsCIYRoAt6nmZIOWFi4cCFNryEw5aumAODj44O3334bJiYmYFkWh+IPYc7xOUjJSYGLhQvWB67HUK+hYBgGEQ9fYNW5+3hVUAIdBmqrpl6+fBmPHz/G+PHjual3tm/fjkePHsHb2xsjR46s1S1PlmUhkUjqdZu04rmyN3GCOTsL9kY9cXDqW7A2oXYPlK0aNTzkXxSWijGyQwp+vvGF3LZVV2KxGDo6OgrvQywWY9++fWBZFo6Ojnjy5IlMu9q5cydcXV1VWkGtWDW1MtbD572bw7+ZDYA3U2gdP34cOTk5sLCw4KZEy8/Px7FjxxAXFwcAsLe3p2qqANF1kBD5KEEllUj7ml68eBESiQRGRkYYNGgQWrZsWeniXtVKUgCQ/boE30ck4GR8WR9MdytjmVWo1ElaPeKzP570XHV16ooP9sfhbnouJrR3QnDPZrzFJCTrLiRgZ9RTtHIww+9j2qNIXFRl21IXPtuNtK9p0qsCAGVV008DPOTOa1pxJSkplmVx9+5dHDt2DK9fv4aOjg569OiBHj16UN9UgaDrICHy0S1+IiM9PR2bN29GREQEJBIJfHx88MEHH6BVq1ZyK0+Guobo7d5bbgJhYaSHZYE++HZwS1gZ6yHxVQFm7I7Cz5cfoahUvX2tRCIRd0FmWRbHjx+XWZ5SHaTnykjPCDO7uAEA9sWk4mU+TQf0Mr8Y+2+nAQBmvuUGhmGqbVuqkpCQgOPHj3ODqsq3G3UpKpXg50uPMGN3FJJeFcDKWA/fDm6JpYE+VU66r6urC3d390oDbBiGQatWrfD+++/Dx8cHEokEERER2Lx5M7e0KSGECBElqASA/L6mI0eOxOjRo2FiYlKvffs3s0HYpE4Y4GXHW9/U8m7evIlr164hLCxM7Umq1FuujdDSwQxFpRJsu5HCSwxCsvVGMorEErRyMEMXl0a8xJCQkICwsDBcu3aNG/2vbvL6moa924m7pV9XpqamGD16NEaOHMnNB0x9UwkhQkYJKql11bQuhFRNbdeuHby9vSEWi3lLUhmGoSrqf+RVT9VNmpyKxWJ4e3ujXbt2aj1+XaqmtUXVVEKIJqGlThuw2vQ1VSYh9E0Vi8XYu3cv7t27B5FIhHHjxtVrCqq6YFkW03dHNfi+qBX7nqo7Qa2YnI4aNUqtt/Vr09dUWahvKiFE6ChBbaCqG6GvLnyN9JcSQpJ6NekVPj4UAwNdHRwI6tLgRvRLR+4XiSVYP6w13nK1Uuvx+UxOaxqhrw55eXk00p8QIkiUoDYwfFVNq8J3NbV8kqqvr4/g4GAYGxur5dgAVVH5rJ4WFBRg3bp1KCkpUXtyykfVtCpUTSWECBGvCWppaSkOHDgAABg+fDgt8aZiQqiaVoXPaqpYLMaBAwfQokULtGjRQuXHq6ihVlH5rp4CQGxsLGJjYzF8+HC1JGNCqJpWhaqp/KDrICHy0TyoDYDQqqZV4buaWp5EIoGOjnq6GjTUKipf1VN1/tuWJ6SqaVWomqp+dB0kRD4axa/l1DFCX1mEMtI/OzsbmzZtUtvo/oY4op+vkfsJCQnYtGkTsrOz1XI8QD0j9JWFRvoTQoSCElQtpcp5TVWN73lTr1y5ghcvXqh1CqqGNi8qH/OeSgdEvXjxAleuXFHLMVU1r6mq0byphBC+UYKqhTSpaloVPqup/fv3V/s8qQ2pispH9bTiaP3+/fur9HiaVDWtClVTCSF8ogRVi2hy1bQqfFRTRSIRRo0apfYktaFUUdVdPVX3VFKaWjWtClVTCSF8oARVS2hD1bQqfFRT+UhSG0IVVd3VU3Ump9pQNa0KVVMJIepGCaqG08aqaVXUXU2tmKSeO3cOqp70QturqOqsnrIsi7Nnz6olOdW2qmlVqJpKCFEXXqeZYlkWJSUlAAA9PT2Nr/Spm5DnNVU1dc6bKhaLcfbsWfj5+cHU1FTp+69IW+dF5WPe07y8PFy5cgV9+vRRSXIq5HlNVY3mTVUOug4SIh+tJKWBNGVeU1Xjc97U3NxcmJmZqWTf2jovqrrmPVXlv015mjCvqarRvKmEEFWhBFXDNOSqaVXUvQpVVFQUjh07hrFjx8LDw0Mlx9C2Kqq6qqcJCQnYtWsXBg0ahPbt26vkGA25aloVqqYSQpSN96VOjxw5AgAYPHgwLfFWDaqaVk9d1VSWZbFnzx7ExcVBJBJh3LhxKklSta2Kqo7qafkBUS1atMCoUaOUfhyqmlaNqql1Q9dBQuTjdZCURCLBrVu3cOvWLUgk6lspSNNo8wh9ZVHXSH+GYTBy5EiVj+7XphH96hi5X3G0/ogRI5R6HG0eoa8sNNK/bug6SIh8NIpfwBrSCH1lUcdIf3VNQaUtI/pVPXJf1VNJNZQR+spCI/0JIcpACapAUdW07tRRTVVHkqoNVVRVV09VmZxS1bTuqJpKCKkvSlAFhqqmyqPqamrFJDU5OVkp+y1P06uoqq6eJicnqyQ5paqpclA1lRBSV9QbW0BohL7ySaupfTxtsercfa6aqqyR/tIk9c6dO2jTpo2Son5DWkX9+FAM9sWkYlJHZ40Z0a+Ovqe9evWCtbU1WrVqpZTklEboK5+0murm5saN9I+IiMC9e/dopD8hpEpUQRUAqpqqniqrqSKRCG3btuUSsNLSUjx58qTe+5XS1CqqqqqnT548QWlpKYCy5Kdt27ZKSU6paqpaVE0lhNQGJag8o76m6qOOvqmlpaUICwtDaGio0vqkamJfVFVVTxMSEhAaGoqwsDAuSa0v6muqPtQ3lRCiKN6XOi0oKJtP0NjYuEElZDSvKb9UNW+qWCzG3r17ce/ePaXOk6pp86KqYt5TVQyIonlN+UPzppZpyNdBQqpDK0nxgPqaCocqVqFSVZKqKatLqWLVKGUnp9TXVDhoFSpCiDyUoKoRVU2FqaZqqoRlceHhS3jZmcLR3FChfaoiSS1fRR3VujHm9/as1/5URVo9bWlvij/Gdqh321Z2ckpVU+GhaiohpCLelzo9efIkAGDAgAFavcRbWloaDhw4gOfPnwOgqqkQVVVNPXQnDd9HJKCjkyU2jmyr8P5UkaRKq6gA8L6fO971dYaOgL7cPM8rwrA//0Upy6JDEwtsGtWuXvtTZnL6ukSMTZcTsfvWU7CgqqkQVaym2tnZYdCgQXBxcdHaL/EN6TpISG3w+j9BIpHg+vXrAIB+/frxGYpSsSyLAwcOID09HYWFhcjPz+eWsGMYBsOHD6dBUALk38wG7RpbcNXUv66n4NyD53iWWwQAuPEkC7dTs9GmsYVC+5NOQbV3714kJibC0FCx6mt13nJtBH2RDorFEmy8kogrSa+wqJ8XnCyN6r3v+nqS9Rqz9kaj9L/vvK9el9R7n4aGhtDV1YWnp2etklOWZbH45D3cf56HvKJS5BSVygyEG9DcFnN7eVLVVGCkI/3v3r2Lo0ePIiMjA6GhoQAAPT09GBoawtDQEA4ODhg+fLhWfIZq63WQkPqir2oqUFhYiLi4OLmjjF1dXdG6dWseoiKKKD9v6sqz8XiSXcg9J2KAzf8m4afhildRpUnqq1evYGtrW+/4GIaBoW5ZggoAt9OyMX5bJD7o1hRj2jXhpZoqYVnsjn6KDZceoUTy5oZMXlH9R9k7OTlh+vTpsLKyqlXlNLeoFOcTnqNYXPkGUXNbEywb2KLesRHVKD9v6i+//IL8/HwAQElJCUpKSpCbm4vMzEwMHDgQRkb8fzEjhKgGTTOlAvr6+nBzc5P7XJ8+fdQbDKkT/2Y2GN/eWeYxMQtcS87CnVrOnSoSiWSS09TU1HpNQVUieVMJlLBAsZjFDxce4uKjl3XeZ31cePgSP1x4KJOcAkBBcd3mtkxISEBqair3u62tba1v65sb6mFUmyZyn1vQu3md4iLqZWpqirFjx8p9rk+fPpScEqLlKEFVMum8phUTEB0dHTRt2hROTk48RUZqI6ewBL//myT3uUXH4+o8b+qLFy/w119/ISwsrE5JqoRlUVhS+didXRrB2860TjHVl4+9Kdo3qdzt4XWJGJJadnGX9jn966+/8OLFizrFI53XdGeU7GIJIoZBZxdLtKrnVGJEfZydneHu7l7pVn5UVBTNm0qIlqMEVUnkrQY1YMAArvIjkUgQEBDAb5BEYWYGuujtaYum1sawNdWHkd6b/yqpOYWYvON6nVahatSoEdzd3SEWi+uUpBYUi8ECKH+57t/cFj8NbwN7s/r3ca0LezNDLjk20S9r7wwAFrWropYfEOXu7o5GjWq/+lT51aBYAD3craAnKjtbYpbF/95yq/U+Cb969eoF6VheHR0dGBgYICMjg1ahIkTLUR9UJZA3r+mgQYNgamoKhmFw4sQJuLm5wdnZuYY9EaFgGAZLB/jIPCZhWZyKz8C6CwlIynyNGbujaj1vavmBU/fu3UNYWFitRvfr6jBo5WAGY31d+LlaYd3Fh4h49BIv84t5mxe1/KpRKwa1gIm+CL/9k4SCYjF0dRTrE1vf0frVzWu6O/opNwtDa0fFBrgR4XB2doabmxuSkpIwYMAAtGjRAkePHsW9e/cQERGBe/fu0byphGghXqeZKi4uxsqVKwEACxcuhL6+MCcer4oi85qyLIv4+Hg4OjrCwoIujtpAGatQ1WcKKpZlwTCMYFaXqmrVKGmcNalvclpxXtMBXnaY6+8BC6OyEfoSlsXFRy/hZWsKBwXnsSXCkp2djbS0NHh5eXFtX1vmTdX06yAhqsL7UqfZ2dkAAAsLC42aMqS6qilpGOq7ClXFJHXKlCm1rrLzvbpUfVeNSklJwZYtW+qUnNJqUCQvL4+rpgKauQqVJl8HCVElWkmqlmg1KFJefaup0iS1uLgY48aNg55e7ebl5LuKWlX1VFElJSUICwuDvr5+rZLTmqqmpOHQpmoqIeQNSlBrgaqmpCr1qaaKxWJIJJJaJ6dSfFVR61s9lSopKYGOjo5CyQRVTUlVtKGaSgh5g9cEVSwW4+zZswDK5rUT6rddqpoSRSijbyrLsggPD4ezs3Ot+qTyUUWta/U0ISEBKSkpCAgIqNX/H6qakppoYjVVU66DhKgbr6P4xWIxrl69CgAICAgQ5H9MqpoSRZVfhWrVuftIfFVQ65H+d+7cwYULF2o1cIphGMzs4oaPD8VgX0wqJnV0VnkVtfzI/ZlvudUqOZUOiLKxsVFoVTWqmhJFlV+FSlNG+mvCdZAQPtA8qFWQN6/pyJEjMXr0aEpOSbX8m9kgbFInDPCyg4QF/rqegik7byg0b2qLFi3g7e1d63lS33JthJYOZigqlWDbjZT6voUabb2RjCKxBK0czNDFRbH5SiuO1m/RoublRsvPayphy6qmYZM6UXJKqmVqaooxY8Zg5MiRMDIywrNnz2jeVEI0DCWockhXg4qIiIBEIoGPjw/ef/99tGrVim7pE4VIq6nfDm4JK2M9rpr68+VH1a5CJZ0ntbZJqrSKCgD7YlLxMr9YWW+lkrpUT2s7lZR0NagZu6OQ9KoAVsZ6+HZwSywL9KFb+kQh0mrq+++/D29vb0gkEkRERGDz5s20ChUhGoAS1HKoakqUrS7V1Lomqeqqota2elrb5JSqpkSZqJpKiGaiBPU/VDUlqlKXamrFJHXXrl3Izc2t9jjqqKLWtnqam5uLXbt2KZScUtWUqApVUwnRPA0+QaWqKVGX2lZTpUmqj48PBg4cCDMzsxqPoeoqam2rp2ZmZhg4cCB8fHyqTU6pakrUgaqphGgOXkfx841G6BN1q+1If5FIhNGjR8tUKqtbQlSVI/prUz0tH2OHDh3Qvr38aahohD5RN00c6U9IQ8T7UqfPnz8HANja2qrtVjrNa0qEoC7zpubn52PHjh3o1atXlVNQqWpeVEXnPU1ISMD58+cxYcIEmJiYVLk/mteU8E0I86bydR0kROga3EpSVDUlQlObVahOnTqFq1ev1jhPqrJXl1J01ajyA6K6du2K/v37V9qGqqZEaGgVKkKEp8EkqFQ1JUKmaDVVLBZj7969uHfvXrVJqrKrqIpUTxUZrU9VUyJUQqimEkLe4H2p04sXLwKASj8EqGpKNIUi1VRFk1RlVVEVqZ7WlJxS1ZRoCnVXU9V1HSRE0/A6il8sFiMiIgIREREqGUFJI/SJplFkpL+i86Qqa0R/TSP3a0pOaYQ+0STqHumv6usgIZpKa6eZonlNiaZSZN7UiknqiRMnIJHIzqmqjHlRaxq5L5FIcOLECbnJKc1rSjQVzZtKCP+0LkGlqinRFjVVU6VJaqdOnTBp0iTo6FT+71zfKmpN1VMdHR1MmjQJnTp1kklOqWpKtAHNm0oIf7QqQaWqKdE2NVVTRSIRBg0aBEtLS+41BQUF3N/rU0Wtrnpa/hiWlpYYNGgQRCIRVU2J1qFqKiH80IoElaqmRNspugpVXFwc1q9fL9Mnta5V1KqqpwkJCVi/fj03iESKqqZEm1E1lRD10vgElaqmpKFQpG/q3bt3UVxcLDNwqi5V1Kqqp9IBUcXFxbhz5w4A6mtKGg6qphKiPoJMUC9cuIAhQ4agcePGYBgGBw8elHmeZVl89dVXsLGxgbOzM1atWoXs7GyZqumsWbPQrFkzGBkZwdbWFkOHDq1U8SFEE1VXTR0+fLjc0f21raKG/vsIDw//htjlE9DLuwmaNm2K4OBg7NixgxsQNXz4cKqakgZJXdVURa6FS5YsQePGjWFkZISAgADcvXu30n6uXr2K3r17w8TEBJaWlggICMDr16+VFichqsBrgqqrq4sZM2ZgxowZ0NXV5R7Pz89H27ZtsWHDBrmvW7RoEdasWYM+ffpg5syZaNy4MXbu3AlXV1eu0tOxY0eEhIQgLi4OJ0+eBMuy6N+/P92KIVqhqmrqL/88xpBhIyolqbWpor7ML8ZPP3yPjCuHsWT194iLi8Mnn3yCX375BVevXoW3tzeGDBuBX64+pqopabCUVU2t6joI1Hwt/Pbbb7F27Vps2LABkZGRcHBwQL9+/ZCbm8ttc/XqVQQGBqJ///64du0aIiMj8eGHH8odVEmIkAh+JSmGYXDgwAEMGzYMYrEYFy5cwDvvvIO33noL/fr1w6BBg+Dh4QEHBwesXr0as2bNkruf27dvo23btkhISECzZspZm5wQIZC3CtUXvT0Qe+mUzGT+zZo1U2h1qXUXErBk9ruws7NH/LkDePjwIcLCwrBjxw5YW1tjY9hhfHMugVaDIuQ/6liFqvy1UHrMxo0b4+OPP8aCBQsAAEVFRbC3t5e5FkqvlV9//bVS4iBEXTTmK5S0r+nBgweRl5eHvn37cn1NDQ0N4e/vjytXrsh9bX5+PkJCQuDu7g5nZ2c1R06Iasmrpv5v3208b9wBzb28IBaLER8fr1AVVdr31Kxpa+Q+uIkHDx4gPj4eT58+xdOnT9Gs1wj8b99tqpoSUg4ffVMTExORnp6O/v37c48ZGBjIXAszMjLw77//ws7ODn5+frC3t4e/vz8uXbqkkpgIUSbdmjdRHbFYjH/++QdA2be8qr5p3rlzBzExMZBIJCgpKQEATJo0SWaEvr29PR4/fizzuo0bN+Kzzz5Dfn4+vL29cfr0aejr1225R0KEzr+ZDdo1tuCqqVtvpsK9kTsm9GiCQb26A3jTF/Vuei623UipVEWVjtzvN3EW7FpawdvbGyKRCGKxGK1Gvoc46w4AS1VTQuSR9k2VVlOlfVOrq6Yqeh2sSJr42tvbyzxe/lr46NEjAMCSJUvw3XffoV27dvjrr7/Qp08f3LlzB56ennV+r4SoGu9LnZ45cwZnzpyR2zdU+h/wzp073Aj9ESNGAECl/jMsy1YatT9x4kRERUUhIiICnp6eGDNmDAoLC1X0bgjhX6VqamYhVt6RYOOVRBSVSsCyLMZ6GAOoXEUtP3Lf/lE4tm/fji1bt2H+74fRdOJCxB7bjtfRp6lqSkg1altNrek6qMjxyit/LZSuLjdr1ixMnToV7du3xw8//AAvLy/8+eefdXh3hKiPIG/xl5/XFCi7bSEdod+0aVMAqPQfPSMjo9I3SQsLC3h6eqJnz57Yu3cv7t27hwMHDqjnTRDCI7kj/XdEImR7GCKP70VH09eVRvRLq6e+pq+xcfUy9OzdB0fEzXA2yxjWvv3RY1QQCq/soRH6hChA1SP9HRwcAFR/LXR0dAQAtGjRQmYbHx8fJCcn1zsGQlSJ9wSVZVkkJiZCOlar4rymABAYGMjNa+ru7g4HBwecPn2a20dxcTEiIiLg5+dX47GKiopU92YIEZCK1dSkVwW4kZIJsVgMx9TrsCl5ib23UnHoeAl+CynFn/sKYF30Eg6p11FSUoKUrEI8LtfXtL+3AyDsMZWECIqi1dSK10FFKHItdHNzQ+PGjREfHy/z2vv378PV1bWe744Q1eK1DypQNvH39u3bMXz4cFhYWODixYt4/fo1CgoK0L17Wb+59PR0REdHw8rKCi4uLvj444+xYsUKeHp6wtPTEytWrICxsTEmTJgAoKzfza5du9C/f3/Y2tri6dOnWL16NYyMjDBo0CA+3y4hale+b+qpe0D7glg4lLyAyXUxzp3oiGHZ0lv1bfDY3BVmgSVw9m6DfyLOYmTHACwM7IOHty9i7dq1mDZtGq/vhRBNVF3f1C5dunDXwZEjR2LIkCHc6/Ly8mRWhUtMTKzVtZBhGMyfPx+LFy9G27Zt0a5dO2zZsgX37t3D3r171X4eCKkVlkdFRUVs+/btWQCsn58fu2TJEnbJkiXsV199xQKo9DNlyhSWZVlWIpGwixcvZh0cHFgDAwO2Z8+ebExMDLffp0+fsgMHDmTt7OxYPT091snJiZ0wYQJ77949nt4pIcIQnvCcHfjrRbb/hGMsIPnvhy33U/ZYm6mR7Mig/7EuLi6soaEh27RpU/aLL75gi4qK+H4LhGi03NxcNiwsjLvebdy4kbsOTp06VWbb8+fP1+taKLVy5UrWycmJNTY2Zrt27cpevHhRHW+VkHpR+zyoEokEmzZtQlZWFkpLS7Fy5UoUFRVx02N4enrC29sb77//PnR0dCAWi6vtr6Orq8sNmBLCthKJBKWlpVVuKxKJuFGaQtiWZVluZoT6bqujo8NNNK2qbYGy21jK2JZhGOjp6dVp25KSkipvx6lqWwAys1DUZtvS0lKuy0xmXgk8m+sh96UeAHnLAbNo0oTFgwelEInonFa1bflzWt9t9fT0uIEtqtq2ps+x2mxLn7v127a0tBSLFi3CzZs3UVpaisuXL6OoqAjm5ub47LPPAACWlpaYPXs2TahPGiy1J6i5ublwc3PDq1evuA9D9r9Rh9JQLC0tkZycDDMzM4SHhyMiIqLK/c2YMQNNmjQBAFy+fBlnzpypctspU6bAzc0NAHDt2jUcP368ym3Hjx+P5s2bAwCio6Nx6NChKrcdNWoUWrZsCaBsLfTqbp0MHToU7dq1A1DWD2jnzp1Vbjtw4EB07twZAJCUlIQtW7ZUuW3fvn3RrVs3AMDTp0/x+++/V7mtv78/AgICAJR1qN+0aVOV23bt2pWbZy8rKwvr16+vcltfX1+8/fbbAMrmnv3uu++q3LZt27bchNPFxcVYuXJlldu2aNECo0eP5n5funRpldt6enpyt7cAYMWKFVUmv66urggKCuJ+X7NmDQoKCuRu27hxY8ycOZP7fd26dcjOzpa7ra2tLd5//33u940bN+L58+dyt7WwsMDHH3/M/b5582akpqbK3dbY2Bjz58/nfg8NDa00tZqUnp4e/u///o/7fceOHXjw4AEAIDHRFVu2BMl9XXlTpoTC3f0xndP/VHdO5Vm8eDH39z179iA2NrbKbRcuXMgltAcPHsStW7eq3HbevHkwMTEBABw9ehTXr1+vctvg4GBYWloCAE6dOoWrV69Wue3s2bNhZ2cHAPS5q+LP3UePHqFVq1bccqPS659IJIJEUjbbhpWVFZKSkmBmZlblPgnRZmr/amZmZoaoqCiuE7c0KZX+6ezsjHPnztF/SkJUJC9Psf9bim5HCKkdU1NTzJo1i1s4Rnr9k1aM/fz8EB0dTddB0qDxttRpcXExrKyskJ+fzz1mYmKCZ8+ewdjYmG41qWlbusXf8G5HR0Qw6N+/5jlMT50qgb8/S+e0im3pFj997tb3c7e4uBgODg6VroOZmZkybZiQhoi3BPXSpUvo0aOH3Melt0wIIconFgNubsDTp/JnjWIYwMkJSEwElLSMOCFEDroOElI13npf//333wCAYcOGISEhAUOHDgUAHD58mK+QCGkQRCJA2pW4wiI03O/r1lFySoiq0XWQkKrxVkG9fPkyHj9+jPHjx3MdxHfu3AlXV1f65kiIGuzfDwQHA0+evHnM2bksOf1vRWFCiArRdZCQqvGWoBJC+CcWAxcvAmlpgKMj0KMHVU4JIYTwjxJUQgghhBAiKDQDMCGEEEIIERRKUAkhhBBCiKBQgkoIIYQQQgSFElRCCCGEECIolKASQgghhBBBoQSVEEIIIYQICiWohBBCCCFEUChBJYQQQgghgkIJKiGEEEIIERRKUAkhhBBCiKBQgkoIIYQQQgSFElRCCCGEECIolKASQgghhBBBoQSVEEIIIYQIyv8Dm6GYWLHOA9YAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAHhCAYAAADOLdwlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCnUlEQVR4nO3dd3zU9eHH8fc3lw0ZhBESCRD2iAwJdRQVFCkUFUQrCio4+pOKKFLrbqUOUm21oFQUf4pURak/QbHioLKkCLIiCMhMSGRFVsLMuPv+/gg5s8m4+37vcq/n43EP7773He+7CHnz+S7DNE1TAAAAFgmyOwAAAAgslA8AAGApygcAALAU5QMAAFiK8gEAACxF+QAAAJaifAAAAEtRPgAAgKWC7Q5Qnsvl0r59+xQVFSXDMOyOAwAAasA0TR0/flyJiYkKCqp+bMPnyse+ffuUlJRkdwwAAFAH2dnZatWqVbXz+Fz5iIqKklQcPjo62uY0AACgJvLy8pSUlOT+PV4dnysfJbtaoqOjKR8AAPiZmhwywQGnAADAUpQPAABgKZ/b7QIAgK9zOp0qLCy0O4blQkJC5HA46r0eygcAADVkmqYOHDigY8eO2R3FNrGxsWrZsmW9LodB+QAAoIZKikeLFi0UGRkZUNejMk1Tp06dUk5OjiQpISGhzuuifAAAUANOp9NdPJo2bWp3HFtERERIknJyctSiRYs674LhgFMAAGqg5BiPyMhIm5PYq+Tz1+eYF8oHAAC1EEi7Wirjic9P+QAAAJaqdflYvny5rrnmGiUmJsowDH300Udl3jdNU5MnT1ZiYqIiIiLUv39/bd682VN5AQCAn6t1+Th58qR69uyp6dOnV/r+888/rxdffFHTp0/XmjVr1LJlS1111VU6fvx4vcMCABBIJk+erF69enlkXZmZmTIMQ+np6VXOs3TpUhmG4fVTiWt9tsuQIUM0ZMiQSt8zTVNTp07V448/rhEjRkiSZs+erfj4eM2ZM0d33313/dICAIA6SUpK0v79+9WsWTO7o3j2mI+MjAwdOHBAgwYNck8LCwvT5ZdfrpUrV1a6TH5+vvLy8so8JGnL4S2ejAYAQEBzOBxq2bKlgoPtv8qGR8vHgQMHJEnx8fFlpsfHx7vfKy8tLU0xMTHuR1JSkiTp7+v+LtM0PRkPAACv6d+/v+677z499NBDiouLU8uWLTV58mT3+1lZWRo2bJgaN26s6Oho3XjjjTp48GCZdfzlL39RfHy8oqKidOedd+rMmTMVtjNr1ix17dpV4eHh6tKli1555ZUa5atst8vChQvVqVMnRUREaMCAAcrMzKzLR681r5ztUv40HNM0qzw159FHH1Vubq77kZ2dLUnadGiTFmYs9EY8AAC8Yvbs2WrUqJFWr16t559/Xk899ZQWLVok0zQ1fPhwHTlyRMuWLdOiRYu0a9cujRw50r3sv/71Lz355JN69tlntXbtWiUkJFQoFq+//roef/xxPfvss9q6daumTJmiP/7xj5o9e3ats2ZnZ2vEiBH69a9/rfT0dN1111165JFH6v0d1IRHx15atmwpqXgEpPRlV3NyciqMhpQICwtTWFhYpe+9uO5FDUgaoMiQwL6gCwDAP/To0UNPPvmkJKljx46aPn26vvrqK0nSxo0blZGR4R7hf/vtt9W9e3etWbNGffv21dSpU3XHHXforrvukiQ988wz+s9//lNm9OPpp5/WCy+84D6uMjk5WVu2bNFrr72mMWPG1CrrjBkz1K5dO/3973+XYRjq3LmzNm3apOeee67e38O5eHTkIzk5WS1bttSiRYvc0woKCrRs2TJdcskltVpXYqNE5ZzK0Zvfv+nJiAAAeE2PHj3KvE5ISFBOTo62bt2qpKQkd/GQpG7duik2NlZbt26VJG3dulUXX3xxmeVLv/7pp5+UnZ2tO++8U40bN3Y/nnnmGe3atavWWbdu3aqLLrqozJ6J8tv3llqPfJw4cUI7d+50v87IyFB6erri4uLUunVrTZw4UVOmTFHHjh3VsWNHTZkyRZGRkRo1alSttnNv73v1x3V/1Fub39KIjiOU2DixtlEBALBUSEhImdeGYcjlclV5+EF1hyWU53K5JBXvernwwgvLvFeXe6zYeVxlrUc+1q5dq969e6t3796SpEmTJql3797605/+JEl66KGHNHHiRN1zzz1KTU3V3r179eWXXyoqKqpW2xmQNECp8anKd+brxXUv1jYmAAA+o1u3bsrKynIf1yhJW7ZsUW5urrp27SpJ6tq1q1atWlVmudKv4+Pjdd5552n37t3q0KFDmUdycnKdMlW3PW+qdfno37+/TNOs8HjrrbckFbe8yZMna//+/Tpz5oyWLVumlJSUWgczDEMP/+JhBRlB+iLzC607uK7W6wAAwBcMHDhQPXr00OjRo7V+/Xp9++23uu2223T55ZcrNTVVknT//ffrzTff1Jtvvqnt27frySefrHCF8MmTJystLU3Tpk3T9u3btWnTJs2aNUsvvlj7f6SPGzdOu3bt0qRJk7Rt2zbNmTPH/bvc23z63i5d4rro+o7XS5Ke+/Y5OV1OmxMBAFB7JbcjadKkiS677DINHDhQ7dq109y5c93zjBw5Un/605/08MMPq0+fPtqzZ49+97vflVnPXXfdpf/93//VW2+9pfPPP1+XX3653nrrrTqNfLRu3VoffvihPvnkE/Xs2VOvvvqqpkyZUu/PWhOG6WMX08jLy1NMTIxyc3MVHR2tI2eO6Op5V+t44XH9+ZI/a0THEXZHBAAEoDNnzigjI0PJyckKDw+3O45tqvoeyv/+ro5Pj3xIUlx4nMb1HCdJmrZ+mk4UnLA5EQAAqA+fLx+SdHOXm9U2uq2OnDmimRtn2h0HAACfM2XKlDKn4JZ+VHVPNrvYf4H3GghxhOgPff+g8V+N19tb39b1na5Xm+g2dscCAMBnjBs3TjfeeGOl70VERFicpnp+UT4k6bJWl6nfef20Yu8K/X3d3zV1wFS7IwEA4DPi4uIUFxdnd4wa8YvdLiX+kPoHOQyHvsr6ilNvAQDwU35VPtrFtnOfevu3NX+Ty3TZnAgAANSWX5UPSfpdr98pMjhS3x/+Xp9nfG53HAAAUEt+Vz6aRTTTneffKan41Nt8Z77NiQAAQG34XfmQpFu73aoWkS207+Q+zdk6x+44AACgFvyyfEQER+i+3vdJkl7f+LqOnjlqcyIAAFBTflk+JOnqdlerS1wXHS88rtc2vmZ3HAAA/MKMGTPUo0cPRUdHKzo6WhdffLE+++wzSzP4bflwBDn0+9TfS5Lm/jBXmbmZ9gYCAMAPtGrVSn/5y1+0du1arV27VldccYWGDRtW4Q663uQ3FxmrzEUJF+nS8y7V13u/1tT1U7nwGADANqZp6nShPXdfjwhxyDCMGs17zTXXlHn97LPPasaMGVq1apW6d+/ujXgV+HX5kKRJfSbpv/v+677wWJ/4PnZHAgAEoNOFTnX70xe2bHvLU79SZGjtf6U7nU598MEHOnnypC6++GIvJKuc3+52KdGhSQeN6DhCEhceAwCgJjZt2qTGjRsrLCxM48aN0/z589WtWzfLtu/3Ix+SNL7XeC3cvVDfH/5eX2Z+qcHJg+2OBAAIMBEhDm156le2bbs2OnfurPT0dB07dkwffvihxowZo2XLlllWQBpE+WgW0Uxju4/VK9+9opc3vKwr21ypkKAQu2MBAAKIYRh12vVhh9DQUHXo0EGSlJqaqjVr1mjatGl67TVrzh71+90uJW7rfpviwuOUdTxL83fMtzsOAAB+wzRN5edbd8XwBlM+GoU00v/0+B9J0ozvZuhU4SmbEwEA4Hsee+wxff3118rMzNSmTZv0+OOPa+nSpRo9erRlGRpM+ZCkGzvdqPMan6dDpw9pzg9cdh0AgPIOHjyoW2+9VZ07d9aVV16p1atX6/PPP9dVV11lWQb/2DlVQyGOEI3vNV6PrXhMb256U7/p9BvFhMXYHQsAAJ/xxhtv2B2hYY18SNLQdkPVqUknHS88rv/d9L92xwEAAOU0uPIRZATp/gvulyTN2TpHB04esDkRAAAorcGVD0m69LxL1Se+jwpcBZrx3Qy74wAAgFIaZPkwDEMTL5goSfpo50fafWy3vYEAAIBbgywfktSrRS8NSBogl+nSyxtetjsOAAA4q8GWD0m6/4L7FWQE6T9Z/9HGnzbaHQcAAKiBl4/2se11bftrJUnT1k+zOQ0AAJAaePmQpHt63qOQoBB9e+Bbfbv/W7vjAAAQ8Bp8+UhonKDrO14vSZqePl2madqcCACAwNbgy4ck/bbHbxXmCNOGnA1auW+l3XEAAAhoAVE+WkS20MjOIyVJL294mdEPAAAkpaWlFV+eYuJES7cbEOVDku5IuUMRwRHafHizlmYvtTsOAAC2WrNmjWbOnKkePXpYvu2AKR9NI5pqdNfi2wVPT58ul+myOREAoEExTangpD2PWo7onzhxQqNHj9brr7+uJk2aeOkLqVqDuqvtuYztPlbv//C+th/drkV7FulXbX9ldyQAQENReEqakmjPth/bJ4U2qvHs48eP19ChQzVw4EA988wzXgxWuYAZ+ZCkmLAY3dbtNknSK+mvyOly2pwIAABrvf/++1q/fr3S0tJsyxBQIx+SdEu3W/TO1ne0O3e3FmYs1DXtr7E7EgCgIQiJLB6BsGvbNZCdna37779fX375pcLDw70cqmoBVz6iQqN0e8rtmrZ+ml797lUNTh6skKAQu2MBAPydYdRq14cd1q1bp5ycHPXp08c9zel0avny5Zo+fbry8/PlcDi8niOgdruUGNVllOLC45R1PEuf7PrE7jgAAFjiyiuv1KZNm5Senu5+pKamavTo0UpPT7ekeEgBWj4iQyJ1R8odkqTXvntNhc5CmxMBAOB9UVFRSklJKfNo1KiRmjZtqpSUFMtyBGT5kKSRnUeqaXhT7Tu5T5/sZvQDAACrBGz5CA8O1+0pt0uSZm6cqUIXox8AgMCzdOlSTZ061dJtBmz5kKTfdPqN4sLjtPfEXi3cvdDuOAAABISALh+RIZEa032MJOn1Ta+ryFVkcyIAABq+gC4fknRT55sUGxarPXl79Hnm53bHAQCgwQv48lF69GPmxplc9RQAAC8L+PIhFY9+RIdGKyM3Q4v2LLI7DgAADRrlQ1Lj0Ma6tdutkqTXNr7GHW8BAPAiysdZo7qOUlRIlHYe26mvsr6yOw4AAA0W5eOs6NBoje42WpL06nevMvoBAICXUD5KuaXrLWoU0kjbj27X0uyldscBAKBBonyUEhMWo1FdRkkqPvbDNE2bEwEA4FlFRUV64oknlJycrIiICLVr105PPfWUXC7rRvwpH+Xc2u1WhTvCteXwFn2z/xu74wAA4FHPPfecXn31VU2fPl1bt27V888/r7/+9a96+eWXLctA+SinSXgTXd/peknSG5vesDkNAACe9c0332jYsGEaOnSo2rZtqxtuuEGDBg3S2rVrLcsQbNmW/MiYbmM094e5+vbAt9r400b1aN7D7kgAAB9nmqZOF522ZdsRwREyDKNG8/br10+vvvqqtm/frk6dOum7777TihUrLL25nMfLR1FRkSZPnqx3331XBw4cUEJCgsaOHasnnnhCQUH+MdCS0DhBQ9sN1ce7PtYbm97QtCum2R0JAODjThed1oVzLrRl26tHrVZkSGSN5n344YeVm5urLl26yOFwyOl06tlnn9XNN9/s5ZQ/83j5KNmXNHv2bHXv3l1r167V7bffrpiYGN1///2e3pzX3JFyhxbsWqDF2Yu169gutY9tb3ckAADqbe7cuXrnnXc0Z84cde/eXenp6Zo4caISExM1ZswYSzJ4vHyU3pckSW3bttV7771n6b4kT2gX205XtL5CX2V9pTe/f1PP9nvW7kgAAB8WERyh1aNW27btmvrDH/6gRx55RDfddJMk6fzzz9eePXuUlpbmv+WjtvuS8vPzlZ+f736dl5fn6Uh1dtf5d+mrrK+0cPdCje81XomNE+2OBADwUYZh1HjXh51OnTpV4TAIh8Ph36faPvzww7r55pvVpUsXhYSEqHfv3po4cWKV+5LS0tIUExPjfiQlJXk6Up2lNEvRhQkXqsgs0uzNs+2OAwBAvV1zzTV69tln9emnnyozM1Pz58/Xiy++qOuuu86yDB4vH6X3Ja1fv16zZ8/W3/72N82eXfkv70cffVS5ubnuR3Z2tqcj1ctd598lSZq3Y56OnDlicxoAAOrn5Zdf1g033KB77rlHXbt21YMPPqi7775bTz/9tGUZDNPDl/FMSkrSI488ovHjx7unPfPMM3rnnXf0ww8/nHP5vLw8xcTEKDc3V9HR0Z6MViemaermT2/W5sOb9T89/kcTek+wOxIAwAZnzpxRRkaGkpOTFR4ebncc21T1PdTm97fHRz58YV+SJxmG4R79eO+H93Si4ITNiQAA8G8eLx++sC/J065ofYWSY5J1vOC4Ptzxod1xAADwax4vH76wL8nTgowgje0+VpL0ztZ3VOgqtDcQAAB+zOPlIyoqSlOnTtWePXt0+vRp7dq1S88884xCQ0M9vSlLDW03VHHhcTpw8oC+zPzS7jgAAPgt/7jeuQ8Ic4RpVJdRkqTZm2fLw8fpAgAQMCgftTCy80iFO8K19chWrT3oX1dsBQB4RqD/49MTn5/yUQux4bEa1mGYJOmtzW/ZGwYAYKmQkBBJxWd1BrKSz1/yfdSFxy+v3tDd1u02/Wvbv7T8x+XafWy32sW2szsSAMACDodDsbGxysnJkSRFRkbW+Db2DYFpmjp16pRycnIUGxsrh8NR53VRPmqpdXRrDUgaoMXZi/XPLf/U5Esm2x0JAGCRli1bSpK7gASi2NhY9/dQVx6/wml9+doVTiuzIWeDbvvsNoUGheqLG75Qs4hmdkcCAFjI6XSqsDDwLrsQEhJS5YhHbX5/M/JRB72a91KPZj208dBGvf/D+7q39712RwIAWMjhcNRrt0Og44DTOjAMQ2O6j5Ekzd02V6eLTtucCAAA/0H5qKMrW1+p8xqfp2P5x7Rg5wK74wAA4DcoH3XkCHLo1m63Siq+5LrL9M8b5wEAYDXKRz0M7zBcjUMaKzMvUyv3rbQ7DgAAfoHyUQ+NQhppeIfhkqR3t75rbxgAAPwE5aOebu5yswwZWrF3hTJzM+2OAwCAz6N81FPr6Na6rNVlkqT3fnjP5jQAAPg+yocHjOpafLfbj3Z+pBMFJ2xOAwCAb6N8eMDFCRerXUw7nSo6pY92fmR3HAAAfBrlwwMMw9DorqMlSXN+mMNptwAAVIPy4SFXt7taUSFRyj6erRV7V9gdBwAAn0X58JDIkEiN6DhCEqfdAgBQHcqHB93U5SYZMrRy30rtPrbb7jgAAPgkyocHtYpqpf5J/SUx+gEAQFUoHx5WcuDpJ7s/4bRbAAAqQfnwsF+0/IWSY5J1uui0/r3733bHAQDA51A+PMwwDN3Y6UZJ0r+2/0umadqcCAAA30L58IJrO1yrcEe4dhzdofSf0u2OAwCAT6F8eEF0aLSGJA+RJM3dNtfmNAAA+BbKh5eM7DxSkvRl5pc6cuaIzWkAAPAdlA8v6d6su7o37a5CVyH3ewEAoBTKhxeVjH58sO0D7vcCAMBZlA8vGpw8WFGhUfrxxI9auW+l3XEAAPAJlA8vigiO0LD2wyRx4CkAACUoH172m86/kSQt/3G59p/Yb3MaAADsR/nwsnYx7fSLlr+Qy3Tp/3b8n91xAACwHeXDAiWjHx/t/EhOl9PmNAAA2IvyYYErkq5QbFisck7l6L/7/mt3HAAAbEX5sECoI1RXt7takjRvxzyb0wAAYC/Kh0VGdBwhSVqWvUyHTh+yOQ0AAPahfFikY5OO6tG8h4rMIn2y6xO74wAAYBvKh4VGdCge/Zi3Y55M07Q5DQAA9qB8WGhw8mBFBEcoMy9T63PW2x0HAABbUD4s1CikkYYkD5HEgacAgMBF+bDYdR2ukyR9mfmljhcctzkNAADWo3xYrGfznmof015nnGf0WcZndscBAMBylA+LGYbhPu32wx0f2pwGAADrUT5scE37axQcFKwth7do25FtdscBAMBSlA8bNAlvogFJAyRJC3YtsDkNAADWonzY5Jp210iSPt39qYpcRTanAQDAOpQPm/Rr1U9Nwpro8JnDWrlvpd1xAACwDOXDJiFBIfp1u19LEpdbBwAEFMqHja5tf60kaXHWYuUV5NmcBgAAa1A+bNQ1rqs6xHZQgatAX2Z+aXccAAAsQfmwkWEYuqZ98YGn7HoBAAQKyofNrm53tYKMIK3PWa/svGy74wAA4HWUD5u1iGyhixIukiR9spvRDwBAw0f58AElB54u2LVALtNlcxoAALyL8uEDrmh9hRqFNNLeE3u1IWeD3XEAAPAqr5SPvXv36pZbblHTpk0VGRmpXr16ad26dd7YVIMQERyhQW0GSeLAUwBAw+fx8nH06FH98pe/VEhIiD777DNt2bJFL7zwgmJjYz29qQal5IJji/YsUqGz0OY0AAB4T7CnV/jcc88pKSlJs2bNck9r27atpzfT4PSN76tmEc106PQhrdy3UpcnXW53JAAAvMLjIx8LFixQamqqfvOb36hFixbq3bu3Xn/99Srnz8/PV15eXplHIHIEOTS47WBJ0sKMhTanAQDAezxePnbv3q0ZM2aoY8eO+uKLLzRu3Djdd999+uc//1np/GlpaYqJiXE/kpKSPB3JbwxJHiJJWpK9RKcKT9mcBgAA7zBM0zQ9ucLQ0FClpqZq5cqf79R63333ac2aNfrmm28qzJ+fn6/8/Hz367y8PCUlJSk3N1fR0dGejObzTNPUr+f9Wj+e+FHPX/a8u4wAAODr8vLyFBMTU6Pf3x4f+UhISFC3bt3KTOvatauysrIqnT8sLEzR0dFlHoHKMAx34WDXCwCgofJ4+fjlL3+pbdu2lZm2fft2tWnTxtObapB+nVx81suKvSuUm59rcxoAADzP4+XjgQce0KpVqzRlyhTt3LlTc+bM0cyZMzV+/HhPb6pB6tCkgzo26agiV5H+s+c/dscBAMDjPF4++vbtq/nz5+u9995TSkqKnn76aU2dOlWjR4/29KYarJLRj88yPrM5CQAAnufxA07rqzYHrDRUPx7/UUPmDZEhQ1/95is1j2xudyQAAKpl6wGnqL9WUa3Us3lPmTL1ReYXdscBAMCjKB8+quSsly/3fGlzEgAAPIvy4aMGth4oSdqQs0EHTx60OQ0AAJ5D+fBR8Y3i1at5L0nSV1lf2RsGAAAPonz4sKvaXCWp+E63AAA0FJQPH1ZSPtYdXKdDpw/ZnAYAAM+gfPiwhMYJOr/Z+TJlanHWYrvjAADgEZQPH1cy+sFZLwCAhoLy4eMGtik+62XtgbU6cuaIzWkAAKg/yoePS4pKUte4rnKaTi3JWmJ3HAAA6o3y4QcGtR0kiV0vAICGgfLhB0qO+1i9f7WOnTlmbxgAAOqJ8uEH2kS3UecmneU0nVr641K74wAAUC+UDz9xZesrJYnjPgAAfo/y4Sf6J/WXJH2z/xudKTpjbxgAAOqB8uEnusR1UUKjBJ0uOq1V+1fZHQcAgDqjfPgJwzDcox9Lstn1AgDwX5QPPzIgaYAkaWn2UjldTnvDAABQR5QPP5LaMlVRIVE6cuaINh3aZHccAADqhPLhR0KCQtSvVT9J0uJsbjQHAPBPlA8/c0XSFZI45RYA4L8oH36m33n9FBwUrMy8TGXkZtgdBwCAWqN8+JnGoY31i5a/kFR84CkAAP6G8uGHSs564ZRbAIA/onz4oZLrfaTnpHOjOQCA36F8+KGWjVqqY5OOMmVq5b6VdscBAKBWKB9+6tLzLpUkfb33a5uTAABQO5QPP1VSPv67979c7RQA4FcoH36qZ4ueigqJ0tH8o9p8eLPdcQAAqDHKh58KCQrRRYkXSZJW7F1hcxoAAGqO8uHH3Md9/MhxHwAA/0H58GP9ziu+z8v3h7/XodOHbE4DAEDNUD78WPPI5uoa11WSOOUWAOA3KB9+rmT0Y8WPHPcBAPAPlA8/d1mryyRJ/933XxW5imxOAwDAuVE+/Nz5zc5XTFiM8grytOnQJrvjAABwTpQPP+cIcuiihOJTblftW2VzGgAAzo3y0QCUlI9v9n9jcxIAAM6N8tEAXJx4sSRp408bdaLghM1pAACoHuWjATiv8XlKikqS03Rq7cG1dscBAKBalI8G4uKE4tGPb/ax6wUA4NsoHw1Eya6XVfs56BQA4NsoHw1E35Z9FWQEaXfubh04ecDuOAAAVIny0UDEhMWoe9PukqTV+1fbnAYAgKpRPhoQTrkFAPgDykcD4j7uY98qmaZpcxoAACpH+WhAejbvqYjgCB0+c1g7ju2wOw4AAJWifDQgoY5QXRB/gSTp2/3f2pwGAIDKUT4amL7xfSWJi40BAHwW5aOBSW2ZKqm4fLhMl81pAACoiPLRwHRr2k0RwRHKzc/VzmM77Y4DAEAFlI8GJiQoRL1b9JYkrTmwxuY0AABURPlogFLji3e9rDu4zuYkAABURPlogPq2PHvQ6YG1XO8DAOBzKB8NUPem3RXuCNfR/KPadWyX3XEAACiD8tEAhThC1KtFL0nSmoMc9wEA8C1eLx9paWkyDEMTJ0709qZQSslxH2sPcL0PAIBv8Wr5WLNmjWbOnKkePXp4czOohPu4j4Mc9wEA8C1eKx8nTpzQ6NGj9frrr6tJkybe2gyqkNIsRWGOMB05c0QZuRl2xwEAwM1r5WP8+PEaOnSoBg4cWO18+fn5ysvLK/NA/YU6QnV+s/MlSek/pdsbBgCAUrxSPt5//32tX79eaWlp55w3LS1NMTEx7kdSUpI3IgWkkoNO03PSbc0BAEBpHi8f2dnZuv/++/XOO+8oPDz8nPM/+uijys3NdT+ys7M9HSlg9WreSxIjHwAA3xLs6RWuW7dOOTk56tOnj3ua0+nU8uXLNX36dOXn58vhcLjfCwsLU1hYmKdjQFLP5j0lSRm5GTp25phiw2PtDQQAgLxQPq688kpt2rSpzLTbb79dXbp00cMPP1ymeMC7YsNjlRyTrIzcDH3303e6POlyuyMBAOD58hEVFaWUlJQy0xo1aqSmTZtWmA7v69W8lzJyM5T+UzrlAwDgE7jCaQPHQacAAF/j8ZGPyixdutSKzaASJeXj+0Pfq9BVqJCgEHsDAQACHiMfDVzb6LaKCYvRGecZbTuyze44AABQPhq6ICPIfdYLu14AAL6A8hEASq73sSFng71BAAAQ5SMglBz3senQpupnBADAApSPANCtaTcZMrT/5H4dPn3Y7jgAgABH+QgAjUIaKTkmWZK0+fBmm9MAAAId5SNApDQrvsDb94e+tzkJACDQUT4CRPem3SVx3AcAwH6UjwBxfrPzJUmbD22WaZo2pwEABDLKR4DoHNdZwUHBOpp/VPtO7rM7DgAggFE+AkSoI1SdmnSSxHEfAAB7UT4CSEpTDjoFANiP8hFAOOMFAOALKB8BpKR8bDm8RU6X0+Y0AIBARfkIIO1i2ikiOEKnik5pT94eu+MAAAIU5SOAOIIc7oNOfzjyg81pAACBivIRYLrEdZEk/XCU8gEAsAflI8CUlI9tR7bZnAQAEKgoHwHGPfJx5AeudAoAsAXlI8B0iO2gICNIR84c0aHTh+yOAwAIQJSPABMeHK7k6GRJ0tYjW21OAwAIRJSPANQ5rrMkjvsAANiD8hGASh/3AQCA1SgfAcg98nGUkQ8AgPUoHwGoc5Pi8pGVl6WThSdtTgMACDSUjwDUNKKpWkS0kClT249utzsOACDAUD4CVMe4jpKkHUd32JwEABBoKB8BqmNscfnYdWyXzUkAAIGG8hGgOsR2kCTtPLbT5iQAgEBD+QhQHZpQPgAA9qB8BKh2Me1kyNCRM0d0+PRhu+MAAAII5SNARQRHKCkqSRKjHwAAa1E+AhjHfQAA7ED5CGDtY9tLonwAAKxF+QhgHZsUn2678yjlAwBgHcpHACu928U0TZvTAAACBeUjgLWNbqtgI1gnCk/o4KmDdscBAAQIykcAC3GEqG1MW0lcZh0AYB3KR4DjjBcAgNUoHwGO8gEAsBrlI8BxmXUAgNUoHwGuZORj97HdcrqcNqcBAASCYLsDwF6tGrdSRHCEThed1rCPhyk5OllBRpD74TAcMgxDDsNRYXp1r6uap/S6arJuq7df+rlhGHb/eACgQaJ8BDhHkEMXJVykJdlLtCdvj/bk7bE7ks8wZNSq/NS2SFW3TG0LV33WVZtlqipr3tg+gIaL8gE9dclTWrFvhQqdhXKZLrnkksvlktN0ypQpp8spl1nxtUuuMs9rukxl87lUPM3lOjuPWc26K5mv9PTq5it57jJd5/xeTJkqMoskUypUoQU/CZRmZZHy9ChcdSNqdd1+TUf9PLF9wNsoH1BseKyubne13TEsZZrmzwXF/LmQnKvYVFqSarBM+fLjNJ0yzZ+3X90y5XPWZZnSy7lfV5On9DJlclYzX+nXlW6v1OuacJpOOU2OQ7JDjcqPghQUVIPyU2o+Q4YcQZUsr7PLVvJehWXOzlcyMhkUFFTp8rVZpvT08nlqsox7eqnXNV4m6OftBRmBs7uX8oGAZBiGDBn8K88mdS0yNS1J5yo/tdl++XXWtaTVZ/vnmq82y9T05+MyXSpSkZf/T0B5NSpM1Y2UlS9DNRg5q+vu4PLzFJwsqPHnpHwAsFzJX1awnieLjK+VtNqMvtlRZk2d+x5aLrN4FFOmpJoNEvoM5+maj1RSPgAggBiGoWCDv/rtUFJOalu4ajr65Y1dpLXZ/qkTp7RVW2v0XfB/IAAAFihd/EIUYnMaz8vLy1Oa0mo0L+OeAADAUpQPAABgKcoHAACwFOUDAABYivIBAAAsRfkAAACW8nj5SEtLU9++fRUVFaUWLVpo+PDh2rZtm6c3AwAA/JTHy8eyZcs0fvx4rVq1SosWLVJRUZEGDRqkkydPenpTAADADxmmaZ77eq/18NNPP6lFixZatmyZLrvssnPOn5eXp5iYGOXm5io6Otqb0QAAgIfU5ve3169wmpubK0mKi4ur9P38/Hzl5+e7X+fl5Xkty8Yfj+lPH29W1pFTXttGXZTcw/DnmxkaZV6Xf9+o8v2Kd0N0z1PDZctFUJBhyGEYCgoy5Agqfh1kGHIEGQoyVOr52XnOTit+bigo6Od5HIZRfGOiIMkRdPb52fcMQ6Wen53HPX+pbRiq+Pzs65KcZef5OXfZnGfzB1XxWUp/xqByOct8lrPPg1TlZwEAlOXV8mGapiZNmqR+/fopJSWl0nnS0tL05z//2ZsxZJqmZq/M1LMLt6rQ6dWBHqACR/kiVmVJqnyeoFIFrLiwVVHezlHwKhY2ldpOVQXvbHlzF7ZSJTOoXEmrruBVV96CdI7PUrHIVl0+y35/AHyTV3e7jB8/Xp9++qlWrFihVq1aVTpPZSMfSUlJHtvtknu6UA//30Z9vvmAJGlw95aacGUHhTp840Sfki+/5KdQctdD9+sqple7jPt9s9JtqMr5Ky7nMk25XJLTNM8+N+V0mXKZxe8VPzfPPtfP85hn53GdY56z6/r5eal5Sq3fvc1q111JrrPZnS7z7I2Ritdvnp3mNE2ZpoqfVzZPyboqyemix/q8yke1VHVJqrKAVVbYKpmnXCkqX8Dc26xsFLFCwStVzNxlTOWKaPXl7eeCWH575yhv1RZLlfsslX/HjPoFHp/Y7TJhwgQtWLBAy5cvr7J4SFJYWJjCwsK8kmHr/jzd/fY6ZR05pRCHocd/3VVjLmnLHwp4hGlWVsLkLis/F7by5arqklS64JUpRubZYuRSuZJUxTwVtlc2W4XCV7oIVln4Sj6XdO4iWvyZqlp3pd9DuVznWq4mnC5TxTf5pilaLaimI3Tldq+W3m1ZpuxUU5KqKovV7QYuv1u20rJYVXmrdOSwYsGrvFhWNuJYvvSdeyTRva4KBdg/ip/Hy4dpmpowYYLmz5+vpUuXKjk52dObqJEvNx/QxLnpOlXgVKsmEfrHqAvUMynWlixomNy7QGQoxGF3msBTacGrqryVlLQKo2BVF7zyo29lS+Q5Cl515a3CyF75InqOETp3zoojdKXn+blYqtKcFb6/cp+54nf28/Ma/XxMyeU0RfGznlF+hO5cu1crLXi1P87PeabmZ7V6vHyMHz9ec+bM0ccff6yoqCgdOFC8uyMmJkYRERGe3lwFpmnqlaW79Ncviq8t8ssOTfWPURcoNjLU69sGYJ2gIENB8v1/4TVEVZaiUrs5az8KVtnIYTW7bqsteMWlq8a7Vyv5LNXtBq4wmllJwatYLCsbRSz13VQ6ElhunrMZz/3zkYpMU1bvG3bl1/xkDo8f81HVcM+sWbM0duzYcy5fn1NtC50uPfLhJn24/kdJ0m0Xt9Efr+6mEB85vgMAgPoo2d17roJ3rvJW2Whd6UJUl+P8Th7P091X9bDnmA8vXzakSqcLnLp3znp99UOOHEGG/nxtd91yURtbsgAA4A2lz3jzNXl5ebq7hvN6/TofVsg9Vag7Z6/R2j1HFRYcpFdGX6Aru8bbHQsAAFTC78tH7qlCjX5jlb7fm6fo8GC9Mbav+rat/IJmAADAfn5dPvLOFOq2N1fr+715atooVO/+9kJ1ackl2QEA8GV+eyTmyfwijX3zW333Y66aRIZQPAAA8BN+WT6KnC5NeG+D1mcdU0xEiN65i+IBAIC/8LvyYZqmJn+yWYt/yFFYcJBm3d5X3RNj7I4FAABqyO/Kx6z/ZuqdVVkyDGnaTb10QesmdkcCAAC14FflY92eo5qycKsk6bEhXTU4JcHmRAAAoLb8pnwcOVmge+esV5HL1NAeCbrrUnvuGQMAAOrHb8rHEx9t0v7cM2rXrJGeu76HX9y1DwAAVOQX5eOzTfu1cNMBBQcZeunm3moc5teXJwEAIKD5fPnIPV2oP368WZL0u/7tlXIeZ7YAAODPfL58vLJkpw6dyFf75o107xUd7I4DAADqyafLx49HT2nWykxJ0hNDuyks2GFvIAAAUG8+XT7+sWSnCopcuqR9U/Xv3NzuOAAAwAN8tnwcOp6vD9fvlSQ9cFUnzm4BAKCB8Nny8a+12SoocqlXUqxS23AVUwAAGgqfLR8ff1c86nH7L9sy6gEAQAPis+Vj79Ezigx1aFC3lnZHAQAAHuSz5UOSBnaNV0QoZ7gAANCQ+HT5uKwTZ7gAANDQ+HT5uLh9U7sjAAAAD/PZ8hEXGaLzYiPsjgEAADzMZ8tHcrPGdkcAAABe4LPlIyE23O4IAADAC3z23vSNwzwQ7USOlLVKkln1PKZZ/L5x9qyazBVS4+ZSs841346rSApyFP835wepZUq59ZfZYMXtB4dLh3dIIZFS4xbF04yqeqH5c2bTlIrypdBGpd52SicPFT9vHF/8X/d1Uowavg6SgoKK/2s4ij9bhedBZ587Sj2varqjeBslzyusj+u4AEAg8dny0ai+5SN7jfTuDdKZYx7JAy+rqpR4pPwEnWMdlZWs8uWrZD1BlRSr6qbXZ/t12E7p6TXdDgBYzGfLR+u4ehxsumuJ9P5oqfCkFNtGik6sfL6SEQbTVfzaMKSDW6T8XCnposr/RV5hJEM/L1v6vdIjFxXWU+q1q0gqOi3l7pWaday4nZL1lqzD/dz4eTShqKB0QOlYthSbdHY7ZrncNXhtuoofLlfxSIrpklzO4ueus++ZzrPTXNVPL/luz8V0Sk5nzeaFZ3mk/FQy/Zzlp7Lp5UbJqho9q2r7dSqwNd1+dZ+zttspKbeM+iEw+Wz5uL5PUt0W3Ppv6f9ul5wFUrsB0k3vlt0tAWuZpcuMs1yZqWq6s3g5d+GpQclxnV2m0uk13E6FeWq7ndLTa/I5q8lV25JXYXptil9JjkLv/r+AioxalLkqy091u0g9OHpYabGsbvtW7bqt6ecvvx2Kn518tnzUydZ/S/+6rfgv3q7XSNe/IQWH2Z0qsJX84ZdDcoTYnSbwVDZ6VZNSVGmBO1f5qcN2yhSuupSsem6/2qJak+nVFNiaKFmvJDHwZ7FajrDVumR5YNdtnUYPqytwXt7+iVM1/vYbTvnY/qX0wdjiP/Q9RkrDXpEcDefjAXUSFCT57kltDVudRtXqUn6q2EVa5a7TumynutHDumy/JqOHNdl+FdOrO8ng5x9Q8W5vFXn5f4QAkl+T771Yw/jtvHupNPeW4mHj7tdRPADYzzDO/j3E30WWK9nda+uu26p2Hde0fNVk9K6a7Xtq121timUtipz//6nY/5303ijJmS91HiqNeJ3iAQCBrPSxHrBOXp70l5gazerf47G5P0rv3lh8VkvyZdJvZnFcAQAAPs5/y8eZvOLiceKA1LyrdOPbHFwKAIAf8M/yYZrSR7+TcjYXX8Vz9L+kiFi7UwEAgBrwz/Kx8iXph39LjlDp5vek2NZ2JwIAADXkf+Uj87/Sf/5c/HzwX6Tz+tibBwAA1Ip/lY8zudK8/zl7LY+bpNQ77E4EAABqyb/KxxePSXk/Sk3aSkNf4PK4AAD4If8pHzsWSRvekWRIw2dIYY3tTgQAAOrAP8pH4Rlp4YPFzy/6ndTmEnvzAACAOvOP8rHqH9LRTCkqQRrwuN1pAABAPfh++Th+UFr+QvHzgX9mdwsAAH7O98vHypeKL59+XqrU40a70wAAgHry7fJx4idpzRvFzwc8ytktAAA0AL5dPla/KhWdLr6QWPsr7U4DAAA8wHfLh7NQWv/P4ue/vJ9RDwAAGgjfLR/bv5BO5hTfOK7zr+1OAwAAPMR3y8emD4v/22u05AixNwsAAPAY3y0fGcuK/3v+DfbmAAAAHuW75cNVUHwPlxbd7E4CAAA8yHfLhyR1GsyBpgAANDC+XT5aX2R3AgAA4GG+XT5a/cLuBAAAwMN8t3yEx0ox59mdAgAAeJjXyscrr7yi5ORkhYeHq0+fPvr6669rt4LYNt4JBgAAbOWV8jF37lxNnDhRjz/+uDZs2KBLL71UQ4YMUVZWVs1XEtPKG9EAAIDNvFI+XnzxRd15552666671LVrV02dOlVJSUmaMWNGzVcSHu2NaAAAwGYeLx8FBQVat26dBg0aVGb6oEGDtHLlygrz5+fnKy8vr8xDkhTS2NPRAACAD/B4+Th06JCcTqfi4+PLTI+Pj9eBAwcqzJ+WlqaYmBj3IykpqfiNsEaejgYAAHyA1w44NcpdHMw0zQrTJOnRRx9Vbm6u+5GdnV38RqdfeSsaAACwUbCnV9isWTM5HI4Koxw5OTkVRkMkKSwsTGFhYRVX1PJ8T0cDAAA+wOMjH6GhoerTp48WLVpUZvqiRYt0ySWXeHpzAADAz3h85EOSJk2apFtvvVWpqam6+OKLNXPmTGVlZWncuHHe2BwAAPAjXikfI0eO1OHDh/XUU09p//79SklJ0cKFC9WmDRcOAwAg0BmmaZp2hygtLy9PMTExys3NVXQ01/oAAMAf1Ob3t+/e2wUAADRIlA8AAGApygcAALAU5QMAAFiK8gEAACxF+QAAAJaifAAAAEtRPgAAgKUoHwAAwFJeubx6fZRccDUvL8/mJAAAoKZKfm/X5MLpPlc+Dh8+LElKSkqyOQkAAKitw4cPKyYmptp5fK58xMXFSZKysrLOGb4qffv21Zo1a+qcgeVZnuVZnuVZnuVrJzc3V61bt3b/Hq+Oz5WPoKDiw1BiYmLqfGM5h8NRr5vSsTzLszzLszzLs3zdlPwer3aeem3BR40fP57lWZ7lWZ7lWZ7lLV6+pgyzJkeGWKg2t+QFAAC+oTa/v31u5CMsLExPPvmkwsLC7I4CAABqqDa/v31u5AMAADRsPjfyAQAAGjbKBwAAsBTlA3X2yiuvKDk5WeHh4erTp4++/vpr93snTpzQvffeq1atWikiIkJdu3bVjBkzbEyL0pYvX65rrrlGiYmJMgxDH330UZn3x44dK8Mwyjwuuugie8KigrS0NPXt21dRUVFq0aKFhg8frm3btrnfLyws1MMPP6zzzz9fjRo1UmJiom677Tbt27fPxtQoca6fnyQdPHhQY8eOVWJioiIjIzV48GDt2LHDpsSeR/lAncydO1cTJ07U448/rg0bNujSSy/VkCFDlJWVJUl64IEH9Pnnn+udd97R1q1b9cADD2jChAn6+OOPbU4OSTp58qR69uyp6dOnVznP4MGDtX//fvdj4cKFFiZEdZYtW6bx48dr1apVWrRokYqKijRo0CCdPHlSknTq1CmtX79ef/zjH7V+/XrNmzdP27dv17XXXmtzckjn/vmZpqnhw4dr9+7d+vjjj7Vhwwa1adNGAwcOdM/j90ygDn7xi1+Y48aNKzOtS5cu5iOPPGKapml2797dfOqpp8q8f8EFF5hPPPGEZRlRM5LM+fPnl5k2ZswYc9iwYbbkQe3l5OSYksxly5ZVOc+3335rSjL37NljYTLURPmf37Zt20xJ5vfff++ep6ioyIyLizNff/11u2J6FCMfqLWCggKtW7dOgwYNKjN90KBBWrlypSSpX79+WrBggfbu3SvTNLVkyRJt375dv/rVr+yIjDpYunSpWrRooU6dOum3v/2tcnJy7I6EKuTm5kpStZe1zs3NlWEYio2NtSgVaqr8zy8/P1+SFB4e7p7H4XAoNDRUK1assD6gF1A+UGuHDh2S0+lUfHx8menx8fE6cOCAJOmll15St27d1KpVK4WGhmrw4MF65ZVX1K9fPzsio5aGDBmid999V4sXL9YLL7ygNWvW6IorrnD/pQjfYZqmJk2apH79+iklJaXSec6cOaNHHnlEo0aN4uKNPqayn1+XLl3Upk0bPfroozp69KgKCgr0l7/8RQcOHND+/fttTuwZPndvF/gPwzDKvDZN0z3tpZde0qpVq7RgwQK1adNGy5cv1z333KOEhAQNHDjQjriohZEjR7qfp6SkKDU1VW3atNGnn36qESNG2JgM5d17773auHFjlf8iLiws1E033SSXy6VXXnnF4nQ4l8p+fiEhIfrwww915513Ki4uTg6HQwMHDtSQIUNsTOpZlA/UWrNmzeRwONyjHCVycnIUHx+v06dP67HHHtP8+fM1dOhQSVKPHj2Unp6uv/3tb5QPP5SQkKA2bdo0qKPtG4IJEyZowYIFWr58uVq1alXh/cLCQt14443KyMjQ4sWLGfXwMdX9/Pr06aP09HTl5uaqoKBAzZs314UXXqjU1FSb0noWu11Qa6GhoerTp48WLVpUZvqiRYt0ySWXqLCwUIWFhRXubOhwOORyuayMCg85fPiwsrOzlZCQYHcUqHiU8d5779W8efO0ePFiJScnV5inpHjs2LFD//nPf9S0aVMbkqIyNfn5lYiJiVHz5s21Y8cOrV27VsOGDbMwqfcw8oE6mTRpkm699Valpqbq4osv1syZM5WVlaVx48YpOjpal19+uf7whz8oIiJCbdq00bJly/TPf/5TL774ot3RoeLrsOzcudP9OiMjQ+np6YqLi1NcXJwmT56s66+/XgkJCcrMzNRjjz2mZs2a6brrrrMxNUqMHz9ec+bM0ccff6yoqCj3KGRMTIwiIiJUVFSkG264QevXr9e///1vOZ1O9zxxcXEKDQ21M37AO9fPT5I++OADNW/eXK1bt9amTZt0//33a/jw4RUO9Pdbdp5qA//2j3/8w2zTpo0ZGhpqXnDBBWVO89u/f785duxYMzEx0QwPDzc7d+5svvDCC6bL5bIxMUosWbLElFThMWbMGPPUqVPmoEGDzObNm5shISFm69atzTFjxphZWVl2x8ZZlf3sJJmzZs0yTdM0MzIyqpxnyZIltmbHuX9+pmma06ZNM1u1auX+M/jEE0+Y+fn59oX2MG4sBwAALMUxHwAAwFKUDwAAYCnKBwAAsBTlAwAAWIryAQAALEX5AAAAlqJ8AAAAS1E+AACApSgfAADAUpQPAABgKcoHAACwFOUDAABYivIBAAAsRfkAAACWonwAAABLUT4AAIClKB8AAMBSlA8AAGApygcAALAU5QMAAFiK8gEAACxF+QAAAJaifAAAAEtRPgAAgKUsLx9jx47V8OHDrd4sAADwEYx8AAAAS9laPj7//HP169dPsbGxatq0qa6++mrt2rXL/X5mZqYMw9C8efM0YMAARUZGqmfPnvrmm29sTA0AAOrD1vJx8uRJTZo0SWvWrNFXX32loKAgXXfddXK5XGXme/zxx/Xggw8qPT1dnTp10s0336yioiKbUgMAgPoItnPj119/fZnXb7zxhlq0aKEtW7YoJSXFPf3BBx/U0KFDJUl//vOf1b17d+3cuVNdunSxNC8AAKg/W0c+du3apVGjRqldu3aKjo5WcnKyJCkrK6vMfD169HA/T0hIkCTl5ORYFxQAAHiMrSMf11xzjZKSkvT6668rMTFRLpdLKSkpKigoKDNfSEiI+7lhGJJUYdcMAADwD7aVj8OHD2vr1q167bXXdOmll0qSVqxYYVccAABgEdvKR5MmTdS0aVPNnDlTCQkJysrK0iOPPGJXHAAAYBHLj/lwuVwKDg5WUFCQ3n//fa1bt04pKSl64IEH9Ne//tXqOAAAwGKGaZqmlRscPHiwOnTooOnTp1u5WQAA4CMsG/k4evSoPv30Uy1dulQDBw60arMAAMDHWHbMxx133KE1a9bo97//vYYNG2bVZgEAgI+xfLcLAAAIbNxYDgAAWIryAQAALOWV8pGWlqa+ffsqKipKLVq00PDhw7Vt27Yy85imqcmTJysxMVERERHq37+/Nm/e7H7/yJEjmjBhgjp37qzIyEi1bt1a9913n3JzcyvdZn5+vnr16iXDMJSenu6NjwUAADzAK+Vj2bJlGj9+vFatWqVFixapqKhIgwYN0smTJ93zPP/883rxxRc1ffp0rVmzRi1bttRVV12l48ePS5L27dunffv26W9/+5s2bdqkt956S59//rnuvPPOSrf50EMPKTEx0RsfBwAAeJAlB5z+9NNPatGihZYtW6bLLrtMpmkqMTFREydO1MMPPyypeOQiPj5ezz33nO6+++5K1/PBBx/olltu0cmTJxUc/POJOp999pkmTZqkDz/8UN27d9eGDRvUq1cvb38sAABQB5Yc81GyqyQuLk6SlJGRoQMHDmjQoEHuecLCwnT55Zdr5cqV1a4nOjq6TPE4ePCgfvvb3+rtt99WZGSklz4BAADwFK+XD9M0NWnSJPXr108pKSmSpAMHDkiS4uPjy8wbHx/vfq+8w4cP6+mnny4zKmKapsaOHatx48YpNTXVS58AAAB4ktcvMnbvvfdq48aNld6x1jCMMq9N06wwTZLy8vI0dOhQdevWTU8++aR7+ssvv6y8vDw9+uijng8OAAC8wqsjHxMmTNCCBQu0ZMkStWrVyj29ZcuWklRhlCMnJ6fCaMjx48c1ePBgNW7cWPPnz1dISIj7vcWLF2vVqlUKCwtTcHCwOnToIElKTU3VmDFjvPWxAABAPXilfJimqXvvvVfz5s3T4sWLlZycXOb95ORktWzZUosWLXJPKygo0LJly3TJJZe4p+Xl5WnQoEEKDQ3VggULFB4eXmY9L730kr777julp6crPT1dCxculCTNnTtXzz77rDc+GgAAqCev7HYZP3685syZo48//lhRUVHuEY6YmBhFRETIMAxNnDhRU6ZMUceOHdWxY0dNmTJFkZGRGjVqlKTiEY9Bgwbp1KlTeuedd5SXl6e8vDxJUvPmzeVwONS6desy223cuLEkqX379mVGWgAAgO/wSvmYMWOGJKl///5lps+aNUtjx46VVHxdjtOnT+uee+7R0aNHdeGFF+rLL79UVFSUJGndunVavXq1JLl3p5TIyMhQ27ZtvREdAAB4GTeWAwAAluLeLgAAwFKUDwAAYCnKBwAAsBTlAwAAWIryAQAALEX5AAAAlqJ8AAAAS1E+AHjE0qVLZRiGjh07ZncUAD6Oi4wBqJP+/furV69emjp1qqTi+zMdOXJE8fHxld6dGgBKeOXy6gACT2hoqPuO1QBQHXa7AKi1sWPHatmyZZo2bZoMw5BhGHrrrbfK7HZ56623FBsbq3//+9/q3LmzIiMjdcMNN+jkyZOaPXu22rZtqyZNmmjChAlyOp3udRcUFOihhx7Seeedp0aNGunCCy/U0qVL7fmgALyCkQ8AtTZt2jRt375dKSkpeuqppyRJmzdvrjDfqVOn9NJLL+n999/X8ePHNWLECI0YMUKxsbFauHChdu/ereuvv179+vXTyJEjJUm33367MjMz9f777ysxMVHz58/X4MGDtWnTJnXs2NHSzwnAOygfAGotJiZGoaGhioyMdO9q+eGHHyrMV1hYqBkzZqh9+/aSpBtuuEFvv/22Dh48qMaNG6tbt24aMGCAlixZopEjR2rXrl1677339OOPPyoxMVGS9OCDD+rzzz/XrFmzNGXKFOs+JACvoXwA8JrIyEh38ZCk+Ph4tW3bVo0bNy4zLScnR5K0fv16maapTp06lVlPfn6+mjZtak1oAF5H+QDgNSEhIWVeG4ZR6TSXyyVJcrlccjgcWrdunRwOR5n5ShcWAP6N8gGgTkJDQ8scKOoJvXv3ltPpVE5Oji699FKPrhuA7+BsFwB10rZtW61evVqZmZk6dOiQe/SiPjp16qTRo0frtttu07x585SRkaE1a9boueee08KFCz2QGoAvoHwAqJMHH3xQDodD3bp1U/PmzZWVleWR9c6aNUu33Xabfv/736tz58669tprtXr1aiUlJXlk/QDsxxVOAQCApRj5AAAAlqJ8AAAAS1E+AACApSgfAADAUpQPAABgKcoHAACwFOUDAABYivIBAAAsRfkAAACWonwAAABLUT4AAIClKB8AAMBS/w+gqeq/DEDLBgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "14", + "metadata": {}, + "outputs": [], "source": [ "# first, load in the simple model of case 1. Copy it.\n", "case2_example1 = case1(\"case2_example2\")\n", @@ -1884,7 +159,7 @@ }, { "cell_type": "markdown", - "id": "8239f609-2cc3-473c-8608-65837df994e0", + "id": "15", "metadata": {}, "source": [ "### Example 3: boundary and basins below target, third basin above, pump rate of third peilgebied set to 0. \n", @@ -1893,295 +168,10 @@ }, { "cell_type": "code", - "execution_count": 26, - "id": "4b4404cb-233a-485d-a9b0-ec1d841f3a7a", + "execution_count": null, + "id": "16", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timenode_idstoragelevelinflow_rateoutflow_ratestorage_rateprecipitationevaporationdrainageinfiltrationbalance_errorrelative_error
02024-01-01 00:00:0030.0000001.0000001.000000e-020.0000000.0100000.01.679887e-070.00.06.045863e-083.050107e-01
12024-01-01 00:00:0040.0000000.0000001.000000e-020.0000000.0100000.01.845589e-070.00.06.611968e-083.038326e-01
22024-01-01 00:00:008100000.00000010.0000000.000000e+000.020000-0.0211570.01.157403e-030.00.0-3.912639e-09-2.000000e+00
32024-01-01 00:01:0030.5999861.0219051.000000e-020.0000000.0099990.07.009689e-070.00.01.399768e-071.815624e-01
42024-01-01 00:01:0040.5999850.0244901.000000e-020.0000000.0099990.07.624346e-070.00.01.508812e-071.800760e-01
..........................................
2591952024-02-29 23:58:00431693.7004405.6297141.743486e-070.000000-0.0006510.06.515870e-040.00.0-1.002416e-13-5.749492e-07
2591962024-02-29 23:58:00831696.4171055.6299550.000000e+000.000002-0.0006540.06.516149e-040.00.0-8.542787e-14-2.000000e+00
2591972024-02-29 23:59:00326785.5142965.6290822.257008e-060.000000-0.0006670.06.697163e-040.00.0-2.457064e-14-1.088638e-08
2591982024-02-29 23:59:00431693.6613555.6297101.743285e-070.000000-0.0006510.06.515866e-040.00.0-1.875781e-13-1.076003e-06
2591992024-02-29 23:59:00831696.3778625.6299510.000000e+000.000002-0.0006540.06.516145e-040.00.0-1.678335e-13-2.000000e+00
\n", - "

259200 rows × 13 columns

\n", - "
" - ], - "text/plain": [ - " time node_id storage level inflow_rate \\\n", - "0 2024-01-01 00:00:00 3 0.000000 1.000000 1.000000e-02 \n", - "1 2024-01-01 00:00:00 4 0.000000 0.000000 1.000000e-02 \n", - "2 2024-01-01 00:00:00 8 100000.000000 10.000000 0.000000e+00 \n", - "3 2024-01-01 00:01:00 3 0.599986 1.021905 1.000000e-02 \n", - "4 2024-01-01 00:01:00 4 0.599985 0.024490 1.000000e-02 \n", - "... ... ... ... ... ... \n", - "259195 2024-02-29 23:58:00 4 31693.700440 5.629714 1.743486e-07 \n", - "259196 2024-02-29 23:58:00 8 31696.417105 5.629955 0.000000e+00 \n", - "259197 2024-02-29 23:59:00 3 26785.514296 5.629082 2.257008e-06 \n", - "259198 2024-02-29 23:59:00 4 31693.661355 5.629710 1.743285e-07 \n", - "259199 2024-02-29 23:59:00 8 31696.377862 5.629951 0.000000e+00 \n", - "\n", - " outflow_rate storage_rate precipitation evaporation drainage \\\n", - "0 0.000000 0.010000 0.0 1.679887e-07 0.0 \n", - "1 0.000000 0.010000 0.0 1.845589e-07 0.0 \n", - "2 0.020000 -0.021157 0.0 1.157403e-03 0.0 \n", - "3 0.000000 0.009999 0.0 7.009689e-07 0.0 \n", - "4 0.000000 0.009999 0.0 7.624346e-07 0.0 \n", - "... ... ... ... ... ... \n", - "259195 0.000000 -0.000651 0.0 6.515870e-04 0.0 \n", - "259196 0.000002 -0.000654 0.0 6.516149e-04 0.0 \n", - "259197 0.000000 -0.000667 0.0 6.697163e-04 0.0 \n", - "259198 0.000000 -0.000651 0.0 6.515866e-04 0.0 \n", - "259199 0.000002 -0.000654 0.0 6.516145e-04 0.0 \n", - "\n", - " infiltration balance_error relative_error \n", - "0 0.0 6.045863e-08 3.050107e-01 \n", - "1 0.0 6.611968e-08 3.038326e-01 \n", - "2 0.0 -3.912639e-09 -2.000000e+00 \n", - "3 0.0 1.399768e-07 1.815624e-01 \n", - "4 0.0 1.508812e-07 1.800760e-01 \n", - "... ... ... ... \n", - "259195 0.0 -1.002416e-13 -5.749492e-07 \n", - "259196 0.0 -8.542787e-14 -2.000000e+00 \n", - "259197 0.0 -2.457064e-14 -1.088638e-08 \n", - "259198 0.0 -1.875781e-13 -1.076003e-06 \n", - "259199 0.0 -1.678335e-13 -2.000000e+00 \n", - "\n", - "[259200 rows x 13 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAFCCAYAAAA9jy8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIaklEQVR4nO3dd1wT9/8H8NcR9paNMhUE3AO14gA3Wq17W8X1tXZIW7XWX2sdrau2VlurbW0L1oV71D3B2YoKioIoCoIC4mAjK7nfHzQngQABktwlvJ+PBw8ludy9c37MvfO+z2BYlmVBCCGEEEKIQOjwHQAhhBBCCCHlUYJKCCGEEEIEhRJUQgghhBAiKJSgEkIIIYQQQaEElRBCCCGECAolqIQQQgghRFAoQSWEEEIIIYKiy3cAhBBCCOGXWCxGSUkJ32EQLaenpweRSKTQtpSgEkIIIQ0Uy7JIT09HVlYW36GQBsLS0hIODg5gGKba7ShBJYQQQhooaXJqZ2cHY2PjGpMGQuqKZVkUFBQgIyMDAODo6Fjt9pSgEkIIIQ2QWCzmklNra2u+wyENgJGREQAgIyMDdnZ21d7up0FShBBCSAMk7XNqbGzMcySkIZG2t5r6PFOCSgghhDRgdFufqJOi7Y0SVEIIIYQQIiiUoBJCCCGEEEGhBJUQQgghWiMgIAAff/wx32FUKykpCQzDIDo6mu9QBIsSVEIIIYRojKCgIDAMU+knISGB79CIEtE0U4QQQgjRKIGBgQgJCZF5zNbWlqdoiCpQBZUQQgghMl6XiNX2UxcGBgZwcHCQ+alqTs3MzExMnjwZjRo1grGxMQYOHIgHDx4AKJs83tbWFvv27eO2b9euHezs7Ljfr169Cj09PeTl5VUZT0hICHx8fGBoaAhvb29s3LhR5vlr166hffv2MDQ0hK+vL6Kioirt4/Dhw/D09ISRkRF69eqFLVu2gGEYmVW+rly5gp49e8LIyAjOzs6YM2cO8vPzFTpnmoYqqIQQQgiREbDxktqO9W+wv0r3HxQUhAcPHuDw4cMwNzfHggULMGjQIMTGxkJPTw89e/ZEeHg4Ro4ciczMTMTGxsLExASxsbFo0aIFwsPD0bFjR5iamsrd/+bNm7F48WJs2LAB7du3R1RUFGbOnAkTExNMmTIF+fn5GDx4MHr37o1t27YhMTERwcHBMvtISkrCqFGjEBwcjBkzZiAqKgrz5s2T2SYmJgYDBgzA119/jT/++APPnz/Hhx9+iA8//LBSNVkbUIJKCCGEEI1y5MgRmYRx4MCB2LNnT6XtpInp5cuX4efnBwDYvn07nJ2dcfDgQYwePRoBAQH47bffAAAXLlxA27Zt4eLigvDwcC5BDQgIqDKWr7/+Gt9//z1GjBgBAHB3d0dsbCx+/fVXTJkyBdu3b4dYLMaff/4JY2NjtGzZEk+ePMHs2bO5ffzyyy/w8vLCmjVrAABeXl64c+cOli9fzm2zZs0aTJgwgRsA5unpiR9//BH+/v7YtGkTDA0N63YyBYoSVEIIIYTICH+/O98hVKtXr17YtGkT97uJiYnc7eLi4qCrq4suXbpwj1lbW8PLywtxcXEAykb9BwcH48WLF4iIiEBAQABcXFwQERGB//3vf7hy5UqVswI8f/4cKSkpmD59OmbOnMk9XlpaCgsLCy6Gtm3byqzY1bVrV5n9xMfHo1OnTjKPde7cWeb3GzduICEhAdu3b+ceY1kWEokEiYmJ8PHxkRujpqIElRBCCCEyjPSqXiNdCExMTODh4VHjdizLVvm4dEWjVq1awdraGhEREYiIiMCyZcvg7OyM5cuXIzIyEq9fv0b37vITdolEAqDsNn/5JBgA1ye2qhiqiqeq2CUSCWbNmoU5c+ZUer2Li0uNx9A0lKASQgghRCu1aNECpaWl+Pfff7lb/C9fvsT9+/e5iiPDMOjZsycOHTqEO3fuoEePHjAzM0NJSQl++eUXdOjQAWZmZnL3b29vjyZNmuDRo0eYOHFilTFs3boVr1+/hpGREQDgn3/+kdnG29sbx44dk3ns+vXrMr936NABd+/eVSgx1wY0ip8QQgghWsnT0xNDhw7FzJkzcenSJdy6dQuTJk1CkyZNMHToUG67gIAA7NixA23atIG5uTmXtG7fvr3a/qcAsGTJEqxcuRLr16/H/fv3ERMTg5CQEKxduxYAMGHCBOjo6GD69OmIjY3FsWPH8N1338nsY9asWbh37x4WLFiA+/fvY/fu3QgNDQXwZu36BQsW4OrVq/jggw8QHR3N9a/96KOPlHfCBIQSVEIIIYRorZCQEHTs2BGDBw9G165dwbIsjh07Bj09PW6bXr16QSwWyySj/v7+EIvF8PevfpaBGTNm4Pfff0doaChat24Nf39/hIaGwt3dHQBgamqKv//+G7GxsWjfvj2++OILrF69WmYf7u7u2Lt3L/bv3482bdpg06ZN+OKLLwCUTakFAG3atEFERAQePHiAHj16oH379li0aBEcHR2VcZoEh2EV6RxBCCGEEK1SWFiIxMREuLu7a90IcG2wfPly/PLLL0hJSeE7FKVStN1RH1RCCCGEEJ5t3LgRnTp1grW1NS5fvow1a9bgww8/5Dss3lCCSgghhBDCswcPHuCbb77Bq1ev4OLigrlz52LhwoV8h8UbusVPCCGENEB0i5/wQdF2R4OkCCGEEEKIoFCCSgghhBBCBIUSVEIIIYQQIiiUoBJCCCGEEEGhBJUQQgghhAgKJaiEEEIIISoWHh4OhmGQlZWl1P0uWbIE7dq1U+o+hYASVEIIIYRolPT0dHz00Udo2rQpDAwM4OzsjCFDhuDs2bNKPU5AQAA+/vhjpe6TKIYm6ieEEEKIxkhKSkK3bt1gaWmJb7/9Fm3atEFJSQlOnjyJDz74APfu3VNrPCzLQiwWQ1eXUiplogoqIYQQQjTG+++/D4ZhcO3aNYwaNQrNmzdHy5Yt8emnn+Kff/7htktOTsbQoUNhamoKc3NzjBkzBs+ePeOel94a37p1K9zc3GBhYYFx48YhNzcXABAUFISIiAisX78eDMOAYRgkJSVxt+pPnjwJX19fGBgY4OLFiygqKsKcOXNgZ2cHQ0NDdO/eHZGRkbV6b9nZ2fjf//4HOzs7mJubo3fv3rh165bMNqtWrYK9vT3MzMwwffp0FBYWyjxfWlqKOXPmwNLSEtbW1liwYAGmTJmCYcOGcduwLItvv/0WTZs2hZGREdq2bYu9e/fWKlZVowSVEEIIITKKi4vV9lMbr169wokTJ/DBBx/AxMSk0vOWlpYAyhKwYcOG4dWrV4iIiMDp06fx8OFDjB07Vmb7hw8f4uDBgzhy5AiOHDmCiIgIrFq1CgCwfv16dO3aFTNnzkRaWhrS0tLg7OzMvfazzz7DypUrERcXhzZt2uCzzz7Dvn37sGXLFty8eRMeHh4YMGAAXr16pdB7Y1kWb7/9NtLT03Hs2DHcuHEDHTp0QJ8+fbh97N69G4sXL8by5ctx/fp1ODo6YuPGjTL7Wb16NbZv346QkBBcvnwZOTk5OHjwoMw2X375JUJCQrBp0ybcvXsXn3zyCSZNmoSIiAiFYlUHqkcTQgghRMbKlSvVdqzFixcrvG1CQgJYloW3t3e12505cwa3b99GYmIil1Ru3boVLVu2RGRkJDp16gQAkEgkCA0NhZmZGQDg3XffxdmzZ7F8+XJYWFhAX18fxsbGcHBwqHSMZcuWoV+/fgCA/Px8bNq0CaGhoRg4cCAAYPPmzTh9+jT++OMPzJ8/v8b3dv78ecTExCAjIwMGBgYAgO+++w4HDx7E3r178b///Q/r1q3DtGnTMGPGDADAN998gzNnzshUUX/66ScsXLgQw4cPBwBs2LABx44d457Pz8/H2rVrce7cOXTt2hUA0LRpU1y6dAm//vor/P39a4xVHShBJYQQQohGYFkWAMAwTLXbxcXFwdnZWabi2aJFC1haWiIuLo5LUN3c3LjkFAAcHR2RkZGhUCy+vr7c3x8+fIiSkhJ069aNe0xPTw+dO3dGXFycQvu7ceMG8vLyYG1tLfP469ev8fDhQ+59vffeezLPd+3aFefPnwdQ1kXg2bNn6Ny5M/e8SCRCx44dIZFIAACxsbEoLCzkkmup4uJitG/fXqFY1YESVEIIIYTIWLhwId8hyOXp6QmGYRAXFyfTp7IilmXlJrEVH9fT05N5nmEYLpGrSfkuBlUlzlXFIY9EIoGjoyPCw8MrPSftuqAoeXGUPw4AHD16FE2aNJHZTlq5FQLqg0oIIYQQGfr6+mr7qQ0rKysMGDAAP//8M/Lz8ys9L51jtEWLFkhOTkZKSgr3XGxsLLKzs+Hj41Or8yAWi2vczsPDA/r6+rh06RL3WElJCa5fv67w8Tp06ID09HTo6urCw8ND5sfGxgYA4OPjIzMQDIDM7xYWFrC3t8e1a9e4x8RiMaKiorjfW7RoAQMDAyQnJ1c6TvmKM9+ogkoIIYQQjbFx40b4+fmhc+fOWLZsGdq0aYPS0lKcPn0amzZtQlxcHPr27Ys2bdpg4sSJWLduHUpLS/H+++/D399f5tZ8Tdzc3PDvv/8iKSkJpqamsLKykrudiYkJZs+ejfnz58PKygouLi749ttvUVBQgOnTpyt0rL59+6Jr164YNmwYVq9eDS8vL6SmpuLYsWMYNmwYfH19ERwcjClTpsDX1xfdu3fH9u3bcffuXTRt2pTbz0cffYSVK1fCw8MD3t7e+Omnn5CZmclVVc3MzDBv3jx88sknkEgk6N69O3JycnDlyhWYmppiypQpCp8fVaIElRBCCCEaw93dHTdv3sTy5csxd+5cpKWlwdbWFh07dsSmTZsAlN3iPnjwID766CP07NkTOjo6CAwMxE8//VSrY82bNw9TpkxBixYt8Pr1ayQmJla57apVqyCRSPDuu+8iNzcXvr6+OHnyJBo1aqTQsRiGwbFjx/DFF19g2rRpeP78ORwcHNCzZ0/Y29sDAMaOHYuHDx9iwYIFKCwsxMiRIzF79mycPHmS28+CBQuQnp6OyZMnQyQS4X//+x8GDBgAkUjEbfP111/Dzs4OK1euxKNHj2BpaYkOHTrg//7v/2p1flSJYct3TCCEEEJIg1BYWIjExES4u7vD0NCQ73CIikgkEvj4+GDMmDH4+uuv+Q5H4XZHFVRCCCGEEC3x+PFjnDp1Cv7+/igqKsKGDRuQmJiICRMm8B1ardAgKUIIIYQQLaGjo4PQ0FB06tQJ3bp1Q0xMDM6cOVOrwWFCQBVUQgghhBAt4ezsjMuXL/MdRr1RBZUQQgghhAgKJaiEEEIIIURQKEElhBBCCCGCQgkqIYQQQggRFEpQCSGEEEKIoFCCSgghhBBCBIUSVEIIIYRoDekyp9ogNDQUlpaWfIfBC0pQCSGEEKIxgoKCMGzYsCqfT0tLw8CBAxXalzYls9qGJuonhBBCiNZwcHDgOwSiBFRBJYQQQojWKF8VLS4uxocffghHR0cYGhrCzc0NK1euBAC4ubkBAIYPHw6GYbjfAeDvv/9Gx44dYWhoiKZNm2Lp0qUoLS2VOcbvv/+O4cOHw9jYGJ6enjh8+HC1cRUXF+Ozzz5DkyZNYGJigi5duiA8PFxmm9DQULi4uMDY2BjDhw/Hy5cvK+3nm2++gZ2dHczMzDBjxgx8/vnnaNeuncw2ISEh8PHxgaGhIby9vbFx40bFTp6AUIJKCCGEEBnFxcVV/pRP1GratqSkpMZtVenHH3/E4cOHsXv3bsTHx2Pbtm1cIhoZGQmgLJlLS0vjfj958iQmTZqEOXPmIDY2Fr/++itCQ0OxfPlymX0vXboUY8aMwe3btzFo0CBMnDgRr169qjKWqVOn4vLlywgLC8Pt27cxevRoBAYG4sGDBwCAf//9F9OmTcP777+P6Oho9OrVC998843MPrZv347ly5dj9erVuHHjBlxcXLBp0yaZbTZv3owvvvgCy5cvR1xcHFasWIFFixZhy5Yt9TqX6sawLMvyHQQhhBBC1KuwsBCJiYlwd3eHoaGhzHNLly6t8nWenp6YMGEC9/uKFSsqJaJSrq6uCAoK4n5fs2YNCgoKZLZZvHhxreIOCgpCVlZWlX1HGYbBgQMHMGzYMMyZMwd3797FmTNnwDBMtdtK9ezZEwMHDsTChQu5x7Zt24bPPvsMqamp3Ou+/PJLfP311wCA/Px8mJmZ4dixYwgMDKx0nIcPH8LT0xNPnjxB48aNucf79u2Lzp07Y8WKFZgwYQIyMzNx/Phx7vlx48bhxIkTyMrKAgC89dZb8PX1xYYNG7htunfvjry8PERHRwMAXFxcsHr1aowfP57b5ptvvsGxY8dw5cqVKs6q+lTX7sqjCqqGu3DhAoYMGYLGjRvL7ezNsiyWLFmCxo0bw8jICAEBAbh7967MNkVFRfjoo49gY2MDExMTvPPOO3jy5Ika3wURGmW0q99++w0BAQEwNzcHwzDcByxp2Orbtl69eoWPPvoIXl5eMDY2houLC+bMmYPs7Gw1vxOiCYKCghAdHQ0vLy/MmTMHp06dqvE1N27cwLJly2Bqasr9zJw5E2lpaTLJdZs2bbi/m5iYwMzMDBkZGXL3efPmTbAsi+bNm8vsNyIiAg8fPgQAxMXFoWvXrjKvq/h7fHw8OnfuLPNY+d+fP3+OlJQUTJ8+XeY433zzDXccTUGDpDRcfn4+2rZti6lTp2LkyJGVnv/222+xdu1ahIaGonnz5vjmm2/Qr18/xMfHw8zMDADw8ccf4++//0ZYWBisra0xd+5cDB48GDdu3IBIJFL3WyICoIx2VVBQgMDAQAQGBspUIkjDVt+2lZqaitTUVHz33Xdo0aIFHj9+jPfeew+pqanYu3cvD+9IO1X3f1ZHR7a2NW/evCq3rVi1DA4Orl9gtdShQwckJibi+PHjOHPmDMaMGYO+fftW21YkEgmWLl2KESNGVHqufMVPT09P5jmGYSCRSKrcp0gkkntdNTU1BVD25UwRFc9p+ddJj79582Z06dJFZjuNu56zRGsAYA8cOMD9LpFIWAcHB3bVqlXcY4WFhayFhQX7yy+/sCzLsllZWayenh4bFhbGbfP06VNWR0eHPXHihNpiJ8JVl3ZV3vnz51kAbGZmphqiJZqkvm1Lavfu3ay+vj5bUlKiynC1zuvXr9nY2Fj29evXfIdSK1OmTGGHDh1a5fMV21V5J06cYAGwL1++ZFmWZfX09Ni9e/fKbOPn58dOmzat2hjkHcPCwoINCQmRu318fDwLgL1w4UKV+xw/fjw7cOBAmcfGjRvHWlhYcL936dKF/fDDD2W26d69O9u2bVvu9yZNmrDLli2rNn4+KdruqIKqxRITE5Geno7+/ftzjxkYGMDf3x9XrlzBrFmzcOPGDZSUlMhs07hxY7Rq1QpXrlzBgAED+AidCJgi7YqQuqhr28rOzoa5uTl0demS1lBkZ2dzfS6lrKys4OLiIvPYDz/8AEdHR7Rr1w46OjrYs2cPHBwcuMnv3dzccPbsWXTr1g0GBgZo1KgRvvrqKwwePBjOzs4YPXo0dHR0cPv2bcTExFQatKSo5s2bY+LEiZg8eTK+//57tG/fHi9evMC5c+fQunVrDBo0CHPmzIGfnx++/fZbDBs2DKdOncKJEydk9vPRRx9h5syZ8PX1hZ+fH3bt2oXbt2+jadOm3DZLlizBnDlzYG5ujoEDB6KoqAjXr19HZmYmPv300zrFzwfqg6rF0tPTAQD29vYyj9vb23PPpaenQ19fH40aNapyG0LKU6RdEVIXdWlbL1++xNdff01fjBqY8PBwtG/fXubnq6++qrSdqakpVq9eDV9fX3Tq1AlJSUk4duwY103h+++/x+nTp+Hs7Iz27dsDAAYMGIAjR47g9OnT6NSpE9566y2sXbsWrq6u9Yo5JCQEkydPxty5c+Hl5YV33nkH//77L5ydnQGUDYD6/fff8dNPP6Fdu3Y4deoUvvzyS5l9TJw4EQsXLsS8efO47gtBQUEyXQ9mzJiB33//HaGhoWjdujX8/f0RGhoKd3f3esWvbvR1swGQ119F3mjG2m5DGra6tCtCFKFo28rJycHbb7+NFi1a1HokONFcoaGhCA0NrfJ5tlyfzJkzZ2LmzJlVbjtkyBAMGTKk0uMDBgyo9g4iK6e/aE0DQfX09LB06dJqZ0iYNm0apk2bJvPY3LlzZX5ftGgRFi1axP3er18/eHh4yGwzYcIEmZkWNBFVULWYdDWNipWHjIwMrkLh4OCA4uJiZGZmVrkNIeUp0q4IqYvatK3c3FwEBgbC1NQUBw4cqDRghRBtVFBQgLVr1+Lu3bu4d+8eFi9ejDNnzmDKlCl8h6Z0lKBqEJZlER4ervBIP3d3dzg4OOD06dPcY8XFxYiIiICfnx8AoGPHjtDT05PZJi0tDXfu3OG2IdpNFe2KkNq2K0DxtpWTk4P+/ftDX18fhw8frnYuRUK0CcMwOHbsGHr06IGOHTvi77//xr59+9C3b1++Q1M6usWvQU6cOIFBgwbh+PHj3ETAeXl5SEhI4LZJTExEdHQ011n8448/xooVK+Dp6QlPT0+sWLECxsbGXOnfwsIC06dPx9y5c2FtbQ0rKyvMmzcPrVu31soGTypTRbsCyqpg6enp3H5iYmJgZmYGFxcXWFlZqfdNErWT166A+ret3Nxc9O/fHwUFBdi2bRtycnKQk5MDALC1tdW8qXQIqQUjIyOcOXOG7zDUQ4UzCRAlmzZtGguAnT59OveYdAqfij9TpkxhWbZs2pbFixezDg4OrIGBAduzZ082JiZGZr+vX79mP/zwQ9bKyoo1MjJiBw8ezCYnJ6vzrREeqapdLV68WO4+qpqGhWgXee2KZevftqp6PQA2MTFRje9Q82nqNFNEsyna7mipUwGTSCTYtGkT1/H622+/RU5ODiwsLDB//nwAgKWlJWbPnl1p4mRCqkLtiqgCtSvNo+iSk4Qok6LtjhJUAcvNzYWbmxtevXoFhmGgo6MDsVgMkUgEiUQClmVhZWWFpKQkbvUeQmpC7YqoArUrzUMJKuGDou2OvsYKmJmZGaKiotC5c2ewLAuxWAwA3J9+fn6Ijo6mD3tSK9J21bVrV2pXRGmk7crPz4/aFSGk3ihBFTgzMzOMGjWq0hQqhoaGCA8P5yb4JaQ2mjRpgvfff79Su9LX18fZs2epXZE6cXFxwZo1ayq1K2NjY/q8IoTUCiWoApaZmYnQ0FDExcWhpKRE5rnXr19jy5YtPEVGNJlYLMaePXtw7ty5Su2qqKgIq1ev5qpehNRGZGQkfv/990rtKj8/H9euXeMpKkKIJqIEVaCkyWlOTg5SUlIAAN7e3pgzZw66du0KoGw1jcjISD7DJBpGmpzGx8dzU/1I21WfPn0AAKdPn8aePXsoSSW1EhkZiWPHjuH+/fsA3rQr6So9hw8f5jM8QmolNDQUlpaWfIfRoFGCKlBnzpxBTk4ObGxs8Nlnn2HLli0YO3YsrKyscO7cOXz++efw8vLCqVOnkJuby3e4REPcuXMH8fHx0NXVxYcffijTro4ePYq1a9fCx8cH8fHxuHPnDt/hEg2Rm5uLU6dOAQBGjRqF0NBQrl3t2bMH27dvxzvvvMNzlESbBAUFgWEY7sfa2hqBgYG4ffu2UvY/duxY7ssW4QdN1C9QQ4YMga6uLvr27QszMzMUFxdj5cqVAAAdHR2sWLEC58+fh5ubGw06IApr06YNXr58CVdXVzRr1kymXTEMg08++QQPHz7E48eP0aZNG56jJZrCzMwM48ePR1JSEnr16oWSkhKZdqXpa4KT6onFwMWLQFoa4OgI9OgBqGO9hMDAQISEhAAoWxjkyy+/xODBg5GcnFzvfRsZGcHIyKje+yF1RxVUASkqKuL+bmhoiOHDh1eZfDIMg969e6Np06ZyX0+IlFgs5voESttNs2bNqty+WbNm6N27NxiGAQCUlJTQ7X4iV/nPnKZNm8q0G9Iw7N8PuLkBvXoBEyaU/enmVva4qhkYGMDBwQEODg5o164dFixYgJSUFDx//hwAsGDBAjRv3hzGxsZo2rQpFi1aJNM/+tatW+jVqxfMzMxgbm6Ojh074vr16wAq3+JfsmQJ2rVrh61bt8LNzQ0WFhYYN24c3cFUIUpQBSIzMxMbN27ElStX6vT6Fy9eYMOGDdQnlciQ9jndtWtXpYEriigpKcGuXbuoTyqpJDIyEhs2bMCLFy/4DoXwZP9+YNQo4MkT2cefPi17XB1JqlReXh62b98ODw8PWFtbAyir7IeGhiI2Nhbr16/H5s2b8cMPP3CvmThxIpycnBAZGYkbN27g888/rzQDRXkPHz7EwYMHceTIERw5cgQRERFYtWqVyt9bQ0UJqgCUHxAVFRVVp0QiNjYWeXl5OHbsGCWpBIDsgKikpCQ8e/as1vt49uwZkpKSEB8fT0kq4UgHROXl5SE2NpbvcAgPxGIgOBiQt9SP9LGPPy7bTlWOHDkCU1NTmJqawszMDIcPH8auXbu4lcq+/PJL+Pn5wc3NDUOGDMHcuXOxe/du7vXJycno27cvvL294enpidGjR6Nt27ZVHk8ikSA0NBStWrVCjx498O677+Ls2bOqe4MNHCWoPCufnNrY2GDy5MnVfoOrSo8ePeDn5wcAlKQSmeRUJBJh/PjxcHJyqvV+nJycMH78eIhEIkpSCYA3ySlQNvl+jx49eI6I8OHixcqV0/JYFkhJKdtOVXr16oXo6GhER0fj33//Rf/+/TFw4EA8fvwYALB37150794dDg4OMDU1xaJFi2T6p3766aeYMWMG+vbti1WrVuHhw4fVHq/imA9HR0dkZGSo5s0RSlD5JC85reuAJ4Zh0LdvX0pSidzktLo+pzVp1qwZJakEQOXktG/fvtTntIFKS1PudnVhYmICDw8PeHh4oHPnzvjjjz+Qn5+PzZs3459//sG4ceMwcOBAHDlyBFFRUfjiiy9QXFzMvX7JkiW4e/cu3n77bZw7dw4tWrTAgQMHqjxexeIRwzCQSCQqe38NHSWoPFFmcipFSSpRdnIqRUkqoeSUlOfoqNztlIFhGOjo6OD169e4fPkyXF1d8cUXX8DX1xeenp5cZbW85s2b45NPPsGpU6cwYsQIblYAwj9KUHny8OFDpSanUhWT1Fu3btE3vAbk1atXSEpKUmpyKlU+SU1KSsKrV6+Utm8ibBKJBLdu3QJAySkp06MH4OQEVNUMGAZwdi7bTlWKioqQnp6O9PR0xMXF4aOPPkJeXh6GDBkCDw8PJCcnIywsDA8fPsSPP/4oUx19/fo1PvzwQ4SHh+Px48e4fPkyIiMj4ePjo7qASa3QPKg88fX1hY6ODjw9PZU+j6k0SbWwsECbNm24DuNE+9na2uLdd99FYWGhUpNTKWmSamhoCFtbW6XvnwiTjo4OJk2ahNu3b6NTp06UnBKIRMD69WWj9RlGdrCUtHmsW6fa+VBPnDgBx/9KtGZmZvD29saePXsQEBAAAPjkk0/w4YcfoqioCG+//TYWLVqEJUuW/Be/CC9fvsTkyZPx7Nkz2NjYYMSIEVi6dKnqAia1wrCsvDF4RBWysrJgaGgIQ0PDWr+2/ITqCxcuhL6+fq338ezZM9jb29f6dUTYxGIxXr16VaeEURnt6vnz57CysoJIHTNzE7Wq62eGMtoVUb3CwkIkJibC3d29TtcloGwqqeBg2QFTzs5lyemIEcqJk2gXRdsdldbUJDMzEyEhIdi+fTsKCwvVfvyrV6/il19+oT6pWkba5/SPP/5Aamqq2o+fmpqKP/74g/qkaqHIyEj88ssvuHr1Kt+hEAEbMQJISgLOnwd27Cj7MzGRklNSf3SLXw3KD4jS19dHaWmp2mOQrnYhHeTQqVMntcdAlKvigKjXr1+rPYbXr1+jtLSUGzg1evRoqqRqgfIDovLy8niOhgidSAT8d1edEKWhCqqKyRutb2pqqvY4+vXrh65duwKg0f3aQFWj9WuLRvdrH3mj9QkhRN0oQVUhVUwlVVcMw1CSqiWEkpxKUZKqPWgqKUKIUFCCqiJCSk6lKEnVfEJLTqUoSdV8lJwSQoSEElQVKS0thVgsFkxyKlUxSS2/qgYRPolEgpKSEkElp1Llk9SSkhKaf1fDFBUVAaDklBAiDDRISkVsbW0RFBQEAwMDwSSnUtIktXnz5nBzc+M7HFILenp6GDduHJ49ewYnJye+w6mkWbNmCAoKgr29faVlAYmwde/eHU5OTnB1daXklBDCO6qgKlFmZiaSkpK4321sbASXnEoxDCOTnBYVFSE2Npa/gEiVxGIxbt++DemUxXp6eoJMTqWcnJy45JRlWdy+fZtu9wtUbGwsVzkFADc3N0pOCSGCQAmqkkj7nG7fvl3uer9CVlJSgm3btmHPnj3UJ1VgpH1ODxw4gPDwcL7DqbXw8HAcOHCA+qQKUGRkJPbs2YNt27ahpKSE73AIIUQGJahKUH5AlKWlJaysrPgOqVZ0dXXh7OwMgAZOCUn5AVG6urpwcXHhO6Rac3FxoYFTAlR+QJSLiwt0dam3F9FODMPg4MGDfIfRoLi5uWHdunX13g8lqPUkxNH6tUWj+4WnYnI6btw4QQ2IUhSN7hceGq1PtEFQUBAYhgHDMNDT04O9vT369euHP//8U2aAZlpaGgYOHMhbnKGhobC0tKzTa1mWxW+//YYuXbrA1NQUlpaW8PX1xbp161BQUCCIGFWJEtR60IbkVIqSVOHQluRUipJU4aDklKgKy7IIDw/n+sqrQ2BgINLS0pCUlITjx4+jV69eCA4OxuDBg7kVGx0cHGBgYKD0Y4vFYpXPVPLuu+/i448/xtChQ3H+/HlER0dj0aJFOHToEE6dOqXSY8uj7ll/KEGto5ycHK1JTqXkJalRUVE8R9WwsCyLvXv3ak1yKlUxSd27d69aL2QEiIqKouSUqMyJEyfQq1cvnDx5Um3HNDAwgIODA5o0aYIOHTrg//7v/3Do0CEcP34coaGhAGRv8RcXF+PDDz+Eo6MjDA0N4ebmhpUrV3L7y8rKwv/+9z/Y29vD0NAQrVq1wpEjRwC8qTIeOXIELVq0gIGBAR4/fozi4mJ89tlnaNKkCUxMTNClSxduvEB4eDimTp2K7Oxsrtq7ZMkSLpaqXgcAu3fvxvbt27Fz50783//9Hzp16gQ3NzcMHToU586dQ69evQCUTT24bNkyODk5wcDAAO3atcOJEye4/SQlJYFhGOzfvx+9evWCsbEx2rZti6tXr9YYo5ubG7755hsEBQXBwsICM2fOBADs27cPLVu2hIGBAdzc3PD9998r85+VQwlqHZmYmMDJyUlrklOp8kmqiYkJmjRpwndIDQrDMPD09NSq5FRKmqTq6urC09OTkiM1k14IKTklqrB3716ZP/nSu3dvtG3bFvv376/03I8//ojDhw9j9+7diI+Px7Zt27jZbCQSCQYOHIgrV65g27ZtiI2NxapVqyASibjXFxQUYOXKlfj9999x9+5d2NnZYerUqbh8+TLCwsJw+/ZtjB49GoGBgXjw4AH8/Pywbt06mJubIy0tDWlpaZg3bx4AVPs6ANi+fTu8vLwwdOjQSu+DYRhYWFgAANavX4/vv/8e3333HW7fvo0BAwbgnXfe4fYj9cUXX2DevHmIjo5G8+bNMX78eJSWllYbIwCsWbMGrVq1wo0bN7Bo0SLcuHEDY8aMwbhx4xATE4MlS5Zg0aJF3BcCZaKe8XUkEokwYsQIFBYWwsTEhO9wlKp8kqotibcm6dChAzw9PbXy3Ddr1gxz5szRyvcmdHZ2dpg1axZMTU0pOSX1JpFIsGnTJmRlZQGQTVDd3d0BAJaWlpg9ezZ0dNRbC/P29sbt27crPZ6cnAxPT090794dDMPA1dWVe+7MmTO4du0a4uLi0Lx5cwBA06ZNZV5fUlKCjRs3om3btgCAhw8fYufOnXjy5AkaN24MAJg3bx5OnDiBkJAQrFixAhYWFmAYBg4ODtx+FHndgwcP4OXlVeN7/e6777BgwQKMGzcOALB69WqcP38e69atw88//8xtN2/ePLz99tsAgKVLl6Jly5ZISEiAt7e33BilevfuLZOwTpw4EX369MGiRYsAAM2bN0dsbCzWrFmDoKCgGuOtDUpQayEzMxM3b95E7969wTAMRCKR1iWnUgzDyCQRiYmJePnyJXx9fXmMSjuJxWKcOXMG3bt359qTNidw5d9bfn4+Ll26hL59+8pUKohyXL9+HdbW1lzCoM3tiqhXfn4+vvrqK7x69QoMw3BJaF5eHhYtWgSWZWFlZcXLHUaWZeV+CQsKCkK/fv3g5eWFwMBADB48GP379wcAREdHw8nJiUtO5dHX10ebNm2432/evAmWZSu9pqioCNbW1lXuR5HXVfUeysvJyUFqaiq6desm83i3bt1w69YtmcfKx+3o6AgAyMjIgLe3d7XHqHjNj4uLq1TV7datG9atWwexWKzUz3FKUBVUfkCUSCRCQEAA3yGpzatXr7Bjxw6UlpaCZVl06tSJ75C0RvkBUcnJyZgxY0aDqW6xLIsdO3YgNTUVmZmZGD16NCWpSiQdEKWrq4vZs2dr3PR3RNjMzMwQFRWF8ePH4+rVq9zAR7FYDIZh4Ofnh7CwMF6+FMXFxXFfysrr0KEDEhMTcfz4cZw5cwZjxoxB3759sXfvXhgZGdW4XyMjI5nPZ4lEApFIhBs3blT67DI1Na1yP4q8rnnz5oiLi6sxJgCVrhnyktvyK/tJn1NkkFfFIpy8fatqPAH1QVVAxdH6HTt25DsktWrUqBGXlNLofuUpn5yKRCKuMt9QMAyD3r170+h+FSg/Wr9z585o1KgRzxERbeTi4oLz58/D2NhY5nFjY2OEh4dz82ur07lz5xATE4ORI0fKfd7c3Bxjx47F5s2bsWvXLuzbtw+vXr1CmzZt8OTJE9y/f1/hY7Vv3x5isRgZGRnw8PCQ+ZHeLtfX16/0uabI6yZMmID79+/j0KFDlY7Lsiyys7Nhbm6Oxo0b49KlSzLPX7lyBT4+Pgq/D3kxVqVFixZyj9e8eXOlFxgoQa2BNk0lVVc0BZXyVUxOx48fr1UDohRFU1ApH00lRdTp2rVryM/Pl3ksPz8f165dU/mxi4qKkJ6ejqdPn+LmzZtYsWIFhg4disGDB2Py5MmVtv/hhx8QFhaGe/fu4f79+9izZw8cHBxgaWkJf39/9OzZEyNHjsTp06e5Smv5EfEVNW/eHBMnTsTkyZOxf/9+JCYmIjIyEqtXr+b+D7q5uSEvLw9nz57FixcvUFBQoNDrxowZg7Fjx2L8+PFYuXIlrl+/jsePH+PIkSPo27cvzp8/DwCYP38+Vq9ejV27diE+Ph6ff/45oqOjERwcrPB5lBdjVebOnYuzZ8/i66+/xv3797FlyxZs2LBBpp+qslCCWg1KTt+gJFV5KDmVRUmq8lByStTt77//BgAMGzYMCQkJXP/Ew4cPq/zYJ06cgKOjI9zc3BAYGIjz58/jxx9/xKFDh+RW80xNTbF69Wr4+vqiU6dOSEpKwrFjx7j+s/v27UOnTp0wfvx4tGjRAp999lmNn0UhISGYPHky5s6dCy8vL7zzzjv4999/ueqxn58f3nvvPYwdOxa2trb49ttvFXodwzDYsWMH1q5diwMHDsDf3x9t2rTBkiVLMHToUAwYMAAAMGfOHMydOxdz585F69atceLECRw+fBienp4Kn8eqYpSnQ4cO2L17N8LCwtCqVSt89dVXWLZsmdIHSAEAw9JkhHKVlpZi48aNyMzMFERyWlxczM3XtnDhQujr6/MSB8uyOH36NDeH2sSJE+Hh4cFLLJrq6NGjuH79uiCSU6G0K+DNyFaxWAxfX19uxClRzIMHD7Bjxw4A/CenQmpXpGqFhYVITEyEu7s7DA0N67SPy5cv4/Hjxxg/fjwYhgHLsti5cydcXV0rDd4hBFC83VGCWo24uDiEh4dj0qRJvCWnLMtiy5YtSEtL41ZxkH7YOzo6YsqUKWq/CEmT1KysLIwcOZIGttRSVlYWtm/fjsDAQN6SUyG2K6AsST1x4gQmTpwoyKX3hEwsFmPfvn1o1KgRb8mpUNsVkU8ZCSohtaVou6NR/NXw8fGBl5eX2udwK08ikSArK0tmiTHp37OysrjRgOokvd3Psiyv50ZT8TU3YHlCbFdA2e1+vs+NphKJRBg1ahS3GgwfhNquCCGah64C5Uj7nEonHgbA+4VSJBIhMDBQ7nMDBw7k7cO+/Lx3LMviyJEj1Ce1CtI+p+WnDKF2VbXy5yYuLo76pFYjMjISR48e5aZ50dHR4bVCKeR2RQjRLJSg/keanD5+/BhHjx7lOxwZXl5eMite6OjowN3dvdoJhdXp3r17uHHjBg2ckkOanMbGxuLgwYPVjo5UN6G3q4KCAhw8eBCxsbGUpMohHRB1/fp13Lt3j+9wOEJvV4QQzUAJKiqP1n/nnXf4DkmG9Ja6FMuyCAwMFExfLm9vbxrdL0fF0fpjxoypNF8gn4TeroyNjTFmzBga3S9HxdH6Na0Go05Cb1eEEM3Q4BNUTZlKytbWlvt7hw4dYGdnx2M0smgKqso0ZSopIbcrgKagkkcTppISersihAhfg05QNSU5rahnz558h1AJJalvaEpyWpEQ2xVASWp5mpCcViTUdkUIEbYGnaAeO3ZM45JTAIKdDqRiknrixAlkZmbyHJX6RUVFaVxyCgi3XQGVk9SoqCi+Q1K7zMxMblUbTUlOAWG3K0KIcDXoaaaGDRuGo0ePYuDAgRqTnAqdNEnV0dFB48aNG+Qa4B07dkRGRga8vLw0JjnVBNIkNT4+Hh07duQ7HLVr1KgRRo4cidTUVPTp00cjklNCCKmrBldBLSkp4f5uYmKCMWPGUHKqZAzDoG/fvmjRogX3WPnzro3EYjEkEgmAsvc/aNAgSk5VoFmzZhg0aBCXnEkkEq2/3V/+/06LFi00pnJKiDZjGAYHDx7kOwyFLVmyBO3ateM7jFppUAlqZmYmfv755wZ5e5BP2dnZ2LRpk9b2SZX2Od23bx+XpBLVk0gk2Ldvn1b3SY2MjMSmTZuQnZ3NdyiECEpQUBCGDRvGdxgc6QIZDMNAV1cXLi4u+PTTT1FUVMR3aBqrwSSo0gFR2dnZuHr1KkpLS/kOqcGIiYlBZmamVg6cKj8gKj4+Hs+ePeM7pAbj2bNn3HnXxiRVOiAqMzMTMTExfIdDSJXEEjHCk8KxM2YnwpPCIZZo1/9FRYWEhCAtLQ2JiYnYuHEjtm7dim+++YbvsJRG3XdCG0SCWnG0/rvvvgtd3Qbd/VatunXrppWj++WN1nd0dOQ7rAbD0dFRa0f3lx+t37VrV3Tr1o3niAiRb3/cfritd0OvLb0wYf8E9NrSC27r3bA/bj9vMcXGxmLQoEEwNTWFvb093n33Xbx48QIA8Ouvv6JJkyaV7na98847mDJlCvf733//jY4dO8LQ0BBNmzbF0qVLayxsWVpawsHBAc7Ozhg8eDDeeecd3Lx5U2abTZs2oVmzZtDX14eXlxe2bt3KPZeUlASGYRAdHc09lpWVBYZhEB4eDgAIDw8HwzA4e/YsfH19YWxsDD8/P8THx8scZ9WqVbC3t4eZmRmmT5+OwsJCmecjIyPRr18/2NjYwMLCAv7+/pViZRgGv/zyC4YOHQoTExN888038PDwwHfffSez3Z07d6Cjo4OHDx9We35qS+sTVE2dSkqbaOMUVJo6lZS20cYpqComp/369aM+p0SQ9sftx6jdo/Ak54nM409znmLU7lG8JKlpaWnw9/dHu3btcP36dZw4cQLPnj3DmDFjAACjR4/GixcvcP78ee41mZmZOHnyJCZOnAgAOHnyJCZNmoQ5c+YgNjYWv/76K0JDQ7F8+XKF47h//z7Onz+PLl26cI8dOHAAwcHBmDt3Lu7cuYNZs2Zh6tSpMrEo6osvvsD333+P69evQ1dXF9OmTeOe2717NxYvXozly5fj+vXrcHR0xMaNG2Ven5ubiylTpuDixYv4559/4OnpiUGDBiE3N1dmu8WLF2Po0KGIiYnBtGnTMG3aNISEhMhs8+eff6JHjx5KvwZqdYJKyalwaFOSSsmpsGhTkkrJKdEUYokYwSeCwYKt9Jz0sY9PfKz22/2bNm1Chw4dsGLFCnh7e6N9+/b4888/cf78edy/fx9WVlYIDAzEjh07uNfs2bMHVlZW6NOnDwBg+fLl+PzzzzFlyhQ0bdoU/fr1w9dff41ff/212mOPHz8epqamMDQ0hJeXF1q2bImFCxdyz3/33XcICgrC+++/j+bNm+PTTz/FiBEjKlUkFbF8+XL4+/ujRYsW+Pzzz3HlyhWuSrpu3TpMmzYNM2bMgJeXF7755huZQcsA0Lt3b0yaNAk+Pj7w8fHBr7/+ioKCAkRERMhsN2HCBEybNg1NmzaFq6srpk6divj4eFy7dg1A2W3/bdu2ySTIyqLVCWpsbCwlpwJSMUmNjIzUyL7AGRkZePjwISWnAlI+SX348CEyMjL4DqnWSktLuS9tlJwSobuYfLFS5bQ8FixSclJwMfmiGqMCbty4gfPnz8PU1JT7kS4FLL0FPXHiROzbt48bwLR9+3aMGzcOIpGI28eyZctk9jFz5kykpaWhoKCgymP/8MMPiI6Oxq1bt3DkyBHcv38f7777Lvd8XFxcpe463bp1Q1xcXK3fZ5s2bbi/S7uWST/34uLiuOusVMXfMzIy8N5776F58+awsLCAhYUF8vLykJycLLOdr6+vzO+Ojo54++238eeffwIAjhw5gsLCQowePbrW76EmWt0R08/PDzo6OmjVqhUlpwIhTVLNzMzQunVrjewLLO37yLIsJacCIk1SGYbRyL7Aurq6mDx5MmJiYvDWW29RckoELS03TanbKYtEIsGQIUOwevXqSs9JPxeGDBkCiUSCo0ePolOnTrh48SLWrl0rs4+lS5dixIgRlfZR3cITDg4O8PDwAAB4eXkhNzcX48eP5/puAqj0/5plWe4xHR0d7jGpqgYm6enpcX8vP+2eooKCgvD8+XOsW7cOrq6uMDAwQNeuXVFcXCyznYmJSaXXzpgxA++++y5++OEHhISEYOzYsTA2Nlb42IrSvOygBtnZ2TA2Noaenh4Yhqn0rYHwT96/y8uXL2Ftbc1TRDUTi8XIycnhFh5o2rQpzxEReSp+YcjMzIS5uTlXGRGi8m3f1NSUPrOIRnA0U+xLoKLbKUuHDh2wb98+uLm5VVkAMTIywogRI7B9+3YkJCSgefPmMot/dOjQAfHx8VxSWVfSz53Xr18DAHx8fHDp0iVMnjyZ2+bKlSvw8fEBANja2gIo60fbvn17AJAZMKUoHx8f/PPPPzLH+eeff2S2uXjxIjZu3IhBgwYBAFJSUriBZDUZNGgQTExMsGnTJhw/fhwXLlyodYyK0KoENTMzE1u2bIG1tTXGjRsn8w2DCFd0dDQOHz6MgQMHolOnTnyHU4m0z+mTJ08QFBQEGxsbvkMiCnj+/Dm2bNkCJycnjB49WpBJamRkJI4fP4533nlH4ybRJg1bD5cecDJ3wtOcp3L7oTJg4GTuhB4uPVQWQ3Z2dqUEbtasWdi8eTPGjx+P+fPnw8bGBgkJCQgLC8PmzZu5z4GJEydiyJAhuHv3LiZNmiSzj6+++gqDBw+Gs7MzRo8eDR0dHdy+fRsxMTHVThuVlZWF9PR0SCQSPHjwAMuWLUPz5s25BHT+/PkYM2YMOnTogD59+uDvv//G/v37cebMGQBlifNbb72FVatWwc3NDS9evMCXX35Z6/MSHByMKVOmwNfXF927d8f27dtx9+5dmcKKh4cHtm7dCl9fX+Tk5GD+/PkwMjJSaP8ikQhBQUFYuHAhPDw8VPalWmv6oEqT0+zsbGRnZ9PkuBrk+fPnYFlWkAOnyg+IKiwspAnTNUhOTg4KCwsFO3BKOiCKZVk8f/6c73AIqRWRjgjrA9cDKEtGy5P+vi5wHUQ6qvtiGB4ejvbt28v8fPXVV7h8+TLEYjEGDBiAVq1aITg4GBYWFtwtdKBskJCVlRXi4+MxYcIEmf0OGDAAR44cwenTp9GpUye89dZbWLt2LVxdXauNZ+rUqXB0dISTkxPGjx+Pli1b4vjx41wld9iwYVi/fj3WrFmDli1b4tdff0VISAgCAgK4ffz5558oKSmBr68vgoOD6zSP6tixY/HVV19hwYIF6NixIx4/fozZs2fLbPPnn38iMzMT7du3x7vvvos5c+bAzs5O4WNMnz4dxcXFKhkcJcWw5Ts7aKjyyam1tTWmTJmidX1Oi4uLsXLlSgDAwoULoa+vz3NEysOyLE6fPo2rV68CKLt9IIRKakMYra/N7QoAVzkRi8Xw8vISTCVV20fra3u70haFhYVITEyEu7t7tX0rq7M/bj+CTwTLDJhyNnfGusB1GOFTuQ8n0Q6XL19GQEAAnjx5Ant7+1q9VtF2p/G3+BtCcqrtpAOnAODq1avchZvPJLUhJKcNgYeHB8aNG4ewsDCuksp3kqrtySlpWEb4jMBQr6G4mHwRablpcDRzRA+XHiqtnBL+FBUVISUlBYsWLcKYMWNqnZzWhkbf4qfkVHsIaZ5USk61izRJFcI8qZScEm0k0hEhwC0A41uPR4BbACWnWmznzp3w8vJCdnY2vv32W5UeS6MT1NevX6OwsJCSUy1RMUnlq79naWkp8vLyKDnVIuWT1Ly8PN7m35W2aUpOCSGaKCgoCGKxGDdu3ECTJk1UeiyNvsXfuHFjTJkyBaamppScaglpkuru7l7vKT7qysDAAJMmTUJGRgZcXFx4iYEon4eHByZPngw7OzsYGBjwEkOfPn3g6uoKDw8PSk4JIaQaGldBzczMxNOnT7nfHR0dKTnVMgzDwNPTk7uAl5aWIj4+XqXHFIvFMqt5GBoaUnKqhVxcXGQ65cfFxan8dn98fDxXsa3YtgkhhMinUQlqZmYmQkNDsXXrVqSmpvIdDlEDsViMsLAwhIWFqaxPqrTP6e7du7mZBIj2u3r1Knbv3q3SPqmRkZFc+xXaNFeEECJkgkxQL1y4gCFDhqBx48ZgGAYHDx7kktOcnByYmZlR1fQ/S5YsAcMwMj8ODg58h6U0Ojo63Nxs9R04tWnTJrRp0wbm5uYwNzdH165dceTIEZkBUbWZB07bPX36FJMmTYK1tTWMjY3Rrl073Lhxg++wlMbOzk4lA6dWrlwJhmEwfvx4bkCUvb29zByMDZWbm1ulzyuGYfDBBx/wHZrgrFy5Ep06dYKZmRns7OwwbNgwld9JIkRIBPmJmZ+fj7Zt22LDhg0AgLy8PC45tbGxweTJkylBLadly5ZIS0vjfmJiYvgOSWmUObrfyckJq1atwvXr13H9+nUEBARg2LBhuHjxIg2IqiAzMxPdunWDnp4ejh8/jtjYWHz//fewtLTkOzSladasGcaPH6/UJDUyMhK//fYbPDw8kJiYCADw8/ND37596bY+ys5P+c+q06dPAwBGjx7Nc2TCExERgQ8++AD//PMPTp8+jdLSUvTv3x/5+fl8h0aIWghykNTAgQMxcOBA7vdz587B1dWVktMq6OrqalXVtCJlzZM6ZMgQ7u9isRht27aFnp4eUlNT8emnn1JyWs7q1avh7OyMkJAQ7jE3Nzf+AlIRaZK6c+fOes+TmpeXh4kTJ2LevHlYs2YNAEpOK5KuNS61atUqNGvWDP7+/jxFJFwnTpyQ+T0kJAR2dna4ceMGevbsyVNUhKiPICuoUtIpWQoKCig5rcaDBw/QuHFjuLu7Y9y4cXj06BHfISmdvEpqXW83syyLXbt2Ye/evSgpKcGsWbMoOa3g8OHD8PX1xejRo2FnZ4f27dtj8+bNfIelEvIqqXVZYO+DDz6Ar68vXrx4AaBslhFKTqtWXFyMbdu2Ydq0aXSOFCC9HlpZWfEcScMQFBSEYcOG8R1GgyboBNXY2BgAYG5uTslpFbp06YK//voLJ0+exObNm5Geng4/Pz+8fPmS79CUrnySamBgUKcVLGJiYmBmZobJkyfj6NGj+PXXXxEYGKiCaDXbo0ePsGnTJnh6euLkyZN47733MGfOHPz11198h6YS0iRVV1cXzs7OtU6YwsLCcPPmTSxbtgwGBgawsLCo034akoMHDyIrKwtBQUF8hyJ4LMvi008/Rffu3dGqVSu+wxGMlJQUTJ8+HY0bN4a+vj5cXV0RHBxcq+tfUlISGIZBdHR0vWIJDw8HwzDIysqq137IG4K8xS+lp6cHAOjVqxclp1Uo3xWidevW6Nq1K5o1a4YtW7bg008/5TEy1ZAmqZ07d65Tf0gvLy9ER0cjKysL27dvx+eff46uXbuiRYsWyg9Wg0kkEvj6+mLFihUAgPbt2+Pu3bvYtGkTJk+ezHN0qtGsWTN88MEHtW5XKSkpCA4OxqlTp+Dh4YH33nsPJ06coOS0Bn/88QcGDhyIxo0b8x2K4H344Ye4ffs2Ll26xHcoVSosLcSVlCvwc/aDoW7V66sry6NHj9C1a1c0b94cO3fuhLu7O+7evYv58+fj+PHj+Oeff6jarOEEV0HNzMzE5cuXZW6xGRkZ8RiRZjExMUHr1q3x4MEDvkNRGYZhZJKI1NRU3Lx5s9rXiMVinDt3DhKJBB4eHvD19cUPP/yAtm3bYv369SqOWPM4OjpWStp9fHyQnJzMU0TqUb5dFRYW4ty5czUOnNq9ezcyMjLQsWNH6OrqwsbGBhEREfjxxx+hq6tL00vJ8fjxY5w5cwYzZszgOxTB++ijj3D48GGcP38eTk5OfIdTCcuyOBB3AM1/ao4+f/VB85+a40DcgTp1k6mNDz74APr6+jh16hT8/f3h4uKCgQMH4syZM3j69Cm++OILAOBmAirP0tISoaGhAAB3d3cAZV/CGYZBQECA3OOxLItvv/0WTZs2hZGREdq2bYu9e/cCKKvC9urVCwDQqFEjMAxDdwaUgNcKqlgixsXki0jLTYOjmSNambXC1r+2IicnBzo6Olx/Q1KmBCVIQQoKSwuhr68vd5uioiLExcWhR48eao6OH9nZ2fjrr79QVFQEsViMTp06QSwGLl4E0tIAR0fAz0+M/fvLppJKSUnB5MmTueoWy7IoKiri+V3wS1676tatW6Upbe7fvw9XV1c+QlQ7aT/lpKQkZGRk/DfKXCTTrnr0AG7ejMTLly8RHByMsWPHcnd6pk6dCm9vbyxYsKBOA660SWlpaaXPK+mAn7fffpunqISj4nWwh0sPiHREYFkWH330EQ4cOIDw8HAukRKSey/u4b0j7yHicQR0mLJ619PcpxixewT8Xf3xy+Bf4G3jrfTjvnr1CidPnsTy5csrFbAcHBwwceJE7Nq1Cxs3bqxxX9euXUPnzp1x5swZtGzZsspr65dffon9+/dzXZ8uXLiASZMmwdbWFt27d8e+ffswcuRIxMfHw9zcnAprSsBbgro/bj+CTwTjSc4T7jELxgID2AHobNoZEomE6xOSmJiI6OhoWFlZqXx1H5ZlIZaw0BUJp7jMsiwOxR/CT/gJOcjBuV/P4cfAHzHMexjmz5+PIUOGwMXFBRkZGfjmm2+Qk5ODKVOmqCUuvs+Vubk5OnTowI3uP3++EX76yQNP3jQrWFkVoW9fBunp5zB79mw8fvwYubm5CAsLQ3h4eKXRsqoghHNVUXXt6pNPPoGfnx9WrFiBMWPG4Nq1a/jtt9/w22+/qS02Ps8XwzDo1q0bUlJSEB8fj/nzr2LPnm548uTNbXs7uyIEBDxCixYGCAgIwFtvvcV98TExMYG1tbVa+gvyfa4qYllW5suNtJ+3t7c3GIaBRCJBSEgIpkyZAl1d9V6ChHau5F0HncydsD5wPc78dAY7duzAoUOHYGZmhvT0dACAhYWFYJKfaYem4drTawAACSuR+fNS8iVMOzQNV6ZfUfpxHzx4AJZl4ePjI/d5Hx8fZGZm4vnz5zXuSzqzhLW1dZWz4eTn52Pt2rU4d+4cVzhr2rQpLl26hF9//RX+/v5cdwI7Ozutmo6PT7wkqPvj9mPU7lFgIXsLIJvNxm7shoeZB7p37849Lu1LOWXKFK4sryqz991CWk4hPvX3QM+m1rz3Iyv/DZVBWSypuancN1Tjh8bYMX4HXrx4AVtbW7z11lv4559/1FLpEsK5Kj8F1R9/ZGL37mYAWABvYnn1ygi7d49B166H8PnnnyMtLQ0WFhZo06YNTpw4wb1elYRwrsqrqV39MvgXHDhwAAsXLsSyZcvg7u6OdevWYeLEiWqJTwjny8PDA+PGjcOiRVEIC+tW6fmMDH3s3j0GixbdQr9+bXn7NxXCuZJ68eIFjhw5gsePH3OP5ebmYvfu3XB1dcXgwYNx8+ZNJCcnY9q0aWqPT0jnqqrr4NOcp2WPbyp7vOIt55CQEMHcPs4tzoWYld+FRcyKkVucq+aIyki7Fyjr3zc2NhaFhYWVrhXFxcVo3769Uo5BKlN7giqWiBF8IrjSf0opBgz+yv8LuYVFEOlUvjX2ukTF62Zn5KGgRIzPjtxF+yYW+Kh7UzS1NlHpMasTdHAqrqeWTUwvPWflv6H6vt0JD3enVHqdqs8TIKxz1bVHb0ycWPrfbxU/lBgwDIuUlO2IeyBBxTuuDe1cATW3q6CDU3F+yiVcGzBQ5nXqOFeAcM6Xg5M7zodLv+xVblcAi5CQtvjs/2Tb1fHTZwE0vLZ14OBBpFVYhlqaLCQnJ+PAwYOYNGUqCorL/q+qqz1JCeVciSVizDku/zrIggUDBs5rnZEYnCj3OtjQeXh4gGEYxMbGyp0K6t69e2jUqBFsbGzAMEyl/rAlJSW1Op5EUvbZePToUTRp0kTmOQMDg9oFTxSm9gT1YvJFmdsZFbFg8STnCTr9tBHmevx+M4l6mo1pu6J4jSEm51m131Bvpz1DwEb+R3byfa5yHljgxYt2VT7PsgyePAE6zYuBuWe2+gKTg+9zBWhOuwL4PV85DyzwLL1dNVsIp10B/LetHjmZMKticAzLsohPy6R2BSCnJApP86u/DqbkpOBi8kUEuAWoLzANYW1tjX79+mHjxo345JNPZLo8pKenY/v27dxYA1tbW6SlpXHPP3jwAAUFBdzv0j6n1Q1mbNGiBQwMDJCcnFzlohKK7IfUjto74qTlptW8EYAS9pWKIyHapCRHfsf2um5HCEDtiqiGotc3Ra+XfDHTN4OIkV/hFTEimOmrbnrIDRs2oKioCAMGDMCFCxeQkpLCddlq0qQJli9fDgDo3bs3NmzYgJs3b+L69et47733uCksgbI+o0ZGRjhx4gSePXvGLYhQnpmZGebNm4dPPvkEW7ZswcOHDxEVFYWff/4ZW7ZsAQC4urqCYRgcOXIEz58/R15ensree0Oh9gqqo5mjQtv9PNwfPV2717yhkg3afBUF/912EjEMJGAxrJUjpnV2hZmB+rvs+m42Rmw1/bzdrY0RPlP95wkQ1rm6EAEEbq15u58ne6Gnv5fqA6pASOcKEHa7AoRzvoTergDhnCsA+HPzXbx4XlDl8+7WJvia2hUuPC5F4Pava9xO0eslX/4c+qfMKH4JK+H+7O7SHb8M/kVlx/b09MT169exZMkSjB07Fi9fvoSDgwOGDRuGxYsXc4OWvv/+e0ydOhU9e/ZE48aNsX79eplVCHV1dfHjjz9i2bJl+Oqrr9CjRw+Eh4dXOt7XX38NOzs7rFy5Eo8ePYKlpSU6dOiA//u//wMANGnSBEuXLsXnn3+OqVOnYvLkySofM6Pt1H5l7OHSA07mTnia87TKfqiWBo7o4dITRnr89r1p18QC8wI8eO0raGFgDhEjkns7VsSIYGFgzvt5Avg/V317AU5OwNOngLw7jAxT9nzfXqJKfVDVje9zBWhOuwL4PV9v2hULlq084EJI7Qrgv20ZGhjI7fMHlA1YMTQwaPDtqqhUgvg0F+gztihm5X9LZMDAydwJPVyEPV2gt403zk85j0PxhzDn+Byk5KRwsxAM9Rqq8kForq6uCAkJqXabxo0b4+TJkzKPVVztacaMGZXm5K2YXDIMgzlz5mDOnDlVHmvRokVYtGhRzYEThaj9Fr9IR4T1gWUTozNyBx0ANqLZmLorGnfSc9QcHeBlZwoHMwOsGdISP49ow2sSAZR9Q+3uUlZxkM4zJ/2zu0t3/Dn0T95iE9K5EokA6Xz7DFPx4lj2+7p14C2JENK5AoTdrgDhnC9puyrLt2TblfTay2e7AoRzrgBg6NCh3FSA0uRE+qeLiwuGDh3KW2wA/+fqTnoOJu+4ge03U+Fi9BHKroKy10Hp7+sC12nEACmGYTDMexjuf3QfZyefRfyH8RjmPYz3mUqI5mNYVS/3UIX9cfsx5/gcPM19yj3mbO6Mme2W4UpCc7wqKIEOA0zs4IyZb7nBQFc9ubTQ5skD3sxXKf2G6mLhorZvqDXFJbRztX8/MGcOi6dP35wXA8tC/PqzCFMm6FXzStUS4rkSaruSxiaU8/Uyvxg9ghPwcG9TFGe/WcLR2bksOR0xgr/YAGGdK+DNPKjHjx9HTk4OLCwsEBgYCC8vrwbbropKJdj8TxK230yBhAWsjfXxeR9PvCi6IPc6uC5wHUb4qL5hFRYWIjExEe7u7jA0VP3ypIQAirc73hJUAHhd+BqzV89GHvIwa8Is9G7WGyIdEbILS7A2PAEn4jMAAG5WxljUzwutHMz5ClUQ1L3WsaZ6/boYs2fvQF6eGV77tMBzqwxM7OiE4J7N+A5NkKhdVW/dhQTsjHqKVrbGEJ+6i7w8M8ya9Q5699YTxG19oSotLUVKSgqcnZ3VPiG/kNxJz8HXp+KRlFnWNzfQ2w6f+nvAwrDsC3NV10F1oASV8EHRdsfrp4ZIRwR3lC3f5u/qz/2ntDDUw9JAH/T2tMWqc/eR9KoAM3dHqb2aKjSGuobo7d6b7zAETyQC3N3LJgrvM7E75h7NwL6YVEzq6AxrExptXRG1q6q9zC/G/ttlI6mndnbB2QfHAAD+/kMoOa2Brq6uIJfnVJeqqqY9m9rIbFfVdZCQho7XBFVHRweenp7c3yvyb2aDdk0suGrq1hspuJj4kqqppFrl21UXVyu0cjDDnfRcbLuRQlVUUitbbySjSCxBa0dzdHG1QnI1n1eESNVUNS2vpusgIQ0Vr7f4ayPi4QusOneft76pRHP98/gVgg/GwEBXBweCulAVlSjkZX4xhof8iyKxBOuHtcZbrlZ8h0QETtGqqVDQLX7CB0XbncZkd/7NbBD2bicEetlBwgJbb6Rg8s4bvIz0J5qli0sjtHIwQ1GpBNtuVF4WlhB5ZKqnLo34DocInHSE/tYbZclpoLcddr7rK9jklBCh05gEFXjTN/XbwS1hZazH9U3dcOkRikolfIdHBIphGMx8yw0AsC8mFS/zi/kNiAhe+b6nM7q48j76nAhXUakEGy49wszdUUjKLIC1sT7WDGmJpQN85N7SJ4QohtcEtbi4GCtWrMCKFStQXKx40kDVVFIdee2KqqikNuRVT+v6eUW0lzKqptSuCJGP9wpqSUkJSkpKav06qqaS6lRsV1RFJYqqrnpa188rol2UXTWldkVIZbwnqPVF1VSiKKqiEkVQ31NSHeprKgxBQUFgGAYMw0BPTw9NmzbFvHnzkJ+fz3doREk0PkEFqJpKFENVVFIT6ntKqkJ9TatXWlqKxMRElJaWqu2YgYGBSEtLw6NHj/DNN99g48aNmDdvntqOT1RLKxJUKaqmkppQFZVUh6qnRB6qmlaNZVnExcXhp59+wl9//YWffvoJcXFxUMcMlgYGBnBwcICzszMmTJiAiRMn4uDBgwgKCsKwYcNktv34448REBDA/R4QEICPPvoIH3/8MRo1agR7e3v89ttvyM/Px9SpU2FmZoZmzZrh+PHj3GvCw8PBMAyOHj2Ktm3bwtDQEF26dEFMTIzK32tDpFUJKkDVVFI9qqKSqlD1lFREVdPqvXjxAlu2bMHu3buRm5sLAMjNzcXu3buxZcsWvHjxQq3xGBkZ1aov75YtW2BjY4Nr167ho48+wuzZszF69Gj4+fnh5s2bGDBgAN59910UFBTIvG7+/Pn47rvvEBkZCTs7O7zzzjvUh1gFtC5BlaJqKqkKVVGJPFQ9JeVR1bRmhw4dQnJyMgBwFVPpn8nJyTh06JDaYrl27Rp27NiBPn36KPyatm3b4ssvv4SnpycWLlwIIyMj2NjYYObMmfD09MRXX32Fly9f4vbt2zKvW7x4Mfr164fWrVtjy5YtePbsGQ4cOKDst9Tg8ZqgMgwDV1dXuLqqplpB1dSGqaZ2RVVUUpEi1VNVf14RYVB31VST21VxcXGVt/JZllX5tFlHjhyBqakpDA0N0bVrV/Ts2RM//fSTwq9v06YN93eRSARra2u0bt2ae8ze3h4AkJGRIfO6rl27cn+3srKCl5cX4uLi6vo2SBV0+Ty4np4egoKCVH4c/2Y2aNfEAmvDE3AiPgNbb6TgYuJLfNXPCy0dzFV+fKJeirQraRX1Tnoutt1IQXDPZuoJjgiSItVTdX1eEf7cSc/B16fjkfSq7JZuoLcdPvX3UOntfGpXdderVy9s2rQJenp6aNy4MfT0yv6ddHR0KiXO8m7BS7eXks4IUP53AJBIai5oadqXC02gtbf4K5JXTZ2xOwo/UzW1QaIqKpGivqdEpmr6ivqaagoTExN4eHjA1dVVJrG0tbVFWlqazLbR0dFKO+4///zD/T0zMxP379+Ht7e30vZPyjSYBFWqYt/Uv/7rm3qX+qY2ONQXlQDU97Shu5Oeg8k7qa9pXejr61f5hY5hGOjr66s5ojK9e/fG9evX8ddff+HBgwdYvHgx7ty5o7T9L1u2DGfPnsWdO3cQFBQEGxubSrMGkPrjfanTNWvWYM2aNWpd4o2qqdpN0XZFVVRSm+opX59XRDWEUjXV5HY1dOhQuLi4AHhzi1v6p4uLC4YOHcpLXAMGDMCiRYvw2WefoVOnTsjNzcXkyZOVtv9Vq1YhODgYHTt2RFpaGg4fPsxbMq7NeO2DCqDS9A3qVLFv6l83UnCB+qZqBUXbFfVFbdhqWz3l8/OKKA8ffU2ro6ntysbGBlOmTEF8fDyOHz+OnJwcmJubIzAwEF5eXirtLhMaGlrt80uXLsXSpUurfD48PLzSY0lJSZUekzcIrHv37kqtyBL5eE9Q+Satpvb2tMWqc/e5auqkDs6Y8ZYbDHQbXC+IBkVaRQ0+GIN9MamY1NEZ1ib0TbghoL6nDU9RqQSb/0nC9ptlt/OtjfXxeR9Pup1fDwzDwNvbGx4eHkhJSYGzszN0dRt8akGUgLKv/1Df1IaL+qI2TNT3tGGhvqaqpaurC3d3d0pOidJQgloO9U1tmKgvasND1dOGQyh9TYnmCwgIAMuysLS05DuUBoESVDmomtrwUBW1YaHqacNAVVNCNBclqFWgamrDQlXUhoOqp9qPqqa1U9VqUISogqLtjdfOIgzDoHHjxtzfhYhG+mueurYrGtHfMNS1eqoJn1dEeCP0a8Jnu5JObl9QUAAjIyO1Hps0XNJZKyqu5FURw9JXJ4VFPHyBVefu41VBCXQY0Eh/LfTP41cIPhgDA10dHAjqQiP6tczL/GIMD/kXRWIJ1g9rjbdcrfgOiSgJjdCvm7S0NGRlZcHOzg7Gxsb05YuoDMuyKCgoQEZGBiwtLeHo6Fjt9pSg1lJ2YQlXTQUANytjqqZqEZZlMWN3FO6k52JCeyeqomqZdRcSsDPqKVo7mmPz6HZ0MdYSmlY1FRKWZZGeno6srCy+QyENhKWlJRwcHGr8/KUEtY6omqq9qIqqnah6qn2oaqo8YrEYJSUlfIdBtJyenh5EIpFC2/KaoJaUlODnn38GAHzwwQc19kcQGqqmClN92xVVUbVTfaunmv55pW20pWpK7YoQ+Xgt97Esi+zsbGRnZ2vkKEJFRvpLWBbhCS+QllPIc7QNR33bVfkR/XtvP8XjV5q5DCF542V+MfbdSgVQ95H7mv55pS20bYQ+tStC5KP70UpQ3bype2+lYsHRu/j6dDzfYZJakI7oLxazGL/tOvbeegoJXTw0koRlsehELIolLCwMdWneUw12Oy0bE7dfp3lNCWkAaE0yJZFWU3t72mLVuftIelWA6buiIC3U3HiShdup2WjT2ILfQIlCpFXU4IMxELMs1oQn4PT951jUzwtOljQdi6Z4kvUaX52Iw91nuQAAQz0RDYzSECzLYvHJe7j/PA+5RaXIel2CUknZl0QRw2Dl2z7wb2bLc5SEEFWhCqqSSaupA5rbggXw3+cpdBhg879JfIZGaqmLSyPo6rxJZmLScjB+WyTCop5QNVXgJCyLsKgnGLctErH/JacAIJbQv5umyC0qxfmE50h8VYAX+cVccgoA7ZtYUHJKiJajBFUFLAz10MpRtlIqYYFryVmIepLFT1Ck1hiGgU65apuYZVEsZvHDhYe4+Oglj5GRmlx4+BI/XHiIEjGL8ilpQbGYt5hI7RjoitC2ijtOs7u5qzkaQoi6UYKqAjmFJfjp0kO5z318KAZ303PUHBGpCwnLokT8Zllbaara2aURvO1M+QmKKMTH3hSd5fQ1fV0ipuq3BriTnoPJO28gMiULwJv/eyKGQWcXS7SimVII0Xq8JqgMw8DW1ha2trZa1S/MzEAXvT1t0dTaGLam+jDWezPnV2GpBNN3yY70J8qlrHZVUCxGxVRm7Tut8NPwNrA3M6xfkESl7M0MsaS/N/TKddFgALCoexVVWz+vhETeCP0FvT2hJyo732KWxf/+m2FDW1C7IkQ+mqhfTSQsi7ScQmy8nIgzD54DoHlTha6wRIwP9t+Csb4IL/KK8ehVAc2LqkHKz3s6p3tTbP43CQXFYvw8oi0M9RSbKJqoT3Xzmu6OforvIxLQ0ckSG0e25TlSQog6UILKA1qFSnOwLAuGYWh1KQ1T1apR0n9PIhyKrAYlYVlcfPQSXramcDCnuxeENASUEfGgunlTibBIkxnpvKhFpRJsu5HCc1SkJltvJKNILEFrR3OZeU8pORUWaV/TmuY11WEY+DezoeSUkAaE96VON2/eDACYOXNmg1zijaqpyqeqdkVVVM1QVfW0vujzSnkUqZo2FNSuCJGP14n6WZbF8+fPub83RP7NbNCuiQXWhifgRHwG/rqRgguJL6lvaj2oql1Jq6h30nOx7UYK9UUVqKqqp/VFn1fKUV1f04aI2hUh8lGZTgCkq1B9O7glrIz1kPSqADN200h/oZGuLgUA+2JS8TK/mN+ASCUv84ux/3YaAGBGF1e6pS8g8kborxnSEksH+DTY5JQQUjVKUAWE+qYKH/VFFTZVVU9J/Sja15QQQqQoQRUYqqYKG1VRhYuqp8JDVVNCSF1RgipQVE0VLqqiChNVT4WFqqaEkPqgBFXAqJoqTFRFFR6qngoHVU0JIcrA+1KnFhYWsLCwoAtKNaiaWjvqaFdURRUWdVRP6fOqZlQ1rT1qV4TIRytJaRiaN1U4aF5UYVDVvKdEcTSvKSFE2Sir0TBUTRUOqqIKA/U95RdVTQkhqkAVVA1G1VT+URWVX1Q95Q9VTQkhqsRrJiNd4m3z5s0oKSnhMxSNRNVU+dTZrqiKyi91Vk/p8+qNu1Q1VRpqV4TIx2uCyrIsUlNTkZqaSku81VGVI/0vN9yR/upsVzSinz/qHrlPn1dlVdOfLz3CDBqhrzTUrgiRj+4Fa4lK1dTrKZhC1VS1oCoqP6jvqXpJq6Z/UdWUEKIGlKBqkYrV1ESqpqoFVVHVj+Y9VR+qmhJC+EAJqhaiaqr6URVVvah6qh5UNSWE8IUSVC1F1VT1oiqq+lD1VPWoakoI4RslqFqOqqnqQ1VU9aDqqWpR1ZQQIgS8J6jGxsYwNjbmOwyt1hCrqXy0K6qiqh7f1VNt/ryiqil/tLldEVJnLGlQsl4Xs18dj2U7rwtnO68LZ8f+dY29k5at9OPk5OSwwcHBrIuLC2toaMh27dqVvXbtmtKPUxsRERHs4MGDWUdHRxYAe+DAAZnnJRIJu3jxYtbR0ZE1NDRk/f392Tt37sjdl0QiYQMDAyvtRyKRsNPCbrCd14Wz6yIS1B6Xtvvwx+2sZcuurHEjG7nnat++fWz//v1Za2trFgAbFRWl8piU8e/n7+/PApD5GTt2rMriKi4uZj/77DO2VatWrLGxMWtr78C6dhvItlu6l+28Lpz96kQsm/W6uF7HJ4SQ+uC9gkrUS13V1BkzZuD06dPYunUrYmJi0L9/f/Tt2xdPnz5V2jFqKz8/H23btsWGDRvkPv/tt99i7dq12LBhAyIjI+Hg4IB+/fohNze30rbr1q2TW72rSxVVmXFps5f5xTgf+xTGjZth0crv5G6Tn5+Pbt26YdWqVWqLS1n/fjNnzkRaWhr38+uvv6osroKCAty8eROf/98XmLv5EOwmLMKLJ0l49OeXVDUlhAgD3xky4Y+qqqkFBQWsSCRijxw5IvN427Zt2S+++KLe+1cGyKl8Ojg4sKtWreIeKywsZC0sLNhffvlF5rXR0dGsk5MTm5aWVmXFrLZVVGXEpe1+iHjAdl4Xzk7fdZOVSCRyz71UYmKi2iqo5dX138/f358NDg5WW1wsy7J30rLZMX9d4/7/T1+/iwXAPn78WGVxEEKIonhf6jQ0NBShoaG0xBsPVFVNLS0thVgshqGhoczjRkZGuHTpUn3DrlFd2lViYiLS09PRv39/7jEDAwP4+/vjypUr3GMFBQUYP348NmzYAAcHB7n7UmZfVEXj0nZ89z0FVNuuAGD79u2wsbFBy5YtMW/ePJVVyKvqazquhRUYhoGlpaVKjkvko+sgIfLp8nlwlmXx+PFj7u+EH/7NbNCuiQXWhifgRHwG/rqegouPXmJRPy+0dDCv9f7MzMzQtWtXfP311/Dx8YG9vT127tyJf//9F56enip4B7Lq0q7S09MBAPb29jKP29vbc/sCgE8++QR+fn4YOnRotfuTjui/k56LbTdSENyzWW3eQq3j0nZCGLmvynY1ceJEuLu7w8HBAXfu3MHChQtx69YtnD59WknRl7mbnoNlp+OR9KoAQNkI/U/9PWAAMbqP+RwTJkyAuXnt/8+TuqPrICHy8ZqgEuGQVlN7e9pi1bn7XDV1UkdnzOjiBgPd2hXbt27dimnTpqFJkyYQiUTo0KEDJkyYgJs3b6roHShHxcocy7LcY4cPH8a5c+cQFRWl0H5mvuWG4IMx2BeTikkdnWFtoq+SuLSdEKqn9VXTv9/MmTO5v7dq1Qqenp7w9fXFzZs30aFDB6XEcCw2HTHJUZCwgLWxPj7v44meTW1QUlKC0aPHQSKRYOPGjUo5FiGE1BcNkiIylDVvarNmzRAREYG8vDykpKTg2rVrKCkpgbu7u4oirx/p7XppxUsqIyODq36dO3cODx8+hKWlJXR1daGrW/b9buTIkQgICKi0T2XMi6pIXNpOCNXTuqrrv1+HDh2gp6eHBw8e1DsG6f/d8IcvKs1rWlJSgjFjxiAxMRGnT5+m6ikhRDAoQSWVKLNvqomJCRwdHZGZmYmTJ0/WeGucL9Lbq+VvqRYXFyMiIgJ+fn4AgM8//xy3b99GdHQ09wMAP/zwA0JCQirtUxl9URWJS5tpevW0rv9+d+/eRUlJCRwdHet87PJ9TQHAzEBXZoS+NDl98OABzpw5A2tr6zofixBClI1u8ZMqKdI3tbC0EFdSrsDP2Q+Gum8GRZ08eRIsy8LLywsJCQmYP38+vLy8MHXqVLXEzrIskpKSZPp05eXlISEhgfs9MTER0dHRsLKygouLCz7++GOsWLECnp6e8PT0xIoVK2BsbIwJEyYAKKuGyRsY5eLiUmVluHxf1JBrCejgll7pXNU3Lm1VWFqIr87swetSe7RtbIsuLo1qPFevXr1CcnIyUlNTAQDx8fEAqv63qy1VtKuHDx9i+/btGDRoEGxsbBAbG4u5c+eiffv26Natm0JxlZaWIiUlBc7OztDV1cXd9Bws+jsK9++/qcCOdNOFec4TJCcXoHHjxhg1ahRu3ryJI0eOQCwWc1VeKysr6OvXvTsKIYQohfonDnijqKiIXbJkCbtkyRK2qKiIz1BIDcITnrOBv11mO68LZ99aH87+dDGB3RWzl3Ve68xiCVjntc7s/tj9rEQiYVmWZXft2sU2bdqU1dfXZx0cHNgPPviAzcrKUkusRUVF7MSJE1kA7OHDh7nHz58/X2kydADslClTWJZ9M6G6g4MDa2BgwPbs2ZO9ffs2W1paWuWxUM1UR1JXEl+wHt9+zRoss5N7ruoSV0xMTL3OkZBJJBJ2f+x+tsn3TiyWgNVfaseujNjCSiSSGs9VSEiI3OcXL17MlpaWcue8LpTZrsr/+yUnJ7M9e/ZkraysWH19fbZZs2bsnDlz2JcvXyp0rmJjY9m1a9eyS5YsYb9fu5b9ft959q1151nvD36oMi7pNFzyfs6fP1/nc0Rqj66DhMjHsCx/wwaLi4vx3XdlE27PmzePvrULXHZhCdaGJ+BAbCSSCtYiV3wLOtCBBBLoMDqQsBL4u/rjl8G/wNvGm7c4i4uL4efnhxs3bmDq1Kn4888/67yv0NBQZGVlITAwEF5eXrW+xXzvxT28d+Q9RDyOAMAAYAV1roSm/PlioAMWEkjPW13PF8uyiI+Px4kTJ2BpaYmgoKA6xabMdqUML168wJEjR/D48WMwDAOWZcGi7Gy9FFmgUauu+DSwA024L3B0HSREPl4TVKKZWv3cCXdf3ARQuT+qiBGhc5POuDJdvXN0SiQSbNq0CVlZWQDKVu/JycmBubk55s6dCwCwsLDArFmzoKOjeNfr77//HsXFZX1HXV1d0a9fP9ja2ir8ev+//BGZGgkxK670HF/nSsj8/vDDtafXqjxfnRp3QsTkCIX39/z5c5w6dQrJyckAAH19fa49KEIikeDXX39FdnY2AOC7775Dbm4uLCwsMH/+fACApaUlZs+eXat2pQx//PEHnj59Kn9qIoaBU5MmmD59ulpjIoQQZaE+qKTWGJ1CyEtOAUDMipFbrP4lOPPz8/HVV1/h1atXYBiGSxZyc3OxePFiAGULBTx79gwGBgZ1Osbjx4/x+++/1+o1j/AIYlROtgD+zpWQ5Rbnyk1OgbLz9ejpI6xcubLO+y8uLq7V64uKirBu3Tq8fv0awJvpovLy8rBo0SKwLAsrKytMnjwZZmZmdY6rLoqLi6ueN5NluS9WhBCiiWgUP6m1mlY7kfBQlDczM0NUVBQ3MlosLktypBdwZ2dnvPfee3VOTknDZGBggFmzZsHZ2RnAm/YkbV9+fn6Ijo5We3JaVCrBy/witR6TEELUidcKamlpKXbv3g0AGDNmDDevJBEmsViMixcvIjMzs9rtnmS9xt30nDqtQlUfLi4uOH/+PKysrJCfn889rqenhyNHjsDbu/Z9Pcvf4tfR0QHLsujQoQN69uxZaSlXefZs3oOMFxm1Pi6Rz9bGFgtnLqxxu8LCQly4cIFbGEKaWNb2Fj9QNsrewsICK1askPlyZmxsjPDwcOjpqbePp3Q1KOfXJaguLc7Ly4NYLIZIJFJbbKT26DpIiHy8/k+QSCTcRNQSSd3Xfieql56ejoMHD+LZs2fQhz43OKoyHUgkRvVahao+rl27JpOcAmUV359++gkLFiyAh4dHnfft4uKCgQMHws7OTuHXmBuaQ8SIquxTaaav3sqb0BnpmqLsxo78/s3mhuYKDSLR19fH4MGD0blzZxw/fhxJSUkyzykqISEB+/btQ3JycqU7B/n5+bh27ZrCU0HVV1GpBL//k4RtN1MgYQFnkR7AMkAVdywKCgqwefNmDBs2TClTbBHVoOsgIfLRLX5SLbFYjPDwcGzevBnPnj2DkZERfu73M3q49gAA6DA6Mn92d+6Od1uurtcqVPXx999/AwCGDRuGhIQEvPPOOwCAuLg4hIWFcfNjKsrR0REWFhYYN24cJk+eXKvkFAD+HPonurt0B/DmHJWNswbcLXzx51B+R4ILTR+nJTATtQYgp225dK/1+bKzs8PkyZMxduxYWFhY1Gri+9TUVISFhUEsFuPFixcA3rQr6YIThw8frlU8dXU3PQeTd97AXzfKktNALzt8MGUsXF1cALzpGyv908bGBgYGBnj27Bk2b96M8PBwrlsCIYRoAt6nmZIOWFi4cCFNryEw5aumAODj44O3334bJiYmYFkWh+IPYc7xOUjJSYGLhQvWB67HUK+hYBgGEQ9fYNW5+3hVUAIdBmqrpl6+fBmPHz/G+PHjual3tm/fjkePHsHb2xsjR46s1S1PlmUhkUjqdZu04rmyN3GCOTsL9kY9cXDqW7A2oXYPlK0aNTzkXxSWijGyQwp+vvGF3LZVV2KxGDo6OgrvQywWY9++fWBZFo6Ojnjy5IlMu9q5cydcXV1VWkGtWDW1MtbD572bw7+ZDYA3U2gdP34cOTk5sLCw4KZEy8/Px7FjxxAXFwcAsLe3p2qqANF1kBD5KEEllUj7ml68eBESiQRGRkYYNGgQWrZsWeniXtVKUgCQ/boE30ck4GR8WR9MdytjmVWo1ElaPeKzP570XHV16ooP9sfhbnouJrR3QnDPZrzFJCTrLiRgZ9RTtHIww+9j2qNIXFRl21IXPtuNtK9p0qsCAGVV008DPOTOa1pxJSkplmVx9+5dHDt2DK9fv4aOjg569OiBHj16UN9UgaDrICHy0S1+IiM9PR2bN29GREQEJBIJfHx88MEHH6BVq1ZyK0+Guobo7d5bbgJhYaSHZYE++HZwS1gZ6yHxVQFm7I7Cz5cfoahUvX2tRCIRd0FmWRbHjx+XWZ5SHaTnykjPCDO7uAEA9sWk4mU+TQf0Mr8Y+2+nAQBmvuUGhmGqbVuqkpCQgOPHj3ODqsq3G3UpKpXg50uPMGN3FJJeFcDKWA/fDm6JpYE+VU66r6urC3d390oDbBiGQatWrfD+++/Dx8cHEokEERER2Lx5M7e0KSGECBElqASA/L6mI0eOxOjRo2FiYlKvffs3s0HYpE4Y4GXHW9/U8m7evIlr164hLCxM7Umq1FuujdDSwQxFpRJsu5HCSwxCsvVGMorEErRyMEMXl0a8xJCQkICwsDBcu3aNG/2vbvL6moa924m7pV9XpqamGD16NEaOHMnNB0x9UwkhQkYJKql11bQuhFRNbdeuHby9vSEWi3lLUhmGoSrqf+RVT9VNmpyKxWJ4e3ujXbt2aj1+XaqmtUXVVEKIJqGlThuw2vQ1VSYh9E0Vi8XYu3cv7t27B5FIhHHjxtVrCqq6YFkW03dHNfi+qBX7nqo7Qa2YnI4aNUqtt/Vr09dUWahvKiFE6ChBbaCqG6GvLnyN9JcSQpJ6NekVPj4UAwNdHRwI6tLgRvRLR+4XiSVYP6w13nK1Uuvx+UxOaxqhrw55eXk00p8QIkiUoDYwfFVNq8J3NbV8kqqvr4/g4GAYGxur5dgAVVH5rJ4WFBRg3bp1KCkpUXtyykfVtCpUTSWECBGvCWppaSkOHDgAABg+fDgt8aZiQqiaVoXPaqpYLMaBAwfQokULtGjRQuXHq6ihVlH5rp4CQGxsLGJjYzF8+HC1JGNCqJpWhaqp/KDrICHy0TyoDYDQqqZV4buaWp5EIoGOjnq6GjTUKipf1VN1/tuWJ6SqaVWomqp+dB0kRD4axa/l1DFCX1mEMtI/OzsbmzZtUtvo/oY4op+vkfsJCQnYtGkTsrOz1XI8QD0j9JWFRvoTQoSCElQtpcp5TVWN73lTr1y5ghcvXqh1CqqGNi8qH/OeSgdEvXjxAleuXFHLMVU1r6mq0byphBC+UYKqhTSpaloVPqup/fv3V/s8qQ2pispH9bTiaP3+/fur9HiaVDWtClVTCSF8ogRVi2hy1bQqfFRTRSIRRo0apfYktaFUUdVdPVX3VFKaWjWtClVTCSF8oARVS2hD1bQqfFRT+UhSG0IVVd3VU3Ump9pQNa0KVVMJIepGCaqG08aqaVXUXU2tmKSeO3cOqp70QturqOqsnrIsi7Nnz6olOdW2qmlVqJpKCFEXXqeZYlkWJSUlAAA9PT2Nr/Spm5DnNVU1dc6bKhaLcfbsWfj5+cHU1FTp+69IW+dF5WPe07y8PFy5cgV9+vRRSXIq5HlNVY3mTVUOug4SIh+tJKWBNGVeU1Xjc97U3NxcmJmZqWTf2jovqrrmPVXlv015mjCvqarRvKmEEFWhBFXDNOSqaVXUvQpVVFQUjh07hrFjx8LDw0Mlx9C2Kqq6qqcJCQnYtWsXBg0ahPbt26vkGA25aloVqqYSQpSN96VOjxw5AgAYPHgwLfFWDaqaVk9d1VSWZbFnzx7ExcVBJBJh3LhxKklSta2Kqo7qafkBUS1atMCoUaOUfhyqmlaNqql1Q9dBQuTjdZCURCLBrVu3cOvWLUgk6lspSNNo8wh9ZVHXSH+GYTBy5EiVj+7XphH96hi5X3G0/ogRI5R6HG0eoa8sNNK/bug6SIh8NIpfwBrSCH1lUcdIf3VNQaUtI/pVPXJf1VNJNZQR+spCI/0JIcpACapAUdW07tRRTVVHkqoNVVRVV09VmZxS1bTuqJpKCKkvSlAFhqqmyqPqamrFJDU5OVkp+y1P06uoqq6eJicnqyQ5paqpclA1lRBSV9QbW0BohL7ySaupfTxtsercfa6aqqyR/tIk9c6dO2jTpo2Son5DWkX9+FAM9sWkYlJHZ40Z0a+Ovqe9evWCtbU1WrVqpZTklEboK5+0murm5saN9I+IiMC9e/dopD8hpEpUQRUAqpqqniqrqSKRCG3btuUSsNLSUjx58qTe+5XS1CqqqqqnT548QWlpKYCy5Kdt27ZKSU6paqpaVE0lhNQGJag8o76m6qOOvqmlpaUICwtDaGio0vqkamJfVFVVTxMSEhAaGoqwsDAuSa0v6muqPtQ3lRCiKN6XOi0oKJtP0NjYuEElZDSvKb9UNW+qWCzG3r17ce/ePaXOk6pp86KqYt5TVQyIonlN+UPzppZpyNdBQqpDK0nxgPqaCocqVqFSVZKqKatLqWLVKGUnp9TXVDhoFSpCiDyUoKoRVU2FqaZqqoRlceHhS3jZmcLR3FChfaoiSS1fRR3VujHm9/as1/5URVo9bWlvij/Gdqh321Z2ckpVU+GhaiohpCLelzo9efIkAGDAgAFavcRbWloaDhw4gOfPnwOgqqkQVVVNPXQnDd9HJKCjkyU2jmyr8P5UkaRKq6gA8L6fO971dYaOgL7cPM8rwrA//0Upy6JDEwtsGtWuXvtTZnL6ukSMTZcTsfvWU7CgqqkQVaym2tnZYdCgQXBxcdHaL/EN6TpISG3w+j9BIpHg+vXrAIB+/frxGYpSsSyLAwcOID09HYWFhcjPz+eWsGMYBsOHD6dBUALk38wG7RpbcNXUv66n4NyD53iWWwQAuPEkC7dTs9GmsYVC+5NOQbV3714kJibC0FCx6mt13nJtBH2RDorFEmy8kogrSa+wqJ8XnCyN6r3v+nqS9Rqz9kaj9L/vvK9el9R7n4aGhtDV1YWnp2etklOWZbH45D3cf56HvKJS5BSVygyEG9DcFnN7eVLVVGCkI/3v3r2Lo0ePIiMjA6GhoQAAPT09GBoawtDQEA4ODhg+fLhWfIZq63WQkPqir2oqUFhYiLi4OLmjjF1dXdG6dWseoiKKKD9v6sqz8XiSXcg9J2KAzf8m4afhildRpUnqq1evYGtrW+/4GIaBoW5ZggoAt9OyMX5bJD7o1hRj2jXhpZoqYVnsjn6KDZceoUTy5oZMXlH9R9k7OTlh+vTpsLKyqlXlNLeoFOcTnqNYXPkGUXNbEywb2KLesRHVKD9v6i+//IL8/HwAQElJCUpKSpCbm4vMzEwMHDgQRkb8fzEjhKgGTTOlAvr6+nBzc5P7XJ8+fdQbDKkT/2Y2GN/eWeYxMQtcS87CnVrOnSoSiWSS09TU1HpNQVUieVMJlLBAsZjFDxce4uKjl3XeZ31cePgSP1x4KJOcAkBBcd3mtkxISEBqair3u62tba1v65sb6mFUmyZyn1vQu3md4iLqZWpqirFjx8p9rk+fPpScEqLlKEFVMum8phUTEB0dHTRt2hROTk48RUZqI6ewBL//myT3uUXH4+o8b+qLFy/w119/ISwsrE5JqoRlUVhS+didXRrB2860TjHVl4+9Kdo3qdzt4XWJGJJadnGX9jn966+/8OLFizrFI53XdGeU7GIJIoZBZxdLtKrnVGJEfZydneHu7l7pVn5UVBTNm0qIlqMEVUnkrQY1YMAArvIjkUgQEBDAb5BEYWYGuujtaYum1sawNdWHkd6b/yqpOYWYvON6nVahatSoEdzd3SEWi+uUpBYUi8ECKH+57t/cFj8NbwN7s/r3ca0LezNDLjk20S9r7wwAFrWropYfEOXu7o5GjWq/+lT51aBYAD3craAnKjtbYpbF/95yq/U+Cb969eoF6VheHR0dGBgYICMjg1ahIkTLUR9UJZA3r+mgQYNgamoKhmFw4sQJuLm5wdnZuYY9EaFgGAZLB/jIPCZhWZyKz8C6CwlIynyNGbujaj1vavmBU/fu3UNYWFitRvfr6jBo5WAGY31d+LlaYd3Fh4h49BIv84t5mxe1/KpRKwa1gIm+CL/9k4SCYjF0dRTrE1vf0frVzWu6O/opNwtDa0fFBrgR4XB2doabmxuSkpIwYMAAtGjRAkePHsW9e/cQERGBe/fu0byphGghXqeZKi4uxsqVKwEACxcuhL6+MCcer4oi85qyLIv4+Hg4OjrCwoIujtpAGatQ1WcKKpZlwTCMYFaXqmrVKGmcNalvclpxXtMBXnaY6+8BC6OyEfoSlsXFRy/hZWsKBwXnsSXCkp2djbS0NHh5eXFtX1vmTdX06yAhqsL7UqfZ2dkAAAsLC42aMqS6qilpGOq7ClXFJHXKlCm1rrLzvbpUfVeNSklJwZYtW+qUnNJqUCQvL4+rpgKauQqVJl8HCVElWkmqlmg1KFJefaup0iS1uLgY48aNg55e7ebl5LuKWlX1VFElJSUICwuDvr5+rZLTmqqmpOHQpmoqIeQNSlBrgaqmpCr1qaaKxWJIJJJaJ6dSfFVR61s9lSopKYGOjo5CyQRVTUlVtKGaSgh5g9cEVSwW4+zZswDK5rUT6rddqpoSRSijbyrLsggPD4ezs3Ot+qTyUUWta/U0ISEBKSkpCAgIqNX/H6qakppoYjVVU66DhKgbr6P4xWIxrl69CgAICAgQ5H9MqpoSRZVfhWrVuftIfFVQ65H+d+7cwYULF2o1cIphGMzs4oaPD8VgX0wqJnV0VnkVtfzI/ZlvudUqOZUOiLKxsVFoVTWqmhJFlV+FSlNG+mvCdZAQPtA8qFWQN6/pyJEjMXr0aEpOSbX8m9kgbFInDPCyg4QF/rqegik7byg0b2qLFi3g7e1d63lS33JthJYOZigqlWDbjZT6voUabb2RjCKxBK0czNDFRbH5SiuO1m/RoublRsvPayphy6qmYZM6UXJKqmVqaooxY8Zg5MiRMDIywrNnz2jeVEI0DCWockhXg4qIiIBEIoGPjw/ef/99tGrVim7pE4VIq6nfDm4JK2M9rpr68+VH1a5CJZ0ntbZJqrSKCgD7YlLxMr9YWW+lkrpUT2s7lZR0NagZu6OQ9KoAVsZ6+HZwSywL9KFb+kQh0mrq+++/D29vb0gkEkRERGDz5s20ChUhGoAS1HKoakqUrS7V1Lomqeqqota2elrb5JSqpkSZqJpKiGaiBPU/VDUlqlKXamrFJHXXrl3Izc2t9jjqqKLWtnqam5uLXbt2KZScUtWUqApVUwnRPA0+QaWqKVGX2lZTpUmqj48PBg4cCDMzsxqPoeoqam2rp2ZmZhg4cCB8fHyqTU6pakrUgaqphGgOXkfx841G6BN1q+1If5FIhNGjR8tUKqtbQlSVI/prUz0tH2OHDh3Qvr38aahohD5RN00c6U9IQ8T7UqfPnz8HANja2qrtVjrNa0qEoC7zpubn52PHjh3o1atXlVNQqWpeVEXnPU1ISMD58+cxYcIEmJiYVLk/mteU8E0I86bydR0kROga3EpSVDUlQlObVahOnTqFq1ev1jhPqrJXl1J01ajyA6K6du2K/v37V9qGqqZEaGgVKkKEp8EkqFQ1JUKmaDVVLBZj7969uHfvXrVJqrKrqIpUTxUZrU9VUyJUQqimEkLe4H2p04sXLwKASj8EqGpKNIUi1VRFk1RlVVEVqZ7WlJxS1ZRoCnVXU9V1HSRE0/A6il8sFiMiIgIREREqGUFJI/SJplFkpL+i86Qqa0R/TSP3a0pOaYQ+0STqHumv6usgIZpKa6eZonlNiaZSZN7UiknqiRMnIJHIzqmqjHlRaxq5L5FIcOLECbnJKc1rSjQVzZtKCP+0LkGlqinRFjVVU6VJaqdOnTBp0iTo6FT+71zfKmpN1VMdHR1MmjQJnTp1kklOqWpKtAHNm0oIf7QqQaWqKdE2NVVTRSIRBg0aBEtLS+41BQUF3N/rU0Wtrnpa/hiWlpYYNGgQRCIRVU2J1qFqKiH80IoElaqmRNspugpVXFwc1q9fL9Mnta5V1KqqpwkJCVi/fj03iESKqqZEm1E1lRD10vgElaqmpKFQpG/q3bt3UVxcLDNwqi5V1Kqqp9IBUcXFxbhz5w4A6mtKGg6qphKiPoJMUC9cuIAhQ4agcePGYBgGBw8elHmeZVl89dVXsLGxgbOzM1atWoXs7GyZqumsWbPQrFkzGBkZwdbWFkOHDq1U8SFEE1VXTR0+fLjc0f21raKG/vsIDw//htjlE9DLuwmaNm2K4OBg7NixgxsQNXz4cKqakgZJXdVURa6FS5YsQePGjWFkZISAgADcvXu30n6uXr2K3r17w8TEBJaWlggICMDr16+VFichqsBrgqqrq4sZM2ZgxowZ0NXV5R7Pz89H27ZtsWHDBrmvW7RoEdasWYM+ffpg5syZaNy4MXbu3AlXV1eu0tOxY0eEhIQgLi4OJ0+eBMuy6N+/P92KIVqhqmrqL/88xpBhIyolqbWpor7ML8ZPP3yPjCuHsWT194iLi8Mnn3yCX375BVevXoW3tzeGDBuBX64+pqopabCUVU2t6joI1Hwt/Pbbb7F27Vps2LABkZGRcHBwQL9+/ZCbm8ttc/XqVQQGBqJ///64du0aIiMj8eGHH8odVEmIkAh+JSmGYXDgwAEMGzYMYrEYFy5cwDvvvIO33noL/fr1w6BBg+Dh4QEHBwesXr0as2bNkruf27dvo23btkhISECzZspZm5wQIZC3CtUXvT0Qe+mUzGT+zZo1U2h1qXUXErBk9ruws7NH/LkDePjwIcLCwrBjxw5YW1tjY9hhfHMugVaDIuQ/6liFqvy1UHrMxo0b4+OPP8aCBQsAAEVFRbC3t5e5FkqvlV9//bVS4iBEXTTmK5S0r+nBgweRl5eHvn37cn1NDQ0N4e/vjytXrsh9bX5+PkJCQuDu7g5nZ2c1R06Iasmrpv5v3208b9wBzb28IBaLER8fr1AVVdr31Kxpa+Q+uIkHDx4gPj4eT58+xdOnT9Gs1wj8b99tqpoSUg4ffVMTExORnp6O/v37c48ZGBjIXAszMjLw77//ws7ODn5+frC3t4e/vz8uXbqkkpgIUSbdmjdRHbFYjH/++QdA2be8qr5p3rlzBzExMZBIJCgpKQEATJo0SWaEvr29PR4/fizzuo0bN+Kzzz5Dfn4+vL29cfr0aejr1225R0KEzr+ZDdo1tuCqqVtvpsK9kTsm9GiCQb26A3jTF/Vuei623UipVEWVjtzvN3EW7FpawdvbGyKRCGKxGK1Gvoc46w4AS1VTQuSR9k2VVlOlfVOrq6Yqeh2sSJr42tvbyzxe/lr46NEjAMCSJUvw3XffoV27dvjrr7/Qp08f3LlzB56ennV+r4SoGu9LnZ45cwZnzpyR2zdU+h/wzp073Aj9ESNGAECl/jMsy1YatT9x4kRERUUhIiICnp6eGDNmDAoLC1X0bgjhX6VqamYhVt6RYOOVRBSVSsCyLMZ6GAOoXEUtP3Lf/lE4tm/fji1bt2H+74fRdOJCxB7bjtfRp6lqSkg1altNrek6qMjxyit/LZSuLjdr1ixMnToV7du3xw8//AAvLy/8+eefdXh3hKiPIG/xl5/XFCi7bSEdod+0aVMAqPQfPSMjo9I3SQsLC3h6eqJnz57Yu3cv7t27hwMHDqjnTRDCI7kj/XdEImR7GCKP70VH09eVRvRLq6e+pq+xcfUy9OzdB0fEzXA2yxjWvv3RY1QQCq/soRH6hChA1SP9HRwcAFR/LXR0dAQAtGjRQmYbHx8fJCcn1zsGQlSJ9wSVZVkkJiZCOlar4rymABAYGMjNa+ru7g4HBwecPn2a20dxcTEiIiLg5+dX47GKiopU92YIEZCK1dSkVwW4kZIJsVgMx9TrsCl5ib23UnHoeAl+CynFn/sKYF30Eg6p11FSUoKUrEI8LtfXtL+3AyDsMZWECIqi1dSK10FFKHItdHNzQ+PGjREfHy/z2vv378PV1bWe744Q1eK1DypQNvH39u3bMXz4cFhYWODixYt4/fo1CgoK0L17Wb+59PR0REdHw8rKCi4uLvj444+xYsUKeHp6wtPTEytWrICxsTEmTJgAoKzfza5du9C/f3/Y2tri6dOnWL16NYyMjDBo0CA+3y4hale+b+qpe0D7glg4lLyAyXUxzp3oiGHZ0lv1bfDY3BVmgSVw9m6DfyLOYmTHACwM7IOHty9i7dq1mDZtGq/vhRBNVF3f1C5dunDXwZEjR2LIkCHc6/Ly8mRWhUtMTKzVtZBhGMyfPx+LFy9G27Zt0a5dO2zZsgX37t3D3r171X4eCKkVlkdFRUVs+/btWQCsn58fu2TJEnbJkiXsV199xQKo9DNlyhSWZVlWIpGwixcvZh0cHFgDAwO2Z8+ebExMDLffp0+fsgMHDmTt7OxYPT091snJiZ0wYQJ77949nt4pIcIQnvCcHfjrRbb/hGMsIPnvhy33U/ZYm6mR7Mig/7EuLi6soaEh27RpU/aLL75gi4qK+H4LhGi03NxcNiwsjLvebdy4kbsOTp06VWbb8+fP1+taKLVy5UrWycmJNTY2Zrt27cpevHhRHW+VkHpR+zyoEokEmzZtQlZWFkpLS7Fy5UoUFRVx02N4enrC29sb77//PnR0dCAWi6vtr6Orq8sNmBLCthKJBKWlpVVuKxKJuFGaQtiWZVluZoT6bqujo8NNNK2qbYGy21jK2JZhGOjp6dVp25KSkipvx6lqWwAys1DUZtvS0lKuy0xmXgk8m+sh96UeAHnLAbNo0oTFgwelEInonFa1bflzWt9t9fT0uIEtqtq2ps+x2mxLn7v127a0tBSLFi3CzZs3UVpaisuXL6OoqAjm5ub47LPPAACWlpaYPXs2TahPGiy1J6i5ublwc3PDq1evuA9D9r9Rh9JQLC0tkZycDDMzM4SHhyMiIqLK/c2YMQNNmjQBAFy+fBlnzpypctspU6bAzc0NAHDt2jUcP368ym3Hjx+P5s2bAwCio6Nx6NChKrcdNWoUWrZsCaBsLfTqbp0MHToU7dq1A1DWD2jnzp1Vbjtw4EB07twZAJCUlIQtW7ZUuW3fvn3RrVs3AMDTp0/x+++/V7mtv78/AgICAJR1qN+0aVOV23bt2pWbZy8rKwvr16+vcltfX1+8/fbbAMrmnv3uu++q3LZt27bchNPFxcVYuXJlldu2aNECo0eP5n5funRpldt6enpyt7cAYMWKFVUmv66urggKCuJ+X7NmDQoKCuRu27hxY8ycOZP7fd26dcjOzpa7ra2tLd5//33u940bN+L58+dyt7WwsMDHH3/M/b5582akpqbK3dbY2Bjz58/nfg8NDa00tZqUnp4e/u///o/7fceOHXjw4AEAIDHRFVu2BMl9XXlTpoTC3f0xndP/VHdO5Vm8eDH39z179iA2NrbKbRcuXMgltAcPHsStW7eq3HbevHkwMTEBABw9ehTXr1+vctvg4GBYWloCAE6dOoWrV69Wue3s2bNhZ2cHAPS5q+LP3UePHqFVq1bccqPS659IJIJEUjbbhpWVFZKSkmBmZlblPgnRZmr/amZmZoaoqCiuE7c0KZX+6ezsjHPnztF/SkJUJC9Psf9bim5HCKkdU1NTzJo1i1s4Rnr9k1aM/fz8EB0dTddB0qDxttRpcXExrKyskJ+fzz1mYmKCZ8+ewdjYmG41qWlbusXf8G5HR0Qw6N+/5jlMT50qgb8/S+e0im3pFj997tb3c7e4uBgODg6VroOZmZkybZiQhoi3BPXSpUvo0aOH3Melt0wIIconFgNubsDTp/JnjWIYwMkJSEwElLSMOCFEDroOElI13npf//333wCAYcOGISEhAUOHDgUAHD58mK+QCGkQRCJA2pW4wiI03O/r1lFySoiq0XWQkKrxVkG9fPkyHj9+jPHjx3MdxHfu3AlXV1f65kiIGuzfDwQHA0+evHnM2bksOf1vRWFCiArRdZCQqvGWoBJC+CcWAxcvAmlpgKMj0KMHVU4JIYTwjxJUQgghhBAiKDQDMCGEEEIIERRKUAkhhBBCiKBQgkoIIYQQQgSFElRCCCGEECIolKASQgghhBBBoQSVEEIIIYQICiWohBBCCCFEUChBJYQQQgghgkIJKiGEEEIIERRKUAkhhBBCiKBQgkoIIYQQQgSFElRCCCGEECIolKASQgghhBBBoQSVEEIIIYQIyv8Dm6GYWLHOA9YAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAHhCAYAAADOLdwlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZ0ElEQVR4nO3dd3wUdeLG8c/sZtMgCTUJgQABQpeOCIKAAoJKFcGCwlnuPMHGedbTU0/FcvpTzxMFPUAF6b2oKF0EI0V6b5EWahJSt8zvj4VoBCGBzc4med6v1142M7M7z3q72YfvNMM0TRMRERERP7FZHUBERERKF5UPERER8SuVDxEREfErlQ8RERHxK5UPERER8SuVDxEREfErlQ8RERHxK5UPERER8asgqwP8nsfj4dChQ0RERGAYhtVxREREpABM0yQ9PZ24uDhstouPbQRc+Th06BDx8fFWxxAREZHLkJycTLVq1S66TMCVj4iICMAbPjIy0uI0IiIiUhBpaWnEx8fnfY9fTMCVj3ObWiIjI1U+REREipmC7DKhHU5FRETEr1Q+RERExK8CbrOLiIhIoHO73TidTqtj+J3D4cBut1/x86h8iIiIFJBpmhw5coTTp09bHcUy5cqVIzY29opOh6HyISIiUkDnikd0dDTh4eGl6nxUpmmSmZlJSkoKAFWqVLns51L5EBERKQC3251XPCpWrGh1HEuEhYUBkJKSQnR09GVvgtEOpyIiIgVwbh+P8PBwi5NY69zrv5J9XlQ+RERECqE0bWq5EF+8fpUPERER8atCl49ly5bRs2dP4uLiMAyDmTNn5ptvmiYvvvgicXFxhIWF0alTJzZv3uyrvCIiIlLMFbp8ZGRk0LRpUz744IMLzn/zzTd55513+OCDD0hKSiI2NpauXbuSnp5+xWFFRERKkxdffJFmzZr55Ln27duHYRisX7/+D5dZsmQJhmEU+aHEhT7apUePHvTo0eOC80zT5N133+W5556jX79+AIwbN46YmBgmTJjAX/7ylytLKyIiIpclPj6ew4cPU6lSJauj+Hafj71793LkyBG6deuWNy0kJISOHTuycuXKCz4mJyeHtLS0fDeA6Tunk5ab5st4IiIipZbdbic2NpagIOvPsuHT8nHkyBEAYmJi8k2PiYnJm/d7I0aMICoqKu8WHx8PwJtJb9J5UmeeXPok3x/8HrfH7cuoIiIiPtWpUyceeeQRnnzySSpUqEBsbCwvvvhi3vwDBw7Qu3dvypYtS2RkJAMGDODo0aP5nuP1118nJiaGiIgI7rvvPrKzs89bz5gxY2jQoAGhoaHUr1+fDz/8sED5LrTZZf78+dStW5ewsDA6d+7Mvn37LuelF1qRHO3y+8NwTNP8w0NznnnmGVJTU/NuycnJANSKqkWuJ5cF+xbw4LcP0m1aN95b+x57U/cWRWQREZErNm7cOMqUKcPq1at58803efnll1m4cCGmadKnTx9OnjzJ0qVLWbhwIbt372bgwIF5j508eTL//Oc/efXVV/npp5+oUqXKecVi9OjRPPfcc7z66qts3bqV1157jeeff55x48YVOmtycjL9+vXjpptuYv369dx///08/fTTV/zfoCB8OvYSGxsLeEdAfnva1ZSUlPNGQ84JCQkhJCTkvOnjbxrPL65fmLVrFvP3ziclM4VPNn7CJxs/oWnlpvSp04cba95IRHCEL1+CiIjIZWvSpAn//Oc/AUhMTOSDDz7gu+++A2DDhg3s3bs3b4T/888/p1GjRiQlJdG6dWveffdd7r33Xu6//34AXnnlFb799tt8ox//+te/ePvtt/P2q0xISGDLli18/PHHDB48uFBZR44cSa1atfi///s/DMOgXr16bNy4kTfeeOOK/ztcik9HPhISEoiNjWXhwoV503Jzc1m6dCnt2rUr1HMZhkGjio14ts2zLLptEW93fJvrql2HzbDx87GfeemHl7h+8vU8vfxpfjj0Ax7T48uXIiIiUmhNmjTJ93uVKlVISUlh69atxMfH5xUPgIYNG1KuXDm2bt0KwNatW2nbtm2+x//292PHjpGcnMx9991H2bJl826vvPIKu3fvLnTWrVu3cs011+TbMvH79ReVQo98nDlzhl27duX9vnfvXtavX0+FChWoXr06jz32GK+99hqJiYkkJiby2muvER4ezp133nnZIYPtwXSr2Y1uNbtxLPMYc/fMZeaumexJ3cO8PfOYt2cesWVi6VW7F71r96Z6ZPXLXpeIiMjlcjgc+X43DAOPx/OHux9cbLeE3/N4vP/IHj16NG3atMk373KusWKaZqEf4yuFLh8//fQTnTt3zvt9+PDhAAwePJixY8fy5JNPkpWVxUMPPcSpU6do06YN33zzDRERvtk8Ujm8Mn9q/CeGNBrC5hObmblrJvP3zudIxhFGbRjFqA2jaBHdgj51+tCtZjfKOMr4ZL0iIiKXq2HDhhw4cIDk5OS80Y8tW7aQmppKgwYNAGjQoAGrVq3innvuyXvcqlWr8u7HxMRQtWpV9uzZw1133eWTTL8/Uehv11eUCl0+OnXqdNG2ZBgGL774Yr49fIuCYRg0rtSYxpUa8/fWf2dx8mJm7prJD4d+YG3KWtamrGXEjyPoWqMrvWv3plVsK2yGziYvIiL+16VLF5o0acJdd93Fu+++i8vl4qGHHqJjx460atUKgEcffZTBgwfTqlUr2rdvz/jx49m8eTO1atXKe54XX3yRRx55hMjISHr06EFOTg4//fQTp06dyhsMKKgHH3yQt99+m+HDh/OXv/yFNWvWMHbsWF++7D9UIr6NQ+whdK/ZnY+6fMQ3t37DYy0eo2ZkTbJcWczePZv7vrmPm6bfxIfrP+SX9F+sjisiIqXMucuRlC9fnuuuu44uXbpQq1YtJk2alLfMwIEDeeGFF3jqqado2bIl+/fv569//Wu+57n//vv55JNPGDt2LFdddRUdO3Zk7NixJCQkFDpT9erVmTZtGnPmzKFp06Z89NFHvPbaa1f8WgvCMK3c6HMBaWlpREVFkZqaSmRk5GU/j2mabDi+gZm7ZvLV3q844zyTN69VTCv61OlD1xpdCXeU7ksji4hIwWRnZ7N3714SEhIIDQ21Oo5l/ui/Q2G+v0ts+fitbFc2iw4sYtbuWfxw6AdMvC+5jKMMPRJ60K9OPxpXalzqL5MsIiJ/TOXDyxflo0RsdrmU0KBQbqp1Ex93/Zhv+n/Dw80fJj4ingxnBlN3TOXO+XfSb3Y/Ptv8GaeyT1kdV0REpNBee+21fIfg/vb2R9dks0qpGPm4EI/pYc3RNUzfOZ2F+xeS484BIMgWROf4zvRL7EfbKm2x2wp/+JKIiJQ8gT7ycfLkSU6ePHnBeWFhYVStWtUn69FmF1+tMzeNBXsWMH3XdLac2JI3PbZMLL1r96ZPnT5Ui6jmlywiIhKYAr18+IvKRxHYfnI703dOZ+6eufmuqtumShv61enHDTVuIMR+/ungRUSkZFP58FL5KEI57hwWHVjE9J3TWXX415OuRARHcHPCzfRL7EeDig0syyciIv6l8uHli/Lh0wvLlSQh9hB6JPSgR0IPDp45yMxdM5m5ayZHMo4wcftEJm6fSIMKDeib2JebEm4iKiTK6sgiIiLFgkY+CsHtcbP68Gqm75rOogOLcHqcgLeo3FD9Bvol9qN1bGudSVVEpATSyIeXRj78zG6z065qO9pVbcep7FPM2zOP6bums/PUTubvnc/8vfOpWrYqfev0pU+dPsSUibE6soiISMDRyMcVMk2TzSc2M33ndBbsXZB3JlWbYeO6atfRP7E/7au21yG7IiLFnEY+vHSSsQBw7gJ3L7R9gUUDFvFq+1dpEd0Cj+lhSfIShi0axo3TbuTD9R9y+Mxhq+OKiEgpN3LkSJo0aUJkZCSRkZG0bduWBQsW+DWDRj6KyJ7Te5i2cxqzd8/mdM5pAAwM2ldtT/+6/bmu2nUE2bTVS0SkuCgpIx9z5szBbrdTp04dAMaNG8dbb73FunXraNSo0SUfr0Nti4Ecdw7f7f+OaTun8eORH/OmVw6rTJ86feiX2E8nMBMRKQYuVT5M0yTL6bYgGYQ57Fd0fbIKFSrw1ltvcd99911yWe1wWgyE2EO4qdZN3FTrJval7mP6zunM2j2LY1nHGL1xNJ9s/IS2cW3pX7c/neI74bA5rI4sIiKXIcvppuELX1uy7i0v30h4cOG/0t1uN1OmTCEjI4O2bdsWQbILU/nwo5pRNRneajgPN3+YRcmLmLpjKqsOr2LloZWsPLSSCqEV6FOnD7cm3kr1yOpWxxURkRJq48aNtG3bluzsbMqWLcuMGTNo2LCh39avzS4WS05LZvqu6czcNZPjWcfzpreJbUP/uv25vvr1BNuDLUwoIiJQsja75ObmcuDAAU6fPs20adP45JNPWLp0aYEKiPb5KEGcHifLkpcxZecUVh5ciYn3/5byIeXpVbsXt9a9lYSoBItTioiUXiVlh9ML6dKlC7Vr1+bjjz++5LLa56MEcdgc3FDjBm6ocQOHzhxi+s7pzNg5g5SsFMZtGce4LeNoGdOS2+reRtcaXTUaIiIiPmOaJjk5OX5bn8pHAIorG8ew5sN4sOmDrDi4gqk7prL84HLWHF3DmqNreOPHN+iT2IfbEm8jPjLe6rgiIlKMPPvss/To0YP4+HjS09OZOHEiS5Ys4auvvvJbBpWPABZkC6JTfCc6xXfiSMYRZuycwdSdU0nJTGHMpjGM2TSGa+Ou5bZ6t9GxWkedN0RERC7p6NGj3H333Rw+fJioqCiaNGnCV199RdeuXf2WQft8FDMuj4tlvyxj8vbJfH/o+7zp0eHR9E/sT7/EfrqmjIhIESjJ+3wUhnY4LeWS05OZsmMKM3fO5FTOKQDshp1O8Z0YUHcA18Rdoyvsioj4iMqHl8qHAJDrzuXb/d8yafsk1qaszZseHxHPbXVvo0+dPpQPLW9hQhGR4k/lw0vlQ86z69QupuyYwuzds/OusOuwOehWsxsD6g6geXTzKzoFr4hIaaXy4aXyIX8o05nJV/u+YtL2SWw5sSVvep1ydRhQbwA9a/WkbHBZCxOKiBQvKh9eKh9SIJuPb2bS9kks2LuAbHc2AGFBYdyUcBMD6g2gYUX/nVJXRKS4UvnwUvmQQknLTWPO7jlM3j6ZPal78qZfVekqBtYbSPeE7oTYQyxMKCISuFQ+vFQ+5LKYpsmao2uYvH0yCw8sxOVxAVAupBz9EvsxoN4AqpatanFKEZHAovLhpdOry2UxDINWsa1oFduKE1knmLFrBpO3T+ZwxmH+t+l/jNk0ho7xHbmj3h06XFdERHxO5aOUqxhWkfuvup8hjYaw9JelTNw2kVWHV7EkeQlLkpdQI7IGt9e7nV51ehEZrJEoERG5ctrsIufZk7qHSdsmMWv3LDKcGYB3B9Wba93M7fVup16FehYnFBHxP2128fLFZheNp8t5akXV4pk2z/Ddbd/xjzb/oE65OmS5spi6Yyr95/Rn8ILBfLXvK5wep9VRRUTkCowYMQLDMHjsscf8ul5tdpE/VMZRhoH1BzKg3gB+OvoTX277kkUHFrE2ZS1rU9ZSOawy/ev2p3/d/kSHR1sdV0RECiEpKYlRo0bRpEkTv69b5UMuyTAMWse2pnVsa45mHGXqzqlM2T6FY1nHGPnzSEZvGM0NNW7g9nq30zKmpc6gKiKlk2mCM9OadTvCoRB/e8+cOcNdd93F6NGjeeWVV4ow2IWpfEihxJSJYWizofz5qj/z7YFv+XLbl6xLWcfX+77m631fk1g+kdvr3c4ttW4h3BFudVwREf9xZsJrcdas+9lDEFymwIsPHTqUm2++mS5duqh8SPHhsDvokdCDHgk92H5yO19u+5J5e+ax89RO/rXqX7y75l36Jvbl9vq3Ex8Rb3VcERE5a+LEiaxdu5akpCTLMqh8yBWrV6EeL7Z7kcdbPs6sXbOYtH0SB9IP8NmWz/h8y+d0iu/EXQ3u4urYq7VJRkRKLke4dwTCqnUXQHJyMo8++ijffPONpUfs6FBb8TmP6WHFwRVM2DqB7w99nze9Trk63NXgLm6udTNhQWEWJhQRKbyScKjtzJkz6du3L3a7PW+a2+3GMAxsNhs5OTn55l2ITq8uAW/P6T1M2DaB2btnk+XKAiAqJIpbE2/l9nq3U6VsFYsTiogUTEkoH+np6ezfvz/ftD/96U/Ur1+fp556isaNG1/yOXR6dQl4tcrV4h/X/INHWjzCjJ0z+HLblxw8c5D/bfof4zaP4/rq13NXg7toEd1Cm2RERIpYRETEeQWjTJkyVKxYsUDFw1d0kjHxi8jgSAY3Gsy8vvN4r/N7tIltg9t0s3D/QoZ8NYSBcwcyc9dMctw5VkcVEZEips0uYpkdp3YwYesE5u6Zm1c6KoRWoH/d/gysN1AnLhORgFISNrv4gvb5kBLhdPZppu2cxsTtEzmScQSAICOIrjW7cleDu2hauanFCUVEVD7O0bVdpEQoF1qO+666jwX9FvB2x7dpEd0Cl+liwd4FDJo/iDvn3cncPXN1LRkRkRJC5UMCRpAtiG41uzGuxzgm3zKZ3rV747A52Hh8I88sf4bu07rz6cZPSc1JtTqqiIhcAZUPCUgNKjbglfavsLD/QoY1G0alsEqkZKbw7tp36Tq1K6+uepX9afsv/UQiIhJwVD4koFUMq8hfmv6Fr2/9mleufYV65euR5cpi4vaJ9JzRk0cWPULSkSQCbNclERG5CJ3nQ4qFYHswvev0plftXvx45Ec+2/IZy35ZxuLkxSxOXkyDCg24p9E93FjjRhx2h9VxRUTkIjTyIcWKYRi0qdKG/97wX2b1mcWAugMItYey9eTWvP1CPtn4ifYLEREJYCofUmzViqrF822fZ2H/hTzS/BHvfiFZKby39j26Tu3KK6te0X4hIiIBSOVDir1yoeV4oMkDfH3r17za/lXqV6hPliuLSdsn0XNGTx5e9LD2CxERCSAqH1JiBNuD6VW7F5Nvmcyn3T6lY7WOmJgsSV7CvV/fy8C5A5mzew5Ot84XIiKll8vl4h//+AcJCQmEhYVRq1YtXn75ZTwej98yaIdTKXEMw+DqKldzdZWr2Zu6l/FbxzNr1yy2ntzKsyue5d0173Jngzu5rd5tRAbrLLoiUrq88cYbfPTRR4wbN45GjRrx008/8ac//YmoqCgeffRRv2TQ6dWlVDidfZqpO6cyYesEjmUdA6CMowz9E/szqOEgYsvEWpxQRAJdSTm9+i233EJMTAyffvpp3rRbb72V8PBwPv/880s+3henV9fIh5QK5ULLcf9V9zO44WDm7Z3HuM3j2HV6F+O2jGP81vH0SOjB4EaDqVehntVRRaSYMk2TLFeWJesOCwrDMIwCLdu+fXs++ugjduzYQd26dfn5559ZsWIF7777btGG/A2flw+Xy8WLL77I+PHjOXLkCFWqVGHIkCH84x//wGbTLiZiLYfdQZ86fehduzfLDy5n7OaxJB1JYs6eOczZM4dr465lSOMhtIltU+APsogIQJYrizYT2liy7tV3ribcEV6gZZ966ilSU1OpX78+drsdt9vNq6++yh133FHEKX/l8/IRCNuSRC7FMAyuq3Yd11W7js3HNzNm8xgW7l/I94e+5/tD39OgQgOGNBpCt5rdCLJpgFBESo5JkybxxRdfMGHCBBo1asT69et57LHHiIuLY/DgwX7J4PN9Pq50W5L2+RCrJKcn8/mWz5mxcwbZ7mwA4srEcXfDu+mX2K/A/6oQkZLpUvt8FJfNLvHx8Tz99NMMHTo0b9orr7zCF198wbZt2y75+IDc56Ow25JycnLIycnJ+z0tLc3XkUQKJD4inmfbPMtDTR9i4vaJfLntSw5lHOKNpDcY+fNIBtYbyJ0N7qRSWCWro4pIADIMo1j8IyUzM/O83SDsdnvxPtS2sNuSRowYwUsvveTrGCKXrVxoOR5s+iBDGg1h9u7ZjNs8jgPpBxi9cTTjNo+jZ+2eDG40mISoBKujiogUWs+ePXn11VepXr06jRo1Yt26dbzzzjvce++9fsvg880uEydO5O9//ztvvfVWvm1J77zzzgW3JV1o5CM+Pl6bXSRguD1uFicvZszmMWw4tiFveqf4TtzX+D6aRTezLpyI+E1JOdQ2PT2d559/nhkzZpCSkkJcXBx33HEHL7zwAsHBwZd8vC82u/i8fFzptiTt8yGByjRN1qWsY8zmMSxJXpI3vWVMS+6/6n6ujbtWR8iIlGAlpXxcqYDc5yMQtiWJFAXDMGgR04IWMS3Yk7qHsZvGMmfPHNYcXcOao2uoX6E+9zW+j641umK32a2OKyISsHx+4o1z25LmzZvHvn37mDFjBu+88w59+/b19apELFMrqhYvX/syC/ot4O6GdxMWFMa2k9v4+7K/03NmT6bsmEKuO9fqmCIiAcnnm12udFuSNrtIcXQ6+zRfbvuS8dvGk5qTCkDlsMrc0/Aebqt3G2UcZSxOKCJXSptdvAJyn48rpfIhxVmmM5NpO6cxbvM4jmYeBSAiOII76t/BXQ3uokJoBYsTisjlUvnw8kX50PnORXwo3BHO3Q3vZkG/Bbzc7mVqRtYkPTedURtGcePUGxmxegSHzxy2OqaIiKVUPkSKgMPuoG9iX2b2nsn/dfo/GlVsRLY7mwnbJnDT9Jt4bsVz7D692+qYInIZAmyDgd/54vWrfIgUIbvNTpcaXfjy5i8Z1XUUbaq0wWW6mL17Nn1m9eGRRY/kO3eIiAQuh8MBeI/qLM3Ovf5z/z0uh/b5EPGzTcc38enGT/nuwHeYeD9+bau05c9N/kyr2FYWpxORizl8+DCnT58mOjqa8PDwUnVuH9M0yczMJCUlhXLlylGlSpV887XDqUgxsOf0Hv636X/M2zMPl+kCoEV0C/7S9C+0rdK2VP1REykuTNPkyJEjnD592uoolilXrhyxsbHn/Y1S+RApRg6eOcj/Nv6PGbtm4PQ4AWhSqQl/bvJnrqt2nUqISAByu904nU6rY/idw+HAbr/wSRRVPkSKoaMZRxm7eSxTd0wl250NQL3y9fhzkz/TpUYXbIZ20RKRwKXyIVKMHc86zmdbPmPStklkurw7dtWKqsX9V91Pj4QeBNl8flUEEZErpvIhUgKczj7N+G3jGb9lPOnOdADiI+K5/6r76VmrJw775e9pLiLiayofIiVIem46E7dN5LMtn3E65zQAVcpU4d7G99I3sS8h9hBrA4qIoPIhUiJlOjOZsmMKYzaN4UT2CcB7/ZghjYbQv25/wh3hFicUkdJM5UOkBMt2ZTN953T+t+l/edePqRBagXsb38ttdW9TCRERS6h8iJQCTreT2btnM3rjaA6eOQj8WkIG1BtAWFCYxQlFpDRR+RApRZweJ3N3z+XjDR+rhIiIZVQ+REohlRARsZLKh0gpdqESUjG0onefkHq3qYSISJFQ+RARnB4nc3bPYdSGUSohIlLkVD5EJM+FSkilsEp5R8eEBoVanFBESgKVDxE5z7mjY0ZtGMWhjEOASoiI+I7Kh4j8oQuVkMphlflzkz9za+KtOm27iFwWlQ8RuSSn28ms3bMYtWEUhzMOAxBXJo4Hmz5Iz9o9dQE7ESkUlQ8RKbBcdy7Td05n1IZRHMs6BkDNyJo81Owhbqx5IzbDZnFCESkOVD5EpNCyXFlM3j6ZTzd+yqmcUwAklk9kWLNhdI7vjGEYFicUkUCm8iEily3DmcEXW75g3OZxpDvTAWhUsREPN3+YdnHtVEJE5IJUPkTkiqXmpDJu8zi+2PoFWa4sAFpEt+Dh5g/TKraVxelEJNCofIiIz5zIOsH/Nv2PidsmkuvJBaBdXDuGNRvGVZWvsjidiAQKlQ8R8bmjGUcZvXE003ZMw2W6AOgU34lhzYZRr0I9i9OJiNVUPkSkyPyS/gsf/fwRc/bMwWN6MDC4qdZNDGs2jGoR1ayOJyIWUfkQkSK3N3Uv/13/X77e9zUAQbYgBtQdwANNHqBSWCWL04mIv6l8iIjfbD6xmffXvs/KQysBCAsKY3CjwQxuOJiywWUtTici/qLyISJ+t/rwat5d8y6bTmwCoHxIeR5o8gAD6w0k2B5scToRKWoqHyJiCdM0Wbh/If9Z9x/2pe0DvKdsH9p8KDcn3IzdZrc2oIgUGZUPEbGUy+Ni5q6ZjFw/kpSsFADqlKvDoy0epWO1jjpRmUgJpPIhIgEhy5XFhK0T+HTTp6Tnes+W2jy6OY+3fJzm0c0tTicivqTyISIBJTUnlf9t+h/jt44nx50DQKdqnXikxSMklk+0OJ2I+ILKh4gEpKMZR/low0fM2DkDt+nGZtjoW6cvQ5sNpXJ4ZavjicgVUPkQkYC2N3Uv/1n3HxbuXwh4D88d0mgIQxoNIdwRbnE6EbkcKh8iUiysT1nPWz+9xYZjGwCoFFaJoc2G0qdOH4JsQRanE5HCUPkQkWLj3OG57659l+T0ZABqR9VmeKvhdKjaQUfGiBQTKh8iUuw43U4mbZ/ERxs+IjUnFYCrY6/mb63+RsOKDS1OJyKXovIhIsVWWm4an2z4hPFbx5PryQXgllq38EjzR6hStorF6UTkj6h8iEixd+jMId5f9z7z9swDINgWzKCGg7j/qvuJCI6wOJ2I/J7Kh4iUGJuPb+btNW+TdCQJgHIh5fhr078yoN4A7ZQqEkBUPkSkRDFNk6W/LOWdNe+wN3Uv4N0p9e+t/861Va+1OJ2IgMqHiJRQLo+LaTum8cH6DzidcxqADlU78ETrJ6gVVcvacCKlnMqHiJRoablpfPzzx0zYOgGX6SLICGJg/YH8telfiQqJsjqeSKmk8iEipcK+1H28veZtliQvASAqJIqHmj7EbfVuw2FzWJpNpLRR+RCRUmXloZW8lfQWu07vAqBWVC2ebP2k9gcR8SOVDxEpdVweF9N3TueDdR9wKucUoP1BRPxJ5UNESq203DRG/TyK8dvG4/K4sBt2bq9/u/YHESliKh8iUurtT9vPv3/6d779QR5p/gi3Jt6K3Wa3NJtISaTyISJy1g+HfuDNpDfz9gdpUKEBz7Z5lmbRzawNJlLCqHyIiPyGy+Ni0vZJ/Hfdf0l3pgPQs1ZPHm/5OJXDK1ucTqRkKMz3t81PmURELBNkC+KuBncxp+8c+iX2w8Bgzp459JzZk3Gbx+H0OK2OKFKqaORDREqdjcc28trq19h0YhMACVEJPH3107SLa2dxMpHiS5tdREQuwWN6mLVrFu+ufZeT2ScB6FK9C0+0foKqZatanE6k+LF8s8vBgwcZNGgQFStWJDw8nGbNmrFmzZqiWJWIyGWxGTb6JvZlTt85DGowCLth59sD39J7Zm9Grh9Jtivb6ogiJZbPy8epU6e49tprcTgcLFiwgC1btvD2229Trlw5X69KROSKRQZH8tTVTzGl5xRax7Ymx53Dhz9/SJ9ZfVh8YLHV8URKJJ9vdnn66af5/vvvWb58+WU9XptdRMQqpmny9f6v+XfSvzmaeRSATvGdeObqZ4grG2dxOpHAZulml9mzZ9OqVStuu+02oqOjad68OaNHj/7D5XNyckhLS8t3ExGxgmEYdK/Zndl9ZnNf4/sIMoJYkryE3jN788nGT3C6dVSMiC/4vHzs2bOHkSNHkpiYyNdff82DDz7II488wmeffXbB5UeMGEFUVFTeLT4+3teRREQKJdwRzmMtH2Nqr6m0imlFtjub99a+x21zbiPpSJLV8USKPZ9vdgkODqZVq1asXLkyb9ojjzxCUlISP/zww3nL5+TkkJOTk/d7Wloa8fHx2uwiIgHBNE3m7JnD2z+9nXdUTK/avRjecjgVwypanE4kcFi62aVKlSo0bNgw37QGDRpw4MCBCy4fEhJCZGRkvpuISKAwDINetXsxu89sBtQdgIHB7N2z6TmzJ5O3T8ZjeqyOKFLs+Lx8XHvttWzfvj3ftB07dlCjRg1fr0pExG+iQqJ4vu3zfHHTFzSo0ID03HT+tepfDJo/iK0ntlodT6RY8Xn5ePzxx1m1ahWvvfYau3btYsKECYwaNYqhQ4f6elUiIn7XpHITJtw8gaevfpoyjjJsPL6R2+fdzus/vk56brrV8USKhSI5w+ncuXN55pln2LlzJwkJCQwfPpwHHnigQI/VobYiUlwcyzzGW0lvsWDfAgDKh5TnoWYPcWvdW3HYHBanE/EvnV5dRMSPVh5ayes/vs7e1L2AdxNN+6rtaVihITUiaxAdHk3l8MpEBUfhsKuUSMmk8iEi4mdOj5Op2yfz8fqRnMhN/cPlHNgII4gwHIQZQQQbQTiwE2zYcRhBOAwHwbYggm3BOGwOgm3BBNuDCbGHEGwPwWEPJsjmIDgomOCgUIKDQn796Qgj1BGa9zPEEUqwIxyHIwxHUChBRhAOuwOHzUGQLQiboQubi+8U5vs7yE+ZRERKHtOEU3tJ27yQ9C3f0jvlB25zp7M2NIS1oSFsCw7mUFAQKXY7J+02TMPAiQcnuaSRCybem0VsponD9H4RBJkQZBrY8f4MwsCOQZBpw46BHRtB2LAbNuzYsGM/e99OkBGE3bBjtwWdvR9EkC2IIJsDu+1s2bE7sNsdBNtCCLIH4why4LCH/lqiHCEEB4V57weHEOoIJyQ4jJDgMMIcYYQEhxPkCCMoKMS7Dpvduv9wcsVUPkRECsOZRdaOxRxfO4eyyYspn3uYSODcv/PSzDBsmfEkZpcnwVEW0+7AtAVj2mw4DRe5hpMc3OQYTrINF27DjQsPrrM/3bhw4caNBxduXIYHl+HBaZh4MHEbHtyYuA0TlwEevD9dxrmfBm7AaYDTMLw3DJwGmIaR76V4DIMcA3J+/xrztSJ34f77nHtoER+BbDNNgkzOliXvl5nd5Gxh8v60m8bZ4mScLUwXuBn2szdvgQoy7NgNB3abnSDDcbboeMuTwxaM/exPR1AwDlsIjqBggoK8o1LBjl9HoEKCwwg5O/oUEhJOaLD3FhIcjiMohCCbA+N3/3+UJiofIiKXYJ4+QMqaOWRvmU/sySTCzBzOnYs517Sz1qzLzjIt8SR0IqFJe1rVqkx4sH//vHo8Ji6Pidtj4nK7cTmduFy5uF25uJ25uJy55LpyyM7NJDc3i1xXFjm52eS6snE5s8lxZeN05+B05+By5+L67X3TicvtxO3JxeVx4jKdeEwXbtON23T9eh8XHtNztjp5/9eD5+xvHm95woPbMHFj4jFMXHD2d84WKgO3AS7AdbZAuS7wJe0xDHIv+t19hcNKfjh9i/1sgXKcLVH2vBL16whUXnkyDWznRp84e984NwaVv0SdG33yFqiz5encze796bCFEBQUfLZIheAICiE4KBjHudEnRyghjrOb8oK9o1Chwd77YaHhOILCsdsv/z2u8iEi8ntuF1l7f+BI0izC9n9HbPYeYn4z+6BZkZ8crUmN70xMk65cXTeea8oEWxYXwGYzCLad+za2Q1gwUMbKSJfNNE2cbm+JcrpcOHOycTpzyMo9Q25uFjnOLHJys8h1ZpPjzMbpysLpyvEWKVeOtzi5cnF5cnC6c3G7nbjM3N8UKBdujxO36corTy7Thcd04zbdZ8ef3HlF6tcSZeI5N/J0tkR58I46eUejwG2AE+9PV16JMnBfoEC5zxat80ee8v5LcEUFqohHoYy8zXYmdhPILPgomcqHiAhgZpzgyNq5ZGyaT2zKCsqaZ0g4O89tGqyjLnvKtSe4QXeatmxH78plLc1bkhmGQXCQQXCQDUIcUCbM6kiXxTR/HYnKyfEWpuycDLJzs8h1ZpKTm0OuM5NcZza5rixynWcLlDsHp8tboJzuHFweb3FyuXPzypPL48RtOnF5zo08eQuU23R7f/9deXKfrU95xYlfR5/cmGcLFHmb89x4y5P73OgT52+2M8+OPuXine4OKnhRUvkQkdLJNMn8ZQMHV88geM+3VMvcTJXf/BPxlFmWn4JakFqtMzEtbqFVg9q0CtZOjlJwhmEQZDcIstsIDXbw655BxYvHY+J0u73lKTuT7NxMb4HKzfSOQjm9o1CnTp+iH0MK9JwqHyJSapi5GRxe9zWpP88l+uhSKrqPk/ib+dvM6uyIaoet7o00uvoGukZHWZZVJFDYbAYhtiBCHBFElon4w+XS0tJA5UNEBLKP7Wf/D1Nh59fUTF9LHE7izs7LMoNZa2/CyaqdqNisJ82vuor6Gt0QKXIqHyJSspgmx3au5vDq6UQlf0uN3N3U+83sX8xKbI1oh1mnG4ltutMutlKpPuRRxAoqHyJS7Hlys9ibtID0DXOolrKUyuYJKp+d5zYNNtnqczS2E1HNbqFJs2voGqI/fSJW0idQRIqlM6eOsPf7abD9K2qn/0htsvPmZZghbAxtxZmaXalxTR+a1Kyp0Q2RAKLyISLFg2lyePcGDq6eRsT+b0nM2cJVxq+H9h01K7C9XHts9W+iQdubuKacdhYVCVQqHyISsFzOXHau+Y609bOpmrKEap5DVDk304AdtlocjulMuWa9aNCiA9c5tLOoSHGg8iEiASUj7RQ7Vs7EtXU+iakracCZvHk5ZhBbQ5typkY3ql3Tl8SEutTV5hSRYkflQ0Qsd/zoQfasmELIrvnUz1xLc8OZN+80ZdkReS1G/Zuo27YXzcpXsDCpiPiCyoeIWOLA7q388sNkovZ/Q/3czVx9bv8NA34xqpAc3ZmoZr2o2+oGrnZYe90UEfEtlQ8R8QuP28O2jas5kTSN2MPfkujZS/VzMw3YZa/N8WpdiWlzGzXrt6CazWZlXBEpQiofIlJksnOdbP7xOzLWzyTh+GIaciRvnts02B7ahIyEG6lx7QDqxCdSx8KsIuI/Kh8i4lOp6Rls+n42ni1zaZC6nJZGat68HNPBjrKtcdW7mTrt+9OwQqyFSUXEKiofInLFjp88ybbl07Bvn0fjjFVca2R5ZxhwhnB2l78WR6Ne1GnXh6vCi+eVPUXEd1Q+ROSyHElJYfuyqYTumkuTrCTaG7neGQacMMrzS3QnIpr3JaFVd5oGhVgbVkQCisqHiBTYgUOH2LV8CmV2z6dZzho6njsk1oDDtliOxHUl+upbqdq4IxW1w6iI/AGVDxH5Q6ZpsvtAMntXTCFq73yaOddR3XB7Zxpw0F6VlPgexLUbSJXE1lTRCb9EpABUPkQkH9M02bprL8k/TKbC/gU0c22kzm8Kxy9B1TlR4yaqXXs7VROaUVWFQ0QKSeVDRDBNk007dpL8/WSif/mK5u5NNPzNSb+SHbVITbiJ+Gtvp1qNq6hmbVwRKeZUPkRKKdM02bpzJ798P5FKB76imec3V4k14EBIImdq30z19rcTH9eAeGvjikgJovIhUoqYpsm2PfvZt+JLovfPo9nvRjj2hTYgO/EWara/g+oxta0NKyIllsqHSAlnmibb9x9kz/JJVNw3lxaun2nwm3049oY2IDuxFwnX3UnNyjUtzSoipYPKh0gJZJomO345wq5lU4jaM5fWrjXUN1zemQYkh9ThTJ3e1Ox4FwnRGuEQEf9S+RApQXYdTGHr8ulE7prN1c4k6v3mxF+HHTVIrdOT6h0GER/XwNqgIlKqqXyIFHPJx07z89LphG2fRZvcVdQxsr0zDEgJiuNUrZ7EdxhElWpX6TwcIhIQVD5EiqHj6VmsWTYX26aptM5czi1GhneGASfs0ZxIuJm49ncRXaMV0SocIhJgVD5Eion0bCerflhGztqJtEj7jhuNE94ZBpyyVeBY9R7EXTuIirWv0anNRSSgqXyIBLBsp5tV637m9OoJNDj+FV2NZO8MA84YZThYpRuV2w2iQsPOlLfZrQ0rIlJAKh8iAcbtMflp625++f5Lah6aRye2emcYkEsQByp2IPLqu4hu0ZN6jlBrw4qIXAaVD5EAYJomm/YfZduyKVTeO4t2nrW0OXsuDg8GyRHNCWo2kLi2A6kTXt7itCIiV0blQ8RCh06eIWnpbEK2TKVd7kquMrK8Mww4HFobZ8P+VOtwNzXK6+TmIlJyqHyI+NmZHBcrVv1ATtLntE5fSG/jpHeGASeDYkhL7E3VDoOpEtfY2qAiIkVE5UPED9wek9VbdnNw+RfUPTKH7sYu7wwDzhhlORrfg9j2d1OhTgcq6EgVESnhVD5EitC2QyfZsGQ6FXZNpYM7iXaGCwxwYyO5QlvKthlMpRa9KasdR0WkFFH5EPGxlPRsVixfAj9/SYfsxQwwUr0zDDgSWhv3VbcTd9091IyItTKmiIhlVD5EfCDX5WHF+q0c/f5zmpyYTz/bfu8MA9Js5ThVuxdxHe8jtmpT0BlHRaSUU/kQuQLbD51i/aLJxOyaTAdzHQ7DDTZwEsShmI5UbDeEyMY9iLQ7rI4qIhIwVD5ECik1y8mSlT/g/OkzOmQuZKBx2jvDgENlGuJoeReVr7mTGuEVLM0pIhKoVD5ECsDjMflxxy/sWjqBxEMz6G38etbRNFs5TiX2o2rnB4iLbWhtUBGRYkDlQ+QifjmZwbJl3xK2cTw3uJZxjZGVd7TKoYptibr2PiKb9CQyKNjqqCIixYbKh8jv5Lo8LF6/jSMrPqf1yXnc+ZudR08GVyGn8Z3EdryX+Khq1gYVESmmVD5Eztp77Awrv5tJxe1f0tmzmhDDeXbnUQdHq3al8nUPUCGxE+gkYCIiV0TlQ0q1HJebxWu3cXzFWNqensNdtsPeGQakhNfB0XoI5dvcRTXtPCoi4jMqH1Iq7UlJZ/ni+VTc9gVdPT/kjXJkGWEcT+hFlc5/IbpaC52TQ0SkCKh8SKmR43Lz3fpdHFk+jranZjPYluydYUBKmbo42txH+TZ3ER8SYW1QEZESTuVDSry9xzNYvPgbym35nO6eFYQbOWCDHCOE4zVuIeb6vxId30qjHCIifqLyISWS22OydNM+9i4ZR6vjs7jXtsc7w4DjYQkEtbmPcm3upmpYOUtzioiURiofUqKczMhlwdLvsa/5lJtc33G9kZl3xMrx6t2p3PlBKtW8VqMcIiIWUvmQEmH9gZP8uHAydfdP5A5jPTbD9J6XI6QaRqs/Ub7dn6hSpqLVMUVEBCjyExaMGDECwzB47LHHinpVUspkO93M+GELo9/6O5GftOXPyU/RybYOm2FyuHIHcgdOosJTGynf9QlQ8RARCRhFOvKRlJTEqFGjaNKkSVGuRkqZ5JOZLFi8hHIbx3CzuZQyZ3cgzbKVJb3BACpfP4wqFWtbHVNERP5AkZWPM2fOcNdddzF69GheeeWVolqNlBKmabJ6dwprF35J08OT+bNts3eGASfCaxPS7i+UbX0XYSFlrQ0qIiKXVGTlY+jQodx888106dLlouUjJyeHnJycvN/T0tKKKpIUQzkuNwt+2sGxpaPpkTmLa4zjYAMPNo5V7UKl64dRsdZ12oFURKQYKZLyMXHiRNauXUtSUtIllx0xYgQvvfRSUcSQYuxYeg5zlq4kdM0n9PR8R8TZq8lm2KPIaTKICh3/Sky5eKtjiojIZfB5+UhOTubRRx/lm2++ITQ09JLLP/PMMwwfPjzv97S0NOLj9aVSWm0+lMqihXOps3scg40fsZ87aiW8FiEdhlGm1Z2UcYRZHVNERK6AYZqm6csnnDlzJn379sVut+dNc7vdGIaBzWYjJycn37zfS0tLIyoqitTUVCIjI30ZTQKU22OyaPNBNi8aT8cTk2lu25U3LyX6Wip0eZygxC7atCIiEsAK8/3t85GPG264gY0bN+ab9qc//Yn69evz1FNPXbR4SOmS7XQze/VWji8bTa+cuXQ9uz+H03CQWqcvlbo8TnRMQ6tjioiIj/m8fERERNC4ceN808qUKUPFihXPmy6l0+nMXKYv+ZHgpI/o41lIWSPbuz9HUHk8Le8losODVCobbXVMEREpIjrDqfhN8slMZi1cTJXNoxhkLCfYcIMBp8rUIrzjo5Rpfjs4Lr2fkIiIFG9+KR9Llizxx2okQG06mMo3X8/hqn1jGGb7Ke+8uscrtqZc1ycoX+9G7c8hIlKKaORDioRpmizfcYzV30ziumNfMNy27dfSUa0rFW98kkrxV1sbUkRELKHyIT7l8Zgs3JTMxm/GcnPaZP5uSwYbuAgive6tlO/6BJUq17U6poiIWEjlQ3zC5fYwb90+9n37MbdmTeXGs0eu5NjCyWl6D5GdH6V8ZJzVMUVEJACofMgVyXG5mZW0m8OLPmZg7jR6G6e8R644KmBc8yDh7f5MSFh5q2OKiEgAUfmQy5KV62bKym2cXv4Rd7hmUdlIBQPOBEdj7zicMlcPAZ2JVERELkDlQwolPdvJxBWbyfn+I+70zKGCcQYMSA+tQkinJyjb6m4ICrE6poiIBDCVDymQjBwXXy7dgPOHkdzpmUuUkQkGpIVXJ+z6vxPR/A6wO6yOKSIixYDKh1xUZq6Lics34VzxAXd45hJ59uqyaWVrUabLU0Re1R/sehuJiEjB6VtDLigr183EFVvJWPFfBrlnUc7IAANSI+sS0fUZIhv1Bpuu0yMiIoWn8iH5ZDvdTFy5g1NLR3K3ewaVjLRfRzpufJ6oRn3AZrM6poiIFGMqHwJ4D5mdvMp7yOxg91RijNPeHUnDqxPW9Vkimw7QSIeIiPiEykcp5/aYzF67j21fj+bu3ElUM457z9MRWoWQLs8S0fxO7dMhIiI+pW+VUso0TRZtPcrKuWO488w4+toOgwGZIZVxdH6SMq0G65BZEREpEiofpVDSvpPMnjWFfidG8bxtF9ggy1EOe8cnCG9zv04OJiIiRUrloxTZdiSNCbO/4rrkD/mXfR3YINcWhueaoYRd9yiERlodUURESgGVj1Lg0OksRs9bToNtH/BP2zLsdhM3dnKa3E1412chIsbqiCIiUoqofJRgZ3JcjPnuZ0JX/R9PGV8Rand6p9e+ibI9/kV4pToWJxQRkdJI5aMEcntMpv64l93ffMRf3BOoaEsH4ExsG8re/Cpl41tbnFBEREozlY8SZvnOY8ybOZHB6R8z0JbsvdJsRC3K3PIaZet2B8OwOqKIiJRyKh8lxM6j6Xw6ayE3JH/A6/Y1YIOcoEjsNzxH2avv00XfREQkYKh8FHOpWU5GLlhDpXXv8bLta4LtbjzYyW1xL6FdnoXwClZHFBERyUflo5jyeEymrjnAjvn/5a+eCVS0e/fryKxxPeG3vE5o5XoWJxQREbkwlY9iaMMvpxk3dSZ3n3yfAbbd3jOTRtYmvOebhCd2sTqeiIjIRal8FCMnM3L5YF4SCRvf4S3bd9hsJrn2Mtiuf5bwa/6i/TpERKRYUPkoBtwekwmr97Hr6495xPwibxNLVv1bCbv5NYiItTihiIhIwal8BLith9MYNXkmg068z922nd5NLOXqEt7n/wir2d7qeCIiIoWm8hGgsnLdfPDNBsqt/jf/ts3DbjNx2sOxdX6G8LZ/1SYWEREptlQ+AtCS7SnMnPYFw7M/pLr9GADZdXsRessbEBlncToREZEro/IRQFLSs3l71iqu3v5v3rUvBxtkh1chtM97hNa90ep4IiIiPqHyEQBM02Taml/4ae7HPGmOpaI9HRMDV6sHCO36AoREWB1RRETEZ1Q+LHYkNZs3J39HzwNv8Lr9ZzAgu3w9Qvv9F4cuACciIiWQyodFTNNk6k/JrJ83khfNsUTaM3EbDuj4JKHtH4OgYKsjioiIFAmVDwscTs3i9SlLuWX/G7xqX+sd7YhuRuhto0CnRRcRkRJO5cOPTNNk6ppfWD33E140P6G8/QxuIwg6PeMd7bDr/w4RESn59G3nJ6cycnllygo6736Df9tXeUc7KjX2jnbENLI6noiIiN+ofPjBip3H+XLSZ7zgfI8Y+2k82OG6Jwjt+HedLExEREodlY8ilO108/aCTVT88S3+Y5+LzTDJjqpD6MBPIK651fFEREQsofJRRLYfSeeN8fN4LPV1mgTtBcDVfAihPUZAcLjF6URERKyj8uFjpmky6ccDrJ/7If+xjaGMLYfc4HIE9/2AoAY9rY4nIiJiOZUPH8rIcfHy9B9pu+VfvG5fCUBu/LUE9x8NUVUtTiciIhIYVD58ZPuRdF7/bCbPnhlBov2gd6fS658juP1jYLNbHU9ERCRgqHz4wOSfklk1exQfGB97N7OERRN8+2dQo63V0URERAKOyscVyHa6eWnGWupveIN3ghYC4KzegeAB/4Oy0RanExERCUwqH5fpSGo2z437moePv0SzoN0AmB2ewNH5WW1mERERuQiVj8uwZv9JPvhsIm+43iDadhpncBSO/p9g1O1mdTQREZGAp/JRSBNWH2D9nP/ykf0TQgwXuRUbEDxoIpSvaXU0ERGRYkHlo4Bcbg8vz/6Z+DVv8mbQfO+0ujcTfOsoCClrcToREZHiQ+WjANKznfz9ixXcsf8FOgZtAMC87kmCOj0DNpvF6URERIoXlY9LOHQ6iyf/t4DnTr9AA3sybnsY9n4fYTTqY3U0ERGRYknl4yI2HUzltTFTeNv5KlVsJ3GGVcZx91SIa2Z1NBERkWJL5eMPLN6ewhfjx/Kx8Q4RRhbOCnVx3DMNylW3OpqIiEixpvJxAXN+PsTSKf/hI/vHOAw3rvh2OO6cAGHlrY4mIiJS7Kl8/M7EHw+wffZb/DvoMwA8jW4lqO9ICAqxOJmIiEjJoPLxG58s282pr1/nn47JAHjaPITtxld1RIuIiIgPqXwApmnyf99sJ3z5v/i7Y653WqdnsHV8CgzD4nQiIiIlS6kvHx6Pyb/mbKJW0ovcHfQtAGa3VzHaDbM4mYiISMnk8+0JI0aMoHXr1kRERBAdHU2fPn3Yvn27r1fjEy63hyen/pxXPEwM6Pm+ioeIiEgR8nn5WLp0KUOHDmXVqlUsXLgQl8tFt27dyMjI8PWqrki2082w8WtptOG1vOJh9P0IWg62OpqIiEiJZpimaRblCo4dO0Z0dDRLly7luuuuu+TyaWlpREVFkZqaSmRkZNFkSs/h4S/X0unAf3kwaI53Yu//QvNBRbI+ERGRkq4w399Fvs9HamoqABUqVLjg/JycHHJycvJ+T0tLK9Tzr9h5nCen/kyW043xBzuHmqaJx/T+NE3IyHVxj+0rHnScLR63vKviISIi4idFWj5M02T48OG0b9+exo0bX3CZESNG8NJLL13W85/KyOXxyes5lp5z6YV/o6PtZ15wfO795YZ/Qqs/Xdb6RUREpPCKdLPL0KFDmTdvHitWrKBatWoXXOZCIx/x8fEFGrYZOmEt8zYcJi4qlFH3tCIk6I93YTEMA5sBQdknqfrl9dgzj0GLe6Dn+zqcVkRE5AoFxGaXhx9+mNmzZ7Ns2bI/LB4AISEhhIQU/uyhs38+xLwNh7HbDD66uyWNq0YV7IGznoLMY1C5AfR4S8VDRETEz3xePkzT5OGHH2bGjBksWbKEhIQEX6+CUxm5/HPWJgCGda5Dk2rlCvbAlK2wfoL3fs/3wBHq82wiIiJycT4vH0OHDmXChAnMmjWLiIgIjhw5AkBUVBRhYWE+WcebX2/jVKaTejERDLu+TsEf+O1LYHqg/i1QvY1PsoiIiEjh+Pw8HyNHjiQ1NZVOnTpRpUqVvNukSZN88vxrD5ziyx+TAXilb2Mc9gK+hP0rYccCMOzQ5UWfZBEREZHCK5LNLkXF4zF5fqZ3c8ttLavRuuaFD9+9QChY+E/v/Rb3QKXEIkooIiIil1KsLtc66+eDbD6URkRoEE/3qF/wB+7+Dn75EYLCoNPTRRdQRERELqnYlI8cl5u3v9kBwIMda1OxbAGPkDFNWPqW936reyEitogSioiISEEUm/IxYfUBfjmVRXRECPdeW4gjaPatgORVYA+Bdg8XXUAREREpkGJRPnJcbkYu2Q3Ao10SCQu2F/zBy970/mxxN0RWKYJ0IiIiUhjFonzMXHeQlPQcYiNDua1lfMEfeGA17F0GtiC49rEiyyciIiIFF/Dlw+Mx+XjZHgDua59A8EVOoX6eZWf39Wh6B5QrRGkRERGRIhPw5WPx9hT2HMsgIjSIO9pUL/gDD66FXQvBsEGH4UUXUERERAol4MvHuROKDWwVT9mQQpyW5Pv3vD+vug0q1CqCZCIiInI5Arp8HE3LZvH2FABuv7oQm01Sf4Gtc7z3r320CJKJiIjI5Qro8jF1zS+4PSatapSnTnREwR/442gw3VCzA8Q0KrqAIiIiUmgBXT7mbTgMwG2tqhX8QbmZsGas9/41f/V9KBEREbkiAVs+kk9msuVwGnabQdeGhTgr6YZJkH0aytWAut2LLJ+IiIhcnoAtH99tPQpAm4QKVCgTXLAHmSYkfeq9f/WfwVaIk5GJiIiIXwRs+Vi+8zgA3RrGFPxBh9fD0Y3eU6k3u7NogomIiMgVCdjysS75NADtEysV/EFrP/P+bNgLwiv4PpSIiIhcsYAtH7kuD5XKBlO7ctkCPiADNk713m9xT9EFExERkSsSsOUDoE1CRQzDKNjCW2ZBThqUT4Aa7Ys2mIiIiFy2gC4fTapFFXzh9RO8P5sPAltAvywREZFSLaC/petXiSzYgmmHYN8K7/0mA4sukIiIiFyxgC4fDaoU8Kymm2cAJsRfo6vXioiIBLiALR/hwTYqlw0p2MLndjS9qn/RBRIRERGfCNjyERsVVrCdTU/ugUNrwbBBw95FH0xERESuSMCWj5jI0IIt+OMn3p+1OkHZ6CLLIyIiIr4RsOWjQrjj0gulbIUfP/bev+ahog0kIiIiPhGw5SMsOOjiC5gmzPsbeFxQ72ZI7OqfYCIiInJFArZ8hDoucVG4DZNg//cQFAY9XvdPKBEREbliAVs+whwXiZaTDt88773f8e9Qrrp/QomIiMgVC9jyUbVc2B/PXPkBZKR4T6Xe9mH/hRIREZErFrDlo3+rPzhZWPpRWPkf7/0bXoCgYP+FEhERkSsWsOXjDy17E5wZENcCGvW1Oo2IiIgUUvEqH6cPwJqx3vtdX4aCXvFWREREAkbxKh8r/+M9tDbhOkjoYHUaERERuQzFp3ycSYG1n3nvd3jC2iwiIiJy2YpP+Vj1IbiyoWor78iHiIiIFEvFo3zkZsJPY7z3OwzXvh4iIiLFWPEoH5unQ/ZpKFcD6na3Oo2IiIhcgeJRPpLOXrm21b1gu8Rp10VERCSgBX75OLTOe7OHQPO7rU4jIiIiVyjwy8fPk7w/G/SEMhWtzSIiIiJXLLDLh8ft3d8DoMkAa7OIiIiITwR2+di3HM4chbDyUKuz1WlERETEBwK7fGye4f3ZsLcuICciIlJCBG75ME3Y8Y33foOe1mYRERERnwnc8nFsG6QfgqAwqNHe6jQiIiLiI4FbPnYv8v5M6ACOUGuziIiIiM8EbvnYt8L7s04Xa3OIiIiITwVu+Ti03vuzeltLY4iIiIhvBW75yE0HRxmIbmh1EhEREfGhwC0fAFVbgD3I6hQiIiLiQ4FdPuKaW51AREREfCywy0fl+lYnEBERER9T+RARERG/CuzyUSnR6gQiIiLiY4FbPkIiITTS6hQiIiLiY4FbPsrGWp1AREREikAAl4/KVicQERGRIlBk5ePDDz8kISGB0NBQWrZsyfLlywv3BOGViiaYiIiIWKpIysekSZN47LHHeO6551i3bh0dOnSgR48eHDhwoOBP4ggrimgiIiJisSIpH++88w733Xcf999/Pw0aNODdd98lPj6ekSNHFvxJdCVbERGREsnn5SM3N5c1a9bQrVu3fNO7devGypUrz1s+JyeHtLS0fDcA7CofIiIiJZHPy8fx48dxu93ExMTkmx4TE8ORI0fOW37EiBFERUXl3eLj470zgkJ8HU1EREQCQJHtcGoYRr7fTdM8bxrAM888Q2pqat4tOTnZO6Ne96KKJiIiIhby+SVjK1WqhN1uP2+UIyUl5bzREICQkBBCQi4wyhF7la+jiYiISADw+chHcHAwLVu2ZOHChfmmL1y4kHbt2vl6dSIiIlLM+HzkA2D48OHcfffdtGrVirZt2zJq1CgOHDjAgw8+WBSrExERkWKkSMrHwIEDOXHiBC+//DKHDx+mcePGzJ8/nxo1ahTF6kRERKQYMUzTNK0O8VtpaWlERUWRmppKZKQuLCciIlIcFOb7O3Cv7SIiIiIlksqHiIiI+JXKh4iIiPiVyoeIiIj4lcqHiIiI+JXKh4iIiPiVyoeIiIj4lcqHiIiI+JXKh4iIiPhVkZxe/UqcO+FqWlqaxUlERESkoM59bxfkxOkBVz5OnDgBQHx8vMVJREREpLBOnDhBVFTURZcJuPJRoUIFAA4cOHDR8K1btyYpKanI5vtjHcoQOBn8sQ5lKNj8tLQ04uPjSU5O/sPrQ5SE16kMJWsdygCpqalUr14973v8YgKufNhs3t1QoqKiLnphGrvdXqTz/bEOZQicDP5YhzIUPANAZGTkHy5XUl6nMpScdSjDr859j190mUsuEaCGDh1apPP9sQ5lCJwM/liHMhQ8w6WUlNepDCVnHcpQOIZZkD1D/Kgwl+QVkZJHfwNEiqfCfHYDbuQjJCSEf/7zn4SEhFgdRUQsoL8BIsVTYT67ATfyISIiIiVbwI18iIiISMmm8iEiIiJ+pfLhBx9++CEJCQmEhobSsmVLli9fnjfvzJkzDBs2jGrVqhEWFkaDBg0YOXKkhWkvz7Jly+jZsydxcXEYhsHMmTPzzR8yZAiGYeS7XXPNNdaEvUwjRoygdevWREREEB0dTZ8+fdi+fXvefKfTyVNPPcVVV11FmTJliIuL45577uHQoUMWpi68S71OgKNHjzJkyBDi4uIIDw+ne/fu7Ny506LEV+Zin8+S8L692GezpLxn4dJ/g0rKe7Ygn0+ArVu30qtXL6KiooiIiOCaa67hwIEDFiS+MJWPIjZp0iQee+wxnnvuOdatW0eHDh3o0aNH3pvg8ccf56uvvuKLL75g69atPP744zz88MPMmjXL4uSFk5GRQdOmTfnggw/+cJnu3btz+PDhvNv8+fP9mPDKLV26lKFDh7Jq1SoWLlyIy+WiW7duZGRkAJCZmcnatWt5/vnnWbt2LdOnT2fHjh306tXL4uSFc6nXaZomffr0Yc+ePcyaNYt169ZRo0YNunTpkrdMcXGpzycU//ftxT6bJeU9Cxd/nSXpPXupzyfA7t27ad++PfXr12fJkiX8/PPPPP/884SGhlqY/HdMKVJXX321+eCDD+abVr9+ffPpp582TdM0GzVqZL788sv55rdo0cL8xz/+4beMvgaYM2bMyDdt8ODBZu/evS3JU1RSUlJMwFy6dOkfLvPjjz+agLl//34/JvOt37/O7du3m4C5adOmvGVcLpdZoUIFc/To0VbFvCyX+nyWtPfthT6bv1cS3rO/f50l6T37exf6OzRw4EBz0KBBFqa6NI18FKHc3FzWrFlDt27d8k3v1q0bK1euBKB9+/bMnj2bgwcPYpomixcvZseOHdx4441WRC5SS5YsITo6mrp16/LAAw+QkpJidaQrkpqaCnDRUwmnpqZiGAblypXzUyrf+/3rzMnJAcj3ryi73U5wcDArVqzwf8DLVJDPJ5S89+2llIT37O+VlPfshfz+8+nxeJg3bx5169blxhtvJDo6mjZt2py3GcpqKh9F6Pjx47jdbmJiYvJNj4mJ4ciRIwC8//77NGzYkGrVqhEcHEz37t358MMPad++vRWRi0yPHj0YP348ixYt4u233yYpKYnrr78+749CcWOaJsOHD6d9+/Y0btz4gstkZ2fz9NNPc+eddxbbk2Vd6HXWr1+fGjVq8Mwzz3Dq1Clyc3N5/fXXOXLkCIcPH7Y4ccEV5PNZ0t63l1IS3rMXUlLes793oc9nSkoKZ86c4fXXX6d79+5888039O3bl379+rF06VKLE/8q4K7tUhIZhpHvd9M086a9//77rFq1itmzZ1OjRg2WLVvGQw89RJUqVejSpYsVcYvEwIED8+43btyYVq1aUaNGDebNm0e/fv0sTHZ5hg0bxoYNG/7wX01Op5Pbb78dj8fDhx9+6Od0vnOh1+lwOJg2bRr33XcfFSpUwG6306VLF3r06GFh0st3sc9nSXvfXkxJec9eSEl7z55zoc+nx+MBoHfv3jz++OMANGvWjJUrV/LRRx/RsWNHS7L+nspHEapUqRJ2uz3vX1HnpKSkEBMTQ1ZWFs8++ywzZszg5ptvBqBJkyasX7+ef//73yWqfPxelSpVqFGjRrHc2/zhhx9m9uzZLFu2jGrVqp033+l0MmDAAPbu3cuiRYuK7b8gL/Y6W7Zsyfr160lNTSU3N5fKlSvTpk0bWrVqZVHawrvU5/NCivP79mJKynv2YkrCe/a3/ujzWalSJYKCgmjYsGG+5Rs0aBBQm5i02aUIBQcH07JlSxYuXJhv+sKFC2nXrh1OpxOn03neFQDtdnteey2pTpw4QXJyMlWqVLE6SoGZpsmwYcOYPn06ixYtIiEh4bxlzv0R37lzJ99++y0VK1a0IOmVKcjrPCcqKorKlSuzc+dOfvrpJ3r37u3HpFfmUp/PCymO79tLKQnv2cIozu9ZuPTnMzg4mNatW593+O2OHTuoUaOGP6NenGW7upYSEydONB0Oh/npp5+aW7ZsMR977DGzTJky5r59+0zTNM2OHTuajRo1MhcvXmzu2bPHHDNmjBkaGmp++OGHFicvnPT0dHPdunXmunXrTMB85513zHXr1pn79+8309PTzb/97W/mypUrzb1795qLFy8227Zta1atWtVMS0uzOnqB/fWvfzWjoqLMJUuWmIcPH867ZWZmmqZpmk6n0+zVq5dZrVo1c/369fmWycnJsTh9wV3qdZqmaU6ePNlcvHixuXv3bnPmzJlmjRo1zH79+lmY+vJc7PNZUt63F/tslpT3rGle/HWaZsl5zxbk8zl9+nTT4XCYo0aNMnfu3Gn+5z//Me12u7l8+XILk+en8uEH//3vf80aNWqYwcHBZosWLfIdEnX48GFzyJAhZlxcnBkaGmrWq1fPfPvtt02Px2Nh4sJbvHixCZx3Gzx4sJmZmWl269bNrFy5sulwOMzq1aubgwcPNg8cOGB17EK50OsDzDFjxpimaZp79+79w2UWL15safbCuNTrNE3TfO+998xq1arl/f/5j3/8o9h9WZ3zR5/PkvK+vdhns6S8Z03z4q/TNEvOe7Ygn0/TNM1PP/3UrFOnjhkaGmo2bdrUnDlzpjWB/4AuLCciIiJ+pX0+RERExK9UPkRERMSvVD5ERETEr1Q+RERExK9UPkRERMSvVD5ERETEr1Q+RERExK9UPkRERMSvVD5ERETEr1Q+RERExK9UPkRERMSvVD5ERETEr1Q+RERExK9UPkRERMSvVD5ERETEr1Q+RERExK9UPkRERMSvVD5ERETEr1Q+RERExK9UPkRERMSvVD5ERETEr1Q+RERExK9UPkRERMSvVD5EJOAZhsHMmTOtjiEiPuL38jFkyBD69Onj79WKiMWGDBmCYRjn3Xbt2mV1NBHxsyCrA4hI6dG9e3fGjBmTb1rlypUtSiMiVrF0s8tXX31F+/btKVeuHBUrVuSWW25h9+7defP37duHYRhMnz6dzp07Ex4eTtOmTfnhhx8sTC0ilyskJITY2Nh8N7vdzpw5c2jZsiWhoaHUqlWLl156CZfLle+xhw8fpkePHoSFhZGQkMCUKVMsehUicqUsLR8ZGRkMHz6cpKQkvvvuO2w2G3379sXj8eRb7rnnnuOJJ55g/fr11K1blzvuuOO8P0wiUjx9/fXXDBo0iEceeYQtW7bw8ccfM3bsWF599dV8yz3//PPceuut/PzzzwwaNIg77riDrVu3WpRaRK6EYZqm6c8VDhkyhNOnT19w57Fjx44RHR3Nxo0bady4Mfv27SMhIYFPPvmE++67D4AtW7bQqFEjtm7dSv369f0ZXUSuwJAhQ/jiiy8IDQ3Nm9ajRw+OHj1Kjx49eOaZZ/Kmf/HFFzz55JMcOnQI8O5w+uCDDzJy5Mi8Za655hpatGjBhx9+6L8XISI+Yek+H7t37+b5559n1apVHD9+PG/E48CBAzRu3DhvuSZNmuTdr1KlCgApKSkqHyLFTOfOnfMViDJlylCnTh2SkpLyjXS43W6ys7PJzMwkPDwcgLZt2+Z7rrZt27J+/Xq/5BYR37K0fPTs2ZP4+HhGjx5NXFwcHo+Hxo0bk5ubm285h8ORd98wDIDzNs2ISOA7VzZ+y+Px8NJLL9GvX7/zlv/tKMmFnPt7ICLFi2Xl48SJE2zdupWPP/6YDh06ALBixQqr4oiIRVq0aMH27dvPKyW/t2rVKu655558vzdv3ryo44lIEbCsfJQvX56KFSsyatQoqlSpwoEDB3j66aetiiMiFnnhhRe45ZZbiI+P57bbbsNms7FhwwY2btzIK6+8krfclClTaNWqFe3bt2f8+PH8+OOPfPrppxYmF5HL5fejXTweD0FBQdhsNiZOnMiaNWto3Lgxjz/+OG+99Za/44iIxW688Ubmzp3LwoULad26Nddccw3vvPMONWrUyLfcSy+9xMSJE2nSpAnjxo1j/PjxNGzY0KLUInIl/H60S/fu3alTpw4ffPCBP1crIiIiAcJvIx+nTp1i3rx5LFmyhC5duvhrtSIiIhJg/LbPx7333ktSUhJ/+9vf6N27t79WKyIiIgHG75tdREREpHSz9PTqIiIiUvqofIiIiIhfFUn5GDFiBK1btyYiIoLo6Gj69OnD9u3b8y1jmiYvvvgicXFxhIWF0alTJzZv3pw3/+TJkzz88MPUq1eP8PBwqlevziOPPEJqauoF15mTk0OzZs0wDEOnXBYREQlgRVI+li5dytChQ1m1ahULFy7E5XLRrVs3MjIy8pZ58803eeedd/jggw9ISkoiNjaWrl27kp6eDsChQ4c4dOgQ//73v9m4cSNjx47lq6++yrvA3O89+eSTxMXFFcXLERERER/yyw6n565Wu3TpUq677jpM0yQuLo7HHnuMp556CvCOXMTExPDGG2/wl7/85YLPM2XKFAYNGkRGRgZBQb8eqLNgwQKGDx/OtGnTaNSoEevWraNZs2ZF/bJERETkMvhln49zm0oqVKgAwN69ezly5AjdunXLWyYkJISOHTuycuXKiz5PZGRkvuJx9OhRHnjgAT7//PO8q1+KiIhI4Cry8mGaJsOHD6d9+/Y0btwYgCNHjgAQExOTb9mYmJi8eb934sQJ/vWvf+UbFTFNkyFDhvDggw/SqlWrInoFIiIi4ktFfpKxYcOGsWHDhgtesfb3l8M2TfOCl8hOS0vj5ptvpmHDhvzzn//Mm/6f//yHtLQ0nnnmGd8HFxERkSJRpCMfDz/8MLNnz2bx4sVUq1Ytb3psbCzAeaMcKSkp542GpKen0717d8qWLcuMGTNwOBx58xYtWsSqVasICQkhKCgo75LcrVq1YvDgwUX1skREROQKFEn5ME2TYcOGMX36dBYtWkRCQkK++QkJCcTGxrJw4cK8abm5uSxdupR27drlTUtLS6Nbt24EBwcze/ZsQkND8z3P+++/z88//8z69etZv3498+fPB2DSpEm8+uqrRfHSRERE5AoVyWaXoUOHMmHCBGbNmkVERETeCEdUVBRhYWEYhsFjjz3Ga6+9RmJiIomJibz22muEh4dz5513At4Rj27dupGZmckXX3xBWloaaWlpAFSuXBm73U716tXzrbds2bIA1K5dO99Ii4iIiASOIikfI0eOBKBTp075po8ZM4YhQ4YA3vNyZGVl8dBDD3Hq1CnatGnDN998Q0REBABr1qxh9erVAHmbU87Zu3cvNWvWLIroIiIiUsR0YTkRERHxK13bRURERPxK5UNERET8SuVDRERE/ErlQ0RERPxK5UNERET8SuVDRERE/ErlQ0RERPxK5UNEfGLJkiUYhsHp06etjiIiAU4nGRORy9KpUyeaNWvGu+++C3ivz3Ty5EliYmIueHVqEZFziuT06iJS+gQHB+ddsVpE5GK02UVECm3IkCEsXbqU9957D8MwMAyDsWPH5tvsMnbsWMqVK8fcuXOpV68e4eHh9O/fn4yMDMaNG0fNmjUpX748Dz/8MG63O++5c3NzefLJJ6latSplypShTZs2LFmyxJoXKiJFQiMfIlJo7733Hjt27KBx48a8/PLLAGzevPm85TIzM3n//feZOHEi6enp9OvXj379+lGuXDnmz5/Pnj17uPXWW2nfvj0DBw4E4E9/+hP79u1j4sSJxMXFMWPGDLp3787GjRtJTEz06+sUkaKh8iEihRYVFUVwcDDh4eF5m1q2bdt23nJOp5ORI0dSu3ZtAPr378/nn3/O0aNHKVu2LA0bNqRz584sXryYgQMHsnv3br788kt++eUX4uLiAHjiiSf46quvGDNmDK+99pr/XqSIFBmVDxEpMuHh4XnFAyAmJoaaNWtStmzZfNNSUlIAWLt2LaZpUrdu3XzPk5OTQ8WKFf0TWkSKnMqHiBQZh8OR73fDMC44zePxAODxeLDb7axZswa73Z5vud8WFhEp3lQ+ROSyBAcH59tR1BeaN2+O2+0mJSWFDh06+PS5RSRw6GgXEbksNWvWZPXq1ezbt4/jx4/njV5cibp163LXXXdxzz33MH36dPbu3UtSUhJvvPEG8+fP90FqEQkEKh8iclmeeOIJ7HY7DRs2pHLlyhw4cMAnzztmzBjuuece/va3v1GvXj169erF6tWriY+P98nzi4j1dIZTERER8SuNfIiIiIhfqXyIiIiIX6l8iIiIiF+pfIiIiIhfqXyIiIiIX6l8iIiIiF+pfIiIiIhfqXyIiIiIX6l8iIiIiF+pfIiIiIhfqXyIiIiIX6l8iIiIiF/9PxPCqQTKfxPPAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# first, load in the simple model of case 1. Copy it.\n", "case2_example1 = case1(\"case2_example3\")\n", @@ -2194,7 +184,7 @@ }, { "cell_type": "markdown", - "id": "c2a05bd1-bb84-4221-9b79-87a02066de8e", + "id": "17", "metadata": {}, "source": [ "### Example 4: low target level in third basin, results in incorrect flow direction\n", @@ -2204,295 +194,10 @@ }, { "cell_type": "code", - "execution_count": 32, - "id": "b7244d23-d1da-48a7-83c2-64d361a10470", + "execution_count": null, + "id": "18", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
timenode_idstoragelevelinflow_rateoutflow_ratestorage_rateprecipitationevaporationdrainageinfiltrationbalance_errorrelative_error
02024-01-01 00:00:0030.0000001.0000000.00.0000.0000000.00.0000000.00.00.000000e+000.0
12024-01-01 00:00:0040.0000000.0000000.00.0000.0000000.00.0000000.00.00.000000e+000.0
22024-01-01 00:00:0082250.0127501.5000000.00.167-0.1671580.00.0001730.00.0-1.552110e-05-2.0
32024-01-01 00:01:0030.0000001.0000000.00.0000.0000000.00.0000000.00.00.000000e+000.0
42024-01-01 00:01:0040.0000000.0000000.00.0000.0000000.00.0000000.00.00.000000e+000.0
..........................................
388752024-01-09 23:58:0040.0000000.0000000.00.0000.0000000.00.0000000.00.00.000000e+000.0
388762024-01-09 23:58:008202.6649730.4501780.00.000-0.0000520.00.0000520.00.0-1.265903e-10-2.0
388772024-01-09 23:59:0030.0000001.0000000.00.0000.0000000.00.0000000.00.00.000000e+000.0
388782024-01-09 23:59:0040.0000000.0000000.00.0000.0000000.00.0000000.00.00.000000e+000.0
388792024-01-09 23:59:008202.6618460.4501750.00.000-0.0000520.00.0000520.00.0-1.265905e-10-2.0
\n", - "

38880 rows × 13 columns

\n", - "
" - ], - "text/plain": [ - " time node_id storage level inflow_rate \\\n", - "0 2024-01-01 00:00:00 3 0.000000 1.000000 0.0 \n", - "1 2024-01-01 00:00:00 4 0.000000 0.000000 0.0 \n", - "2 2024-01-01 00:00:00 8 2250.012750 1.500000 0.0 \n", - "3 2024-01-01 00:01:00 3 0.000000 1.000000 0.0 \n", - "4 2024-01-01 00:01:00 4 0.000000 0.000000 0.0 \n", - "... ... ... ... ... ... \n", - "38875 2024-01-09 23:58:00 4 0.000000 0.000000 0.0 \n", - "38876 2024-01-09 23:58:00 8 202.664973 0.450178 0.0 \n", - "38877 2024-01-09 23:59:00 3 0.000000 1.000000 0.0 \n", - "38878 2024-01-09 23:59:00 4 0.000000 0.000000 0.0 \n", - "38879 2024-01-09 23:59:00 8 202.661846 0.450175 0.0 \n", - "\n", - " outflow_rate storage_rate precipitation evaporation drainage \\\n", - "0 0.000 0.000000 0.0 0.000000 0.0 \n", - "1 0.000 0.000000 0.0 0.000000 0.0 \n", - "2 0.167 -0.167158 0.0 0.000173 0.0 \n", - "3 0.000 0.000000 0.0 0.000000 0.0 \n", - "4 0.000 0.000000 0.0 0.000000 0.0 \n", - "... ... ... ... ... ... \n", - "38875 0.000 0.000000 0.0 0.000000 0.0 \n", - "38876 0.000 -0.000052 0.0 0.000052 0.0 \n", - "38877 0.000 0.000000 0.0 0.000000 0.0 \n", - "38878 0.000 0.000000 0.0 0.000000 0.0 \n", - "38879 0.000 -0.000052 0.0 0.000052 0.0 \n", - "\n", - " infiltration balance_error relative_error \n", - "0 0.0 0.000000e+00 0.0 \n", - "1 0.0 0.000000e+00 0.0 \n", - "2 0.0 -1.552110e-05 -2.0 \n", - "3 0.0 0.000000e+00 0.0 \n", - "4 0.0 0.000000e+00 0.0 \n", - "... ... ... ... \n", - "38875 0.0 0.000000e+00 0.0 \n", - "38876 0.0 -1.265903e-10 -2.0 \n", - "38877 0.0 0.000000e+00 0.0 \n", - "38878 0.0 0.000000e+00 0.0 \n", - "38879 0.0 -1.265905e-10 -2.0 \n", - "\n", - "[38880 rows x 13 columns]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAFCCAYAAAA9jy8lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIaklEQVR4nO3dd1wT9/8H8NcR9paNMhUE3AO14gA3Wq17W8X1tXZIW7XWX2sdrau2VlurbW0L1oV71D3B2YoKioIoCoIC4mAjK7nfHzQngQABktwlvJ+PBw8ludy9c37MvfO+z2BYlmVBCCGEEEKIQOjwHQAhhBBCCCHlUYJKCCGEEEIEhRJUQgghhBAiKJSgEkIIIYQQQaEElRBCCCGECAolqIQQQgghRFAoQSWEEEIIIYKiy3cAhBBCCOGXWCxGSUkJ32EQLaenpweRSKTQtpSgEkIIIQ0Uy7JIT09HVlYW36GQBsLS0hIODg5gGKba7ShBJYQQQhooaXJqZ2cHY2PjGpMGQuqKZVkUFBQgIyMDAODo6Fjt9pSgEkIIIQ2QWCzmklNra2u+wyENgJGREQAgIyMDdnZ21d7up0FShBBCSAMk7XNqbGzMcySkIZG2t5r6PFOCSgghhDRgdFufqJOi7Y0SVEIIIYQQIiiUoBJCCCGEEEGhBJUQQgghWiMgIAAff/wx32FUKykpCQzDIDo6mu9QBIsSVEIIIYRojKCgIDAMU+knISGB79CIEtE0U4QQQgjRKIGBgQgJCZF5zNbWlqdoiCpQBZUQQgghMl6XiNX2UxcGBgZwcHCQ+alqTs3MzExMnjwZjRo1grGxMQYOHIgHDx4AKJs83tbWFvv27eO2b9euHezs7Ljfr169Cj09PeTl5VUZT0hICHx8fGBoaAhvb29s3LhR5vlr166hffv2MDQ0hK+vL6Kioirt4/Dhw/D09ISRkRF69eqFLVu2gGEYmVW+rly5gp49e8LIyAjOzs6YM2cO8vPzFTpnmoYqqIQQQgiREbDxktqO9W+wv0r3HxQUhAcPHuDw4cMwNzfHggULMGjQIMTGxkJPTw89e/ZEeHg4Ro4ciczMTMTGxsLExASxsbFo0aIFwsPD0bFjR5iamsrd/+bNm7F48WJs2LAB7du3R1RUFGbOnAkTExNMmTIF+fn5GDx4MHr37o1t27YhMTERwcHBMvtISkrCqFGjEBwcjBkzZiAqKgrz5s2T2SYmJgYDBgzA119/jT/++APPnz/Hhx9+iA8//LBSNVkbUIJKCCGEEI1y5MgRmYRx4MCB2LNnT6XtpInp5cuX4efnBwDYvn07nJ2dcfDgQYwePRoBAQH47bffAAAXLlxA27Zt4eLigvDwcC5BDQgIqDKWr7/+Gt9//z1GjBgBAHB3d0dsbCx+/fVXTJkyBdu3b4dYLMaff/4JY2NjtGzZEk+ePMHs2bO5ffzyyy/w8vLCmjVrAABeXl64c+cOli9fzm2zZs0aTJgwgRsA5unpiR9//BH+/v7YtGkTDA0N63YyBYoSVEIIIYTICH+/O98hVKtXr17YtGkT97uJiYnc7eLi4qCrq4suXbpwj1lbW8PLywtxcXEAykb9BwcH48WLF4iIiEBAQABcXFwQERGB//3vf7hy5UqVswI8f/4cKSkpmD59OmbOnMk9XlpaCgsLCy6Gtm3byqzY1bVrV5n9xMfHo1OnTjKPde7cWeb3GzduICEhAdu3b+ceY1kWEokEiYmJ8PHxkRujpqIElRBCCCEyjPSqXiNdCExMTODh4VHjdizLVvm4dEWjVq1awdraGhEREYiIiMCyZcvg7OyM5cuXIzIyEq9fv0b37vITdolEAqDsNn/5JBgA1ye2qhiqiqeq2CUSCWbNmoU5c+ZUer2Li0uNx9A0lKASQgghRCu1aNECpaWl+Pfff7lb/C9fvsT9+/e5iiPDMOjZsycOHTqEO3fuoEePHjAzM0NJSQl++eUXdOjQAWZmZnL3b29vjyZNmuDRo0eYOHFilTFs3boVr1+/hpGREQDgn3/+kdnG29sbx44dk3ns+vXrMr936NABd+/eVSgx1wY0ip8QQgghWsnT0xNDhw7FzJkzcenSJdy6dQuTJk1CkyZNMHToUG67gIAA7NixA23atIG5uTmXtG7fvr3a/qcAsGTJEqxcuRLr16/H/fv3ERMTg5CQEKxduxYAMGHCBOjo6GD69OmIjY3FsWPH8N1338nsY9asWbh37x4WLFiA+/fvY/fu3QgNDQXwZu36BQsW4OrVq/jggw8QHR3N9a/96KOPlHfCBIQSVEIIIYRorZCQEHTs2BGDBw9G165dwbIsjh07Bj09PW6bXr16QSwWyySj/v7+EIvF8PevfpaBGTNm4Pfff0doaChat24Nf39/hIaGwt3dHQBgamqKv//+G7GxsWjfvj2++OILrF69WmYf7u7u2Lt3L/bv3482bdpg06ZN+OKLLwCUTakFAG3atEFERAQePHiAHj16oH379li0aBEcHR2VcZoEh2EV6RxBCCGEEK1SWFiIxMREuLu7a90IcG2wfPly/PLLL0hJSeE7FKVStN1RH1RCCCGEEJ5t3LgRnTp1grW1NS5fvow1a9bgww8/5Dss3lCCSgghhBDCswcPHuCbb77Bq1ev4OLigrlz52LhwoV8h8UbusVPCCGENEB0i5/wQdF2R4OkCCGEEEKIoFCCSgghhBBCBIUSVEIIIYQQIiiUoBJCCCGEEEGhBJUQQgghhAgKJaiEEEIIISoWHh4OhmGQlZWl1P0uWbIE7dq1U+o+hYASVEIIIYRolPT0dHz00Udo2rQpDAwM4OzsjCFDhuDs2bNKPU5AQAA+/vhjpe6TKIYm6ieEEEKIxkhKSkK3bt1gaWmJb7/9Fm3atEFJSQlOnjyJDz74APfu3VNrPCzLQiwWQ1eXUiplogoqIYQQQjTG+++/D4ZhcO3aNYwaNQrNmzdHy5Yt8emnn+Kff/7htktOTsbQoUNhamoKc3NzjBkzBs+ePeOel94a37p1K9zc3GBhYYFx48YhNzcXABAUFISIiAisX78eDMOAYRgkJSVxt+pPnjwJX19fGBgY4OLFiygqKsKcOXNgZ2cHQ0NDdO/eHZGRkbV6b9nZ2fjf//4HOzs7mJubo3fv3rh165bMNqtWrYK9vT3MzMwwffp0FBYWyjxfWlqKOXPmwNLSEtbW1liwYAGmTJmCYcOGcduwLItvv/0WTZs2hZGREdq2bYu9e/fWKlZVowSVEEIIITKKi4vV9lMbr169wokTJ/DBBx/AxMSk0vOWlpYAyhKwYcOG4dWrV4iIiMDp06fx8OFDjB07Vmb7hw8f4uDBgzhy5AiOHDmCiIgIrFq1CgCwfv16dO3aFTNnzkRaWhrS0tLg7OzMvfazzz7DypUrERcXhzZt2uCzzz7Dvn37sGXLFty8eRMeHh4YMGAAXr16pdB7Y1kWb7/9NtLT03Hs2DHcuHEDHTp0QJ8+fbh97N69G4sXL8by5ctx/fp1ODo6YuPGjTL7Wb16NbZv346QkBBcvnwZOTk5OHjwoMw2X375JUJCQrBp0ybcvXsXn3zyCSZNmoSIiAiFYlUHqkcTQgghRMbKlSvVdqzFixcrvG1CQgJYloW3t3e12505cwa3b99GYmIil1Ru3boVLVu2RGRkJDp16gQAkEgkCA0NhZmZGQDg3XffxdmzZ7F8+XJYWFhAX18fxsbGcHBwqHSMZcuWoV+/fgCA/Px8bNq0CaGhoRg4cCAAYPPmzTh9+jT++OMPzJ8/v8b3dv78ecTExCAjIwMGBgYAgO+++w4HDx7E3r178b///Q/r1q3DtGnTMGPGDADAN998gzNnzshUUX/66ScsXLgQw4cPBwBs2LABx44d457Pz8/H2rVrce7cOXTt2hUA0LRpU1y6dAm//vor/P39a4xVHShBJYQQQohGYFkWAMAwTLXbxcXFwdnZWabi2aJFC1haWiIuLo5LUN3c3LjkFAAcHR2RkZGhUCy+vr7c3x8+fIiSkhJ069aNe0xPTw+dO3dGXFycQvu7ceMG8vLyYG1tLfP469ev8fDhQ+59vffeezLPd+3aFefPnwdQ1kXg2bNn6Ny5M/e8SCRCx44dIZFIAACxsbEoLCzkkmup4uJitG/fXqFY1YESVEIIIYTIWLhwId8hyOXp6QmGYRAXFyfTp7IilmXlJrEVH9fT05N5nmEYLpGrSfkuBlUlzlXFIY9EIoGjoyPCw8MrPSftuqAoeXGUPw4AHD16FE2aNJHZTlq5FQLqg0oIIYQQGfr6+mr7qQ0rKysMGDAAP//8M/Lz8ys9L51jtEWLFkhOTkZKSgr3XGxsLLKzs+Hj41Or8yAWi2vczsPDA/r6+rh06RL3WElJCa5fv67w8Tp06ID09HTo6urCw8ND5sfGxgYA4OPjIzMQDIDM7xYWFrC3t8e1a9e4x8RiMaKiorjfW7RoAQMDAyQnJ1c6TvmKM9+ogkoIIYQQjbFx40b4+fmhc+fOWLZsGdq0aYPS0lKcPn0amzZtQlxcHPr27Ys2bdpg4sSJWLduHUpLS/H+++/D399f5tZ8Tdzc3PDvv/8iKSkJpqamsLKykrudiYkJZs+ejfnz58PKygouLi749ttvUVBQgOnTpyt0rL59+6Jr164YNmwYVq9eDS8vL6SmpuLYsWMYNmwYfH19ERwcjClTpsDX1xfdu3fH9u3bcffuXTRt2pTbz0cffYSVK1fCw8MD3t7e+Omnn5CZmclVVc3MzDBv3jx88sknkEgk6N69O3JycnDlyhWYmppiypQpCp8fVaIElRBCCCEaw93dHTdv3sTy5csxd+5cpKWlwdbWFh07dsSmTZsAlN3iPnjwID766CP07NkTOjo6CAwMxE8//VSrY82bNw9TpkxBixYt8Pr1ayQmJla57apVqyCRSPDuu+8iNzcXvr6+OHnyJBo1aqTQsRiGwbFjx/DFF19g2rRpeP78ORwcHNCzZ0/Y29sDAMaOHYuHDx9iwYIFKCwsxMiRIzF79mycPHmS28+CBQuQnp6OyZMnQyQS4X//+x8GDBgAkUjEbfP111/Dzs4OK1euxKNHj2BpaYkOHTrg//7v/2p1flSJYct3TCCEEEJIg1BYWIjExES4u7vD0NCQ73CIikgkEvj4+GDMmDH4+uuv+Q5H4XZHFVRCCCGEEC3x+PFjnDp1Cv7+/igqKsKGDRuQmJiICRMm8B1ardAgKUIIIYQQLaGjo4PQ0FB06tQJ3bp1Q0xMDM6cOVOrwWFCQBVUQgghhBAt4ezsjMuXL/MdRr1RBZUQQgghhAgKJaiEEEIIIURQKEElhBBCCCGCQgkqIYQQQggRFEpQCSGEEEKIoFCCSgghhBBCBIUSVEIIIYRoDekyp9ogNDQUlpaWfIfBC0pQCSGEEKIxgoKCMGzYsCqfT0tLw8CBAxXalzYls9qGJuonhBBCiNZwcHDgOwSiBFRBJYQQQojWKF8VLS4uxocffghHR0cYGhrCzc0NK1euBAC4ubkBAIYPHw6GYbjfAeDvv/9Gx44dYWhoiKZNm2Lp0qUoLS2VOcbvv/+O4cOHw9jYGJ6enjh8+HC1cRUXF+Ozzz5DkyZNYGJigi5duiA8PFxmm9DQULi4uMDY2BjDhw/Hy5cvK+3nm2++gZ2dHczMzDBjxgx8/vnnaNeuncw2ISEh8PHxgaGhIby9vbFx40bFTp6AUIJKCCGEEBnFxcVV/pRP1GratqSkpMZtVenHH3/E4cOHsXv3bsTHx2Pbtm1cIhoZGQmgLJlLS0vjfj958iQmTZqEOXPmIDY2Fr/++itCQ0OxfPlymX0vXboUY8aMwe3btzFo0CBMnDgRr169qjKWqVOn4vLlywgLC8Pt27cxevRoBAYG4sGDBwCAf//9F9OmTcP777+P6Oho9OrVC998843MPrZv347ly5dj9erVuHHjBlxcXLBp0yaZbTZv3owvvvgCy5cvR1xcHFasWIFFixZhy5Yt9TqX6sawLMvyHQQhhBBC1KuwsBCJiYlwd3eHoaGhzHNLly6t8nWenp6YMGEC9/uKFSsqJaJSrq6uCAoK4n5fs2YNCgoKZLZZvHhxreIOCgpCVlZWlX1HGYbBgQMHMGzYMMyZMwd3797FmTNnwDBMtdtK9ezZEwMHDsTChQu5x7Zt24bPPvsMqamp3Ou+/PJLfP311wCA/Px8mJmZ4dixYwgMDKx0nIcPH8LT0xNPnjxB48aNucf79u2Lzp07Y8WKFZgwYQIyMzNx/Phx7vlx48bhxIkTyMrKAgC89dZb8PX1xYYNG7htunfvjry8PERHRwMAXFxcsHr1aowfP57b5ptvvsGxY8dw5cqVKs6q+lTX7sqjCqqGu3DhAoYMGYLGjRvL7ezNsiyWLFmCxo0bw8jICAEBAbh7967MNkVFRfjoo49gY2MDExMTvPPOO3jy5Ika3wURGmW0q99++w0BAQEwNzcHwzDcByxp2Orbtl69eoWPPvoIXl5eMDY2houLC+bMmYPs7Gw1vxOiCYKCghAdHQ0vLy/MmTMHp06dqvE1N27cwLJly2Bqasr9zJw5E2lpaTLJdZs2bbi/m5iYwMzMDBkZGXL3efPmTbAsi+bNm8vsNyIiAg8fPgQAxMXFoWvXrjKvq/h7fHw8OnfuLPNY+d+fP3+OlJQUTJ8+XeY433zzDXccTUGDpDRcfn4+2rZti6lTp2LkyJGVnv/222+xdu1ahIaGonnz5vjmm2/Qr18/xMfHw8zMDADw8ccf4++//0ZYWBisra0xd+5cDB48GDdu3IBIJFL3WyICoIx2VVBQgMDAQAQGBspUIkjDVt+2lZqaitTUVHz33Xdo0aIFHj9+jPfeew+pqanYu3cvD+9IO1X3f1ZHR7a2NW/evCq3rVi1DA4Orl9gtdShQwckJibi+PHjOHPmDMaMGYO+fftW21YkEgmWLl2KESNGVHqufMVPT09P5jmGYSCRSKrcp0gkkntdNTU1BVD25UwRFc9p+ddJj79582Z06dJFZjuNu56zRGsAYA8cOMD9LpFIWAcHB3bVqlXcY4WFhayFhQX7yy+/sCzLsllZWayenh4bFhbGbfP06VNWR0eHPXHihNpiJ8JVl3ZV3vnz51kAbGZmphqiJZqkvm1Lavfu3ay+vj5bUlKiynC1zuvXr9nY2Fj29evXfIdSK1OmTGGHDh1a5fMV21V5J06cYAGwL1++ZFmWZfX09Ni9e/fKbOPn58dOmzat2hjkHcPCwoINCQmRu318fDwLgL1w4UKV+xw/fjw7cOBAmcfGjRvHWlhYcL936dKF/fDDD2W26d69O9u2bVvu9yZNmrDLli2rNn4+KdruqIKqxRITE5Geno7+/ftzjxkYGMDf3x9XrlzBrFmzcOPGDZSUlMhs07hxY7Rq1QpXrlzBgAED+AidCJgi7YqQuqhr28rOzoa5uTl0demS1lBkZ2dzfS6lrKys4OLiIvPYDz/8AEdHR7Rr1w46OjrYs2cPHBwcuMnv3dzccPbsWXTr1g0GBgZo1KgRvvrqKwwePBjOzs4YPXo0dHR0cPv2bcTExFQatKSo5s2bY+LEiZg8eTK+//57tG/fHi9evMC5c+fQunVrDBo0CHPmzIGfnx++/fZbDBs2DKdOncKJEydk9vPRRx9h5syZ8PX1hZ+fH3bt2oXbt2+jadOm3DZLlizBnDlzYG5ujoEDB6KoqAjXr19HZmYmPv300zrFzwfqg6rF0tPTAQD29vYyj9vb23PPpaenQ19fH40aNapyG0LKU6RdEVIXdWlbL1++xNdff01fjBqY8PBwtG/fXubnq6++qrSdqakpVq9eDV9fX3Tq1AlJSUk4duwY103h+++/x+nTp+Hs7Iz27dsDAAYMGIAjR47g9OnT6NSpE9566y2sXbsWrq6u9Yo5JCQEkydPxty5c+Hl5YV33nkH//77L5ydnQGUDYD6/fff8dNPP6Fdu3Y4deoUvvzyS5l9TJw4EQsXLsS8efO47gtBQUEyXQ9mzJiB33//HaGhoWjdujX8/f0RGhoKd3f3esWvbvR1swGQ119F3mjG2m5DGra6tCtCFKFo28rJycHbb7+NFi1a1HokONFcoaGhCA0NrfJ5tlyfzJkzZ2LmzJlVbjtkyBAMGTKk0uMDBgyo9g4iK6e/aE0DQfX09LB06dJqZ0iYNm0apk2bJvPY3LlzZX5ftGgRFi1axP3er18/eHh4yGwzYcIEmZkWNBFVULWYdDWNipWHjIwMrkLh4OCA4uJiZGZmVrkNIeUp0q4IqYvatK3c3FwEBgbC1NQUBw4cqDRghRBtVFBQgLVr1+Lu3bu4d+8eFi9ejDNnzmDKlCl8h6Z0lKBqEJZlER4ervBIP3d3dzg4OOD06dPcY8XFxYiIiICfnx8AoGPHjtDT05PZJi0tDXfu3OG2IdpNFe2KkNq2K0DxtpWTk4P+/ftDX18fhw8frnYuRUK0CcMwOHbsGHr06IGOHTvi77//xr59+9C3b1++Q1M6usWvQU6cOIFBgwbh+PHj3ETAeXl5SEhI4LZJTExEdHQ011n8448/xooVK+Dp6QlPT0+sWLECxsbGXOnfwsIC06dPx9y5c2FtbQ0rKyvMmzcPrVu31soGTypTRbsCyqpg6enp3H5iYmJgZmYGFxcXWFlZqfdNErWT166A+ret3Nxc9O/fHwUFBdi2bRtycnKQk5MDALC1tdW8qXQIqQUjIyOcOXOG7zDUQ4UzCRAlmzZtGguAnT59OveYdAqfij9TpkxhWbZs2pbFixezDg4OrIGBAduzZ082JiZGZr+vX79mP/zwQ9bKyoo1MjJiBw8ezCYnJ6vzrREeqapdLV68WO4+qpqGhWgXee2KZevftqp6PQA2MTFRje9Q82nqNFNEsyna7mipUwGTSCTYtGkT1/H622+/RU5ODiwsLDB//nwAgKWlJWbPnl1p4mRCqkLtiqgCtSvNo+iSk4Qok6LtjhJUAcvNzYWbmxtevXoFhmGgo6MDsVgMkUgEiUQClmVhZWWFpKQkbvUeQmpC7YqoArUrzUMJKuGDou2OvsYKmJmZGaKiotC5c2ewLAuxWAwA3J9+fn6Ijo6mD3tSK9J21bVrV2pXRGmk7crPz4/aFSGk3ihBFTgzMzOMGjWq0hQqhoaGCA8P5yb4JaQ2mjRpgvfff79Su9LX18fZs2epXZE6cXFxwZo1ayq1K2NjY/q8IoTUCiWoApaZmYnQ0FDExcWhpKRE5rnXr19jy5YtPEVGNJlYLMaePXtw7ty5Su2qqKgIq1ev5qpehNRGZGQkfv/990rtKj8/H9euXeMpKkKIJqIEVaCkyWlOTg5SUlIAAN7e3pgzZw66du0KoGw1jcjISD7DJBpGmpzGx8dzU/1I21WfPn0AAKdPn8aePXsoSSW1EhkZiWPHjuH+/fsA3rQr6So9hw8f5jM8QmolNDQUlpaWfIfRoFGCKlBnzpxBTk4ObGxs8Nlnn2HLli0YO3YsrKyscO7cOXz++efw8vLCqVOnkJuby3e4REPcuXMH8fHx0NXVxYcffijTro4ePYq1a9fCx8cH8fHxuHPnDt/hEg2Rm5uLU6dOAQBGjRqF0NBQrl3t2bMH27dvxzvvvMNzlESbBAUFgWEY7sfa2hqBgYG4ffu2UvY/duxY7ssW4QdN1C9QQ4YMga6uLvr27QszMzMUFxdj5cqVAAAdHR2sWLEC58+fh5ubGw06IApr06YNXr58CVdXVzRr1kymXTEMg08++QQPHz7E48eP0aZNG56jJZrCzMwM48ePR1JSEnr16oWSkhKZdqXpa4KT6onFwMWLQFoa4OgI9OgBqGO9hMDAQISEhAAoWxjkyy+/xODBg5GcnFzvfRsZGcHIyKje+yF1RxVUASkqKuL+bmhoiOHDh1eZfDIMg969e6Np06ZyX0+IlFgs5voESttNs2bNqty+WbNm6N27NxiGAQCUlJTQ7X4iV/nPnKZNm8q0G9Iw7N8PuLkBvXoBEyaU/enmVva4qhkYGMDBwQEODg5o164dFixYgJSUFDx//hwAsGDBAjRv3hzGxsZo2rQpFi1aJNM/+tatW+jVqxfMzMxgbm6Ojh074vr16wAq3+JfsmQJ2rVrh61bt8LNzQ0WFhYYN24c3cFUIUpQBSIzMxMbN27ElStX6vT6Fy9eYMOGDdQnlciQ9jndtWtXpYEriigpKcGuXbuoTyqpJDIyEhs2bMCLFy/4DoXwZP9+YNQo4MkT2cefPi17XB1JqlReXh62b98ODw8PWFtbAyir7IeGhiI2Nhbr16/H5s2b8cMPP3CvmThxIpycnBAZGYkbN27g888/rzQDRXkPHz7EwYMHceTIERw5cgQRERFYtWqVyt9bQ0UJqgCUHxAVFRVVp0QiNjYWeXl5OHbsGCWpBIDsgKikpCQ8e/as1vt49uwZkpKSEB8fT0kq4UgHROXl5SE2NpbvcAgPxGIgOBiQt9SP9LGPPy7bTlWOHDkCU1NTmJqawszMDIcPH8auXbu4lcq+/PJL+Pn5wc3NDUOGDMHcuXOxe/du7vXJycno27cvvL294enpidGjR6Nt27ZVHk8ikSA0NBStWrVCjx498O677+Ls2bOqe4MNHCWoPCufnNrY2GDy5MnVfoOrSo8ePeDn5wcAlKQSmeRUJBJh/PjxcHJyqvV+nJycMH78eIhEIkpSCYA3ySlQNvl+jx49eI6I8OHixcqV0/JYFkhJKdtOVXr16oXo6GhER0fj33//Rf/+/TFw4EA8fvwYALB37150794dDg4OMDU1xaJFi2T6p3766aeYMWMG+vbti1WrVuHhw4fVHq/imA9HR0dkZGSo5s0RSlD5JC85reuAJ4Zh0LdvX0pSidzktLo+pzVp1qwZJakEQOXktG/fvtTntIFKS1PudnVhYmICDw8PeHh4oHPnzvjjjz+Qn5+PzZs3459//sG4ceMwcOBAHDlyBFFRUfjiiy9QXFzMvX7JkiW4e/cu3n77bZw7dw4tWrTAgQMHqjxexeIRwzCQSCQqe38NHSWoPFFmcipFSSpRdnIqRUkqoeSUlOfoqNztlIFhGOjo6OD169e4fPkyXF1d8cUXX8DX1xeenp5cZbW85s2b45NPPsGpU6cwYsQIblYAwj9KUHny8OFDpSanUhWT1Fu3btE3vAbk1atXSEpKUmpyKlU+SU1KSsKrV6+Utm8ibBKJBLdu3QJAySkp06MH4OQEVNUMGAZwdi7bTlWKioqQnp6O9PR0xMXF4aOPPkJeXh6GDBkCDw8PJCcnIywsDA8fPsSPP/4oUx19/fo1PvzwQ4SHh+Px48e4fPkyIiMj4ePjo7qASa3QPKg88fX1hY6ODjw9PZU+j6k0SbWwsECbNm24DuNE+9na2uLdd99FYWGhUpNTKWmSamhoCFtbW6XvnwiTjo4OJk2ahNu3b6NTp06UnBKIRMD69WWj9RlGdrCUtHmsW6fa+VBPnDgBx/9KtGZmZvD29saePXsQEBAAAPjkk0/w4YcfoqioCG+//TYWLVqEJUuW/Be/CC9fvsTkyZPx7Nkz2NjYYMSIEVi6dKnqAia1wrCsvDF4RBWysrJgaGgIQ0PDWr+2/ITqCxcuhL6+fq338ezZM9jb29f6dUTYxGIxXr16VaeEURnt6vnz57CysoJIHTNzE7Wq62eGMtoVUb3CwkIkJibC3d29TtcloGwqqeBg2QFTzs5lyemIEcqJk2gXRdsdldbUJDMzEyEhIdi+fTsKCwvVfvyrV6/il19+oT6pWkba5/SPP/5Aamqq2o+fmpqKP/74g/qkaqHIyEj88ssvuHr1Kt+hEAEbMQJISgLOnwd27Cj7MzGRklNSf3SLXw3KD4jS19dHaWmp2mOQrnYhHeTQqVMntcdAlKvigKjXr1+rPYbXr1+jtLSUGzg1evRoqqRqgfIDovLy8niOhgidSAT8d1edEKWhCqqKyRutb2pqqvY4+vXrh65duwKg0f3aQFWj9WuLRvdrH3mj9QkhRN0oQVUhVUwlVVcMw1CSqiWEkpxKUZKqPWgqKUKIUFCCqiJCSk6lKEnVfEJLTqUoSdV8lJwSQoSEElQVKS0thVgsFkxyKlUxSS2/qgYRPolEgpKSEkElp1Llk9SSkhKaf1fDFBUVAaDklBAiDDRISkVsbW0RFBQEAwMDwSSnUtIktXnz5nBzc+M7HFILenp6GDduHJ49ewYnJye+w6mkWbNmCAoKgr29faVlAYmwde/eHU5OTnB1daXklBDCO6qgKlFmZiaSkpK4321sbASXnEoxDCOTnBYVFSE2Npa/gEiVxGIxbt++DemUxXp6eoJMTqWcnJy45JRlWdy+fZtu9wtUbGwsVzkFADc3N0pOCSGCQAmqkkj7nG7fvl3uer9CVlJSgm3btmHPnj3UJ1VgpH1ODxw4gPDwcL7DqbXw8HAcOHCA+qQKUGRkJPbs2YNt27ahpKSE73AIIUQGJahKUH5AlKWlJaysrPgOqVZ0dXXh7OwMgAZOCUn5AVG6urpwcXHhO6Rac3FxoYFTAlR+QJSLiwt0dam3F9FODMPg4MGDfIfRoLi5uWHdunX13g8lqPUkxNH6tUWj+4WnYnI6btw4QQ2IUhSN7hceGq1PtEFQUBAYhgHDMNDT04O9vT369euHP//8U2aAZlpaGgYOHMhbnKGhobC0tKzTa1mWxW+//YYuXbrA1NQUlpaW8PX1xbp161BQUCCIGFWJEtR60IbkVIqSVOHQluRUipJU4aDklKgKy7IIDw/n+sqrQ2BgINLS0pCUlITjx4+jV69eCA4OxuDBg7kVGx0cHGBgYKD0Y4vFYpXPVPLuu+/i448/xtChQ3H+/HlER0dj0aJFOHToEE6dOqXSY8uj7ll/KEGto5ycHK1JTqXkJalRUVE8R9WwsCyLvXv3ak1yKlUxSd27d69aL2QEiIqKouSUqMyJEyfQq1cvnDx5Um3HNDAwgIODA5o0aYIOHTrg//7v/3Do0CEcP34coaGhAGRv8RcXF+PDDz+Eo6MjDA0N4ebmhpUrV3L7y8rKwv/+9z/Y29vD0NAQrVq1wpEjRwC8qTIeOXIELVq0gIGBAR4/fozi4mJ89tlnaNKkCUxMTNClSxduvEB4eDimTp2K7Oxsrtq7ZMkSLpaqXgcAu3fvxvbt27Fz50783//9Hzp16gQ3NzcMHToU586dQ69evQCUTT24bNkyODk5wcDAAO3atcOJEye4/SQlJYFhGOzfvx+9evWCsbEx2rZti6tXr9YYo5ubG7755hsEBQXBwsICM2fOBADs27cPLVu2hIGBAdzc3PD9998r85+VQwlqHZmYmMDJyUlrklOp8kmqiYkJmjRpwndIDQrDMPD09NSq5FRKmqTq6urC09OTkiM1k14IKTklqrB3716ZP/nSu3dvtG3bFvv376/03I8//ojDhw9j9+7diI+Px7Zt27jZbCQSCQYOHIgrV65g27ZtiI2NxapVqyASibjXFxQUYOXKlfj9999x9+5d2NnZYerUqbh8+TLCwsJw+/ZtjB49GoGBgXjw4AH8/Pywbt06mJubIy0tDWlpaZg3bx4AVPs6ANi+fTu8vLwwdOjQSu+DYRhYWFgAANavX4/vv/8e3333HW7fvo0BAwbgnXfe4fYj9cUXX2DevHmIjo5G8+bNMX78eJSWllYbIwCsWbMGrVq1wo0bN7Bo0SLcuHEDY8aMwbhx4xATE4MlS5Zg0aJF3BcCZaKe8XUkEokwYsQIFBYWwsTEhO9wlKp8kqotibcm6dChAzw9PbXy3Ddr1gxz5szRyvcmdHZ2dpg1axZMTU0pOSX1JpFIsGnTJmRlZQGQTVDd3d0BAJaWlpg9ezZ0dNRbC/P29sbt27crPZ6cnAxPT090794dDMPA1dWVe+7MmTO4du0a4uLi0Lx5cwBA06ZNZV5fUlKCjRs3om3btgCAhw8fYufOnXjy5AkaN24MAJg3bx5OnDiBkJAQrFixAhYWFmAYBg4ODtx+FHndgwcP4OXlVeN7/e6777BgwQKMGzcOALB69WqcP38e69atw88//8xtN2/ePLz99tsAgKVLl6Jly5ZISEiAt7e33BilevfuLZOwTpw4EX369MGiRYsAAM2bN0dsbCzWrFmDoKCgGuOtDUpQayEzMxM3b95E7969wTAMRCKR1iWnUgzDyCQRiYmJePnyJXx9fXmMSjuJxWKcOXMG3bt359qTNidw5d9bfn4+Ll26hL59+8pUKohyXL9+HdbW1lzCoM3tiqhXfn4+vvrqK7x69QoMw3BJaF5eHhYtWgSWZWFlZcXLHUaWZeV+CQsKCkK/fv3g5eWFwMBADB48GP379wcAREdHw8nJiUtO5dHX10ebNm2432/evAmWZSu9pqioCNbW1lXuR5HXVfUeysvJyUFqaiq6desm83i3bt1w69YtmcfKx+3o6AgAyMjIgLe3d7XHqHjNj4uLq1TV7datG9atWwexWKzUz3FKUBVUfkCUSCRCQEAA3yGpzatXr7Bjxw6UlpaCZVl06tSJ75C0RvkBUcnJyZgxY0aDqW6xLIsdO3YgNTUVmZmZGD16NCWpSiQdEKWrq4vZs2dr3PR3RNjMzMwQFRWF8ePH4+rVq9zAR7FYDIZh4Ofnh7CwMF6+FMXFxXFfysrr0KEDEhMTcfz4cZw5cwZjxoxB3759sXfvXhgZGdW4XyMjI5nPZ4lEApFIhBs3blT67DI1Na1yP4q8rnnz5oiLi6sxJgCVrhnyktvyK/tJn1NkkFfFIpy8fatqPAH1QVVAxdH6HTt25DsktWrUqBGXlNLofuUpn5yKRCKuMt9QMAyD3r170+h+FSg/Wr9z585o1KgRzxERbeTi4oLz58/D2NhY5nFjY2OEh4dz82ur07lz5xATE4ORI0fKfd7c3Bxjx47F5s2bsWvXLuzbtw+vXr1CmzZt8OTJE9y/f1/hY7Vv3x5isRgZGRnw8PCQ+ZHeLtfX16/0uabI6yZMmID79+/j0KFDlY7Lsiyys7Nhbm6Oxo0b49KlSzLPX7lyBT4+Pgq/D3kxVqVFixZyj9e8eXOlFxgoQa2BNk0lVVc0BZXyVUxOx48fr1UDohRFU1ApH00lRdTp2rVryM/Pl3ksPz8f165dU/mxi4qKkJ6ejqdPn+LmzZtYsWIFhg4disGDB2Py5MmVtv/hhx8QFhaGe/fu4f79+9izZw8cHBxgaWkJf39/9OzZEyNHjsTp06e5Smv5EfEVNW/eHBMnTsTkyZOxf/9+JCYmIjIyEqtXr+b+D7q5uSEvLw9nz57FixcvUFBQoNDrxowZg7Fjx2L8+PFYuXIlrl+/jsePH+PIkSPo27cvzp8/DwCYP38+Vq9ejV27diE+Ph6ff/45oqOjERwcrPB5lBdjVebOnYuzZ8/i66+/xv3797FlyxZs2LBBpp+qslCCWg1KTt+gJFV5KDmVRUmq8lByStTt77//BgAMGzYMCQkJXP/Ew4cPq/zYJ06cgKOjI9zc3BAYGIjz58/jxx9/xKFDh+RW80xNTbF69Wr4+vqiU6dOSEpKwrFjx7j+s/v27UOnTp0wfvx4tGjRAp999lmNn0UhISGYPHky5s6dCy8vL7zzzjv4999/ueqxn58f3nvvPYwdOxa2trb49ttvFXodwzDYsWMH1q5diwMHDsDf3x9t2rTBkiVLMHToUAwYMAAAMGfOHMydOxdz585F69atceLECRw+fBienp4Kn8eqYpSnQ4cO2L17N8LCwtCqVSt89dVXWLZsmdIHSAEAw9JkhHKVlpZi48aNyMzMFERyWlxczM3XtnDhQujr6/MSB8uyOH36NDeH2sSJE+Hh4cFLLJrq6NGjuH79uiCSU6G0K+DNyFaxWAxfX19uxClRzIMHD7Bjxw4A/CenQmpXpGqFhYVITEyEu7s7DA0N67SPy5cv4/Hjxxg/fjwYhgHLsti5cydcXV0rDd4hBFC83VGCWo24uDiEh4dj0qRJvCWnLMtiy5YtSEtL41ZxkH7YOzo6YsqUKWq/CEmT1KysLIwcOZIGttRSVlYWtm/fjsDAQN6SUyG2K6AsST1x4gQmTpwoyKX3hEwsFmPfvn1o1KgRb8mpUNsVkU8ZCSohtaVou6NR/NXw8fGBl5eX2udwK08ikSArK0tmiTHp37OysrjRgOokvd3Psiyv50ZT8TU3YHlCbFdA2e1+vs+NphKJRBg1ahS3GgwfhNquCCGah64C5Uj7nEonHgbA+4VSJBIhMDBQ7nMDBw7k7cO+/Lx3LMviyJEj1Ce1CtI+p+WnDKF2VbXy5yYuLo76pFYjMjISR48e5aZ50dHR4bVCKeR2RQjRLJSg/keanD5+/BhHjx7lOxwZXl5eMite6OjowN3dvdoJhdXp3r17uHHjBg2ckkOanMbGxuLgwYPVjo5UN6G3q4KCAhw8eBCxsbGUpMohHRB1/fp13Lt3j+9wOEJvV4QQzUAJKiqP1n/nnXf4DkmG9Ja6FMuyCAwMFExfLm9vbxrdL0fF0fpjxoypNF8gn4TeroyNjTFmzBga3S9HxdH6Na0Go05Cb1eEEM3Q4BNUTZlKytbWlvt7hw4dYGdnx2M0smgKqso0ZSopIbcrgKagkkcTppISersihAhfg05QNSU5rahnz558h1AJJalvaEpyWpEQ2xVASWp5mpCcViTUdkUIEbYGnaAeO3ZM45JTAIKdDqRiknrixAlkZmbyHJX6RUVFaVxyCgi3XQGVk9SoqCi+Q1K7zMxMblUbTUlOAWG3K0KIcDXoaaaGDRuGo0ePYuDAgRqTnAqdNEnV0dFB48aNG+Qa4B07dkRGRga8vLw0JjnVBNIkNT4+Hh07duQ7HLVr1KgRRo4cidTUVPTp00cjklNCCKmrBldBLSkp4f5uYmKCMWPGUHKqZAzDoG/fvmjRogX3WPnzro3EYjEkEgmAsvc/aNAgSk5VoFmzZhg0aBCXnEkkEq2/3V/+/06LFi00pnJKiDZjGAYHDx7kOwyFLVmyBO3ateM7jFppUAlqZmYmfv755wZ5e5BP2dnZ2LRpk9b2SZX2Od23bx+XpBLVk0gk2Ldvn1b3SY2MjMSmTZuQnZ3NdyiECEpQUBCGDRvGdxgc6QIZDMNAV1cXLi4u+PTTT1FUVMR3aBqrwSSo0gFR2dnZuHr1KkpLS/kOqcGIiYlBZmamVg6cKj8gKj4+Hs+ePeM7pAbj2bNn3HnXxiRVOiAqMzMTMTExfIdDSJXEEjHCk8KxM2YnwpPCIZZo1/9FRYWEhCAtLQ2JiYnYuHEjtm7dim+++YbvsJRG3XdCG0SCWnG0/rvvvgtd3Qbd/VatunXrppWj++WN1nd0dOQ7rAbD0dFRa0f3lx+t37VrV3Tr1o3niAiRb3/cfritd0OvLb0wYf8E9NrSC27r3bA/bj9vMcXGxmLQoEEwNTWFvb093n33Xbx48QIA8Ouvv6JJkyaV7na98847mDJlCvf733//jY4dO8LQ0BBNmzbF0qVLayxsWVpawsHBAc7Ozhg8eDDeeecd3Lx5U2abTZs2oVmzZtDX14eXlxe2bt3KPZeUlASGYRAdHc09lpWVBYZhEB4eDgAIDw8HwzA4e/YsfH19YWxsDD8/P8THx8scZ9WqVbC3t4eZmRmmT5+OwsJCmecjIyPRr18/2NjYwMLCAv7+/pViZRgGv/zyC4YOHQoTExN888038PDwwHfffSez3Z07d6Cjo4OHDx9We35qS+sTVE2dSkqbaOMUVJo6lZS20cYpqComp/369aM+p0SQ9sftx6jdo/Ak54nM409znmLU7lG8JKlpaWnw9/dHu3btcP36dZw4cQLPnj3DmDFjAACjR4/GixcvcP78ee41mZmZOHnyJCZOnAgAOHnyJCZNmoQ5c+YgNjYWv/76K0JDQ7F8+XKF47h//z7Onz+PLl26cI8dOHAAwcHBmDt3Lu7cuYNZs2Zh6tSpMrEo6osvvsD333+P69evQ1dXF9OmTeOe2717NxYvXozly5fj+vXrcHR0xMaNG2Ven5ubiylTpuDixYv4559/4OnpiUGDBiE3N1dmu8WLF2Po0KGIiYnBtGnTMG3aNISEhMhs8+eff6JHjx5KvwZqdYJKyalwaFOSSsmpsGhTkkrJKdEUYokYwSeCwYKt9Jz0sY9PfKz22/2bNm1Chw4dsGLFCnh7e6N9+/b4888/cf78edy/fx9WVlYIDAzEjh07uNfs2bMHVlZW6NOnDwBg+fLl+PzzzzFlyhQ0bdoU/fr1w9dff41ff/212mOPHz8epqamMDQ0hJeXF1q2bImFCxdyz3/33XcICgrC+++/j+bNm+PTTz/FiBEjKlUkFbF8+XL4+/ujRYsW+Pzzz3HlyhWuSrpu3TpMmzYNM2bMgJeXF7755huZQcsA0Lt3b0yaNAk+Pj7w8fHBr7/+ioKCAkRERMhsN2HCBEybNg1NmzaFq6srpk6divj4eFy7dg1A2W3/bdu2ySTIyqLVCWpsbCwlpwJSMUmNjIzUyL7AGRkZePjwISWnAlI+SX348CEyMjL4DqnWSktLuS9tlJwSobuYfLFS5bQ8FixSclJwMfmiGqMCbty4gfPnz8PU1JT7kS4FLL0FPXHiROzbt48bwLR9+3aMGzcOIpGI28eyZctk9jFz5kykpaWhoKCgymP/8MMPiI6Oxq1bt3DkyBHcv38f7777Lvd8XFxcpe463bp1Q1xcXK3fZ5s2bbi/S7uWST/34uLiuOusVMXfMzIy8N5776F58+awsLCAhYUF8vLykJycLLOdr6+vzO+Ojo54++238eeffwIAjhw5gsLCQowePbrW76EmWt0R08/PDzo6OmjVqhUlpwIhTVLNzMzQunVrjewLLO37yLIsJacCIk1SGYbRyL7Aurq6mDx5MmJiYvDWW29RckoELS03TanbKYtEIsGQIUOwevXqSs9JPxeGDBkCiUSCo0ePolOnTrh48SLWrl0rs4+lS5dixIgRlfZR3cITDg4O8PDwAAB4eXkhNzcX48eP5/puAqj0/5plWe4xHR0d7jGpqgYm6enpcX8vP+2eooKCgvD8+XOsW7cOrq6uMDAwQNeuXVFcXCyznYmJSaXXzpgxA++++y5++OEHhISEYOzYsTA2Nlb42IrSvOygBtnZ2TA2Noaenh4Yhqn0rYHwT96/y8uXL2Ftbc1TRDUTi8XIycnhFh5o2rQpzxEReSp+YcjMzIS5uTlXGRGi8m3f1NSUPrOIRnA0U+xLoKLbKUuHDh2wb98+uLm5VVkAMTIywogRI7B9+3YkJCSgefPmMot/dOjQAfHx8VxSWVfSz53Xr18DAHx8fHDp0iVMnjyZ2+bKlSvw8fEBANja2gIo60fbvn17AJAZMKUoHx8f/PPPPzLH+eeff2S2uXjxIjZu3IhBgwYBAFJSUriBZDUZNGgQTExMsGnTJhw/fhwXLlyodYyK0KoENTMzE1u2bIG1tTXGjRsn8w2DCFd0dDQOHz6MgQMHolOnTnyHU4m0z+mTJ08QFBQEGxsbvkMiCnj+/Dm2bNkCJycnjB49WpBJamRkJI4fP4533nlH4ybRJg1bD5cecDJ3wtOcp3L7oTJg4GTuhB4uPVQWQ3Z2dqUEbtasWdi8eTPGjx+P+fPnw8bGBgkJCQgLC8PmzZu5z4GJEydiyJAhuHv3LiZNmiSzj6+++gqDBw+Gs7MzRo8eDR0dHdy+fRsxMTHVThuVlZWF9PR0SCQSPHjwAMuWLUPz5s25BHT+/PkYM2YMOnTogD59+uDvv//G/v37cebMGQBlifNbb72FVatWwc3NDS9evMCXX35Z6/MSHByMKVOmwNfXF927d8f27dtx9+5dmcKKh4cHtm7dCl9fX+Tk5GD+/PkwMjJSaP8ikQhBQUFYuHAhPDw8VPalWmv6oEqT0+zsbGRnZ9PkuBrk+fPnYFlWkAOnyg+IKiwspAnTNUhOTg4KCwsFO3BKOiCKZVk8f/6c73AIqRWRjgjrA9cDKEtGy5P+vi5wHUQ6qvtiGB4ejvbt28v8fPXVV7h8+TLEYjEGDBiAVq1aITg4GBYWFtwtdKBskJCVlRXi4+MxYcIEmf0OGDAAR44cwenTp9GpUye89dZbWLt2LVxdXauNZ+rUqXB0dISTkxPGjx+Pli1b4vjx41wld9iwYVi/fj3WrFmDli1b4tdff0VISAgCAgK4ffz5558oKSmBr68vgoOD6zSP6tixY/HVV19hwYIF6NixIx4/fozZs2fLbPPnn38iMzMT7du3x7vvvos5c+bAzs5O4WNMnz4dxcXFKhkcJcWw5Ts7aKjyyam1tTWmTJmidX1Oi4uLsXLlSgDAwoULoa+vz3NEysOyLE6fPo2rV68CKLt9IIRKakMYra/N7QoAVzkRi8Xw8vISTCVV20fra3u70haFhYVITEyEu7t7tX0rq7M/bj+CTwTLDJhyNnfGusB1GOFTuQ8n0Q6XL19GQEAAnjx5Ant7+1q9VtF2p/G3+BtCcqrtpAOnAODq1avchZvPJLUhJKcNgYeHB8aNG4ewsDCuksp3kqrtySlpWEb4jMBQr6G4mHwRablpcDRzRA+XHiqtnBL+FBUVISUlBYsWLcKYMWNqnZzWhkbf4qfkVHsIaZ5USk61izRJFcI8qZScEm0k0hEhwC0A41uPR4BbACWnWmznzp3w8vJCdnY2vv32W5UeS6MT1NevX6OwsJCSUy1RMUnlq79naWkp8vLyKDnVIuWT1Ly8PN7m35W2aUpOCSGaKCgoCGKxGDdu3ECTJk1UeiyNvsXfuHFjTJkyBaamppScaglpkuru7l7vKT7qysDAAJMmTUJGRgZcXFx4iYEon4eHByZPngw7OzsYGBjwEkOfPn3g6uoKDw8PSk4JIaQaGldBzczMxNOnT7nfHR0dKTnVMgzDwNPTk7uAl5aWIj4+XqXHFIvFMqt5GBoaUnKqhVxcXGQ65cfFxan8dn98fDxXsa3YtgkhhMinUQlqZmYmQkNDsXXrVqSmpvIdDlEDsViMsLAwhIWFqaxPqrTP6e7du7mZBIj2u3r1Knbv3q3SPqmRkZFc+xXaNFeEECJkgkxQL1y4gCFDhqBx48ZgGAYHDx7kktOcnByYmZlR1fQ/S5YsAcMwMj8ODg58h6U0Ojo63Nxs9R04tWnTJrRp0wbm5uYwNzdH165dceTIEZkBUbWZB07bPX36FJMmTYK1tTWMjY3Rrl073Lhxg++wlMbOzk4lA6dWrlwJhmEwfvx4bkCUvb29zByMDZWbm1ulzyuGYfDBBx/wHZrgrFy5Ep06dYKZmRns7OwwbNgwld9JIkRIBPmJmZ+fj7Zt22LDhg0AgLy8PC45tbGxweTJkylBLadly5ZIS0vjfmJiYvgOSWmUObrfyckJq1atwvXr13H9+nUEBARg2LBhuHjxIg2IqiAzMxPdunWDnp4ejh8/jtjYWHz//fewtLTkOzSladasGcaPH6/UJDUyMhK//fYbPDw8kJiYCADw8/ND37596bY+ys5P+c+q06dPAwBGjx7Nc2TCExERgQ8++AD//PMPTp8+jdLSUvTv3x/5+fl8h0aIWghykNTAgQMxcOBA7vdz587B1dWVktMq6OrqalXVtCJlzZM6ZMgQ7u9isRht27aFnp4eUlNT8emnn1JyWs7q1avh7OyMkJAQ7jE3Nzf+AlIRaZK6c+fOes+TmpeXh4kTJ2LevHlYs2YNAEpOK5KuNS61atUqNGvWDP7+/jxFJFwnTpyQ+T0kJAR2dna4ceMGevbsyVNUhKiPICuoUtIpWQoKCig5rcaDBw/QuHFjuLu7Y9y4cXj06BHfISmdvEpqXW83syyLXbt2Ye/evSgpKcGsWbMoOa3g8OHD8PX1xejRo2FnZ4f27dtj8+bNfIelEvIqqXVZYO+DDz6Ar68vXrx4AaBslhFKTqtWXFyMbdu2Ydq0aXSOFCC9HlpZWfEcScMQFBSEYcOG8R1GgyboBNXY2BgAYG5uTslpFbp06YK//voLJ0+exObNm5Geng4/Pz+8fPmS79CUrnySamBgUKcVLGJiYmBmZobJkyfj6NGj+PXXXxEYGKiCaDXbo0ePsGnTJnh6euLkyZN47733MGfOHPz11198h6YS0iRVV1cXzs7OtU6YwsLCcPPmTSxbtgwGBgawsLCo034akoMHDyIrKwtBQUF8hyJ4LMvi008/Rffu3dGqVSu+wxGMlJQUTJ8+HY0bN4a+vj5cXV0RHBxcq+tfUlISGIZBdHR0vWIJDw8HwzDIysqq137IG4K8xS+lp6cHAOjVqxclp1Uo3xWidevW6Nq1K5o1a4YtW7bg008/5TEy1ZAmqZ07d65Tf0gvLy9ER0cjKysL27dvx+eff46uXbuiRYsWyg9Wg0kkEvj6+mLFihUAgPbt2+Pu3bvYtGkTJk+ezHN0qtGsWTN88MEHtW5XKSkpCA4OxqlTp+Dh4YH33nsPJ06coOS0Bn/88QcGDhyIxo0b8x2K4H344Ye4ffs2Ll26xHcoVSosLcSVlCvwc/aDoW7V66sry6NHj9C1a1c0b94cO3fuhLu7O+7evYv58+fj+PHj+Oeff6jarOEEV0HNzMzE5cuXZW6xGRkZ8RiRZjExMUHr1q3x4MEDvkNRGYZhZJKI1NRU3Lx5s9rXiMVinDt3DhKJBB4eHvD19cUPP/yAtm3bYv369SqOWPM4OjpWStp9fHyQnJzMU0TqUb5dFRYW4ty5czUOnNq9ezcyMjLQsWNH6OrqwsbGBhEREfjxxx+hq6tL00vJ8fjxY5w5cwYzZszgOxTB++ijj3D48GGcP38eTk5OfIdTCcuyOBB3AM1/ao4+f/VB85+a40DcgTp1k6mNDz74APr6+jh16hT8/f3h4uKCgQMH4syZM3j69Cm++OILAOBmAirP0tISoaGhAAB3d3cAZV/CGYZBQECA3OOxLItvv/0WTZs2hZGREdq2bYu9e/cCKKvC9urVCwDQqFEjMAxDdwaUgNcKqlgixsXki0jLTYOjmSNambXC1r+2IicnBzo6Olx/Q1KmBCVIQQoKSwuhr68vd5uioiLExcWhR48eao6OH9nZ2fjrr79QVFQEsViMTp06QSwGLl4E0tIAR0fAz0+M/fvLppJKSUnB5MmTueoWy7IoKiri+V3wS1676tatW6Upbe7fvw9XV1c+QlQ7aT/lpKQkZGRk/DfKXCTTrnr0AG7ejMTLly8RHByMsWPHcnd6pk6dCm9vbyxYsKBOA660SWlpaaXPK+mAn7fffpunqISj4nWwh0sPiHREYFkWH330EQ4cOIDw8HAukRKSey/u4b0j7yHicQR0mLJ619PcpxixewT8Xf3xy+Bf4G3jrfTjvnr1CidPnsTy5csrFbAcHBwwceJE7Nq1Cxs3bqxxX9euXUPnzp1x5swZtGzZsspr65dffon9+/dzXZ8uXLiASZMmwdbWFt27d8e+ffswcuRIxMfHw9zcnAprSsBbgro/bj+CTwTjSc4T7jELxgID2AHobNoZEomE6xOSmJiI6OhoWFlZqXx1H5ZlIZaw0BUJp7jMsiwOxR/CT/gJOcjBuV/P4cfAHzHMexjmz5+PIUOGwMXFBRkZGfjmm2+Qk5ODKVOmqCUuvs+Vubk5OnTowI3uP3++EX76yQNP3jQrWFkVoW9fBunp5zB79mw8fvwYubm5CAsLQ3h4eKXRsqoghHNVUXXt6pNPPoGfnx9WrFiBMWPG4Nq1a/jtt9/w22+/qS02Ps8XwzDo1q0bUlJSEB8fj/nzr2LPnm548uTNbXs7uyIEBDxCixYGCAgIwFtvvcV98TExMYG1tbVa+gvyfa4qYllW5suNtJ+3t7c3GIaBRCJBSEgIpkyZAl1d9V6ChHau5F0HncydsD5wPc78dAY7duzAoUOHYGZmhvT0dACAhYWFYJKfaYem4drTawAACSuR+fNS8iVMOzQNV6ZfUfpxHzx4AJZl4ePjI/d5Hx8fZGZm4vnz5zXuSzqzhLW1dZWz4eTn52Pt2rU4d+4cVzhr2rQpLl26hF9//RX+/v5cdwI7Ozutmo6PT7wkqPvj9mPU7lFgIXsLIJvNxm7shoeZB7p37849Lu1LOWXKFK4sryqz991CWk4hPvX3QM+m1rz3Iyv/DZVBWSypuancN1Tjh8bYMX4HXrx4AVtbW7z11lv4559/1FLpEsK5Kj8F1R9/ZGL37mYAWABvYnn1ygi7d49B166H8PnnnyMtLQ0WFhZo06YNTpw4wb1elYRwrsqrqV39MvgXHDhwAAsXLsSyZcvg7u6OdevWYeLEiWqJTwjny8PDA+PGjcOiRVEIC+tW6fmMDH3s3j0GixbdQr9+bXn7NxXCuZJ68eIFjhw5gsePH3OP5ebmYvfu3XB1dcXgwYNx8+ZNJCcnY9q0aWqPT0jnqqrr4NOcp2WPbyp7vOIt55CQEMHcPs4tzoWYld+FRcyKkVucq+aIyki7Fyjr3zc2NhaFhYWVrhXFxcVo3769Uo5BKlN7giqWiBF8IrjSf0opBgz+yv8LuYVFEOlUvjX2ukTF62Zn5KGgRIzPjtxF+yYW+Kh7UzS1NlHpMasTdHAqrqeWTUwvPWflv6H6vt0JD3enVHqdqs8TIKxz1bVHb0ycWPrfbxU/lBgwDIuUlO2IeyBBxTuuDe1cATW3q6CDU3F+yiVcGzBQ5nXqOFeAcM6Xg5M7zodLv+xVblcAi5CQtvjs/2Tb1fHTZwE0vLZ14OBBpFVYhlqaLCQnJ+PAwYOYNGUqCorL/q+qqz1JCeVciSVizDku/zrIggUDBs5rnZEYnCj3OtjQeXh4gGEYxMbGyp0K6t69e2jUqBFsbGzAMEyl/rAlJSW1Op5EUvbZePToUTRp0kTmOQMDg9oFTxSm9gT1YvJFmdsZFbFg8STnCTr9tBHmevx+M4l6mo1pu6J4jSEm51m131Bvpz1DwEb+R3byfa5yHljgxYt2VT7PsgyePAE6zYuBuWe2+gKTg+9zBWhOuwL4PV85DyzwLL1dNVsIp10B/LetHjmZMKticAzLsohPy6R2BSCnJApP86u/DqbkpOBi8kUEuAWoLzANYW1tjX79+mHjxo345JNPZLo8pKenY/v27dxYA1tbW6SlpXHPP3jwAAUFBdzv0j6n1Q1mbNGiBQwMDJCcnFzlohKK7IfUjto74qTlptW8EYAS9pWKIyHapCRHfsf2um5HCEDtiqiGotc3Ra+XfDHTN4OIkV/hFTEimOmrbnrIDRs2oKioCAMGDMCFCxeQkpLCddlq0qQJli9fDgDo3bs3NmzYgJs3b+L69et47733uCksgbI+o0ZGRjhx4gSePXvGLYhQnpmZGebNm4dPPvkEW7ZswcOHDxEVFYWff/4ZW7ZsAQC4urqCYRgcOXIEz58/R15ensree0Oh9gqqo5mjQtv9PNwfPV2717yhkg3afBUF/912EjEMJGAxrJUjpnV2hZmB+rvs+m42Rmw1/bzdrY0RPlP95wkQ1rm6EAEEbq15u58ne6Gnv5fqA6pASOcKEHa7AoRzvoTergDhnCsA+HPzXbx4XlDl8+7WJvia2hUuPC5F4Pava9xO0eslX/4c+qfMKH4JK+H+7O7SHb8M/kVlx/b09MT169exZMkSjB07Fi9fvoSDgwOGDRuGxYsXc4OWvv/+e0ydOhU9e/ZE48aNsX79eplVCHV1dfHjjz9i2bJl+Oqrr9CjRw+Eh4dXOt7XX38NOzs7rFy5Eo8ePYKlpSU6dOiA//u//wMANGnSBEuXLsXnn3+OqVOnYvLkySofM6Pt1H5l7OHSA07mTnia87TKfqiWBo7o4dITRnr89r1p18QC8wI8eO0raGFgDhEjkns7VsSIYGFgzvt5Avg/V317AU5OwNOngLw7jAxT9nzfXqJKfVDVje9zBWhOuwL4PV9v2hULlq084EJI7Qrgv20ZGhjI7fMHlA1YMTQwaPDtqqhUgvg0F+gztihm5X9LZMDAydwJPVyEPV2gt403zk85j0PxhzDn+Byk5KRwsxAM9Rqq8kForq6uCAkJqXabxo0b4+TJkzKPVVztacaMGZXm5K2YXDIMgzlz5mDOnDlVHmvRokVYtGhRzYEThaj9Fr9IR4T1gWUTozNyBx0ANqLZmLorGnfSc9QcHeBlZwoHMwOsGdISP49ow2sSAZR9Q+3uUlZxkM4zJ/2zu0t3/Dn0T95iE9K5EokA6Xz7DFPx4lj2+7p14C2JENK5AoTdrgDhnC9puyrLt2TblfTay2e7AoRzrgBg6NCh3FSA0uRE+qeLiwuGDh3KW2wA/+fqTnoOJu+4ge03U+Fi9BHKroKy10Hp7+sC12nEACmGYTDMexjuf3QfZyefRfyH8RjmPYz3mUqI5mNYVS/3UIX9cfsx5/gcPM19yj3mbO6Mme2W4UpCc7wqKIEOA0zs4IyZb7nBQFc9ubTQ5skD3sxXKf2G6mLhorZvqDXFJbRztX8/MGcOi6dP35wXA8tC/PqzCFMm6FXzStUS4rkSaruSxiaU8/Uyvxg9ghPwcG9TFGe/WcLR2bksOR0xgr/YAGGdK+DNPKjHjx9HTk4OLCwsEBgYCC8vrwbbropKJdj8TxK230yBhAWsjfXxeR9PvCi6IPc6uC5wHUb4qL5hFRYWIjExEe7u7jA0VP3ypIQAirc73hJUAHhd+BqzV89GHvIwa8Is9G7WGyIdEbILS7A2PAEn4jMAAG5WxljUzwutHMz5ClUQ1L3WsaZ6/boYs2fvQF6eGV77tMBzqwxM7OiE4J7N+A5NkKhdVW/dhQTsjHqKVrbGEJ+6i7w8M8ya9Q5699YTxG19oSotLUVKSgqcnZ3VPiG/kNxJz8HXp+KRlFnWNzfQ2w6f+nvAwrDsC3NV10F1oASV8EHRdsfrp4ZIRwR3lC3f5u/qz/2ntDDUw9JAH/T2tMWqc/eR9KoAM3dHqb2aKjSGuobo7d6b7zAETyQC3N3LJgrvM7E75h7NwL6YVEzq6AxrExptXRG1q6q9zC/G/ttlI6mndnbB2QfHAAD+/kMoOa2Brq6uIJfnVJeqqqY9m9rIbFfVdZCQho7XBFVHRweenp7c3yvyb2aDdk0suGrq1hspuJj4kqqppFrl21UXVyu0cjDDnfRcbLuRQlVUUitbbySjSCxBa0dzdHG1QnI1n1eESNVUNS2vpusgIQ0Vr7f4ayPi4QusOneft76pRHP98/gVgg/GwEBXBweCulAVlSjkZX4xhof8iyKxBOuHtcZbrlZ8h0QETtGqqVDQLX7CB0XbncZkd/7NbBD2bicEetlBwgJbb6Rg8s4bvIz0J5qli0sjtHIwQ1GpBNtuVF4WlhB5ZKqnLo34DocInHSE/tYbZclpoLcddr7rK9jklBCh05gEFXjTN/XbwS1hZazH9U3dcOkRikolfIdHBIphGMx8yw0AsC8mFS/zi/kNiAhe+b6nM7q48j76nAhXUakEGy49wszdUUjKLIC1sT7WDGmJpQN85N7SJ4QohtcEtbi4GCtWrMCKFStQXKx40kDVVFIdee2KqqikNuRVT+v6eUW0lzKqptSuCJGP9wpqSUkJSkpKav06qqaS6lRsV1RFJYqqrnpa188rol2UXTWldkVIZbwnqPVF1VSiKKqiEkVQ31NSHeprKgxBQUFgGAYMw0BPTw9NmzbFvHnzkJ+fz3doREk0PkEFqJpKFENVVFIT6ntKqkJ9TatXWlqKxMRElJaWqu2YgYGBSEtLw6NHj/DNN99g48aNmDdvntqOT1RLKxJUKaqmkppQFZVUh6qnRB6qmlaNZVnExcXhp59+wl9//YWffvoJcXFxUMcMlgYGBnBwcICzszMmTJiAiRMn4uDBgwgKCsKwYcNktv34448REBDA/R4QEICPPvoIH3/8MRo1agR7e3v89ttvyM/Px9SpU2FmZoZmzZrh+PHj3GvCw8PBMAyOHj2Ktm3bwtDQEF26dEFMTIzK32tDpFUJKkDVVFI9qqKSqlD1lFREVdPqvXjxAlu2bMHu3buRm5sLAMjNzcXu3buxZcsWvHjxQq3xGBkZ1aov75YtW2BjY4Nr167ho48+wuzZszF69Gj4+fnh5s2bGDBgAN59910UFBTIvG7+/Pn47rvvEBkZCTs7O7zzzjvUh1gFtC5BlaJqKqkKVVGJPFQ9JeVR1bRmhw4dQnJyMgBwFVPpn8nJyTh06JDaYrl27Rp27NiBPn36KPyatm3b4ssvv4SnpycWLlwIIyMj2NjYYObMmfD09MRXX32Fly9f4vbt2zKvW7x4Mfr164fWrVtjy5YtePbsGQ4cOKDst9Tg8ZqgMgwDV1dXuLqqplpB1dSGqaZ2RVVUUpEi1VNVf14RYVB31VST21VxcXGVt/JZllX5tFlHjhyBqakpDA0N0bVrV/Ts2RM//fSTwq9v06YN93eRSARra2u0bt2ae8ze3h4AkJGRIfO6rl27cn+3srKCl5cX4uLi6vo2SBV0+Ty4np4egoKCVH4c/2Y2aNfEAmvDE3AiPgNbb6TgYuJLfNXPCy0dzFV+fKJeirQraRX1Tnoutt1IQXDPZuoJjgiSItVTdX1eEf7cSc/B16fjkfSq7JZuoLcdPvX3UOntfGpXdderVy9s2rQJenp6aNy4MfT0yv6ddHR0KiXO8m7BS7eXks4IUP53AJBIai5oadqXC02gtbf4K5JXTZ2xOwo/UzW1QaIqKpGivqdEpmr6ivqaagoTExN4eHjA1dVVJrG0tbVFWlqazLbR0dFKO+4///zD/T0zMxP379+Ht7e30vZPyjSYBFWqYt/Uv/7rm3qX+qY2ONQXlQDU97Shu5Oeg8k7qa9pXejr61f5hY5hGOjr66s5ojK9e/fG9evX8ddff+HBgwdYvHgx7ty5o7T9L1u2DGfPnsWdO3cQFBQEGxubSrMGkPrjfanTNWvWYM2aNWpd4o2qqdpN0XZFVVRSm+opX59XRDWEUjXV5HY1dOhQuLi4AHhzi1v6p4uLC4YOHcpLXAMGDMCiRYvw2WefoVOnTsjNzcXkyZOVtv9Vq1YhODgYHTt2RFpaGg4fPsxbMq7NeO2DCqDS9A3qVLFv6l83UnCB+qZqBUXbFfVFbdhqWz3l8/OKKA8ffU2ro6ntysbGBlOmTEF8fDyOHz+OnJwcmJubIzAwEF5eXirtLhMaGlrt80uXLsXSpUurfD48PLzSY0lJSZUekzcIrHv37kqtyBL5eE9Q+Satpvb2tMWqc/e5auqkDs6Y8ZYbDHQbXC+IBkVaRQ0+GIN9MamY1NEZ1ib0TbghoL6nDU9RqQSb/0nC9ptlt/OtjfXxeR9Pup1fDwzDwNvbGx4eHkhJSYGzszN0dRt8akGUgLKv/1Df1IaL+qI2TNT3tGGhvqaqpaurC3d3d0pOidJQgloO9U1tmKgvasND1dOGQyh9TYnmCwgIAMuysLS05DuUBoESVDmomtrwUBW1YaHqacNAVVNCNBclqFWgamrDQlXUhoOqp9qPqqa1U9VqUISogqLtjdfOIgzDoHHjxtzfhYhG+mueurYrGtHfMNS1eqoJn1dEeCP0a8Jnu5JObl9QUAAjIyO1Hps0XNJZKyqu5FURw9JXJ4VFPHyBVefu41VBCXQY0Eh/LfTP41cIPhgDA10dHAjqQiP6tczL/GIMD/kXRWIJ1g9rjbdcrfgOiSgJjdCvm7S0NGRlZcHOzg7Gxsb05YuoDMuyKCgoQEZGBiwtLeHo6Fjt9pSg1lJ2YQlXTQUANytjqqZqEZZlMWN3FO6k52JCeyeqomqZdRcSsDPqKVo7mmPz6HZ0MdYSmlY1FRKWZZGeno6srCy+QyENhKWlJRwcHGr8/KUEtY6omqq9qIqqnah6qn2oaqo8YrEYJSUlfIdBtJyenh5EIpFC2/KaoJaUlODnn38GAHzwwQc19kcQGqqmClN92xVVUbVTfaunmv55pW20pWpK7YoQ+Xgt97Esi+zsbGRnZ2vkKEJFRvpLWBbhCS+QllPIc7QNR33bVfkR/XtvP8XjV5q5DCF542V+MfbdSgVQ95H7mv55pS20bYQ+tStC5KP70UpQ3bype2+lYsHRu/j6dDzfYZJakI7oLxazGL/tOvbeegoJXTw0koRlsehELIolLCwMdWneUw12Oy0bE7dfp3lNCWkAaE0yJZFWU3t72mLVuftIelWA6buiIC3U3HiShdup2WjT2ILfQIlCpFXU4IMxELMs1oQn4PT951jUzwtOljQdi6Z4kvUaX52Iw91nuQAAQz0RDYzSECzLYvHJe7j/PA+5RaXIel2CUknZl0QRw2Dl2z7wb2bLc5SEEFWhCqqSSaupA5rbggXw3+cpdBhg879JfIZGaqmLSyPo6rxJZmLScjB+WyTCop5QNVXgJCyLsKgnGLctErH/JacAIJbQv5umyC0qxfmE50h8VYAX+cVccgoA7ZtYUHJKiJajBFUFLAz10MpRtlIqYYFryVmIepLFT1Ck1hiGgU65apuYZVEsZvHDhYe4+Oglj5GRmlx4+BI/XHiIEjGL8ilpQbGYt5hI7RjoitC2ijtOs7u5qzkaQoi6UYKqAjmFJfjp0kO5z318KAZ303PUHBGpCwnLokT8Zllbaara2aURvO1M+QmKKMTH3hSd5fQ1fV0ipuq3BriTnoPJO28gMiULwJv/eyKGQWcXS7SimVII0Xq8JqgMw8DW1ha2trZa1S/MzEAXvT1t0dTaGLam+jDWezPnV2GpBNN3yY70J8qlrHZVUCxGxVRm7Tut8NPwNrA3M6xfkESl7M0MsaS/N/TKddFgALCoexVVWz+vhETeCP0FvT2hJyo732KWxf/+m2FDW1C7IkQ+mqhfTSQsi7ScQmy8nIgzD54DoHlTha6wRIwP9t+Csb4IL/KK8ehVAc2LqkHKz3s6p3tTbP43CQXFYvw8oi0M9RSbKJqoT3Xzmu6OforvIxLQ0ckSG0e25TlSQog6UILKA1qFSnOwLAuGYWh1KQ1T1apR0n9PIhyKrAYlYVlcfPQSXramcDCnuxeENASUEfGgunlTibBIkxnpvKhFpRJsu5HCc1SkJltvJKNILEFrR3OZeU8pORUWaV/TmuY11WEY+DezoeSUkAaE96VON2/eDACYOXNmg1zijaqpyqeqdkVVVM1QVfW0vujzSnkUqZo2FNSuCJGP14n6WZbF8+fPub83RP7NbNCuiQXWhifgRHwG/rqRgguJL6lvaj2oql1Jq6h30nOx7UYK9UUVqKqqp/VFn1fKUV1f04aI2hUh8lGZTgCkq1B9O7glrIz1kPSqADN200h/oZGuLgUA+2JS8TK/mN+ASCUv84ux/3YaAGBGF1e6pS8g8kborxnSEksH+DTY5JQQUjVKUAWE+qYKH/VFFTZVVU9J/Sja15QQQqQoQRUYqqYKG1VRhYuqp8JDVVNCSF1RgipQVE0VLqqiChNVT4WFqqaEkPqgBFXAqJoqTFRFFR6qngoHVU0JIcrA+1KnFhYWsLCwoAtKNaiaWjvqaFdURRUWdVRP6fOqZlQ1rT1qV4TIRytJaRiaN1U4aF5UYVDVvKdEcTSvKSFE2Sir0TBUTRUOqqIKA/U95RdVTQkhqkAVVA1G1VT+URWVX1Q95Q9VTQkhqsRrJiNd4m3z5s0oKSnhMxSNRNVU+dTZrqiKyi91Vk/p8+qNu1Q1VRpqV4TIx2uCyrIsUlNTkZqaSku81VGVI/0vN9yR/upsVzSinz/qHrlPn1dlVdOfLz3CDBqhrzTUrgiRj+4Fa4lK1dTrKZhC1VS1oCoqP6jvqXpJq6Z/UdWUEKIGlKBqkYrV1ESqpqoFVVHVj+Y9VR+qmhJC+EAJqhaiaqr6URVVvah6qh5UNSWE8IUSVC1F1VT1oiqq+lD1VPWoakoI4RslqFqOqqnqQ1VU9aDqqWpR1ZQQIgS8J6jGxsYwNjbmOwyt1hCrqXy0K6qiqh7f1VNt/ryiqil/tLldEVJnLGlQsl4Xs18dj2U7rwtnO68LZ8f+dY29k5at9OPk5OSwwcHBrIuLC2toaMh27dqVvXbtmtKPUxsRERHs4MGDWUdHRxYAe+DAAZnnJRIJu3jxYtbR0ZE1NDRk/f392Tt37sjdl0QiYQMDAyvtRyKRsNPCbrCd14Wz6yIS1B6Xtvvwx+2sZcuurHEjG7nnat++fWz//v1Za2trFgAbFRWl8piU8e/n7+/PApD5GTt2rMriKi4uZj/77DO2VatWrLGxMWtr78C6dhvItlu6l+28Lpz96kQsm/W6uF7HJ4SQ+uC9gkrUS13V1BkzZuD06dPYunUrYmJi0L9/f/Tt2xdPnz5V2jFqKz8/H23btsWGDRvkPv/tt99i7dq12LBhAyIjI+Hg4IB+/fohNze30rbr1q2TW72rSxVVmXFps5f5xTgf+xTGjZth0crv5G6Tn5+Pbt26YdWqVWqLS1n/fjNnzkRaWhr38+uvv6osroKCAty8eROf/98XmLv5EOwmLMKLJ0l49OeXVDUlhAgD3xky4Y+qqqkFBQWsSCRijxw5IvN427Zt2S+++KLe+1cGyKl8Ojg4sKtWreIeKywsZC0sLNhffvlF5rXR0dGsk5MTm5aWVmXFrLZVVGXEpe1+iHjAdl4Xzk7fdZOVSCRyz71UYmKi2iqo5dX138/f358NDg5WW1wsy7J30rLZMX9d4/7/T1+/iwXAPn78WGVxEEKIonhf6jQ0NBShoaG0xBsPVFVNLS0thVgshqGhoczjRkZGuHTpUn3DrlFd2lViYiLS09PRv39/7jEDAwP4+/vjypUr3GMFBQUYP348NmzYAAcHB7n7UmZfVEXj0nZ89z0FVNuuAGD79u2wsbFBy5YtMW/ePJVVyKvqazquhRUYhoGlpaVKjkvko+sgIfLp8nlwlmXx+PFj7u+EH/7NbNCuiQXWhifgRHwG/rqegouPXmJRPy+0dDCv9f7MzMzQtWtXfP311/Dx8YG9vT127tyJf//9F56enip4B7Lq0q7S09MBAPb29jKP29vbc/sCgE8++QR+fn4YOnRotfuTjui/k56LbTdSENyzWW3eQq3j0nZCGLmvynY1ceJEuLu7w8HBAXfu3MHChQtx69YtnD59WknRl7mbnoNlp+OR9KoAQNkI/U/9PWAAMbqP+RwTJkyAuXnt/8+TuqPrICHy8ZqgEuGQVlN7e9pi1bn7XDV1UkdnzOjiBgPd2hXbt27dimnTpqFJkyYQiUTo0KEDJkyYgJs3b6roHShHxcocy7LcY4cPH8a5c+cQFRWl0H5mvuWG4IMx2BeTikkdnWFtoq+SuLSdEKqn9VXTv9/MmTO5v7dq1Qqenp7w9fXFzZs30aFDB6XEcCw2HTHJUZCwgLWxPj7v44meTW1QUlKC0aPHQSKRYOPGjUo5FiGE1BcNkiIylDVvarNmzRAREYG8vDykpKTg2rVrKCkpgbu7u4oirx/p7XppxUsqIyODq36dO3cODx8+hKWlJXR1daGrW/b9buTIkQgICKi0T2XMi6pIXNpOCNXTuqrrv1+HDh2gp6eHBw8e1DsG6f/d8IcvKs1rWlJSgjFjxiAxMRGnT5+m6ikhRDAoQSWVKLNvqomJCRwdHZGZmYmTJ0/WeGucL9Lbq+VvqRYXFyMiIgJ+fn4AgM8//xy3b99GdHQ09wMAP/zwA0JCQirtUxl9URWJS5tpevW0rv9+d+/eRUlJCRwdHet87PJ9TQHAzEBXZoS+NDl98OABzpw5A2tr6zofixBClI1u8ZMqKdI3tbC0EFdSrsDP2Q+Gum8GRZ08eRIsy8LLywsJCQmYP38+vLy8MHXqVLXEzrIskpKSZPp05eXlISEhgfs9MTER0dHRsLKygouLCz7++GOsWLECnp6e8PT0xIoVK2BsbIwJEyYAKKuGyRsY5eLiUmVluHxf1JBrCejgll7pXNU3Lm1VWFqIr87swetSe7RtbIsuLo1qPFevXr1CcnIyUlNTAQDx8fEAqv63qy1VtKuHDx9i+/btGDRoEGxsbBAbG4u5c+eiffv26Natm0JxlZaWIiUlBc7OztDV1cXd9Bws+jsK9++/qcCOdNOFec4TJCcXoHHjxhg1ahRu3ryJI0eOQCwWc1VeKysr6OvXvTsKIYQohfonDnijqKiIXbJkCbtkyRK2qKiIz1BIDcITnrOBv11mO68LZ99aH87+dDGB3RWzl3Ve68xiCVjntc7s/tj9rEQiYVmWZXft2sU2bdqU1dfXZx0cHNgPPviAzcrKUkusRUVF7MSJE1kA7OHDh7nHz58/X2kydADslClTWJZ9M6G6g4MDa2BgwPbs2ZO9ffs2W1paWuWxUM1UR1JXEl+wHt9+zRoss5N7ruoSV0xMTL3OkZBJJBJ2f+x+tsn3TiyWgNVfaseujNjCSiSSGs9VSEiI3OcXL17MlpaWcue8LpTZrsr/+yUnJ7M9e/ZkraysWH19fbZZs2bsnDlz2JcvXyp0rmJjY9m1a9eyS5YsYb9fu5b9ft959q1151nvD36oMi7pNFzyfs6fP1/nc0Rqj66DhMjHsCx/wwaLi4vx3XdlE27PmzePvrULXHZhCdaGJ+BAbCSSCtYiV3wLOtCBBBLoMDqQsBL4u/rjl8G/wNvGm7c4i4uL4efnhxs3bmDq1Kn4888/67yv0NBQZGVlITAwEF5eXrW+xXzvxT28d+Q9RDyOAMAAYAV1roSm/PlioAMWEkjPW13PF8uyiI+Px4kTJ2BpaYmgoKA6xabMdqUML168wJEjR/D48WMwDAOWZcGi7Gy9FFmgUauu+DSwA024L3B0HSREPl4TVKKZWv3cCXdf3ARQuT+qiBGhc5POuDJdvXN0SiQSbNq0CVlZWQDKVu/JycmBubk55s6dCwCwsLDArFmzoKOjeNfr77//HsXFZX1HXV1d0a9fP9ja2ir8ev+//BGZGgkxK670HF/nSsj8/vDDtafXqjxfnRp3QsTkCIX39/z5c5w6dQrJyckAAH19fa49KEIikeDXX39FdnY2AOC7775Dbm4uLCwsMH/+fACApaUlZs+eXat2pQx//PEHnj59Kn9qIoaBU5MmmD59ulpjIoQQZaE+qKTWGJ1CyEtOAUDMipFbrP4lOPPz8/HVV1/h1atXYBiGSxZyc3OxePFiAGULBTx79gwGBgZ1Osbjx4/x+++/1+o1j/AIYlROtgD+zpWQ5Rbnyk1OgbLz9ejpI6xcubLO+y8uLq7V64uKirBu3Tq8fv0awJvpovLy8rBo0SKwLAsrKytMnjwZZmZmdY6rLoqLi6ueN5NluS9WhBCiiWgUP6m1mlY7kfBQlDczM0NUVBQ3MlosLktypBdwZ2dnvPfee3VOTknDZGBggFmzZsHZ2RnAm/YkbV9+fn6Ijo5We3JaVCrBy/witR6TEELUidcKamlpKXbv3g0AGDNmDDevJBEmsViMixcvIjMzs9rtnmS9xt30nDqtQlUfLi4uOH/+PKysrJCfn889rqenhyNHjsDbu/Z9Pcvf4tfR0QHLsujQoQN69uxZaSlXefZs3oOMFxm1Pi6Rz9bGFgtnLqxxu8LCQly4cIFbGEKaWNb2Fj9QNsrewsICK1askPlyZmxsjPDwcOjpqbePp3Q1KOfXJaguLc7Ly4NYLIZIJFJbbKT26DpIiHy8/k+QSCTcRNQSSd3Xfieql56ejoMHD+LZs2fQhz43OKoyHUgkRvVahao+rl27JpOcAmUV359++gkLFiyAh4dHnfft4uKCgQMHws7OTuHXmBuaQ8SIquxTaaav3sqb0BnpmqLsxo78/s3mhuYKDSLR19fH4MGD0blzZxw/fhxJSUkyzykqISEB+/btQ3JycqU7B/n5+bh27ZrCU0HVV1GpBL//k4RtN1MgYQFnkR7AMkAVdywKCgqwefNmDBs2TClTbBHVoOsgIfLRLX5SLbFYjPDwcGzevBnPnj2DkZERfu73M3q49gAA6DA6Mn92d+6Od1uurtcqVPXx999/AwCGDRuGhIQEvPPOOwCAuLg4hIWFcfNjKsrR0REWFhYYN24cJk+eXKvkFAD+HPonurt0B/DmHJWNswbcLXzx51B+R4ILTR+nJTATtQYgp225dK/1+bKzs8PkyZMxduxYWFhY1Gri+9TUVISFhUEsFuPFixcA3rQr6YIThw8frlU8dXU3PQeTd97AXzfKktNALzt8MGUsXF1cALzpGyv908bGBgYGBnj27Bk2b96M8PBwrlsCIYRoAt6nmZIOWFi4cCFNryEw5aumAODj44O3334bJiYmYFkWh+IPYc7xOUjJSYGLhQvWB67HUK+hYBgGEQ9fYNW5+3hVUAIdBmqrpl6+fBmPHz/G+PHjual3tm/fjkePHsHb2xsjR46s1S1PlmUhkUjqdZu04rmyN3GCOTsL9kY9cXDqW7A2oXYPlK0aNTzkXxSWijGyQwp+vvGF3LZVV2KxGDo6OgrvQywWY9++fWBZFo6Ojnjy5IlMu9q5cydcXV1VWkGtWDW1MtbD572bw7+ZDYA3U2gdP34cOTk5sLCw4KZEy8/Px7FjxxAXFwcAsLe3p2qqANF1kBD5KEEllUj7ml68eBESiQRGRkYYNGgQWrZsWeniXtVKUgCQ/boE30ck4GR8WR9MdytjmVWo1ElaPeKzP570XHV16ooP9sfhbnouJrR3QnDPZrzFJCTrLiRgZ9RTtHIww+9j2qNIXFRl21IXPtuNtK9p0qsCAGVV008DPOTOa1pxJSkplmVx9+5dHDt2DK9fv4aOjg569OiBHj16UN9UgaDrICHy0S1+IiM9PR2bN29GREQEJBIJfHx88MEHH6BVq1ZyK0+Guobo7d5bbgJhYaSHZYE++HZwS1gZ6yHxVQFm7I7Cz5cfoahUvX2tRCIRd0FmWRbHjx+XWZ5SHaTnykjPCDO7uAEA9sWk4mU+TQf0Mr8Y+2+nAQBmvuUGhmGqbVuqkpCQgOPHj3ODqsq3G3UpKpXg50uPMGN3FJJeFcDKWA/fDm6JpYE+VU66r6urC3d390oDbBiGQatWrfD+++/Dx8cHEokEERER2Lx5M7e0KSGECBElqASA/L6mI0eOxOjRo2FiYlKvffs3s0HYpE4Y4GXHW9/U8m7evIlr164hLCxM7Umq1FuujdDSwQxFpRJsu5HCSwxCsvVGMorEErRyMEMXl0a8xJCQkICwsDBcu3aNG/2vbvL6moa924m7pV9XpqamGD16NEaOHMnNB0x9UwkhQkYJKql11bQuhFRNbdeuHby9vSEWi3lLUhmGoSrqf+RVT9VNmpyKxWJ4e3ujXbt2aj1+XaqmtUXVVEKIJqGlThuw2vQ1VSYh9E0Vi8XYu3cv7t27B5FIhHHjxtVrCqq6YFkW03dHNfi+qBX7nqo7Qa2YnI4aNUqtt/Vr09dUWahvKiFE6ChBbaCqG6GvLnyN9JcSQpJ6NekVPj4UAwNdHRwI6tLgRvRLR+4XiSVYP6w13nK1Uuvx+UxOaxqhrw55eXk00p8QIkiUoDYwfFVNq8J3NbV8kqqvr4/g4GAYGxur5dgAVVH5rJ4WFBRg3bp1KCkpUXtyykfVtCpUTSWECBGvCWppaSkOHDgAABg+fDgt8aZiQqiaVoXPaqpYLMaBAwfQokULtGjRQuXHq6ihVlH5rp4CQGxsLGJjYzF8+HC1JGNCqJpWhaqp/KDrICHy0TyoDYDQqqZV4buaWp5EIoGOjnq6GjTUKipf1VN1/tuWJ6SqaVWomqp+dB0kRD4axa/l1DFCX1mEMtI/OzsbmzZtUtvo/oY4op+vkfsJCQnYtGkTsrOz1XI8QD0j9JWFRvoTQoSCElQtpcp5TVWN73lTr1y5ghcvXqh1CqqGNi8qH/OeSgdEvXjxAleuXFHLMVU1r6mq0byphBC+UYKqhTSpaloVPqup/fv3V/s8qQ2pispH9bTiaP3+/fur9HiaVDWtClVTCSF8ogRVi2hy1bQqfFRTRSIRRo0apfYktaFUUdVdPVX3VFKaWjWtClVTCSF8oARVS2hD1bQqfFRT+UhSG0IVVd3VU3Ump9pQNa0KVVMJIepGCaqG08aqaVXUXU2tmKSeO3cOqp70QturqOqsnrIsi7Nnz6olOdW2qmlVqJpKCFEXXqeZYlkWJSUlAAA9PT2Nr/Spm5DnNVU1dc6bKhaLcfbsWfj5+cHU1FTp+69IW+dF5WPe07y8PFy5cgV9+vRRSXIq5HlNVY3mTVUOug4SIh+tJKWBNGVeU1Xjc97U3NxcmJmZqWTf2jovqrrmPVXlv015mjCvqarRvKmEEFWhBFXDNOSqaVXUvQpVVFQUjh07hrFjx8LDw0Mlx9C2Kqq6qqcJCQnYtWsXBg0ahPbt26vkGA25aloVqqYSQpSN96VOjxw5AgAYPHgwLfFWDaqaVk9d1VSWZbFnzx7ExcVBJBJh3LhxKklSta2Kqo7qafkBUS1atMCoUaOUfhyqmlaNqql1Q9dBQuTjdZCURCLBrVu3cOvWLUgk6lspSNNo8wh9ZVHXSH+GYTBy5EiVj+7XphH96hi5X3G0/ogRI5R6HG0eoa8sNNK/bug6SIh8NIpfwBrSCH1lUcdIf3VNQaUtI/pVPXJf1VNJNZQR+spCI/0JIcpACapAUdW07tRRTVVHkqoNVVRVV09VmZxS1bTuqJpKCKkvSlAFhqqmyqPqamrFJDU5OVkp+y1P06uoqq6eJicnqyQ5paqpclA1lRBSV9QbW0BohL7ySaupfTxtsercfa6aqqyR/tIk9c6dO2jTpo2Son5DWkX9+FAM9sWkYlJHZ40Z0a+Ovqe9evWCtbU1WrVqpZTklEboK5+0murm5saN9I+IiMC9e/dopD8hpEpUQRUAqpqqniqrqSKRCG3btuUSsNLSUjx58qTe+5XS1CqqqqqnT548QWlpKYCy5Kdt27ZKSU6paqpaVE0lhNQGJag8o76m6qOOvqmlpaUICwtDaGio0vqkamJfVFVVTxMSEhAaGoqwsDAuSa0v6muqPtQ3lRCiKN6XOi0oKJtP0NjYuEElZDSvKb9UNW+qWCzG3r17ce/ePaXOk6pp86KqYt5TVQyIonlN+UPzppZpyNdBQqpDK0nxgPqaCocqVqFSVZKqKatLqWLVKGUnp9TXVDhoFSpCiDyUoKoRVU2FqaZqqoRlceHhS3jZmcLR3FChfaoiSS1fRR3VujHm9/as1/5URVo9bWlvij/Gdqh321Z2ckpVU+GhaiohpCLelzo9efIkAGDAgAFavcRbWloaDhw4gOfPnwOgqqkQVVVNPXQnDd9HJKCjkyU2jmyr8P5UkaRKq6gA8L6fO971dYaOgL7cPM8rwrA//0Upy6JDEwtsGtWuXvtTZnL6ukSMTZcTsfvWU7CgqqkQVaym2tnZYdCgQXBxcdHaL/EN6TpISG3w+j9BIpHg+vXrAIB+/frxGYpSsSyLAwcOID09HYWFhcjPz+eWsGMYBsOHD6dBUALk38wG7RpbcNXUv66n4NyD53iWWwQAuPEkC7dTs9GmsYVC+5NOQbV3714kJibC0FCx6mt13nJtBH2RDorFEmy8kogrSa+wqJ8XnCyN6r3v+nqS9Rqz9kaj9L/vvK9el9R7n4aGhtDV1YWnp2etklOWZbH45D3cf56HvKJS5BSVygyEG9DcFnN7eVLVVGCkI/3v3r2Lo0ePIiMjA6GhoQAAPT09GBoawtDQEA4ODhg+fLhWfIZq63WQkPqir2oqUFhYiLi4OLmjjF1dXdG6dWseoiKKKD9v6sqz8XiSXcg9J2KAzf8m4afhildRpUnqq1evYGtrW+/4GIaBoW5ZggoAt9OyMX5bJD7o1hRj2jXhpZoqYVnsjn6KDZceoUTy5oZMXlH9R9k7OTlh+vTpsLKyqlXlNLeoFOcTnqNYXPkGUXNbEywb2KLesRHVKD9v6i+//IL8/HwAQElJCUpKSpCbm4vMzEwMHDgQRkb8fzEjhKgGTTOlAvr6+nBzc5P7XJ8+fdQbDKkT/2Y2GN/eWeYxMQtcS87CnVrOnSoSiWSS09TU1HpNQVUieVMJlLBAsZjFDxce4uKjl3XeZ31cePgSP1x4KJOcAkBBcd3mtkxISEBqair3u62tba1v65sb6mFUmyZyn1vQu3md4iLqZWpqirFjx8p9rk+fPpScEqLlKEFVMum8phUTEB0dHTRt2hROTk48RUZqI6ewBL//myT3uUXH4+o8b+qLFy/w119/ISwsrE5JqoRlUVhS+didXRrB2860TjHVl4+9Kdo3qdzt4XWJGJJadnGX9jn966+/8OLFizrFI53XdGeU7GIJIoZBZxdLtKrnVGJEfZydneHu7l7pVn5UVBTNm0qIlqMEVUnkrQY1YMAArvIjkUgQEBDAb5BEYWYGuujtaYum1sawNdWHkd6b/yqpOYWYvON6nVahatSoEdzd3SEWi+uUpBYUi8ECKH+57t/cFj8NbwN7s/r3ca0LezNDLjk20S9r7wwAFrWropYfEOXu7o5GjWq/+lT51aBYAD3craAnKjtbYpbF/95yq/U+Cb969eoF6VheHR0dGBgYICMjg1ahIkTLUR9UJZA3r+mgQYNgamoKhmFw4sQJuLm5wdnZuYY9EaFgGAZLB/jIPCZhWZyKz8C6CwlIynyNGbujaj1vavmBU/fu3UNYWFitRvfr6jBo5WAGY31d+LlaYd3Fh4h49BIv84t5mxe1/KpRKwa1gIm+CL/9k4SCYjF0dRTrE1vf0frVzWu6O/opNwtDa0fFBrgR4XB2doabmxuSkpIwYMAAtGjRAkePHsW9e/cQERGBe/fu0byphGghXqeZKi4uxsqVKwEACxcuhL6+MCcer4oi85qyLIv4+Hg4OjrCwoIujtpAGatQ1WcKKpZlwTCMYFaXqmrVKGmcNalvclpxXtMBXnaY6+8BC6OyEfoSlsXFRy/hZWsKBwXnsSXCkp2djbS0NHh5eXFtX1vmTdX06yAhqsL7UqfZ2dkAAAsLC42aMqS6qilpGOq7ClXFJHXKlCm1rrLzvbpUfVeNSklJwZYtW+qUnNJqUCQvL4+rpgKauQqVJl8HCVElWkmqlmg1KFJefaup0iS1uLgY48aNg55e7ebl5LuKWlX1VFElJSUICwuDvr5+rZLTmqqmpOHQpmoqIeQNSlBrgaqmpCr1qaaKxWJIJJJaJ6dSfFVR61s9lSopKYGOjo5CyQRVTUlVtKGaSgh5g9cEVSwW4+zZswDK5rUT6rddqpoSRSijbyrLsggPD4ezs3Ot+qTyUUWta/U0ISEBKSkpCAgIqNX/H6qakppoYjVVU66DhKgbr6P4xWIxrl69CgAICAgQ5H9MqpoSRZVfhWrVuftIfFVQ65H+d+7cwYULF2o1cIphGMzs4oaPD8VgX0wqJnV0VnkVtfzI/ZlvudUqOZUOiLKxsVFoVTWqmhJFlV+FSlNG+mvCdZAQPtA8qFWQN6/pyJEjMXr0aEpOSbX8m9kgbFInDPCyg4QF/rqegik7byg0b2qLFi3g7e1d63lS33JthJYOZigqlWDbjZT6voUabb2RjCKxBK0czNDFRbH5SiuO1m/RoublRsvPayphy6qmYZM6UXJKqmVqaooxY8Zg5MiRMDIywrNnz2jeVEI0DCWockhXg4qIiIBEIoGPjw/ef/99tGrVim7pE4VIq6nfDm4JK2M9rpr68+VH1a5CJZ0ntbZJqrSKCgD7YlLxMr9YWW+lkrpUT2s7lZR0NagZu6OQ9KoAVsZ6+HZwSywL9KFb+kQh0mrq+++/D29vb0gkEkRERGDz5s20ChUhGoAS1HKoakqUrS7V1Lomqeqqota2elrb5JSqpkSZqJpKiGaiBPU/VDUlqlKXamrFJHXXrl3Izc2t9jjqqKLWtnqam5uLXbt2KZScUtWUqApVUwnRPA0+QaWqKVGX2lZTpUmqj48PBg4cCDMzsxqPoeoqam2rp2ZmZhg4cCB8fHyqTU6pakrUgaqphGgOXkfx841G6BN1q+1If5FIhNGjR8tUKqtbQlSVI/prUz0tH2OHDh3Qvr38aahohD5RN00c6U9IQ8T7UqfPnz8HANja2qrtVjrNa0qEoC7zpubn52PHjh3o1atXlVNQqWpeVEXnPU1ISMD58+cxYcIEmJiYVLk/mteU8E0I86bydR0kROga3EpSVDUlQlObVahOnTqFq1ev1jhPqrJXl1J01ajyA6K6du2K/v37V9qGqqZEaGgVKkKEp8EkqFQ1JUKmaDVVLBZj7969uHfvXrVJqrKrqIpUTxUZrU9VUyJUQqimEkLe4H2p04sXLwKASj8EqGpKNIUi1VRFk1RlVVEVqZ7WlJxS1ZRoCnVXU9V1HSRE0/A6il8sFiMiIgIREREqGUFJI/SJplFkpL+i86Qqa0R/TSP3a0pOaYQ+0STqHumv6usgIZpKa6eZonlNiaZSZN7UiknqiRMnIJHIzqmqjHlRaxq5L5FIcOLECbnJKc1rSjQVzZtKCP+0LkGlqinRFjVVU6VJaqdOnTBp0iTo6FT+71zfKmpN1VMdHR1MmjQJnTp1kklOqWpKtAHNm0oIf7QqQaWqKdE2NVVTRSIRBg0aBEtLS+41BQUF3N/rU0Wtrnpa/hiWlpYYNGgQRCIRVU2J1qFqKiH80IoElaqmRNspugpVXFwc1q9fL9Mnta5V1KqqpwkJCVi/fj03iESKqqZEm1E1lRD10vgElaqmpKFQpG/q3bt3UVxcLDNwqi5V1Kqqp9IBUcXFxbhz5w4A6mtKGg6qphKiPoJMUC9cuIAhQ4agcePGYBgGBw8elHmeZVl89dVXsLGxgbOzM1atWoXs7GyZqumsWbPQrFkzGBkZwdbWFkOHDq1U8SFEE1VXTR0+fLjc0f21raKG/vsIDw//htjlE9DLuwmaNm2K4OBg7NixgxsQNXz4cKqakgZJXdVURa6FS5YsQePGjWFkZISAgADcvXu30n6uXr2K3r17w8TEBJaWlggICMDr16+VFichqsBrgqqrq4sZM2ZgxowZ0NXV5R7Pz89H27ZtsWHDBrmvW7RoEdasWYM+ffpg5syZaNy4MXbu3AlXV1eu0tOxY0eEhIQgLi4OJ0+eBMuy6N+/P92KIVqhqmrqL/88xpBhIyolqbWpor7ML8ZPP3yPjCuHsWT194iLi8Mnn3yCX375BVevXoW3tzeGDBuBX64+pqopabCUVU2t6joI1Hwt/Pbbb7F27Vps2LABkZGRcHBwQL9+/ZCbm8ttc/XqVQQGBqJ///64du0aIiMj8eGHH8odVEmIkAh+JSmGYXDgwAEMGzYMYrEYFy5cwDvvvIO33noL/fr1w6BBg+Dh4QEHBwesXr0as2bNkruf27dvo23btkhISECzZspZm5wQIZC3CtUXvT0Qe+mUzGT+zZo1U2h1qXUXErBk9ruws7NH/LkDePjwIcLCwrBjxw5YW1tjY9hhfHMugVaDIuQ/6liFqvy1UHrMxo0b4+OPP8aCBQsAAEVFRbC3t5e5FkqvlV9//bVS4iBEXTTmK5S0r+nBgweRl5eHvn37cn1NDQ0N4e/vjytXrsh9bX5+PkJCQuDu7g5nZ2c1R06Iasmrpv5v3208b9wBzb28IBaLER8fr1AVVdr31Kxpa+Q+uIkHDx4gPj4eT58+xdOnT9Gs1wj8b99tqpoSUg4ffVMTExORnp6O/v37c48ZGBjIXAszMjLw77//ws7ODn5+frC3t4e/vz8uXbqkkpgIUSbdmjdRHbFYjH/++QdA2be8qr5p3rlzBzExMZBIJCgpKQEATJo0SWaEvr29PR4/fizzuo0bN+Kzzz5Dfn4+vL29cfr0aejr1225R0KEzr+ZDdo1tuCqqVtvpsK9kTsm9GiCQb26A3jTF/Vuei623UipVEWVjtzvN3EW7FpawdvbGyKRCGKxGK1Gvoc46w4AS1VTQuSR9k2VVlOlfVOrq6Yqeh2sSJr42tvbyzxe/lr46NEjAMCSJUvw3XffoV27dvjrr7/Qp08f3LlzB56ennV+r4SoGu9LnZ45cwZnzpyR2zdU+h/wzp073Aj9ESNGAECl/jMsy1YatT9x4kRERUUhIiICnp6eGDNmDAoLC1X0bgjhX6VqamYhVt6RYOOVRBSVSsCyLMZ6GAOoXEUtP3Lf/lE4tm/fji1bt2H+74fRdOJCxB7bjtfRp6lqSkg1altNrek6qMjxyit/LZSuLjdr1ixMnToV7du3xw8//AAvLy/8+eefdXh3hKiPIG/xl5/XFCi7bSEdod+0aVMAqPQfPSMjo9I3SQsLC3h6eqJnz57Yu3cv7t27hwMHDqjnTRDCI7kj/XdEImR7GCKP70VH09eVRvRLq6e+pq+xcfUy9OzdB0fEzXA2yxjWvv3RY1QQCq/soRH6hChA1SP9HRwcAFR/LXR0dAQAtGjRQmYbHx8fJCcn1zsGQlSJ9wSVZVkkJiZCOlar4rymABAYGMjNa+ru7g4HBwecPn2a20dxcTEiIiLg5+dX47GKiopU92YIEZCK1dSkVwW4kZIJsVgMx9TrsCl5ib23UnHoeAl+CynFn/sKYF30Eg6p11FSUoKUrEI8LtfXtL+3AyDsMZWECIqi1dSK10FFKHItdHNzQ+PGjREfHy/z2vv378PV1bWe744Q1eK1DypQNvH39u3bMXz4cFhYWODixYt4/fo1CgoK0L17Wb+59PR0REdHw8rKCi4uLvj444+xYsUKeHp6wtPTEytWrICxsTEmTJgAoKzfza5du9C/f3/Y2tri6dOnWL16NYyMjDBo0CA+3y4hale+b+qpe0D7glg4lLyAyXUxzp3oiGHZ0lv1bfDY3BVmgSVw9m6DfyLOYmTHACwM7IOHty9i7dq1mDZtGq/vhRBNVF3f1C5dunDXwZEjR2LIkCHc6/Ly8mRWhUtMTKzVtZBhGMyfPx+LFy9G27Zt0a5dO2zZsgX37t3D3r171X4eCKkVlkdFRUVs+/btWQCsn58fu2TJEnbJkiXsV199xQKo9DNlyhSWZVlWIpGwixcvZh0cHFgDAwO2Z8+ebExMDLffp0+fsgMHDmTt7OxYPT091snJiZ0wYQJ77949nt4pIcIQnvCcHfjrRbb/hGMsIPnvhy33U/ZYm6mR7Mig/7EuLi6soaEh27RpU/aLL75gi4qK+H4LhGi03NxcNiwsjLvebdy4kbsOTp06VWbb8+fP1+taKLVy5UrWycmJNTY2Zrt27cpevHhRHW+VkHpR+zyoEokEmzZtQlZWFkpLS7Fy5UoUFRVx02N4enrC29sb77//PnR0dCAWi6vtr6Orq8sNmBLCthKJBKWlpVVuKxKJuFGaQtiWZVluZoT6bqujo8NNNK2qbYGy21jK2JZhGOjp6dVp25KSkipvx6lqWwAys1DUZtvS0lKuy0xmXgk8m+sh96UeAHnLAbNo0oTFgwelEInonFa1bflzWt9t9fT0uIEtqtq2ps+x2mxLn7v127a0tBSLFi3CzZs3UVpaisuXL6OoqAjm5ub47LPPAACWlpaYPXs2TahPGiy1J6i5ublwc3PDq1evuA9D9r9Rh9JQLC0tkZycDDMzM4SHhyMiIqLK/c2YMQNNmjQBAFy+fBlnzpypctspU6bAzc0NAHDt2jUcP368ym3Hjx+P5s2bAwCio6Nx6NChKrcdNWoUWrZsCaBsLfTqbp0MHToU7dq1A1DWD2jnzp1Vbjtw4EB07twZAJCUlIQtW7ZUuW3fvn3RrVs3AMDTp0/x+++/V7mtv78/AgICAJR1qN+0aVOV23bt2pWbZy8rKwvr16+vcltfX1+8/fbbAMrmnv3uu++q3LZt27bchNPFxcVYuXJlldu2aNECo0eP5n5funRpldt6enpyt7cAYMWKFVUmv66urggKCuJ+X7NmDQoKCuRu27hxY8ycOZP7fd26dcjOzpa7ra2tLd5//33u940bN+L58+dyt7WwsMDHH3/M/b5582akpqbK3dbY2Bjz58/nfg8NDa00tZqUnp4e/u///o/7fceOHXjw4AEAIDHRFVu2BMl9XXlTpoTC3f0xndP/VHdO5Vm8eDH39z179iA2NrbKbRcuXMgltAcPHsStW7eq3HbevHkwMTEBABw9ehTXr1+vctvg4GBYWloCAE6dOoWrV69Wue3s2bNhZ2cHAPS5q+LP3UePHqFVq1bccqPS659IJIJEUjbbhpWVFZKSkmBmZlblPgnRZmr/amZmZoaoqCiuE7c0KZX+6ezsjHPnztF/SkJUJC9Psf9bim5HCKkdU1NTzJo1i1s4Rnr9k1aM/fz8EB0dTddB0qDxttRpcXExrKyskJ+fzz1mYmKCZ8+ewdjYmG41qWlbusXf8G5HR0Qw6N+/5jlMT50qgb8/S+e0im3pFj997tb3c7e4uBgODg6VroOZmZkybZiQhoi3BPXSpUvo0aOH3Melt0wIIconFgNubsDTp/JnjWIYwMkJSEwElLSMOCFEDroOElI13npf//333wCAYcOGISEhAUOHDgUAHD58mK+QCGkQRCJA2pW4wiI03O/r1lFySoiq0XWQkKrxVkG9fPkyHj9+jPHjx3MdxHfu3AlXV1f65kiIGuzfDwQHA0+evHnM2bksOf1vRWFCiArRdZCQqvGWoBJC+CcWAxcvAmlpgKMj0KMHVU4JIYTwjxJUQgghhBAiKDQDMCGEEEIIERRKUAkhhBBCiKBQgkoIIYQQQgSFElRCCCGEECIolKASQgghhBBBoQSVEEIIIYQICiWohBBCCCFEUChBJYQQQgghgkIJKiGEEEIIERRKUAkhhBBCiKBQgkoIIYQQQgSFElRCCCGEECIolKASQgghhBBBoQSVEEIIIYQIyv8Dm6GYWLHOA9YAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHRCAYAAAC4mLk+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8xUlEQVR4nO3deXxU1f3/8fdksgMJAhISCSHIFkgBCZZFULEQiXwRiv0Ri2UT+pWKIkasRPpVoErUVgWlrLJoSyG1ILWVIqmyWZBCJJVK3DAQlEAENcOabe7vD5qRIdtMtps7vJ6PxzwezJ27fE4izNtzzj3XZhiGIQAAAJP4mV0AAAC4uhFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACm8je7AE84nU4dP35czZo1k81mM7scAADgAcMwdObMGUVFRcnPr/L+D0uEkePHjys6OtrsMgAAQA0cO3ZMbdu2rfRzS4SRZs2aSbrUmLCwMJOrAQAAnnA4HIqOjnZ9j1fGEmGkbGgmLCyMMAIAgMVUN8WCCawAAMBUhBEAAGAqwggAADCVJeaMAADQWBmGoZKSEpWWlppdSoOz2+3y9/ev9bIbhBEAAGqoqKhIeXl5On/+vNmlmCY0NFSRkZEKDAys8TkIIwAA1IDT6VROTo7sdruioqIUGBh4VS3MaRiGioqK9PXXXysnJ0edOnWqcmGzqhBGAACogaKiIjmdTkVHRys0NNTsckwREhKigIAAHT16VEVFRQoODq7ReZjACgBALdS0N8BX1EX7r+6fIAAAMB1hBAAAmIowAgCARcyZM0e9evWqk3MdOXJENptNWVlZle6zfft22Ww2fffdd3VyzcowgRUAgKtQdHS08vLy1KpVK7NLIYwAAHA1stvtatOmjdllSGKYBgCAenHrrbdq+vTp+uUvf6kWLVqoTZs2mjNnjuvz3NxcjRw5Uk2bNlVYWJjGjBmjkydPup3jmWeeUUREhJo1a6bJkyfr4sWL5a6zevVqxcXFKTg4WF27dtXixYs9qq+iYZrNmzerc+fOCgkJ0eDBg3XkyJGaNN1rhBEAAOrJq6++qiZNmmjv3r167rnnNG/ePGVkZMgwDI0aNUrffPONduzYoYyMDB0+fFjJycmuY//0pz/pySef1NNPP639+/crMjKyXNBYsWKFZs+eraefflrZ2dmaP3++/u///k+vvvqq17UeO3ZMo0eP1h133KGsrCxNmTJFs2bNqvXPwBOWGqYxDMPsEgAA8FiPHj305JNPSpI6deqkRYsW6Z133pEkffjhh8rJyVF0dLQk6fe//726d++uffv26cYbb9SCBQt07733asqUKZKkp556Sv/4xz/cekd+/etf6/nnn9fo0aMlSbGxsTp06JCWLVumCRMmeFXrkiVL1KFDB7344ouy2Wzq0qWLDh48qGeffbbWP4fqWKpnpMhZZHYJAAB4rEePHm7vIyMjlZ+fr+zsbEVHR7uCiCR169ZNzZs3V3Z2tiQpOztb/fv3dzv+8vdff/21jh07psmTJ6tp06au11NPPaXDhw97XWt2drb69evntqT9ldevL5bqGTlffPU+iAgAYD0BAQFu7202m5xOpwzDqPA5NpVtr4jT6ZR0aaimb9++bp/Z7XavazVz9MFSPSOEEQCAL+jWrZtyc3N17Ngx17ZDhw6poKBAcXFxkqS4uDi9//77bsdd/j4iIkLXXXedvvjiC3Xs2NHtFRsbW6OaqrpefbJUz8iFkgtmlwAAQK0NGTJEPXr00D333KMFCxaopKRE999/v2655Rb16dNHkvTQQw9pwoQJ6tOnjwYOHKi1a9fqo48+UocOHVznmTNnjqZPn66wsDAlJSWpsLBQ+/fv17fffquUlBSvapo6daqef/55paSk6L777lNmZqbWrFlTl82ulLV6RkroGQEAWJ/NZtOmTZt0zTXX6Oabb9aQIUPUoUMHpaenu/ZJTk7WE088occee0wJCQk6evSofvGLX7idZ8qUKXrllVe0Zs0a/eAHP9Att9yiNWvW1KhnpF27dtqwYYP++te/qmfPnlq6dKnmz59f67Z6wmZY4BYVh8Oh8PBwbc3eqqFdh5pdDgAAunjxonJychQbG6vg4GCzyzFNVT+Hsu/vgoIChYWFVXoOekYAAICprBVGmMAKAIBH5s+f73bL7+WvpKQks8tzY6kJrOdLCSMAAHhi6tSpGjNmTIWfhYSENHA1VbNUGLlQzN00AAB4okWLFmrRooXZZXiEYRoAAGAqS4UR1hkBAMD3WCuMlBJGAADwNZYKI+eKz5ldAgAAqGOWCiNMYAUAwPdYKoyw6BkAAL7H6zCyc+dOjRgxQlFRUa619T31z3/+U/7+/urVq5e3l5XEBFYAAOrakiVL1KNHD4WFhSksLEz9+/fX3//+9watweswcu7cOfXs2VOLFi3y6riCggKNHz9eP/rRj7y9pAs9IwAA1K22bdvqmWee0f79+7V//37ddtttGjlypD766KMGq8HrRc+SkpJqtIzsfffdp7Fjx8put3vVm3I51hkBAFiFYRi6UFxqyrVDAuyy2Wwe7TtixAi3908//bSWLFmi999/X927d6+P8sppkBVYV69ercOHD+sPf/iDnnrqqWr3LywsVGFhoeu9w+GQxARWAIB1XCguVbcn3jbl2ofm3a7QQO+/4ktLS/X666/r3Llz6t+/fz1UVrF6DyOfffaZZs2apV27dsnf37PLpaWlae7cueW2Xyi9IKfhlJ/NUvNuAQBo1A4ePKj+/fvr4sWLatq0qd544w1169atwa5fr2GktLRUY8eO1dy5c9W5c2ePj0tNTVVKSorrvcPhUHR0tAwZulhyUaEBofVRLgAAdSYkwK5D82437dre6NKli7KysvTdd99pw4YNmjBhgnbs2NFggaRew8iZM2e0f/9+HThwQA888IAkyel0yjAM+fv7a+vWrbrtttvKHRcUFKSgoKAKz3m+5DxhBADQ6NlsthoNlZghMDBQHTt2lCT16dNH+/bt08KFC7Vs2bIGuX69/pTCwsJ08OBBt22LFy/Wu+++qz//+c+KjY31+pzni89LjevJxwAA+BTDMNzmbtY3r8PI2bNn9fnnn7ve5+TkKCsrSy1atFC7du2Umpqqr776Sq+99pr8/PwUHx/vdnzr1q0VHBxcbrunWBIeAIC68/jjjyspKUnR0dE6c+aM1q9fr+3bt2vLli0NVoPXYWT//v0aPHiw633Z3I4JEyZozZo1ysvLU25ubt1VeAXWGgEAoO6cPHlS48aNU15ensLDw9WjRw9t2bJFQ4cObbAabIZhGA12tRpyOBwKDw9X3JI4LfufZRrUdpDZJQEArnIXL15UTk6OYmNjFRwcbHY5pqnq51D2/V1QUKCwsLBKz2G5e2TPlTBMAwCAL7FcGGHhMwAAfIvlwghzRgAA8C2WCyPcTQMAgG+xXBjhYXkAAPgWy4URekYAAPAtlgsjzBkBAMC3WC6MXCjhbhoAAHyJ5cIIwzQAAPgWy4URekYAAPAthBEAAOCSlpYmm82mGTNmNNg1CSMAAECStG/fPi1fvlw9evRo0Ot6/dResxFGAACWYBiSWWtjBYRKNptXh5w9e1b33HOPVqxYoaeeeqqeCqsYYQQAgPpQfF6aH2XOtR8/LgU28eqQadOmafjw4RoyZAhhpDqEEQAA6tb69ev1wQcfaN++faZc33JhpMRZomJnsQL8AswuBQCAygWEXuqhMOvaHjp27Jgeeughbd26VcHBwfVYVOUsF0akS70jAYGEEQBAI2azeT1UYobMzEzl5+crISHBta20tFQ7d+7UokWLVFhYKLvdXq81WCqM2G2XfhgXii8oLDDM5GoAALC+H/3oRzp48KDbtkmTJqlr16567LHH6j2ISBYLI8H2YF3UReaNAABQR5o1a6b4+Hi3bU2aNFHLli3Lba8vllpnJMQ/RJJ0sfSiyZUAAIC6YqmekSD/IKmUO2oAAKhP27dvb9DrWbJn5EIxYQQAAF9hzTBCzwgAAD7DUmEk2H7p/ufzJSYtrwsAAOqcpcIIPSMAAPgeS4WRYP9LPSMXS7ibBgAAX2GpMELPCAAAvsdSYaRszghhBAAA32GpMELPCAAAvsdSYaRszghhBAAA32GpMELPCAAAdaukpES/+tWvFBsbq5CQEHXo0EHz5s2T0+lssBostRw8PSMAANStZ599VkuXLtWrr76q7t27a//+/Zo0aZLCw8P10EMPNUgNlgojIfb/PiiPW3sBAKgTe/bs0ciRIzV8+HBJUvv27bVu3Trt37+/wWrwephm586dGjFihKKiomSz2bRp06Yq99+4caOGDh2qa6+9VmFhYerfv7/efvvtGhUb5B8kiZ4RAEDjZxiGzhefN+VlGIbHdQ4cOFDvvPOOPv30U0nSv//9b7333nu644476utHU47XPSPnzp1Tz549NWnSJN11113V7r9z504NHTpU8+fPV/PmzbV69WqNGDFCe/fu1Q033ODVtcvmjLAcPACgsbtQckF9/9jXlGvvHbtXoQGhHu372GOPqaCgQF27dpXdbldpaamefvpp/fSnP63nKr/ndRhJSkpSUlKSx/svWLDA7f38+fP1l7/8RX/961+9DiPMGQEAoG6lp6frD3/4g/74xz+qe/fuysrK0owZMxQVFaUJEyY0SA0NPmfE6XTqzJkzatGihdfHls0ZIYwAABq7EP8Q7R2717Rre+rRRx/VrFmzdPfdd0uSfvCDH+jo0aNKS0vz3TDy/PPP69y5cxozZkyl+xQWFqqwsND13uFwSOLWXgCAddhsNo+HSsx0/vx5+fm5TyG12+2+e2vvunXrNGfOHP3lL39R69atK90vLS1Nc+fOLbc9JOD7u2kMw5DNZqu3WgEAuBqMGDFCTz/9tNq1a6fu3bvrwIEDeuGFF3Tvvfc2WA0NtuhZenq6Jk+erD/96U8aMmRIlfumpqaqoKDA9Tp27Jik7+eMGDJUWFpY1SkAAIAHXn75Zf3kJz/R/fffr7i4OM2cOVP33Xeffv3rXzdYDQ3SM7Ju3Trde++9Wrdunes+5qoEBQUpKCio3PayB+VJl4ZqysIJAAComWbNmmnBggXlbjhpSF6HkbNnz+rzzz93vc/JyVFWVpZatGihdu3aKTU1VV999ZVee+01SZeCyPjx47Vw4UL169dPJ06ckCSFhIQoPDzcq2vb/ewK9AtUkbNIF0ou6Bpd4235AACgkfF6mGb//v264YYbXLflpqSk6IYbbtATTzwhScrLy1Nubq5r/2XLlqmkpETTpk1TZGSk61XTJWbL5o0wiRUAAN/gdc/IrbfeWuXKbmvWrHF7v337dm8vUaUQ/xAVFBYQRgAA8BGWemqvxO29AAD4GsIIAAAwFWEEAIBa8OahdL6oLtpvuTBSdnsv64wAAMwUEBAg6dIKplezsvaX/TxqosGXg6+tIPul9Ucullw0uRIAwNXMbrerefPmys/PlySFhoZeVSuDG4ah8+fPKz8/X82bN5fdbq/xuSwXRsoWOiOMAADM1qZNG0lyBZKrUfPmzV0/h5qybhgpJYwAAMxls9kUGRmp1q1bq7i42OxyGlxAQECtekTKWC+M2OkZAQA0Lna7vU6+lK9WlpvAGuR/ac4IE1gBAPANlgsj9IwAAOBbrBdGmDMCAIBPsVwY4dZeAAB8i+XCSNkKrMwZAQDAN1gujLh6RhimAQDAJ1gujDCBFQAA32K9MOLPs2kAAPAllgsjTGAFAMC3WC6MlE1gZc4IAAC+wXJhpKxnpLCEYRoAAHyB9cKIP3fTAADgSywXRlzDNCUXZRiGydUAAIDaslwYKRumMWSo2Hn1Pa4ZAABfY7kwUrbOiCRdKLlgYiUAAKAuWC6M+Pv5y26zS2KtEQAAfIHlwojNZmOtEQAAfIjlwoj0/Sqs3FEDAID1WTOM/HfeCGuNAABgfZYMI6w1AgCA77BkGOHJvQAA+A5rhhGe3AsAgM+wZhj5b88I64wAAGB9lgwjZXNG6BkBAMD6LBlGmDMCAIDvsGYYYZ0RAAB8htdhZOfOnRoxYoSioqJks9m0adOmao/ZsWOHEhISFBwcrA4dOmjp0qU1qdWlbAVWhmkAALA+r8PIuXPn1LNnTy1atMij/XNycnTHHXdo0KBBOnDggB5//HFNnz5dGzZs8LrYMgzTAADgO/y9PSApKUlJSUke77906VK1a9dOCxYskCTFxcVp//79+u1vf6u77rrL28tLumyYhjACAIDleR1GvLVnzx4lJia6bbv99tu1cuVKFRcXKyAgwONzLfzHpwpu0lQHz56RJO3LPanfFHxcp/UCAIC6cfHcWY/2q/cwcuLECUVERLhti4iIUElJiU6dOqXIyMhyxxQWFqqw8Pv5IA6HQ5K0YleO/IJCFXCNQ8FtpI9PfKOsDw7XbwMAAECNOAvPe7RfvYcRSbLZbG7vDcOocHuZtLQ0zZ07t9z2e/q1U3BoU31x8XN9cF6KaRWgAbHt67xeAABQexfPn9UzHuxX72GkTZs2OnHihNu2/Px8+fv7q2XLlhUek5qaqpSUFNd7h8Oh6OhopSbFKSwsTH89/IU+eO9SGHkysXu91g8AAGrG4XA0jjDSv39//fWvf3XbtnXrVvXp06fS+SJBQUEKCgqq9Jzc2gsAgO/w+tbes2fPKisrS1lZWZIu3bqblZWl3NxcSZd6NcaPH+/af+rUqTp69KhSUlKUnZ2tVatWaeXKlZo5c2aNiy4LI0WlRTU+BwAAaBy87hnZv3+/Bg8e7HpfNpwyYcIErVmzRnl5ea5gIkmxsbHavHmzHn74Yf3ud79TVFSUXnrppRrf1itJgfZASVKhk54RAACszuswcuutt7omoFZkzZo15bbdcsst+uCDD7y9VKXoGQEAwHdY8tk0zBkBAMB3WDKMlA3T0DMCAID1WTKM0DMCAIDvsGQYoWcEAADfYekwUuwsltNwmlwNAACoDUuGkbJhGoneEQAArM6SYaSsZ0Ri3ggAAFZnyTDib/OXn+1S6fSMAABgbZYMIzabjTtqAADwEZYMIxJ31AAA4CssG0aC/OgZAQDAF1g2jATYAyRJRU56RgAAsDLLhhEelgcAgG+wfBhhmAYAAGuzbBgpm8BKGAEAwNosG0YYpgEAwDdYNozQMwIAgG+wbBihZwQAAN9g2TAS6EfPCAAAvsC6YYQVWAEA8AmWDSMM0wAA4BssG0aYwAoAgG+wbBhh0TMAAHyD5cMIwzQAAFibZcNI2YPy6BkBAMDaLBtG6BkBAMA3WD6M0DMCAIC1WTaMuNYZcdIzAgCAlVk2jDBMAwCAb7BsGGGdEQAAfINlwwg9IwAA+AbLhhEelAcAgG+wbhhhmAYAAJ9g2TDCMA0AAL6hRmFk8eLFio2NVXBwsBISErRr164q91+7dq169uyp0NBQRUZGatKkSTp9+nSNCi7DOiMAAPgGr8NIenq6ZsyYodmzZ+vAgQMaNGiQkpKSlJubW+H+7733nsaPH6/Jkyfro48+0uuvv659+/ZpypQptSq8bDn4Ymdxrc4DAADM5XUYeeGFFzR58mRNmTJFcXFxWrBggaKjo7VkyZIK93///ffVvn17TZ8+XbGxsRo4cKDuu+8+7d+/v1aFB/j9N4yUEkYAALAyr8JIUVGRMjMzlZiY6LY9MTFRu3fvrvCYAQMG6Msvv9TmzZtlGIZOnjypP//5zxo+fHil1yksLJTD4XB7XaksjJQYJXIaTm+aAQAAGhGvwsipU6dUWlqqiIgIt+0RERE6ceJEhccMGDBAa9euVXJysgIDA9WmTRs1b95cL7/8cqXXSUtLU3h4uOsVHR1dbp+yu2kkhmoAALCyGk1gtdlsbu8Nwyi3rcyhQ4c0ffp0PfHEE8rMzNSWLVuUk5OjqVOnVnr+1NRUFRQUuF7Hjh0rt09Zz4jEUA0AAFbm783OrVq1kt1uL9cLkp+fX663pExaWppuuukmPfroo5KkHj16qEmTJho0aJCeeuopRUZGljsmKChIQUFBVdbiFkboGQEAwLK86hkJDAxUQkKCMjIy3LZnZGRowIABFR5z/vx5+fm5X8Zut0u61KNSU3Y/u+y2S+dhrREAAKzL62GalJQUvfLKK1q1apWys7P18MMPKzc31zXskpqaqvHjx7v2HzFihDZu3KglS5boiy++0D//+U9Nnz5dP/zhDxUVFVWr4l131NAzAgCAZXk1TCNJycnJOn36tObNm6e8vDzFx8dr8+bNiomJkSTl5eW5rTkyceJEnTlzRosWLdIjjzyi5s2b67bbbtOzzz5b6+ID7AG6WHqRMAIAgIXZjNqMlTQQh8Oh8PBwFRQUKCwszLX9lvRb9M3Fb/TnEX9WlxZdTKwQAABcqbLv7ytZ9tk00mVrjThLTK4EAADUlKXDSNlaI0VOJrACAGBVlg4jLAkPAID1WTqMlPWMMIEVAADrsnQYKesZYZ0RAACsyyfCCD0jAABYl7XDiJ0wAgCA1Vk7jDBMAwCA5flEGKFnBAAA67J0GOFuGgAArM/SYYR1RgAAsD5LhxF6RgAAsD5LhxHXBFaWgwcAwLJ8IowwTAMAgHVZO4ywzggAAJZn7TDCOiMAAFieT4QRekYAALAuS4cR7qYBAMD6LB1GmMAKAID1+UYYoWcEAADLsnQYKRumYZ0RAACsy9JhhGEaAACsz9phhHVGAACwPGuHEZaDBwDA8nwijDBMAwCAdVk6jLDOCAAA1mfpMMKtvQAAWJ9vhBGGaQAAsCxLhxHWGQEAwPosHUYYpgEAwPosHUYC/f47gZVhGgAALMvSYaRs0TOGaQAAsC5rh5H/DtOUOEtkGIbJ1QAAgJqwdhj5b8+IxLwRAACsqkZhZPHixYqNjVVwcLASEhK0a9euKvcvLCzU7NmzFRMTo6CgIF1//fVatWpVjQq+XFnPiEQYAQDAqvy9PSA9PV0zZszQ4sWLddNNN2nZsmVKSkrSoUOH1K5duwqPGTNmjE6ePKmVK1eqY8eOys/PV0lJSa2LL5vAKklFpUVqEtCk1ucEAAANy2Z4Odmib9++6t27t5YsWeLaFhcXp1GjRiktLa3c/lu2bNHdd9+tL774Qi1atKhRkQ6HQ+Hh4SooKFBYWJjbZz1f6ymn4dQ7/+8dtQ5tXaPzAwCAulfV9/flvBqmKSoqUmZmphITE922JyYmavfu3RUe8+abb6pPnz567rnndN1116lz586aOXOmLly4UOl1CgsL5XA43F6Vcd3eyzANAACW5NUwzalTp1RaWqqIiAi37RERETpx4kSFx3zxxRd67733FBwcrDfeeEOnTp3S/fffr2+++abSeSNpaWmaO3euRzUF+AXoYulFFZVyey8AAFZUowmsNpvN7b1hGOW2lXE6nbLZbFq7dq1++MMf6o477tALL7ygNWvWVNo7kpqaqoKCAtfr2LFjldZSdkcNPSMAAFiTVz0jrVq1kt1uL9cLkp+fX663pExkZKSuu+46hYeHu7bFxcXJMAx9+eWX6tSpU7ljgoKCFBQU5FFNPCwPAABr86pnJDAwUAkJCcrIyHDbnpGRoQEDBlR4zE033aTjx4/r7Nmzrm2ffvqp/Pz81LZt2xqUfEVNduaMAABgZV4P06SkpOiVV17RqlWrlJ2drYcffli5ubmaOnWqpEtDLOPHj3ftP3bsWLVs2VKTJk3SoUOHtHPnTj366KO69957FRISUusGlPWMMGcEAABr8nqdkeTkZJ0+fVrz5s1TXl6e4uPjtXnzZsXExEiS8vLylJub69q/adOmysjI0IMPPqg+ffqoZcuWGjNmjJ566qk6aQBP7gUAwNq8XmfEDFXdpzz2rbE6eOqgXr7tZd0afas5BQIAgHLqZZ2RxohhGgAArM36YYRbewEAsDTrhxF6RgAAsDTLhxGWgwcAwNosH0YYpgEAwNosH0ZcPSOswAoAgCVZPozQMwIAgLVZP4yUTWB1MoEVAAAr8pkwwjANAADWZP0wYqdnBAAAK7N8GGECKwAA1mb5MMKD8gAAsDbLh5FAO4ueAQBgZZYPI0xgBQDA2iwfRsp6RpjACgCANfmbXUBtlfWMfH3+a+07sU8BfgEK8AuQv5+/28ttm+379zabzeQWAABwdbN8GAmyB0mSPjz1oe59+16vj/e3VRFartx2WYipNvD4XbGvzYPzX3nMf69Z1X7+fv7ys1m+gwsAcBWzfBjpH9VfA68bqJPnT6rEWaLi0mKVGCUqcX7/KnYWq8RZolKjtNzxJUaJSkpLpPIfWYbdZq80PF2+rbKw5NZjZC8fnDwKXrYAt2M9CmiXXdfuZzf7xwgAMInNMAzD7CKq43A4FB4eroKCAoWFhdX4PE7DqVJnqYqdxa6AUuIscYWXK4NMuf2uCDdux1awb1XHFhvFHu13+XXK6vNFfja/SoNMZT1ClfU2eXxcDYJXgC2g3LFlL7vNzrAfAFzG0+9vy/eMeMPP5ic/u59r1VYrMgzDLQBVFWJcwaeS8FTlfleez6h630rDU9mfrzjuSk7DqSKjyNITkW2yVR2K6niorrIeL1cPVwXX9KR3jEAFoKFdVWHEF9hstktDIn4BClGI2eXUiGEYKjVKKw0yxUZxlcNt1YWtqo6tKITVtHfMkHunoiHDtb+VXTnPyaMQc3kwquK4ysLWleGp2oBWSfBiYjpgTYQRNDibzeb60rGyUmdpueBSZeCpxVBduXNXcN0rj62wjiuOcxrOcu0q+9zKrhxCq26OVKVDepUM8wX41XCOlBdDi0xMx9XE2t8GgInsfnbZZXfd0WVFTsPp+RypGg7VFTvL9zZVG7yq6eG68jpX8sWJ6VdOMK90mK6auVXeBC/XHClvhxb9mJgO7xBGgKuYn81PgfZA1+KBVmQYhluIqWi4raZDdR7Np7psXpRHk9GvCHiVzaMqNUpVWlqqwtJCE36qdcMmW9VDelXMc/J6qK6C4zwNXmWhq6L9mJjeMAgjACzNZrMpwB7gMxPTPeoxqmaorsJgVMWx1fVyedo7VtE8qiKntSemSyofajwIT9XOkapiiK+yniZ/vxouv2CBiemEEQAw2eUT063qyonpVwYgT+dIufUaVRO8Ku25qsVE9ormUfnExHQPQlBthurK9Xj99zrF5z37uRFGAAC1djVNTK/tUF1lE9K9mk9VRUirdIHPkoafmF56wbOJW9b+rwYAgDrkKxPTK1vgs6ZDdZf3Nnl6x2CJs0Tnzp5TtrKrrZkwAgCAD2lMC3w6HA6t1upq9+NGdgAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApqpRGFm8eLFiY2MVHByshIQE7dq1y6Pj/vnPf8rf31+9evWqyWUBAIAP8jqMpKena8aMGZo9e7YOHDigQYMGKSkpSbm5uVUeV1BQoPHjx+tHP/pRjYsFAAC+x2YYhlH9bt/r27evevfurSVLlri2xcXFadSoUUpLS6v0uLvvvludOnWS3W7Xpk2blJWV5fE1HQ6HwsPDVVBQoLCwMG/KBQAAJvH0+9urnpGioiJlZmYqMTHRbXtiYqJ2795d6XGrV6/W4cOH9eSTT3p0ncLCQjkcDrcXAADwTV6FkVOnTqm0tFQRERFu2yMiInTixIkKj/nss880a9YsrV27Vv7+ni34mpaWpvDwcNcrOjramzIBAICF1GgC65WPIjYMo8LHE5eWlmrs2LGaO3euOnfu7PH5U1NTVVBQ4HodO3asJmUCAAAL8OrZNK1atZLdbi/XC5Kfn1+ut0SSzpw5o/379+vAgQN64IEHJElOp1OGYcjf319bt27VbbfdVu64oKAgBQVZ9yFFAADAc171jAQGBiohIUEZGRlu2zMyMjRgwIBy+4eFhengwYPKyspyvaZOnaouXbooKytLffv2rV31AADA8rx+am9KSorGjRunPn36qH///lq+fLlyc3M1depUSZeGWL766iu99tpr8vPzU3x8vNvxrVu3VnBwcLntAADg6uR1GElOTtbp06c1b9485eXlKT4+Xps3b1ZMTIwkKS8vr9o1RwAAAMp4vc6IGVhnBAAA66mXdUYAAADqGmEEAACYijACAABMRRgBAACmIowAAABTEUYAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABTEUYAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiqRmFk8eLFio2NVXBwsBISErRr165K9924caOGDh2qa6+9VmFhYerfv7/efvvtGhcMAAB8i9dhJD09XTNmzNDs2bN14MABDRo0SElJScrNza1w/507d2ro0KHavHmzMjMzNXjwYI0YMUIHDhyodfEAAMD6bIZhGN4c0LdvX/Xu3VtLlixxbYuLi9OoUaOUlpbm0Tm6d++u5ORkPfHEEx7t73A4FB4eroKCAoWFhXlTLgAAMImn399e9YwUFRUpMzNTiYmJbtsTExO1e/duj87hdDp15swZtWjRotJ9CgsL5XA43F4AAMA3eRVGTp06pdLSUkVERLhtj4iI0IkTJzw6x/PPP69z585pzJgxle6Tlpam8PBw1ys6OtqbMgEAgIXUaAKrzWZze28YRrltFVm3bp3mzJmj9PR0tW7dutL9UlNTVVBQ4HodO3asJmUCAAAL8Pdm51atWslut5frBcnPzy/XW3Kl9PR0TZ48Wa+//rqGDBlS5b5BQUEKCgrypjQAAGBRXvWMBAYGKiEhQRkZGW7bMzIyNGDAgEqPW7dunSZOnKg//vGPGj58eM0qBQAAPsmrnhFJSklJ0bhx49SnTx/1799fy5cvV25urqZOnSrp0hDLV199pddee03SpSAyfvx4LVy4UP369XP1qoSEhCg8PLwOmwIAAKzI6zCSnJys06dPa968ecrLy1N8fLw2b96smJgYSVJeXp7bmiPLli1TSUmJpk2bpmnTprm2T5gwQWvWrKl9CwAAgKV5vc6IGVhnBAAA66mXdUYAAADqGmEEAACYijACAABMRRgBAACmIowAAABTEUYAAICpCCMAAMBUhBEAAGAqwggAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApiKMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABTEUYAAICpCCMAAMBUhBEAAGAqwggAADBVjcLI4sWLFRsbq+DgYCUkJGjXrl1V7r9jxw4lJCQoODhYHTp00NKlS2tULAAA8D1eh5H09HTNmDFDs2fP1oEDBzRo0CAlJSUpNze3wv1zcnJ0xx13aNCgQTpw4IAef/xxTZ8+XRs2bKh18QAAwPpshmEY3hzQt29f9e7dW0uWLHFti4uL06hRo5SWllZu/8cee0xvvvmmsrOzXdumTp2qf//739qzZ49H13Q4HAoPD1dBQYHCwsK8KRcAAJjE0+9vf29OWlRUpMzMTM2aNctte2Jionbv3l3hMXv27FFiYqLbtttvv10rV65UcXGxAgICPC9g+zNSk2BvSgYAAGY5d9Gj3bwKI6dOnVJpaakiIiLctkdEROjEiRMVHnPixIkK9y8pKdGpU6cUGRlZ7pjCwkIVFha63jscjkt/2LNICrJ5UzIAADBLoWeDL16FkTI2m3sgMAyj3Lbq9q9oe5m0tDTNnTu3/Ad9JkuhQV5WCwAATHG+UNKCanfzKoy0atVKdru9XC9Ifn5+ud6PMm3atKlwf39/f7Vs2bLCY1JTU5WSkuJ673A4FB0dLQ2dKzFnBAAAa3A45EkY8epumsDAQCUkJCgjI8Nte0ZGhgYMGFDhMf379y+3/9atW9WnT59K54sEBQUpLCzM7QUAAHyT17f2pqSk6JVXXtGqVauUnZ2thx9+WLm5uZo6daqkS70a48ePd+0/depUHT16VCkpKcrOztaqVau0cuVKzZw5s+5aAQAALMvrOSPJyck6ffq05s2bp7y8PMXHx2vz5s2KiYmRJOXl5bmtORIbG6vNmzfr4Ycf1u9+9ztFRUXppZde0l133VV3rQAAAJbl9TojZmCdEQAArMfT72+eTQMAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATOX1cvBmKFsk1uFwmFwJAADwVNn3dnWLvVsijJw+fVqSFB0dbXIlAADAW6dPn1Z4eHiln1sijLRo0UKSlJubW2VjrOrGG2/Uvn37zC6jXtA2a6Jt1uXL7aNt1lNQUKB27dq5vscrY4kw4ud3aWpLeHi4Tz4oz263+2S7JNpmVbTNuny5fbTNusq+xyv9vIHqQBWmTZtmdgn1hrZZE22zLl9uH23zXTajulkljYCnjyAGAACNh6ff35boGQkKCtKTTz6poKAgs0sBAAAe8vT72xI9IwAAwHdZomcEAAD4LsIIAAAwFWGkAS1evFixsbEKDg5WQkKCdu3aJUkqLi7WY489ph/84Adq0qSJoqKiNH78eB0/ftzkij1XWdskac6cOeratauaNGmia665RkOGDNHevXtNrNY7VbXtcvfdd59sNpsWLFjQsAXWQlVtmzhxomw2m9urX79+Jlbrnep+b9nZ2brzzjsVHh6uZs2aqV+/fsrNzTWpWu9V1b4rf29lr9/85jcmVuy5qtp29uxZPfDAA2rbtq1CQkIUFxenJUuWmFitd6pq28mTJzVx4kRFRUUpNDRUw4YN02effWZitQ3IQINYv369ERAQYKxYscI4dOiQ8dBDDxlNmjQxjh49anz33XfGkCFDjPT0dOPjjz829uzZY/Tt29dISEgwu2yPVNU2wzCMtWvXGhkZGcbhw4eN//znP8bkyZONsLAwIz8/3+TKq1dd28q88cYbRs+ePY2oqCjjxRdfNKdYL1XXtgkTJhjDhg0z8vLyXK/Tp0+bXLVnqmvb559/brRo0cJ49NFHjQ8++MA4fPiw8be//c04efKkyZV7prr2Xf47y8vLM1atWmXYbDbj8OHDJldeveraNmXKFOP66683tm3bZuTk5BjLli0z7Ha7sWnTJpMrr15VbXM6nUa/fv2MQYMGGf/617+Mjz/+2Pjf//1fo127dsbZs2fNLr3eNbow8rvf/c5o3769ERQUZPTu3dvYuXOn67MNGzYYiYmJRsuWLQ1JxoEDB8wr1Es//OEPjalTp7pt69q1qzFr1qwK9//Xv/5lSCr3pdcYedu2goICQ5Lxj3/8oyHKqxVP2vbll18a1113nfGf//zHiImJsUwYqa5tEyZMMEaOHGlCZbVXXduSk5ONn/3sZ2aUVie8/Ts3cuRI47bbbmuI0mqturZ1797dmDdvntvnvXv3Nn71q181WI01VVXbPvnkE0OS8Z///Mf1WUlJidGiRQtjxYoVDV1qg2tUwzTp6emaMWOGZs+erQMHDmjQoEFKSkpydZ2eO3dON910k5555hmTK/VOUVGRMjMzlZiY6LY9MTFRu3fvrvCYgoIC2Ww2NW/evAEqrDlv21ZUVKTly5crPDxcPXv2bKgya8STtjmdTo0bN06PPvqounfvbkaZNeLp72379u1q3bq1OnfurJ///OfKz89v6FK9Vl3bnE6n3nrrLXXu3Fm33367Wrdurb59+2rTpk3mFOwlb//OnTx5Um+99ZYmT57cUCXWmCdtGzhwoN5880199dVXMgxD27Zt06effqrbb7/djJI9Vl3bCgsLJUnBwcGuz+x2uwIDA/Xee+81aK1maFRh5IUXXtDkyZM1ZcoUxcXFacGCBYqOjnaNB44bN05PPPGEhgwZYnKl3jl16pRKS0sVERHhtj0iIkInTpwot//Fixc1a9YsjR07ttEv8uZp2/72t7+padOmCg4O1osvvqiMjAy1atWqocv1iidte/bZZ+Xv76/p06ebUWKNedK2pKQkrV27Vu+++66ef/557du3T7fddpvrH83Gqrq25efn6+zZs3rmmWc0bNgwbd26VT/+8Y81evRo7dixw6SqPeftvyevvvqqmjVrptGjRzdUiTXmSdteeukldevWTW3btlVgYKCGDRumxYsXa+DAgWaU7LHq2ta1a1fFxMQoNTVV3377rYqKivTMM8/oxIkTysvLM6nqhtNonk1TlhpnzZrltr2q3gOrsdlsbu8Nwyi3rbi4WHfffbecTqcWL17ckOXVSnVtGzx4sLKysnTq1CmtWLFCY8aM0d69e9W6deuGLtVrlbUtMzNTCxcu1AcffFBuH6uo6veWnJzs2h4fH68+ffooJiZGb731liW+2Cprm9PplCSNHDlSDz/8sCSpV69e2r17t5YuXapbbrmlwWutCU/+PZGkVatW6Z577nH7P+7Grqq2vfTSS3r//ff15ptvKiYmRjt37tT999+vyMhIS/yPamVtCwgI0IYNGzR58mS1aNFCdrtdQ4YMUVJSkkmVNqxG0zPibdq3klatWslut5drR35+vlt7i4uLNWbMGOXk5CgjI6PR94pInretSZMm6tixo/r166eVK1fK399fK1eubOhyvVJd23bt2qX8/Hy1a9dO/v7+8vf319GjR/XII4+offv25hTtIU9/b5eLjIxUTExMo5/dX13bWrVqJX9/f3Xr1s3t87i4OEvcTePN727Xrl365JNPNGXKlIYsscaqa9uFCxf0+OOP64UXXtCIESPUo0cPPfDAA0pOTtZvf/tbk6r2jCe/t4SEBGVlZem7775TXl6etmzZotOnTys2NtaMkhtUowkjZTxN+1YSGBiohIQEZWRkuG3PyMjQgAEDJH0fRD777DP94x//UMuWLc0o1WuetK0ihmE0+u7+6to2btw4ffjhh8rKynK9oqKi9Oijj+rtt982qWrP1OT3dvr0aR07dkyRkZENUWKNVde2wMBA3Xjjjfrkk0/cPv/0008VExPTkKXWiDe/u5UrVyohIaHRz88qU13biouLVVxcXO4JsHa73dXj1Vh583sLDw/Xtddeq88++0z79+/XyJEjG7JUc5g0cbacwsJCw263Gxs3bnTbPn36dOPmm29225aTk2O5u2nKbulauXKlcejQIWPGjBlGkyZNjCNHjhjFxcXGnXfeabRt29bIyspyuyWvsLDQ7NKrVVXbzp49a6Smphp79uwxjhw5YmRmZhqTJ082goKC3GaNN1ZVta0iVrqbpqq2nTlzxnjkkUeM3bt3Gzk5Oca2bduM/v37G9ddd53hcDjMLr1a1f3eNm7caAQEBBjLly83PvvsM+Pll1827Ha7sWvXLpMr94wn/10WFBQYoaGhxpIlS0ys1HvVte2WW24xunfvbmzbts344osvjNWrVxvBwcHG4sWLTa68etW17U9/+pOxbds24/Dhw8amTZuMmJgYY/To0SZX3TAaTRgxjEu3Pf3iF79w2xYXF1fudjUrhhHDuHTbckxMjBEYGGj07t3b2LFjh2EY37enote2bdvMLdpDlbXtwoULxo9//GMjKirKCAwMNCIjI40777zT+Ne//mVyxZ6rrG0VsVIYMYzK23b+/HkjMTHRuPbaa42AgACjXbt2xoQJE4zc3FyTK/Zcdb+3lStXGh07djSCg4ONnj17WmKdistV175ly5YZISEhxnfffWdShTVXVdvy8vKMiRMnGlFRUUZwcLDRpUsX4/nnnzecTqeJFXuuqrYtXLjQaNu2revv3K9+9StL/A9pXWhUD8pLT0/XuHHjtHTpUvXv31/Lly/XihUr9NFHHykmJkbffPONcnNzdfz4cQ0fPlzr169Xly5d1KZNG7Vp08bs8gEAQA00qjAiXVoq97nnnlNeXp7i4+P14osv6uabb5YkrVmzRpMmTSp3zJNPPqk5c+Y0cKUAAKAuNLowAgAAri6N7m4aAABwdSGMAAAAUxFGAACAqQgjAADAVIQRAABgKsIIAAAwlelhZOLEiRo1apTZZQAAAJOYHkYAAMDVrVGFkS1btmjgwIFq3ry5WrZsqf/5n//R4cOHXZ8fOXJENptNGzdu1ODBgxUaGqqePXtqz549JlYNAABqo1GFkXPnziklJUX79u3TO++8Iz8/P/34xz8u92jo2bNna+bMmcrKylLnzp3105/+VCUlJSZVDQAAasPf7AIud9ddd7m9X7lypVq3bq1Dhw4pPj7etX3mzJkaPny4JGnu3Lnq3r27Pv/8c3Xt2rVB6wUAALXXqHpGDh8+rLFjx6pDhw4KCwtTbGysJCk3N9dtvx49erj+HBkZKUnKz89vuEIBAECdaVQ9IyNGjFB0dLRWrFihqKgoOZ1OxcfHq6ioyG2/gIAA159tNpsklRvKAQAA1tBowsjp06eVnZ2tZcuWadCgQZKk9957z+SqAABAfWs0YeSaa65Ry5YttXz5ckVGRio3N1ezZs0yuywAAFDPTJ8z4nQ65e/vLz8/P61fv16ZmZmKj4/Xww8/rN/85jdmlwcAAOqZzTAMw8wChg0bpo4dO2rRokVmlgEAAExiWs/It99+q7feekvbt2/XkCFDzCoDAACYzLQ5I/fee6/27dunRx55RCNHjjSrDAAAYDLTh2kAAMDVzfQJrAAA4OpGGAEAAKZqkDCSlpamG2+8Uc2aNVPr1q01atQoffLJJ277GIahOXPmKCoqSiEhIbr11lv10UcfuT7/5ptv9OCDD6pLly4KDQ1Vu3btNH36dBUUFFR4zcLCQvXq1Us2m01ZWVn12TwAAFALDRJGduzYoWnTpun9999XRkaGSkpKlJiYqHPnzrn2ee655/TCCy9o0aJF2rdvn9q0aaOhQ4fqzJkzkqTjx4/r+PHj+u1vf6uDBw9qzZo12rJliyZPnlzhNX/5y18qKiqqIZoHAABqwZQJrF9//bVat26tHTt26Oabb5ZhGIqKitKMGTP02GOPSbrUsxEREaFnn31W9913X4Xnef311/Wzn/1M586dk7//9zcG/f3vf1dKSoo2bNig7t2768CBA+rVq1dDNA0AAHjJlDkjZUMrLVq0kCTl5OToxIkTSkxMdO0TFBSkW265Rbt3767yPGFhYW5B5OTJk/r5z3+u3//+9woNDa2nFgAAgLrS4GHEMAylpKRo4MCBio+PlySdOHFCkhQREeG2b0REhOuzK50+fVq//vWv3XpNDMPQxIkTNXXqVPXp06eeWgAAAOpSgy969sADD+jDDz+s8Im8NpvN7b1hGOW2SZLD4dDw4cPVrVs3Pfnkk67tL7/8shwOh1JTU+u+cAAAUC8atGfkwQcf1Jtvvqlt27apbdu2ru1t2rSRpHK9IPn5+eV6S86cOaNhw4apadOmeuONNxQQEOD67N1339X777+voKAg+fv7q2PHjpKkPn36aMKECfXVLAAAUAsNEkYMw9ADDzygjRs36t1331VsbKzb57GxsWrTpo0yMjJc24qKirRjxw4NGDDAtc3hcCgxMVGBgYF68803FRwc7Hael156Sf/+97+VlZWlrKwsbd68WZKUnp6up59+uh5bCAAAaqpBhmmmTZumP/7xj/rLX/6iZs2auXpAwsPDFRISIpvNphkzZmj+/Pnq1KmTOnXqpPnz5ys0NFRjx46VdKlHJDExUefPn9cf/vAHORwOORwOSdK1114ru92udu3auV23adOmkqTrr7/erScGAAA0Hg0SRpYsWSJJuvXWW922r169WhMnTpR0aV2QCxcu6P7779e3336rvn37auvWrWrWrJkkKTMzU3v37pUk1/BLmZycHLVv375e2wAAAOoHD8oDAACm4tk0AADAVIQRAABgKsIIAAAwFWEEAACYijACAABMRRgBAACmIowAAABTEUYA1Jvt27fLZrPpu+++M7sUAI0Yi54BqDO33nqrevXqpQULFki69Iypb775RhERERU+gRsApAZaDh7A1SkwMND1VG4AqAzDNADqxMSJE7Vjxw4tXLhQNptNNptNa9ascRumWbNmjZo3b66//e1v6tKli0JDQ/WTn/xE586d06uvvqr27dvrmmuu0YMPPqjS0lLXuYuKivTLX/5S1113nZo0aaK+fftq+/bt5jQUQJ2jZwRAnVi4cKE+/fRTxcfHa968eZKkjz76qNx+58+f10svvaT169frzJkzGj16tEaPHq3mzZtr8+bN+uKLL3TXXXdp4MCBSk5OliRNmjRJR44c0fr16xUVFaU33nhDw4YN08GDB9WpU6cGbSeAukcYAVAnwsPDFRgYqNDQUNfQzMcff1xuv+LiYi1ZskTXX3+9JOknP/mJfv/73+vkyZNq2rSpunXrpsGDB2vbtm1KTk7W4cOHtW7dOn355ZeKioqSJM2cOVNbtmzR6tWrNX/+/IZrJIB6QRgB0KBCQ0NdQUSSIiIi1L59ezVt2tRtW35+viTpgw8+kGEY6ty5s9t5CgsL1bJly4YpGkC9IowAaFABAQFu7202W4XbnE6nJMnpdMputyszM1N2u91tv8sDDADrIowAqDOBgYFuE0/rwg033KDS0lLl5+dr0KBBdXpuAI0Dd9MAqDPt27fX3r17deTIEZ06dcrVu1EbnTt31j333KPx48dr48aNysnJ0b59+/Tss89q8+bNdVA1ALMRRgDUmZkzZ8put6tbt2669tprlZubWyfnXb16tcaPH69HHnlEXbp00Z133qm9e/cqOjq6Ts4PwFyswAoAAExFzwgAADAVYQQAAJiKMAIAAExFGAEAAKYijAAAAFMRRgAAgKkIIwAAwFSEEQAAYCrCCAAAMBVhBAAAmIowAgAATEUYAQAApvr/mijkO0WUlwoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# first, load in the simple model of case 1. Copy it.\n", "case2_example4 = case1(\"case2_example4\")\n", @@ -2505,7 +210,7 @@ }, { "cell_type": "raw", - "id": "d65f9fa7-70e8-4206-81ec-71a64b742083", + "id": "19", "metadata": {}, "source": [ "Volgende case zou kunnen zijn dat er tussen twee peilgebieden (met wel of niet andere target levels) er outlets zijn, die van de een naar de ander gaan, en andersom. Maar in principe verwacht ik daar geen gekke situaties: de outlet laat alleen water stromen als dit onder vrij verval kan, en pompt geen water omhoog. Het enige wat wel gek zou kunnen worden, is als beide peilen rond hetzelfde niveau komen. Dan zou het water de ene tijdstap van links naar rechts kunnen stromen, en de andere momenten de andere kant op. Ik kan me voorstellen dat dit tot instabiliteiten leidt. Weet alleen niet zeker of dit gaat optreden bij simpele voorbeelden als hier." @@ -2513,7 +218,7 @@ }, { "cell_type": "raw", - "id": "7575a037-5d76-469f-a2c0-021248515678", + "id": "20", "metadata": {}, "source": [ "Wat wel interessant zou zijn is het toch wel toevoegen van ContinuousControls. Eerst leek dit niet een logische stap, omdat ik wilde dat de outlet zou luisteren naar boven- en benedenstroomse peil. Maar nu doet dat het eigenlijk alleen naar bovenstrooms. \n", @@ -2523,7 +228,7 @@ }, { "cell_type": "raw", - "id": "2776ed89-2c4a-4fe2-b50f-fb2a9eb707e2", + "id": "21", "metadata": {}, "source": [ "Conclusie(?): de discrete controls moeten OOK gaan luisteren naar benedenstroomse peil. Dit toch wel doen aan de hand van de vier verschillende opties, afhankelijk wat de streefpeil van peilgebied 1 en peilgebied 2 is. \n", @@ -2533,7 +238,7 @@ }, { "cell_type": "raw", - "id": "76c92c05-e7b1-4c9c-a763-b54dfbfb1c5d", + "id": "22", "metadata": {}, "source": [ "1) Hoe verhoudt dit zich tot de min_crest_level en een enkele listen_to_node?\n", @@ -2554,7 +259,7 @@ }, { "cell_type": "raw", - "id": "b43144a5-e2fc-486b-a2ea-6c81a295abf7", + "id": "23", "metadata": {}, "source": [ "Conclusie: vorige conclusie is correct. Luisteren naar zowel boven- als benedestrooms." @@ -2562,7 +267,7 @@ }, { "cell_type": "raw", - "id": "672b28d7-806a-42a3-a584-15ff3c59273f", + "id": "24", "metadata": {}, "source": [ "Stappenplan voor AGV:\n", @@ -2573,7 +278,7 @@ }, { "cell_type": "markdown", - "id": "15e38a1d-5017-4432-9538-4a94f5c27937", + "id": "25", "metadata": {}, "source": [ "# Thrashbin" @@ -2582,7 +287,7 @@ { "cell_type": "code", "execution_count": null, - "id": "042e3e2b-1fbe-4932-ba8b-ce878acc8af5", + "id": "26", "metadata": {}, "outputs": [], "source": [ diff --git a/src/peilbeheerst_model/Parametrize/AmstelGooienVecht_parametrize.ipynb b/src/peilbeheerst_model/Parametrize/AmstelGooienVecht_parametrize.ipynb index c8093382..4a3f38b7 100644 --- a/src/peilbeheerst_model/Parametrize/AmstelGooienVecht_parametrize.ipynb +++ b/src/peilbeheerst_model/Parametrize/AmstelGooienVecht_parametrize.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -28,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -98,7 +98,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -135,19 +135,9 @@ }, { "cell_type": "code", - "execution_count": 4, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processed all actions\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "name = \"Ron Bruijns (HKV)\"\n", "versie = \"2024_8_8\"\n", @@ -175,7 +165,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -194,7 +184,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -203,7 +193,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -213,7 +203,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -243,7 +233,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -254,1530 +244,9 @@ }, { "cell_type": "code", - "execution_count": 10, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:root:Processing Basin Node ID: 1\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1038\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1039\n", - "INFO:root:Connected new Basin Node ID: 1039 to original Basin Node ID: 1 via Manning Resistance Node ID: 1038\n", - "INFO:root:Processing Basin Node ID: 2\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1040\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1041\n", - "INFO:root:Connected new Basin Node ID: 1041 to original Basin Node ID: 2 via Manning Resistance Node ID: 1040\n", - "INFO:root:Processing Basin Node ID: 3\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1042\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1043\n", - "INFO:root:Connected new Basin Node ID: 1043 to original Basin Node ID: 3 via Manning Resistance Node ID: 1042\n", - "INFO:root:Processing Basin Node ID: 4\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1044\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1045\n", - "INFO:root:Connected new Basin Node ID: 1045 to original Basin Node ID: 4 via Manning Resistance Node ID: 1044\n", - "INFO:root:Processing Basin Node ID: 5\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1046\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1047\n", - "INFO:root:Connected new Basin Node ID: 1047 to original Basin Node ID: 5 via Manning Resistance Node ID: 1046\n", - "INFO:root:Processing Basin Node ID: 6\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1048\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1049\n", - "INFO:root:Connected new Basin Node ID: 1049 to original Basin Node ID: 6 via Manning Resistance Node ID: 1048\n", - "INFO:root:Processing Basin Node ID: 7\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1050\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1051\n", - "INFO:root:Connected new Basin Node ID: 1051 to original Basin Node ID: 7 via Manning Resistance Node ID: 1050\n", - "INFO:root:Processing Basin Node ID: 8\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1052\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1053\n", - "INFO:root:Connected new Basin Node ID: 1053 to original Basin Node ID: 8 via Manning Resistance Node ID: 1052\n", - "INFO:root:Processing Basin Node ID: 9\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1054\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1055\n", - "INFO:root:Connected new Basin Node ID: 1055 to original Basin Node ID: 9 via Manning Resistance Node ID: 1054\n", - "INFO:root:Processing Basin Node ID: 10\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1056\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1057\n", - "INFO:root:Connected new Basin Node ID: 1057 to original Basin Node ID: 10 via Manning Resistance Node ID: 1056\n", - "INFO:root:Processing Basin Node ID: 11\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1058\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1059\n", - "INFO:root:Connected new Basin Node ID: 1059 to original Basin Node ID: 11 via Manning Resistance Node ID: 1058\n", - "INFO:root:Processing Basin Node ID: 12\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1060\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1061\n", - "INFO:root:Connected new Basin Node ID: 1061 to original Basin Node ID: 12 via Manning Resistance Node ID: 1060\n", - "INFO:root:Processing Basin Node ID: 13\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1062\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1063\n", - "INFO:root:Connected new Basin Node ID: 1063 to original Basin Node ID: 13 via Manning Resistance Node ID: 1062\n", - "INFO:root:Processing Basin Node ID: 14\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1064\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1065\n", - "INFO:root:Connected new Basin Node ID: 1065 to original Basin Node ID: 14 via Manning Resistance Node ID: 1064\n", - "INFO:root:Processing Basin Node ID: 15\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1066\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1067\n", - "INFO:root:Connected new Basin Node ID: 1067 to original Basin Node ID: 15 via Manning Resistance Node ID: 1066\n", - "INFO:root:Processing Basin Node ID: 17\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1068\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1069\n", - "INFO:root:Connected new Basin Node ID: 1069 to original Basin Node ID: 17 via Manning Resistance Node ID: 1068\n", - "INFO:root:Processing Basin Node ID: 18\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1070\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1071\n", - "INFO:root:Connected new Basin Node ID: 1071 to original Basin Node ID: 18 via Manning Resistance Node ID: 1070\n", - "INFO:root:Processing Basin Node ID: 24\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1072\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1073\n", - "INFO:root:Connected new Basin Node ID: 1073 to original Basin Node ID: 24 via Manning Resistance Node ID: 1072\n", - "INFO:root:Processing Basin Node ID: 25\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1074\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1075\n", - "INFO:root:Connected new Basin Node ID: 1075 to original Basin Node ID: 25 via Manning Resistance Node ID: 1074\n", - "INFO:root:Processing Basin Node ID: 26\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1076\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1077\n", - "INFO:root:Connected new Basin Node ID: 1077 to original Basin Node ID: 26 via Manning Resistance Node ID: 1076\n", - "INFO:root:Processing Basin Node ID: 27\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1078\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1079\n", - "INFO:root:Connected new Basin Node ID: 1079 to original Basin Node ID: 27 via Manning Resistance Node ID: 1078\n", - "INFO:root:Processing Basin Node ID: 28\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1080\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1081\n", - "INFO:root:Connected new Basin Node ID: 1081 to original Basin Node ID: 28 via Manning Resistance Node ID: 1080\n", - "INFO:root:Processing Basin Node ID: 29\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1082\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1083\n", - "INFO:root:Connected new Basin Node ID: 1083 to original Basin Node ID: 29 via Manning Resistance Node ID: 1082\n", - "INFO:root:Processing Basin Node ID: 30\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1084\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1085\n", - "INFO:root:Connected new Basin Node ID: 1085 to original Basin Node ID: 30 via Manning Resistance Node ID: 1084\n", - "INFO:root:Processing Basin Node ID: 31\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1086\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1087\n", - "INFO:root:Connected new Basin Node ID: 1087 to original Basin Node ID: 31 via Manning Resistance Node ID: 1086\n", - "INFO:root:Processing Basin Node ID: 32\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1088\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1089\n", - "INFO:root:Connected new Basin Node ID: 1089 to original Basin Node ID: 32 via Manning Resistance Node ID: 1088\n", - "INFO:root:Processing Basin Node ID: 33\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1090\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1091\n", - "INFO:root:Connected new Basin Node ID: 1091 to original Basin Node ID: 33 via Manning Resistance Node ID: 1090\n", - "INFO:root:Processing Basin Node ID: 34\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1092\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1093\n", - "INFO:root:Connected new Basin Node ID: 1093 to original Basin Node ID: 34 via Manning Resistance Node ID: 1092\n", - "INFO:root:Processing Basin Node ID: 35\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1094\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1095\n", - "INFO:root:Connected new Basin Node ID: 1095 to original Basin Node ID: 35 via Manning Resistance Node ID: 1094\n", - "INFO:root:Processing Basin Node ID: 36\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1096\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1097\n", - "INFO:root:Connected new Basin Node ID: 1097 to original Basin Node ID: 36 via Manning Resistance Node ID: 1096\n", - "INFO:root:Processing Basin Node ID: 37\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1098\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1099\n", - "INFO:root:Connected new Basin Node ID: 1099 to original Basin Node ID: 37 via Manning Resistance Node ID: 1098\n", - "INFO:root:Processing Basin Node ID: 38\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1100\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1101\n", - "INFO:root:Connected new Basin Node ID: 1101 to original Basin Node ID: 38 via Manning Resistance Node ID: 1100\n", - "INFO:root:Processing Basin Node ID: 39\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1102\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1103\n", - "INFO:root:Connected new Basin Node ID: 1103 to original Basin Node ID: 39 via Manning Resistance Node ID: 1102\n", - "INFO:root:Processing Basin Node ID: 40\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1104\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1105\n", - "INFO:root:Connected new Basin Node ID: 1105 to original Basin Node ID: 40 via Manning Resistance Node ID: 1104\n", - "INFO:root:Processing Basin Node ID: 41\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1106\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1107\n", - "INFO:root:Connected new Basin Node ID: 1107 to original Basin Node ID: 41 via Manning Resistance Node ID: 1106\n", - "INFO:root:Processing Basin Node ID: 42\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1108\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1109\n", - "INFO:root:Connected new Basin Node ID: 1109 to original Basin Node ID: 42 via Manning Resistance Node ID: 1108\n", - "INFO:root:Processing Basin Node ID: 43\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1110\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1111\n", - "INFO:root:Connected new Basin Node ID: 1111 to original Basin Node ID: 43 via Manning Resistance Node ID: 1110\n", - "INFO:root:Processing Basin Node ID: 44\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1112\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1113\n", - "INFO:root:Connected new Basin Node ID: 1113 to original Basin Node ID: 44 via Manning Resistance Node ID: 1112\n", - "INFO:root:Processing Basin Node ID: 45\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1114\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1115\n", - "INFO:root:Connected new Basin Node ID: 1115 to original Basin Node ID: 45 via Manning Resistance Node ID: 1114\n", - "INFO:root:Processing Basin Node ID: 46\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1116\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1117\n", - "INFO:root:Connected new Basin Node ID: 1117 to original Basin Node ID: 46 via Manning Resistance Node ID: 1116\n", - "INFO:root:Processing Basin Node ID: 47\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1118\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1119\n", - "INFO:root:Connected new Basin Node ID: 1119 to original Basin Node ID: 47 via Manning Resistance Node ID: 1118\n", - "INFO:root:Processing Basin Node ID: 48\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1120\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1121\n", - "INFO:root:Connected new Basin Node ID: 1121 to original Basin Node ID: 48 via Manning Resistance Node ID: 1120\n", - "INFO:root:Processing Basin Node ID: 49\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1122\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1123\n", - "INFO:root:Connected new Basin Node ID: 1123 to original Basin Node ID: 49 via Manning Resistance Node ID: 1122\n", - "INFO:root:Processing Basin Node ID: 50\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1124\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1125\n", - "INFO:root:Connected new Basin Node ID: 1125 to original Basin Node ID: 50 via Manning Resistance Node ID: 1124\n", - "INFO:root:Processing Basin Node ID: 51\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1126\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1127\n", - "INFO:root:Connected new Basin Node ID: 1127 to original Basin Node ID: 51 via Manning Resistance Node ID: 1126\n", - "INFO:root:Processing Basin Node ID: 52\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1128\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1129\n", - "INFO:root:Connected new Basin Node ID: 1129 to original Basin Node ID: 52 via Manning Resistance Node ID: 1128\n", - "INFO:root:Processing Basin Node ID: 53\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1130\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1131\n", - "INFO:root:Connected new Basin Node ID: 1131 to original Basin Node ID: 53 via Manning Resistance Node ID: 1130\n", - "INFO:root:Processing Basin Node ID: 54\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1132\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1133\n", - "INFO:root:Connected new Basin Node ID: 1133 to original Basin Node ID: 54 via Manning Resistance Node ID: 1132\n", - "INFO:root:Processing Basin Node ID: 55\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1134\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1135\n", - "INFO:root:Connected new Basin Node ID: 1135 to original Basin Node ID: 55 via Manning Resistance Node ID: 1134\n", - "INFO:root:Processing Basin Node ID: 56\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1136\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1137\n", - "INFO:root:Connected new Basin Node ID: 1137 to original Basin Node ID: 56 via Manning Resistance Node ID: 1136\n", - "INFO:root:Processing Basin Node ID: 57\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1138\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1139\n", - "INFO:root:Connected new Basin Node ID: 1139 to original Basin Node ID: 57 via Manning Resistance Node ID: 1138\n", - "INFO:root:Processing Basin Node ID: 58\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1140\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1141\n", - "INFO:root:Connected new Basin Node ID: 1141 to original Basin Node ID: 58 via Manning Resistance Node ID: 1140\n", - "INFO:root:Processing Basin Node ID: 59\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1142\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1143\n", - "INFO:root:Connected new Basin Node ID: 1143 to original Basin Node ID: 59 via Manning Resistance Node ID: 1142\n", - "INFO:root:Processing Basin Node ID: 60\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1144\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1145\n", - "INFO:root:Connected new Basin Node ID: 1145 to original Basin Node ID: 60 via Manning Resistance Node ID: 1144\n", - "INFO:root:Processing Basin Node ID: 61\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1146\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1147\n", - "INFO:root:Connected new Basin Node ID: 1147 to original Basin Node ID: 61 via Manning Resistance Node ID: 1146\n", - "INFO:root:Processing Basin Node ID: 62\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1148\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1149\n", - "INFO:root:Connected new Basin Node ID: 1149 to original Basin Node ID: 62 via Manning Resistance Node ID: 1148\n", - "INFO:root:Processing Basin Node ID: 63\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1150\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1151\n", - "INFO:root:Connected new Basin Node ID: 1151 to original Basin Node ID: 63 via Manning Resistance Node ID: 1150\n", - "INFO:root:Processing Basin Node ID: 64\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1152\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1153\n", - "INFO:root:Connected new Basin Node ID: 1153 to original Basin Node ID: 64 via Manning Resistance Node ID: 1152\n", - "INFO:root:Processing Basin Node ID: 65\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1154\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1155\n", - "INFO:root:Connected new Basin Node ID: 1155 to original Basin Node ID: 65 via Manning Resistance Node ID: 1154\n", - "INFO:root:Processing Basin Node ID: 66\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1156\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1157\n", - "INFO:root:Connected new Basin Node ID: 1157 to original Basin Node ID: 66 via Manning Resistance Node ID: 1156\n", - "INFO:root:Processing Basin Node ID: 67\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1158\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1159\n", - "INFO:root:Connected new Basin Node ID: 1159 to original Basin Node ID: 67 via Manning Resistance Node ID: 1158\n", - "INFO:root:Processing Basin Node ID: 68\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1160\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1161\n", - "INFO:root:Connected new Basin Node ID: 1161 to original Basin Node ID: 68 via Manning Resistance Node ID: 1160\n", - "INFO:root:Processing Basin Node ID: 69\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1162\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1163\n", - "INFO:root:Connected new Basin Node ID: 1163 to original Basin Node ID: 69 via Manning Resistance Node ID: 1162\n", - "INFO:root:Processing Basin Node ID: 70\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1164\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1165\n", - "INFO:root:Connected new Basin Node ID: 1165 to original Basin Node ID: 70 via Manning Resistance Node ID: 1164\n", - "INFO:root:Processing Basin Node ID: 71\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1166\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1167\n", - "INFO:root:Connected new Basin Node ID: 1167 to original Basin Node ID: 71 via Manning Resistance Node ID: 1166\n", - "INFO:root:Processing Basin Node ID: 72\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1168\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1169\n", - "INFO:root:Connected new Basin Node ID: 1169 to original Basin Node ID: 72 via Manning Resistance Node ID: 1168\n", - "INFO:root:Processing Basin Node ID: 73\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1170\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1171\n", - "INFO:root:Connected new Basin Node ID: 1171 to original Basin Node ID: 73 via Manning Resistance Node ID: 1170\n", - "INFO:root:Processing Basin Node ID: 74\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1172\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1173\n", - "INFO:root:Connected new Basin Node ID: 1173 to original Basin Node ID: 74 via Manning Resistance Node ID: 1172\n", - "INFO:root:Processing Basin Node ID: 75\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1174\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1175\n", - "INFO:root:Connected new Basin Node ID: 1175 to original Basin Node ID: 75 via Manning Resistance Node ID: 1174\n", - "INFO:root:Processing Basin Node ID: 76\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1176\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1177\n", - "INFO:root:Connected new Basin Node ID: 1177 to original Basin Node ID: 76 via Manning Resistance Node ID: 1176\n", - "INFO:root:Processing Basin Node ID: 77\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1178\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1179\n", - "INFO:root:Connected new Basin Node ID: 1179 to original Basin Node ID: 77 via Manning Resistance Node ID: 1178\n", - "INFO:root:Processing Basin Node ID: 78\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1180\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1181\n", - "INFO:root:Connected new Basin Node ID: 1181 to original Basin Node ID: 78 via Manning Resistance Node ID: 1180\n", - "INFO:root:Processing Basin Node ID: 79\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1182\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1183\n", - "INFO:root:Connected new Basin Node ID: 1183 to original Basin Node ID: 79 via Manning Resistance Node ID: 1182\n", - "INFO:root:Processing Basin Node ID: 80\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1184\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1185\n", - "INFO:root:Connected new Basin Node ID: 1185 to original Basin Node ID: 80 via Manning Resistance Node ID: 1184\n", - "INFO:root:Processing Basin Node ID: 81\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1186\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1187\n", - "INFO:root:Connected new Basin Node ID: 1187 to original Basin Node ID: 81 via Manning Resistance Node ID: 1186\n", - "INFO:root:Processing Basin Node ID: 82\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1188\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1189\n", - "INFO:root:Connected new Basin Node ID: 1189 to original Basin Node ID: 82 via Manning Resistance Node ID: 1188\n", - "INFO:root:Processing Basin Node ID: 83\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1190\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1191\n", - "INFO:root:Connected new Basin Node ID: 1191 to original Basin Node ID: 83 via Manning Resistance Node ID: 1190\n", - "INFO:root:Processing Basin Node ID: 87\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1192\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1193\n", - "INFO:root:Connected new Basin Node ID: 1193 to original Basin Node ID: 87 via Manning Resistance Node ID: 1192\n", - "INFO:root:Processing Basin Node ID: 88\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1194\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1195\n", - "INFO:root:Connected new Basin Node ID: 1195 to original Basin Node ID: 88 via Manning Resistance Node ID: 1194\n", - "INFO:root:Processing Basin Node ID: 89\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1196\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1197\n", - "INFO:root:Connected new Basin Node ID: 1197 to original Basin Node ID: 89 via Manning Resistance Node ID: 1196\n", - "INFO:root:Processing Basin Node ID: 90\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1198\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1199\n", - "INFO:root:Connected new Basin Node ID: 1199 to original Basin Node ID: 90 via Manning Resistance Node ID: 1198\n", - "INFO:root:Processing Basin Node ID: 91\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1200\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1201\n", - "INFO:root:Connected new Basin Node ID: 1201 to original Basin Node ID: 91 via Manning Resistance Node ID: 1200\n", - "INFO:root:Processing Basin Node ID: 92\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1202\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1203\n", - "INFO:root:Connected new Basin Node ID: 1203 to original Basin Node ID: 92 via Manning Resistance Node ID: 1202\n", - "INFO:root:Processing Basin Node ID: 93\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1204\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1205\n", - "INFO:root:Connected new Basin Node ID: 1205 to original Basin Node ID: 93 via Manning Resistance Node ID: 1204\n", - "INFO:root:Processing Basin Node ID: 94\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1206\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1207\n", - "INFO:root:Connected new Basin Node ID: 1207 to original Basin Node ID: 94 via Manning Resistance Node ID: 1206\n", - "INFO:root:Processing Basin Node ID: 95\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1208\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1209\n", - "INFO:root:Connected new Basin Node ID: 1209 to original Basin Node ID: 95 via Manning Resistance Node ID: 1208\n", - "INFO:root:Processing Basin Node ID: 96\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1210\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1211\n", - "INFO:root:Connected new Basin Node ID: 1211 to original Basin Node ID: 96 via Manning Resistance Node ID: 1210\n", - "INFO:root:Processing Basin Node ID: 98\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1212\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1213\n", - "INFO:root:Connected new Basin Node ID: 1213 to original Basin Node ID: 98 via Manning Resistance Node ID: 1212\n", - "INFO:root:Processing Basin Node ID: 99\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1214\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1215\n", - "INFO:root:Connected new Basin Node ID: 1215 to original Basin Node ID: 99 via Manning Resistance Node ID: 1214\n", - "INFO:root:Processing Basin Node ID: 100\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1216\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1217\n", - "INFO:root:Connected new Basin Node ID: 1217 to original Basin Node ID: 100 via Manning Resistance Node ID: 1216\n", - "INFO:root:Processing Basin Node ID: 101\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1218\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1219\n", - "INFO:root:Connected new Basin Node ID: 1219 to original Basin Node ID: 101 via Manning Resistance Node ID: 1218\n", - "INFO:root:Processing Basin Node ID: 102\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1220\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1221\n", - "INFO:root:Connected new Basin Node ID: 1221 to original Basin Node ID: 102 via Manning Resistance Node ID: 1220\n", - "INFO:root:Processing Basin Node ID: 103\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1222\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1223\n", - "INFO:root:Connected new Basin Node ID: 1223 to original Basin Node ID: 103 via Manning Resistance Node ID: 1222\n", - "INFO:root:Processing Basin Node ID: 104\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1224\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1225\n", - "INFO:root:Connected new Basin Node ID: 1225 to original Basin Node ID: 104 via Manning Resistance Node ID: 1224\n", - "INFO:root:Processing Basin Node ID: 105\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1226\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1227\n", - "INFO:root:Connected new Basin Node ID: 1227 to original Basin Node ID: 105 via Manning Resistance Node ID: 1226\n", - "INFO:root:Processing Basin Node ID: 106\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1228\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1229\n", - "INFO:root:Connected new Basin Node ID: 1229 to original Basin Node ID: 106 via Manning Resistance Node ID: 1228\n", - "INFO:root:Processing Basin Node ID: 107\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1230\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1231\n", - "INFO:root:Connected new Basin Node ID: 1231 to original Basin Node ID: 107 via Manning Resistance Node ID: 1230\n", - "INFO:root:Processing Basin Node ID: 108\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1232\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1233\n", - "INFO:root:Connected new Basin Node ID: 1233 to original Basin Node ID: 108 via Manning Resistance Node ID: 1232\n", - "INFO:root:Processing Basin Node ID: 109\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1234\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1235\n", - "INFO:root:Connected new Basin Node ID: 1235 to original Basin Node ID: 109 via Manning Resistance Node ID: 1234\n", - "INFO:root:Processing Basin Node ID: 110\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1236\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1237\n", - "INFO:root:Connected new Basin Node ID: 1237 to original Basin Node ID: 110 via Manning Resistance Node ID: 1236\n", - "INFO:root:Processing Basin Node ID: 111\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1238\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1239\n", - "INFO:root:Connected new Basin Node ID: 1239 to original Basin Node ID: 111 via Manning Resistance Node ID: 1238\n", - "INFO:root:Processing Basin Node ID: 112\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1240\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1241\n", - "INFO:root:Connected new Basin Node ID: 1241 to original Basin Node ID: 112 via Manning Resistance Node ID: 1240\n", - "INFO:root:Processing Basin Node ID: 113\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1242\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1243\n", - "INFO:root:Connected new Basin Node ID: 1243 to original Basin Node ID: 113 via Manning Resistance Node ID: 1242\n", - "INFO:root:Processing Basin Node ID: 114\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1244\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1245\n", - "INFO:root:Connected new Basin Node ID: 1245 to original Basin Node ID: 114 via Manning Resistance Node ID: 1244\n", - "INFO:root:Processing Basin Node ID: 116\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1246\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1247\n", - "INFO:root:Connected new Basin Node ID: 1247 to original Basin Node ID: 116 via Manning Resistance Node ID: 1246\n", - "INFO:root:Processing Basin Node ID: 117\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1248\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1249\n", - "INFO:root:Connected new Basin Node ID: 1249 to original Basin Node ID: 117 via Manning Resistance Node ID: 1248\n", - "INFO:root:Processing Basin Node ID: 118\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1250\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1251\n", - "INFO:root:Connected new Basin Node ID: 1251 to original Basin Node ID: 118 via Manning Resistance Node ID: 1250\n", - "INFO:root:Processing Basin Node ID: 119\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1252\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1253\n", - "INFO:root:Connected new Basin Node ID: 1253 to original Basin Node ID: 119 via Manning Resistance Node ID: 1252\n", - "INFO:root:Processing Basin Node ID: 120\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1254\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1255\n", - "INFO:root:Connected new Basin Node ID: 1255 to original Basin Node ID: 120 via Manning Resistance Node ID: 1254\n", - "INFO:root:Processing Basin Node ID: 121\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1256\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1257\n", - "INFO:root:Connected new Basin Node ID: 1257 to original Basin Node ID: 121 via Manning Resistance Node ID: 1256\n", - "INFO:root:Processing Basin Node ID: 122\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1258\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1259\n", - "INFO:root:Connected new Basin Node ID: 1259 to original Basin Node ID: 122 via Manning Resistance Node ID: 1258\n", - "INFO:root:Processing Basin Node ID: 123\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1260\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1261\n", - "INFO:root:Connected new Basin Node ID: 1261 to original Basin Node ID: 123 via Manning Resistance Node ID: 1260\n", - "INFO:root:Processing Basin Node ID: 124\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1262\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1263\n", - "INFO:root:Connected new Basin Node ID: 1263 to original Basin Node ID: 124 via Manning Resistance Node ID: 1262\n", - "INFO:root:Processing Basin Node ID: 125\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1264\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1265\n", - "INFO:root:Connected new Basin Node ID: 1265 to original Basin Node ID: 125 via Manning Resistance Node ID: 1264\n", - "INFO:root:Processing Basin Node ID: 126\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1266\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1267\n", - "INFO:root:Connected new Basin Node ID: 1267 to original Basin Node ID: 126 via Manning Resistance Node ID: 1266\n", - "INFO:root:Processing Basin Node ID: 127\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1268\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1269\n", - "INFO:root:Connected new Basin Node ID: 1269 to original Basin Node ID: 127 via Manning Resistance Node ID: 1268\n", - "INFO:root:Processing Basin Node ID: 128\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1270\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1271\n", - "INFO:root:Connected new Basin Node ID: 1271 to original Basin Node ID: 128 via Manning Resistance Node ID: 1270\n", - "INFO:root:Processing Basin Node ID: 129\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1272\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1273\n", - "INFO:root:Connected new Basin Node ID: 1273 to original Basin Node ID: 129 via Manning Resistance Node ID: 1272\n", - "INFO:root:Processing Basin Node ID: 130\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1274\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1275\n", - "INFO:root:Connected new Basin Node ID: 1275 to original Basin Node ID: 130 via Manning Resistance Node ID: 1274\n", - "INFO:root:Processing Basin Node ID: 131\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1276\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1277\n", - "INFO:root:Connected new Basin Node ID: 1277 to original Basin Node ID: 131 via Manning Resistance Node ID: 1276\n", - "INFO:root:Processing Basin Node ID: 132\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1278\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1279\n", - "INFO:root:Connected new Basin Node ID: 1279 to original Basin Node ID: 132 via Manning Resistance Node ID: 1278\n", - "INFO:root:Processing Basin Node ID: 133\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1280\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1281\n", - "INFO:root:Connected new Basin Node ID: 1281 to original Basin Node ID: 133 via Manning Resistance Node ID: 1280\n", - "INFO:root:Processing Basin Node ID: 134\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1282\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1283\n", - "INFO:root:Connected new Basin Node ID: 1283 to original Basin Node ID: 134 via Manning Resistance Node ID: 1282\n", - "INFO:root:Processing Basin Node ID: 135\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1284\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1285\n", - "INFO:root:Connected new Basin Node ID: 1285 to original Basin Node ID: 135 via Manning Resistance Node ID: 1284\n", - "INFO:root:Processing Basin Node ID: 136\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1286\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1287\n", - "INFO:root:Connected new Basin Node ID: 1287 to original Basin Node ID: 136 via Manning Resistance Node ID: 1286\n", - "INFO:root:Processing Basin Node ID: 137\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1288\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1289\n", - "INFO:root:Connected new Basin Node ID: 1289 to original Basin Node ID: 137 via Manning Resistance Node ID: 1288\n", - "INFO:root:Processing Basin Node ID: 138\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1290\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1291\n", - "INFO:root:Connected new Basin Node ID: 1291 to original Basin Node ID: 138 via Manning Resistance Node ID: 1290\n", - "INFO:root:Processing Basin Node ID: 139\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1292\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1293\n", - "INFO:root:Connected new Basin Node ID: 1293 to original Basin Node ID: 139 via Manning Resistance Node ID: 1292\n", - "INFO:root:Processing Basin Node ID: 140\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1294\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1295\n", - "INFO:root:Connected new Basin Node ID: 1295 to original Basin Node ID: 140 via Manning Resistance Node ID: 1294\n", - "INFO:root:Processing Basin Node ID: 141\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1296\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1297\n", - "INFO:root:Connected new Basin Node ID: 1297 to original Basin Node ID: 141 via Manning Resistance Node ID: 1296\n", - "INFO:root:Processing Basin Node ID: 142\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1298\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1299\n", - "INFO:root:Connected new Basin Node ID: 1299 to original Basin Node ID: 142 via Manning Resistance Node ID: 1298\n", - "INFO:root:Processing Basin Node ID: 143\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1300\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1301\n", - "INFO:root:Connected new Basin Node ID: 1301 to original Basin Node ID: 143 via Manning Resistance Node ID: 1300\n", - "INFO:root:Processing Basin Node ID: 144\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1302\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1303\n", - "INFO:root:Connected new Basin Node ID: 1303 to original Basin Node ID: 144 via Manning Resistance Node ID: 1302\n", - "INFO:root:Processing Basin Node ID: 145\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1304\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1305\n", - "INFO:root:Connected new Basin Node ID: 1305 to original Basin Node ID: 145 via Manning Resistance Node ID: 1304\n", - "INFO:root:Processing Basin Node ID: 146\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1306\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1307\n", - "INFO:root:Connected new Basin Node ID: 1307 to original Basin Node ID: 146 via Manning Resistance Node ID: 1306\n", - "INFO:root:Processing Basin Node ID: 147\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1308\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1309\n", - "INFO:root:Connected new Basin Node ID: 1309 to original Basin Node ID: 147 via Manning Resistance Node ID: 1308\n", - "INFO:root:Processing Basin Node ID: 148\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1310\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1311\n", - "INFO:root:Connected new Basin Node ID: 1311 to original Basin Node ID: 148 via Manning Resistance Node ID: 1310\n", - "INFO:root:Processing Basin Node ID: 149\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1312\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1313\n", - "INFO:root:Connected new Basin Node ID: 1313 to original Basin Node ID: 149 via Manning Resistance Node ID: 1312\n", - "INFO:root:Processing Basin Node ID: 150\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1314\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1315\n", - "INFO:root:Connected new Basin Node ID: 1315 to original Basin Node ID: 150 via Manning Resistance Node ID: 1314\n", - "INFO:root:Processing Basin Node ID: 151\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1316\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1317\n", - "INFO:root:Connected new Basin Node ID: 1317 to original Basin Node ID: 151 via Manning Resistance Node ID: 1316\n", - "INFO:root:Processing Basin Node ID: 152\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1318\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1319\n", - "INFO:root:Connected new Basin Node ID: 1319 to original Basin Node ID: 152 via Manning Resistance Node ID: 1318\n", - "INFO:root:Processing Basin Node ID: 153\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1320\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1321\n", - "INFO:root:Connected new Basin Node ID: 1321 to original Basin Node ID: 153 via Manning Resistance Node ID: 1320\n", - "INFO:root:Processing Basin Node ID: 154\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1322\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1323\n", - "INFO:root:Connected new Basin Node ID: 1323 to original Basin Node ID: 154 via Manning Resistance Node ID: 1322\n", - "INFO:root:Processing Basin Node ID: 155\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1324\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1325\n", - "INFO:root:Connected new Basin Node ID: 1325 to original Basin Node ID: 155 via Manning Resistance Node ID: 1324\n", - "INFO:root:Processing Basin Node ID: 156\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1326\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1327\n", - "INFO:root:Connected new Basin Node ID: 1327 to original Basin Node ID: 156 via Manning Resistance Node ID: 1326\n", - "INFO:root:Processing Basin Node ID: 157\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1328\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1329\n", - "INFO:root:Connected new Basin Node ID: 1329 to original Basin Node ID: 157 via Manning Resistance Node ID: 1328\n", - "INFO:root:Processing Basin Node ID: 158\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1330\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1331\n", - "INFO:root:Connected new Basin Node ID: 1331 to original Basin Node ID: 158 via Manning Resistance Node ID: 1330\n", - "INFO:root:Processing Basin Node ID: 159\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1332\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1333\n", - "INFO:root:Connected new Basin Node ID: 1333 to original Basin Node ID: 159 via Manning Resistance Node ID: 1332\n", - "INFO:root:Processing Basin Node ID: 160\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1334\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1335\n", - "INFO:root:Connected new Basin Node ID: 1335 to original Basin Node ID: 160 via Manning Resistance Node ID: 1334\n", - "INFO:root:Processing Basin Node ID: 161\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1336\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1337\n", - "INFO:root:Connected new Basin Node ID: 1337 to original Basin Node ID: 161 via Manning Resistance Node ID: 1336\n", - "INFO:root:Processing Basin Node ID: 162\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1338\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1339\n", - "INFO:root:Connected new Basin Node ID: 1339 to original Basin Node ID: 162 via Manning Resistance Node ID: 1338\n", - "INFO:root:Processing Basin Node ID: 164\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1340\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1341\n", - "INFO:root:Connected new Basin Node ID: 1341 to original Basin Node ID: 164 via Manning Resistance Node ID: 1340\n", - "INFO:root:Processing Basin Node ID: 165\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1342\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1343\n", - "INFO:root:Connected new Basin Node ID: 1343 to original Basin Node ID: 165 via Manning Resistance Node ID: 1342\n", - "INFO:root:Processing Basin Node ID: 166\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1344\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1345\n", - "INFO:root:Connected new Basin Node ID: 1345 to original Basin Node ID: 166 via Manning Resistance Node ID: 1344\n", - "INFO:root:Processing Basin Node ID: 167\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1346\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1347\n", - "INFO:root:Connected new Basin Node ID: 1347 to original Basin Node ID: 167 via Manning Resistance Node ID: 1346\n", - "INFO:root:Processing Basin Node ID: 168\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1348\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1349\n", - "INFO:root:Connected new Basin Node ID: 1349 to original Basin Node ID: 168 via Manning Resistance Node ID: 1348\n", - "INFO:root:Processing Basin Node ID: 169\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1350\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1351\n", - "INFO:root:Connected new Basin Node ID: 1351 to original Basin Node ID: 169 via Manning Resistance Node ID: 1350\n", - "INFO:root:Processing Basin Node ID: 170\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1352\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1353\n", - "INFO:root:Connected new Basin Node ID: 1353 to original Basin Node ID: 170 via Manning Resistance Node ID: 1352\n", - "INFO:root:Processing Basin Node ID: 171\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1354\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1355\n", - "INFO:root:Connected new Basin Node ID: 1355 to original Basin Node ID: 171 via Manning Resistance Node ID: 1354\n", - "INFO:root:Processing Basin Node ID: 172\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1356\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1357\n", - "INFO:root:Connected new Basin Node ID: 1357 to original Basin Node ID: 172 via Manning Resistance Node ID: 1356\n", - "INFO:root:Processing Basin Node ID: 173\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1358\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1359\n", - "INFO:root:Connected new Basin Node ID: 1359 to original Basin Node ID: 173 via Manning Resistance Node ID: 1358\n", - "INFO:root:Processing Basin Node ID: 174\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1360\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1361\n", - "INFO:root:Connected new Basin Node ID: 1361 to original Basin Node ID: 174 via Manning Resistance Node ID: 1360\n", - "INFO:root:Processing Basin Node ID: 175\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1362\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1363\n", - "INFO:root:Connected new Basin Node ID: 1363 to original Basin Node ID: 175 via Manning Resistance Node ID: 1362\n", - "INFO:root:Processing Basin Node ID: 176\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1364\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1365\n", - "INFO:root:Connected new Basin Node ID: 1365 to original Basin Node ID: 176 via Manning Resistance Node ID: 1364\n", - "INFO:root:Processing Basin Node ID: 177\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1366\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1367\n", - "INFO:root:Connected new Basin Node ID: 1367 to original Basin Node ID: 177 via Manning Resistance Node ID: 1366\n", - "INFO:root:Processing Basin Node ID: 178\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1368\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1369\n", - "INFO:root:Connected new Basin Node ID: 1369 to original Basin Node ID: 178 via Manning Resistance Node ID: 1368\n", - "INFO:root:Processing Basin Node ID: 179\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1370\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1371\n", - "INFO:root:Connected new Basin Node ID: 1371 to original Basin Node ID: 179 via Manning Resistance Node ID: 1370\n", - "INFO:root:Processing Basin Node ID: 180\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1372\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1373\n", - "INFO:root:Connected new Basin Node ID: 1373 to original Basin Node ID: 180 via Manning Resistance Node ID: 1372\n", - "INFO:root:Processing Basin Node ID: 181\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1374\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1375\n", - "INFO:root:Connected new Basin Node ID: 1375 to original Basin Node ID: 181 via Manning Resistance Node ID: 1374\n", - "INFO:root:Processing Basin Node ID: 182\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1376\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1377\n", - "INFO:root:Connected new Basin Node ID: 1377 to original Basin Node ID: 182 via Manning Resistance Node ID: 1376\n", - "INFO:root:Processing Basin Node ID: 183\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1378\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1379\n", - "INFO:root:Connected new Basin Node ID: 1379 to original Basin Node ID: 183 via Manning Resistance Node ID: 1378\n", - "INFO:root:Processing Basin Node ID: 184\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1380\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1381\n", - "INFO:root:Connected new Basin Node ID: 1381 to original Basin Node ID: 184 via Manning Resistance Node ID: 1380\n", - "INFO:root:Processing Basin Node ID: 185\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1382\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1383\n", - "INFO:root:Connected new Basin Node ID: 1383 to original Basin Node ID: 185 via Manning Resistance Node ID: 1382\n", - "INFO:root:Processing Basin Node ID: 186\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1384\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1385\n", - "INFO:root:Connected new Basin Node ID: 1385 to original Basin Node ID: 186 via Manning Resistance Node ID: 1384\n", - "INFO:root:Processing Basin Node ID: 188\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1386\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1387\n", - "INFO:root:Connected new Basin Node ID: 1387 to original Basin Node ID: 188 via Manning Resistance Node ID: 1386\n", - "INFO:root:Processing Basin Node ID: 189\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1388\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1389\n", - "INFO:root:Connected new Basin Node ID: 1389 to original Basin Node ID: 189 via Manning Resistance Node ID: 1388\n", - "INFO:root:Processing Basin Node ID: 190\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1390\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1391\n", - "INFO:root:Connected new Basin Node ID: 1391 to original Basin Node ID: 190 via Manning Resistance Node ID: 1390\n", - "INFO:root:Processing Basin Node ID: 191\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1392\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1393\n", - "INFO:root:Connected new Basin Node ID: 1393 to original Basin Node ID: 191 via Manning Resistance Node ID: 1392\n", - "INFO:root:Processing Basin Node ID: 192\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1394\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1395\n", - "INFO:root:Connected new Basin Node ID: 1395 to original Basin Node ID: 192 via Manning Resistance Node ID: 1394\n", - "INFO:root:Processing Basin Node ID: 193\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1396\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1397\n", - "INFO:root:Connected new Basin Node ID: 1397 to original Basin Node ID: 193 via Manning Resistance Node ID: 1396\n", - "INFO:root:Processing Basin Node ID: 194\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1398\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1399\n", - "INFO:root:Connected new Basin Node ID: 1399 to original Basin Node ID: 194 via Manning Resistance Node ID: 1398\n", - "INFO:root:Processing Basin Node ID: 195\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1400\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1401\n", - "INFO:root:Connected new Basin Node ID: 1401 to original Basin Node ID: 195 via Manning Resistance Node ID: 1400\n", - "INFO:root:Processing Basin Node ID: 196\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1402\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1403\n", - "INFO:root:Connected new Basin Node ID: 1403 to original Basin Node ID: 196 via Manning Resistance Node ID: 1402\n", - "INFO:root:Processing Basin Node ID: 197\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1404\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1405\n", - "INFO:root:Connected new Basin Node ID: 1405 to original Basin Node ID: 197 via Manning Resistance Node ID: 1404\n", - "INFO:root:Processing Basin Node ID: 198\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1406\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1407\n", - "INFO:root:Connected new Basin Node ID: 1407 to original Basin Node ID: 198 via Manning Resistance Node ID: 1406\n", - "INFO:root:Processing Basin Node ID: 199\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1408\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1409\n", - "INFO:root:Connected new Basin Node ID: 1409 to original Basin Node ID: 199 via Manning Resistance Node ID: 1408\n", - "INFO:root:Processing Basin Node ID: 200\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1410\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1411\n", - "INFO:root:Connected new Basin Node ID: 1411 to original Basin Node ID: 200 via Manning Resistance Node ID: 1410\n", - "INFO:root:Processing Basin Node ID: 201\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1412\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1413\n", - "INFO:root:Connected new Basin Node ID: 1413 to original Basin Node ID: 201 via Manning Resistance Node ID: 1412\n", - "INFO:root:Processing Basin Node ID: 202\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1414\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1415\n", - "INFO:root:Connected new Basin Node ID: 1415 to original Basin Node ID: 202 via Manning Resistance Node ID: 1414\n", - "INFO:root:Processing Basin Node ID: 203\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1416\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1417\n", - "INFO:root:Connected new Basin Node ID: 1417 to original Basin Node ID: 203 via Manning Resistance Node ID: 1416\n", - "INFO:root:Processing Basin Node ID: 204\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1418\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1419\n", - "INFO:root:Connected new Basin Node ID: 1419 to original Basin Node ID: 204 via Manning Resistance Node ID: 1418\n", - "INFO:root:Processing Basin Node ID: 205\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1420\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1421\n", - "INFO:root:Connected new Basin Node ID: 1421 to original Basin Node ID: 205 via Manning Resistance Node ID: 1420\n", - "INFO:root:Processing Basin Node ID: 207\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1422\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1423\n", - "INFO:root:Connected new Basin Node ID: 1423 to original Basin Node ID: 207 via Manning Resistance Node ID: 1422\n", - "INFO:root:Processing Basin Node ID: 208\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1424\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1425\n", - "INFO:root:Connected new Basin Node ID: 1425 to original Basin Node ID: 208 via Manning Resistance Node ID: 1424\n", - "INFO:root:Processing Basin Node ID: 209\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1426\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1427\n", - "INFO:root:Connected new Basin Node ID: 1427 to original Basin Node ID: 209 via Manning Resistance Node ID: 1426\n", - "INFO:root:Processing Basin Node ID: 210\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1428\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1429\n", - "INFO:root:Connected new Basin Node ID: 1429 to original Basin Node ID: 210 via Manning Resistance Node ID: 1428\n", - "INFO:root:Processing Basin Node ID: 211\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1430\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1431\n", - "INFO:root:Connected new Basin Node ID: 1431 to original Basin Node ID: 211 via Manning Resistance Node ID: 1430\n", - "INFO:root:Processing Basin Node ID: 212\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1432\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1433\n", - "INFO:root:Connected new Basin Node ID: 1433 to original Basin Node ID: 212 via Manning Resistance Node ID: 1432\n", - "INFO:root:Processing Basin Node ID: 213\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1434\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1435\n", - "INFO:root:Connected new Basin Node ID: 1435 to original Basin Node ID: 213 via Manning Resistance Node ID: 1434\n", - "INFO:root:Processing Basin Node ID: 214\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1436\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1437\n", - "INFO:root:Connected new Basin Node ID: 1437 to original Basin Node ID: 214 via Manning Resistance Node ID: 1436\n", - "INFO:root:Processing Basin Node ID: 215\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1438\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1439\n", - "INFO:root:Connected new Basin Node ID: 1439 to original Basin Node ID: 215 via Manning Resistance Node ID: 1438\n", - "INFO:root:Processing Basin Node ID: 216\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1440\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1441\n", - "INFO:root:Connected new Basin Node ID: 1441 to original Basin Node ID: 216 via Manning Resistance Node ID: 1440\n", - "INFO:root:Processing Basin Node ID: 217\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1442\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1443\n", - "INFO:root:Connected new Basin Node ID: 1443 to original Basin Node ID: 217 via Manning Resistance Node ID: 1442\n", - "INFO:root:Processing Basin Node ID: 218\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1444\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1445\n", - "INFO:root:Connected new Basin Node ID: 1445 to original Basin Node ID: 218 via Manning Resistance Node ID: 1444\n", - "INFO:root:Processing Basin Node ID: 219\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1446\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1447\n", - "INFO:root:Connected new Basin Node ID: 1447 to original Basin Node ID: 219 via Manning Resistance Node ID: 1446\n", - "INFO:root:Processing Basin Node ID: 220\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1448\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1449\n", - "INFO:root:Connected new Basin Node ID: 1449 to original Basin Node ID: 220 via Manning Resistance Node ID: 1448\n", - "INFO:root:Processing Basin Node ID: 221\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1450\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1451\n", - "INFO:root:Connected new Basin Node ID: 1451 to original Basin Node ID: 221 via Manning Resistance Node ID: 1450\n", - "INFO:root:Processing Basin Node ID: 222\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1452\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1453\n", - "INFO:root:Connected new Basin Node ID: 1453 to original Basin Node ID: 222 via Manning Resistance Node ID: 1452\n", - "INFO:root:Processing Basin Node ID: 223\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1454\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1455\n", - "INFO:root:Connected new Basin Node ID: 1455 to original Basin Node ID: 223 via Manning Resistance Node ID: 1454\n", - "INFO:root:Processing Basin Node ID: 224\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1456\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1457\n", - "INFO:root:Connected new Basin Node ID: 1457 to original Basin Node ID: 224 via Manning Resistance Node ID: 1456\n", - "INFO:root:Processing Basin Node ID: 225\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1458\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1459\n", - "INFO:root:Connected new Basin Node ID: 1459 to original Basin Node ID: 225 via Manning Resistance Node ID: 1458\n", - "INFO:root:Processing Basin Node ID: 226\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1460\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1461\n", - "INFO:root:Connected new Basin Node ID: 1461 to original Basin Node ID: 226 via Manning Resistance Node ID: 1460\n", - "INFO:root:Processing Basin Node ID: 227\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1462\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1463\n", - "INFO:root:Connected new Basin Node ID: 1463 to original Basin Node ID: 227 via Manning Resistance Node ID: 1462\n", - "INFO:root:Processing Basin Node ID: 228\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1464\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1465\n", - "INFO:root:Connected new Basin Node ID: 1465 to original Basin Node ID: 228 via Manning Resistance Node ID: 1464\n", - "INFO:root:Processing Basin Node ID: 229\n", - "INFO:root:Successfully added Manning Resistance node with Node ID: 1466\n", - "WARNING:root:Sub value for key 'concentration' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_external' is None or has no DataFrame\n", - "WARNING:root:Sub value for key 'concentration_state' is None or has no DataFrame\n", - "INFO:root:Successfully added new basin node with Node ID: 1467\n", - "INFO:root:Connected new Basin Node ID: 1467 to original Basin Node ID: 229 via Manning Resistance Node ID: 1466\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "All basins are larger than 100 m²\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# Add storage basins\n", "model_name = \"AmstelGooienVecht_StorageBasins\"\n", @@ -1796,7 +265,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1805,7 +274,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1820,7 +289,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1843,7 +312,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1868,7 +337,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1885,7 +354,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1903,7 +372,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1919,7 +388,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1928,62 +397,16 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:pyproj:PROJ_ERROR: proj_create: unrecognized format / unknown name\n", - "DEBUG:pyproj:PROJ_ERROR: proj_create: unrecognized format / unknown name\n", - "DEBUG:pyproj:PROJ_ERROR: proj_create: unrecognized format / unknown name\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Sturing has been added for the category Inlaat boezem, stuw\n", - "Sturing has been added for the category Uitlaat boezem, stuw\n", - "Sturing has been added for the category Reguliere stuw\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:pyproj:PROJ_ERROR: proj_create: unrecognized format / unknown name\n", - "DEBUG:pyproj:PROJ_ERROR: proj_create: unrecognized format / unknown name\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Sturing has been added for the category Inlaat buitenwater peilgebied, stuw\n", - "Sturing has been added for the category Uitlaat buitenwater peilgebied, stuw\n", - "No stuwen are found in the category of Boezem boezem, stuw\n", - "Sturing has been added for the category Inlaat boezem, gemaal\n", - "Sturing has been added for the category Uitlaat boezem, gemaal\n", - "Sturing has been added for the category Regulier afvoer gemaal\n", - "Sturing has been added for the category Regulier aanvoer gemaal\n", - "Sturing has been added for the category Uitlaat buitenwater peilgebied, afvoer gemaal\n", - "Sturing has been added for the category Uitlaat buitenwater peilgebied, aanvoer gemaal\n", - "Sturing has been added for the category Inlaat buitenwater peilgebied, afvoer gemaal\n", - "Sturing has been added for the category Inlaat buitenwater peilgebied, aanvoer gemaal\n", - "No gemalen are found in the category of Boezem boezem, afvoer gemaal\n", - "No gemalen are found in the category of Boezem boezem, aanvoer gemaal\n" - ] - } - ], + "outputs": [], "source": [ "ribasim_param.add_discrete_control(ribasim_model, waterschap, default_level)" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2001,7 +424,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2018,19 +441,9 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:pyogrio._io:Created 2,343 records\n", - "INFO:pyogrio._io:Created 2,088 records\n", - "INFO:pyogrio._io:Created 443 records\n" - ] - } - ], + "outputs": [], "source": [ "# Write model output\n", "ribasim_param.index_reset(ribasim_model)\n", @@ -2063,38 +476,9 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7f173194a7c04992b1d34f6959d6af62", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Simulating init: 0%| | 0/100 [00:00 1\u001b[0m \u001b[43mstop\u001b[49m\n", - "\u001b[0;31mNameError\u001b[0m: name 'stop' is not defined" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "stop" ] @@ -2278,9 +584,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [], "source": [ "# Add discrete control nodes and control edges\n", diff --git a/src/peilbeheerst_model/Parametrize/sturing_AmstelGooienVecht.json b/src/peilbeheerst_model/Parametrize/sturing_AmstelGooienVecht.json index 9431e140..58e2e06c 100644 --- a/src/peilbeheerst_model/Parametrize/sturing_AmstelGooienVecht.json +++ b/src/peilbeheerst_model/Parametrize/sturing_AmstelGooienVecht.json @@ -52,7 +52,7 @@ "flow_rate_pass": 10.0, "node_type": "outlet" }, - + "Inlaat boezem, gemaal": { "upstream_level_offset": 0.10, "truth_state": ["FF", "FT", "TF", "TT"], @@ -61,7 +61,7 @@ "flow_rate_pass": 0.2, "node_type": "pump" }, - + "Uitlaat boezem, gemaal": { "upstream_level_offset": 0.00, "truth_state": ["FF", "FT", "TF", "TT"], @@ -70,7 +70,7 @@ "flow_rate_pass": 0.2, "node_type": "pump" }, - + "Regulier afvoer gemaal": { "upstream_level_offset": 0.00, "truth_state": ["FF", "FT", "TF", "TT"], @@ -107,7 +107,7 @@ "node_type": "pump" }, - "Inlaat buitenwater peilgebied, afvoer gemaal": { + "Inlaat buitenwater peilgebied, afvoer gemaal": { "upstream_level_offset": 0.00, "truth_state": ["FF", "FT", "TF", "TT"], "control_state": ["block", "block", "pass", "pass"], @@ -116,7 +116,7 @@ "node_type": "pump" }, - "Inlaat buitenwater peilgebied, aanvoer gemaal": { + "Inlaat buitenwater peilgebied, aanvoer gemaal": { "upstream_level_offset": 0.15, "truth_state": ["FF", "FT", "TF", "TT"], "control_state": ["pass", "block", "pass", "block"], @@ -134,11 +134,3 @@ "node_type": "pump" } } - - - - - - - - diff --git a/src/peilbeheerst_model/compute_voronoi.ipynb b/src/peilbeheerst_model/compute_voronoi.ipynb index 16ab0102..1cc3562d 100644 --- a/src/peilbeheerst_model/compute_voronoi.ipynb +++ b/src/peilbeheerst_model/compute_voronoi.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5c447874-07f5-4c13-9d5f-f2a3063ae446", + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -20,7 +20,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d811cd9a-bd64-4dc6-92f3-b302f7d4ebc9", + "id": "1", "metadata": {}, "outputs": [], "source": [ @@ -39,7 +39,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e0b86228-791d-475d-ac64-ce27e5e50f98", + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -68,7 +68,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2ea23b73-0db8-4bac-ba30-b36faa3e224b", + "id": "3", "metadata": {}, "outputs": [], "source": [ @@ -94,7 +94,7 @@ { "cell_type": "code", "execution_count": null, - "id": "429f7bf3-4c68-46b9-a7a8-caf8e1868b55", + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -148,7 +148,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a794fa1a-89b2-4bdf-899d-d19d5077fd1a", + "id": "5", "metadata": {}, "outputs": [], "source": [ @@ -235,7 +235,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9d2e1086-511c-477f-8173-6da9985e67d1", + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -300,7 +300,7 @@ { "cell_type": "code", "execution_count": null, - "id": "472c5702-5b9c-4599-907f-74465ae09b8c", + "id": "7", "metadata": {}, "outputs": [], "source": [ @@ -314,7 +314,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0bb4e2be-66f5-4bfd-88f1-c9e0e7a1e78c", + "id": "8", "metadata": {}, "outputs": [], "source": [ @@ -336,7 +336,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fd42deff-1761-4489-bab6-b2f99fa37093", + "id": "9", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_WSRL.ipynb b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_WSRL.ipynb index bcae967c..3fcfcff9 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_WSRL.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_WSRL.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "690952c5-5037-476a-a660-d54fec614748", + "id": "0", "metadata": {}, "source": [ "# WSRL" @@ -10,7 +10,7 @@ }, { "cell_type": "markdown", - "id": "e9e378d7-8f05-4562-87b0-34978ba61554", + "id": "1", "metadata": {}, "source": [ "This script adds a new column \"peilgebied_cat\" and makes sure the peilgebieden allign with the HWS layer (Daniel):\n", @@ -21,8 +21,8 @@ }, { "cell_type": "code", - "execution_count": 1, - "id": "0c27c7a4-5733-46ea-970f-cd985b8c92cd", + "execution_count": null, + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ }, { "cell_type": "markdown", - "id": "dc1f28d2-8499-4ebb-906e-1724bd334aac", + "id": "3", "metadata": {}, "source": [ "## WSRL" @@ -46,8 +46,8 @@ }, { "cell_type": "code", - "execution_count": 2, - "id": "e15206a7-6639-40bb-9942-f920085f53b4", + "execution_count": null, + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -68,7 +68,7 @@ }, { "cell_type": "markdown", - "id": "7bbafed8-355a-4ec9-90c9-eca9e3b9313d", + "id": "5", "metadata": {}, "source": [ "### Load Files" @@ -76,8 +76,8 @@ }, { "cell_type": "code", - "execution_count": 3, - "id": "0f6dcf56-e8a4-4055-bc86-a6d33c91d8d8", + "execution_count": null, + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -110,21 +110,10 @@ }, { "cell_type": "code", - "execution_count": 4, - "id": "1c0d88a9-1141-4f86-8345-0eb4678eadc1", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "id": "7", + "metadata": {}, + "outputs": [], "source": [ "# check primary key\n", "WSRL[\"peilgebied\"][\"globalid\"].is_unique" @@ -132,7 +121,7 @@ }, { "cell_type": "markdown", - "id": "ed0d59f7-011b-4114-94ff-791d9c8ba514", + "id": "8", "metadata": {}, "source": [ "## Select waterschap boundaries and clip hws layer" @@ -140,8 +129,8 @@ }, { "cell_type": "code", - "execution_count": 5, - "id": "5f40630a-2a94-42f7-8ee6-7b74bcde912e", + "execution_count": null, + "id": "9", "metadata": {}, "outputs": [], "source": [ @@ -154,19 +143,10 @@ }, { "cell_type": "code", - "execution_count": 6, - "id": "06e7be9e-6154-457e-b0ee-3c1c83a5d9f4", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of overlapping shapes without filter: 378\n", - "Number of overlapping shapes with filter: 54\n" - ] - } - ], + "execution_count": null, + "id": "10", + "metadata": {}, + "outputs": [], "source": [ "# Step 1: Identify the Overlapping Areas and clip\n", "overlaps = gpd.overlay(WSRL[\"peilgebied\"], gdf_hws, how=\"intersection\", keep_geom_type=True)\n", @@ -189,19 +169,10 @@ }, { "cell_type": "code", - "execution_count": 7, - "id": "a2c9f5ef-364a-47b6-ae0c-ffc4e7072108", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "yes\n", - "yes\n" - ] - } - ], + "execution_count": null, + "id": "11", + "metadata": {}, + "outputs": [], "source": [ "# Add occurence to geodataframe\n", "peilgebieden_cat = []\n", @@ -222,8 +193,8 @@ }, { "cell_type": "code", - "execution_count": 8, - "id": "528cd71d-848f-4ba7-a2af-965bdbd16888", + "execution_count": null, + "id": "12", "metadata": {}, "outputs": [], "source": [ @@ -232,8 +203,8 @@ }, { "cell_type": "code", - "execution_count": 9, - "id": "b2d4a069-9ff4-4996-9e04-fd05db9e2573", + "execution_count": null, + "id": "13", "metadata": {}, "outputs": [], "source": [ @@ -261,7 +232,7 @@ }, { "cell_type": "markdown", - "id": "ad5df059-48f2-4a5d-a911-e924b6e44116", + "id": "14", "metadata": {}, "source": [ "## Adjust globalid, code, nen3610id ['streefpeil'], ['peilgebied']" @@ -269,8 +240,8 @@ }, { "cell_type": "code", - "execution_count": 10, - "id": "9a9719a8-9003-42bf-88d8-dc0e14a6235c", + "execution_count": null, + "id": "15", "metadata": {}, "outputs": [], "source": [ @@ -292,28 +263,17 @@ }, { "cell_type": "code", - "execution_count": 11, - "id": "7099292c-fbe8-448b-bcb9-d512852168ba", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "id": "16", + "metadata": {}, + "outputs": [], "source": [ "WSRL[\"peilgebied\"][\"globalid\"].is_unique" ] }, { "cell_type": "markdown", - "id": "517f54ec-74da-4247-9984-f3dbe770a508", + "id": "17", "metadata": {}, "source": [ "## Add nhws to ['peilgebied','streefpeil']" @@ -321,8 +281,8 @@ }, { "cell_type": "code", - "execution_count": 12, - "id": "37606d1c-0408-4dc7-a4cc-72147b35aabd", + "execution_count": null, + "id": "18", "metadata": {}, "outputs": [], "source": [ @@ -339,8 +299,8 @@ }, { "cell_type": "code", - "execution_count": 13, - "id": "e56bed85-30fb-4aaa-bf2c-55a0432857f2", + "execution_count": null, + "id": "19", "metadata": {}, "outputs": [], "source": [ @@ -356,28 +316,17 @@ }, { "cell_type": "code", - "execution_count": 14, - "id": "e0480ec4-0826-47b9-9e57-88a35d4ebd6f", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "id": "20", + "metadata": {}, + "outputs": [], "source": [ "WSRL[\"peilgebied\"][\"globalid\"].is_unique" ] }, { "cell_type": "markdown", - "id": "9dbe4b9a-b7b2-429f-ae0c-408cc61134d8", + "id": "21", "metadata": {}, "source": [ "### Create buffer layer that ensures spatial match between peilgebied and hws layers based on the buffer layer" @@ -385,8 +334,8 @@ }, { "cell_type": "code", - "execution_count": 15, - "id": "e44043cf-0ea3-47ab-85ab-3af1c85dd3a7", + "execution_count": null, + "id": "22", "metadata": {}, "outputs": [], "source": [ @@ -404,7 +353,7 @@ }, { "cell_type": "markdown", - "id": "b9628396-f882-419e-a265-424cfcb15b24", + "id": "23", "metadata": {}, "source": [ "## Add buffer to ['peilgebied']" @@ -412,7 +361,7 @@ }, { "cell_type": "markdown", - "id": "bd9a7f41-d404-4512-9639-777d8ac73bed", + "id": "24", "metadata": {}, "source": [ "## Add buffer to ['peilgebied','streefpeil']" @@ -420,8 +369,8 @@ }, { "cell_type": "code", - "execution_count": 16, - "id": "ac737828-1f7e-42ab-9f37-45e0fd1e189c", + "execution_count": null, + "id": "25", "metadata": {}, "outputs": [], "source": [ @@ -437,8 +386,8 @@ }, { "cell_type": "code", - "execution_count": 17, - "id": "f8133133-67d8-4b9c-9150-071c81079d3b", + "execution_count": null, + "id": "26", "metadata": {}, "outputs": [], "source": [ @@ -448,28 +397,17 @@ }, { "cell_type": "code", - "execution_count": 18, - "id": "f48bd18b-8f73-46fb-90be-2bb629cd7e00", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 1])" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "id": "27", + "metadata": {}, + "outputs": [], "source": [ "WSRL[\"peilgebied\"][\"peilgebied_cat\"].unique()" ] }, { "cell_type": "markdown", - "id": "997ba837-686c-4a6d-81a4-a92682428196", + "id": "28", "metadata": {}, "source": [ "## Store output" @@ -477,24 +415,10 @@ }, { "cell_type": "code", - "execution_count": 19, - "id": "4b7ca695-ba56-46a4-bd0f-ced939947deb", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stuw\n", - "gemaal\n", - "hydroobject\n", - "duikersifonhevel\n", - "peilgebied\n", - "streefpeil\n", - "aggregation_area\n" - ] - } - ], + "execution_count": null, + "id": "29", + "metadata": {}, + "outputs": [], "source": [ "for key in WSRL.keys():\n", " print(key)\n", @@ -504,7 +428,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b9833c7e-20f4-4d9c-8dec-fa49c3298e0a", + "id": "30", "metadata": {}, "outputs": [], "source": [] @@ -512,7 +436,7 @@ { "cell_type": "code", "execution_count": null, - "id": "333debe3-dcf1-4fe1-b18c-968224ec2122", + "id": "31", "metadata": {}, "outputs": [], "source": [] @@ -520,7 +444,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5ca711a0-ade5-4edc-8eb5-abab9e33971a", + "id": "32", "metadata": {}, "outputs": [], "source": [] @@ -528,7 +452,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a4869ac1-b67c-4979-8155-8da665072655", + "id": "33", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_agv.ipynb b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_agv.ipynb index 171e2a53..675b020b 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_agv.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_agv.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "690952c5-5037-476a-a660-d54fec614748", + "id": "0", "metadata": {}, "source": [ "# Amstel Gooi en Vecht" @@ -10,7 +10,7 @@ }, { "cell_type": "markdown", - "id": "e9e378d7-8f05-4562-87b0-34978ba61554", + "id": "1", "metadata": {}, "source": [ "This script adds a new column \"peilgebied_cat\" and makes sure the peilgebieden allign with the HWS layer (Daniel):\n", @@ -21,8 +21,8 @@ }, { "cell_type": "code", - "execution_count": 1, - "id": "0c27c7a4-5733-46ea-970f-cd985b8c92cd", + "execution_count": null, + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -40,7 +40,7 @@ }, { "cell_type": "markdown", - "id": "dc1f28d2-8499-4ebb-906e-1724bd334aac", + "id": "3", "metadata": {}, "source": [ "## Amstel Gooi en Vecht" @@ -48,8 +48,8 @@ }, { "cell_type": "code", - "execution_count": 2, - "id": "e15206a7-6639-40bb-9942-f920085f53b4", + "execution_count": null, + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -77,7 +77,7 @@ }, { "cell_type": "markdown", - "id": "7bbafed8-355a-4ec9-90c9-eca9e3b9313d", + "id": "5", "metadata": {}, "source": [ "### Load Files" @@ -85,8 +85,8 @@ }, { "cell_type": "code", - "execution_count": 3, - "id": "0f6dcf56-e8a4-4055-bc86-a6d33c91d8d8", + "execution_count": null, + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -126,28 +126,17 @@ }, { "cell_type": "code", - "execution_count": 4, - "id": "dd29abc2-65fa-4b54-95e5-98a4878eb620", + "execution_count": null, + "id": "7", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "AVG[\"peilgebied\"].globalid.is_unique" ] }, { "cell_type": "markdown", - "id": "a1d63576-29bb-4157-b3fa-d6c7404e3ccf", + "id": "8", "metadata": {}, "source": [ "## Select waterschap boundaries and clip hws layer" @@ -155,8 +144,8 @@ }, { "cell_type": "code", - "execution_count": 5, - "id": "b89385dd-5d81-4bea-9627-7750b1842e9c", + "execution_count": null, + "id": "9", "metadata": {}, "outputs": [], "source": [ @@ -172,7 +161,7 @@ }, { "cell_type": "markdown", - "id": "09d49cea-cfba-454a-b29a-b22f93064617", + "id": "10", "metadata": {}, "source": [ "## Peilgebied and HWS layer overlap:\n", @@ -184,19 +173,10 @@ }, { "cell_type": "code", - "execution_count": 6, - "id": "f6edfd80-f81c-4659-9d8d-1dec3f91a23c", + "execution_count": null, + "id": "11", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of overlapping shapes without filter: 28\n", - "Number of overlapping shapes with filter: 0\n" - ] - } - ], + "outputs": [], "source": [ "# Step 1: Identify the Overlapping Areas and clip\n", "overlaps = gpd.overlay(AVG[\"peilgebied\"], gdf_hws, how=\"intersection\", keep_geom_type=True)\n", @@ -219,30 +199,10 @@ }, { "cell_type": "code", - "execution_count": 7, - "id": "fa787842-0a11-4d0f-ba5e-04566370a9fb", + "execution_count": null, + "id": "12", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n" - ] - } - ], + "outputs": [], "source": [ "# Add occurence to geodataframe\n", "peilgebieden_cat = []\n", @@ -262,7 +222,7 @@ }, { "cell_type": "markdown", - "id": "361025ff-51b6-4a45-9fa5-d3d3698611dc", + "id": "13", "metadata": {}, "source": [ "## Add rhws to ['peilgebied','streefpeil']" @@ -270,8 +230,8 @@ }, { "cell_type": "code", - "execution_count": 8, - "id": "3164fa66-d75f-498e-bc88-56532faee31b", + "execution_count": null, + "id": "14", "metadata": {}, "outputs": [], "source": [ @@ -288,8 +248,8 @@ }, { "cell_type": "code", - "execution_count": 9, - "id": "89ba7b08-3b2a-4058-9946-e82e19bfe4e3", + "execution_count": null, + "id": "15", "metadata": {}, "outputs": [], "source": [ @@ -305,7 +265,7 @@ }, { "cell_type": "markdown", - "id": "afef1983-b814-4d0d-bc07-ad88539a5459", + "id": "16", "metadata": {}, "source": [ "## Add nhws to ['peilgebied','streefpeil']" @@ -313,8 +273,8 @@ }, { "cell_type": "code", - "execution_count": 10, - "id": "6f005124-3aa6-4b04-baa1-6e38736cd2c6", + "execution_count": null, + "id": "17", "metadata": {}, "outputs": [], "source": [ @@ -331,8 +291,8 @@ }, { "cell_type": "code", - "execution_count": 11, - "id": "b735a861-3ef3-4db4-b9eb-fd89dc47aca7", + "execution_count": null, + "id": "18", "metadata": {}, "outputs": [], "source": [ @@ -348,7 +308,7 @@ }, { "cell_type": "markdown", - "id": "9177014f-707b-4b32-9a6b-fb5da9e61546", + "id": "19", "metadata": {}, "source": [ "### Create buffer polygon between NHWS and peilgebied/RHWS" @@ -356,8 +316,8 @@ }, { "cell_type": "code", - "execution_count": 12, - "id": "494db515-aebe-4d94-854e-0c2c939a8214", + "execution_count": null, + "id": "20", "metadata": {}, "outputs": [], "source": [ @@ -375,7 +335,7 @@ }, { "cell_type": "markdown", - "id": "003fc773-c705-42f6-925a-2ae67eef83c0", + "id": "21", "metadata": {}, "source": [ "### Add buffer to ['peilgebied','streefpeil']" @@ -383,8 +343,8 @@ }, { "cell_type": "code", - "execution_count": 13, - "id": "03d96d05-9819-4811-891c-d645406c7027", + "execution_count": null, + "id": "22", "metadata": {}, "outputs": [], "source": [ @@ -403,8 +363,8 @@ }, { "cell_type": "code", - "execution_count": 14, - "id": "c0fa7650-eb05-4b93-9a49-dda6ac49b31b", + "execution_count": null, + "id": "23", "metadata": {}, "outputs": [], "source": [ @@ -421,8 +381,8 @@ }, { "cell_type": "code", - "execution_count": 15, - "id": "8d5771f9-fdce-44b0-bea8-1cf0023e7e66", + "execution_count": null, + "id": "24", "metadata": {}, "outputs": [], "source": [ @@ -432,7 +392,7 @@ }, { "cell_type": "markdown", - "id": "81991696-fd4d-490d-9129-98f091d64f91", + "id": "25", "metadata": {}, "source": [ "## Store output" @@ -440,26 +400,10 @@ }, { "cell_type": "code", - "execution_count": 16, - "id": "b70f5533-bc4f-4554-a3f1-e0d4085fea90", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stuw\n", - "gemaal\n", - "hydroobject\n", - "duikersifonhevel\n", - "peilgebied\n", - "streefpeil\n", - "aggregation_area\n" - ] - } - ], + "execution_count": null, + "id": "26", + "metadata": {}, + "outputs": [], "source": [ "for key in AVG.keys():\n", " print(key)\n", @@ -468,21 +412,10 @@ }, { "cell_type": "code", - "execution_count": 17, - "id": "db877f10-5557-46ed-8c1f-0c25103663ed", + "execution_count": null, + "id": "27", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 1])" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "AVG[\"peilgebied\"][\"peilgebied_cat\"].unique()" ] @@ -490,7 +423,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f4008e4c-ab26-4e6d-86cb-6e449d167ad8", + "id": "28", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_delfland.ipynb b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_delfland.ipynb index abf3448e..caad67ed 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_delfland.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_delfland.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "690952c5-5037-476a-a660-d54fec614748", + "id": "0", "metadata": {}, "source": [ "# Delfland" @@ -10,7 +10,7 @@ }, { "cell_type": "markdown", - "id": "e9e378d7-8f05-4562-87b0-34978ba61554", + "id": "1", "metadata": {}, "source": [ "This script adds a new column \"peilgebied_cat\" and makes sure the peilgebieden allign with the HWS layer (Daniel):\n", @@ -21,19 +21,10 @@ }, { "cell_type": "code", - "execution_count": 46, - "id": "0c27c7a4-5733-46ea-970f-cd985b8c92cd", + "execution_count": null, + "id": "2", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - } - ], + "outputs": [], "source": [ "import geopandas as gpd\n", "import numpy as np\n", @@ -48,7 +39,7 @@ }, { "cell_type": "markdown", - "id": "dc1f28d2-8499-4ebb-906e-1724bd334aac", + "id": "3", "metadata": {}, "source": [ "## Set Paths" @@ -56,8 +47,8 @@ }, { "cell_type": "code", - "execution_count": 47, - "id": "e15206a7-6639-40bb-9942-f920085f53b4", + "execution_count": null, + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -78,7 +69,7 @@ }, { "cell_type": "markdown", - "id": "7bbafed8-355a-4ec9-90c9-eca9e3b9313d", + "id": "5", "metadata": {}, "source": [ "## Load files" @@ -86,8 +77,8 @@ }, { "cell_type": "code", - "execution_count": 48, - "id": "0f6dcf56-e8a4-4055-bc86-a6d33c91d8d8", + "execution_count": null, + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -121,7 +112,7 @@ }, { "cell_type": "markdown", - "id": "5556d211-e92e-4ba3-85c2-4ff9bd33fbeb", + "id": "7", "metadata": {}, "source": [ "## Select waterschap boundaries and clip hws layer" @@ -129,8 +120,8 @@ }, { "cell_type": "code", - "execution_count": 49, - "id": "c70bb838-9d93-4d5a-ae12-2da18d145009", + "execution_count": null, + "id": "8", "metadata": {}, "outputs": [], "source": [ @@ -143,7 +134,7 @@ }, { "cell_type": "markdown", - "id": "fbca5734-774b-4327-bb0a-1c2a68afe982", + "id": "9", "metadata": {}, "source": [ "## Peilgebied and HWS layer overlap:\n", @@ -155,19 +146,10 @@ }, { "cell_type": "code", - "execution_count": 50, - "id": "d28b061b-117d-4e71-b737-f759953951d9", + "execution_count": null, + "id": "10", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of overlapping shapes without filter: 26\n", - "Number of overlapping shapes with filter: 0\n" - ] - } - ], + "outputs": [], "source": [ "# Step 1: Identify the Overlapping Areas and clip\n", "overlaps = gpd.overlay(delfland[\"peilgebied\"], gdf_hws, how=\"intersection\", keep_geom_type=True)\n", @@ -190,7 +172,7 @@ }, { "cell_type": "markdown", - "id": "fada8dca-0d9d-4619-b03e-403d3d19009a", + "id": "11", "metadata": {}, "source": [ "## Create peilgebied_cat column" @@ -198,71 +180,10 @@ }, { "cell_type": "code", - "execution_count": 51, - "id": "16fe0d25-7dd4-410a-9bec-5a69aced0614", + "execution_count": null, + "id": "12", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n" - ] - } - ], + "outputs": [], "source": [ "# Add occurence to geodataframe\n", "peilgebieden_cat = []\n", @@ -288,7 +209,7 @@ }, { "cell_type": "markdown", - "id": "8061cb15-b0ba-47b7-afa0-caed45438ae4", + "id": "13", "metadata": {}, "source": [ "## Add HWS to ['peilgebied', 'streefpeil']" @@ -296,8 +217,8 @@ }, { "cell_type": "code", - "execution_count": 52, - "id": "c12f62cb-60b3-4a43-b26c-6ea1f36f4606", + "execution_count": null, + "id": "14", "metadata": {}, "outputs": [], "source": [ @@ -314,8 +235,8 @@ }, { "cell_type": "code", - "execution_count": 53, - "id": "68dad130-b22b-47f2-bb20-dc88f33d4614", + "execution_count": null, + "id": "15", "metadata": {}, "outputs": [], "source": [ @@ -331,7 +252,7 @@ }, { "cell_type": "markdown", - "id": "3634cbd6-d698-460b-95c3-0737d2d12388", + "id": "16", "metadata": {}, "source": [ "### Create buffer layer that ensures spatial match between peilgebied and hws layers based on the buffer layer" @@ -339,8 +260,8 @@ }, { "cell_type": "code", - "execution_count": 54, - "id": "d8a24a33-7382-4fea-b45e-950dffb59f2c", + "execution_count": null, + "id": "17", "metadata": {}, "outputs": [], "source": [ @@ -352,7 +273,7 @@ }, { "cell_type": "markdown", - "id": "5a7d781e-3fe5-4239-b8c1-5f61d4b87460", + "id": "18", "metadata": {}, "source": [ "## Add buffer to ['peilgebied','streefpeil']" @@ -360,8 +281,8 @@ }, { "cell_type": "code", - "execution_count": 55, - "id": "e22637f0-8fdd-4971-b602-7cf4bed8584a", + "execution_count": null, + "id": "19", "metadata": {}, "outputs": [], "source": [ @@ -378,8 +299,8 @@ }, { "cell_type": "code", - "execution_count": 56, - "id": "a40dac33-9a57-4a17-8303-89836afbc8ed", + "execution_count": null, + "id": "20", "metadata": {}, "outputs": [], "source": [ @@ -400,29 +321,18 @@ }, { "cell_type": "code", - "execution_count": 57, - "id": "47b761f3-7fcb-420f-be20-9dd5ac3568ad", + "execution_count": null, + "id": "21", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([2, 0, 1])" - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "delfland[\"peilgebied\"].peilgebied_cat.unique()" ] }, { "cell_type": "code", - "execution_count": 58, - "id": "bf287dbf-a0e8-4fb6-b054-b7ce79d3de20", + "execution_count": null, + "id": "22", "metadata": {}, "outputs": [], "source": [ @@ -431,8 +341,8 @@ }, { "cell_type": "code", - "execution_count": 59, - "id": "2cd05359-00b9-435e-8e7c-2cc1f110c560", + "execution_count": null, + "id": "23", "metadata": {}, "outputs": [], "source": [ @@ -442,7 +352,7 @@ }, { "cell_type": "markdown", - "id": "52f756f2-cf33-408a-9104-4f7d95a5d4eb", + "id": "24", "metadata": {}, "source": [ "## Write output" @@ -450,24 +360,10 @@ }, { "cell_type": "code", - "execution_count": 60, - "id": "38b5a11a-bf29-4958-af68-baab619e5e51", + "execution_count": null, + "id": "25", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stuw\n", - "gemaal\n", - "hydroobject\n", - "duikersifonhevel\n", - "peilgebied\n", - "streefpeil\n", - "aggregation_area\n" - ] - } - ], + "outputs": [], "source": [ "for key in delfland.keys():\n", " print(key)\n", @@ -477,7 +373,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9cf38b1b-92d9-4b2c-b5eb-09d2333bd5ef", + "id": "26", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_rijnland.ipynb b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_rijnland.ipynb index 80fc63c0..7801eabd 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_rijnland.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_rijnland.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "690952c5-5037-476a-a660-d54fec614748", + "id": "0", "metadata": {}, "source": [ "# Rijnland" @@ -10,7 +10,7 @@ }, { "cell_type": "markdown", - "id": "e9e378d7-8f05-4562-87b0-34978ba61554", + "id": "1", "metadata": {}, "source": [ "This script adds a new column \"peilgebied_cat\" and makes sure the peilgebieden allign with the HWS layer (Daniel):\n", @@ -21,8 +21,8 @@ }, { "cell_type": "code", - "execution_count": 1, - "id": "0c27c7a4-5733-46ea-970f-cd985b8c92cd", + "execution_count": null, + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -40,7 +40,7 @@ }, { "cell_type": "markdown", - "id": "dc1f28d2-8499-4ebb-906e-1724bd334aac", + "id": "3", "metadata": {}, "source": [ "## Rijnland" @@ -48,8 +48,8 @@ }, { "cell_type": "code", - "execution_count": 2, - "id": "e15206a7-6639-40bb-9942-f920085f53b4", + "execution_count": null, + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -70,7 +70,7 @@ }, { "cell_type": "markdown", - "id": "7bbafed8-355a-4ec9-90c9-eca9e3b9313d", + "id": "5", "metadata": {}, "source": [ "### Load Files" @@ -78,8 +78,8 @@ }, { "cell_type": "code", - "execution_count": 3, - "id": "0f6dcf56-e8a4-4055-bc86-a6d33c91d8d8", + "execution_count": null, + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -115,28 +115,17 @@ }, { "cell_type": "code", - "execution_count": 4, - "id": "613a849a-f873-402f-a33f-acb2b60bea4e", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "id": "7", + "metadata": {}, + "outputs": [], "source": [ "Rijnland[\"peilgebied\"].globalid.is_unique" ] }, { "cell_type": "markdown", - "id": "623a0316-463e-444e-af95-d409c962fd21", + "id": "8", "metadata": {}, "source": [ "## Select waterschap boundaries and clip hws layer" @@ -144,8 +133,8 @@ }, { "cell_type": "code", - "execution_count": 5, - "id": "98c82db0-4036-4ffa-ae1b-4400f5c28a58", + "execution_count": null, + "id": "9", "metadata": {}, "outputs": [], "source": [ @@ -158,7 +147,7 @@ }, { "cell_type": "markdown", - "id": "240d4f27-3149-49db-82c2-aeb208b8bdb8", + "id": "10", "metadata": {}, "source": [ "## Peilgebied and HWS layer overlap:\n", @@ -170,19 +159,10 @@ }, { "cell_type": "code", - "execution_count": 6, - "id": "08cf410b-78c1-47ab-b32c-e0ed60ebd7ec", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of overlapping shapes without filter: 9\n", - "Number of overlapping shapes with filter: 0\n" - ] - } - ], + "execution_count": null, + "id": "11", + "metadata": {}, + "outputs": [], "source": [ "# Step 1: Identify the Overlapping Areas and clip\n", "overlaps = gpd.overlay(Rijnland[\"peilgebied\"], gdf_hws, how=\"intersection\", keep_geom_type=True)\n", @@ -205,7 +185,7 @@ }, { "cell_type": "markdown", - "id": "c9739ed5-7eaa-4255-bf5d-04d419530de8", + "id": "12", "metadata": {}, "source": [ "## Create peilgebied_cat column" @@ -213,272 +193,10 @@ }, { "cell_type": "code", - "execution_count": 7, - "id": "73f6c0f2-8f3c-4b63-a36a-508bd0c0f1ce", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n", - "true\n" - ] - } - ], + "execution_count": null, + "id": "13", + "metadata": {}, + "outputs": [], "source": [ "# Add occurence to geodataframe\n", "peilgebieden_cat = []\n", @@ -496,7 +214,7 @@ }, { "cell_type": "markdown", - "id": "a23b8673-850f-4c3a-a1d2-d2a3aa148a7d", + "id": "14", "metadata": {}, "source": [ "## Add nhws to ['peilgebied','streefpeil']" @@ -504,8 +222,8 @@ }, { "cell_type": "code", - "execution_count": 8, - "id": "8661eed7-0552-4f93-acad-62f1af2482d9", + "execution_count": null, + "id": "15", "metadata": {}, "outputs": [], "source": [ @@ -522,8 +240,8 @@ }, { "cell_type": "code", - "execution_count": 9, - "id": "7dd6604c-fe9e-4414-a477-d68978cf4c22", + "execution_count": null, + "id": "16", "metadata": {}, "outputs": [], "source": [ @@ -539,7 +257,7 @@ }, { "cell_type": "markdown", - "id": "8bba7dd4-ce87-4ba9-9004-f986d597f7be", + "id": "17", "metadata": {}, "source": [ "### Create buffer polygon between NHWS and peilgebied/RHWS" @@ -547,8 +265,8 @@ }, { "cell_type": "code", - "execution_count": 10, - "id": "8c7a3dd5-3e21-4116-9dbb-eda621bbb7ec", + "execution_count": null, + "id": "18", "metadata": {}, "outputs": [], "source": [ @@ -576,7 +294,7 @@ }, { "cell_type": "markdown", - "id": "de6ebf83-cc20-4e63-89b5-a74c03a57b54", + "id": "19", "metadata": {}, "source": [ "### Add buffer to ['peilgebied','streefpeil']" @@ -584,8 +302,8 @@ }, { "cell_type": "code", - "execution_count": 11, - "id": "c936a691-7ded-4e63-a344-83f27387cf0d", + "execution_count": null, + "id": "20", "metadata": {}, "outputs": [], "source": [ @@ -604,8 +322,8 @@ }, { "cell_type": "code", - "execution_count": 12, - "id": "4d53d1fe-774d-402d-bf40-af0dc62aef4a", + "execution_count": null, + "id": "21", "metadata": {}, "outputs": [], "source": [ @@ -622,7 +340,7 @@ }, { "cell_type": "markdown", - "id": "7f8b16ac-76dc-4958-8479-bd99ce3ebd66", + "id": "22", "metadata": {}, "source": [ "## Rijnland data contains many duplicate peilgebieden\n", @@ -632,25 +350,17 @@ { "cell_type": "code", "execution_count": null, - "id": "77d4a830-e70e-4242-bd29-d04483ec3c02", + "id": "23", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", - "execution_count": 13, - "id": "dae75f8d-f919-4690-b0cc-a04112c32b6a", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing 8807 out of 8807...\r" - ] - } - ], + "execution_count": null, + "id": "24", + "metadata": {}, + "outputs": [], "source": [ "gdf = Rijnland[\"peilgebied\"][3:]\n", "\n", @@ -705,51 +415,17 @@ }, { "cell_type": "code", - "execution_count": 14, - "id": "9df31513-a055-4185-aadb-6bf0d59914ae", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " idx1 idx2 globalid_1 \\\n", - "0 4 256 dummy_globalid_peilgebied_6_6 \n", - "1 5 257 dummy_globalid_peilgebied_6_7 \n", - "2 6 258 dummy_globalid_peilgebied_6_8 \n", - "3 7 259 dummy_globalid_peilgebied_6_9 \n", - "4 8 260 dummy_globalid_peilgebied_6_10 \n", - ".. ... ... ... \n", - "215 6861 6895 dummy_globalid_peilgebied_446_6863 \n", - "216 6862 6896 dummy_globalid_peilgebied_446_6864 \n", - "217 6863 6897 dummy_globalid_peilgebied_446_6865 \n", - "218 6864 6898 dummy_globalid_peilgebied_446_6866 \n", - "219 6865 6899 dummy_globalid_peilgebied_446_6867 \n", - "\n", - " globalid_2 \n", - "0 dummy_globalid_peilgebied_0_258 \n", - "1 dummy_globalid_peilgebied_0_259 \n", - "2 dummy_globalid_peilgebied_0_260 \n", - "3 dummy_globalid_peilgebied_0_261 \n", - "4 dummy_globalid_peilgebied_0_262 \n", - ".. ... \n", - "215 dummy_globalid_peilgebied_447_6897 \n", - "216 dummy_globalid_peilgebied_447_6898 \n", - "217 dummy_globalid_peilgebied_447_6899 \n", - "218 dummy_globalid_peilgebied_448_6900 \n", - "219 dummy_globalid_peilgebied_448_6901 \n", - "\n", - "[220 rows x 4 columns]\n" - ] - } - ], + "execution_count": null, + "id": "25", + "metadata": {}, + "outputs": [], "source": [ "print(df)" ] }, { "cell_type": "markdown", - "id": "e4928043-eded-4a45-a6ea-986e516d3a28", + "id": "26", "metadata": {}, "source": [ "### Create list of duplicates for removal" @@ -757,8 +433,8 @@ }, { "cell_type": "code", - "execution_count": 15, - "id": "3ba5af40-ac04-4997-a890-34987e8cfabe", + "execution_count": null, + "id": "27", "metadata": {}, "outputs": [], "source": [ @@ -780,7 +456,7 @@ }, { "cell_type": "markdown", - "id": "54028e80-ab1a-40cf-a0f6-808f4f1af1a5", + "id": "28", "metadata": {}, "source": [ "### Remove duplicates" @@ -788,8 +464,8 @@ }, { "cell_type": "code", - "execution_count": 16, - "id": "2f09ef95-f0ff-4216-ac2e-a5b6a05b1ac0", + "execution_count": null, + "id": "29", "metadata": {}, "outputs": [], "source": [ @@ -799,8 +475,8 @@ }, { "cell_type": "code", - "execution_count": 17, - "id": "1c7da63d-37de-4bc7-a234-d9bec8cc0c55", + "execution_count": null, + "id": "30", "metadata": {}, "outputs": [], "source": [ @@ -810,7 +486,7 @@ }, { "cell_type": "markdown", - "id": "fec7d831-127b-438f-8fdb-9e2cda4707ff", + "id": "31", "metadata": {}, "source": [ "### Store data" @@ -818,24 +494,10 @@ }, { "cell_type": "code", - "execution_count": 18, - "id": "59127d3b-ce3b-42ee-915d-62f0f720ec08", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stuw\n", - "gemaal\n", - "hydroobject\n", - "duikersifonhevel\n", - "peilgebied\n", - "streefpeil\n", - "aggregation_area\n" - ] - } - ], + "execution_count": null, + "id": "32", + "metadata": {}, + "outputs": [], "source": [ "for key in Rijnland.keys():\n", " print(key)\n", @@ -845,7 +507,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c4473cbe-38bd-4c89-9ac6-839470451f26", + "id": "33", "metadata": {}, "outputs": [], "source": [] @@ -853,7 +515,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f18b37ff-f12a-47d4-b406-233ef5008454", + "id": "34", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_wetterskip.ipynb b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_wetterskip.ipynb index b6de1c19..a9a37f83 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_wetterskip.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_wetterskip.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "690952c5-5037-476a-a660-d54fec614748", + "id": "0", "metadata": {}, "source": [ "# Wetterskip" @@ -10,7 +10,7 @@ }, { "cell_type": "markdown", - "id": "e9e378d7-8f05-4562-87b0-34978ba61554", + "id": "1", "metadata": {}, "source": [ "This script adds a new column \"peilgebied_cat\" and make sure the peilgebieden neatly match the HWS layer (Daniel):\n", @@ -21,8 +21,8 @@ }, { "cell_type": "code", - "execution_count": 1, - "id": "0c27c7a4-5733-46ea-970f-cd985b8c92cd", + "execution_count": null, + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ }, { "cell_type": "markdown", - "id": "dc1f28d2-8499-4ebb-906e-1724bd334aac", + "id": "3", "metadata": {}, "source": [ "## Set Paths" @@ -46,8 +46,8 @@ }, { "cell_type": "code", - "execution_count": 2, - "id": "e15206a7-6639-40bb-9942-f920085f53b4", + "execution_count": null, + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -69,7 +69,7 @@ }, { "cell_type": "markdown", - "id": "7bbafed8-355a-4ec9-90c9-eca9e3b9313d", + "id": "5", "metadata": {}, "source": [ "## Load Files" @@ -77,8 +77,8 @@ }, { "cell_type": "code", - "execution_count": 3, - "id": "0f6dcf56-e8a4-4055-bc86-a6d33c91d8d8", + "execution_count": null, + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -113,7 +113,7 @@ }, { "cell_type": "markdown", - "id": "bc4a7b18-311d-4a29-ba13-df3d587e60b2", + "id": "7", "metadata": {}, "source": [ "## Select waterschap boundaries and clip hws layer" @@ -121,8 +121,8 @@ }, { "cell_type": "code", - "execution_count": 4, - "id": "b5eae4c4-2d5a-4678-a5af-56e3626d29ec", + "execution_count": null, + "id": "8", "metadata": {}, "outputs": [], "source": [ @@ -135,7 +135,7 @@ }, { "cell_type": "markdown", - "id": "f141d0fe-6f1f-471f-acf1-4f11522bd15d", + "id": "9", "metadata": {}, "source": [ "## Check Peilgebied and HWS layer overlap:\n", @@ -147,8 +147,8 @@ }, { "cell_type": "code", - "execution_count": 5, - "id": "56faab44-3fda-43c4-8426-197fbb6c63a8", + "execution_count": null, + "id": "10", "metadata": {}, "outputs": [], "source": [ @@ -173,7 +173,7 @@ }, { "cell_type": "markdown", - "id": "9d4b936d-e24d-46b0-9c04-429290c39ade", + "id": "11", "metadata": {}, "source": [ "## Create peilgebied_cat column" @@ -181,8 +181,8 @@ }, { "cell_type": "code", - "execution_count": 6, - "id": "6ad958c4-01ce-4fcb-9170-fa8bf0f7c7f0", + "execution_count": null, + "id": "12", "metadata": {}, "outputs": [], "source": [ @@ -201,14 +201,14 @@ { "cell_type": "code", "execution_count": null, - "id": "c9be301b-1577-4516-a5a2-70e02769e343", + "id": "13", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", - "id": "2187ad3d-4399-42b1-9d50-5183ff374326", + "id": "14", "metadata": {}, "source": [ "## Add nhws to ['peilgebied','streefpeil']" @@ -216,8 +216,8 @@ }, { "cell_type": "code", - "execution_count": 7, - "id": "28509a06-79c9-4e68-9be7-dcf654494c90", + "execution_count": null, + "id": "15", "metadata": {}, "outputs": [], "source": [ @@ -234,8 +234,8 @@ }, { "cell_type": "code", - "execution_count": 8, - "id": "37bec5bb-70dd-4789-9f92-bcfcd571d790", + "execution_count": null, + "id": "16", "metadata": {}, "outputs": [], "source": [ @@ -251,7 +251,7 @@ }, { "cell_type": "markdown", - "id": "c2499b90-db91-49b7-9dc5-f43d2de46e3f", + "id": "17", "metadata": {}, "source": [ "### Create buffer polygon between NHWS and peilgebied/RHWS" @@ -259,8 +259,8 @@ }, { "cell_type": "code", - "execution_count": 9, - "id": "f3ee584a-4ac9-47fd-8006-4be11e9d02a4", + "execution_count": null, + "id": "18", "metadata": {}, "outputs": [], "source": [ @@ -278,7 +278,7 @@ }, { "cell_type": "markdown", - "id": "a796dae1-e578-45c2-abc4-bd0f660f2175", + "id": "19", "metadata": {}, "source": [ "### Add buffer to ['peilgebied','streefpeil']" @@ -286,8 +286,8 @@ }, { "cell_type": "code", - "execution_count": 10, - "id": "42af7580-3cdf-4d7c-9204-50bec3dc088d", + "execution_count": null, + "id": "20", "metadata": {}, "outputs": [], "source": [ @@ -306,8 +306,8 @@ }, { "cell_type": "code", - "execution_count": 11, - "id": "bc785a36-81a6-4c79-affc-a0938d78beb5", + "execution_count": null, + "id": "21", "metadata": {}, "outputs": [], "source": [ @@ -324,7 +324,7 @@ }, { "cell_type": "markdown", - "id": "ffb583ff-6707-48af-b3db-b35465eb949e", + "id": "22", "metadata": {}, "source": [ "## Wetterskip data contains many duplicate peilgebieden" @@ -332,7 +332,7 @@ }, { "cell_type": "markdown", - "id": "6ca97726-e159-4cae-be86-b99232a80d56", + "id": "23", "metadata": {}, "source": [ "### Calculate polygons that overlap with more than 90 % of their area" @@ -340,8 +340,8 @@ }, { "cell_type": "code", - "execution_count": 12, - "id": "c234dbaf-5345-442e-9fe4-d458a8ed225c", + "execution_count": null, + "id": "24", "metadata": { "tags": [] }, @@ -404,8 +404,8 @@ }, { "cell_type": "code", - "execution_count": 13, - "id": "22074ae1-cc01-4212-b877-a190122a152d", + "execution_count": null, + "id": "25", "metadata": {}, "outputs": [], "source": [ @@ -414,7 +414,7 @@ }, { "cell_type": "markdown", - "id": "3e377aaf-adcd-4a0d-b225-48705f0a7f97", + "id": "26", "metadata": {}, "source": [ "### Create list of duplicates for removal" @@ -422,8 +422,8 @@ }, { "cell_type": "code", - "execution_count": 14, - "id": "1d8b87a6-2e74-4b0e-9a2e-40734e38ec77", + "execution_count": null, + "id": "27", "metadata": {}, "outputs": [], "source": [ @@ -445,7 +445,7 @@ }, { "cell_type": "markdown", - "id": "0f8737e0-aea1-49fb-8a48-8a8afc52f3f8", + "id": "28", "metadata": {}, "source": [ "### Remove duplicates" @@ -453,8 +453,8 @@ }, { "cell_type": "code", - "execution_count": 15, - "id": "41cc52dc-a5ab-4879-ba6d-95edc7130479", + "execution_count": null, + "id": "29", "metadata": {}, "outputs": [], "source": [ @@ -464,29 +464,18 @@ }, { "cell_type": "code", - "execution_count": 16, - "id": "f180bb58-0cdc-4bd4-9b24-eb5deb446e82", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "id": "30", + "metadata": {}, + "outputs": [], "source": [ "Wetterskip[\"streefpeil\"][\"globalid\"].is_unique" ] }, { "cell_type": "code", - "execution_count": 17, - "id": "59fd83a7-da5b-43ff-a4ee-f97fb9389a1a", + "execution_count": null, + "id": "31", "metadata": {}, "outputs": [], "source": [ @@ -496,7 +485,7 @@ }, { "cell_type": "markdown", - "id": "ed9019dc-6278-4761-b30b-2a7f9b3757b9", + "id": "32", "metadata": {}, "source": [ "## Store data" @@ -504,24 +493,10 @@ }, { "cell_type": "code", - "execution_count": 18, - "id": "65bafa4a-7c96-4fae-870d-821aa638d322", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stuw\n", - "gemaal\n", - "hydroobject\n", - "duikersifonhevel\n", - "peilgebied\n", - "streefpeil\n", - "aggregation_area\n" - ] - } - ], + "execution_count": null, + "id": "33", + "metadata": {}, + "outputs": [], "source": [ "for key in Wetterskip.keys():\n", " print(key)\n", @@ -531,7 +506,7 @@ { "cell_type": "code", "execution_count": null, - "id": "97db8354-a89a-4f58-bab8-f722f123fcec", + "id": "34", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_zuiderzeeland.ipynb b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_zuiderzeeland.ipynb index af70905b..76253963 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_zuiderzeeland.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-process_zuiderzeeland.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "690952c5-5037-476a-a660-d54fec614748", + "id": "0", "metadata": { "tags": [] }, @@ -12,7 +12,7 @@ }, { "cell_type": "markdown", - "id": "e9e378d7-8f05-4562-87b0-34978ba61554", + "id": "1", "metadata": {}, "source": [ "This script adds a new column \"peilgebied_cat\" and makes sure the peilgebieden allign with the HWS layer:\n", @@ -23,19 +23,10 @@ }, { "cell_type": "code", - "execution_count": 81, - "id": "0c27c7a4-5733-46ea-970f-cd985b8c92cd", + "execution_count": null, + "id": "2", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - } - ], + "outputs": [], "source": [ "import geopandas as gpd\n", "import numpy as np\n", @@ -49,7 +40,7 @@ }, { "cell_type": "markdown", - "id": "b2434b6d-2898-45f8-a5cb-fbb9c2c2e77b", + "id": "3", "metadata": {}, "source": [ "## Zuiderzeeland" @@ -57,8 +48,8 @@ }, { "cell_type": "code", - "execution_count": 82, - "id": "e15206a7-6639-40bb-9942-f920085f53b4", + "execution_count": null, + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -79,7 +70,7 @@ }, { "cell_type": "markdown", - "id": "7bbafed8-355a-4ec9-90c9-eca9e3b9313d", + "id": "5", "metadata": {}, "source": [ "### Load Files" @@ -87,8 +78,8 @@ }, { "cell_type": "code", - "execution_count": 83, - "id": "0f6dcf56-e8a4-4055-bc86-a6d33c91d8d8", + "execution_count": null, + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -121,28 +112,17 @@ }, { "cell_type": "code", - "execution_count": 84, - "id": "51af6c3a-7b5d-447c-8757-5dd2f4694958", + "execution_count": null, + "id": "7", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 84, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "Zuiderzeeland[\"peilgebied\"].globalid.is_unique" ] }, { "cell_type": "markdown", - "id": "b37e2158-618d-4dd0-a576-7cb32e41c0d2", + "id": "8", "metadata": {}, "source": [ "## Select waterschap boundaries and clip hws layer" @@ -150,8 +130,8 @@ }, { "cell_type": "code", - "execution_count": 85, - "id": "c5e7495b-8517-4729-b586-7e1913dbbd83", + "execution_count": null, + "id": "9", "metadata": {}, "outputs": [], "source": [ @@ -164,175 +144,17 @@ }, { "cell_type": "code", - "execution_count": 86, - "id": "51e6de19-8bb2-47f9-860c-45d30d72972d", + "execution_count": null, + "id": "10", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
codeglobalidnen3610idgeometry
0OR 56dummy_globalid_peilgebied_0dummy_nen3610id_peilgebied_0POLYGON Z ((167444.972 487009.101 0.000, 16762...
1OR 13dummy_globalid_peilgebied_1dummy_nen3610id_peilgebied_1POLYGON Z ((182383.808 509903.577 0.000, 18241...
2HT 6dummy_globalid_peilgebied_2dummy_nen3610id_peilgebied_2POLYGON Z ((158728.408 504422.232 0.000, 15873...
3SCHOTERPAD-D-TOCHTdummy_globalid_peilgebied_3dummy_nen3610id_peilgebied_3POLYGON Z ((179970.587 533631.593 0.000, 17996...
4ZWARTEMEERTOCHTdummy_globalid_peilgebied_4dummy_nen3610id_peilgebied_4POLYGON Z ((192476.653 518448.383 0.000, 19250...
...............
290TA.02dummy_globalid_peilgebied_290dummy_nen3610id_peilgebied_290POLYGON Z ((189642.837 527330.192 0.000, 18985...
291URK 2dummy_globalid_peilgebied_291dummy_nen3610id_peilgebied_291POLYGON Z ((169418.497 519698.470 0.000, 16937...
292TA.13dummy_globalid_peilgebied_292dummy_nen3610id_peilgebied_292POLYGON Z ((187294.201 529202.794 0.000, 18747...
2933.11dummy_globalid_peilgebied_293dummy_nen3610id_peilgebied_293POLYGON Z ((160519.614 477230.775 0.000, 16016...
294TA.04dummy_globalid_peilgebied_294dummy_nen3610id_peilgebied_294POLYGON Z ((188319.932 529257.440 0.000, 18832...
\n", - "

295 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " code globalid \\\n", - "0 OR 56 dummy_globalid_peilgebied_0 \n", - "1 OR 13 dummy_globalid_peilgebied_1 \n", - "2 HT 6 dummy_globalid_peilgebied_2 \n", - "3 SCHOTERPAD-D-TOCHT dummy_globalid_peilgebied_3 \n", - "4 ZWARTEMEERTOCHT dummy_globalid_peilgebied_4 \n", - ".. ... ... \n", - "290 TA.02 dummy_globalid_peilgebied_290 \n", - "291 URK 2 dummy_globalid_peilgebied_291 \n", - "292 TA.13 dummy_globalid_peilgebied_292 \n", - "293 3.11 dummy_globalid_peilgebied_293 \n", - "294 TA.04 dummy_globalid_peilgebied_294 \n", - "\n", - " nen3610id \\\n", - "0 dummy_nen3610id_peilgebied_0 \n", - "1 dummy_nen3610id_peilgebied_1 \n", - "2 dummy_nen3610id_peilgebied_2 \n", - "3 dummy_nen3610id_peilgebied_3 \n", - "4 dummy_nen3610id_peilgebied_4 \n", - ".. ... \n", - "290 dummy_nen3610id_peilgebied_290 \n", - "291 dummy_nen3610id_peilgebied_291 \n", - "292 dummy_nen3610id_peilgebied_292 \n", - "293 dummy_nen3610id_peilgebied_293 \n", - "294 dummy_nen3610id_peilgebied_294 \n", - "\n", - " geometry \n", - "0 POLYGON Z ((167444.972 487009.101 0.000, 16762... \n", - "1 POLYGON Z ((182383.808 509903.577 0.000, 18241... \n", - "2 POLYGON Z ((158728.408 504422.232 0.000, 15873... \n", - "3 POLYGON Z ((179970.587 533631.593 0.000, 17996... \n", - "4 POLYGON Z ((192476.653 518448.383 0.000, 19250... \n", - ".. ... \n", - "290 POLYGON Z ((189642.837 527330.192 0.000, 18985... \n", - "291 POLYGON Z ((169418.497 519698.470 0.000, 16937... \n", - "292 POLYGON Z ((187294.201 529202.794 0.000, 18747... \n", - "293 POLYGON Z ((160519.614 477230.775 0.000, 16016... \n", - "294 POLYGON Z ((188319.932 529257.440 0.000, 18832... \n", - "\n", - "[295 rows x 4 columns]" - ] - }, - "execution_count": 86, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "Zuiderzeeland[\"peilgebied\"]" ] }, { "cell_type": "markdown", - "id": "b93b71dd-7176-42ae-bf4e-f31a429b229a", + "id": "11", "metadata": {}, "source": [ "## Peilgebied and HWS layer overlap:\n", @@ -344,19 +166,10 @@ }, { "cell_type": "code", - "execution_count": 87, - "id": "76cd16f7-c2cd-4ef7-b478-42359e0f8735", + "execution_count": null, + "id": "12", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of overlapping shapes without filter: 23\n", - "Number of overlapping shapes with filter: 0\n" - ] - } - ], + "outputs": [], "source": [ "# Step 1: Identify the Overlapping Areas and clip\n", "overlaps = gpd.overlay(Zuiderzeeland[\"peilgebied\"], gdf_hws, how=\"intersection\", keep_geom_type=True)\n", @@ -379,191 +192,20 @@ }, { "cell_type": "code", - "execution_count": 88, - "id": "3fca7d17-e4a3-445e-92ef-74e60e661e1e", + "execution_count": null, + "id": "13", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
codeglobalidnen3610idgeometry
0OR 56dummy_globalid_peilgebied_0dummy_nen3610id_peilgebied_0POLYGON Z ((167444.972 487009.101 0.000, 16762...
1OR 13dummy_globalid_peilgebied_1dummy_nen3610id_peilgebied_1POLYGON Z ((182383.808 509903.577 0.000, 18241...
2HT 6dummy_globalid_peilgebied_2dummy_nen3610id_peilgebied_2POLYGON Z ((158728.408 504422.232 0.000, 15873...
3SCHOTERPAD-D-TOCHTdummy_globalid_peilgebied_3dummy_nen3610id_peilgebied_3POLYGON Z ((179970.587 533631.593 0.000, 17996...
4ZWARTEMEERTOCHTdummy_globalid_peilgebied_4dummy_nen3610id_peilgebied_4POLYGON Z ((192476.653 518448.383 0.000, 19250...
...............
290TA.02dummy_globalid_peilgebied_290dummy_nen3610id_peilgebied_290POLYGON Z ((189642.837 527330.192 0.000, 18985...
291URK 2dummy_globalid_peilgebied_291dummy_nen3610id_peilgebied_291POLYGON Z ((169418.497 519698.470 0.000, 16937...
292TA.13dummy_globalid_peilgebied_292dummy_nen3610id_peilgebied_292POLYGON Z ((187294.201 529202.794 0.000, 18747...
2933.11dummy_globalid_peilgebied_293dummy_nen3610id_peilgebied_293POLYGON Z ((160519.614 477230.775 0.000, 16016...
294TA.04dummy_globalid_peilgebied_294dummy_nen3610id_peilgebied_294POLYGON Z ((188319.932 529257.440 0.000, 18832...
\n", - "

295 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " code globalid \\\n", - "0 OR 56 dummy_globalid_peilgebied_0 \n", - "1 OR 13 dummy_globalid_peilgebied_1 \n", - "2 HT 6 dummy_globalid_peilgebied_2 \n", - "3 SCHOTERPAD-D-TOCHT dummy_globalid_peilgebied_3 \n", - "4 ZWARTEMEERTOCHT dummy_globalid_peilgebied_4 \n", - ".. ... ... \n", - "290 TA.02 dummy_globalid_peilgebied_290 \n", - "291 URK 2 dummy_globalid_peilgebied_291 \n", - "292 TA.13 dummy_globalid_peilgebied_292 \n", - "293 3.11 dummy_globalid_peilgebied_293 \n", - "294 TA.04 dummy_globalid_peilgebied_294 \n", - "\n", - " nen3610id \\\n", - "0 dummy_nen3610id_peilgebied_0 \n", - "1 dummy_nen3610id_peilgebied_1 \n", - "2 dummy_nen3610id_peilgebied_2 \n", - "3 dummy_nen3610id_peilgebied_3 \n", - "4 dummy_nen3610id_peilgebied_4 \n", - ".. ... \n", - "290 dummy_nen3610id_peilgebied_290 \n", - "291 dummy_nen3610id_peilgebied_291 \n", - "292 dummy_nen3610id_peilgebied_292 \n", - "293 dummy_nen3610id_peilgebied_293 \n", - "294 dummy_nen3610id_peilgebied_294 \n", - "\n", - " geometry \n", - "0 POLYGON Z ((167444.972 487009.101 0.000, 16762... \n", - "1 POLYGON Z ((182383.808 509903.577 0.000, 18241... \n", - "2 POLYGON Z ((158728.408 504422.232 0.000, 15873... \n", - "3 POLYGON Z ((179970.587 533631.593 0.000, 17996... \n", - "4 POLYGON Z ((192476.653 518448.383 0.000, 19250... \n", - ".. ... \n", - "290 POLYGON Z ((189642.837 527330.192 0.000, 18985... \n", - "291 POLYGON Z ((169418.497 519698.470 0.000, 16937... \n", - "292 POLYGON Z ((187294.201 529202.794 0.000, 18747... \n", - "293 POLYGON Z ((160519.614 477230.775 0.000, 16016... \n", - "294 POLYGON Z ((188319.932 529257.440 0.000, 18832... \n", - "\n", - "[295 rows x 4 columns]" - ] - }, - "execution_count": 88, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "Zuiderzeeland[\"peilgebied\"]" ] }, { "cell_type": "code", - "execution_count": 89, - "id": "a7f16af4-fc46-4533-93b6-ee52d6d7687c", + "execution_count": null, + "id": "14", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n", - "yes\n" - ] - } - ], + "outputs": [], "source": [ "# Add occurence to geodataframe\n", "peilgebieden_cat = []\n", @@ -594,7 +236,7 @@ }, { "cell_type": "markdown", - "id": "5dcaab7b-5abe-431a-b890-9d19be3254f2", + "id": "15", "metadata": {}, "source": [ "## Add nhws to ['peilgebied']" @@ -602,8 +244,8 @@ }, { "cell_type": "code", - "execution_count": 90, - "id": "ec5c9dde-2698-4a73-9fce-266a3c5e96d7", + "execution_count": null, + "id": "16", "metadata": {}, "outputs": [], "source": [ @@ -620,7 +262,7 @@ }, { "cell_type": "markdown", - "id": "51415106-fb75-4dad-97ba-4b046cb1f545", + "id": "17", "metadata": {}, "source": [ "## Add HWS to ['streefpeil']" @@ -628,8 +270,8 @@ }, { "cell_type": "code", - "execution_count": 91, - "id": "9e61effa-42ae-46d7-879e-d7fa928ebd8d", + "execution_count": null, + "id": "18", "metadata": {}, "outputs": [], "source": [ @@ -645,7 +287,7 @@ }, { "cell_type": "markdown", - "id": "a1c16adb-759d-41ae-b864-513aaafff8ac", + "id": "19", "metadata": {}, "source": [ "### Create buffer layer that ensures spatial match between peilgebied and hws layers based on the buffer layer" @@ -653,8 +295,8 @@ }, { "cell_type": "code", - "execution_count": 92, - "id": "1317fbfd-b713-4172-b1b0-c678c4e8d986", + "execution_count": null, + "id": "20", "metadata": {}, "outputs": [], "source": [ @@ -672,7 +314,7 @@ }, { "cell_type": "markdown", - "id": "d7ca89cf-c74c-4c88-9c69-4dfdca718e54", + "id": "21", "metadata": { "tags": [] }, @@ -682,8 +324,8 @@ }, { "cell_type": "code", - "execution_count": 93, - "id": "f5033a40-2967-4cc1-9772-fef2be4169b0", + "execution_count": null, + "id": "22", "metadata": {}, "outputs": [], "source": [ @@ -700,8 +342,8 @@ }, { "cell_type": "code", - "execution_count": 94, - "id": "970ab69a-6f3a-46ce-9882-aded5f98a39f", + "execution_count": null, + "id": "23", "metadata": {}, "outputs": [], "source": [ @@ -718,8 +360,8 @@ }, { "cell_type": "code", - "execution_count": 95, - "id": "51d36d36-9420-4be9-8d6b-8ac0263a7129", + "execution_count": null, + "id": "24", "metadata": {}, "outputs": [], "source": [ @@ -729,7 +371,7 @@ }, { "cell_type": "markdown", - "id": "31b4ba32-7f34-49a6-b256-966c24faf68a", + "id": "25", "metadata": {}, "source": [ "## Store output" @@ -737,45 +379,20 @@ }, { "cell_type": "code", - "execution_count": 96, - "id": "9e589e19-a137-418b-b2a7-5b0c778766a6", + "execution_count": null, + "id": "26", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 96, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "Zuiderzeeland[\"peilgebied\"].globalid.is_unique" ] }, { "cell_type": "code", - "execution_count": 97, - "id": "eb0ed312-2aef-41f6-83c7-ead0e630aa39", + "execution_count": null, + "id": "27", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stuw\n", - "gemaal\n", - "hydroobject\n", - "duikersifonhevel\n", - "peilgebied\n", - "streefpeil\n", - "aggregation_area\n" - ] - } - ], + "outputs": [], "source": [ "for key in Zuiderzeeland.keys():\n", " print(key)\n", @@ -785,7 +402,7 @@ { "cell_type": "code", "execution_count": null, - "id": "888995e9-8b43-48d3-88ea-2aeea2caa311", + "id": "28", "metadata": {}, "outputs": [], "source": [] @@ -793,7 +410,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d90929e5-6345-4ccf-8d32-ddfcc20510d4", + "id": "29", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_HD.ipynb b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_HD.ipynb index 9b09fee7..edcae236 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_HD.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_HD.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "690952c5-5037-476a-a660-d54fec614748", + "id": "0", "metadata": {}, "source": [ "# Hollandse Delta" @@ -10,7 +10,7 @@ }, { "cell_type": "markdown", - "id": "e9e378d7-8f05-4562-87b0-34978ba61554", + "id": "1", "metadata": {}, "source": [ "This script adds a new column \"peilgebied_cat\" and makes sure the peilgebieden allign with the HWS layer (Daniel):\n", @@ -21,19 +21,10 @@ }, { "cell_type": "code", - "execution_count": 103, - "id": "0c27c7a4-5733-46ea-970f-cd985b8c92cd", + "execution_count": null, + "id": "2", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - } - ], + "outputs": [], "source": [ "import geopandas as gpd\n", "import numpy as np\n", @@ -47,7 +38,7 @@ }, { "cell_type": "markdown", - "id": "dc1f28d2-8499-4ebb-906e-1724bd334aac", + "id": "3", "metadata": {}, "source": [ "## Delfland" @@ -55,8 +46,8 @@ }, { "cell_type": "code", - "execution_count": 104, - "id": "e15206a7-6639-40bb-9942-f920085f53b4", + "execution_count": null, + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -78,7 +69,7 @@ }, { "cell_type": "markdown", - "id": "7bbafed8-355a-4ec9-90c9-eca9e3b9313d", + "id": "5", "metadata": {}, "source": [ "### Load Files" @@ -86,8 +77,8 @@ }, { "cell_type": "code", - "execution_count": 105, - "id": "0f6dcf56-e8a4-4055-bc86-a6d33c91d8d8", + "execution_count": null, + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -122,28 +113,17 @@ }, { "cell_type": "code", - "execution_count": 106, - "id": "a7b8f366-9c57-440f-bf48-7908612465d5", + "execution_count": null, + "id": "7", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 106, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "HD[\"peilgebied\"].globalid.is_unique" ] }, { "cell_type": "markdown", - "id": "5556d211-e92e-4ba3-85c2-4ff9bd33fbeb", + "id": "8", "metadata": {}, "source": [ "## Select waterschap boundaries and clip hws layer" @@ -151,8 +131,8 @@ }, { "cell_type": "code", - "execution_count": 107, - "id": "c70bb838-9d93-4d5a-ae12-2da18d145009", + "execution_count": null, + "id": "9", "metadata": { "tags": [] }, @@ -167,7 +147,7 @@ }, { "cell_type": "markdown", - "id": "d0ed9e9b-258b-4f16-8bcb-b9d412a8c8c3", + "id": "10", "metadata": {}, "source": [ "## Peilgebied and HWS layer overlap:\n", @@ -179,19 +159,10 @@ }, { "cell_type": "code", - "execution_count": 108, - "id": "05757b4b-2f8e-48a6-a76c-9e06e23f20da", + "execution_count": null, + "id": "11", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of overlapping shapes without filter: 174\n", - "Number of overlapping shapes with filter: 0\n" - ] - } - ], + "outputs": [], "source": [ "# Step 1: Identify the Overlapping Areas and clip\n", "overlaps = gpd.overlay(HD[\"peilgebied\"], gdf_hws, how=\"intersection\", keep_geom_type=True)\n", @@ -214,7 +185,7 @@ }, { "cell_type": "markdown", - "id": "942d281a-aa46-4b57-af3a-f4e2df811b26", + "id": "12", "metadata": {}, "source": [ "## Create peilgebied_cat column" @@ -222,8 +193,8 @@ }, { "cell_type": "code", - "execution_count": 109, - "id": "5793dd3d-766d-46bd-811e-4c8b6e118d3a", + "execution_count": null, + "id": "13", "metadata": {}, "outputs": [], "source": [ @@ -276,8 +247,8 @@ }, { "cell_type": "code", - "execution_count": 110, - "id": "d0e88867-184b-48b5-a10f-ba8816f10dcc", + "execution_count": null, + "id": "14", "metadata": {}, "outputs": [], "source": [ @@ -287,28 +258,17 @@ }, { "cell_type": "code", - "execution_count": 111, - "id": "68fd5607-5ed5-4b4e-8c13-9159e175aaae", + "execution_count": null, + "id": "15", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 1])" - ] - }, - "execution_count": 111, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "HD[\"peilgebied\"][\"peilgebied_cat\"].unique()" ] }, { "cell_type": "markdown", - "id": "8ab1e249-a9cc-4728-bfce-d9c965da18df", + "id": "16", "metadata": {}, "source": [ "## Add nhws to ['peilgebied','streefpeil']" @@ -316,8 +276,8 @@ }, { "cell_type": "code", - "execution_count": 112, - "id": "e60dbbe9-1f27-4a71-b10b-1ecf3c53b060", + "execution_count": null, + "id": "17", "metadata": {}, "outputs": [], "source": [ @@ -334,8 +294,8 @@ }, { "cell_type": "code", - "execution_count": 113, - "id": "03ff37c8-16cc-4cdc-9a1b-ea10f06ea630", + "execution_count": null, + "id": "18", "metadata": {}, "outputs": [], "source": [ @@ -351,7 +311,7 @@ }, { "cell_type": "markdown", - "id": "9e2ea1a8-4a26-4515-9613-11cbd828c0d5", + "id": "19", "metadata": {}, "source": [ "### Create buffer layer that ensures spatial match between peilgebied and hws layers based on the buffer layer" @@ -359,8 +319,8 @@ }, { "cell_type": "code", - "execution_count": 114, - "id": "c4c448fb-3cb3-451c-aa17-d336f02deb6b", + "execution_count": null, + "id": "20", "metadata": {}, "outputs": [], "source": [ @@ -372,7 +332,7 @@ }, { "cell_type": "markdown", - "id": "eb233361-1e89-4bfa-b2f4-22d66155db58", + "id": "21", "metadata": {}, "source": [ "## Add buffer to ['peilgebied','streefpeil']" @@ -380,8 +340,8 @@ }, { "cell_type": "code", - "execution_count": 115, - "id": "75fc528f-5902-4a5d-bc7c-d0b700875832", + "execution_count": null, + "id": "22", "metadata": {}, "outputs": [], "source": [ @@ -398,8 +358,8 @@ }, { "cell_type": "code", - "execution_count": 116, - "id": "b345f335-bc12-4e99-8272-9e47cc325021", + "execution_count": null, + "id": "23", "metadata": {}, "outputs": [], "source": [ @@ -417,8 +377,8 @@ }, { "cell_type": "code", - "execution_count": 117, - "id": "a8852930-5bbe-41b3-886e-b73ffa70177d", + "execution_count": null, + "id": "24", "metadata": {}, "outputs": [], "source": [ @@ -428,7 +388,7 @@ }, { "cell_type": "markdown", - "id": "dfea55d4-0bc9-485b-ac90-68b1dd8455b6", + "id": "25", "metadata": {}, "source": [ "## Store output" @@ -436,24 +396,10 @@ }, { "cell_type": "code", - "execution_count": 118, - "id": "70b4b337-44a9-4ef4-aee2-f7431aae720c", + "execution_count": null, + "id": "26", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stuw\n", - "gemaal\n", - "hydroobject\n", - "duikersifonhevel\n", - "peilgebied\n", - "streefpeil\n", - "aggregation_area\n" - ] - } - ], + "outputs": [], "source": [ "for key in HD.keys():\n", " print(key)\n", @@ -463,7 +409,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fccf3cfa-991c-42d3-b9f9-3869230a3fcf", + "id": "27", "metadata": {}, "outputs": [], "source": [] @@ -471,7 +417,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fc6075a8-8575-442d-a9f5-925dc3614f79", + "id": "28", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_HHNK.ipynb b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_HHNK.ipynb index b12a95f5..8fdc1ba0 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_HHNK.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_HHNK.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "690952c5-5037-476a-a660-d54fec614748", + "id": "0", "metadata": {}, "source": [ "# HHNK" @@ -10,7 +10,7 @@ }, { "cell_type": "markdown", - "id": "2799e766-bbe4-4f8d-a780-051b36f773ae", + "id": "1", "metadata": {}, "source": [ "This script adds a new column \"peilgebied_cat\" and makes sure the peilgebieden allign with the HWS layer (Daniel):\n", @@ -21,19 +21,10 @@ }, { "cell_type": "code", - "execution_count": 69, - "id": "0c27c7a4-5733-46ea-970f-cd985b8c92cd", + "execution_count": null, + "id": "2", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - } - ], + "outputs": [], "source": [ "import geopandas as gpd\n", "import numpy as np\n", @@ -47,7 +38,7 @@ }, { "cell_type": "markdown", - "id": "dc1f28d2-8499-4ebb-906e-1724bd334aac", + "id": "3", "metadata": {}, "source": [ "## Set Paths" @@ -55,8 +46,8 @@ }, { "cell_type": "code", - "execution_count": 70, - "id": "e15206a7-6639-40bb-9942-f920085f53b4", + "execution_count": null, + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -78,7 +69,7 @@ }, { "cell_type": "markdown", - "id": "25e2a7de-cb4b-4f6b-b2db-c675f481b939", + "id": "5", "metadata": {}, "source": [ "## Load files" @@ -86,8 +77,8 @@ }, { "cell_type": "code", - "execution_count": 71, - "id": "0f6dcf56-e8a4-4055-bc86-a6d33c91d8d8", + "execution_count": null, + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -120,7 +111,7 @@ }, { "cell_type": "markdown", - "id": "1e7e929e-e302-4791-b4d2-3808d48cbb56", + "id": "7", "metadata": {}, "source": [ "## Select waterschap boundaries and clip hws layer" @@ -128,8 +119,8 @@ }, { "cell_type": "code", - "execution_count": 72, - "id": "c70bb838-9d93-4d5a-ae12-2da18d145009", + "execution_count": null, + "id": "8", "metadata": {}, "outputs": [], "source": [ @@ -142,7 +133,7 @@ }, { "cell_type": "markdown", - "id": "ab931fb8-1011-49e9-88c0-e4b1cb09b217", + "id": "9", "metadata": {}, "source": [ "## Peilgebied and HWS layer overlap:\n", @@ -154,31 +145,10 @@ }, { "cell_type": "code", - "execution_count": 73, - "id": "2f96be55-a022-430c-baad-6a8a90bdcc2f", + "execution_count": null, + "id": "10", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 73, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAATUAAAGdCAYAAABzUOSHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAADeJElEQVR4nOy9eZCkd33m+Xnv98076z76EhiEkIQZC1sHjIUHkGAQ8thmWdDQgza88m7gMcFIOHaY2YnxEmszM4HxjvF6HcE4hjNGs2NGXrDGQkKDAYFagJCQWjeor7qvvPO933f/+L35dmZV9VHd1d1V3e8TUdFdlW9mvpmV77e+x/N9HimO45gMGTJkuEwgX+oTyJAhQ4btRBbUMmTIcFkhC2oZMmS4rJAFtQwZMlxWyIJahgwZLitkQS1DhgyXFbKgliFDhssKWVDLkCHDZQX1Up/ATkcURczNzVEsFpEk6VKfToYMVyziOKbVajE1NYUsnzofy4LaGTA3N8fevXsv9WlkyJAhwYkTJ9izZ88pb8+C2hlQLBYB8UaWSqVLfDYZMly5aDab7N27N70mT4UsqJ0BvZKzVCplQS1Dhh2AM7WBskFBhgwZLitkQS1DhgyXFbKgliFDhssKWVDLkCHDZYUsqGXIkOGyQhbUMmTIcFkhC2oZMmS4rJAFtQwZMlxWyIJahgwZLitkQS1DhgyXFbKgliFDhssKWVDLkCHDZYUsqGXIkOGywpaC2h/8wR8gSdLA18TERHp7u93mn/7Tf8qePXuwLItrrrmG/+f/+X8GHsN1XX7v936PkZER8vk8d955JzMzMwPH1Go1Dh48SLlcplwuc/DgQer1+sAxx48f533vex/5fJ6RkRE+9rGP4XnewDHPPvsst956K5ZlMT09zac+9SkyQ/pLjKNHIQwv9VlkuIyxZemha6+9lm9961vp94qipP//Z//sn/Htb3+br3zlKxw4cICHH36Yj370o0xNTfHrv/7rAHz84x/nG9/4Bvfffz/Dw8Pcd9993HHHHTz55JPpY911113MzMzw0EMPAfA7v/M7HDx4kG984xsAhGHIe9/7XkZHR3nsscdYXV3lIx/5CHEc87nPfQ4Q2kvvete7+LVf+zV+9KMf8fLLL3P33XeTz+e57777zvHtynDe+O53oVaDW2+FN70JTqNgmiHDOSHeAv71v/7X8S/+4i+e8vZrr702/tSnPjXws1/6pV+K//f//X+P4ziO6/V6rGlafP/996e3z87OxrIsxw899FAcx3H8/PPPx0B86NCh9JjHH388BuIXX3wxjuM4/m//7b/FsizHs7Oz6TH/6T/9p9gwjLjRaMRxHMd//ud/HpfL5dhxnPSYT3/60/HU1FQcRdFZv+ZGoxED6eNmOE988Ytx/K//tfj63Ofi+Nln43gLv48MVy7O9lrc8p/JV155hampKa666io++MEP8uqrr6a3ve1tb+PrX/86s7OzxHHMt7/9bV5++WVuv/12AJ588kl83+e2225L7zM1NcV1113HD37wAwAef/xxyuUyN954Y3rMTTfdRLlcHjjmuuuuY2pqKj3m9ttvx3VdnnzyyfSYW2+9FcMwBo6Zm5vj6NGjp3x9ruvSbDYHvjJcIKyswF/9FfzFX8BLL0HWGsiwDdhSULvxxhv50pe+xDe/+U0+//nPs7CwwC233MLq6ioAf/qnf8ob3/hG9uzZg67rvPvd7+bP//zPedvb3gbAwsICuq5TrVYHHnd8fJyFhYX0mLGxsQ3PPTY2NnDM+Pj4wO3VahVd1097TO/73jGb4dOf/nTayyuXy5k/wcXA4iL8p/8E/+E/wM9/ngW3DOeFLQW197znPfzWb/0W119/Pe985zt58MEHAfjiF78IiKB26NAhvv71r/Pkk0/yx3/8x3z0ox8d6MFthjiOByR6N5Pr3Y5j4uRiOZ0c8Cc/+UkajUb6deLEidOee4ZtxOwsfPnL8IUviIFChgzngPPyKMjn81x//fW88sor2LbNv/gX/4IHHniA9773vQC86U1v4umnn+Yzn/kM73znO5mYmMDzPGq12kC2trS0xC233ALAxMQEi4uLG55reXk5zbQmJiZ44oknBm6v1Wr4vj9wzPqMbGlpCWBDBtcPwzAGStYMlwDHjonA9trXwj/4BzA9fanPKMMuwnmNnlzX5YUXXmBychLf9/F9f4Mfn6IoRFEEwA033ICmaTzyyCPp7fPz8xw+fDgNajfffDONRoMf/vCH6TFPPPEEjUZj4JjDhw8zPz+fHvPwww9jGAY33HBDesx3v/vdAZrHww8/zNTUFAcOHDifl53hYuHnP4fPf16UpqdpGWTI0I8tBbVPfOITfOc73+HIkSM88cQTvP/976fZbPKRj3yEUqnErbfeyu///u/zd3/3dxw5coQvfOELfOlLX+I3fuM3ACiXy/z2b/829913H48++ihPPfUUH/7wh9NyFuCaa67h3e9+N/fccw+HDh3i0KFD3HPPPdxxxx1cffXVANx222288Y1v5ODBgzz11FM8+uijfOITn+Cee+5JHZ/uuusuDMPg7rvv5vDhwzzwwAP80R/9Effee29mSrzb8NJLYpjwX/4LLC9f6rPJsMOxpfJzZmaGD33oQ6ysrDA6OspNN93EoUOH2L9/PwD3338/n/zkJ/nH//gfs7a2xv79+/nDP/xD/tf/9X9NH+NP/uRPUFWVD3zgA9i2zTve8Q6+8IUvDPDdvvrVr/Kxj30snZLeeeed/Nmf/Vl6u6IoPPjgg3z0ox/lrW99K5Zlcdddd/GZz3wmPaZcLvPII4/wu7/7u7zlLW+hWq1y7733cu+9957bO5Xh0uO55+D55wW/7e1vh3UDpwwZAKQ4zkZNp0Oz2aRcLtNoNDLfz+3Al74EfTSgc4Ysw9/7e/Crvwrl8vk/XoYdj7O9FjMz4wy7E1EETz4JTz8Nb3kL/P2/D4XCpT6rDDsAWVDLcHGx3YVBGMITT8BPfgK/8ivw1rdCLre9z5FhVyELahkuHtbWYJ14wbbB9+H734cf/xhuvhluuglM88I8V4YdjSyoZbg4iGP4//4/EXwuJFwX/u7vRPb21reK7E3XL+xzZthRyCQSMlwc/PCHglR7sWDb8K1vwb//93DoEATBxXvuDJcUWVDLcOGxtiYCzBaw0nb5zkvLPDvbOL/n7nTgoYfgT/9UlKaZlttlj6z8zHBhsYWy80dH13h5sUXLCXjtaJ75hsNPZ2qMFQ3GS+fZH2s24W/+RvTdMi23yxrZbzXDhcVZlp1dL+DQq6sst1wcP6TR9VnreEyULZZb7vadT60Gf/3X8Od/DocPZ4oglyGyoJbhwmELZaehKkRJfNEUGV2VmapYNLoeHfcC9MP6tdxefDELbpcRsqCW4cIgjuHrXz/raaciS/zm35tm/1COMIqo2z4rLZeOF3J8rXvhznNxEe6/P9Nyu4yQ9dQyXBj88Idb1kTbO5Rjrm6z1vEwVAXFkvCjmLp9gWkgcFLLbf9+IXeU7DNn2H3IMrUM249zmHb2cONrhrlqJM98w2a6arG3amGqMn4YbfNJngLHjsF//I8iwM3OXpznzLCtyDK1DNuLbSDZ/uLeCr8wVmRP1WKt63F8rctzsw3evK+6Qd34guHnPxdfV18Nv/Zr0GcFmWFnIwtqGbYXP/rReZNshwsGwwXww4gHn5mnYft895UVnpltEMXwgbfsIadfpI/uSy+Jr2uvFcFtZOTiPG+Gc0ZWfmbYPqytQZ+q8fkgjmP+7qUldFVmtGgwWjQIo5h61+NvfjpPdLEb+s89B//3/w0PPCBoIRl2LLJMLcP2YJt3O5+fb7LYdKh3fYKE6zGcN5AkibmGzUsLLa6ZvMj6dnEMP/0pPPtspuW2g5Flahm2B9u429m0fR7/+SotJ0gDGoChykyWxWbBE0fWuGT6pj0ttz/9U/jbv4V2+9KcR4ZNkWVqGc4f5zHt7MfR1Q5xHPPksTptN2C6YrHW8bD9kKKpsdRysJJeWr3rMVOz2Tt0CbXT+rXcbrwRbrkl03LbAciCWobzwxZJtuvx0kKLFxeaTJYtfnqizlBeY6ZmAzBbt5mqWERtF02RaEUxunJy8vn8fPPSBrUefB8ee0xMS3/ndyAz9rmkyMrPDOeHcyDZ9hDHMc/M1Dmy0uEHP19BV2Vm6zbV3En9s7m6zUjBYK0jrA519aRBT+9nOwbz89vjv5DhvJAFtQznjvMsO6M4pmAoSIAqSwRhRBRDw/aZrlgAjBQMZut2eh+5LwlS5R2YEX3ve5f6DK54ZEEtw7lhG6adPzlWZ6nlUcnpTJYtqnmdnK4SxTGzdZvRorFhmT2M+wcHyvqHvPQ4ehROnLjUZ3FFIwtqGc4N5zntnKl1efzVVRq2T95QOFHrMt9wqOa0VDvN9UNsf1DU0QtOrkuZ2g79+GbZ2iXFDv1UZNjROM+y0/FDfvCzVaI4xtIVlpouY0WDvKEwV7exvZCxooEsSUxXLPqLzLZzMnMztR2YqQG8/LJQ/8hwSZAFtQxbw3lOO+M45qHDCyy3XSbLJmVLxQsjGrZPGEFOV2k6PkstlwjouAETCTetYmnoqkxeV8npCjl9hwY1yLK1S4gsqGXYGs5j2gnwzEyDo6sd/DBCU2TqXZ+pisVo0aDl+HS8k5lY0/ZpOgGqLDNdET23thuQ0xW6XjgwJd1xeO45kdFmuOjIglqGs8d5lp2rbZfvvrIMwGjR4PhalzgWfbKOu7khShTHnKh18cMIxxPH1LoeRVNFV3fwxzeOhR9ChouOHfypyLCjcJ5lZxBGPPrCEuMlk2pOp5kIP9p+yErbJacr6QrU5vePkWWJgqESRDF5XUVVdiClox9PPw2t1qU+iysOWVDLcHY4z7LzyWM15ho2c3WbKI5xg0HRx7WOhxtEFIzNl1wKpsps3abtBowVDUxNQd3pblBhCD/4waU+iysOO/xTkWFH4DzLziMrHR5/dZWpsoUiSzQ2ked2gwhLU3CDiMmyiaEqyMm60Z5qjoWGIOCOFg0MVcENQrSdnqmBWHzvXkCPhQwbkAW1DKfHeZadbTfgR0dEw3yhaTNVtqhs0uDvEW5HCnrKVytbGlcN5wnCiCCMma4Iu7wTtS5uEKEqu+Dj63kiy81w0bALPhUZLinOc7fze68sC7+BighmURzTdk6uQa2H64uydLXjUTJVjqx2aLsBlbw+sC6lyNLuyNRAKHm42+hdmuG0yIJahlNji2XnXN3mmZk6TrIFYPshbSdI9zfXOl6y/mQyW7cZKxocGM5TMk/20da6HlMVC1NT0v97QcRaxxM8tSQ70xR55/fUerBtUYZmuCjYJZ+KDBcdW9jt9III2wt5bq7Bf39xif/27DxLTYecrlK2tA1KPPMNm4qlsdRyObraIW9oaeY2WjBo2T4dN6BoavhBhB9GTFcs6rbPcEGUrrIksrVdg8cfh+ACmDJn2IAsqGXYHFvY7Xxxocl//tFxul5I0VQ5vtblx8dqPHW8xq9cNURrE4f1fuOUpaaDIkvsG8qx0nbpeAHTVYu5ui02DyoW7eQxbF8MFJTdplnWagmKR4YLjkwkMsNGnGXZaXshLy+16DgBDdtHkiRaTkDBUFlsOgRhxGzNJooGZbcNVU4NisdLJqsdYYMn1DpMJEnC9k6Scef6emkt22dP1SKM44tnl7dd+P734Zd+CXZL2bxLkb27GQaxhbLT0hWuHi/y+okiOUPF1GQUSSya5w0VPxS9MFNVmK5YablYyel0vYCRgs5yyyVIjIotTUaSJGbrNivtk411CVGWTpYt9lQtkGCx6dL1Nt9C2LGo1cT6VIYLiixTyzCIs/Tt7LgB33tlmW6iqFHNaTRsn4myKBV1RcYOQsqWRgw0HZ+91RxBFOElJNuWExLFcbLDGbPS9gjCiKG8zlrHI6crVHM6qx0PVZEJo4h2EFM0RQDtuAH5U5B1dyweewyuuy6T/L6AyDK1DCdxlr6dM7Uu//H7R9AUmX94/SRve90oeV1FQiKIRNCRZdH/OrLa4ehqh3rX5+hqh+WWi6mJYOUGIdMVi5bjUzI1KjkNTZGxNIUDw3lsL2S2blM0VBRZIqerOH7E0dUuZUuj6ezCxvviIrzyyqU+i8sau+zPXIYLigcfPKuys+UE3H7tBK8dLRDFMUtNR0gFxTGyJNH1QjquoHKEUcxwXmex6VDJiQxsru4QRic3CHRV5tiaYN1LCGf2KIrTdShJknCCkDiWcPwQCah1fNxgl5WfPXzve/C612XZ2gVClqllEFhYEG5IZ4FrJkv8wlgBL4z4xk/nOPTqKrWuR8cNkCThHeAGEbN1Gy+ImKvbBFGMkahqjBR0YkRPruMGA72xibJF0wkIYlGOyrLEYtPBCyIkhNptDFRy2u7hqa3HiRPb5pGaYSN26aciw7bj8ce3dLgkSURxzGrH48hKB4AYMal0+pbVozimN/ucbzhMlk1aCSHX0pQNct1yEhRbTkAYx7SdgKG8jiyJLM3xTz522dLO6aXuCGQikhcMWVDLIDhUhw9v+W6rbY+ioaZBS5KkAVmhHiRgomQiS1JShmrUuh4LTYepspVuCYAIfF0vTLcMlttuOg1VFTk1XtEUmbGicU4vd0fg5z+HublLfRaXJbKglkEQbcNz60/1sjJZguG8Rt7YKLE9XjJZ63gYqszeoTyzdZswigmjmNWOi9FnoBLFMRNlE1WWU2+CvK4yWbZS1Q5NkfnFvWXk3bRRsBmybO2CIBsUXOnwPPjxj7d8t6Wmw7HVLhCnUkFHVzsDi+qyJDFaNLD9kKKlUe94+Ot01EYKIttq9U0y5+pijWq8ZKactJ7M93TF4jWjBa4aKZzDi91hePFFWF6G0dFLfSaXFbJM7UrHT38qFq63gFrH5ZvPLfDMTB1DVZhvOLTdgKHcSX7ZnqrFdMWi64kNA12RGCroaIrMaNFIs7AojpEkkY0p8kn3KNuP6PohQSg2B3qYKJn80r7Ktr38S4pM8vuCIMvUrmTEMRw6tKW7BGHEw88vYqgKtcgXfbE0EIX4YYQiS6y2vXQI0HICxksmcQwt1yenKxRMNfHwlAhCEdh6hiox4AZhStnYW80xUTa4brqyu4cDm+GZZ+Dtb4dK5VKfyWWDLFO7kvHKK7C6uqW7nKh1UWUJiNlTFWtLYRgRJCtRQ3mdibI5MAEdL5pIEqy0XdY6Ho2uT8sJkCWJejIwaLsBLSfY4DswXDCYb9gM543LL6ABRFEm+b3NyDK1KxlnSeNYaDi8utzmNaN5FhsuDdsnZ6iEyaK6rsqoikzeDVluiZ3NgqliagqaIjPfcIiTAcBCw6FkabTcYAOdw9IUDFXY4TVsHzeIGMppTJVNfmHsMuihnQo/+Qnceivk85f6TC4LZJnalYqFBThy5KwO9cKIE7Uujzy/yNHVDgVTI4xivCCi7QYnbe68IO2LtZyAMIqZq9tpT2yh4TBdsVhsOowkumgFQ2WqYjFWNPCjmJmazWzdTrJBQdB9xzXju0O6+1wRBFtuA2Q4NS7jT0qG0+Iss7SZWpdHnltgvuFQNDW6XogmS8iSRN5QqFgaThAl/TEomhqyLFEyVYqGuqFknK3blC1Bpp0omwzldRYaYs2qp9YBIMtichoNDksvX/zwh+A4l/osLgtkQe1KxBbItv/9xSWCSJiezNZt9g0JCSFVlji62uXYWpeVtksMvHYkn4o5tt2Q1Y4wHV6P1Y7LUstloeFQ63jsrW70K8gnQ4OF5hVyobvuOVFrMmxE1lO7ErEFsu3/+Mt70RWZxabDasfj50ttgjBmcV2w0RWJ1bbLSEHn+FqX/cM5jq12yRsqeyoWM/VB2kjBUBnO65yo2ehqyL6hHH4YM9+wUSQJx4+odz2unihu28ve8Xj8cbjxRtAuw4HIRUQW1K40+P6WMgJDVYjjmFcW2yy3xZBAlSXGSyZeGKUrTg3bZzivs9L2GM7rOF7E/uEcK20PP4x4zUie42tdhvIGli4zu9bFMdRkf9RlVayPMlY0hW6aG7B/KMfbfmHkQrwLOxOdDjz1FPzKr1zqM9nVyILalYann94y2fbEWpeXF5tUcgYdN0RCLLL3oMpSStsYLmhinSmOkZCIopjxookfxUyUzFT9ds9QHscPmapYA3LdSy0HTZHZN2Txa28YP6Vj+2WL738fbrgBlI3rZhnODlfYJyYDTz21pcO7XsBDzy0ylNNpOj6WrjCU0+h4IYYqp/6cfhQRBRKqIiEBTTek5bhCUy2Ocb2Quu0zVjBQFAnHE5SOzTwGJkomb7967MoLaACNBjz7LLz5zZf6THYtskHBlYYtmurqisxrR/PEwFBOp+X4RLH4edcLcf0Q24/ouCG6KkMsYfsRsiThhRGrHQ8vEP8O5XUioGEH6KpMEAlRyYqlocgSuiozXjL51dePUjSv4L7SY49x5Yx9tx9ZUMtwWjz2sxVyuoIiS/iR8N+cq9uoioSlKcQg5LgtldW2UL81NQVTl9k3lCOnC0LtVMUiryuosqCCyLLEcMGgktPIJ0TeA8N57njTJKO7WVJoO7CyIpbdM5wTsqCW4bSo5HSeOLLGbN1GlgSVY6Js0nED5hone2GrbY+2G2L7IV0vwA9j1jpCDbdp+4mdnVDgWGg4BKEg5npBhCTBWNHg9ePFKztD68djj4nd3AxbxhXYtMiwFczWROAKoxg/jFltu3jhxtKomvgQAOQ0heW2RzWnYWgyYRRT6/rMJxsFUSxc2lVZ0ED8ZN0qk+zvw9wcvPoqvPa1l/pMdh22lKn9wR/8AZIkDXxNTEwMHPPCCy9w5513Ui6XKRaL3HTTTRw/fjy93XVdfu/3fo+RkRHy+Tx33nknMzMzA49Rq9U4ePAg5XKZcrnMwYMHqdfrA8ccP36c973vfeTzeUZGRvjYxz6G53kDxzz77LPceuutWJbF9PQ0n/rUpwZkbDKcGfuHc+wdylHNaSiyWJlSZImSqTFZNplK9NO8QFA4AJbaLqNFna4f0vFCwigmCAWBV1eF1R1AEMWUc2Jdat9QbkCLLQOZiOQ5Ysvl57XXXsv8/Hz69eyzz6a3/fznP+dtb3sbb3jDG/i7v/s7fvrTn/Kv/tW/wjTN9JiPf/zjPPDAA9x///089thjtNtt7rjjDsI+Muhdd93F008/zUMPPcRDDz3E008/zcGDB9PbwzDkve99L51Oh8cee4z777+fr33ta9x3333pMc1mk3e9611MTU3xox/9iM997nN85jOf4bOf/eyW36QrGSVTY7HhEEaw1BT2dmEU03RE5lXreIzkDRw/5MSajaEqSEhCltsNyGkKiiwzXjLouAHH17ostU4OK3RF5i37q9x27TimltEYBnD0qDBpybAlbLn8VFV1Q3bWw7/8l/+Sf/gP/yH/7t/9u/Rnr3nNa9L/NxoN/vIv/5Ivf/nLvPOd7wTgK1/5Cnv37uVb3/oWt99+Oy+88AIPPfQQhw4d4sYbbwTg85//PDfffDMvvfQSV199NQ8//DDPP/88J06cYGpqCoA//uM/5u677+YP//APKZVKfPWrX8VxHL7whS9gGAbXXXcdL7/8Mp/97Ge59957N6USZNiI0aKBH0bEwFTZHOCnAUQxNByfoZxO1w+I4pjhgo4fCvcoPxTk2uG8wVBe5zWjhVRzrWRpTFcsoXCbYXM89hh86EOX+ix2Fbacqb3yyitMTU1x1VVX8cEPfpBXX30VgCiKePDBB3n961/P7bffztjYGDfeeCN//dd/nd73ySefxPd9brvttvRnU1NTXHfddfwg0ZR6/PHHKZfLaUADuOmmmyiXywPHXHfddWlAA7j99ttxXZcnn3wyPebWW2/FMIyBY+bm5jh69OgpX5/rujSbzYGvKxmWrvC+X5ziNSN53GQIMJzXGS8aTFWsZLvAQFdl8rrKYtPh+FqX+YaN7YecqHXpeuLf108U+dXXj/KOa8Z5+9Vj/NK+ahbQzoSXXhIGyBnOGlsKajfeeCNf+tKX+OY3v8nnP/95FhYWuOWWW1hdXWVpaYl2u82/+Tf/hne/+908/PDD/MZv/Aa/+Zu/yXe+8x0AFhYW0HWdarU68Ljj4+MsLCykx4yNjW147rGxsYFjxsfHB26vVqvoun7aY3rf947ZDJ/+9KfTXl65XGbv3r1beYsuO7y82OK5uSZ+GKFrCtPVXKqVNle3MTSZmZqNE4jl815frCcx1MOb91Z4w0TpUr2M3Y3HHrvUZ7CrsKWg9p73vIff+q3f4vrrr+ed73wnDz74IABf/OIXiZLm76//+q/zz/7ZP+PNb34z//yf/3PuuOMO/uIv/uK0jyvG/SfLwc1Kw+04pjckOF3p+clPfpJGo5F+nbjCexrzdQc3iMQEs+Ox1vaIInD8iJyustbxKJpaqn8mlDxyqVgkwGTZ4u+/LjMXOWccPgxra5f6LHYNzounls/nuf7663nllVcYGRlBVVXe+MY3DhxzzTXXpNPPiYkJPM+jVqsNHLO0tJRmURMTEyxukm4vLy8PHLM+26rVavi+f9pjlpaWADZkcP0wDINSqTTwdSXj1qtHuWayyPG1LsMFg2peR5bA0mWG8zpDebFlMN9I6By6ynJL2N6VLY2crvDeN02mO58ZzgGZQcuWcF5BzXVdXnjhBSYnJ9F1nV/+5V/mpZdeGjjm5ZdfZv/+/QDccMMNaJrGI488kt4+Pz/P4cOHueWWWwC4+eabaTQa/PCHP0yPeeKJJ2g0GgPHHD58mPn5+fSYhx9+GMMwuOGGG9Jjvvvd7w7QPB5++GGmpqY4cODA+bzsKwpxHDNXdxhNFtYlBK0jiGJO1Lqs9Q0OFElCkmAoL1yjdFXmjjdNXZk7nNuNp58WOngZzogtBbVPfOITfOc73+HIkSM88cQTvP/976fZbPKRj3wEgN///d/nP//n/8znP/95fvazn/Fnf/ZnfOMb3+CjH/0oAOVymd/+7d/mvvvu49FHH+Wpp57iwx/+cFrOgsjs3v3ud3PPPfdw6NAhDh06xD333MMdd9zB1VdfDcBtt93GG9/4Rg4ePMhTTz3Fo48+yic+8QnuueeeNLO66667MAyDu+++m8OHD/PAAw/wR3/0R9nkc4uQJIk37SnzmtE8tY6HF4S03SBVuu3HRNkUdniqjO2FvHGymPLYMpwnwvCs1YqvdGwpqM3MzPChD32Iq6++mt/8zd9E13UOHTqUZmK/8Ru/wV/8xV/w7/7dv+P666/nP/yH/8DXvvY13va2t6WP8Sd/8if8o3/0j/jABz7AW9/6VnK5HN/4xjdQ+qRWvvrVr3L99ddz2223cdttt/GmN72JL3/5y+ntiqLw4IMPYpomb33rW/nABz7AP/pH/4jPfOYz6THlcplHHnmEmZkZ3vKWt/DRj36Ue++9l3vvvfec36wrFeMlkz0VC1NTsP2IlhOkXDNZEtLe0xWLlbbLcsvB9kOumy7z5r3VMzxyhi3hxz/esmzUlQgpzij2p0Wz2aRcLtNoNC6P/trnPrdlW7wewijilcU2j7+6ShjFlC2NGGjaPo4fUjBU8oaKoSm859oJNDVbLd52vP3t4usKxNlei9mnLsNZQ5Fl3jBZ4uBN+7nxqiHiGBw/JI7FypMTRDh+xN//hZEsoF0oPPEErFsHzDCIrIObYctQFZnr91S4fk8FgGdm6oRRzJGVDmEc8/2frXDHL06d/kEynBtsG558Em6++VKfyY5FFtSuFEQRPP88tNvb/tBvSoKbqSocX+tyYCQz5b2g+MEP4Jd/GdTs8t0M2btyuaMXzL7zHVhevqBPdc1UiWumLoO+405HqyWytb5VwgwnkQW1yxUXMZhluAR4+GGYmICEeZDhJLKgdrkhC2ZXBsIQvvlN+J3fudRnsuOQBbXLBVkwu/IwNyd2QoeGLvWZ7ChkQW23IwtmVzaefx76yO0ZsqC2e5EFswwgFDyyoDaALKjtNmTBLEM/FhbEhsjw8KU+kx2DLKjtFmTBLMOp8Nxz8Ku/eqnPYscg22XZLfj61+Gv/ioLaBk24rnnLvUZ7ChkQW23wHHOfEyGKxOLi9kfuz5kQS1DhssBzz9/qc9gxyALahkyXA7IStAUWVDLkOFywNKS+MqQBbUMGS4bZNkakFE6MpwBURzTcoJU2dbQZI4sdzi+1iWMYnRV5rrpMiMF48wPluHC4rnnhCruFe7BkQW13QLr4hqYHF/t8uNjayw0HLxwo8lKDxJkJsU7BSsrogQ9jQXklYCs/NwteM974CK5xbedgL95Zo7ja93TBjQAWZao5rWLcl4ZzgJZCZoFtV0DXYcPfximpy/4Uz11okbeUJmqWAzldcaK5imPDaOY46vdC35OGc4Szz0nzI+vYGRBbTfBMODgQZicvGBPsdh0ODzboNb1aNo+qixRtz1O16X53s9W6LjBBTunDFvA6qrYB72CkQW13QbTFIHtAvVNZus2Q3mDobwuLPBiGM7r7B3KUTI3LzObts/XfjKD44cX5JwybBFXeAmaBbXdiFwO/sk/gbGxbX/oX9pX5X/85b3c9Sv7MFSFjhfScnz8MKZoqpiasun91joe335picxGdgfgCi9Bs6C2W5HPi8A2MrLtD217IS/Mt4jimK4X0HZD5ht2ksXpjBYMpioWo0WR0fXw0kKLtU7mSXnJUavB/PylPotLhiyo7WYUCvCRj2y7nPMzs3Wem2swW9s4AJir2yy3XfFvy2Wt4zFaMLA0haKp4YdXboawo3D48KU+g0uGLKjtdhSLIrBtkwekF0TM1Wy6XoAfnV2Aqts+fhgxVTaZKJ96UprhIuL556/YEjQLapcDVBWC858+ztVtHn1hkSCKqeb0M98hgR9GBFGMIl/ZTPYdhXodZmcv9VlcEmRB7XLANn14dUWm6fjM1m2WWi4Tpa1lXVdKSAujeHdMeq/QKWgW1C4HzM1ty8MUTBVFlpgsm1TzOrq6tY9HEMcsNS8PMcvNglYQRszXbR46PM83fjq384ciV+gUNNv9vBywTZmaKkvIkoSmyvhRzHLLpZrTqXXP7uK1vZBHnl/k9RNFfvnA7vSinKvbHHp1lTCKefPeCl4YcWKti4RE1wuw/ZCOG2L7IYdeXeUfXn/hiNDnjWYTZmYu2nrdTkEW1HY74njbMjVVkal3fZqOD8Bo0aDrhkxXzrxMH8ei/Gw4PrM1m18+sC2ndMEQRTHPzzdZajmEUcyB4TzH17rMN2ziWEJVJJ6ZaeCFEVEUE8VQ73pU8xo5Q6FgqLxmJH+pX8aZ8dxzWVDLsMvQaECns20PlzcUZFnC9UPiKKbjBXS8sx9CTFcsjq11aTk+xVNsIFxq+GHE915eZq3rEcegyBJ/e3iBPVWLlhMwnDfQVZkgiui4AX4YQRwjSeCHMboiYRky2hbL80uC556D22+/ouSIdsFvJcNpsY0TrjCKWWg41Lseth/iBhGasrWPiKpIxHHMMzONbTuv7UQUx/zdS0s8M9sgjkXGJgEjBZ0gjJkomWkgj2PQVRlLUxgtmVRyOgVDxdIV3CDm6eP1S/1yzoxWC44fv9RncVGRBbXdjm0qPQHabkAMmJrCnqpFJadv+Q98o+tjaQqHZxsE0elliy4FWk5AveuzbyiHqsgsNIVenONH6KrEsbUueV1BSma5OU2hbKloikzBUNIgL0twzWQRP4x46niNhw7vYAb/FTYFzYLabsc2ZmrdpMwsGCozNZsTtS5esLXAVLd9RooGth/yymJ7285tu1DvesiSyEqjKKZsaViaQhBFRDEcGM7hBBGKDB03QJYl/DDmyEqHo6td3CCk44VIwOOvrvGVQ8f4zsvLvLjQ4sTaDpVgev55YYZ9hSALarsZUbStO362J2gMmnJ+/ZfevX86Uz+/E7oAOLba5URN7LHafkjBVHGCiEpOx/FD6l2ftY7HfMOhYft4QcR84yRNRZIkTFVGkiUcP6Rh++lth15dvRQv6cxot6+oEjQLarsZq6vgutv2cL2gdr7UJtsLmapYLDQcFncQb+34WpefLbWpWBqaLJHXZRRZZq5uI0sSeUOlnNOQgKKpMVm26HghMaLcnKpYzNVFQNRkibI1OAiZrds7N1u7gnZBs6C2m7HNazCdJKid77qTpsoYqsxQXuexV1Z2RG+t5fg8fbzGSEGnktOYqFg4QYwqw76hHLIEjhcSx2LdK4pi5ho2rh9SNFWqOYO5ug3A3mqOlbaHscn084kjOzRbe+GFK6YEzYLabsY2DglAUB2G8jrBGXwJTgdNkVluuXhBhBdEKLLEX/14huOXMIMJwohHX1hiqeWy3HKJgZWWiyJLBGGM7QVoikTT8QkjmCybgEhXC6ZKEMasdlxURebAcI62G9B0/E0z2pnaDs3WOh04evRSn8VFQRbUdjO2OVOL4hhLU5DOg9M0VjQwNYWVtkvbDVhoOuiqxBOvrvLfnp2n7Vxc2e84jvm7l5aRJKjkNKKExjFc0Flo2ARRTIREEMVYukLHDajbAZWczlTFot71sf2QsqUxVTJYaXvphsWpMtAd21u7QqagWVDbrQjDbdei77ghs3X7vMpPTZGpWBpuMjUNwojjazbNRJ7o6z+d5ekTdaKLsJMYxzGH5xqstF1qXQ9VlhktGsQxxFHEvqEcEjGqLFHr+miyTMcNUGWJ+YbDXN2maKrsG8pRsTQWWy6WrjCaeJy6p5gM79je2gsviM/NZY5so2C3YnFx2z+gEjGaIuMGEXldTTcJioaK7YcEZ9BXGy+ZxMTUux55XWW4oKdlZ9HUOLLSoWJpHFlp88pii7e9boTJ8vb7mfphxIsLLZ45USenK8iShKkqHF3tsH9IPJ+myNS6/sD00kx2Xmtdj31DufTni00XNwgpmRqrbQ9FlqhYGvW++67HoVdX2dv3GDsC3a4oQV/72kt9JhcUWVDbrbgAWlkLTRc/jKh1PSxNYaJsokgSbTfA0hVyunraaaapyhxb7VK2NPKaghdEaUDUFAldkanbPnXbZ6ps8b2XVxgq6Lz1tSNY+ubeB1tBrePx3HyDuZqDqkiYmoLthxiaDJHERMnk2JpNydQoWeqGbFFTZEYKBnldIQaWWy52n1qHpshEcUwUxtTt0/cde9najgtshw9nQS3DDsU2DwkAxksGsgSrHY+2G9BeZ3tnqqcOPBVLY6XtMp3QHnoZkCpLjBQMjq11yWkKIwULNwhZabt4YYQXhjzw1CzX7ylz3VTpnPt5Cw2Hv3lmLqFZCGKtpsioukIUQ8P1GcpplEyNgik2BOS+55ooGciSRE5XmK3bG7LSqbLFXMPe0jk9cWQHZmsvvgh33AHK+f8R2anIemq7FducqcVxzIsLrVP2iUCUdadCJafjBFE6XewhiGIWkuyu64fMNWxqXQ9NkZkom6y0PZZbDi/ON/naT2bPSY/NDULm6l2G8zqyBC03xPYjbD/CT3Y7C7rKsVWxaF/v+vhBhK7ITJZNRgsGXiiEH4+vdVFkecA1K6erLLe3zgecqdnMbOLzcElh2/Dqq5f6LC4osqC2G+H7sLKyrQ/ZC2anE4Y8VcCzNIW26zNeNPHOgg4SxWLxfanpMl4yKVkas3Wbhu3x7ZeW+faLS6dVlg2jmJlal++9ssx//ckMf/vsAofnmsw3HVRFppRY+WmKRBzDibqNKktMli0UWaKaU/HCiOW2i67I6KqMrsisJVNNNwgHnr9oqqcN6KfDoy8spfy2HYPLfAqalZ+7EZoGn/yksEJbXYW1tcF/W60tP2SvXAyjeGBI0IMEOKcIaqNFg44bMH+a8mz/kCCs9h7X0hSaTsBi00GRJaYrFkstl5ZjE0QRD/xklr+3v8LV40UkSaLjBhxd6XBktcPx1e5A8BzK69QSFdqm7Yv+XAyyJHTRpsoWMYKyoqsy8w0hVb5vSHDOVjui+a8pMmE0GEwnSmaaaZ4Lal2Pv3tpibtu3H/Oj7HtePFF4WmxTWY9Ow2X56u6EqBpwsx4M0NjzxMBbn2wW1sTe4CboJXwxxq2z0jB2BDUNFXedLldliAIY2LgVLNRWRK3OUHI3qpYPYriODU+jmMRcMZLBmEUi+a+ovDCXJOfHKsRxbBymvJvreMxVTbRVJmWLSSDgjBirRPQPUXG1+uP9VadwigmjEI0RRb3jyJ0VR6Yjp4r3CAijuPz4v9tKxxHlKCvf/2lPpMLgiyoXY7QdZiYEF/r4bpw//1w5MjAj/vLrc3KTFNVNg1qEyWLhaZN2Rp0nyonXDXHD1PahipLnKjZ5HSV4cQEWU2ytGMJ9SNvqFSSQBNEQpBxoXnmftZcw2FPJUfOEBSOlnNmCkolp1HvDgat/jJztGAwuw2lY8P2ObFms294Bw0NDh/OglqGywS6DktLG37cP+kMo4ixooGqyEiILEaWpVTmux+qIjGcNzborhmqQssJmCiZLDZdxooGiiyxpyKmiE6gMFEy8AJhr1cwVYqGiixJzNZtTFVhvGQIpVlVwYAzKvDO1E825acrFk3n9AGpaGwMaj2MFg1sLxQ9xr7YGETxORGHDx1ZZe+QtXOytZdeumxL0MvvFWU4PZaXN5X/7s/Uul5I1zszsXekINj5hibTdkNGCjorbW+A/rDQdJAAU5MxfJnltstIXieOIQTqXZ+CqTGc05AkkckBTJRNjq4Ksm41p6EpMoYjn7WDk1jP2rxkhsRPwfbRFHnDEECVJfwwOmXAOxfM1e2dla25LvzsZ/CGN1zqM9l2ZNPPKw2nGOfb5+BjWTAU1jpeakqy0hZMfEWWUk01WRKbBrN1mzCCak5HU4UPgq7I5E2NlZaLE8S0nIAwEW6sJwTgXgnp+CJr2j+cZzivn9FjNIxihhJDZgnSKaehyhiqIBY3HX/TqeZk2drWgNbD46+upn3EHYHLdAqaBbUrDS+/vOmPXT/C3KKRiCRJVHLaQDbkhzHzDZu9QznyusJIwWCp5Qj1jyjCDUKCKMIPI2brNo4fMlo0WOt46RSyt4KUN1RUWZSjC00HP4g5ttphteOhKjJTFQv1NHuqPXJtDILoG0S4gTgHAEOVKRjqBlHM9aTj7cJ8w+bY6g7irb30kqAHXWbIgtqVBNveVH4mjmPqto+hiTWhs4GliSyt6wXIksiEQASEIIo5vtZlrGSiKTJ5XcXxIyqWhqrILDZdJGD/cI6Rgs6xtS6WpjBeMtlbzTFbt5ksm6y0xZqSKF+F5PZ0xcJQRck4V7ep5PRTnmN8inmsqQp5JDeIaLsiOzRUBUMVQfhsfU7PBT/4+crOydY8D773vUt9FtuOLKhdSXjppU2FAqMYcrpCww5o2j57q2deMq/kNBq2T63rs9RyKVka+4dydJIsZ7RgcGSlQxTHVHKaWCyXJVbbHtMVCzeI6LpCDntfNcdQcsyx1Q6TZYs4FkvwlZyehiZDlZmt24wUjDRDO530+GbDT12RKVv6gGptFAvCrRuE5HQFQ00IuarMcF7H1ETA07forLUZllouR3dStvbd78Irr1zqs9hWZEHtSsIpPrzdvqniSNHgRM1mqmKd9iLWVZGBjZdMCoaK7QnZoj1VK1HrEJAliY4XYnshiixxYDiHpggp7IKpkjdUFBn8SJibTJYtZuvdtEzsLdCXzZOTyvmGk5aWhqowXbE2yCVNVaz0vv2vwwsj6rYodUcKBnurOfKGmJepskTT9nETgUsviFjteDi+CHhnsy1xNji003pr//W/Cv/YywTZ9PNKQRzDsWMDP/r+z1ZYajkYCXVjrGimKz0dN6BoqkQxm5ZjURTjh2LXc6psIskSi02H42td9g/lBrYPah2PGMFBi4hRFQmI8YIIQ5WZqdkgSUyUTeYaNtMVa4AfljdU2m6AF4ryMwhjFlsOiiThBiHLLRdTVagk/gJuEKUBzVAV/DBClYUQpKHKKQ+vR+hVJInJsomRyBNdaCw2HY6udrhqpHDBn+usYNvw//6/8D/9T5cFxSPL1K4UrNsmiOOY5+ea+EHMSsdDk6U0e+iVdjldxfYCpiuD5aipCQ6apsiULQ0vjDix1kWRJK4ayXNsrcti02G0IKzyejmJE4ScqHU5stJhtm6jqzJrbQ9TV8npCgsNJ52U9iBLYkrqBiFTZbFK1Rt9jhYNltseiizT8QJm6zYzdZvltouEkB7yw4gojtMpqiJJ5HWVQsKJAwjjmPmGkw4QLgYe//nazsrWZmfh4Ycv9VlsC7KgdqVgXZa21HIFsVQSTf+ja110VWjwj5dMGrbPXN1mpGjQsH0ODOfSEq9qif6XJAmTFlNT2D+Uo2xp+InAZDWns9x202AyUTJx/JPZW05XcP2Irh9SMFQatk9eVzdkhZNlk1rXo5rXmWvYyNLJDMvUlMRPYWNwCCKxzbCeKBska1iOL/wTCoaKocrkdJWls9hc2C4stZyd1VsD+OEPLwvXqSyoXSlYN/U8ttrFUOWU7zVSMPDDiKOrXZZbDnlDJYxj4liUokdXu1QsoUdmagpzDYeuF2JpQq/s+FoXVZGQJGFW0vUC0TdL+lUtx6ea01BliZKpoffpec03RA/P1AbJsuNFkbVZmkIQiuDkBlEyrTxJmt1KviNJYnG9RytpuwFuEDFS0ClaKpamUDI1MRhIeG2mJoYE270L8PjPd1hvDeDrXxcE7V2MLQW1P/iDP0CSpIGvic32C4H/5X/5X5Akif/r//q/Bn7uui6/93u/x8jICPl8njvvvJOZmZmBY2q1GgcPHqRcLlMulzl48CD1en3gmOPHj/O+972PfD7PyMgIH/vYx/C8wb/yzz77LLfeeiuWZTE9Pc2nPvWpnfchuhiI4w1BbaEpzHqXmo6Q6g4jJEkYp1RyYjo4kZSCvXdsteMlgU5MNPOGSsvxhTJGcuEHiS7ZSMFAV4Snpp4oykZRTE5XRE9NigdEF+fqNqt92wI5XaVmi++VvtK4h6mKlS7he0FEyRQB6UwIogg9UeHth+NHqclK0/HFYCDhtTm+GBJs94rTUsvhZ0s7zMXe80R/zbtwtJYLjS1natdeey3z8/Pp17PPPrvhmL/+67/miSeeYGpqasNtH//4x3nggQe4//77eeyxx2i329xxxx2EfXr7d911F08//TQPPfQQDz30EE8//TQHDx5Mbw/DkPe+9710Oh0ee+wx7r//fr72ta9x3333pcc0m03e9a53MTU1xY9+9CM+97nP8ZnPfIbPfvazW33Jux+1GjSb6beOHxKGEZauMJTXUxa/qSostVyWWq4IRqpMyRSlZq+vZigysiyR01U6SfNekoRqruMLYm3REKKKddtnqmIxVjIIopj5pkPTCbA0hdMNEiVESdzL2tpugNEXsPZULRq2P7CL2kwCnHmGwBZGMV4Y44WRUMaVhT/pUuvM8kKn2vnM6YJjdy744dEd1lsDkan9zd+cv6v1JcKWRx2qqp4yOwOYnZ3ln/7Tf8o3v/lN3vve9w7c1mg0+Mu//Eu+/OUv8853vhOAr3zlK+zdu5dvfetb3H777bzwwgs89NBDHDp0iBtvvBGAz3/+89x888289NJLXH311Tz88MM8//zznDhxIg2cf/zHf8zdd9/NH/7hH1IqlfjqV7+K4zh84QtfwDAMrrvuOl5++WU++9nPcu+99+6cxeKLgXWKHGLaCJYqoyRGK20vTBUzeo3644nG/lpbkGWnKxaSJFaqLE1hOK/jR8JoJacp2H5A3tCQJMFT84KI+brNnmpuYNl8tm4zVjQ4VRyZWjf9zOkK9aTXVs3pyJK06Q5okKjc9gYEYRSnmmr9ZW3vV98rX0umRicpQ88GvX3RnK5QyeksNBy8wCWnK2fcmZ0om8iSlE6ZlxPe2lUj+bN67ouGZ56BffvgLW+51GeyZWw5U3vllVeYmpriqquu4oMf/CCv9u0SRlHEwYMH+f3f/32uvfbaDfd98skn8X2f2267Lf3Z1NQU1113HT/4wQ8AePzxxymXy2lAA7jpppsol8sDx1x33XUDmeDtt9+O67o8+eST6TG33norhmEMHDM3N8fR05i6uq5Ls9kc+Nr1WBfUTqx1kJCQZInja13qto+pynjrpn8FQ8UPIkZLJpIksZwYAM83HI6sdAjjGEWCA8N5VrseBVNntm6nfzCE8KK06V7pSttL+239GC0Oyv1IJEOFRH5bVyQRlDeBrshEschEx4smRVNFkaUNS+39y/uyJDHXsM+Y4fWj51Dl+CFzdTudrub00+cI0xWLhcR6r/+17zjeWg9/+7cXxAvjQmNLQe3GG2/kS1/6Et/85jf5/Oc/z8LCArfccgurq8K89d/+23+Lqqp87GMf2/T+CwsL6LpOtVod+Pn4+DgLiYflwsICY5sIH46NjQ0cMz4+PnB7tVpF1/XTHtP7fuE0fpmf/vSn015euVxm7969pzx2VyCONwS1thuk5Vbv4vLDiLKlEcVx2k/rmREfXelwotalktMIIxEIYkh7aUdXO/hBhJL05ITOvyQyH0naQIwdL5nkdCXdsZyuWFw1nGdv1SKnKewdyjFdsRjOC0PhlbbIyobyOi03OKXkeBDFqcHwXMOm5QQDC+uWJsroamJUPFIw2D+cYzQZkohyuzcNVVBPQT7uTVXXbyw0E4HN9RSYHvqPD/u+WWw6Z6WKctERhqK/Zu8wOfIzYEvl53ve8570/9dffz0333wzr33ta/niF7/Irbfeyr//9/+en/zkJ1su7dargm52/+04pvfX8HTn98lPfpJ77703/b7ZbO7uwLa0NCA11PUC2q6gUXTdkEpOo+0GyW5lLKSDKhbH1pFQFUkijGKatp/2ljRFZqnlktcVyjmxw1k0BOdspiZkdvKGwlxdBNCSqWFockqMHcrplHMaS01XLMaHEfWux3jJRJGlJMjCa0byoifXcPDDiGpOP4WHwebZzljRSDPNXhbY80PprV71EIRCL83UFGSE56kTRGlwHCkYp1Th9cKIlbZ7Si/T/l3U9dnrVjLFi4p6HR54AD70ITaI5u1QnBelI5/Pc/311/PKK6/wve99j6WlJfbt24eqqqiqyrFjx7jvvvs4cOAAABMTE3ieR61WG3icpaWlNIuamJhgcXFxw3MtLy8PHLM+26rVavi+f9pjlhJxxPUZXD8Mw6BUKg187Wq89NLAt8dWBTFWU2QqOS3tBfthjIQ0cJH3Z1i6KpM31IHmvO2HTFVMFFlOe0QtV1A5ypZGxwlo2D57qhbTFYu2G7DccjFUhQPDecI4Zqnp4gRhSuYNI5it2RxfE6tSR1c7vLrSIYpixosGV43kMU6Rqfmh8FcAyOsq0xWLvK6y1HJZbDqbNvrDdelW75jexLPlDmZ72lnsf9a6YgVromQyVRGvfapiYSfZmCKJgN17f3tl8o7Fyy/DY49d6rM4a5xXUHNdlxdeeIHJyUkOHjzIM888w9NPP51+TU1N8fu///t885vfBOCGG25A0zQeeeSR9DHm5+c5fPgwt9xyCwA333wzjUaDH/7wh+kxTzzxBI1GY+CYw4cPMz8/nx7z8MMPYxgGN9xwQ3rMd7/73QGax8MPP8zU1FQaZK8IrAtqPcu2KIqZrdvYXsi+oVyagVmagiYL49/+jNb2Q6SEjQ/ig7NvKMfxNXuDIq4ii0a6pStUczpeIGSG4jhmT9ViKK9xdLVDw/bpeEIdt+n4dN2A0aKR5jNRHDOUyH47QUTD8SEedLzq9+6M4piipTJWNNINgzOp5W5VZuhUyh/9cHzha7rQFP2z2bo94IUaxjEN2yeMYtREamnH47//9w1tjJ2KLQW1T3ziE3znO9/hyJEjPPHEE7z//e+n2WzykY98hOHhYa677rqBL03TmJiY4OqrrwagXC7z27/929x33308+uijPPXUU3z4wx/m+uuvT6eh11xzDe9+97u55557OHToEIcOHeKee+7hjjvuSB/ntttu441vfCMHDx7kqaee4tFHH+UTn/gE99xzT5pZ3XXXXRiGwd13383hw4d54IEH+KM/+qMra/LZbG7wBx1Nsp2YmMmyRd5QcfyQobyOrsp0E1OUhabDePHkkCWvqyw1HWQZRvI6YyWT42vdgexHV2T2VCxmal26XpgaqpiJpNHeoRwLDRcp2bUEMc1UZPF93fbT0nSqYqGrcipdpMoSLSegk0gd5XQFVZaRpJNZWW/Vaql19psB5bMIKEXz5DFtZ3u11sTGxS74PMYx/NVfnZNT2cXGlnpqMzMzfOhDH2JlZYXR0VFuuukmDh06xP79Z2//9Sd/8ieoqsoHPvABbNvmHe94B1/4whdQ+hjmX/3qV/nYxz6WTknvvPNO/uzP/iy9XVEUHnzwQT760Y/y1re+FcuyuOuuu/jMZz6THlMul3nkkUf43d/9Xd7ylrdQrVa59957B/pllz1+9rMNP3rz3ipFU+Ol+SYvL7WRkwCjyhKrbTfNbGRJot7npDRc0Dm+1mUqZ9KwAzrrKBXDeZ0whplksqcpQnq74wVMlk3cJHsB0lJ1oiToDcfXukz1NddlSWI+If1Olq20TJ6qWCw3HWxfYaxopNsFSy33jBnZqVDregzldVRZQpFlelVgGMeEYYwiSzRsH12R8ZLF+O2Gpe/Qftp6dDoisH3kIyDv3GUkKd6Rs+Sdg2azSblcptFo7L7+2gMPwE9/uulNXS/gBz9b5fCckJwRpeTgLuJ4yUwzp31DQlvf9sINbuV7qznmGzZBFDNRNllte0IZQ5GT3Uw2KG+MJTulPW7YVNmi5Qa0HZ9KTk93QKs5nXbS1+pv0u8fyqUOVOeL/te5GSbLJvMNcftwwWD1HNzaT4c3763w9qs3sTrcqXjrW+Fd77roT3u21+LODbcZzh+n4ePldJVbrx7l7VePMlk2WVhnRFzJ6SnNYCiv07B9jq918ftEJk1NYU/V4kStS4wITAvJhFJIBIlj91aFaXB/2d/1wgH+mKBg+EiJnFAPBUO4o+cTJY8eFlsuU6eYMm4Zp/mzPlY00oAGcBpNynPGmfhtOw7f/74wRN6hyILa5Ypa7YzCf5oi8+a9Vd44WWIo4VfJksRUIpndSgYARVOoaEiSlF6AYrdT0DyqObG4PtewySeenqsdj5yuMFUWQa9h+2kfDUSDfnITPlcUx2kwlSXSANfxhEy4kgRGxxeik9sxNVxqOekApB+qLAQu+3EhppS53VJ+9uOv/1rIWe1AZEHtcsXPf35WhzVtnx8fqxEm01BJEj2vjhsIfheCKgE9nl/M3mqOtY5L0wnSiWjT9hkvmQSRUIutWBpKwtbvoZYYq4Bovm/m5NSPKB6cTvbY+yVTYzgvthe2I1uLEfLk/cgle7HrF99778V2Ir/JZsWOh+MIYu4ONG7Jgtrlik2GBJvh6RN1TE1BSZj/Pd6W4KQF7B/Os5z0m3K6QhTBiVo3GTBYdNyA+YbD3qEci00HP4zZl/y/tY4uYfshk2VTcNYcn+VNppSyJErOvC7MjYum4Lz18qMYaDo+UTJZDROi7PlivY5b0dRYarnUu96AXPhKexvL3gS7MlMDWFgQq1Q7DFlQuxwRhqf09+xH0/Z4Yb7JYtNhoekMEFGXmk6SpcT4UcxokrUtNB0qOR1LV5lvCK2zMBbuUQeG84wma1KnymeWWy4N2z/l7b3srOMFDOV1FpPzGl7ncqWrctq3Gysap3i0s0fXC1Oljf7BQYxYwO/x5QCW2u6me6vnil0z/dwMP/kJPP30pT6LAWRB7XLEiRNnpYf19InGhnUdSxN0iRhQFYla12dvNcdKy6XjhUxVLGRJlKITJTNVy5gsmyy1nDP2nNwgGggQp0XSP2u7wYbVpMWmw2zdZqnlbhvLK4pjdOVkL7EHU1No9JkbB2F0yq2Gc8Fm/bxdhQcfhE22gC4VsqB2OeIsSs+ZWpe5us1o0WC8ZDJcEP+6QcRSy2W8aKRsd0mCqarFvqEcc3UbVZYYzus0HZ8gjLhqOIeuCOLuXN1monx6bbH5ur2BRT9ZNhkrmgNCj8EZem4gsqrtimq9cnj9cvlwXt/gJLXa8U65uL4VmJqys1ekzga+L/przpk16S4GsqB2OeIMQS2OY56ZabDQFJnVYtNhtT24H2lqCm03JIpFEJqt2dQ6HgdG8nhBxHLbZSins3c4RxSDlzTQRwoGiiR02bRTXKx+FFM01YEVp7WOz3LLGaB5uP6Zg1rbCbZVy3AzG7x6d/Nm+HzDOa2Z8tlg1/bT1mN1VUiB7wDa6y7PezNsQKslGrinwdHVbiqTs9AY/Ovac0qfqXUJErqGqSuMmRqzdZuWG4hl9Ciibvu03ZCJksFyy6NoqDS6Hn7SmxO9LknsZJoqUSxEG8MwhkSmKKcrtJJF95KppXuksgTts9gScIIwNXe5UDjVtoKQHxKv6VSquGfC2UiQ7xo8/zw88QTcdNMlPY0sqF1uOIss7cX5JgtNZ8MUb6xooioSR1c7mJrCUF5NtwBaTpD22nqKshVLJwhd5hsOIwUxSNASoxIQw4aJsommKNheyELTYThvYKgymiqxkDTjqzmdvdUcQRSlQa1kauvWtISSbl5XWOt4aUYVx2I5/0JAYqMK73o0E8nyudMcczrkdiOd43R4+GGYnoZLKNeVlZ+XG84Q1I6tCiJsNSmbegVgXleI45i5us1wEqDWL4b7YYwskWYnbVcQavdULGw/pGH7rHU8/CBCkyX2VHNCo3Klw3LLZe9QDkuXqXW9gUlrretxoiaEJfdWc+wbylHJnXSikoB616Pl+Cw0HUaKRiLrLc5lO5v267G5btsger3Jc0H+cik/e4gi+C//ZUDD72IjC2qXE6LotKTbKI55bq6BlHh9zjVsiqbGnqqVGAO7YqLZdjdMRfdWcygyyJJQzlhoOuR0lTCKkzJVTxVsgyji2FoXPxREXFmSCOOYE2td2o7QW9MVmX1DuQHiqeNHnKh1Ob7W5ehqF1WWODCc46qR/MAsYK5uU+sKE2PYmkXeVlDN6wNepadD2wnOiS+361akzgbNJnzta+LzeAmQBbXLCT//+WknUD1ds6YdMN90UGWJpuNT73qsdUSp54XRQJAwVCEntNZxk93NmFrXQ5ZATsi6fhgRx8Kh6chqh1rXTwYGItPpn3S6QcRC06HjhRxf62JpClcN5xkp6AMZV8XS0ib8cstl31CO/cO5NMMEsb4FYlpZvABlXJQYH58N7HWv82yxqzlqp8Orr8J3vnNJnvoy/DNxBeMUihw9PDvboOuFTFcsOvWAsbKFF0QUDJWjiXx3I+kR1bs+BVPBC2Jmkn5RydKZb9iMFAyG8zqvroj7FAyV1Y7HgeFcol4rJHuCmJNs/CQ7DOMYuxGm5edK22Wl7VI0hG/nvqEcEqSqt5oiM1k2mWs4KTeumtNpOX4qFqkqEs4F2Nap2/4GdZHTYaHpDCh6nA0uu/KzH9/9LuzZA6973UV92ixTu1zgOKdVTojjmKMrHabKJkEUUzBUvCDE9cMBu7kwEn01LwgJQ2E+nDeU5GK12VvN4frC73MkYfn39jOdIEqa9jGLTRGEZus2QRiz1vGYrdt4QSSCXJIO9kq2obyO7Qvz4GNrXRaajqCFKBJx4hAljFzgyEo7cYaPhTFLyz0rscdzwWzdZrRw9v2ylba3JTLtrtz7PFvEMfzX/3pGYYXtRhbULhe8+CIEp6ZAzNZtmk7AXMNhsekwnNcBieGCsUGOGwSpdbXjMVe3qVi62CwYynGi1qVk6awmFneqItaV9g/nIRbiir0ZQDfZQOhviEkIT1AkodEWhFFK6l1pu6kKB4gdz6KhEkQRU2WLA8M5HF+Ux3Ji1TdXtylZ2gURb+yh4wUbFttPhZ6M+dli128TnAm2LYi54cVzy8qC2uWC558/5U1eEPHfX1xK13/KlsaxtS5tNyCM4g27kxInp36WprCcZEInElHG1Y6H44f4YcRYQU/6dGIy2Z8xNWyfuUSfv4e1rs9Sy0lL1D1VK/0Q5nUFXZWwNJlqTihkpMGrYRNGYj1qsjwo6rjW8YjiQdnt7UTXCxkqnD3JdqXtnvW2wWXbU+vH7KygelwkZEHtcoDrnnbqeXi2IbhhSbbRyw7GigYnal1UWWYsWZcCwc1a7Zz02hwrGeLCzutYiaKHoQm+mKkpTJaFP4BwXT99cyuOY6YrFo4fUu/6OH6EG0aMlUwqOZ0TNZvRoompyawmwaqHXjJmasqGBv6JWpfRLQSerWKh4QzowZ0Jc2exbWCo8u5fkTpbPPEEHD58UZ7qMs99rxA8++wp03s/jPjxsRqaIqX6ZTGCb+YFEbIkUet6SJKE7SUE2ySQFAyV5ZbLRNmk7WyurFHr+htke86Ehh1g++FAYNIVOR0yhInH5/omfd32OTCcxw82pwr0hhVHV7dH5nvD4yf9srPxQ4jjmPgM2waXJZ3jdPj612F8HEZHL+jTZJnabkccw+OPD/yoYYtAE0UxPz1Rp+sFlAZKM6GFtpAw/m0/xNJkYoQariTBnqpF0VSp5IT8z/rLUlMk9idmxSB2GHVFPqWRbz9MTXzsKpaGmbimx5xcR5ISX8ymI8i9vVwmp6vEcUztFLuYjWRta3/ip7Dd8MJoS7ua69V+1+Oy2fs8W3ie6K+dhYLM+eAK+1NxGeKll8QycR++/eISR1c7/IM3jPHjozXKlpZqgvWcx/1k1amWlJkxpCWqH0aJg5JC2dKw/RA/iJioWCiSJLK8MKLjBqiJA1Mlp6MpMsdWO1RyOvXTZG+WpjCerGQZWryBMqFIEEQRHTek44ZMlE06bkjT9qnkNDpegCpLm+58rrRd5KKxqZHMdmC57W5pLWo2cdcyNRnHjyglgpdRHJ/zFsKuxvIy/M3fwG/8xgVzfM8ytd2OQ4cGvv3ZUjvlnL200EoD2WTZpOUEQjpIkdOGu+2HqZ3dRMnk6KpYaWo5AZoqcWy1zWhBp5oXy+8nkkX3hh1Q6/o0HZ/pitBb8wNhkNLPverXTpuuWOypWjScgMWW0ENb7+I0UjCQZYmOK0rTKBalaMkSgcFIdktHTkOzWGq5BNEWdNu2iKVkb9bSlLP6UmSJlbZH2w1YbYshi5BJj3hurpH+vq4YPPMMPPnkBXv4LKjtZrRacOxY+m0YRvzo6BrTFYuJkkmMcGlabDrJhFDw0+pdsbrU46flNIX9CelVV2ShqmGo+EFEGItsQ1elhAYiAo0bhEwkg4WVtui7LbUEVUS4PykMJRPM6YpFydSI4hjHjyjoSjolHc7r7BvKcdVwnrKlsdJ2WW2L85sqn5TRnqnZGKrYTx3O66m13qkwX3cumPN5EMXMNey0L3imr0bfYr4bhGIII0n8bKnDD36+iqkqdLboFL/r8bd/C3NzF+Shs6C2m/HCCwP6VS8stFJFWFmWWG65KXF0KK8TRjEjBYO67ae9tImSSc4Q2cTRtS5xHDNWMikl/S4Q7H4vIb6C0BHrGZ/0pqLH17pMli1WOi6KLDOUN1jrenS9MOHI+bScgLWOx0wiEvnakTxeGHF8TSzZ9y7+puNTzWkgwUjeSBfbnSAk5uRw4nReATGkr+9SomJpTJYtpisWUxWTiZLJRNlkrm4zWTa5bqrMd19Z5tnZi0tQveQIQ9Ffs89N3eR0yILabsYLLwx8++JCCxAX0lzdJqcrLLddtCTAFQyVpi32NhVZomCoiSVdkGYKkiwhIZbG+ztWkiSmfz203YDRosFIQSeIhPnJQkP0j9quTxiLTKq3nwkklBLxqMfWunS8MFWZXa+dttrx0GSJII5RZSld3Ypi4U9gqAoLTee0/gTzDQdDlS/YtsHpoMkSQ3mduu3jBSHzDWFKs9B0Ug27o6sdnjiyylzdZqa2/Rf3jke9Lgy3t1lYMgtquxWOM1B6On5IHMeUTS2lCvQECMdKZrrWZOlqIgkkBCBVRSanaywmMkMjBUHpUPucpQB0VRlobHe9kOWWS63rE8cx40WTMI5RZVlkZG2Pq0byAGlQadg+ah8zf6EpdNhGCgZjRXPAKHi6YnFsrYupyhSSwFi2NFbbwuGpaKpMVUx0VT5t7+z4WveC9dZOh7E+/4bVjsdk2aTrnppV39giLeaywcsvC0rSNiKbfu5WHDs2IO1ybLXbt6cYM14yWGg6IktL3I9ajk/HC5ElxDSzbLLadgdoGFEcs9oW6rWLSdABWGq6DBdOZjxFU037ZB03YK3jiz+4Yned4YJBo+tjJf6ZmiyhqTK6InMsmUoO5YUmWkjMTG3zSWVvMipLEqNFI5Ecklhpu5RMFT+ME0NlfVO+XE/U8mLC0pSUvNzDZkvxBUNNJ9NdPySIIlT5CswztnkKmgW13YojRwa+PVHrppPBE7Uu+4dzTJRMFFlKTX/9MMLQlJSOcKJmM5UENhDByNKUAZPhlbZLNacTRIKoa2qKcG+3fTRFZGViPzOgmtOZq9toinzyIk5i1VTZEiVsx2O6bKJrSiqF1NtkEI8vDFz6TYMtTaGa03GCEFWWyekKBUOl6wWMFHQ0RcL2wwFru37IF4A6MJQXFJY4FkTb5eQ91BUZXZUHhgM96IrMSEEHSaJl+xiaoMOMFcWQZWbN5kCS3V5RKJW29eGuwD8LlwnWBTXbDRgrmrhBmDTxHUCw2vcN5ei4AfWuj7tuvUhT5NR0eKpiYXshe6q5gQXx3n6iF0QM5XTyukolrwuV2zCiYKoM53XiOMZQB4OioQpagySJyV8YxaiKTL3ro8iJQYsiM1IQMt8lS2P/cI6l1sngNJRMVMumiq5KFE2VuYZY0A/jmK4ngp0fRheN+6XJghaz1HJQk7q5mtOZLJuY6uak2pGigapItJ2AlhugqwpLLZellsNUxeJny+2Lcu47Dtsc1LJMbTfCdWFpKf224wY4QYSuyoSRTNfzEm9KoV8mJRlW3lBY6Wv2T5RMun0N+oYtSkhFkRgvCV2wKI5TqzolIdq6YcRax6NkaZRMlbWOJ/Y+3YC8oablnvhH0Dh6pbHjhyiyRJwYIIPY5ewt0NuNMJ1qSsBkxaLtBjRtn+W2UOCdb9iMFQ2WWi5hUibvH84hIZHXVdSylGqalS0NWRKvtZdBOX5IEAp393NF3DdGkSWJA8N5VtoO883NFT1kSYhOhghhTlmS6HpBSk0Jo5ifL7X5+68bwThFUDwb2F7AD4/WkAFNlXADIXc+lNcZLRqUTQ15p+2bFovb+nBZUNuNmJsbmBgttYSc0N4hC1WR0BWF6YqYvPXKoKmKxVxNTAs1RfgEyLLESlvcntOFZV3REmYruYQ0OlYwMFWF0QLoqjQwpWvaPn5iThxEMZospwoem2G57bKnKoJUv6nK+uMdP2T/cI7FprOBuX+i1mWiZKYrSL3gdWy1y76hHDM1m7whxCZ7DlVeGOGHEX4UkzdUiqZKo+sTRDEjBZ04FlJGItgKCossiVaPhJQGvziOkZCQJBHIpssWfiSOdYOInK5SkKQNJfB0xWKl7Q6Y3URxTL0rSnghBBBQzmn8lx/P8JYDVV4/Xjynsvm5uSZPHa+hKzJTFYujqx3UZBIr5M9j9g/lecNk8bzt/bYF+Tyo2xuGsqC2GzE7O/DtaltkTUdWulw1kqdgimypv6/TWxbvBYEe2TaIYtFL00WvzA8jodLRFqXlYkPICfWC0L6hHE6yhTBbFwRUL4yQQrGzaSV7nYokqBdN22eykqPrBYJi0vIoWWraR1oPWZKwdIX5usNo0cBNhCfrtk8Ux5iqfJLY2hgMhh03ZLxkpDy6ybKJ44fMNRzhM4qEhCiRqwUdYsHqV2UR5PO6ihtE1Lqe8FFQZTRZZq6xOd1ipGCIc+u6eGGEqshosrRhT3al7eEGERMlc4N2XU5X6HrC5q9p+3S9kIcOL1DrePzygaGBafGZ4Pghs7UuB4bzRHFM2xXPFUQxSy2x3hWG8MOja7Rcn3deM55ItF9CbHPpCVlQ251YF9RW2i5hKIKTF4idzPWl1fpLQ5IkZmpdxoqil9XxQhYag2bGANNViygmDWp+GKUuU0VTpeUEdNwwLWP3DeUomqLUmq3b7KlaKSdupia4c5oso6sSIwV9oBweLwpCcG/IMFu3kRH0iCjhq02UrXStSHDiAjRZYizJ3nRVbER4QcRCyyUMI6YrlqCoxDGzvXNQ5QGT4p7+ma5I7K1agIQThCy3XXRF3mByPFIwWEmGAz01EUORN1Xw6N1Xkk6qBPfQcgI0RcINIlRZQklMal5aaCFJEje9ZnjD450KL8w3QZJYa3s0HR9LU9LS3kwGRBPJe1nr+Dw/3+TaqXL6ez082+A1IwXKOTHljuJYtCMuZLmaBbUMAMzPp/+Nk9WjhiP09Ht9sD0Vi5YjLqC8rg5kD6If5RBEMSttYaiytyp2Gb0gSrM3LSnHtKQR3uuzAajJ5BPERTtdsdLNA0OVBX8teb6jqx1yukJOV2i7gug7VbHEcn2iyGElGmn9mcxU2UppGrIEo0UjFaoE4Q0ax2JLokcT6S2NB1GMrkh0Q6FtNlk2ado+Y0UTbV0ZXUyMmkFMKEeLBkEo+m5lSx0IvD30m8T0LvrNkp6pRA0lRvQYLU2hZGnpkEWsnMVoyfNKiGBet31m1ro8rcq8eV/1FB+Ek3D8kO//bIWRwklNOzeImCybaRkbxTEtJ2C8ZDLXsJlr2Ly00OK66TKP/WyFoqHy0kKLkaJBGMW4foihKrzjmrEtZYxbQhbUMtDtCiZ2gpYTEMUxSrLL2cu0Zuo2rxnN4wcxSy2HhaZDwVBouyF5Q0WWJbpeSBTDgaFcov8FSGLw0CunWsnFvqdiEcYiIIr1K535hpNmMf29tD1Vi06izbbYdFNRyji5qCVJDCUqlsZo0Uh11Rq2l6qEgNgy0FVB8RgtGkSJXLgqCxnypZZDOSd6ZqMFYfEXRBFDOZO2G6ZNeEUCRZLQFBlFkdKLvGhqqfxPyVSpd326XjDAKRstGowWDVbbJ99bVZGJElOZuYaDmyzyly0tzcTGSyKYBFGUNupjhElMo+sxVTbTQNx7b/xkANPDXMPBCSLyhsrrxk/dTI/imO+8vEw5Jxy5RooGQRhTNFWCKCYmToN4rw85WTZT7brHXlmh6fjkNIVm4q3aj4Wmw1sOVNOsbltxAYJaRunYbejL0kDYxx1f6zJWMgZEFy1NwQ+Ej+ZYUUwdi6bGaMFgttZloeGwt5pj/1COhYaNE0TMNWwh3Z2UH+W+FacYEXSWWi6KfHK6mDcECbcX0GRJomGLC1tVBEWj4wXEiL5d2dISU2QJVZEJQuFmNd+w2VPNDWiMNZNBh6nJKJKMHwg9s7GEjzZaNHC8iIXGSb03CdJ+Yo8+InhwQj58qenQcgImyyYdV0x7JcQQo3eeIErr8ZLJcsulaQfpdsZk2USVBS9uvuEwlWRClq4MBENFFuKbPW/UpZaL4wvqScFUsZPfRw9BFLHcchnK65STvdteZvXMidqm/DuAY6sd/vbZBV6Yb9JN2g56ool3fK3LXN1mqemiKTIlU0sD+nzDYanlpnu5BUMEQD+MN0xva13vgglvZplahg3KBj0D4vXshLGSwVzy13mh6VAyhYGwrkDDEf6dYRQRSYK+4YdxqorRoysYyYVcNFVariDXdj17QMcsjmPKOS0tG6M4Jq8rtBzBibN0hYmySb3rC2MVWWK0IDYDYsTOaNcLmaxYeImO22ZQFQk9FkHy6GpngypujyRcMBQ6boilKYwWBC9M9PccdFUEuNlkmbxs6Sy1nHTpX5GltIc333DSx6nkhDVg/3N6gSgdZ+vi516fakg+CWRRJLxQez012wup5nWiSHDrNmtVtR2xU9t2AgqGQt7QkOKYx15ZZu9QHkMVtJogEpSYjhuw1HIZSzLZzXZI4zhmuCA2TDYz2en9jnsernsqFn4YExGn5GJduUB9tfL2Z39ZUNttWJepOb5YCm86PiVTo+X45AwVGQjik3uXPeXbOBZ9o8kke0ESJFI3iMhpCpaupD2iOI6TjAE6jqBvTJRM3CBCkkS5ZGqDsjm6IqdL6roqM1OzB0rKMIpZ6XjsqVrM1bpMV3Kgi13SniLuepiaQhyLSeGrKx0hL76JVE/v3EuWShgJ+kfZ0ohjUUaamph/isxQZD7jRZO1ruDZeWGEqSostpw0ECsyrLQcZOmkHPpIQSdI7AMdX5SMQ3k9DRhFS2Wh4WBqyoCzvO2HuA2biZJF0/HTYJrXVSpJdtxbbt83lKOZ/GGodX2CMKLhBOR1FU2ROL7WZaosNkaG8no6vNkMfhSfUlK8h/k+D4aWG2z443KhTG2y8jPDQKYWJ1wnQ5VTNdWRgs5wXqdm+0yVzVTSp2H7LLe9dBcyiGKOrQl/z2pOY6JkUM2LhfFeqdP1QoZyehq0bD9koemQ0xVUWaLlBEmvTk03EOI4Thn2i02HoaTPM5wXF7CWrAo5XoihqRxb62AkpNjNeFl7kqmkH0YcW+0yVbFYbDjYfsjwOqFITZGYb7gcXe2mTXtLUyiaQgY8DONEUVe8HpkkEEpieb/jhkSJXttc3abrBRRNjZGiwUTZTDllTuJP2stmepnYVMUSloB98WO97lsUk74/DcdnomTSSfp4s4kyynTFSikeMaDKYgrdcQMWm45wvc+Jdat61x/ow50KK23vjMYxvcxRuZg0j20m3kKWqe0urBsS1Lqib1Q0VUrWyQtXVSQMVabe9ajmdHK66M8osqA7jJVEIzmvn8xYVFlirGgyXbGw/RBJkgjCaGDjoIeeRPV4yaTl+MzWbSxN9MuWWmIwsNbxMFQFJwjJ62rKYu9JBamKnDakwyhmomxuWPreW80hJzSIWtejaGopGdcLImrJJkPHDTE1MfhwgzB9TBAlZU82KUwmpdWcjqEp2H7A0dVOGlggFhlWX1/PVMVQoOMGogcYCYb+asfDToKLnqx9bUbZ6GWtPYwkJXHZ1ETvMhZTZj853/3DOY6vdtPgJqwIRUNfQmKibCQKKgG15BzOBlEc07TPJEQpfkeblcXns31xSuRyoG1/BpgFtd2EdV4EeV1JaAESqiIRhDGaLBr1QsVCNPBrXY+9VWFEDIJ4q8iCG9VTt+ipuYLgmsUxyIbKsdUOpiYys/4LNojEFHKkYKS9HcePCKKIXqpSyWmsdoRQZNFUhRly38RvtGiw1vFYaXuMFnWqlkbbCykaaqoFpyek4aKpYXshZUtLS6MoTkilZRNTUziy0mG8ZBJGIhjvreYIo0EPBF2RkTVRhud1FSuhlfhhTMlUqeZkVEWi4waMFgTTv2aL8k+RJYqGOrAN0UhkkDpumF74w3mdgiFoNLIk0XREMLRUJd399KMoXRN7zUieo6sd9lRzHOtryM83HPKGwlBB7L6OFfVN1T7OFm4QMpqIhPrhqZWDTV2BdQrjpzv+nHEBSk/Iys/dhc7gJ83QFP7HX97LWw5U033BMCYlhbpByHBBZyg/eDGEUSQEGKOIeJO/wGsdD1mGbhLEqjltQGhRV+RUMqdXXhUtLQlosNB0qVgaHS+kaul0vUAE3yhmTzXHVEUowa60XPZUclRyGvWuTzWvsyfhr83UbZyEt9bxRI/HCyOCME5VPXoIQsGt2z8sgnW9G1CyNE7UukmGKnZCDwznkSTxfccVJV/P5X04r7Pa8fCSMrcX+JtOkAa0saKxYW9y71COtive5wPDecaKBn4UM1O3Ob7WJYjEdLdoqIm4pYyVbBH0ULd99lY3GsXEySRzoeGkps7ngyASaiJn0pe7EKomm+ICBbUsU9tNaG9UcZCSZeqXF9rM1m1KpsaB4VxaPjYd4QoVxcLrc7JsMVO3yesqrx0pEMTRQOYBCR2h46eN7/6LqWioaKoYLgzn9dSNqmn7TCbyQrois9oR5i3FishYTE0oUvT+4ud0sZ8ZkxB9VbF2NZzskfbcogQZVieMxBS34wnP0F4QAsibGjM1eyCbiKKYqTRwWiDBTGIas28oRz3p4U0mA4GYRA0kiCiaKpJEWh5XczoSopTsuCH7hnJEsdh1jYjT5frpirKhYa/IEi07IIwjvCBOZdVHiwaWprDYdCgaguLRX4bKkpTKfgPpMGK9Ttu54FQbAqcqMMeKBiP5C6B+kgW1DJsFNRCBbbpqcdVoHscPedOeCs/NNfj5UpuyqaHIErpqEccnxQpFc7q7qU9nIwlQXhhtWDYvmBrzDTHRjGKxTTBVsWjYPvNJ+WpqCuMlI+1rTZZNuknp2HOaCpJhhSJLOH7ESselktOYa4jBw1RCkzA0mSiCunMyWERxjO2LyetQTsMLooGANl4yWW17lHM6EyWT2brDeMkgSMrYIIzYW7Wo26IfqMoSji9je4KYXFBlmgmXrccx62GsaKST0MXmukC6LuvtZZRrXS8JZiIg53WVhVoXWRLT6WNrXXRFJt9X2o6VjDSgGYl8eY8rdzbQFZkwjtPfQV4XmaIXRGiKzL5qjiCKkRPFlDCKCUOxgRDHsfBijaHrB6n72Eyty57qNnqqZkEtA63WKW+6bnqQ73PtVJmSqfHUiVrixA4RovHtJCWjE0TECFnv9QbB8w2RNU2UDGwvomZ7eEGEhNi5NFQ5/Yvv+oLP1ZsqOn6I4wuibByLaVrJVPGjmLmGQxAKlrwYYEisdFwkSHcx225A2w2YSrKo3k5nP7pewHjJSBbrndQJXUnUNpDEazgwnCOIxLRyvGigKrLYiCgaKbesZ8sXJWtjIDKlSk7bMFnUFDEk6K0i9dNV1gvsqrKYTvYyPS+M0BWxkC8lx9e7PsN5nY4XpgGtt8M7XjRRFAldkTm62hFmNGcJoSosEUYi+B+v2cSIday2I9RBhEilRBxLyJKQYjJU0f+b7VMibtjid/HsbGNXBLWsp7ab0Gxu6fC9Qznedc2EKEUTYuVo0RxwWJqp2afssaiKjBfELLYcvEB4HAgX9CBZxBZk2NWOx0rbHei7LTYFT2uhaadKtnN1kdnEiMC11HLT/s36oAViujuUyON4wcZGtaUpzDVsNEVivGQwlBeTyLm6TTURswRSl/ea7TPfcKgmlI180usyNJm1jjtwDpWcRtvZOC0MYzFQAJGJjRWNdPk/jAbPUZGFrWA98WaQJBFwTVVmsmKl8kCWrqTinWqynN9yApwgZK5us9oRrmAdT2SPo0UjXcDfDKOJz4Qsg5eYvZCIaYoNDWFac2y1y5GVDkdXOwRRxFzSI10vJHoyk4tPudlwTsiCWoatBjUQpctQTmex6WLpgmLRcnwODOfT3cCGLSaFIC7mfUO5dN8RxJQyl1x4BVNNiaogemkAQzl9QC0XRMCcqlisdT10VdyW0xUmyxZTZTN9/qKpJk5Tg7B9QdHo8b/6G9g9Uq2uiL1KNTFk7vXboliw5JdbLl4Qsdx2qVo6eV1hueUyXbXSXp6ENLBCJEvSpsocIPTV5hsOeV0lCCNaTsBwIu0dJBLkU2WL8aJJEMUcXe0misAyFUtlqeXgRxFdLySXyD3NJTJLOV1JJcnFVFtkgq4fYemiPO24wvCml1H2o2JpTFcsVjseiy2HOBYrTm4g/pAYqsxk2drUs6H3I8cLN+25LTQd5psODz+3kGap540LsE0AWfm5u9DYujekLEv8ylVDrHZcQRr1IxHc/JCW06M9CNmbq0byNJJyT5Qh0YCW2HBex/FDouQKqHU89g3lqHV91k7hhtRrM803HK4aznNirYOcEyq6LSdInK+kVAlkPbwwZqXtoMgSUxWxZ9lxQ8o5lVeXOxRNlabjk9dVJkomsiyJINZyUg254YKaXugg+F9rHbG8rsgSlqak9n0HhnPIkjCr6ZW0QuFDiDj2+lxFU00HCU3HZ6pi0XKEcGXD9rF9QeS1NIVqwvjvlflrHY89lRxRLMriHjWlYKgDU+qW47N/OEcUxWKZP4xSXlpvdzYMI8ZLZsqfW2oKW0DbDwfW2UAMT+ZPoQ0XhGLgUev6aMpg5m5pCm4iaTWSz/FffjzD+2/YQ+l8rQcvAPEWsqC2e+B5whbvHJA3VF4zUuBnS63EicnjwHCeqqWz2HTwwojXjOTxwzgNTroiemZh3zSuYQu12Fxfs3+h4Wya0YwWDJEFJbEqjAT7fqpicbxmc2BYGIz0ypnNvAXEQvlJgm5vr7G3ptQ/AW05QhXE80L8SNy36wmO3vG1LtWcjq5IeKEow70gomxpKY9ttCjcr3oySgVDpWLp6XMHUTygwrue9Nro+lRyguaiK2I/M4qhYKrp/RabUaLekYhTKjKz9U76/lqaknIBc7rCWFFon4UxLDWFpNRUspdZ63iMF43U6wHEMX4UM1YSCirrMy5FkfGjzcm6q52TmV+t6zGZGPXIEgODEjcZsvT7uZ4TLAv0C6O8m5WfuwXnkKX1Y7XjMdSnteWFEeW8OsBTO1Hrpn2onK4MlClxHKd/+R0/YqxoMlzQBwJaJSfKH0tTWGm7OF6YZmpBFCesfvG9GwyapGy2miNLJzM9CbG/WsnpSXM7ZrXjDZSkQRTTcAKKplD9KFli62E4r1PNCW9TTZEwVIWCqWImQSSnK6y2vfS19Ph3HS+g6fisdrx0U6EHPVH/mCibjJdMNEU6ueyeBKzecT0I1Q3RpJ9rOKx2vJQPFyVyIWNFg73VHGNFEz9xr5+rCxGBKCZp/seMJC0AQ5OZbwhpqR4dZKkplveJBR1FUyRkiQEFlIHXospULC2d1nphxHzDRlflDRSVhYbDUME4f8XcC9RPgyxT2z2o1c7r7u+8ZoyuF1LvekRRjJaoV4gPZ5z2g8o5IRXUTy/obQ70yq0ojqklS+A9/89W4lbVm2BamsJa12NEFoGrkkiCjyV7lLJE+pzApmYgq20vNTImZkBh4qqRPBOJuoilC6pCL7NcaDhUc4IPZqgyyy2HKFmIF2WgTtf1adri+bue6Nv1Z2K9qaepKSmpuIce3aQXiOeagyVdTxW3aKipkGbvfoospSTbluNjqjJ7qxYnaja2J0i8HTek4wYUTDUVz+zB9kIcL2ClHQrVkNbGcjKIYkz9pAz5WNFguS2m1yVTS6ecQjdPqAR7QQTJ70dTZOLkufoxWbao5jResx02fllQy9DvHnUukJLyUZVlGq6HKguxxELiBlW3PUbyBq4vVpr8pAybTbKE9TuNY0UjVdltbTIltHRxMfZKICvR/++VrGNFE0tX0FXBBdssU/PCiOGCsXkfKBGLVBWJMBQX6YmkPNUUYaNn+xG6IqHKorc2lDcwVGH6okiDFIx6kvUVTXVAoWIzE5meeMBC09mw3QCiIT9RNon6OG57hyy8IGZ+3ZrTctvF9lWmylYa6A1VpmnHrHU8TFUhp6spnWMxec62ZxNGgk+mJIKfK22XnK5S6VslE++HTBwP/g47pxD1OJXah67K7KlaXD9dPv9eGmRBLQPnHdSApB8TkdPEBa/IUpqRNJ2AqYpYimzYYo9zKKelhshR30Wh9psVnwZqcrGBEJgsmqpQnKhYxIg+WMvxUWUJY5PgABuXq3tUhvmGQ8HUUoHHfdUceUNc/N2EctKwA6YrJiMFnbWujywJnl6PkpHTlXRbwg8Fj01LVpn6L24pKXdFTkuqNNzvZtUP2xNDgl6mu7eao971Ng3+pipkvJdaLmVTZMkFQ8ULo5Tou9hy6dYDVFkipwtfhmpOTzNnI3mMXr9OkqBkqXQ8IW7Z9YL0NZwJvT1fQ5XRVYW2K8xg3jBR5Jf2VVMP2PNGFtQybEdQAxgu6MzVhVjgxLpA0vMkmCyLEmSl7dJ0TspT7x8WC+KSJNG0fYIw3tRoBEQvLIhOeoZ2PaH7VjDyeImhSQ+yJLLGkYKBLAlScK+86+enDed1Fho2YyULU1fQFTnN4jRVxkz02yDpTQ0Jz4bpikkVknIbSpZGFAkpzP3DOYJQBOz5JAtSZDll1McIdQsnCBnJG4mXpqCISJJo+pmJQokoy8UkeDivM140xUbEJtmsLEnsH87R9UKOrHTSXpkELHviPJxkghnHMZNli9W2Sz5RCe6HG0Tp654omSy0hBVizyBakdlArt4MxUSPD6D363nDRIn9wzleN1bYXp+CLKhl6JccOh+87RdG+Y/fP0LJFGz5yURwMZ/IOXtBSMHUEv16kd31VE+7XoSpyWlPaCivc7pVxH7HpR6CSEh59/pSK2039eXsP7ZoinJVVcRHVEvWiAxVIQa6bki961NIuF1HVtppOWlq4pgjKx0ODOc4tmozVjKYqQvxRVmCE3UbSZKo5oTZce8+ahLYV9qC39bLbSxNSSkhE2WTfUOC19e0fdwgSqe4k2WL+Yad9OIEabXtBgPqImNFg7yhcmy1m65W9f7Vko0DQ5UTiaEYYjGd9MKIMIqYKluntO3TEt5ev8T5vqHcBqXgzRBFg5nc1eNF3n71aEouplSCd7wD9u0T38/MwBNPiH+3iiyoZSA4kxbW2aEnab3UEs10O3Er9/wIVZGQEjPe0YJByVLxg4j5usgQ2m7AUF5PL5C1jjewhN1DXlcHSrv16AWHqT5W/Pq9yZYjHKcWm8JLwfaDARWLkYKBpYle2c9XTqqXFE0NRRLeDQBhJJj1/Y/bdv1UBqmnzd9NXOCLhspcw05Lud5r6G/Wx3FiRegFKJLEZqoWgnbh4kcxJUvDD0Q5mddVVjsuyy13wwK5psjIssSeqkUYiQX4tY4rfEpzOoospYoicHJjQWwkROlO6vK6vlhviHImxAheXQxcM1Hkba8bPXk/TYO3vx1+8RdP3qFaheuvF0Ht8cfhhRcg2kjv2RRZUMtw1h+WM2CtI7wBKrlBOSJJkuh2A0YKOl0vxAkiTFVmuSXUWHsem2tJQ12VBTm3ZOmsdlwsTWEoIecqspQ6qJ+t/td6oihAxwnYV81xZPVk0JKA8aKBqau0XV8o0+YNVjpCnLLYxwvroWxpqay22NWMIY7ZP5Tj2FqX6YqV9r8SQ63UsHkzLDYdphO+2EjZYLZmJ6tYwit0fa+tmThnWcn0dbOSXZWl1EfVD4X8tqpI7KnmmG842F6YrIGJ7YdCspjf06Pr/6MwnUxyUzMaSRrwsJAQ3MXe6/OCiGunS7xhoiQoKJL4fafQdfjH/xj279/0/WDPHvgf/gdBO3riCfjJT87MqcyC2hUO1922oCYhzD0a9nqF1t4yuniexabDgeEcUxUTGLwo+iVxevuSvSCpyjKWLtN2g0117U9Fb+qnd/TQcPw02CmyRNXSKFnC5KVnaLza9hgriXLQD6MNAW214zKcF8KIe4dyaYnlR0KKSVfk1FsUxHK+qshpf+lU61JhUkZHSSamyjJNR7hTrXVOXtCGKosJbt1OnbX6kdfVdBATRWKvdLZus6+a43jfUrkXRomunRD17PpC8LE/g8zrKtVE2ghEj3SqahGEcaoHZ/shbScYmIS+eW+FW147svkvJpcTAW16evPb+1Euw223iYzu6afh0CFYW9t4nGmCcQGkjBJkQW03YGFhWx7myEqH772ynLgRRVRyGgVDFWtBLRfbD9MLopoTPaCcruL4wcm+CiIwFg3hMNWrTrwgTJzYldQ2b9Pl5/ikskVviNBbR9oMHS9IV5cWmg4rfU28gqFSNDUkRECQgANDeeq2l2ZeYscypGyprLZdKjldTIGDCGSxnbDUchnOC4lvVZYwNaEo3Ft4n9kk2xT9soiVJHNt2j7VnEY9sdPzwojpssVC004DbcP2Uz/QXrNfkgT/TtBTZExNRk+c3nvZcU5XGM6LnmDv91PJiYy6584VI0i3vaDZe7wgPKn8W8lpGwYWlqak/cENGB2Fu+4SZeZWoOvwK78Cb3kLvPKKKE2PHj15+wXM0iALarsD6xykzhVHV9qJgKNHydToumG6ntPzLej5DeR1cTG7fsRE2Uz9MWNOarIN5fU0w6p1hTxQ3faxdIUgjDctKXsCkH4Ihqowmpgjt90gmYAOOiPtG8oJ9yqEa9JoQRIloiSx0nKZT/pfvcb5aNFI/UVrXSF0GYQRriRWt46tddk3lENSxeR0smyxp5qjlbhlrSQKuz30hhoLCScvfR2hUC2JEhNoTZFY6XjCb6Fk0vWCgUzL0gTfTFfEQnxviNLLmIJIWAtGybaAH0QMF3SGCzpLTTeVYu9BkIpFX67ffLifW2ioQrm390ekV24WTU1wERNBzOHNVFp+4Rfg/e8XWdW5Qpbh6qvF18IC/OAH8OyzFzyobWlG+wd/8AdIkjTwNTExAYDv+/xv/9v/xvXXX08+n2dqaop/8k/+CXPrfCpd1+X3fu/3GBkZIZ/Pc+eddzKzbnpSq9U4ePAg5XKZcrnMwYMHqa+b/h0/fpz3ve995PN5RkZG+NjHPobnDY7inn32WW699VYsy2J6eppPfepTZ8XV2XE4z0zNDyN+eGSVtY7Qpi8nJZyqSGn5E4SCezVdsXCDiLmGgyrBUMFIdNBstIRUOlk2MVSFtb4l8SiOU6Jqxw2RhKTZBmFDVRbiheMlk4WmPdDUXp+tackOZdMJmGsI6zgnEKtDQSga9WLBPeDAcJ6CIVQ55hsOta5PyVKZrlhUczqqLMpIJfFamK3byJKUmP520j3R9Q31kqmiySLY7qla7K3mKCf9sd7rWW6LnuJIXkh6i6mluL+hymn/bb5hM1O3yenivRsrGqnDUyWnpT4QS4lsUxDGHFvtntJcRQTUvq2MpLbvGSIPF3RKiarKVMWi64YUDJWSKRRG6rbPqysddHUd92zvXpGhnU9AW4+JCfjN34T/+X+G171u+x53E2w5U7v22mv51re+lX6vKOIN6Xa7/OQnP+Ff/at/xS/+4i9Sq9X4+Mc/zp133smPf/zj9PiPf/zjfOMb3+D+++9neHiY++67jzvuuIMnn3wyfay77rqLmZkZHnroIQB+53d+h4MHD/KNb3wDgDAMee9738vo6CiPPfYYq6urfOQjHyGOYz73uc8B0Gw2ede73sWv/dqv8aMf/YiXX36Zu+++m3w+z3333XeOb9clwnlkagsNmyeOrAlTkqLJascTkjuyRBSLfc+KpZHTVYJYrE+NFPTETVyi7fjUbZ+rhvMcWe2w0NcAH87rmJqyYRjQdHz8UEFXZUaKBsSJqxOC1zZSMDb0vnroDyo9k5OypSXqr2LJfrxkEiPoE10vwAsijq52yOkK+4dzNOyAetdLuWMribS4KkuYqpJSK3r7lBMliyASmUwvG+2dS8sRSh697HFP1cL1Q8IoYiiv4wZRuvDuhRFr9S6GqjBc0CkGKsttd50/REzBFCtjmiI4ZBMlk4WmQ70rvEAlCepd77RE194GhqkpIvAqsuCRxULKqeuG6QDBCyLGS0Zamvb30xRJ2ui3OjY2ODLeTkxPn11/7jyw5aCmqmqanfWjXC7zyCOPDPzsc5/7HL/yK7/C8ePH2bdvH41Gg7/8y7/ky1/+Mu985zsB+MpXvsLevXv51re+xe23384LL7zAQw89xKFDh7jxxhsB+PznP8/NN9/MSy+9xNVXX83DDz/M888/z4kTJ5iamgLgj//4j7n77rv5wz/8Q0qlEl/96ldxHIcvfOELGIbBddddx8svv8xnP/tZ7r333vNfyL1YCAJYXj6nux5Z6fDjo2u4QcRk2Ur/qseIRvlIUSOIRHbT28uca7hMVyzCCEEn0ITX5fq3S0JkUDl984/QSMFI9xyjOBYTu2TidrqJaD89omCqSVYWo6syji+kd8aLhhhKKPLAGlPXCzm2KqSxhSSSYPEfGM7TcgJBBl7XqJ+r20JLTjp5XqosoSmCpS9LQhfuwHCeIBLKv6OJgq6bSGPvSdzli6ZGww5S5d5TYS5xiF9uuUIvLYwwVJmRgpBAt3SVlbZLyw0GlFL6sdx2mSpbuEHIctujaqnECB04SRYCBv2ZryRJqZx373tNkbj19aMbr4VC4ZTnvhuw5XD8yiuvMDU1xVVXXcUHP/hBXn311VMe22g0kCSJSqUCwJNPPonv+9x2223pMVNTU1x33XX84Ac/AODxxx+nXC6nAQ3gpptuolwuDxxz3XXXpQEN4Pbbb8d1XZ588sn0mFtvvRWjb8py++23Mzc3x9H+puU6uK5Ls9kc+LqkWF7e8uQzjmMOvbrKMzP1RFdMwtIEB2q0aAi11kQcMa+rTCZO30stl/1DOWRZopsstTt+RNMONshaS5KUruQM5/XUIaqn8qEpEgsNOzF8EXSFuYYoN0ubTEVBBEpNkZkonVS+mCybaUBrOaIJ32u4n8rRvWiqeEGU2t91veCUChVFU7hOLTScVIxyvGRSMAT519IUJsomy21hGiOc322OrHTEzmzXY6Zus9RyObHWZSQxWK7mtAGFjn5Eccx8ItnU8QL2JCVyw/ZZaDosNp00kG0W0MaLQv12ue2y2vESA2mx31nrepiqnPqrghiozNdtin00jeG8zkjB4I2Tm/S3LpDO2cXCljK1G2+8kS996Uu8/vWvZ3Fxkf/z//w/ueWWW3juuecYHh4eONZxHP75P//n3HXXXZSSxuDCwgK6rlNdN00ZHx9nIekbLSwsMDY2tuG5x8bGBo4ZHx8fuL1araLr+sAxBw4c2PA8vduuuuqqTV/jpz/9af6P/+P/OJu34+LgHEpPP5Fd7noB42ULxwtphcILtGiKftBo0Uybz7lk5aiQU4ljWGo5VHI6ZqLkMFE2UwpFD1EcY+nC9ERX5bScHCsalHNiauckqhCyPCjLo6vyBvUJVZYZzuvC/7JiEcUxJ9a6eMkgwtQUKpZGOafi+hHzfRd+D+MlI5lECiKtnyx8d1xRehYS1yZFkhgrGek+ZBhF2J6Y/PYmttPJxoOkiA2K6YrFUssljmFPNUecLLR7QZ88E0LSe6xoJEKNEZzBa3g62cddbDobyLg99LK1oqlRttR0JaqHySRjkySJyYrJWsdHUwSJVwxlxB+WfieqrifaC5tWLFdSpvae97yH3/qt3+L666/nne98Jw8++CAAX/ziFweO832fD37wg0RRxJ//+Z+f8XHjOB54czd7o7fjmF75dbrS85Of/CSNRiP9OnHixBnP/4Ki2z3zMetwdLWDH0QYqsJ83U4a2TI5XRWig1FMwrFkKhFE7MkBdX1B8rS9gK4XphfzZigl6q8nXd5l4UDkigAxVbZSuaN+9NayerA0hamKmQ4dZhKhRa+Pu+b4Iboqsdh0manbxLGgNVQsLWm4W6y0PeYbgtYwWjLTTMmPIixdxfGFUfJk2cQNIvwgSjK5MN1n1RVBkVCTnmPdFj3I2bqNqQmj457VXk/5o4dqTvTY2m5AFG+u8NEPORm2iR3TUyOOSde71gc0EH8o1jqekO72o4QiIicSRmGywzu4+6nK0oCnxACupKC2Hvl8nuuvv55XXnkl/Znv+3zgAx/gyJEjPPLII2mWBjAxMYHnedTWaYMtLS2lWdTExASLi4sbnmt5eXngmIV1E8FarYbv+6c9ZilZCl+f5fXDMAxKpdLA1yXFFnp/HTfgvz07z9PH6/hhRMP2mepZ4EkiizBUMVF0/IjpxMFcVWQWGjaSJDYO5hsOTSdIZHEi7E0Y8BIn/Ql6GCnotFyfvKGST9aN1muR9bDSFr27njfAbN1mLCmNh/MafjS42jOU1/HCk0ohURxTT9zRlxJqRy9zszQFTRYZzmzdpmLpqeFx3fY5ttZlueUiSeJxpisWo0UdVZEomhrLbTdxevLSXVPx/oaEvbFmHGOowmOgd35dT/TSejJAU2UrLUf7IUuCnhLFYnOgewpRgB4qOY2lprNhcKAnpXp/xhpEMdWczmrXw9TEZLZnON3DZNmk6fhiiLMZdnn5eV5BzXVdXnjhBSYnJ4GTAe2VV17hW9/61oaS9IYbbkDTtIGBwvz8PIcPH+aWW24B4Oabb6bRaPDDH/4wPeaJJ56g0WgMHHP48GHm+0qzhx9+GMMwuOGGG9Jjvvvd7w7QPB5++GGmpqY2lKU7GluYQs03HJFtqFLipxkSxLHwHrADypZwNlpquay2XVEyxqBIMFG20FWFybKQ6unB9jffDBgrGgMmyHLC4egNAjbrBa3HbN2m6wV0vIAwitPGe97QmK2fLC9HCgYSg45TiiSxt5pLNdR6mCiZVHI6fiR6az3Z8H75aVWRxaRTkmg7AVESoCqW3tfgj9kzZKXPKXqFcSpmqSSbE34YUzCEJl1P/htIaDF2MvUVWdxwsjdbzWk4ia3gYkMIWPaoHZuhaKo4SWY5XbHI6QoSot8mpqZe+jsxVDmRAjdYbG6eYftJBjywCtWPKylT+8QnPsF3vvMdjhw5whNPPMH73/9+ms0mH/nIRwiCgPe///38+Mc/5qtf/SphGLKwsMDCwkIaWMrlMr/927/Nfffdx6OPPspTTz3Fhz/84bScBbjmmmt497vfzT333MOhQ4c4dOgQ99xzD3fccQdXX301ALfddhtvfOMbOXjwIE899RSPPvoon/jEJ7jnnnvSzOquu+7CMAzuvvtuDh8+zAMPPMAf/dEf7a7JJ2xJxjtMzIG9hGfmBmJtKE5koBdbJwNFbwm94ficqIkg1PPt7J9ojhXNDaULgKEpqXQ3iNJeU4TxsKUpGxQfToUeQbdkasJvsm4P3FdCCE42bJ+FxkmPgqGCPkBILRhqqtPWsL30dc/VbWw/TC9kENyxMFlit3SV+YbD8bUuJ2pdpCRYxoiLX0IEyuGCnspsT5UtZMGeoGF7qe+nss48RnD+Qqp5sdq02vGYrdusdjyxX+uHjCamz00n2GB71zPD6fXtevc3VYU91VzSMpCS98RIMlYn4eCR6sathyIJBY5NNwlyOVC2STPtEmFLg4KZmRk+9KEPsbKywujoKDfddBOHDh1i//79HD16lK9//esAvPnNbx6437e//W3e/va3A/Anf/InqKrKBz7wAWzb5h3veAdf+MIXUo4awFe/+lU+9rGPpVPSO++8kz/7sz9Lb1cUhQcffJCPfvSjvPWtb8WyLO666y4+85nPpMf0KCa/+7u/y1ve8haq1Sr33nsv995775beoEuOdeTl0+GlBTGpXR+0XT9MXddlSfS0egvnC02H8aJQ7ej5QYZRnDLeNysfdUVmqeUQRSenc9MVi8WGjSzLTG0yWDgdVFnC0hUWm046Ue1hTyKw2At+IlGSki0D0Yvqldi9YYToFYXECPpFv4S28ANVKJsacw2bXEI+DqOYvKEiIVbIXD9EkYUMUNnS0vvvqebS7YWec9Teai51erc0hZKlpa9BleVN7exIzr3R9XH8kMlkCb1iaUSxmE6utF0Wmw5lS8PUlLRHt9b1aLtBuvmgKXLaP+zROGZqgqriBlFqnpzKKOkqv3zV0EBfM8Uuz9IApHhXUuwvHprNJuVymUajcfH7a1EE/+bfCCepMyAII/766bnUULdfJaK3itRDz31cU+SB/czeOlDBUFJl2j1Va0Nzer2el6YICsFs3Wb/UE5Y7GlKksWJsvJUMkQgiMCyLPpMiiQjSTEnajbjRYNW0qPqoadL1uN1gbhYNyPzjpdMVFnC65PjWa8rtm8ol5Jne47mUaKnNpTXRdaZZKHzdZuJssWJWpfRokGtI4Lt/uE8ta63occInFIdtx9DeZ21xG5QkmCh4aZGL1JyjjM1mzC5VHtqHtWcni7jr/dY6L1WEMF+umLRTjYv3ry3QvUUBta89rVw8OBpz/dS4WyvxWz3cydjbe2sAhqIpvhi02Eop6cf/h5UWewvxrFg0LedgFrHSw1ui6bKSluUbCMFAy8IKRqaIL0q8sDFATDfsNk3ZLHU8nD8kImSmTbGZVmibvtMJ5LUTVvIQa8PrP3wo5hhS0tUai1aTsBVI3lqSZm2/nXmDaHDHyQUjKmKoC7075r2ZMgVWWKl7qaGIkASPCSCMOJEzd6wOtcry3o8taYdpGobqiJRsgQHrfd8XhBtGtCADeffD1OVGeobJHhBhCRJA85VcqLg0f877f233zz6VKmJIkup3eGvv3maoVMFsx4ug0wtC2o7GVtwkKp1fSxNoWZ7+EFEXlewdAVLEw3u/ob6dMVKV2bcIEL1TpaYK22X0aLBfNMhpyn4yZK70bcfKPp2MeOJL6UbROJClCAIorTp3csccroyIMvdg+BRyTRsP11d6gXOpu2zp2oNDCPGk1KymBBje1nm+gxlvCjIsvuHchxb7QgFiySg5nUVSeK0jH9FFjuwta6PqsipkkaPWNz1QoIwSgYVXeYb9imDdtP2B/xJ+5E3hPabaO6rqIq0ITiFCXWkX8mkR8do9iludNa9nomysNiTJJkb9le5fk/5lNsfA9jlk0/IgtrOxha2GXq7jzldQUuUIDpeCAjj4umKxXLLpWCq6KrM3qrwm7QTx/XxkkEUC9u23sU5WjTSLMYNQqGyqgk/0N7OpbCdcwT3y49odF0mylYq11O2RMbXWJfJ9GRwGrbPgaR860eMWAUazuvJeo/w+VRkiYqloSZrTEqi7a8kJWwYCVb9cF6n6QSpRE+P6NszHD4dglB4CpQtjSChweQNlcWmQ8MR2wxKMu0tWxptN0ipHUAqoNnDcMHgDZMlXjOS51svLKblaG+yKigXgpRsqnK6yC9L4vejyjKTZRPHjwgiQdXZLDHrz1YXGg6vHS3wa1ePUjjFBscG7NsHb3rT2R27g5EFtZ2MLQS1vC44U34odPV7+5ptN2Q1WejuqUP0Vp6KpkacrDHZLQddUVKHdhAN8zgW2Y2a2M7Vu2LBXZMlRooiQI4WDVRZRtWh0SUNaGNFg1rXT6eDPYwWDbpuwEjRoGELwcexopEKNnaSks3xI8aLgu/Wm14GUcxiy2UqCdKbYapiYagyRxKZ755s+ekW6aEnD6QQI4J22VJxvDDVV4Nkitx00j3ZiqXxq68b5bWjef77i8u8utKmaKoU/v/23jxIsrM8833OvuSeWWtWVS/ahVpIWAJtSC0JgcBIMtfXxhIe2cTcuYZhZOwA7Fm4YWSHPcAMxjjwODzhwMbGeJi5I2DGyxVqMSBGltDSklC3NlpSb7VvuefZz3f/eL9zKrMya+td1ecXUSGp6lQuR51vf9/3Pu/z6DLeNprFrlKqS1923QUlfPf5KQBU/Lqfnw78B9IqFhoOcikFBVOFF5JIWJVF+G7Yt6DVbVqpD2fpvdpeiDsuH95c+tPgIHDHHcAll2xJF3mukhS1c5l+rqF98IMQP51rQhAAVaYuma5IEAWSJciSiIbt95zvNGwPOV1BRlfghwHXSxmwXB+iKMQNgmhrVUyp8UrA4/mdkihCkQToaSoGE6UUwEjF30/9DlD3NJXRcGRpRZIx3yAxbjGlQpX9OP2IARjOGphc5Sc2XbXiOLemQ3KIkCE2X2x2NDkqbZdEqoy6utGWUuLWQwKErpVV3aLRsOMVC+N5AwFjWGxSsQ8ZiwfzZUnEjRcN4JJh2rK9923D+NunHewsmbjxwoEuXV3ErlIK1+wsYP/RStzUAWjFJ3Pfs2glN99wIAkAw8rWczRn9Kx6IywviFehV47lNi5omQxw223A1VefPleOs0BS1M5lNhmLN1W1+OpBhReE0HggScWiVZLbxyo7omZ7SOkyZrlQM6srKJgKjnaEnIgC2f04ftB1FpUzVVTbLsYKJubrDjK6HEsJwhBxUhWjSABEHiGKLML1uldvukJWRQKAYkqLsy9FAWh3POdOfohPOjKy/cmbKmS+lY5WaQqfeRzPr2yFowBnx6dRoiDoPoAfyemotT1YXhALU0Ogp3tZTNHzvX0shwsGV9LKDVXCve+cgB+yvgUt4qaLBuLglsuGM7B8SokKw15jzZSmdGWu9ltIDaQ17CyZyBoKb/SEGOwzyRCjacC73w1cfz0FqmwzkqJ2rhIEwOLipi5tOmT9HDBgqmqjxLcvu0omllou8poMxwvQ6HM4rnTY90Qf5NUfrLm6jZQq9+iaTFVCtU2H2aW0Gq/MqhY5wJZSGnKGAhE0U9py6FxOEgRoihgXKJGvto5xl4uoAZDWZKgS6b6iEScvIGHxavKGEjcVOg/Vdw+k+KpKWHPlGCHxM6zoPRRMNd6uCoKAUS7CfVs5i5Gs3lfE3Vf7tQpREHDbpUMQBOC7L0xjvm6jmFJRSmt4c6GJkSwJnnOGioWGjbGCAQFAw/F7hMk3XTSAn9lZ6Jto1fsGJeCd7wRuuYVEttuUpKidqywvU2HbBLM1G4wx+AEFdwQhw66SGW/vPIWhlFLRcn2sqlcYyxs4stSCJAC6ImKx6XaNFEW0XB8aP/OJRJ/ReI4qrZxfFU01Ppdru20okoiBlIqsTjKIuu0hxRjm6g4KpkpnWCFD3aIzoflVerrI8mdH0YyzNC8YSJE5I6MpiIbto2p5sWC400dssemgnKcmxmrZx2o6V6GUbbByH8o5skO6+eKBUzKREo1bveeyIaR1yolg3Mm2Yfuo2368lfYCBkOV0HAoaT0S0t566RCumshv7gmvvBK4/fat5w28BUmK2rnKJpsEfhiiYXtUHAQBOZH8wUSBvNJKacoRiLponf77Y3kDx5bJ+TbLVfOUS9lfG7fccrtEnnlDhSR6CPjs5HBOg+d3Fw1JpMCUKJLNUGSokhjH53mBErtKZHSxS5oQebVNVcnKu5zTETLg6HK7a7ZUkUSkNbkjbGTlPUYeYgtNh3cl1/6LIjqrkkUBIzkdDduPha6qLOKmi05NQesk2+GUIQgCrt1VxCMvzUIQSPJieyEW6jaGsiSTmalZyBkKLhnObK6g7d4NvPe9QIf34HYnKWrnKl7/w+BOgpDhO89NQZEEridrI28qKKRU6ArZX/sBg8DnADVZxFLThRuEGM7qfI5QRDFNid7DWToDs/sIRsfyFLU2w9XpU1ULqixACyQEAUPeVHBsqR135oopFZU2OXZEXdexvAFJFHB0uQ1JFFA0VYh8tCgIGayOzl4pTYr9Gl/BFVMU5ut7YY+WywvCHklIhCKJWGzQdni8oOHo0sZWTtF0QUqVKSPVoOyBzQQCnyw5gzqeU1UrzlD1QhqkH8rokEQSB19/QWn9BxoepmJ24YXboqO5FZKidq6yQVHzgxAvHK9C5jKILHekaDjkOjFZseLtGECjNUFI25vhrA5NEuKA3abtQ+Vna1HByOgKLDeAH4Zdo0WR6eLuUgoM5IcfBOTPxoB4e6pKInK6DMsNYCjUAFhuubHjRxCyeJsajVmFjEFXJSw1qesXbSMtjxoUQSih5foYzpIbRcgo97NfOHCMABiqiJYLOB7Zmvthb4r5apoOuewqEnnEHV9ubX6rdxJEmRAZXYndONKajImigSZP/7r+guLaK8ZcjraZV165rTqaWyEpaucq65hDhiHD/7t/MnabMBQJxyu0glpsOhjN6bFldlan7V3UFQO4sLXlIuSH76M5AwAJaf2AoWAqWG65EECP3SlW7cyQ9EOGkAeWyDyJKjoTa7l+vO2NFlFZg3zB+r4nPsIVGVc2uMhVFimTNOqsAoizKxUewjKU0RCCwfVCtPnwPkArmmrbi7emAWNYqNv8/fYSzXoqEpk3tp0ACw0HAxltTceLU00IugdvG83ioqE0BtLq5ra8hgHcfDPlbcrn98f6/H735zLrhK0wgBs9BphvOLhgIIVdpRSOLLV4UO6KJXUQUpGqW158Vjac1TGY0uJcSkGgrt1UlXIwp6oWdhRNHFtuw1vjDEoQBBoWZ6RwzxkKFFnAjgJZcVteiNm6DV0WYXOfNIlnaEbxdNFKLMpCcPwAbZdcMdKaHOdjDma0vh5ZXsh6goaLKRW7SylAQNy8iFZcC1wLt9xyMZim1V6kWfOCMI6CWGySANhUKZR4tmYjd4aKWlZX8H9eM775X5Bl4LrrSKJh9C/W5xtJUTtXWaeoSaKAXaUUDkzVsKNo8o4eedhndTleTbUc6gqaCvfLB8kwJFHo8iJz/XBlsL1hQ5NpKzrEFf+yKCJvKvHA9XzDhiBQh3CuTkPotk9OtWQpRq4Wu0omvIBWYCTFsOLheEkUEEb5A7KIthvE4mBJXCnMi00HKVXuMq5cj2hiQhEF7CgaYExAzfJQSKnIM9KPDaRV2D7lXq6eAc1x+QhjFLo8XjCw3PJQt/14HOucQBCAq64i8Wwud7ZfzTnF+bnpfiuwgfBW4Joqxw8hAghCMk+MzsQ6nWkH0hrPyaQOWrVNXUyV2/dELriqJMILGR/6pnQpXaFzrKWWiwV+1pXRFbAQAGPIc++whYbND7YpbSnSeymSCIPPNGoyxcrJ3A22k860p9VarKGstmag71p4IcOxZQvHK22UUkrc/Ki2yRQzSoVfTc3yYt2e5QYIQ9CEhSCs6Yt2xrn4YuDjHwc+9KGkoPUhWamdizgOYK0tFGWMYZFLFFSJ/MKmazZGsjo0HhsXzRWKgoCWG2CUu6SGjCQLlBCuw3LJTLFTquEGYXyIr8kSRnNSLIidqdvYUTSx0HS4BXeAkI8f6byLCZC63vUZAka2PANpLQ53MRQDth9gueVCFMh2PHKcSGtyl/tE1FhYHdG3GRRRwGjewGHe8RziZ2NrdUpX4wYhOWcAWGo5a8bsnTHKZeporpGElkAkRe1cZAONGkWxMQxyY8aRLAWWSKKAKp+ZXDEPJHeHaDuX4jZAQxnyTdMVEZKAOEIuCuLVZBGllIaZmgUGOpcqpVWIPAS3c5VTt30UTA0BCyEJtDUWBKDBU8gtjwrf8SUaoRKFKGPAoEKLFRePzrM2emwvDkNe7lOMosIV5Xw2HQ8LTReqJGIoq8WOtQCw0HAw0c/CegOGszoMRdrUtMBpoVAA3vMe4Iorzjt5xomQbD/PRTYoaqIg4D2XD8H2AuQNBZoiQVforCya3bS8ABMFcqHt/BgUUyp1EnkAbxAyFFL04Q9CFl9bSmmY5gUNIFmF55O3Vz9vtKkqJaM7QYhjyy3M1Gwosoim43c9vygKaDg+Zus2lloebJ90Z7sHU3FOpSgIXWM/IWN9P8vjBQMZnUTD0Tmhocq4YCAFXZF6xqIYqCZsaqSI3+eW40MUgGPLbSxuIAM55Zgm8IEPAA88AOzZkxS0TZKs1M5FqtUNL3n+WBU1y8NgWgX4lnKq0sZARoehyjAUCbO1FftpgCx4FppuV96jxLeiKk9XigJ+V39+BjMa5hrUjfT83vMtWRIRcucOVRZRNNUuy+/ofE4E4tVkVpf567ZjPRwAfsCP2DeslKI8zSjFnJLbKdSkxkNh6raP4axODQwv6BsWU+RzpzuKJlyfBLuRQSMZKtLgvRpZOPF/VyQBlwyn0XMQeLpQFOCGG4CbbqLh84QtkRS1c5ENBtnfWGjimSPLMPgKzQ/JAmMkZ8D2fKiyBAh06B+EDKZK10Wq/vkGha0wvu1jIDHvaE6P3TlWj0hKggBTlZDRZRxepBWLKCAevcoZCtpugF0lE25AerCoQAKAItHqa6ZuQxIFDKepaVFpe7Htz3SVVobLbTeOeQOAN7k0Y6JgQlNE6LLER6xIKjKS11G1PEiiAMfr9RsTAewcSKHa9vDmYiu2KI8S3duuT7OzIYMqSbBccvENAgbbC+AGIUZyBn746gJ+8drx05dGJorAO94B3HrrtnCgPVskRe1cZJ2ixhjDUtPBcEaDpkhwAwYB5JlmuQEkUYLthfEW0Q3C2CQRADeQpBGp8YIJVRbheCEWmk7XXOhqe2gKa1G7Zi5HeQJ7GkBakzBXd1CzPTh+iFJKRd5U0HKCOJHJD1ncjJjhSU6KRONILdfvKkZtl/zdZjp0aG4QIK0psdzE9oJYe9dyfLQcmowYzGhdoSQqz9ds83vgBiEO87SrsbwR2y4R0SqSHG2HMhpSAEQwvH0id/oK2mWXkVHjwMDpefzziKSonYusU9T8kPRohirj2FILIx0ZlIokoG77aDt+nOtZt7w4rQigg/WW6/PzK8AN6PeGMhT3FsXFRSElEQFjkAQBsx22PwK43ow7hPhhGFsHyaKI2ZqDtuvjgoEU/JDB8QJoshQHi0STC5YX8O0vBcGkNZKJNGwvfh8A6elqgUuTB4IAVZZQMNWuWdBBrq1L63Kc5OR4ARXgWm9Hea3QZUOVULc9zHIdnijSlvqUMzFBHc0dO079Y5+nJEXtXCMI1j1TUyQRl45kcHixhYkSmTOWUiqOLbeRM+TY4meBa6rcgJT9kdzDC8jFdaJAiUrT1XYsriWHC4aRvN5lwS0AqLRcTBSMeDUli0I8ElXO62i5ATI6+f9H0w0ABefWLA91x4ciijBUCTlDRlqVMFt3UEipcOuUcSCKlJg+3af4AIgHvaNIu+h7nddH2QKLTTcungp3lO2HvUr/Jgp8JlYRsbuUguPTarBoqnhxqoY7smsnqW+JgQFamV16adIAOMUkRe1co15fO++M03YDXDaSgeuHCMMaJFHAUFaDIooA6BxIFFbOxUSBjB475QxRXB5Aot3Zuo2MJsNQJT4utfLhZSBxbMslacZoTofLJwg0WYIAajboioSBtIaG7WEsT7bTTcdHWpex2HLhIgS4KmMelB86U7Xi1VVnctRqJJG81aL5UGAlBq/pUNEyeAe4ZnkQBcRbUDcIkdbluNB3kjUUqLIITZYgSwLCkPzMIteTCEUSMF210HL8k5N2pNM0BfCOd5y3A+enm6SonWtsovOZ1mSkB9OY4r5prs+w3HRRSmsIwhAFk86dIr3XII+yi+yFBtMqQsYwvWwjqyuY5cLahuPHuZByx/ZzvEBdyTBkGExrYAxYbnsYTFO4S6Sbc/yQW/ZQgAtjZL+9loRCkQXINFe1bj4mQONLmiwiqwlwAkpeiiYPUpoEQ1Ehi5FjiRJXPlHQoHN782iiISJKNVckEdNVq8vae1TpXpFN1yhs5enDS7jtsuF1X2tfNI26mddfD6inYRubEJMUtXONTYatAMBYwYQ5XUednyHN1EjcKkkChnM65usO/JDB9cmyxg8ZQsYgiTTIHTLWI31QRAEFU8VSw8EY140tNlyM5DQ0bL/LmXa+YWNn0YznJIMgRJYLghVRwEBagyisdC8BWp2pvMi4XoCxvAHHD7uaFP3I6jJabgABXEvHEJs4GrwDbHnUybW8AFXLQ56vwgAqmnlTpfM+ScRYjuQfNcsnOUmBcj4b/H44q7R4HrdTOjTfxM0XD3YV/XURxRUL7VRq4+sTTpqkqJ1rzM5u6XKZH9RrPLRkqmohZBQ44vOVlalJqFkeJooGji+3Uc6Tk4YsUuya5YWx9IJhZRphQBBwdKmNHUUTthug2vZiB42G46NueZAlAVMVC0MZHfMNGyJ3q11quWi6PvyQPvzFlIqcriAEw2LH3OXuUgrKBkPikYfbQnNlomAooyFvKpirk3YupcpYbrtIqRIcn95P9D5GczpkSUAQsDhAebpmdYmIm7aP0bwBSSQdXcvpXjnuLJpoOB4Y4wHQmylqe/aQt1mxuPG1CaeMpKida8zMbOnyrKHgwFQNAEksmo6HjCbD9gNus+NAFAGHx+alNZm2jy0XfsgwZKgIQgeCIMaeYeWcAVUW4s6gIABOwJDSaG4yGmnK6gocP0TepMDhMrc6YgB2FWkcaqpmQ5EEOF6Awx3zm1Gk3ZGlVry97UeKz1suNN14frXF51UdP8RgRqdGRttFRpO7GgQRqiTieMXiXVgS2a6eimAgndxIVocirchZREHASJYaJ3Xbj4031z1X27WLOppjY+v8n0s4XSRF7VwiDIG5uS39ii6vDFl7QYCCqeJ4xQJjDOW8hJxB5ze6IsEPQmQNBbIoxrq1zs5h1Aks5w3M1BwMZzXs4s2Ffg4VmiJismJBlQTuXqtDEBl1XxsOWvzxqPMqocCzQCXeOfWCEBMFA8f7pDyZfNZUEsWu+U3XD9FyaNtJ41SIV42R9behSCikVDRtn4b9+erV9X3YPhljdspcOpmt2yQg9mmr3naD+B6N5Q3IEjVFdpbW2EqqKnD//ZTclHBWSIrauUS1uqaNtx+EeHGyFhcX26cznihc1w/COEk82kpW2y4sN8BE0QSDCFEQ4i3kWsiisBILB+DIchsXDqa6pgMi0poEWdQh8UaAH4aotFz4rFsqETUiMtyBNhpLKpha345kFBiz1HSRNSgF3vYCzNRsHrFHq7S8QZmYeYOsxz0uNA4YFaSMTsnyUS7BsYqNHQUTWZ2aC2s5f4iCAMvz4kDliKgrvNhcx+XDdYE33qC084SzQlLUziXWMYZ8eaaOpw4v9Rxgq5JIUooMjfw0XR87S2Zs6Nh2aZyo2qbVSVZX4o5jP7IGCWJHsjpqth9bfK8uaBlNhhdQ1J0miySNkMjpY3aNwe/I4kgAMFlpY77Rv+M5mNFindvq/IGllotdpRSqbReyJKJp+xAFxv3iDAgCYDk0+5nmoS8R5ZyBqu1BFoU1A1hGcjocP4Tj95fVzNTsnhGyHg4eTIraWSQRypxLrFPU5uo2FEnsWWW5AbnWRt3HquVhseHGMgWAPog5buaoKSI51PY5nC/nDdQtj4a4ZQEiSD4y16dIlbghpalKsDxywD1esaApa2+7KK2dkTPtOtszhhW3kKGMhtGcgYE0/bNgKggY5WBOVtpQJAFTVQuaJNIsqiTEHd0gZHG3Nq3JgLDi15YzlHiFGZHnwcuCIKBgrr2avXw0u+bPAACvvrqpNLCE00NS1M4l1hiPqrZdvD7fRNPx0XIDDK9StbdcEovOcQ9+VRZ6lPKOH8a22k2LO1p0/HyQR9INZXVkNRkLDReaIqHlBD2hI9HvTVWtniK70SKGgVaDdh+nD4CEwpYbYrxocgGvj7ZLuZuLTQeSKMLzabZVEoQ4hIWCmmlcK9LFWR6dMY7lDeQNJTbXLJp0rtipSyulKa6vxkOE5XU6spGbyJq4LnDo0AZ3IuF0kRS1c4k1Vmo1y4u3nX4QxrkAaU1GOaeDMZoJ9bkrh67IXXoygLqDQchQa3uYbzoIeZcyotp2ocoi5us23IDmPFuOj5br8y7jigVOlCQ1nNVj0exIVsdEwcRSnzMyUQAmijQ8P1mx1ixoADntLrccHF9uk1+cqaBmeZiuWhAEWhkGIcNSiyyUou2pxqcCAFpxThTM+H0zBgSM7LldP4QoCmBgyBk0UjaS1dG0fSy3KGowbyiorDPd8PcvTuP48gb5oS+9tP7PE04bSVE7V2BszaL22myDYuj4WI2uSLC9AKU0+aMNZigZKasrPLSEtp1ZXcFoTo+dJebqNhpcH7Za5e+FZEM0nNVRtz0UUpQJClBRXWg4KJgqJgomCqaKpkNbzkqbists3aa5zFVLtbyhYLxg4vhyGyNZDYYiwXLXFtoOZbV4rlNTpK6lny6LqFseFngYS+dS0/VDVNsuQkYW420vgCQI8XhVEIbxGFat7cEPKYB5vEDW4tFfGjM1Gw2buqlrUbM8PPTcJJ4+vNxz1hjz05/Sii3hjJM0Cs4VqtU1PwS3XjqE910xAi8Isdh0oEoiSmkNP/rpAhYaDpaabuxoK4lCLN9oOj5sL4jNGCObniw/X1uNIolY5iugyYqFtCZ3DYNX2m6Xv38ppcFQRVRaNJqk8hzSUkqFIgmotD2EWBHzTlZsjOR0WK4PxqRYVpLRaRBfALDYoGsNRYrPBCMMVcZcncaV3CDs6l6OFSjsN7ItT2syRvj86nLL7Vq5qjI1GBqWhwmeDdrJ6umGaLs5ter1PPHGIjK63P+MzfOA116jUOGEM0qyUjtXmJpa80fRqI8iiRjNGSilaSs4kNawZywHN6DMzIbj4xjftkUjUW5AuZydCnizT8EAEHuU5Q0l3r6t5W4BUBhJlARfSqk8XHnFpNHxKXSlyc+9QkZ+ailNRs5Q4vM4z6fGQM324u1kKa1iR9GkA34gHlanxyEDx+GsjnLewGCG5lEdL0CZF6Cm48MPGWyPpC7lvMGNIXWkNRkBo+33Bt4BAKjITVWt+LE7WTfp/eDBjR884ZSTFLVzhWPHtvwrbytnce3OIiYKBgxVRlpde+Et845nlAGQ7qOIbzo+RnM6CWNDWumJgoDMOkG+AoDjlTYOL7UgiqQxIzeLID5n21ky49ewiw+4KzLZHAGA7QcIGIsP/QVBwFKTzgCbjo+RnA5NFsG4Jg8g1465uo2FhhMPpg9lNPhBGDvmCqCztk7DSz8IuzzU1vJT6yQanJ/uU9gOTtXiedEeXn8dsPsn0iecPpKidq5w/PiWf2W+buN//mQaby624G4wFD5ToxGgrK6gsYZ9jh8wVNoefdAZOWOQR//KH5OhjEZZn6BzufGiGeu2WAjoqoTBtIa2F6BquRAEKhw7iiaNUYHcbGerVrwqG8ro8bYxeo5SWsUcd6QlK3EZjh/GRpJeSBZI0QiT44dYbpPJpeuHsT9bzfbgckHyVNXCEo/li9jMCOdSy40bJdM8xT6ikFLx7JFK/18MApJ3JJxRkjO1cwHP2/J41P6jy3j89SUIYCiYaly0VEnsW9yivE9ZEpHSxL5jTy3XJ5dXHoM3W7chiwIqLT4+lTO6xqoYY5AE4IKBFNquH4thVVmkvEyGeMSpmFJJoc+o6xgd2ktCb2FR+Ioyyi6o2x4NrLdc5A0FiiSilFJRabmwvQCjebIVL6UUNJ0ApkbXOvzMzlCkrkImCNREqdsewvXNQWLaThD7yM037HjMyvYCvDxTxxVjWQxl+hhIHjwIXH315p4k4ZSQrNTOBSwLm/50cY4vW7HRIwO5SOhrZFOKAh12zzUc2D51LS0vgCZ3/+/fVUqh0nbh+GHcJS2m1PiMrF9zgZLLXfghnS8tNB1MVS3M1GyIggBDIWFwywkgCcCOoklbYf5gYwWza5UG0AiYzdOjBEFAMaXGZ3tVy4PjB2jaHjRZxHBOh+UFkCUB01UKdbHcACX+uiMroqZDw+jDWR3TNRt120MppcbnlRsRSVtEbnceZczXLA9eEOLF47X+v/jmm0B7A/lHwiklKWrnAs7W8ySjlUcxpeKKchYjOR3Hlttx12+8YJDsATQ+NFW1YHsB0qqMPPfa7zxX21E0YXsBLDeAKtMqayxvdK36VncJIwxVgioJsDy/a0U0XbOQ1VVMFAyMZDWM5SmtSlclMDDostjzmFldgcxtvU1VQpmvjvSOSYWZmg3LC6EpEkSBGigLDQeDGY1WltztNpLADGY0mCrNxzpeEMswIh1efp1Z2E78kMWNgdWmta/O1uOGSBdhCLzyyqYeP+HUkGw/zwVOoKjdetkgbsMgTJVkHMeX2zgwVYfHMwnG8gYGMipyvtK1Egr5sLciUnAJQGdYQcggchfbyYqF4azeI2HI6HLPLGYQklB3pmZhhGviFptObO0z1+DJ8BqZOe4spbDcoskHSRR7VmkZXYbA/zlbt+OD/KgAF0y1a56T8U6oIol8LpPFEoysIUMWRdQsFylN7rILH8pokDtGyTZDnQdDi4LQ0/X0Q9Y1odDFwYPANdds+nkSTo5kpXYusEVjSIBWNBkuto0opsg0EaDiVWt7mK5Z0GQx/qCHjDzKBjIaAAZDkSB3aNGKKRXDGR0tx++JgxMEAWN5AyMdY1qCsBI6LArk8JHWZIzmjK4GQ8vxsdh0MFuzMJBSY+fd1Vvg+YaDthcgCBny3DYpZygwVToXq7RJc8ZAhcQNGESRtqgivxeRUWbbDWB7ARhDvNLLmyomijRUv5WCFsGANYtXv44yAODIEaDZ3PJzJZwYSVE7FzgBOcdqos9Z9HGbqdmoWh6da/EwlbG8AcYYJvmZV2SHbbk+RO5xZqoSBZVoco9avtp2wYCuuUgBAnSVtoFxgpVPwthiSu0pjMMZDYstWvH4AYOhiCjnjHirOJTRUG17mG84sLwA5ZwBRSTroYE0FTkvCLHYoFEvAYDl+pitWRjOaHFHVBQEDGc1GLyAz9YoeMZUJAR8TvZUs+aEAWPAyy+f8udL6E9S1M4FTkDO0cl01cKh+To8bpdTTKlxGlTIGCWOg1YwOh892lky0XQocyBnqNAkEcNZHUFINtiRB1qEJotIaSTatbwQ4wUT4wUTAbcF31E0oUpiHJzs8IZElF8wmNawq2RiruGgYVNREwRgsemCgWEgrcJQ6KxNkWhFWEwptNJURPg8i3RnycREwYCpSqhYHgJGjrwho/cXFVFFEuFyW+/5uh1vuXVFxHTt9GjHnjq8hOnqGo+dCHHPGMmZ2tmm2QQqa+icVlGzPKT4SooxKlivzTaw/2gFIzkdLZcSxQ2FbHlIFsGgyGQQ2ebnYaosxoUumiNtOn6cGxAlpisS/V7WkFFpubE54lLLAXiWyljegOuH8WMoEtlfV9oe2q4PQxGRN2naYKZmrwzmc2FtwFh8rlYwVdQt6jIy0FlZwVQhCoiFuse4D9pYwUCB551GCViGIiEMaTu61HIhCUCaj46N5Q00uJh4NGfE87GnmoPTNYz1syc/dgyo1YBc7rQ8b8IKSVE720xObuqyIGT4hxdnMM8P3g2FZicNRULOUOAHIUppFa7P4IUMASMN2EBai8+tiikVfhgiZOQzpskSNJnmPUtpFU3HhyQKSOsyiikVtkeD4TXLi4fMVyNLQhzqktZoNtP2QwAMo1kdbhD2NAMAOjsbyelx3gFADhxTVSqcTZuKLDnlSlRgRSHeXk9yC/CJgoma5WEgrUKTpXgUKzpDbDkBPG6YaSgSpioUhZczFKQ0mca4nD5dS05Wl1FIqWuaSq7m1Zk6brywhIzep6P60kvAjTdu6nESTpxk+3m22WRRk0QBV5RXBqejYfChrMb1YwJqbQ8zNSs+AA9C8g+brdtYbDqYrlpwvDBeLQ2kVdQsLy48xZSKUkqFxUOL67YPTRZ7Qko6YYzkINF2UlMk2G5Ah/wC4iH61VhegMWmg90DqfisrDMwpW57CBnDcFbDdJXcewO+Whsv0BxnRpfhBiHqthd3cqMCGjJ6DlOVMJo3YiddgaddRQPzIaOM05FVHnXlvI5dpRRNEnAzzM3AALwy0+j/w2QLekZIVmpnm00WNQBd3USAzsUcL4TMNWKrE86j1QpjLD5HkjqsvFdbg3e6XrRcH5osxXOVa2F7ATRZwhyXX2R0OY7Qq61j3wNQbmfD9jGc0TGeNxAwEgAHYYiFpgvPDwHQ6swNQlieTzmjAI5VaOUkgDqf7VWjXzM1i2ZcC3I81RD5zkWFdjir02rUJRlMOW9gtmZDlQX4AUPDdqFKJLMdyepd+aXrcWSphXft7hOLNz1Nua5JZN5pJSlqZxPGthSJ13lWM1EwwBhNC0SzkTmDoe348PhWMRoDijIJdEWKz9JErieLGMnqXc2BoYyGmZoNQ1m/qNUsD6UU5Ye2HB9ZQ+lKf9oMkZYtomCqNJwehqu2pzKOLrdjiYrlcdNHQcSy5caSjghywg2xu5TCYsvp6UxG8peBtBZvWwfTGlKaHK/sCqaKhu2h5QaYKJgI+QzpeszWbDh+EJtWdvHSS8DNN2/63iRsnWT7eTapVLYkvH3hWDX+96kKbcnaXgBBoNVYwVAwmNFhqhJ5jvkhbD+IC0NGl+Pzo6g7GtGpvFC5IeWOormuQ0c5Z6DEZRuqLGKiaG65oPWj0nZxbLmNIAQKKQU7iyZ2FM3Yq83xyQqo0nJ5YRcwlNH4ym4FSRQAgZoGLSeA5Qcopsjeu9OSe7HpYLnlYpy7CUcFLXotmkznlscrbbT72KmvJmQMh+bW0KUlW9DTTrJSO5tsQXRbbbt4bW7lrGaiaPIDb5UCiwU6UJdEAcNZHceX2z2H+17AMF4wY8eKCE0WsdhwMJKliYCZGolXg4BBW2elxrDSuewcqRL4a2mtcwC/GeZWyUrypgJTIWEv48JdP1x75aTJIhq2h4btw1Ak6LKEuu1juWXBUCSM5Y2u35UlEccqlGBvuwGWublli+v4otDkHQUT+Y6h/H4mAj98bR67BkyktVUNg7k5cjgeHDype5OwNklRO5tsQZ82VbXQdn2Uue2NKAgQBMrazOqUsCQIAkRRwCLvbIYeOUtE40PVtgtT7TaIzOoKJaj7Ybz9jDzDZus2dEVa0/nD9cm7rNKmQ33GwBPOaVpAlcQup9yTpdr2UEX3OZ0sCthVSuHYchthx/ZyJKdjlhfcoYwGjxs9RlhegKmqRXOfgoCCIWO+QeeC01ULqkwrVcenTIiCqSClSpit27B8Srs3gxBtl4bpNUXmAmKGrK7ACxn+5wvTuOHCAewqmd0i5JdeAm699ZTdl4RukqJ2NnnjjU1dFoYMzx6pYKJgwg9DKBIlIXlBCEkUMFm1kFIp9NcLQpiqRIJX/mEeyeqYrtEHdbFDSW8oEvwwRN0OMJimYfAqDzkZLxhQJEqlWivN3PbIcXcoo6Fh+yimVFheiOOVNmRRxFhBP6VFrR9+yHBkqYWJAlkm2V6IkI9/7eSGlAzo2lJGjGR1SKIALwgx33TRcle6r+WcgeOVNlRJ5IEyLlouRetFc587iiRgVmUxnujwghBHO7bg/+OFKVyzs4CbL+5YmR08COzd29/2JOGkSc7Uzhb1OjA/v6lLA0Yq+yAkt4r5hhMnslfbpM43VFoVGTzWLgyp6FXaZNS4s2jGh+CRZ1pGV+I0qIUmbWFLKTJDnKxYyJs0mbBWCIkXhFBlCdM1svyp2z5CFmIsb2C8oGNmLXX9CSCAzgF3FE1MFGmaYSijYSCtUdHhRZeBErWWWy6tbj0fR5daPZINgFai03zKonOrPJjR4m6u5QWwvID0e5rc1biIXHcblg+Pp3z1K/6vzDS6mxSLi1v2z0vYPMlK7Wzx+uubvvRHP12A7YWQeajKYFqNHWVFQYhTzwEaHE/pMpyAAUGAArfVma5aGMhocUJUSpN6FgrLbQpQGcxoWGg4qFse8qa6pvCWsZXQ4brtYSRnQJdFzDecdQWtWyVvKtAkqa+IN4JWnawnGlBXJDCQ2Hf3QAp1y+vSzu0qpTDTcXYniwIUSYx1gAA1EmRRwFBW73pflhdgIK2h5fpYQ44HAGi7PhabblfMIH78Y+BDH9r4zSdsmWSldrbYhMeWH4R47LV5zNVt5A0FOVPhKwjAD4DFhoMgDOAHIbyQIacrELmddchIM+YE5P2fNVTM1GgW0+rQlq0mSjcfy1Mqer9rIvIpNbYiChlp1uq2f8oKmsbPtRqW3yP7WI3lBZipWijxkakIxsDT3XUsNh04fogdvJu6o2iiarldwc/lvNH3PfshwyIPi44CYwo8k3QzvDhZ7f7GCy8k2aCniWSldjawbXJE3YD5hoMXJ2sIGEM5b+DYYhu7SikwxuD4IUr8HAwCfehajo+0LkOVRJqrDEmnVUqpOLzUQlanD+EQT19qq1K8/exE47OigiCgnDNI78WnEzoxlG4dVqXl9k1cOhEG0hoYY1uSiIRAzzlVyw16Apabjo8LBlNYbLhxEQf4GNmqYJZO3I5mQzlvQJPF9dOkOuhapUX83d8B5TJQKGzqMRI2R7JSOxu89hqFcqxD0/bxdz+Zjr27ojMZ2wtg+0Es3wgYg+MFcP0ABVPlo1I2Mjyzs9N2KG8qKJik8/JDhpEs2fREI0AC6OzNDxnAGCYrbQSMYbZuo255yKzyCwtXffgZEJ89nSiKJGK8YGCx6aw5YrX27wqwVxVpy/VhrkrZKqVUNG2/q6CJAuUibCJcCgAV/mmejbqagbSGcp7slARBwIWDaVw51meQ3baBhx7a8M9CwtbYUlF78MEHIfC/waOvkZGR+OeMMTz44IMol8swDAO33norXlq1xHYcB7/+67+OgYEBpFIp3HPPPZhcNSpUqVRw//33I5fLIZfL4f7770e1Wu265tixY7j77ruRSqUwMDCAT37yk3BXhQEfOHAAe/fuhWEYGBsbw+/93u+tnah9JnnhhQ0veebIMrwgxFCGwlSi+DhRFLibKzUI6pYH2wux0HAQ8K1l5EDr+AEWmi40hYJQJisWAm7hI4kC3lxsYbZOBXA8b2A0T91KEYAb0IH7XN2mwJEgRMBdZaPRqVafVR6ATfv+92M4q8fD6ifyu9F2OG8o0GQRqiQi1yEgFkBmjqvP3sbyBpZavZZLAK1Is7oSN1hKKRXVtguHd59Xs9h0uEMudViv213s8ZWLmZwEfvCDE3q/Cf3Z8p++K664AjMzM/HXgQMH4p/9h//wH/DlL38Zf/Inf4JnnnkGIyMjeO9734tGY0U0+pu/+Zv4zne+g29961t4/PHH0Ww2cddddyHo+NvqIx/5CF544QU8/PDDePjhh/HCCy/g/vvvj38eBAE++MEPotVq4fHHH8e3vvUtPPTQQ/j0pz8dX1Ov1/He974X5XIZzzzzDL761a/iS1/6Er785S9v+SadUioV4PDhdS+xvSCeqVxqOZBEIT6nUiURjh8iZyhwgxCGKkFTRAzwgOOdRRPHuWZrpmZjOKOhYKqYq9nxzizs2NbJogCDx8/VLR912491bRGuT7KQthvEgSoTBbMn73I4Q64bq7elEYokrjkYLon0mJOVE59I6MxHMDV6T1XL6yqyE0WzR6w7lNEwVbUwlNGhKxKGs3rX7+QMSp6aqlowVQl5U0Hdov8fnQ2FTqaqFnIGNV2GNphAwD/906blPQkbs+V9gizLXauzCMYYvvKVr+Czn/0sfv7nfx4A8Fd/9VcYHh7G3/7t3+JjH/sYarUavva1r+Eb3/gG7rjjDgDA3/zN32BiYgKPPvoo7rzzTrzyyit4+OGH8eMf/xjXXXcdAODP//zPccMNN+C1117DpZdeikceeQQvv/wyjh8/jnK5DAD4wz/8Q3z0ox/FH/zBHyCbzeKb3/wmbNvG17/+dWiahj179uCnP/0pvvzlL+NTn/rU2n9znm6ef77nW/uPLkOXpdjmp+34aPBQEF0RkTUUGtrm7hkCVlwoMpqMattD06UzNJJTGHHR8oIQIaMg40JK5b5qKx/EsbyB6aoFNwhj40gGGm7PGXQG1zkAHnLTRzcIerqiiizCUKkYCFhx4c3qCiSRxLOSKMXxdPHvSSIG0iqOn1RBW0mTFwDUOgJdotehyWKcXt/5/qMiN1OjtHnXD6GIIko5Dcstp6uRYHsBgnDF0rthk7vwCB87c7wAxbSGSsvFRUNpXFHehH8aY8B3vgN8/ONAOn3C9yCB2PJK7dChQyiXy9i9ezfuvfdevMkPvA8fPozZ2Vm8733vi6/VNA179+7FE088AQDYv38/PM/ruqZcLmPPnj3xNU8++SRyuVxc0ADg+uuvRy6X67pmz549cUEDgDvvvBOO42D//v3xNXv37oWmaV3XTE9P48iRI1t926cGxwGeeabrW4wx7D9awTNHK3j2yDJenq7D8cNYJGt7pH+aqlpw/QCiQCEmPreynq3b0FUpPtyeqlpgjOx58oYCUSCb7pYbQBAE1G0vTnAqpdQ47BcgI8bxvIEdXAdmdKyq4jOnEKi0PahS74prstLGkaU2pqs2xgs0N6ryrW6lTTkGthf0zJNGUw8nw0TBjLeUgxmtKyAmsk4ayepd205VErvO7WSRJiEqbReSKCBkDANpDXXbhyyK3CJch8D/HxRTKoYyOgbS1GBgjOFdu0v44JWj+GfX78R1F5SQXmd2totmE/jud1d82RNOmC0Vteuuuw5//dd/je9973v48z//c8zOzuLGG2/E0tISZvkc4/DwcNfvDA8Pxz+bnZ2FqqoorOr2rL5maGio57mHhoa6rln9PIVCAaqqrntN9N+z68xcOo6Der3e9XXKePZZyvjsYLZuo2DSGY3rh3xe0cc7dxcxwS2yI7KGAs9nmG/YEIE453O1BCFaeURq+ZQmYzirY7HhIKsr8dbSUKW4wMmiEEsyogAVWRRiiUQ5R9vPpZaDgkmjVWvhBjRVkDMUlNJqV6ZB9FxDGQ0izwE92SH4sbwBL6ACNF4w4vNHgM73TFXCeMHoOk8VQMWvcxU2kF6ZnKjbXlzYdEWEH9L5WRTmktFliIIQ5ynMNxy+NT+JN/L668CTT57EAyQAW9x+fuADH4j//corr8QNN9yACy+8EH/1V3+F66+/HgB6tnWMzySux+pr+l1/Kq6J/lCv93o+//nP43d/93fXfb0nhOcBTz3V820/YPFWLArevf2yIVw8nAFA519LTTceN5qp2jBUmioopBTo6B3MBoDpKh3wMwbo/O1mDQXzdRuDaQ3glkXRXGdnJF5al1HOG/EHe5zbHFXaLkRBgCgIa8oeVr+G6LA8sggHgKPLbUgCCV8Pb9KjrB+qJGA4Z8DxAlTaHkxVguNRI0Diej2B+7EFIYMkiRgvmLDcAJbnd63STHUlQi9nKNyVw4rdTuj5RDh+gKwuY6pqwQ9Zl70Q/YVxwm+HePRRYOdOYGzsJB/o/OWkJB2pVApXXnklDh06FJ+zrV4Fzc/PxyukkZERuK6LyipP/tXXzPUZIVlYWOi6ZvXzVCoVeJ637jXzfCxp9Qquk3/7b/8tarVa/HX8ZEJRGKNixhjw2GM0GtWBF4R4dbbRtbIYyxu4aGjlXEUUaIbzkuEMLhnOYO+lg7hzzwjeVs7GI1KCwFdtqhwHGEe+X9M1C03HR8gYbC+AFzIsNB0sNBzM1G0eCCzA5wlSBZO2UpH+qu1QxFzD9jCa0zGa01Ftr23v3UnBVGCqVABUmXICRnM6CqYSe5j11W9tksGMBj8IMd9w4AW0ypW45bckCvBDmk0Fo7/QFpoOJittLLUctF06jxzNUYhLzlAQhgyjOT3ORs0ZtAouplQMpDUUUmpsHhC97qyxsi5oOv6G/nMbEobAf//vJ5QFm0Cc1P8Bx3HwyiuvYHR0FLt378bIyAj27dsX/9x1XTz22GO4kfuyX3PNNVAUpeuamZkZHDx4ML7mhhtuQK1Ww9NPPx1f89RTT6FWq3Vdc/DgQcx0GCw+8sgj0DQN1/DQ2BtuuAE/+tGPumQejzzyCMrlMnbt2rXme9I0Ddlstutry8zPA9/+NvCHfwj8wR8AX/wiwM8DO5FFAe/cVcD794zgqvE8ynkDey8Z3HBlq0girr+ghFsuHoSuSBD5Y43kdMiS0ONWm1JlzNW7R5cKphobIOZNBXMNBw7fVi02XXKhUKTYeijqik5xa+3NFDVNliBLVGQqbeoeztRsVNoeNEWEFzAsNt3+fv6rEAU6NxvO6PEMqK5ICNmKCFiVJVheiOUWTQ4okojRnIEQJGPRZMo6EHj4CgXSUNOlYdOZ31zdwWBagxcweH4Yi2wbtofJSjuWfMzWqeh0im9DxtA4FdMUlQrw93+fnK+dIALbgnDrM5/5DO6++27s2LED8/Pz+P3f/3089thjOHDgAHbu3IkvfvGL+PznP4+//Mu/xMUXX4x//+//PX74wx/itddeQyZD26l/+S//Jf7+7/8eX//611EsFvGZz3wGS0tL2L9/PyR++PyBD3wA09PT+M//+T8DAH7t134NO3fuxN/93d8BIEnH1VdfjeHhYfzH//gfsby8jI9+9KP40Ic+hK9+9asAgFqthksvvRS33347/t2/+3c4dOgQPvrRj+J3fud3uqQfG1Gv15HL5VCr1TYucGFI7fkf/vCMCSrfXGhi/7EKHI+U8FlDQdvx4fgBGASkeCZnZOdt8imCyCTR9UOosti1fc3oChq2h8EMhbYsN120vSDeQsqigJyhbCiOFQUBA2m1bxL6UEbHUtPhHVn06MY6USURQ1mtR78WvZ4obT0MWY/OTJFEDGe02JqJOscrPnCmKkMUaJU1mKEJjYa94sbhBiF2l0wc7ghe2T2w9rb52p0FvPviU+SV9nM/B7zjHafmsbYBm/0sbulMbXJyEvfddx8WFxcxODiI66+/Hj/+8Y+xc+dOAMBv//Zvw7IsfOITn0ClUsF1112HRx55JC5oAPBHf/RHkGUZH/7wh2FZFt7znvfg61//elzQAOCb3/wmPvnJT8Zd0nvuuQd/8id/Ev9ckiT8wz/8Az7xiU/gpptugmEY+MhHPoIvfelL8TW5XA779u3Dv/pX/wrXXnstCoUCPvWpT+FTn/rUVt7y1vinfwK+//3T9/h9ePz1RVRaLsYKBmZqNkkjWi4uGEhRJJwoYKHhYDirw+MFrN2RAwoAq9eFkf6s0nJpS5pSkQew1HQxmNa4jm7tMJaIaLwqZL3XzjdsnkfA1pVyjOYMeEHYU9B0RYzP6BabLnaWzJ4xLoAG9xkoD0GVRQhAV5ZDu6NLuthwsKuUQqjR9jXqCjt+99/7662jX55pIGcouHI8v85Vm+Qf/xGYmAAGBk7+sc4jtrRSOx/Z0krNdYGvfe2M2crYXoA/e+wNDKRVCPyjttx2cfPFg3j80ELfLeJ43sBk1dqw6yhzB90o3Hgkq8c+YeWcgelN5mZ2RvR5QQhREKBINI3iByFkibINmo4fB8EYioTBjIam4/e18gHoML9gqvCCkFsgiZit2T3vuWCqMHiA8Y6CCQaGthf2zIMCpMOTRepoZg3ebPDIMj2tyfCCEEstFzuLZpdn2moG0xr+j58Z6xnPOiFGRoB/8S8AORnTPi0rtYQNUFXgn/0z4Bvf2NgrTVGAHTvI1llRaLvaaq00E1Ip+u91pg8UScTPv2Mc+16ZheuHfAic5h37FbTBtIaWS9279WLvAMT6rIbtYbxgYLLSjguhIm9et6B1bG37dWkjZFHEKB/vqvKMgn4IXC9Xs6jbOVOzYSoSTE2CpkjwV51p6YoIRaaJCwaGqYqFECuFeYjbMQUhQ9sNsNjwMJLTsdB0MM7HogxVwtHlNgTQILso0Pa77QbwgpCnyatYbLpYbrlYark4utTC5aOnILh4dhbYtw/oUB4krE9S1E41mQzwa79GQ+vHjtHqLQgAw6BClU7T186dgLaJzt/MDNl+z83RH/D5eeqogrZIO0omLhrKYLLShu0FeFs5C0ns7f8MZ3UsNGyEjLqG/WYcI0op6kw2bA8pVYbthQgYMF1pY0fB3NTWczUFU11XYOuH/UOPV1POUerVaE6PV6dtHroMIHbhjcaXHB6zt9h0cOFgChlDge0FmK3bGC8YWOAaM1OV0ebnhV4QopzTYfshpqsWDfqXUghDuie1kOH6C0o4vNhEWlPwzl0FZHQKlI5kL8VVFkir8YIQB6dquGo835OC1cNTTwEXXABceumG9ychKWqnB1kGrriCvk6W0VH6ighDKpQAdcdsG3s9D+Hhwzi073GMtyr4p9cXux9ilWJ/9UdIlUQwxrqi9SLyphKvrnxGuaGL1d6tG7nvkqU4GENKIylH0/ExljdQabtd86RbJaXKyBlKx0gTiZY7MRQJsiQio8vcM06EJAgQBYadJRNewFA0VbhBCEEA2m4Qb3nzhozhjAovZLDcAEeW2kipEjRZguMHOMrtwAczGvKajF0ls8d5Q5ZEDGY2mPPkPH+sgifeWMJyy8Vtlw5tXNgefRS45JLEAnwTJEXtrYYoAnrHB8fgQSxDQ7j0Xe8CjhzB6B9/DS3Xx1HesYtcVxcbTrx9KqXUuHtZTKto2D5KmozZug1NJj822nb2bheDPsUpw+c5/YDEvDqXWSiSuOaWczPQALmK2ZrVNfqUN5Se/APLC2BVLYg8hb1u+1jgjhm7BlI4stSK50ALpopK20XRVJE1FMzVLTAIXRMGLTfgVk0r3xNAtlDfe2kOv3DNOADg0FwDR5bauOmi0qbP0aLV9IGpGgqmiuGcjjYPgJ5vOAhDhlsvG1qxNlpYAI4cAXbv3tL9Ox9J/NS2E4IA7N6NKx/8DK695pJYiOvxIjPI3SiOV9rQFCneIlVaLvKGEtvo5AwFJT5A30lak/uaSgK0ulPlldSpaFUmrzNOtRFZXYHj0RZw9RGhuY5nW8iApZYbD7gzAEcWWxgvmNhVMjGc0VBpuxjKaCiYCqYqbVhe2FXQIiwvwETBwM6iiYmCgcWGA1Gg+L7jy21YboCHX5rFkcVWXxuitYg6zLIk4o2FJr7/yhz+4cAMnnhjEQKAi4czPXpDPPvsph//fCZZqW1H8nlMfOYBfMD4Gh595FlULQ+TFQvlnE75nH4Izw9heyEMRYrj4mSRVP+RG4i1qoAVTAVT64SplFJqbE0UrUTEdQUQG7wNU0FWlzG5aqU3ktV7P/AbwIBYOlJKqdhRMFDhkxHeGkJiCqqRsNikudy0JiOj0QrUC0J8/5U5lPMGgpDh9suG+iey96FmeVhscueTjIaa5UGTqVFyy8WDGF3LPfiVV4BGg85tE9YkWaltV0wT47/xMfzsz9/C7btJMzbLfdXoTMlHtkPNP5oz4Ics/gCvPr6ReZ7nWtQtn08HMNSsla3h2AlafHtBCKnPSq/l+F36sq0ShAyLLRdtN+iSjKiSiOEsFf6CqWKh6cD1QzQdH27ApR2GipBRw6Jm+3h5po69lwziwqHNWQYFPA808o1bbrm4dlcRey8dwt1XldcuaACdp/axrkroJilq2xlVxdCvfRQ/e//7cflIBnN1G8M5HY4fxgr+6LyoYKqwvADzdRtt14/NKCNSmtRjCrmalusjy90rZL5Sm65ZcPwQ44WtFzZREOLglM7SljPJ+WO1+8dmqVoe2m6AgDEUUyrG8gbG8gZ0RYptniJ3D7Vj9WXzqLzFJnVMI4lntb258BUAeGOhiaXWSqPlvW8bxtUTeewomps7j3v2WSpuCWuSbD+3O5KE/H0fxk3ZLPy//C4OzTUwlNGgSiIEAbB54crocpc2zPFDDGc0LLZcBCFD3lDXlYFEMFAIDGMMkkAZCotNmmjYKiFjmKvacZ5CwyHJBZ2xMQxldMxvkDK1Ef3EvWN5AwsNG27A4IcUXCOJAlJc9gH+HiNK6fXlG50IAN4xUcDl5QzAsLEr7mrqdeCnPwUuu2xrv3cekRS18wFBQPquD+COfBbmf/pbvDHfQCmtcrtvnQclU2JVNKM5XbOwq5TCAMh3bbN2Q9GqxVClruHuKjde3MxjRCw2XeRNFaYqYa7uIGeQVCPaAp+Md5kiCiilNUiiwJPdAwgCbbFlScBIziBb9JA82aptDzqXjKzm8GILb9/kWNTFw5nYVuqEeeaZpKitQ7L9PI/Q3n0TbvnsJ/C28QKats8ttxlyXB4xzVOnAFqt+EEIURRwZKm9pivHcEbHeIHccgE6pyum1J7ouFJa68nk3AgvCOOmxWCGHrPTpmmx6Wyp4xihKxJG8wZm+VbzeKWNhSY9tiIJWGy4qLZdjOVNLLYcgCEeGeuUp0TymK1sP08Jb7wBLC+f2ed8C5EUtfMMac8VuOHB38TVF4+gnDdgqjKWWx5SXCIxVbVwwUAKtheAgXRmiiRCFoV4hrPr8XhK1WzNhgCaRog8zTqptr34nG0r2F6Athug6QQ9lkx+yOJg4a1gyGJfVx/LC+D6IbIGjZEFjMS6qiLC68j8BFayHbK6jKsn8lt+DSdNIu9Yk6SonYcIu3fjmt/9NPZeewEG0ioG0mo84D1RMPHmYgs5Q0HT8XFsuY0bLyzB5R5q5ZzRlbQURc6V0ip2FE0stRxYbtAj5Gi7Pkby+pYLQMgYwABVFvp2XoUTkIxULA/zDRs7iyZGcxRUs7uUwu5SKs5iyBkqZmoWZElA0/a7imDnZEPT8TFTszBbs+CfyQP855+Px+USuknO1M5Xhocx9JnfwND3vw/3uRdwfKGBV2frcAOyqH6zwy9sqeliqmqDMYbpmoWCqWIwLUEQAC9gsFxy2Yi2oE3HjwfGSykVO0spFFMqLhpKQ5VFHJpvorUFM8XltovRHMXXdQpk05oM2z8x3zrHD1Fpe/CCEIWUioWGjZxJzZDxvIGmS3ZGszUbw1nqGAuCAMYY0pqMmuVBFgUUTBWvzjZQszws84T6rE7b+XLeQM5Q4hBpfY3owBPCsoCXXwauuurUPeY2ISlq5zPpNPBzPwf1jjtw4euvY+TQmzj+k9cwdnwGdcvFfN2G44cwNakrtKTSdlFp0xZMlUVIosi3dHSNqcpQZAGltBpPNbxtNBMHYL9jIo/HV82nbkQ0uyqLIsp5HQuNbiffEyGjy2Cg1WbLDVBIAZokYKnlopTScHSpjfGCiSBk0GURAynSrk1VLZTzlNswwy2YFhsONEWCFzD8ZLIKADi23I6L+7svGsC1u4on9Xp7eOaZpKj1ISlqCeQectVVSF11FS77BQC2DUxNIThyFHOvvAF9bhquH2K6amOhuaLPsrwAqiTi8tEs6rYXe/z7IUPDpmDkuuUDDNj3yjwEAG8rZ3HNzgJeX2hidg1XDmloCN7CIsQ+5pJ+SNvgtUKEt0K0hZwoGCjnNLQcHyM5HUeXLUiigN2lFBw/hCSSE8hy28VEwcTxShuMMcxxS++coSBrKLDcALMdPnMFU0UhpcALQvzMzkLf13BSTE6Si0un4UFCUtQS+qDrwIUXQrrwQpTfczvAGG5dXASmptB+8wgmDxzC0pvHMVu1sMwT5KlzSNKHYkrFVIM+3LIoQlNEvDJTx0TBwLNHKhB2kZ9ZVNQEQcCOoomLhtKYuHMv8r/wIfzF5/8a9X94uO/LW+sUrWCqEASeFWD7feUjqkQSjpBRFzSrywhCBj9E/FVKqZit2RjIaDSkHzIMpFWUcwYWmg63AKfXHDUQalbv+db7rhjGaO7Epik2zTPPAPfcc3qf4y1GUtQSNkYQyMxycBDm1Vfjkp8H2R9NT4MdP472m0cx/OJPMTuzhKwh4/X5ZvyrH3pHGc8eofSwukXe/y9N13HtrgKmqhbeNprFjpJJNkL5PHDX+wEAH/nUfXhi/ihefOaVnpcjiUJPyvtqR5GdJRN+QJkFUXHL6jJkSUDd8hEyGsKv84T1tC5DV0QsNByujZNxfLmNYkpF6AVdj53mtkqSKGBoHauh12Ybp7+oHTgAvO993c4t5zlJUUs4MVQV2LULwq5dSN18My5lDJdWq8DkJLyjRzHz0htoHTmOwYyGuboNWRRRtz0UUgpenqlj10AK971rR/djXnRR/OHUNQW3/cb9eO2j/0/XuBZAUo667cViYU2WMFezMZTRkOJOIp4fYrHpkkOt46OUplXXcqt3RRUyOjMTRYHsi2pWLF9ZbrkwlO5sVVGgBkFakzHfcFBKqWg6Pp+XFeKshM0OuJ8Ungf85CfAdded/ud6i5AUtYRTgyAAhQJQKEC58krsuAv0gZudxf/1/mOYfuVN2MenMf36MeTbHl6crOKS1cr6gweBu+5aechdu5C56Xo4j3XHC0pcrxZtQ4spBbIowvUpPb0zsT4MGYayGnetXb+xMF9fEQwPZlbSq6KZWICaI3N1G2Ve5IKQhMGGIvHYPBabcvazMjotPPMM8K53JQaSnKSoJZw+FAWYmIA8MYEd774JAHCJ4wDT0wiPHQemp+iwu8XlI32cgj/02x/FX7zwEsJaLf6e4wcY7TiTEwWy4DZUCdOrrJEMVcJU1Y5XVv06pkVTgSqLUGURuiyianldujRDkZAzFczWbMw3HAxm9DiMZqpqxcVPFkWkNMpNlUQBl42eIYugxUXg6FFgnTzb84mkqCWcWTQN2L0bYuTgyhhQq1EGw8UX91yezqVxx+cewPd/96vQRkeQ2VGGdvQwmsdneExeEEssADr8H87qqNseapYHXaZQlWhLuKIXY/ACBkUSyJ23YiFjyGjy1ZwoCnEQzHTVglWjVZcXhLGMo+2QM66p0jaz7QaxG+8tlwye/vO0Tp55JilqnCQibwO2FJGXcEZ47dlXsO+3v4DRlIzjFQs5Q4HthRjMaPCDEFXLhSZLyBlKz7xmP7Jcr5ZSZTRsH6YmYaHhIKPTeVxkX65KIgLG+nZVSykNN15UAmPAdNXCZaOZdZsIG/KudwG33Ub27ZtlM0E+b2GSiLyEbcul116O5U/+Kg78p29AEmix5/gBJittTBRNDKQ0KJKASttDdtVsaJTf6QYs1tsVTDVuPrS9AC2XpiMWGg4CRhMWGV1Gw/ZQMNSe0GRNlvCL147HEwMXbdIwsi+aRhKNUxHac56SFLWEtyQ3fOh2LByZhr3vf0EQBNRtssT2/DD2fRvKaJipWhgvGJiqWJBEnv/JWHcYsUDyjqiRUM4bXd5yeVPBXN1GKaX2XaVdu6twakagRkeBX/xFoHiKJw/OM5KilvCWxLEdtF85FDcLhjIaTFXGkaWVmdX5hoOxPOnXBjMa0hrfXqoSZFGEH1IQcZS6ZaoyCrwh0IkkClAlEZIoQBYQu/hOV21cOZbDVZv0UluXd72L9GZJEvtJk9zBhLck/9+f/XfMvnQIAMksvCCEKHDJRcOBz5OkpqoWRrI6FpsO2g5lKESrsLEOU0yAtrANW4jP0Mp5A4oooOH4yBoKRFGIC96esRx+7uoxKFsMgOkh2W6ecpKilvCW5O4H7sU/yjKOP3MAmBhG+OJBhCykA35N7soEna3bmCiaCIKwS8s1W7Oxg08eRAaZIQMUSYChSPBDhkCgM7OZmgVBEDBRNFE0Fdx66VCPv9uWSbabp4WkqCW8JZFkCXc/8EsAfgkA8D+/+Beo/q8fAQJ6Qo5HuTV3NIEwnNEx17ARMgYWUjjxQEYjVw0ewBLF8k0UTSzzoBTGGBYaDu56++jJF7Rku3naSO5owrZg7O2XofXY43A7RqoEQUA5p8fhKtN8K7rcIrcNBgYvDJFPKZip2pAEAY4XwgtC7CqlwEChw50J7TuK5smNPyXbzdNOUtQStgWHfvwTyKKAYkqFLpOB5WLTwXTV6rIWb9g+/JBSoiKPtpyhoJzXae7TDZHRZQAMLSfoyR+YKJgn/iKT7eYZISlqCW953LaNxaefx9CeyzF0xWVI5dKozCxAfukQnJ8c7Lq25foYymiwvZUVncStiIKQMhkcL8Bi08dAWuuxEN89mDqxF5lsN88YyR1OeEvDwhDf/dLXcfmv/gLec+/7en72tw/+GRb+1+MAaISqlFKx1HJhewF2FMnVdq7uxNPxokCi3ciBo5NSimQhWyKVAn72Z5Pt5hkkKWoJb1kWphdw4Nv7cMv9d2Fk93jPzwVRxL2/8zF80/UwNjGEmSMzmHpyJYVpoeHA8gKYKtlwt3hYsiZL0GSxy/jx1kuHcNV4bvMvTlWBG28Ebrhh248vnWskRS3hLcurjz2Li99/c9+CFiHJEn7lC78R//cr/2MfHvvKX8P2AlhegIyuQBZJwiGJ5PaRVmW0XB+qJOIdO/K4YDCNwbS2uY6nLNNW86abaJWWcMZJilrCW5ab7/vAln/n8pEsUleO4tvPTQIAUqoEWaRAGFkUkFIVsoZTVCgiOXgMZTZR0CQJuPZa4N3vBjJnyHIooS9JUUs4v7juOuzQNPzfmW+j2nLwyEuzqFseGICMruDt4zkIAA5O1xEIAvYfq+DqiTxkaY2iJknAz/wMcPPNQOLick6QFLWE84+rr0Yqk0Hqv/03XLbUxlOHl/COHQXccvFAnO35xBtLGMpquHgoDbnfKJQoAldfDdxyC2UrJJwzJEUt4fzkwguBf/7Pce1ffwPjBQMTxRX9mSAI+IVrxvHskUqvjZCi0MrshhuSYnaOkphEbkBiErnNabWAH/4Q2L8fCHtzRmMGBoA9e4B3vjNpAJwlEpPIhITNkEoBH/wgcPvtwJEjQKVCxS2VogP/dJpWZEkE3VuGpKglJACAYQCXX362X0XCKeAkzaASEhISzi2SopaQkLCtSIpaQkLCtiIpagkJCduKpKglJCRsK5KilpCQsK1IilpCQsK2IilqCQkJ24qkqCUkJGwrkqKWkJCwrUiKWkJCwrYiKWoJCQnbiqSoJSQkbCuSopaQkLCtSKyHNiDy0KzX62f5lSQknN9En8GNfG2TorYBjUYDADAxMXGWX0lCQgJAn8lcbu0M1sTOewPCMMT09DQymczmch+3QL1ex8TEBI4fP55Yha8iuTdrc77eG8YYGo0GyuUyRHHtk7NkpbYBoihifHztsNxTQTabPa/+cG6F5N6szfl4b9ZboUUkjYKEhIRtRVLUEhISthVJUTuLaJqGz33uc9A07Wy/lHOO5N6sTXJv1idpFCQkJGwrkpVaQkLCtiIpagkJCduKpKglJCRsK5KilpCQsK1Iito6/OhHP8Ldd9+NcrkMQRDw3e9+t+vnjDE8+OCDKJfLMAwDt956K1566aWuaxzHwa//+q9jYGAAqVQK99xzDyYnJ7uuqVQquP/++5HL5ZDL5XD//fejWq12XXPs2DHcfffdSKVSGBgYwCc/+Um4rtt1zYEDB7B3714YhoGxsTH83u/93oZzcifKevfG8zz863/9r3HllVcilUqhXC7jV37lVzA9Pd31GOfjvVnNxz72MQiCgK985Std39+u9+aMwBLW5B//8R/ZZz/7WfbQQw8xAOw73/lO18+/8IUvsEwmwx566CF24MAB9ku/9EtsdHSU1ev1+JqPf/zjbGxsjO3bt48999xz7LbbbmNXXXUV830/vub9738/27NnD3viiSfYE088wfbs2cPuuuuu+Oe+77M9e/aw2267jT333HNs3759rFwuswceeCC+plarseHhYXbvvfeyAwcOsIceeohlMhn2pS996Yzfm2q1yu644w72X//rf2Wvvvoqe/LJJ9l1113Hrrnmmq7HOB/vTSff+c532FVXXcXK5TL7oz/6o66fbdd7cyZIitomWf2HMwxDNjIywr7whS/E37Ntm+VyOfZnf/ZnjDH6cCuKwr71rW/F10xNTTFRFNnDDz/MGGPs5ZdfZgDYj3/84/iaJ598kgFgr776KmOMPiSiKLKpqan4mv/yX/4L0zSN1Wo1xhhjf/qnf8pyuRyzbTu+5vOf/zwrl8ssDMNTeCd6We+DG/H0008zAOzo0aOMseTeTE5OsrGxMXbw4EG2c+fOrqJ2vtyb00Wy/TxBDh8+jNnZWbzvfe+Lv6dpGvbu3YsnnngCALB//354ntd1Tblcxp49e+JrnnzySeRyOVx33XXxNddffz1yuVzXNXv27EG5XI6vufPOO+E4Dvbv3x9fs3fv3i5B5p133onp6WkcOXLk1N+ALVKr1SAIAvL5PIDz+96EYYj7778fv/Vbv4Urrrii5+fn8705FSRF7QSZnZ0FAAwPD3d9f3h4OP7Z7OwsVFVFoVBY95qhoaGexx8aGuq6ZvXzFAoFqKq67jXRf0fXnC1s28a/+Tf/Bh/5yEfiAezz+d588YtfhCzL+OQnP9n35+fzvTkVJC4dJ8lqOyLG2IYWRauv6Xf9qbiG8cPeU22ZtBU8z8O9996LMAzxp3/6pxtev93vzf79+/HHf/zHeO6557b83Nv93pwqkpXaCTIyMgKg92+z+fn5+G+6kZERuK6LSqWy7jVzc3M9j7+wsNB1zernqVQq8Dxv3Wvm5+cB9K4mzxSe5+HDH/4wDh8+jH379nXZ5Jyv9+Z//+//jfn5eezYsQOyLEOWZRw9ehSf/vSnsWvXrvj1no/35lSRFLUTZPfu3RgZGcG+ffvi77mui8ceeww33ngjAOCaa66Boihd18zMzODgwYPxNTfccANqtRqefvrp+JqnnnoKtVqt65qDBw9iZmYmvuaRRx6Bpmm45ppr4mt+9KMfdbXrH3nkEZTL5fjDciaJCtqhQ4fw6KOPolQqdf38fL03999/P1588UW88MIL8Ve5XMZv/dZv4Xvf+x6A8/fenDLOSnviLUKj0WDPP/88e/755xkA9uUvf5k9//zzcQfvC1/4Asvlcuzb3/42O3DgALvvvvv6SjrGx8fZo48+yp577jl2++23923Nv/3tb2dPPvkke/LJJ9mVV17ZtzX/nve8hz333HPs0UcfZePj412t+Wq1yoaHh9l9993HDhw4wL797W+zbDZ72lrz690bz/PYPffcw8bHx9kLL7zAZmZm4i/Hcc7re9OP1d1PxrbvvTkTJEVtHX7wgx8wAD1fv/qrv8oYI1nH5z73OTYyMsI0TWO33HILO3DgQNdjWJbFHnjgAVYsFplhGOyuu+5ix44d67pmaWmJ/fIv/zLLZDIsk8mwX/7lX2aVSqXrmqNHj7IPfvCDzDAMViwW2QMPPNDVhmeMsRdffJHdfPPNTNM0NjIywh588MHT1pZf794cPny4788AsB/84Afn9b3pR7+itl3vzZkgsR5KSEjYViRnagkJCduKpKglJCRsK5KilpCQsK1IilpCQsK2IilqCQkJ24qkqCUkJGwrkqKWkJCwrUiKWkJCwrYiKWoJCQnbiqSoJSQkbCuSopaQkLCtSIpaQkLCtuL/B9b38LJpQp1PAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Plot\n", "fig, ax = plt.subplots()\n", @@ -189,29 +159,18 @@ }, { "cell_type": "code", - "execution_count": 74, - "id": "31892560-b870-4f06-8e58-acdf13489c62", + "execution_count": null, + "id": "11", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array(['Polygon', 'MultiPolygon'], dtype=object)" - ] - }, - "execution_count": 74, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "HHNK[\"peilgebied\"].geometry.type.unique()" ] }, { "cell_type": "code", - "execution_count": 75, - "id": "552d46b7-24c5-4dc5-a818-885bac461e36", + "execution_count": null, + "id": "12", "metadata": {}, "outputs": [], "source": [ @@ -221,19 +180,10 @@ }, { "cell_type": "code", - "execution_count": 76, - "id": "f2740959-7a85-4947-950e-d8a64cb8ece2", + "execution_count": null, + "id": "13", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of overlapping shapes without filter: 61\n", - "Number of overlapping shapes with filter: 0\n" - ] - } - ], + "outputs": [], "source": [ "# Step 1: Identify the Overlapping Areas and clip.\n", "HHNK[\"peilgebied\"] = gpd.overlay(HHNK[\"peilgebied\"], gdf_grens, how=\"intersection\", keep_geom_type=True)\n", @@ -257,7 +207,7 @@ }, { "cell_type": "markdown", - "id": "37f2ee9b-d819-4d7b-92a1-49fe681b4380", + "id": "14", "metadata": {}, "source": [ "## Create peilgebied_cat column" @@ -265,23 +215,12 @@ }, { "cell_type": "code", - "execution_count": 77, - "id": "c5c819f1-dfae-4bf4-b14e-63902e433b1a", + "execution_count": null, + "id": "15", "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "yes\n", - "yes\n", - "yes\n", - "yes\n" - ] - } - ], + "outputs": [], "source": [ "# Add occurence to geodataframe\n", "peilgebieden_cat = []\n", @@ -307,7 +246,7 @@ }, { "cell_type": "markdown", - "id": "0c470216-2a8b-4a0a-9e0a-7877203df9dd", + "id": "16", "metadata": {}, "source": [ "## Add nhws to ['peilgebied','streefpeil']" @@ -315,8 +254,8 @@ }, { "cell_type": "code", - "execution_count": 78, - "id": "7dfdcfaf-4b9a-443f-b40c-65460af8352d", + "execution_count": null, + "id": "17", "metadata": {}, "outputs": [], "source": [ @@ -333,8 +272,8 @@ }, { "cell_type": "code", - "execution_count": 79, - "id": "a744a7e5-9ac9-4e47-8cf2-791206581786", + "execution_count": null, + "id": "18", "metadata": {}, "outputs": [], "source": [ @@ -350,7 +289,7 @@ }, { "cell_type": "markdown", - "id": "161bb7c7-0ba5-4eb6-bab1-b513cfd330f7", + "id": "19", "metadata": {}, "source": [ "### Create layer that ensures spatial match between peilgebied and hws layers based on the buffer layer" @@ -358,8 +297,8 @@ }, { "cell_type": "code", - "execution_count": 80, - "id": "e9d64a75-240f-4583-9b38-3e3b22a578a3", + "execution_count": null, + "id": "20", "metadata": {}, "outputs": [], "source": [ @@ -382,7 +321,7 @@ }, { "cell_type": "markdown", - "id": "7fc8e8ea-4f94-4d3e-8820-46a442903ee6", + "id": "21", "metadata": {}, "source": [ "## Add buffer to ['peilgebied','streefpeil']" @@ -390,8 +329,8 @@ }, { "cell_type": "code", - "execution_count": 81, - "id": "ac1121dc-342e-4960-9294-308b619de9d8", + "execution_count": null, + "id": "22", "metadata": {}, "outputs": [], "source": [ @@ -408,8 +347,8 @@ }, { "cell_type": "code", - "execution_count": 82, - "id": "746d2ebd-7307-4745-8e0e-35c047126c27", + "execution_count": null, + "id": "23", "metadata": {}, "outputs": [], "source": [ @@ -427,8 +366,8 @@ }, { "cell_type": "code", - "execution_count": 83, - "id": "f3a71ec5-0feb-4c23-a0c2-f3b83f6a5c04", + "execution_count": null, + "id": "24", "metadata": {}, "outputs": [], "source": [ @@ -437,8 +376,8 @@ }, { "cell_type": "code", - "execution_count": 84, - "id": "aec2c426-e962-4ff3-a015-a11695708c52", + "execution_count": null, + "id": "25", "metadata": {}, "outputs": [], "source": [ @@ -448,7 +387,7 @@ }, { "cell_type": "markdown", - "id": "f0d2cab6-6529-4f4a-972a-533de967e85a", + "id": "26", "metadata": {}, "source": [ "## Write output" @@ -456,24 +395,10 @@ }, { "cell_type": "code", - "execution_count": 85, - "id": "02fcfb58-7054-4517-97f3-224c9acb4d1f", + "execution_count": null, + "id": "27", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stuw\n", - "gemaal\n", - "hydroobject\n", - "duikersifonhevel\n", - "peilgebied\n", - "streefpeil\n", - "aggregation_area\n" - ] - } - ], + "outputs": [], "source": [ "for key in HHNK.keys():\n", " print(key)\n", @@ -482,21 +407,10 @@ }, { "cell_type": "code", - "execution_count": 86, - "id": "fb843192-82da-4b4f-bb64-f475a4b52162", + "execution_count": null, + "id": "28", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 1])" - ] - }, - "execution_count": 86, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "HHNK[\"peilgebied\"][\"peilgebied_cat\"].unique()" ] @@ -504,7 +418,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0660f4a6-e3f6-4125-9fde-9d66eda1c644", + "id": "29", "metadata": {}, "outputs": [], "source": [] @@ -512,7 +426,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1680c820-f362-4c07-bef0-359a7fa94d36", + "id": "30", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_HHSK.ipynb b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_HHSK.ipynb index 770951cd..e48b119c 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_HHSK.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_HHSK.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "690952c5-5037-476a-a660-d54fec614748", + "id": "0", "metadata": {}, "source": [ "# HHSK" @@ -10,7 +10,7 @@ }, { "cell_type": "markdown", - "id": "e9e378d7-8f05-4562-87b0-34978ba61554", + "id": "1", "metadata": {}, "source": [ "This script adds a new column \"peilgebied_cat\" and make sure the peilgebieden allign witgh the HWS layer (Daniel):\n", @@ -21,8 +21,8 @@ }, { "cell_type": "code", - "execution_count": 1, - "id": "0c27c7a4-5733-46ea-970f-cd985b8c92cd", + "execution_count": null, + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ }, { "cell_type": "markdown", - "id": "dc1f28d2-8499-4ebb-906e-1724bd334aac", + "id": "3", "metadata": {}, "source": [ "## HHSK" @@ -46,8 +46,8 @@ }, { "cell_type": "code", - "execution_count": 2, - "id": "e15206a7-6639-40bb-9942-f920085f53b4", + "execution_count": null, + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -67,7 +67,7 @@ }, { "cell_type": "markdown", - "id": "7bbafed8-355a-4ec9-90c9-eca9e3b9313d", + "id": "5", "metadata": {}, "source": [ "## Load Files" @@ -75,8 +75,8 @@ }, { "cell_type": "code", - "execution_count": 3, - "id": "0f6dcf56-e8a4-4055-bc86-a6d33c91d8d8", + "execution_count": null, + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -111,19 +111,10 @@ }, { "cell_type": "code", - "execution_count": 4, - "id": "0d23e578-c217-4aa4-b5f4-41e01e32a503", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "12509\n", - "12509\n" - ] - } - ], + "execution_count": null, + "id": "7", + "metadata": {}, + "outputs": [], "source": [ "print(len(HHSK[\"duikersifonhevel\"].globalid.unique()))\n", "print(len(HHSK[\"duikersifonhevel\"].globalid))" @@ -131,50 +122,28 @@ }, { "cell_type": "code", - "execution_count": 5, - "id": "5dccf386-5dd3-4d48-8ba9-13e563be96c0", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "id": "8", + "metadata": {}, + "outputs": [], "source": [ "HHSK[\"peilgebied\"].globalid.is_unique" ] }, { "cell_type": "code", - "execution_count": 6, - "id": "2cc1dcf0-84a3-4be0-a20f-e685ceec58ab", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "25622" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "id": "9", + "metadata": {}, + "outputs": [], "source": [ "len(HHSK[\"hydroobject\"])" ] }, { "cell_type": "code", - "execution_count": 7, - "id": "6b749ccd-55e8-4305-857e-994ed1e77725", + "execution_count": null, + "id": "10", "metadata": {}, "outputs": [], "source": [ @@ -186,8 +155,8 @@ }, { "cell_type": "code", - "execution_count": 8, - "id": "8f314b82-55e7-4b45-879f-40b6b7ef84b6", + "execution_count": null, + "id": "11", "metadata": {}, "outputs": [], "source": [ @@ -196,28 +165,17 @@ }, { "cell_type": "code", - "execution_count": 9, - "id": "9330239f-a3cd-47e2-a6d0-89e6df252c9c", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "21838" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "id": "12", + "metadata": {}, + "outputs": [], "source": [ "len(HHSK[\"hydroobject\"])" ] }, { "cell_type": "markdown", - "id": "5556d211-e92e-4ba3-85c2-4ff9bd33fbeb", + "id": "13", "metadata": {}, "source": [ "## Select waterschap boundaries and clip hws layer" @@ -225,8 +183,8 @@ }, { "cell_type": "code", - "execution_count": 10, - "id": "c70bb838-9d93-4d5a-ae12-2da18d145009", + "execution_count": null, + "id": "14", "metadata": {}, "outputs": [], "source": [ @@ -239,7 +197,7 @@ }, { "cell_type": "markdown", - "id": "caba0e5d-0c01-4ff9-9d83-8790125ff85d", + "id": "15", "metadata": {}, "source": [ "## Check Peilgebied and HWS layer overlap:\n", @@ -251,19 +209,10 @@ }, { "cell_type": "code", - "execution_count": 11, - "id": "b3fd731a-1dc8-46cb-b4a3-f052eca43400", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of overlapping shapes without filter: 26\n", - "Number of overlapping shapes with filter: 0\n" - ] - } - ], + "execution_count": null, + "id": "16", + "metadata": {}, + "outputs": [], "source": [ "# Step 1: Identify the Overlapping Areas and clip\n", "overlaps = gpd.overlay(HHSK[\"peilgebied\"], gdf_hws, how=\"intersection\", keep_geom_type=True)\n", @@ -289,7 +238,7 @@ }, { "cell_type": "markdown", - "id": "8c84ed19-d0a7-4a27-8e3d-03b132a502ac", + "id": "17", "metadata": {}, "source": [ "## Create peilgebied_cat column" @@ -297,8 +246,8 @@ }, { "cell_type": "code", - "execution_count": 12, - "id": "3702811b-f3c3-4745-a863-73329e22c5cd", + "execution_count": null, + "id": "18", "metadata": {}, "outputs": [], "source": [ @@ -307,8 +256,8 @@ }, { "cell_type": "code", - "execution_count": 13, - "id": "9bae7259-c4fd-4f2a-beb4-ec92a924f210", + "execution_count": null, + "id": "19", "metadata": {}, "outputs": [], "source": [ @@ -338,8 +287,8 @@ }, { "cell_type": "code", - "execution_count": 14, - "id": "1c1c34e4-4fb2-4921-850b-7a48112da28f", + "execution_count": null, + "id": "20", "metadata": {}, "outputs": [], "source": [ @@ -348,8 +297,8 @@ }, { "cell_type": "code", - "execution_count": 15, - "id": "2a3b05ad-eb78-4e3d-bfb8-23ec469d1ed1", + "execution_count": null, + "id": "21", "metadata": {}, "outputs": [], "source": [ @@ -361,7 +310,7 @@ }, { "cell_type": "markdown", - "id": "037faf79-c747-405e-b2e5-a73acfed0aba", + "id": "22", "metadata": { "tags": [] }, @@ -371,8 +320,8 @@ }, { "cell_type": "code", - "execution_count": 16, - "id": "0cdb36b6-9c4a-42fd-95f6-17c6b4e5803f", + "execution_count": null, + "id": "23", "metadata": {}, "outputs": [], "source": [ @@ -389,8 +338,8 @@ }, { "cell_type": "code", - "execution_count": 17, - "id": "3ed63b03-009a-4cde-8e64-e7f59bb8ca21", + "execution_count": null, + "id": "24", "metadata": {}, "outputs": [], "source": [ @@ -406,28 +355,17 @@ }, { "cell_type": "code", - "execution_count": 18, - "id": "eb5bc143-8a45-4a77-af37-5b190c2fe9f2", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 1])" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "id": "25", + "metadata": {}, + "outputs": [], "source": [ "HHSK[\"peilgebied\"][\"peilgebied_cat\"].unique()" ] }, { "cell_type": "markdown", - "id": "49d80d89-6676-48cc-a1b3-33771f1a9250", + "id": "26", "metadata": {}, "source": [ "### Create buffer polygon between NHWS and peilgebied/RHWS" @@ -435,8 +373,8 @@ }, { "cell_type": "code", - "execution_count": 19, - "id": "d415acda-966c-4847-a4b6-a06b23f87218", + "execution_count": null, + "id": "27", "metadata": {}, "outputs": [], "source": [ @@ -454,7 +392,7 @@ }, { "cell_type": "markdown", - "id": "eaeccbcb-b0d6-4caa-9fb9-dc8a44016298", + "id": "28", "metadata": {}, "source": [ "### Add buffer to ['peilgebied','streefpeil']" @@ -462,8 +400,8 @@ }, { "cell_type": "code", - "execution_count": 20, - "id": "852a9639-cdc4-4709-abb0-fded2aed5970", + "execution_count": null, + "id": "29", "metadata": {}, "outputs": [], "source": [ @@ -482,8 +420,8 @@ }, { "cell_type": "code", - "execution_count": 21, - "id": "7fb401c1-3291-4bff-896e-1fc1478fe830", + "execution_count": null, + "id": "30", "metadata": {}, "outputs": [], "source": [ @@ -500,8 +438,8 @@ }, { "cell_type": "code", - "execution_count": 22, - "id": "3e9caf33-e3d2-4f01-a281-3557e171720e", + "execution_count": null, + "id": "31", "metadata": {}, "outputs": [], "source": [ @@ -511,7 +449,7 @@ }, { "cell_type": "markdown", - "id": "05a65661-9821-4657-9351-22502ee9a58c", + "id": "32", "metadata": {}, "source": [ "### Store post-processed data" @@ -519,24 +457,10 @@ }, { "cell_type": "code", - "execution_count": 23, - "id": "3425a4bd-f8b1-4dd3-b11b-4bb420c8a5bb", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stuw\n", - "gemaal\n", - "hydroobject\n", - "duikersifonhevel\n", - "peilgebied\n", - "streefpeil\n", - "aggregation_area\n" - ] - } - ], + "execution_count": null, + "id": "33", + "metadata": {}, + "outputs": [], "source": [ "for key in HHSK.keys():\n", " print(key)\n", @@ -546,7 +470,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f2b2da20-38a8-4308-908a-c4282bf407a7", + "id": "34", "metadata": {}, "outputs": [], "source": [] @@ -554,7 +478,7 @@ { "cell_type": "code", "execution_count": null, - "id": "77a8d3f4-775a-4484-b0b8-cd23bb1fbd1d", + "id": "35", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_scheldestromen.ipynb b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_scheldestromen.ipynb index 503c21eb..226dc1fc 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_scheldestromen.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/postprocess_data/post-processing_scheldestromen.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "690952c5-5037-476a-a660-d54fec614748", + "id": "0", "metadata": {}, "source": [ "# Scheldestromen" @@ -10,7 +10,7 @@ }, { "cell_type": "markdown", - "id": "e9e378d7-8f05-4562-87b0-34978ba61554", + "id": "1", "metadata": {}, "source": [ "This script adds a new column \"peilgebied_cat\" and makes sure the peilgebieden allign with the HWS layer (Daniel):\n", @@ -21,8 +21,8 @@ }, { "cell_type": "code", - "execution_count": 1, - "id": "0c27c7a4-5733-46ea-970f-cd985b8c92cd", + "execution_count": null, + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ }, { "cell_type": "markdown", - "id": "dc1f28d2-8499-4ebb-906e-1724bd334aac", + "id": "3", "metadata": {}, "source": [ "## Scheldestromen" @@ -46,8 +46,8 @@ }, { "cell_type": "code", - "execution_count": 2, - "id": "e15206a7-6639-40bb-9942-f920085f53b4", + "execution_count": null, + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -69,7 +69,7 @@ }, { "cell_type": "markdown", - "id": "7bbafed8-355a-4ec9-90c9-eca9e3b9313d", + "id": "5", "metadata": {}, "source": [ "### Load Files" @@ -77,8 +77,8 @@ }, { "cell_type": "code", - "execution_count": 3, - "id": "0f6dcf56-e8a4-4055-bc86-a6d33c91d8d8", + "execution_count": null, + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -113,196 +113,27 @@ }, { "cell_type": "code", - "execution_count": 4, - "id": "5fcd4cc6-3c75-462f-af3e-7693c9c5265f", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "id": "7", + "metadata": {}, + "outputs": [], "source": [ "Scheldestromen[\"peilgebied\"].globalid.is_unique" ] }, { "cell_type": "code", - "execution_count": 5, - "id": "afc99001-f0fd-4433-9799-72bb34966673", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
codenen3610idglobalidgeometry
0GPG1398_dummy_id_0dummy_nen3610id_peilgebied_0dummy_globalid_peilgebied_0MULTIPOLYGON Z (((39197.262 373523.013 -100000...
1GPG1007_dummy_id_1dummy_nen3610id_peilgebied_1dummy_globalid_peilgebied_1MULTIPOLYGON Z (((15595.339 368349.545 0.000, ...
2GPG803_dummy_id_2dummy_nen3610id_peilgebied_2dummy_globalid_peilgebied_2MULTIPOLYGON Z (((36391.858 373284.887 0.000, ...
3GPG911_dummy_id_3dummy_nen3610id_peilgebied_3dummy_globalid_peilgebied_3MULTIPOLYGON Z (((40712.442 373620.190 0.000, ...
4GPG842_dummy_id_4dummy_nen3610id_peilgebied_4dummy_globalid_peilgebied_4MULTIPOLYGON Z (((33494.859 370960.048 0.000, ...
...............
847GPG1333_dummy_id_847dummy_nen3610id_peilgebied_847dummy_globalid_peilgebied_847MULTIPOLYGON Z (((56639.793 391068.875 0.000, ...
848GPG1335_dummy_id_848dummy_nen3610id_peilgebied_848dummy_globalid_peilgebied_848MULTIPOLYGON Z (((57784.953 391743.719 0.000, ...
849GPG457_dummy_id_849dummy_nen3610id_peilgebied_849dummy_globalid_peilgebied_849MULTIPOLYGON Z (((22309.586 393311.125 0.000, ...
850GPG808_dummy_id_850dummy_nen3610id_peilgebied_850dummy_globalid_peilgebied_850MULTIPOLYGON Z (((58756.058 366653.895 0.000, ...
851GPG1004_dummy_id_851dummy_nen3610id_peilgebied_851dummy_globalid_peilgebied_851MULTIPOLYGON Z (((56100.529 364330.493 0.000, ...
\n", - "

852 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " code nen3610id \\\n", - "0 GPG1398_dummy_id_0 dummy_nen3610id_peilgebied_0 \n", - "1 GPG1007_dummy_id_1 dummy_nen3610id_peilgebied_1 \n", - "2 GPG803_dummy_id_2 dummy_nen3610id_peilgebied_2 \n", - "3 GPG911_dummy_id_3 dummy_nen3610id_peilgebied_3 \n", - "4 GPG842_dummy_id_4 dummy_nen3610id_peilgebied_4 \n", - ".. ... ... \n", - "847 GPG1333_dummy_id_847 dummy_nen3610id_peilgebied_847 \n", - "848 GPG1335_dummy_id_848 dummy_nen3610id_peilgebied_848 \n", - "849 GPG457_dummy_id_849 dummy_nen3610id_peilgebied_849 \n", - "850 GPG808_dummy_id_850 dummy_nen3610id_peilgebied_850 \n", - "851 GPG1004_dummy_id_851 dummy_nen3610id_peilgebied_851 \n", - "\n", - " globalid \\\n", - "0 dummy_globalid_peilgebied_0 \n", - "1 dummy_globalid_peilgebied_1 \n", - "2 dummy_globalid_peilgebied_2 \n", - "3 dummy_globalid_peilgebied_3 \n", - "4 dummy_globalid_peilgebied_4 \n", - ".. ... \n", - "847 dummy_globalid_peilgebied_847 \n", - "848 dummy_globalid_peilgebied_848 \n", - "849 dummy_globalid_peilgebied_849 \n", - "850 dummy_globalid_peilgebied_850 \n", - "851 dummy_globalid_peilgebied_851 \n", - "\n", - " geometry \n", - "0 MULTIPOLYGON Z (((39197.262 373523.013 -100000... \n", - "1 MULTIPOLYGON Z (((15595.339 368349.545 0.000, ... \n", - "2 MULTIPOLYGON Z (((36391.858 373284.887 0.000, ... \n", - "3 MULTIPOLYGON Z (((40712.442 373620.190 0.000, ... \n", - "4 MULTIPOLYGON Z (((33494.859 370960.048 0.000, ... \n", - ".. ... \n", - "847 MULTIPOLYGON Z (((56639.793 391068.875 0.000, ... \n", - "848 MULTIPOLYGON Z (((57784.953 391743.719 0.000, ... \n", - "849 MULTIPOLYGON Z (((22309.586 393311.125 0.000, ... \n", - "850 MULTIPOLYGON Z (((58756.058 366653.895 0.000, ... \n", - "851 MULTIPOLYGON Z (((56100.529 364330.493 0.000, ... \n", - "\n", - "[852 rows x 4 columns]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "id": "8", + "metadata": {}, + "outputs": [], "source": [ "Scheldestromen[\"peilgebied\"]" ] }, { "cell_type": "markdown", - "id": "3e2faf6a-d645-44c7-8882-f6e613e73410", + "id": "9", "metadata": {}, "source": [ "## Select waterschap boundaries and clip hws layer" @@ -310,8 +141,8 @@ }, { "cell_type": "code", - "execution_count": 6, - "id": "0d804374-1484-42d0-88a2-f6bec404349b", + "execution_count": null, + "id": "10", "metadata": {}, "outputs": [], "source": [ @@ -324,7 +155,7 @@ }, { "cell_type": "markdown", - "id": "0cc62e79-0fc4-48d3-b3b6-e4ded29c2e35", + "id": "11", "metadata": {}, "source": [ "## Peilgebied and HWS layer overlap:\n", @@ -336,19 +167,10 @@ }, { "cell_type": "code", - "execution_count": 7, - "id": "a15df030-9a47-47bb-a09c-dd4b5dda65e2", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of overlapping shapes without filter: 203\n", - "Number of overlapping shapes with filter: 0\n" - ] - } - ], + "execution_count": null, + "id": "12", + "metadata": {}, + "outputs": [], "source": [ "# Step 1: Identify the Overlapping Areas and clip\n", "overlaps = gpd.overlay(Scheldestromen[\"peilgebied\"], gdf_hws, how=\"intersection\", keep_geom_type=True)\n", @@ -371,7 +193,7 @@ }, { "cell_type": "markdown", - "id": "87df5559-330b-41e1-8355-cbcc5c33d0a5", + "id": "13", "metadata": {}, "source": [ "## Create peilgebied_cat columnm" @@ -379,19 +201,10 @@ }, { "cell_type": "code", - "execution_count": 8, - "id": "bfc95c53-1282-479b-8348-ad54085a49f6", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "True\n", - "yes\n" - ] - } - ], + "execution_count": null, + "id": "14", + "metadata": {}, + "outputs": [], "source": [ "# Add occurence to geodataframe\n", "peilgebieden_cat = []\n", @@ -412,8 +225,8 @@ }, { "cell_type": "code", - "execution_count": 9, - "id": "cc35d69e-9ce6-423b-abda-0b8314a5ec22", + "execution_count": null, + "id": "15", "metadata": {}, "outputs": [], "source": [ @@ -423,28 +236,17 @@ }, { "cell_type": "code", - "execution_count": 10, - "id": "4cfae028-3cac-4eaf-bb0e-282de2469448", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0, 1])" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "id": "16", + "metadata": {}, + "outputs": [], "source": [ "Scheldestromen[\"peilgebied\"][\"peilgebied_cat\"].unique()" ] }, { "cell_type": "markdown", - "id": "43ed5595-4741-4dc9-9c37-4ba790190281", + "id": "17", "metadata": {}, "source": [ "## Add nhws to ['peilgebied','streefpeil']" @@ -452,8 +254,8 @@ }, { "cell_type": "code", - "execution_count": 11, - "id": "b666fddd-e1b8-4e66-9a88-d87fb0df8749", + "execution_count": null, + "id": "18", "metadata": {}, "outputs": [], "source": [ @@ -470,8 +272,8 @@ }, { "cell_type": "code", - "execution_count": 12, - "id": "55368969-6fce-4597-a6a8-128f5a54bcb8", + "execution_count": null, + "id": "19", "metadata": {}, "outputs": [], "source": [ @@ -487,7 +289,7 @@ }, { "cell_type": "markdown", - "id": "9d3ed0b2-0f05-4c51-b24f-4032059b1bc9", + "id": "20", "metadata": {}, "source": [ "### Create buffer layer that ensures spatial match between peilgebied and hws layers based on the buffer layer" @@ -495,8 +297,8 @@ }, { "cell_type": "code", - "execution_count": 13, - "id": "6c6a1883-1647-493a-acad-411404f1daec", + "execution_count": null, + "id": "21", "metadata": {}, "outputs": [], "source": [ @@ -508,7 +310,7 @@ }, { "cell_type": "markdown", - "id": "8c27471d-9fb3-4d38-bd63-b841cc41cbee", + "id": "22", "metadata": { "tags": [] }, @@ -518,8 +320,8 @@ }, { "cell_type": "code", - "execution_count": 14, - "id": "39a1211a-bb76-4c4f-ac7e-2405d2729705", + "execution_count": null, + "id": "23", "metadata": {}, "outputs": [], "source": [ @@ -536,8 +338,8 @@ }, { "cell_type": "code", - "execution_count": 15, - "id": "77237ffe-7099-4872-8f1f-4ccc0cd84b6c", + "execution_count": null, + "id": "24", "metadata": {}, "outputs": [], "source": [ @@ -553,8 +355,8 @@ }, { "cell_type": "code", - "execution_count": 16, - "id": "4eba78fb-2f12-4ea8-9558-d0f97f94f654", + "execution_count": null, + "id": "25", "metadata": {}, "outputs": [], "source": [ @@ -564,7 +366,7 @@ }, { "cell_type": "markdown", - "id": "cf892c2f-bf67-4e5e-a2f1-20699fedcf88", + "id": "26", "metadata": {}, "source": [ "## Store output" @@ -572,26 +374,12 @@ }, { "cell_type": "code", - "execution_count": 17, - "id": "17796202-2f3c-4175-8409-7c2294b76703", + "execution_count": null, + "id": "27", "metadata": { "tags": [] }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "stuw\n", - "gemaal\n", - "hydroobject\n", - "duikersifonhevel\n", - "peilgebied\n", - "streefpeil\n", - "aggregation_area\n" - ] - } - ], + "outputs": [], "source": [ "for key in Scheldestromen.keys():\n", " print(key)\n", @@ -601,7 +389,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c3c9d9ed-1be2-49f8-a0fa-0b8804a37de2", + "id": "28", "metadata": {}, "outputs": [], "source": [] @@ -609,7 +397,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7e07fd19-28ae-47f6-b71e-a4c0c49e6b8b", + "id": "29", "metadata": {}, "outputs": [], "source": [] @@ -617,7 +405,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8d0cfb75-8c87-40f7-b15b-47e4efdbc5db", + "id": "30", "metadata": {}, "outputs": [], "source": [] @@ -625,7 +413,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4957fa79-db9d-4de6-a416-6f94052e98db", + "id": "31", "metadata": {}, "outputs": [], "source": [] @@ -633,7 +421,7 @@ { "cell_type": "code", "execution_count": null, - "id": "88882c7e-be83-499f-b1a9-12c9d8eb65ce", + "id": "32", "metadata": {}, "outputs": [], "source": [] @@ -641,7 +429,7 @@ { "cell_type": "code", "execution_count": null, - "id": "065612a7-7d42-4d19-9a26-264811713efd", + "id": "33", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/AmstelGooienVecht.ipynb b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/AmstelGooienVecht.ipynb index cb009192..ef0bc05c 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/AmstelGooienVecht.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/AmstelGooienVecht.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d13f9ab1-f6e7-4958-96cc-343f0c2138f6", + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -18,7 +18,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ad89ae02-4242-4aca-bd5a-c0c3fd8592ac", + "id": "1", "metadata": {}, "outputs": [], "source": [ @@ -31,7 +31,7 @@ }, { "cell_type": "markdown", - "id": "09981d65-c7d2-4802-9fca-2ef490213b2c", + "id": "2", "metadata": {}, "source": [ "# Amstel, Gooi en Vecht" @@ -40,7 +40,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b5fc0f1d-b2bf-4933-9472-96cb110e6111", + "id": "3", "metadata": {}, "outputs": [], "source": [ @@ -54,7 +54,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d54f0c7c-93a1-44bd-b0f9-fcf37279dc83", + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -79,7 +79,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d8ca7d9a-fcd9-4154-9278-029f2a25b7b7", + "id": "5", "metadata": {}, "outputs": [], "source": [ @@ -100,7 +100,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6a63463e", + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -109,7 +109,7 @@ }, { "cell_type": "markdown", - "id": "3c3e568b-79b0-4809-8274-a029cc61b534", + "id": "7", "metadata": {}, "source": [ "# Nalevering" @@ -118,7 +118,7 @@ { "cell_type": "code", "execution_count": null, - "id": "31327447-601e-4f6a-b141-e97162433b37", + "id": "8", "metadata": {}, "outputs": [], "source": [ @@ -148,7 +148,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f68a9597-d088-40c2-88df-931aa281d000", + "id": "9", "metadata": {}, "outputs": [], "source": [ @@ -160,7 +160,7 @@ { "cell_type": "code", "execution_count": null, - "id": "951b70c4-740a-47db-9abf-7c5770aa24bb", + "id": "10", "metadata": {}, "outputs": [], "source": [ @@ -170,7 +170,7 @@ { "cell_type": "code", "execution_count": null, - "id": "320352cd-a10b-48ff-afc0-71023df12cb4", + "id": "11", "metadata": {}, "outputs": [], "source": [ @@ -202,7 +202,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7fd2e22c-95a0-4877-b160-843b36ea56a3", + "id": "12", "metadata": {}, "outputs": [], "source": [ @@ -260,7 +260,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3cb1e8f8-fc21-4b03-a6e9-d0c1eecd5701", + "id": "13", "metadata": {}, "outputs": [], "source": [ @@ -273,14 +273,14 @@ { "cell_type": "code", "execution_count": null, - "id": "74d6b456-154a-4c13-b53d-4d5e67122485", + "id": "14", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", - "id": "9276888c-0ba2-4f5d-8ecb-a26baa1747f0", + "id": "15", "metadata": {}, "source": [ "# Control, store" @@ -289,7 +289,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f2554d9e-9957-47bd-8cef-e6bfd4220a61", + "id": "16", "metadata": {}, "outputs": [], "source": [ @@ -299,7 +299,7 @@ { "cell_type": "code", "execution_count": null, - "id": "be767e93-6ab9-4a3d-a7ae-247eb3877617", + "id": "17", "metadata": {}, "outputs": [], "source": [ @@ -314,7 +314,7 @@ { "cell_type": "code", "execution_count": null, - "id": "09e3e8eb-f52b-497b-a0ef-b8613d7771c1", + "id": "18", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Delfland.ipynb b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Delfland.ipynb index f6d61206..19ff4db4 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Delfland.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Delfland.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "065338fd-62d6-480e-8c80-8bc4b101846b", + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -17,7 +17,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3f5aaa20-7965-4aa7-bf24-79965d87edb1", + "id": "1", "metadata": {}, "outputs": [], "source": [ @@ -26,7 +26,7 @@ }, { "cell_type": "markdown", - "id": "ffeed567-f858-4e46-83ff-89b7d7ea9b6d", + "id": "2", "metadata": {}, "source": [ "# Delfland" @@ -35,7 +35,7 @@ { "cell_type": "code", "execution_count": null, - "id": "636e86b9-bd75-4f8f-91eb-e757fba21fde", + "id": "3", "metadata": { "tags": [] }, @@ -50,7 +50,7 @@ { "cell_type": "code", "execution_count": null, - "id": "532b0b83-2139-4d48-8e42-883ed8e88325", + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -66,7 +66,7 @@ }, { "cell_type": "markdown", - "id": "341e9076-62bd-4d0f-aba9-835cdf93afeb", + "id": "5", "metadata": {}, "source": [ "### Adjust column names" @@ -75,7 +75,7 @@ { "cell_type": "code", "execution_count": null, - "id": "059f9113-bcd4-470a-abb6-4fd8ec193f4a", + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -163,7 +163,7 @@ }, { "cell_type": "markdown", - "id": "54a863ea-caab-4be6-bca6-78c2ae91941f", + "id": "7", "metadata": {}, "source": [ "### Add column to determine the HWS_BZM" @@ -172,7 +172,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fda7f5c9-6949-4044-b04d-ba438d2b37d3", + "id": "8", "metadata": {}, "outputs": [], "source": [ @@ -183,7 +183,7 @@ { "cell_type": "code", "execution_count": null, - "id": "42dc4ba1-3ccb-4b0f-a075-77aec9b85a07", + "id": "9", "metadata": {}, "outputs": [], "source": [ @@ -197,7 +197,7 @@ }, { "cell_type": "markdown", - "id": "21ccbba5-8e59-4134-9209-db988bc5c3d5", + "id": "10", "metadata": {}, "source": [ "### Check for the correct keys and columns" @@ -206,7 +206,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b064a376-0396-4c93-a2ad-eca3eea54598", + "id": "11", "metadata": {}, "outputs": [], "source": [ @@ -215,7 +215,7 @@ }, { "cell_type": "markdown", - "id": "e4e74b4c-17ba-4829-9531-248f4d74cfad", + "id": "12", "metadata": {}, "source": [ "### Store data" @@ -224,7 +224,7 @@ { "cell_type": "code", "execution_count": null, - "id": "556aea48-a819-4f70-8e22-6c843354a46d", + "id": "13", "metadata": {}, "outputs": [], "source": [ @@ -238,14 +238,14 @@ }, { "cell_type": "raw", - "id": "d6b186d5-c907-4b19-9ee2-c7222476856a", + "id": "14", "metadata": {}, "source": [] }, { "cell_type": "code", "execution_count": null, - "id": "fedb4c6e-49c2-44f4-88f0-0e1ce4802bc7", + "id": "15", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/HHNK.ipynb b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/HHNK.ipynb index 4ab9d66a..c3cf825f 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/HHNK.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/HHNK.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "065338fd-62d6-480e-8c80-8bc4b101846b", + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -20,14 +20,14 @@ { "cell_type": "code", "execution_count": null, - "id": "3f5aaa20-7965-4aa7-bf24-79965d87edb1", + "id": "1", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", - "id": "ffeed567-f858-4e46-83ff-89b7d7ea9b6d", + "id": "2", "metadata": {}, "source": [ "# Hollands Noorderkwartier" @@ -36,7 +36,7 @@ { "cell_type": "code", "execution_count": null, - "id": "636e86b9-bd75-4f8f-91eb-e757fba21fde", + "id": "3", "metadata": {}, "outputs": [], "source": [ @@ -51,7 +51,7 @@ { "cell_type": "code", "execution_count": null, - "id": "baf1ecdb-36e9-4370-ad9d-28dd4b7b0c6b", + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -82,7 +82,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3dbf5fe0-ac68-4270-b936-51dd5e7e8215", + "id": "5", "metadata": {}, "outputs": [], "source": [] @@ -90,7 +90,7 @@ { "cell_type": "code", "execution_count": null, - "id": "033468ab-b74c-468a-90b1-eac395ad8d17", + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -141,7 +141,7 @@ { "cell_type": "code", "execution_count": null, - "id": "805ffd9b-da23-46e3-977f-84575e32f225", + "id": "7", "metadata": {}, "outputs": [], "source": [ @@ -160,7 +160,7 @@ }, { "cell_type": "markdown", - "id": "341e9076-62bd-4d0f-aba9-835cdf93afeb", + "id": "8", "metadata": {}, "source": [ "### GPKG" @@ -169,7 +169,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9b86f37d-16de-49db-969a-b233f1531abb", + "id": "9", "metadata": { "tags": [] }, @@ -187,7 +187,7 @@ }, { "cell_type": "markdown", - "id": "cdc5db0a-4f5f-464f-aa98-1cc7ea968680", + "id": "10", "metadata": {}, "source": [ "### .GDB" @@ -196,7 +196,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fe5e6309-4370-4da7-bd2c-9c7f7f727545", + "id": "11", "metadata": {}, "outputs": [], "source": [ @@ -220,7 +220,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ebd41c6f-24dc-4a56-b24c-65c33b707707", + "id": "12", "metadata": {}, "outputs": [], "source": [ @@ -232,7 +232,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e6164c27-8292-4943-bc6e-83445ed956a9", + "id": "13", "metadata": {}, "outputs": [], "source": [ @@ -246,7 +246,7 @@ }, { "cell_type": "markdown", - "id": "d72f3d5c-20ed-4ca6-a71f-ddca9cf93fee", + "id": "14", "metadata": {}, "source": [ "### Check for the correct keys and columns" @@ -255,7 +255,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ffd4ea1b-e2a2-4e3b-a5cf-e820a4709c30", + "id": "15", "metadata": {}, "outputs": [], "source": [ @@ -264,7 +264,7 @@ }, { "cell_type": "markdown", - "id": "56fa3a9e-2894-4676-9a47-29fbdadc96c5", + "id": "16", "metadata": { "tags": [] }, @@ -274,7 +274,7 @@ }, { "cell_type": "markdown", - "id": "064607bb-4c54-4dc2-b913-94dfcd18cfa0", + "id": "17", "metadata": {}, "source": [ "Some changes by hand have been made. The resulting shapefile contains the bordering BZM and HWS shapes, including streefpeil" @@ -283,7 +283,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8e8c8649-cde9-40db-b155-d8d80ba65f6a", + "id": "18", "metadata": {}, "outputs": [], "source": [ @@ -294,7 +294,7 @@ { "cell_type": "code", "execution_count": null, - "id": "350baa05-21ab-48af-b4b9-cae7fef089a6", + "id": "19", "metadata": {}, "outputs": [], "source": [ @@ -314,7 +314,7 @@ }, { "cell_type": "markdown", - "id": "e4e74b4c-17ba-4829-9531-248f4d74cfad", + "id": "20", "metadata": {}, "source": [ "### Store data" @@ -323,7 +323,7 @@ { "cell_type": "code", "execution_count": null, - "id": "556aea48-a819-4f70-8e22-6c843354a46d", + "id": "21", "metadata": {}, "outputs": [], "source": [ @@ -332,7 +332,7 @@ }, { "cell_type": "raw", - "id": "d6b186d5-c907-4b19-9ee2-c7222476856a", + "id": "22", "metadata": {}, "source": [ "Toevoegen aan notities:\n", diff --git a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/HHSK.ipynb b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/HHSK.ipynb index 96e5b13d..a336f572 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/HHSK.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/HHSK.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "065338fd-62d6-480e-8c80-8bc4b101846b", + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -18,7 +18,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3f5aaa20-7965-4aa7-bf24-79965d87edb1", + "id": "1", "metadata": { "tags": [ "test" @@ -32,7 +32,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cbbec2b5-c309-4a42-a914-dd33c2da3610", + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -42,7 +42,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e7bb775e-cc57-4586-a13c-8d9ba05ace6b", + "id": "3", "metadata": {}, "outputs": [], "source": [ @@ -55,7 +55,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1f39bd82-2fed-41d6-a4f7-979a9a2120bd", + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -79,7 +79,7 @@ { "cell_type": "code", "execution_count": null, - "id": "279c940f-4290-48d6-bd48-b1e79f8be16e", + "id": "5", "metadata": {}, "outputs": [], "source": [ @@ -92,7 +92,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6ea5a43d-b2e6-42ef-8002-01c3377ed897", + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -104,7 +104,7 @@ }, { "cell_type": "markdown", - "id": "32562573-3c78-4565-85be-1b7c03a023be", + "id": "7", "metadata": {}, "source": [ "## Only select status_object == 3" @@ -113,7 +113,7 @@ { "cell_type": "code", "execution_count": null, - "id": "10efac14-fd47-4f61-9180-e89e864713c7", + "id": "8", "metadata": {}, "outputs": [], "source": [ @@ -140,7 +140,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d91ef127-a46e-4ce7-b4fc-ec13d39b6820", + "id": "9", "metadata": {}, "outputs": [], "source": [ @@ -152,7 +152,7 @@ }, { "cell_type": "markdown", - "id": "ffeed567-f858-4e46-83ff-89b7d7ea9b6d", + "id": "10", "metadata": {}, "source": [ "# HHSK" @@ -160,7 +160,7 @@ }, { "cell_type": "markdown", - "id": "62a8afeb-9d69-4df0-8e9a-0aa255543fb1", + "id": "11", "metadata": { "tags": [] }, @@ -171,7 +171,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8196e429-c7c1-40f1-9dd3-525699656dc7", + "id": "12", "metadata": {}, "outputs": [], "source": [ @@ -197,7 +197,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5f19829d-6116-45d4-92ae-a0e27509afa3", + "id": "13", "metadata": {}, "outputs": [], "source": [] @@ -205,7 +205,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fe221b99-ad03-4688-a656-9cb19e4f1a8b", + "id": "14", "metadata": {}, "outputs": [], "source": [ @@ -225,7 +225,7 @@ }, { "cell_type": "markdown", - "id": "8c3e7f83-1aa8-4714-8ef5-7d0176097d94", + "id": "15", "metadata": { "tags": [] }, @@ -236,7 +236,7 @@ { "cell_type": "code", "execution_count": null, - "id": "75bbbea1-5ef9-4935-ad8e-4f294eaf1c9f", + "id": "16", "metadata": {}, "outputs": [], "source": [ @@ -250,7 +250,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8495f3ba-98df-4eea-97a5-d09534e36885", + "id": "17", "metadata": {}, "outputs": [], "source": [ @@ -267,7 +267,7 @@ }, { "cell_type": "markdown", - "id": "31841446-4e06-47b7-98a3-38d389df26df", + "id": "18", "metadata": {}, "source": [ "### Add the nageleverde peilgebieden to the original data" @@ -276,7 +276,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9ee954f4-c333-4bb4-8dcc-b1e1cd7c2b57", + "id": "19", "metadata": {}, "outputs": [], "source": [ @@ -300,7 +300,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c37cfb5c-3b9e-4e57-b44c-3cbe610da093", + "id": "20", "metadata": {}, "outputs": [], "source": [ @@ -324,7 +324,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fd7bfade-497b-40bd-8345-8dc4fd3d172b", + "id": "21", "metadata": {}, "outputs": [], "source": [ @@ -344,7 +344,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5631e7ba-f5a0-4eaf-942a-3b6535a4ba8b", + "id": "22", "metadata": {}, "outputs": [], "source": [ @@ -354,7 +354,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7df9baa4-7092-4401-be9a-fd3a451c38b0", + "id": "23", "metadata": {}, "outputs": [], "source": [ @@ -364,7 +364,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a03b9016-af7d-4c4e-a10b-1f2ea2ee9254", + "id": "24", "metadata": {}, "outputs": [], "source": [ @@ -374,7 +374,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9736e6e4-0e8f-4396-a1f4-3b4f3e9bf690", + "id": "25", "metadata": {}, "outputs": [], "source": [ @@ -398,7 +398,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b5d16748-7262-4e43-baa2-f182cb8dd142", + "id": "26", "metadata": {}, "outputs": [], "source": [ @@ -409,7 +409,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0292ab77-acfd-4666-9c3b-b9bd8c1f1fec", + "id": "27", "metadata": {}, "outputs": [], "source": [ @@ -419,7 +419,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cd21bcac-8d25-4d47-ad0a-c7338e6e6653", + "id": "28", "metadata": {}, "outputs": [], "source": [ @@ -433,7 +433,7 @@ { "cell_type": "code", "execution_count": null, - "id": "88e9543c-2dbe-4ebf-9423-b38daeeaa004", + "id": "29", "metadata": {}, "outputs": [], "source": [ @@ -443,7 +443,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6cdf901e-c4b4-4fb8-9f40-4731ff3c2d1d", + "id": "30", "metadata": {}, "outputs": [], "source": [ @@ -452,7 +452,7 @@ }, { "cell_type": "markdown", - "id": "51df5dde-d374-4ae3-8d43-1c495581f021", + "id": "31", "metadata": {}, "source": [ "### Delete irrelevant data" @@ -461,7 +461,7 @@ { "cell_type": "code", "execution_count": null, - "id": "42dc4ba1-3ccb-4b0f-a075-77aec9b85a07", + "id": "32", "metadata": {}, "outputs": [], "source": [ @@ -476,7 +476,7 @@ { "cell_type": "code", "execution_count": null, - "id": "375f1598-03c1-48a1-bb19-54790273dad0", + "id": "33", "metadata": {}, "outputs": [], "source": [ @@ -488,7 +488,7 @@ }, { "cell_type": "markdown", - "id": "21ccbba5-8e59-4134-9209-db988bc5c3d5", + "id": "34", "metadata": {}, "source": [ "### Check for the correct keys and columns" @@ -497,7 +497,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b064a376-0396-4c93-a2ad-eca3eea54598", + "id": "35", "metadata": {}, "outputs": [], "source": [ @@ -506,7 +506,7 @@ }, { "cell_type": "markdown", - "id": "e4e74b4c-17ba-4829-9531-248f4d74cfad", + "id": "36", "metadata": {}, "source": [ "### Store data" @@ -515,7 +515,7 @@ { "cell_type": "code", "execution_count": null, - "id": "556aea48-a819-4f70-8e22-6c843354a46d", + "id": "37", "metadata": {}, "outputs": [], "source": [ @@ -530,7 +530,7 @@ { "cell_type": "code", "execution_count": null, - "id": "69cbb333-f66e-4ca8-880f-3242846c6a9b", + "id": "38", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Hollandse_Delta.ipynb b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Hollandse_Delta.ipynb index 4f74f039..d7593949 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Hollandse_Delta.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Hollandse_Delta.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "065338fd-62d6-480e-8c80-8bc4b101846b", + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -18,7 +18,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3f5aaa20-7965-4aa7-bf24-79965d87edb1", + "id": "1", "metadata": {}, "outputs": [], "source": [ @@ -27,7 +27,7 @@ }, { "cell_type": "markdown", - "id": "ffeed567-f858-4e46-83ff-89b7d7ea9b6d", + "id": "2", "metadata": {}, "source": [ "# HD" @@ -36,7 +36,7 @@ { "cell_type": "code", "execution_count": null, - "id": "636e86b9-bd75-4f8f-91eb-e757fba21fde", + "id": "3", "metadata": { "tags": [] }, @@ -51,7 +51,7 @@ { "cell_type": "code", "execution_count": null, - "id": "532b0b83-2139-4d48-8e42-883ed8e88325", + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -79,7 +79,7 @@ { "cell_type": "code", "execution_count": null, - "id": "077f1c26-c738-48f7-b9df-bec5b7356c9a", + "id": "5", "metadata": {}, "outputs": [], "source": [ @@ -104,7 +104,7 @@ }, { "cell_type": "markdown", - "id": "341e9076-62bd-4d0f-aba9-835cdf93afeb", + "id": "6", "metadata": {}, "source": [ "### Adjust column names" @@ -113,7 +113,7 @@ { "cell_type": "code", "execution_count": null, - "id": "d54bf05e-f563-44ec-9864-4774e2aecfc6", + "id": "7", "metadata": {}, "outputs": [], "source": [ @@ -146,7 +146,7 @@ { "cell_type": "code", "execution_count": null, - "id": "059f9113-bcd4-470a-abb6-4fd8ec193f4a", + "id": "8", "metadata": {}, "outputs": [], "source": [ @@ -202,7 +202,7 @@ { "cell_type": "code", "execution_count": null, - "id": "42dc4ba1-3ccb-4b0f-a075-77aec9b85a07", + "id": "9", "metadata": {}, "outputs": [], "source": [ @@ -216,7 +216,7 @@ }, { "cell_type": "markdown", - "id": "21ccbba5-8e59-4134-9209-db988bc5c3d5", + "id": "10", "metadata": {}, "source": [ "### Check for the correct keys and columns" @@ -225,7 +225,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b064a376-0396-4c93-a2ad-eca3eea54598", + "id": "11", "metadata": {}, "outputs": [], "source": [ @@ -235,7 +235,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2809cf79-d381-432b-8ddd-3497556f5d82", + "id": "12", "metadata": {}, "outputs": [], "source": [ @@ -244,7 +244,7 @@ }, { "cell_type": "markdown", - "id": "e4e74b4c-17ba-4829-9531-248f4d74cfad", + "id": "13", "metadata": {}, "source": [ "### Store data" @@ -253,7 +253,7 @@ { "cell_type": "code", "execution_count": null, - "id": "556aea48-a819-4f70-8e22-6c843354a46d", + "id": "14", "metadata": {}, "outputs": [], "source": [ @@ -268,7 +268,7 @@ { "cell_type": "code", "execution_count": null, - "id": "52f17e20-95a7-493f-bff9-6600df570fe0", + "id": "15", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Rijnland.ipynb b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Rijnland.ipynb index c38d1901..67cc146a 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Rijnland.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Rijnland.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "065338fd-62d6-480e-8c80-8bc4b101846b", + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -19,7 +19,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3f5aaa20-7965-4aa7-bf24-79965d87edb1", + "id": "1", "metadata": {}, "outputs": [], "source": [ @@ -29,7 +29,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cbbec2b5-c309-4a42-a914-dd33c2da3610", + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -39,7 +39,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e7bb775e-cc57-4586-a13c-8d9ba05ace6b", + "id": "3", "metadata": {}, "outputs": [], "source": [ @@ -52,7 +52,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ca6ddcd9-e960-4b5f-ba10-4d222c16a843", + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -74,7 +74,7 @@ }, { "cell_type": "markdown", - "id": "ffeed567-f858-4e46-83ff-89b7d7ea9b6d", + "id": "5", "metadata": {}, "source": [ "# Rijnland" @@ -83,7 +83,7 @@ { "cell_type": "code", "execution_count": null, - "id": "01dda03c-5a50-4bde-a655-7ed14c85a8d3", + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -96,7 +96,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e58ee099-54b3-415b-8222-9545776a7a61", + "id": "7", "metadata": {}, "outputs": [], "source": [ @@ -113,7 +113,7 @@ { "cell_type": "code", "execution_count": null, - "id": "023a704c-685e-4fe9-9745-39a5ed461a03", + "id": "8", "metadata": {}, "outputs": [], "source": [ @@ -126,7 +126,7 @@ { "cell_type": "code", "execution_count": null, - "id": "eb236dc1-11b3-42c4-99e9-fecd568bec2b", + "id": "9", "metadata": {}, "outputs": [], "source": [ @@ -143,7 +143,7 @@ { "cell_type": "code", "execution_count": null, - "id": "05098a9e-9b5a-487e-8b3e-7f3d82bda74e", + "id": "10", "metadata": {}, "outputs": [], "source": [ @@ -156,7 +156,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5339a8c5-8c43-4ccd-9008-103fc7e7058e", + "id": "11", "metadata": {}, "outputs": [], "source": [ @@ -167,7 +167,7 @@ { "cell_type": "code", "execution_count": null, - "id": "096a2293-cd78-4c8d-b0e8-bbbe559a8155", + "id": "12", "metadata": {}, "outputs": [], "source": [ @@ -185,7 +185,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6bea1764-0459-4d49-9d48-c5b85a6c3480", + "id": "13", "metadata": {}, "outputs": [], "source": [ @@ -197,7 +197,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9efaf904-e94c-4c87-aeb6-c04d4f183e27", + "id": "14", "metadata": {}, "outputs": [], "source": [ @@ -208,7 +208,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1511cf73-aa2b-423f-be87-c95fb0d9bdbb", + "id": "15", "metadata": {}, "outputs": [], "source": [ @@ -225,7 +225,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7bdd80ad-650c-4e9f-a3bd-d675c4544830", + "id": "16", "metadata": {}, "outputs": [], "source": [ @@ -247,7 +247,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fb1f6f57-60e7-4122-9648-5a0883933dd1", + "id": "17", "metadata": {}, "outputs": [], "source": [ @@ -257,7 +257,7 @@ { "cell_type": "code", "execution_count": null, - "id": "dbb4827e-17ad-461f-8101-f97f38b2b31e", + "id": "18", "metadata": {}, "outputs": [], "source": [ @@ -275,7 +275,7 @@ { "cell_type": "code", "execution_count": null, - "id": "67ba9685-90b6-4389-818f-a003d9d41dc8", + "id": "19", "metadata": {}, "outputs": [], "source": [ @@ -289,7 +289,7 @@ { "cell_type": "code", "execution_count": null, - "id": "42dc4ba1-3ccb-4b0f-a075-77aec9b85a07", + "id": "20", "metadata": {}, "outputs": [], "source": [ @@ -304,7 +304,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9ea24ea8-67ae-4cff-ac30-6492dcd80c41", + "id": "21", "metadata": {}, "outputs": [], "source": [ @@ -313,7 +313,7 @@ }, { "cell_type": "markdown", - "id": "21ccbba5-8e59-4134-9209-db988bc5c3d5", + "id": "22", "metadata": {}, "source": [ "### Check for the correct keys and columns" @@ -322,7 +322,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b064a376-0396-4c93-a2ad-eca3eea54598", + "id": "23", "metadata": {}, "outputs": [], "source": [ @@ -331,7 +331,7 @@ }, { "cell_type": "markdown", - "id": "e4e74b4c-17ba-4829-9531-248f4d74cfad", + "id": "24", "metadata": {}, "source": [ "### Store data" @@ -340,7 +340,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f198edc5-7466-4668-b980-adabdf7c7c94", + "id": "25", "metadata": {}, "outputs": [], "source": [] @@ -348,7 +348,7 @@ { "cell_type": "code", "execution_count": null, - "id": "556aea48-a819-4f70-8e22-6c843354a46d", + "id": "26", "metadata": {}, "outputs": [], "source": [ @@ -363,7 +363,7 @@ { "cell_type": "code", "execution_count": null, - "id": "48b0320b-258c-44c8-aff2-83153db1a512", + "id": "27", "metadata": {}, "outputs": [], "source": [] @@ -371,7 +371,7 @@ { "cell_type": "code", "execution_count": null, - "id": "311db7da-e645-47f2-af06-0bdf23a5589b", + "id": "28", "metadata": {}, "outputs": [], "source": [] @@ -379,7 +379,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0b93668e-c539-426a-9af2-99d36af00334", + "id": "29", "metadata": {}, "outputs": [], "source": [] @@ -387,7 +387,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5a09e840-7204-4aac-b825-c66394c60775", + "id": "30", "metadata": {}, "outputs": [], "source": [] @@ -395,7 +395,7 @@ { "cell_type": "code", "execution_count": null, - "id": "622a1518-d12d-4b70-ac03-0d251ee09861", + "id": "31", "metadata": {}, "outputs": [], "source": [] @@ -403,7 +403,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c0cf20d1-b76c-4e07-ab7b-9976313f8dad", + "id": "32", "metadata": {}, "outputs": [], "source": [] @@ -411,7 +411,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ace74b96-2316-4b02-b3ca-9e2b9d3c18aa", + "id": "33", "metadata": {}, "outputs": [], "source": [] @@ -419,7 +419,7 @@ { "cell_type": "code", "execution_count": null, - "id": "92551bfe-2672-4c85-988e-e19a320b8cee", + "id": "34", "metadata": {}, "outputs": [], "source": [] @@ -427,7 +427,7 @@ { "cell_type": "code", "execution_count": null, - "id": "70c906ed-d0b1-4ccb-b527-775d1c7e1e48", + "id": "35", "metadata": {}, "outputs": [], "source": [] @@ -435,7 +435,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ed6d57c1-3127-43a2-9de0-29cbf5846bd1", + "id": "36", "metadata": {}, "outputs": [], "source": [] @@ -443,7 +443,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c562c790-2afa-493d-a86d-c438deae6470", + "id": "37", "metadata": {}, "outputs": [], "source": [] @@ -451,7 +451,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0090fd91-40eb-48e1-aa99-2360a13a708e", + "id": "38", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Rivierenland.ipynb b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Rivierenland.ipynb index d424797d..1aedd840 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Rivierenland.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Rivierenland.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "065338fd-62d6-480e-8c80-8bc4b101846b", + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -19,7 +19,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3f5aaa20-7965-4aa7-bf24-79965d87edb1", + "id": "1", "metadata": {}, "outputs": [], "source": [ @@ -29,7 +29,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4c2a1a6e-1255-4481-9d94-b0206f40e94d", + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ }, { "cell_type": "markdown", - "id": "ffeed567-f858-4e46-83ff-89b7d7ea9b6d", + "id": "3", "metadata": {}, "source": [ "# WSRL" @@ -47,7 +47,7 @@ { "cell_type": "code", "execution_count": null, - "id": "636e86b9-bd75-4f8f-91eb-e757fba21fde", + "id": "4", "metadata": { "tags": [] }, @@ -62,7 +62,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c0f66000-73e6-4b06-b5a2-8308213c2461", + "id": "5", "metadata": {}, "outputs": [], "source": [ @@ -88,7 +88,7 @@ }, { "cell_type": "markdown", - "id": "7469bb6f-dc28-43b3-b9cb-2d4505b5d5fd", + "id": "6", "metadata": {}, "source": [ "Additional data is given in another gpkg, which includes the peilgebieden" @@ -97,7 +97,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5018d1e6-f7ba-4e02-b01a-6d83a3a5e9a3", + "id": "7", "metadata": {}, "outputs": [], "source": [ @@ -112,7 +112,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fc85db32-bb81-4f7f-9a38-2bd89b3fc658", + "id": "8", "metadata": {}, "outputs": [], "source": [ @@ -125,7 +125,7 @@ }, { "cell_type": "markdown", - "id": "341e9076-62bd-4d0f-aba9-835cdf93afeb", + "id": "9", "metadata": {}, "source": [ "### Adjust column names" @@ -134,7 +134,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c0302db0-e7f0-4dd2-88b7-3dc9aadd581f", + "id": "10", "metadata": {}, "outputs": [], "source": [ @@ -168,7 +168,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6f56f578-aca0-4957-89df-b6a3a08278a3", + "id": "11", "metadata": {}, "outputs": [], "source": [ @@ -196,7 +196,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6dce84db-36f3-4a1c-9f10-7c14d9e4a6ed", + "id": "12", "metadata": { "tags": [] }, @@ -214,7 +214,7 @@ { "cell_type": "code", "execution_count": null, - "id": "059f9113-bcd4-470a-abb6-4fd8ec193f4a", + "id": "13", "metadata": {}, "outputs": [], "source": [ @@ -224,7 +224,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0181e016-5103-4d66-b0fa-27ef59282f51", + "id": "14", "metadata": {}, "outputs": [], "source": [ @@ -238,7 +238,7 @@ { "cell_type": "code", "execution_count": null, - "id": "96f0e8bf-89e3-4743-b047-d23791bdc5b4", + "id": "15", "metadata": {}, "outputs": [], "source": [ @@ -290,7 +290,7 @@ { "cell_type": "code", "execution_count": null, - "id": "500d4d64-c65b-4426-9f89-7f10e12a0514", + "id": "16", "metadata": {}, "outputs": [], "source": [ @@ -303,7 +303,7 @@ { "cell_type": "code", "execution_count": null, - "id": "363a8b04-a132-469a-b5c8-cde2e911a9c0", + "id": "17", "metadata": {}, "outputs": [], "source": [ @@ -319,7 +319,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cfbf8612-93a9-4357-a3c9-cd3dd9d9bf71", + "id": "18", "metadata": {}, "outputs": [], "source": [ @@ -332,7 +332,7 @@ { "cell_type": "code", "execution_count": null, - "id": "74734b29-5c4a-4e63-a873-88d8f6ebbd14", + "id": "19", "metadata": {}, "outputs": [], "source": [ @@ -361,7 +361,7 @@ { "cell_type": "code", "execution_count": null, - "id": "42dc4ba1-3ccb-4b0f-a075-77aec9b85a07", + "id": "20", "metadata": {}, "outputs": [], "source": [ @@ -375,7 +375,7 @@ }, { "cell_type": "markdown", - "id": "21ccbba5-8e59-4134-9209-db988bc5c3d5", + "id": "21", "metadata": {}, "source": [ "### Check for the correct keys and columns" @@ -384,7 +384,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b064a376-0396-4c93-a2ad-eca3eea54598", + "id": "22", "metadata": {}, "outputs": [], "source": [ @@ -394,14 +394,14 @@ { "cell_type": "code", "execution_count": null, - "id": "d81fa34f-69aa-4d0e-9612-8ae36b959e0b", + "id": "23", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", - "id": "e4e74b4c-17ba-4829-9531-248f4d74cfad", + "id": "24", "metadata": {}, "source": [ "### Store data" @@ -410,7 +410,7 @@ { "cell_type": "code", "execution_count": null, - "id": "556aea48-a819-4f70-8e22-6c843354a46d", + "id": "25", "metadata": {}, "outputs": [], "source": [ @@ -424,14 +424,14 @@ }, { "cell_type": "raw", - "id": "d6b186d5-c907-4b19-9ee2-c7222476856a", + "id": "26", "metadata": {}, "source": [] }, { "cell_type": "code", "execution_count": null, - "id": "fedb4c6e-49c2-44f4-88f0-0e1ce4802bc7", + "id": "27", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Scheldestromen.ipynb b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Scheldestromen.ipynb index 28306f5b..de0aa816 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Scheldestromen.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Scheldestromen.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "065338fd-62d6-480e-8c80-8bc4b101846b", + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -18,7 +18,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3f5aaa20-7965-4aa7-bf24-79965d87edb1", + "id": "1", "metadata": {}, "outputs": [], "source": [ @@ -28,7 +28,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cbbec2b5-c309-4a42-a914-dd33c2da3610", + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e7bb775e-cc57-4586-a13c-8d9ba05ace6b", + "id": "3", "metadata": {}, "outputs": [], "source": [ @@ -51,7 +51,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1f39bd82-2fed-41d6-a4f7-979a9a2120bd", + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -80,7 +80,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4a7d78f8-7605-4aba-b4c6-b17b81d4f5df", + "id": "5", "metadata": {}, "outputs": [], "source": [ @@ -103,7 +103,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0c14883a-873b-44ee-b9d3-57d7da0b67c3", + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -114,7 +114,7 @@ }, { "cell_type": "markdown", - "id": "ffeed567-f858-4e46-83ff-89b7d7ea9b6d", + "id": "7", "metadata": {}, "source": [ "# Scheldestromen" @@ -123,7 +123,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cbe8f365-8b00-4824-b04c-b976f9a43f05", + "id": "8", "metadata": {}, "outputs": [], "source": [ @@ -145,7 +145,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b3f70ee4-d645-4114-b5e2-2dd573374d6e", + "id": "9", "metadata": {}, "outputs": [], "source": [ @@ -158,7 +158,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e58ee099-54b3-415b-8222-9545776a7a61", + "id": "10", "metadata": {}, "outputs": [], "source": [ @@ -171,7 +171,7 @@ { "cell_type": "code", "execution_count": null, - "id": "023a704c-685e-4fe9-9745-39a5ed461a03", + "id": "11", "metadata": {}, "outputs": [], "source": [ @@ -182,7 +182,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4d5d490e-5bba-4d16-95a0-a17880adc0d9", + "id": "12", "metadata": {}, "outputs": [], "source": [ @@ -195,7 +195,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cd21bcac-8d25-4d47-ad0a-c7338e6e6653", + "id": "13", "metadata": {}, "outputs": [], "source": [ @@ -209,7 +209,7 @@ { "cell_type": "code", "execution_count": null, - "id": "88e9543c-2dbe-4ebf-9423-b38daeeaa004", + "id": "14", "metadata": {}, "outputs": [], "source": [ @@ -220,7 +220,7 @@ { "cell_type": "code", "execution_count": null, - "id": "42dc4ba1-3ccb-4b0f-a075-77aec9b85a07", + "id": "15", "metadata": {}, "outputs": [], "source": [ @@ -234,7 +234,7 @@ }, { "cell_type": "markdown", - "id": "21ccbba5-8e59-4134-9209-db988bc5c3d5", + "id": "16", "metadata": {}, "source": [ "### Check for the correct keys and columns" @@ -243,7 +243,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b064a376-0396-4c93-a2ad-eca3eea54598", + "id": "17", "metadata": {}, "outputs": [], "source": [ @@ -253,7 +253,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f9d38f6f-42df-45b4-a1d2-b1a779c104d8", + "id": "18", "metadata": {}, "outputs": [], "source": [ @@ -265,7 +265,7 @@ { "cell_type": "code", "execution_count": null, - "id": "45564e81-4fcf-4479-b406-8142b4a64ad1", + "id": "19", "metadata": {}, "outputs": [], "source": [ @@ -276,7 +276,7 @@ }, { "cell_type": "markdown", - "id": "e4e74b4c-17ba-4829-9531-248f4d74cfad", + "id": "20", "metadata": {}, "source": [ "### Store data" @@ -285,7 +285,7 @@ { "cell_type": "code", "execution_count": null, - "id": "556aea48-a819-4f70-8e22-6c843354a46d", + "id": "21", "metadata": {}, "outputs": [], "source": [ @@ -299,14 +299,14 @@ }, { "cell_type": "raw", - "id": "d6b186d5-c907-4b19-9ee2-c7222476856a", + "id": "22", "metadata": {}, "source": [] }, { "cell_type": "code", "execution_count": null, - "id": "fedb4c6e-49c2-44f4-88f0-0e1ce4802bc7", + "id": "23", "metadata": {}, "outputs": [], "source": [ @@ -316,7 +316,7 @@ { "cell_type": "code", "execution_count": null, - "id": "af637fd1-1d33-4eb2-92c7-51c29e477404", + "id": "24", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Wetterskip.ipynb b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Wetterskip.ipynb index eeb3f2f9..f5278bb5 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Wetterskip.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Wetterskip.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "065338fd-62d6-480e-8c80-8bc4b101846b", + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -17,7 +17,7 @@ }, { "cell_type": "markdown", - "id": "48a939f4-8a39-4c24-b466-499eba37172d", + "id": "1", "metadata": {}, "source": [ "# Wetterskip Fryslan" @@ -26,7 +26,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b782b9c9-12b9-461b-8874-a59dad72e4bd", + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -40,7 +40,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b96e6dab-5341-480d-b077-5b05a2984aa7", + "id": "3", "metadata": {}, "outputs": [], "source": [ @@ -69,7 +69,7 @@ { "cell_type": "code", "execution_count": null, - "id": "05d63407-5f32-41a9-afbb-ade51a17b7a4", + "id": "4", "metadata": {}, "outputs": [], "source": [ @@ -84,7 +84,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ccc56b93-ad7b-4b80-b197-21c6aa07e07c", + "id": "5", "metadata": {}, "outputs": [], "source": [ @@ -95,7 +95,7 @@ { "cell_type": "code", "execution_count": null, - "id": "8e3c5720-ff47-40c2-a3f0-e2e635414ed9", + "id": "6", "metadata": {}, "outputs": [], "source": [ @@ -126,7 +126,7 @@ { "cell_type": "code", "execution_count": null, - "id": "21704eb9-844a-483f-b102-53313a08c3e9", + "id": "7", "metadata": {}, "outputs": [], "source": [ @@ -141,7 +141,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7eed68de-331a-4829-b78e-ab39db127d71", + "id": "8", "metadata": {}, "outputs": [], "source": [ @@ -169,7 +169,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b17739a1-76d0-4d8e-bbf9-2483cc81abe5", + "id": "9", "metadata": {}, "outputs": [], "source": [ @@ -188,7 +188,7 @@ { "cell_type": "code", "execution_count": null, - "id": "54ee138a-5c47-414c-a550-68756f739c91", + "id": "10", "metadata": {}, "outputs": [], "source": [ @@ -207,7 +207,7 @@ { "cell_type": "code", "execution_count": null, - "id": "660832b6-d52f-4c17-9b15-510c265c0bea", + "id": "11", "metadata": {}, "outputs": [], "source": [ @@ -222,7 +222,7 @@ { "cell_type": "code", "execution_count": null, - "id": "81d3df9b-574a-4bd7-860f-2ac4fda4bd4f", + "id": "12", "metadata": {}, "outputs": [], "source": [ @@ -232,7 +232,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ddeaea28-d8ad-484d-880c-965cd4bd8faf", + "id": "13", "metadata": {}, "outputs": [], "source": [ @@ -241,7 +241,7 @@ }, { "cell_type": "markdown", - "id": "2f83cab3-fb65-4336-a0ed-36339c34c2dc", + "id": "14", "metadata": { "jp-MarkdownHeadingCollapsed": true, "tags": [] @@ -253,7 +253,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2982e516-9b1f-4f4e-86cc-5131ff53925a", + "id": "15", "metadata": { "tags": [] }, @@ -276,7 +276,7 @@ }, { "cell_type": "raw", - "id": "ba602947-7d4c-48b0-9651-683efffd0932", + "id": "16", "metadata": {}, "source": [ "There are some peilgebieden without peil. Merge the peilgebied praktijk and the peilgebiedvigerend. Then, take the difference between this merged peilgebied and the peilbesluit gebied. The leftover areas should get a streefpeil based on the layer of peilmerk." @@ -285,7 +285,7 @@ { "cell_type": "code", "execution_count": null, - "id": "868691a9-9659-4026-9588-2d9e73f04db5", + "id": "17", "metadata": {}, "outputs": [], "source": [ @@ -301,7 +301,7 @@ { "cell_type": "code", "execution_count": null, - "id": "29513621-a948-408e-91cd-9255d55d539b", + "id": "18", "metadata": {}, "outputs": [], "source": [ @@ -323,7 +323,7 @@ { "cell_type": "code", "execution_count": null, - "id": "47072d3d-5d87-40c3-bf57-198d618271ae", + "id": "19", "metadata": {}, "outputs": [], "source": [ @@ -335,7 +335,7 @@ { "cell_type": "code", "execution_count": null, - "id": "794c3ba1-d2ec-4ed7-9f7c-432fe189cc81", + "id": "20", "metadata": {}, "outputs": [], "source": [ @@ -348,7 +348,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7484c309-6a03-492b-a27c-fcf3ef837446", + "id": "21", "metadata": {}, "outputs": [], "source": [ @@ -371,7 +371,7 @@ { "cell_type": "code", "execution_count": null, - "id": "25cfdd50-7216-48aa-a60a-b60710500790", + "id": "22", "metadata": {}, "outputs": [], "source": [] @@ -379,7 +379,7 @@ { "cell_type": "code", "execution_count": null, - "id": "57d0bb94-fc26-4299-804e-8c6a17847c77", + "id": "23", "metadata": {}, "outputs": [], "source": [] diff --git a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Zuiderzeeland.ipynb b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Zuiderzeeland.ipynb index 4e7c2f7a..dbb81e72 100644 --- a/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Zuiderzeeland.ipynb +++ b/src/peilbeheerst_model/peilbeheerst_model/preprocess_data/Zuiderzeeland.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": null, - "id": "065338fd-62d6-480e-8c80-8bc4b101846b", + "id": "0", "metadata": {}, "outputs": [], "source": [ @@ -20,7 +20,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cbbec2b5-c309-4a42-a914-dd33c2da3610", + "id": "1", "metadata": {}, "outputs": [], "source": [ @@ -30,7 +30,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e7bb775e-cc57-4586-a13c-8d9ba05ace6b", + "id": "2", "metadata": {}, "outputs": [], "source": [ @@ -42,7 +42,7 @@ }, { "cell_type": "markdown", - "id": "ffeed567-f858-4e46-83ff-89b7d7ea9b6d", + "id": "3", "metadata": {}, "source": [ "# Zuiderzeeland" @@ -51,7 +51,7 @@ { "cell_type": "code", "execution_count": null, - "id": "636e86b9-bd75-4f8f-91eb-e757fba21fde", + "id": "4", "metadata": { "tags": [] }, @@ -78,7 +78,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a0d86e2c-d365-4a03-8276-d59f93367128", + "id": "5", "metadata": {}, "outputs": [], "source": [ @@ -88,7 +88,7 @@ }, { "cell_type": "raw", - "id": "920dff3d-f81f-4e88-a8be-67fa2c60d41b", + "id": "6", "metadata": {}, "source": [ "ZZL: stuwen in KWKSOORT in overigekunstwerken.gpkg" @@ -97,7 +97,7 @@ { "cell_type": "code", "execution_count": null, - "id": "28a99515-40c8-4a8e-b78f-0781869de8be", + "id": "7", "metadata": {}, "outputs": [], "source": [ @@ -112,7 +112,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e58ee099-54b3-415b-8222-9545776a7a61", + "id": "8", "metadata": {}, "outputs": [], "source": [ @@ -128,7 +128,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a9a814bb-bf6a-4822-9447-c8fb0bbc57ae", + "id": "9", "metadata": {}, "outputs": [], "source": [ @@ -164,7 +164,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5a55866b-ece5-45ce-836d-c8b1fc737c2b", + "id": "10", "metadata": {}, "outputs": [], "source": [] @@ -172,7 +172,7 @@ { "cell_type": "code", "execution_count": null, - "id": "aec76a19-0893-48a0-b1af-c8c871d0557d", + "id": "11", "metadata": {}, "outputs": [], "source": [ @@ -246,7 +246,7 @@ }, { "cell_type": "markdown", - "id": "21ccbba5-8e59-4134-9209-db988bc5c3d5", + "id": "12", "metadata": {}, "source": [ "### Check for the correct keys and columns" @@ -255,7 +255,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b064a376-0396-4c93-a2ad-eca3eea54598", + "id": "13", "metadata": {}, "outputs": [], "source": [ @@ -264,7 +264,7 @@ }, { "cell_type": "markdown", - "id": "e4e74b4c-17ba-4829-9531-248f4d74cfad", + "id": "14", "metadata": {}, "source": [ "### Store data" @@ -273,7 +273,7 @@ { "cell_type": "code", "execution_count": null, - "id": "556aea48-a819-4f70-8e22-6c843354a46d", + "id": "15", "metadata": {}, "outputs": [], "source": [ @@ -288,7 +288,7 @@ { "cell_type": "code", "execution_count": null, - "id": "116f9f2a-ad97-44c5-9a2f-ba43c80e4b2d", + "id": "16", "metadata": {}, "outputs": [], "source": [] @@ -296,7 +296,7 @@ { "cell_type": "code", "execution_count": null, - "id": "01a06379-58e7-4621-b998-4f95b947bd63", + "id": "17", "metadata": {}, "outputs": [], "source": [] @@ -304,7 +304,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f48ffb3f-11d0-41d7-9254-61b2c7873436", + "id": "18", "metadata": {}, "outputs": [], "source": [] diff --git a/src/ribasim_lumping/README.md b/src/ribasim_lumping/README.md index a5ee50c8..de8ca0d2 100644 --- a/src/ribasim_lumping/README.md +++ b/src/ribasim_lumping/README.md @@ -5,10 +5,10 @@ This python package is used to develop an aggregated Ribasim network (Deltares, This code was integrated into the Ribasim-NL repository after development in https://github.com/harm-nomden-sweco/ribasim_lumping. ### Objective -This python-package provides functions to translate a D-Hydro or a HyDAMO network into a simplified (aggregated/lumped) Ribasim-network: +This python-package provides functions to translate a D-Hydro or a HyDAMO network into a simplified (aggregated/lumped) Ribasim-network: - The user provides a list of locations where the network should be split, resulting into sub-networks which are called 'basins''; - For these basins relations regarding waterlevel-watersurface-watervolume are calculated; -- Exchange of watervolume (flow) between basins takes place via these split locations. +- Exchange of watervolume (flow) between basins takes place via these split locations. - Stage-discharge relations are generated to define flow-rates between basins. ### Dependencies @@ -21,7 +21,7 @@ Most important dependencies: We will make this package accessible via pypi. It is recommended to clone this repository because it is under development and it includes some example notebooks. We are still working on tests and test data, etc. ### Development, contributions and licences -This package is developed by Sweco (contributors: Harm Nomden and Tessa Andringa) when working on a TKI-project (top consortia for knowledge and innovation) within the NHI programme (Dutch Hydrological Instruments programme). This focuses on the development, testing and application of the new Ribasim-model (https://tkideltatechnologie.nl/project/oppervlaktewatermodule-nhi/). +This package is developed by Sweco (contributors: Harm Nomden and Tessa Andringa) when working on a TKI-project (top consortia for knowledge and innovation) within the NHI programme (Dutch Hydrological Instruments programme). This focuses on the development, testing and application of the new Ribasim-model (https://tkideltatechnologie.nl/project/oppervlaktewatermodule-nhi/). It is possible to contribute, create issues, start discussions. We will respond as soon as possible. This package is developed under the MIT license. Reference to this package: Ribasim-Lumping (Sweco, 2023).