From a0f435fd922745bffbb74438cb9d96f663ff8dda Mon Sep 17 00:00:00 2001 From: DirkEilander <15379728+DirkEilander@users.noreply.github.com> Date: Mon, 1 Jul 2024 10:23:42 +0200 Subject: [PATCH] update predefined catalogs (deltares_data & artifact_data) (#833) Co-authored-by: Tjalling-dejong Co-authored-by: Sam Vente Co-authored-by: Tjalling-dejong <93266159+Tjalling-dejong@users.noreply.github.com> Co-authored-by: hboisgon <45457510+hboisgon@users.noreply.github.com> Co-authored-by: deltamarnix <150045289+deltamarnix@users.noreply.github.com> Co-authored-by: Sam Vente Co-authored-by: roeldegoede <83765910+roeldegoede@users.noreply.github.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: GitHub Co-authored-by: Jaap Langemeijer <33715902+Jaapel@users.noreply.github.com> Co-authored-by: aweerts Co-authored-by: Sam Vente --- data/catalogs/artifact_data/registry.txt | 6 +- .../artifact_data/v0.0.7/data_catalog.yml | 2 +- .../artifact_data/v0.0.8/data_catalog.yml | 190 ++- .../artifact_data/v0.0.9/data_catalog.yml | 185 ++- data/catalogs/changelog.rst | 78 + data/catalogs/deltares_data/registry.txt | 6 +- .../deltares_data/v0.7.0/data_catalog.yml | 1302 +++++++++-------- .../deltares_data/v1.0.0/data_catalog.yml | 1050 ++++++++----- data/catalogs/test_data_catalog.py | 39 +- data/predefined_catalogs.yml | 7 +- docs/changelog.rst | 9 + docs/conf.py | 2 + docs/parse_predefined_catalogs.py | 161 ++ docs/user_guide/data_existing_cat.rst | 89 +- docs/user_guide/hydromt_cli.rst | 2 +- hydromt/_validators/data_catalog.py | 6 +- pixi.lock | 487 +++--- tests/conftest.py | 7 +- 18 files changed, 2283 insertions(+), 1345 deletions(-) create mode 100644 docs/parse_predefined_catalogs.py diff --git a/data/catalogs/artifact_data/registry.txt b/data/catalogs/artifact_data/registry.txt index 1f660a13f..5e32969ff 100644 --- a/data/catalogs/artifact_data/registry.txt +++ b/data/catalogs/artifact_data/registry.txt @@ -1,5 +1,5 @@ +v0.0.9/data_catalog.yml 6592ad6028b01012ed6bf1a7511238c3e02844f696ff2065c404ddbbab55bdc8 v0.0.6/data_catalog.yml 5d9e47158185f1afbf793db68c887f6e6b119d7ffd3edfbc198e5ae3a9d760f3 -v0.0.7/data_catalog.yml 8c4aa8e5bc28fd9a6d25b93d73dc091dd9aa6beec3de48dc2a56b57aafe415ee -v0.0.8/data_catalog.yml c1cf2229eeb93607ea881fdbced45ebf43471271f0b7d878db8183734274cd88 -v0.0.9/data_catalog.yml a074379f3ef244f3a860ec40165163538b6d690d8a3cbc8c6e883e02a8936258 v1.0.0/data_catalog.yml e871875c4d4919eb2f3f0975db2ee4fa6967489ccb6a1f2c231aacb4ca510365 +v0.0.8/data_catalog.yml 3092305249af479061938ca484fe0245731174f072325740e9a85d1e986f8efc +v0.0.7/data_catalog.yml 8daccd1b551b3bafdb95b5ddc4b8dddafd6f25070ad9c543e3c0027bb55bc16e diff --git a/data/catalogs/artifact_data/v0.0.7/data_catalog.yml b/data/catalogs/artifact_data/v0.0.7/data_catalog.yml index 4d549a7c3..07644322a 100644 --- a/data/catalogs/artifact_data/v0.0.7/data_catalog.yml +++ b/data/catalogs/artifact_data/v0.0.7/data_catalog.yml @@ -1,7 +1,7 @@ meta: version: v0.0.7 root: https://github.com/DirkEilander/hydromt-artifacts/releases/download/v0.0.7/data.tar.gz - name: artifact_data + chelsa: crs: 4326 diff --git a/data/catalogs/artifact_data/v0.0.8/data_catalog.yml b/data/catalogs/artifact_data/v0.0.8/data_catalog.yml index e4bcfd3c1..34a2d611d 100644 --- a/data/catalogs/artifact_data/v0.0.8/data_catalog.yml +++ b/data/catalogs/artifact_data/v0.0.8/data_catalog.yml @@ -1,6 +1,6 @@ meta: version: v0.0.8 - root: https://github.com/DirkEilander/hydromt-artifacts/releases/download/v0.0.8/data.tar.gz + root: https://github.com/DirkEilander/hydromt-artifacts/releases/download/v0.0.7/data.tar.gz name: artifact_data chelsa: @@ -13,8 +13,9 @@ chelsa: paper_ref: Karger et al. (2017) source_license: CC BY 4.0 source_url: http://chelsa-climate.org/downloads/ - source_version: 1.2 + version: 1.2 path: chelsa.tif + chirps_global: crs: 4326 data_type: RasterDataset @@ -25,10 +26,11 @@ chirps_global: paper_ref: Funk et al (2014) source_license: CC source_url: https://www.chc.ucsb.edu/data/chirps - source_version: v2.0 + version: 2.0 path: chirps_global.nc unit_add: time: 86400 + corine: data_type: RasterDataset driver: raster @@ -37,8 +39,9 @@ corine: source_author: European Environment Agency source_license: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=metadata source_url: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 - source_version: v.2020_20u1 + version: 2020_20u1 path: corine.tif + dtu10mdt: crs: 4326 data_type: RasterDataset @@ -48,9 +51,10 @@ dtu10mdt: paper_doi: 10.1029/2008JC005179 paper_ref: Andersen and Knudsen (2009) source_url: https://www.space.dtu.dk/english/research/scientific_data_and_models/global_mean_dynamic_topography - source_version: 2010 unit: m+EGM2008 + version: 2010 path: dtu10mdt.tif + dtu10mdt_egm96: crs: 4326 data_type: RasterDataset @@ -60,9 +64,10 @@ dtu10mdt_egm96: paper_doi: 10.1029/2008JC005179 paper_ref: Andersen and Knudsen (2009) source_url: https://www.space.dtu.dk/english/research/scientific_data_and_models/global_mean_dynamic_topography - source_version: 2010 unit: m+EGM96 + version: 2010 path: dtu10mdt_egm96.tif + eobs: crs: 4326 data_type: RasterDataset @@ -73,10 +78,11 @@ eobs: paper_ref: Cornes et al (2018) source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 22.0e + version: 22.0e path: eobs.nc unit_add: time: 86400 + eobs_orography: crs: 4326 data_type: RasterDataset @@ -87,8 +93,9 @@ eobs_orography: paper_ref: Cornes et al (2018) source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 22.0e + version: 22.0e path: eobs_orography.nc + era5: crs: 4326 data_type: RasterDataset @@ -102,7 +109,6 @@ era5: paper_ref: Hersbach et al. (2019) source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://doi.org/10.24381/cds.bd0915c6 - source_version: ERA5 daily data on pressure levels path: era5.nc unit_add: temp: -273.15 @@ -114,6 +120,7 @@ era5: kout: 0.000277778 precip: 1000 press_msl: 0.01 + era5_hourly: crs: 4326 data_type: RasterDataset @@ -125,7 +132,6 @@ era5_hourly: paper_ref: Hersbach et al. (2019) source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://doi.org/10.24381/cds.bd0915c6 - source_version: ERA5 hourly data on pressure levels path: era5_hourly.nc unit_add: temp: -273.15 @@ -134,6 +140,7 @@ era5_hourly: kout: 0.000277778 precip: 1000 press_msl: 0.01 + era5_daily_zarr: crs: 4326 data_type: RasterDataset @@ -147,7 +154,6 @@ era5_daily_zarr: paper_ref: Hersbach et al. (2019) source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://doi.org/10.24381/cds.bd0915c6 - source_version: ERA5 daily data on pressure levels path: era5_daily_zarr.zarr rename: d2m: temp_dew @@ -157,6 +163,7 @@ era5_daily_zarr: temp_dew: -273.15 unit_mult: ssr: 0.000277778 + era5_hourly_zarr: crs: 4326 data_type: RasterDataset @@ -168,7 +175,6 @@ era5_hourly_zarr: paper_ref: Hersbach et al. (2019) source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://doi.org/10.24381/cds.bd0915c6 - source_version: ERA5 hourly data on pressure levels path: era5_hourly_zarr.zarr rename: d2m: temp_dew @@ -178,6 +184,7 @@ era5_hourly_zarr: temp_dew: -273.15 unit_mult: ssr: 0.000277778 + era5_orography: crs: 4326 data_type: RasterDataset @@ -189,10 +196,10 @@ era5_orography: paper_ref: Hersbach et al. (2019) source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://doi.org/10.24381/cds.bd0915c6 - source_version: ERA5 hourly data on pressure levels path: era5_orography.nc unit_mult: elevtn: 0.10197162129779283 + gadm_level1: crs: 4326 data_type: GeoDataFrame @@ -203,8 +210,9 @@ gadm_level1: source_author: gadm source_license: https://gadm.org/license.html source_url: https://gadm.org/download_world.html - source_version: 1.0 + version: 1.0 path: gadm_level1.gpkg + gadm_level2: crs: 4326 data_type: GeoDataFrame @@ -215,8 +223,9 @@ gadm_level2: source_author: gadm source_license: https://gadm.org/license.html source_url: https://gadm.org/download_world.html - source_version: 1.0 + version: 1.0 path: gadm_level2.gpkg + gadm_level3: crs: 4326 data_type: GeoDataFrame @@ -227,8 +236,9 @@ gadm_level3: source_author: gadm source_license: https://gadm.org/license.html source_url: https://gadm.org/download_world.html - source_version: 1.0 + version: 1.0 path: gadm_level3.gpkg + gcn250: data_type: RasterDataset driver: raster @@ -238,9 +248,10 @@ gcn250: paper_ref: Jaafar et al. (2019) source_license: CC BY 4.0 source_url: https://doi.org/10.6084/m9.figshare.7756202.v1 - source_version: v1 + version: 1 nodata: 255 path: gcn250/{variable}.tif + gdp_world: crs: 4326 data_type: GeoDataFrame @@ -252,8 +263,9 @@ gdp_world: data combined from World Bank (https://data.worldbank.org/indicator/NY.GDP.MKTP.CD) and CIA World Factbook (https://www.cia.gov/the-world-factbook/field/real-gdp-per-capita/country-comparison) source_license: CC BY-4.0 - source_version: 1.0 + version: 1.0 path: gdp_world.gpkg + gebco: crs: 4326 data_type: RasterDataset @@ -264,22 +276,31 @@ gebco: paper_ref: Weatherall et al (2020) source_license: https://www.gebco.net/data_and_products/gridded_bathymetry_data/#a1 source_url: https://www.bodc.ac.uk/data/open_download/gebco/gebco_2020/geotiff/ - source_version: 2020 unit: m+MSL + version: 2020 path: gebco.tif -ghs-smod_2015_v2: - crs: 54009 + +ghs_smod_2015: + crs: ESRI:54009 data_type: RasterDataset driver: raster meta: category: socio economic - paper_doi: 10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218 - paper_ref: Pesaresi et al (2019) source_author: JRC-ISPRA EC source_license: https://data.jrc.ec.europa.eu/licence/com_reuse - source_url: https://data.jrc.ec.europa.eu/dataset/42e8be89-54ff-464e-be7b-bf9e64da5218 - source_version: R2019A_v2.0 - path: ghs-smod_2015_v2.tif + variants: + - version: R2016A_v1.0 + path: ghs_smod_2015.tif + meta: + paper_ref: Pesaresi and Freire (2016) + source_url: https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_smod_pop_globe_r2016a + - version: R2019A_v2.0 + path: ghs-smod_2015_v2.tif + meta: + paper_doi: 10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218 + paper_ref: Pesaresi et al (2019) + source_url: https://data.jrc.ec.europa.eu/dataset/42e8be89-54ff-464e-be7b-bf9e64da5218 + ghs_pop_2015: crs: 4326 data_type: RasterDataset @@ -291,10 +312,11 @@ ghs_pop_2015: source_author: JRC-ISPRA EC source_license: https://data.jrc.ec.europa.eu/licence/com_reuse source_url: https://data.jrc.ec.europa.eu/dataset/0c6b9751-a71f-4062-830b-43c9f432370f - source_version: R2019A_v1.0 + version: R2019A_v1.0 path: ghs_pop_2015.tif + ghs_pop_2015_54009: - crs: 54009 + crs: ESRI:54009 data_type: RasterDataset driver: raster meta: @@ -303,19 +325,9 @@ ghs_pop_2015_54009: paper_ref: Florczyk et al (2019) source_license: CC BY 4.0 source_url: https://ghsl.jrc.ec.europa.eu/download.php?ds=pop + version: R2019A_v1.0 path: ghs_pop_2015_54009.tif -ghs_smod_2015: - crs: 54009 - data_type: RasterDataset - driver: raster - meta: - category: socio economic - paper_ref: Pesaresi and Freire (2016) - source_author: JRC-ISPRA EC - source_license: https://data.jrc.ec.europa.eu/licence/com_reuse - source_url: https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_smod_pop_globe_r2016a - source_version: R2016A_v1.0 - path: ghs_smod_2015.tif + globcover: crs: 4326 data_type: RasterDataset @@ -326,7 +338,9 @@ globcover: paper_ref: Arino et al (2012) source_license: CC-BY-3.0 source_url: http://due.esrin.esa.int/page_globcover.php + version: 2.3 path: globcover.tif + glw_buffaloes: crs: 4326 data_type: RasterDataset @@ -338,8 +352,9 @@ glw_buffaloes: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_buffaloes.tif + glw_cattle: crs: 4326 data_type: RasterDataset @@ -351,8 +366,9 @@ glw_cattle: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_cattle.tif + glw_chicken: crs: 4326 data_type: RasterDataset @@ -364,8 +380,9 @@ glw_chicken: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_chicken.tif + glw_ducks: crs: 4326 data_type: RasterDataset @@ -377,8 +394,9 @@ glw_ducks: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_ducks.tif + glw_goats: crs: 4326 data_type: RasterDataset @@ -390,8 +408,9 @@ glw_goats: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_goats.tif + glw_horses: crs: 4326 data_type: RasterDataset @@ -403,8 +422,9 @@ glw_horses: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_horses.tif + glw_pigs: crs: 4326 data_type: RasterDataset @@ -416,8 +436,9 @@ glw_pigs: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_pigs.tif + glw_sheep: crs: 4326 data_type: RasterDataset @@ -429,8 +450,9 @@ glw_sheep: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_sheep.tif + grdc: crs: 4326 data_type: GeoDataFrame @@ -441,6 +463,7 @@ grdc: source_license: https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/210_prtl/tou.html;jsessionid=A56D50D4A36D3D8707CBF00CBD71F106.live11291?nn=2862854 source_url: https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser#dataDownload/StationCatalogue path: grdc.csv + grip_roads: crs: 4326 data_type: GeoDataFrame @@ -451,8 +474,9 @@ grip_roads: paper_ref: Meijer et al, 2018 source_license: CC0-1.0 source_url: https://www.globio.info/download-grip-dataset - source_version: v4 + version: 4 path: grip_roads.gpkg + grwl: data_type: GeoDataFrame driver: vector @@ -462,12 +486,13 @@ grwl: paper_ref: Allen and Pavelsky (2018) source_license: CC BY 4.0 source_url: https://doi.org/10.5281/zenodo.1297434 - source_version: 1.01 + version: 1.01 path: grwl.gpkg + grwl_mask: data_type: RasterDataset driver: raster_tindex - kwargs: + driver_kwargs: chunks: x: 3000 y: 3000 @@ -479,9 +504,10 @@ grwl_mask: paper_ref: Allen and Pavelsky (2018) source_license: CC BY 4.0 source_url: https://doi.org/10.5281/zenodo.1297434 - source_version: 1.01 + version: 1.01 nodata: 0 path: grwl_tindex.gpkg + gswo: data_type: RasterDataset driver: raster @@ -490,9 +516,10 @@ gswo: paper_doi: 10.1038/nature20584 paper_ref: Pekel et al. (2016) source_url: https://global-surface-water.appspot.com/download - source_version: v1_1_2019 + version: 1.1 nodata: 255 path: gswo.tif + gtsmv3_eu_era5: crs: 4326 data_type: GeoDataset @@ -503,9 +530,10 @@ gtsmv3_eu_era5: paper_ref: Copernicus Climate Change Service 2019 source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.8c59054f?tab=overview - source_version: GTSM v3.0 + version: 3.0 path: gtsmv3_eu_era5.nc -guf_bld_2012: + +guf: crs: 4326 data_type: RasterDataset driver: raster @@ -515,7 +543,9 @@ guf_bld_2012: paper_ref: Esch et al (2017) source_license: https://www.dlr.de/eoc/en/PortalData/60/Resources/dokumente/guf/DLR-GUF_LicenseAgreement-and-OrderForm.pdf source_url: http://www.dlr.de/guf + version: 2 path: guf_bld_2012.tif + hydro_lakes: crs: 4326 data_type: GeoDataFrame @@ -524,10 +554,11 @@ hydro_lakes: category: surface water source_author: Arjen Haag source_info: HydroLAKES.v10_extract - source_version: 1.0 + version: 1.0 path: hydro_lakes.gpkg unit_mult: Area_avg: 1000000.0 + hydro_reservoirs: crs: 4326 data_type: GeoDataFrame @@ -536,7 +567,7 @@ hydro_reservoirs: category: surface water source_author: Alessia Matano source_info: GRanD.v1.1_HydroLAKES.v10_JRC.2016 - source_version: 1.0 + version: 1.0 nodata: -99 path: hydro_reservoirs.gpkg unit_mult: @@ -545,6 +576,7 @@ hydro_reservoirs: Capacity_min: 1000000.0 Capacity_norm: 1000000.0 Vol_avg: 1000000.0 + koppen_geiger: crs: 4326 data_type: RasterDataset @@ -554,9 +586,10 @@ koppen_geiger: paper_doi: 10.1127/0941-2948/2006/0130 paper_ref: Kottek et al. (2006) source_url: http://koeppen-geiger.vu-wien.ac.at/present.htm - source_version: 2017 + version: 2017 nodata: 0 path: koppen_geiger.tif + mdt_cnes_cls18: crs: 4326 data_type: RasterDataset @@ -566,9 +599,10 @@ mdt_cnes_cls18: paper_doi: 10.5194/os-17-789-2021 paper_ref: Mulet et al (2021) source_url: https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mdt.html - source_version: 18 unit: m+GOCO05S + version: 18 path: mdt_cnes_cls18.tif + merit_hydro: crs: 4326 data_type: RasterDataset @@ -579,8 +613,9 @@ merit_hydro: paper_ref: Yamazaki et al. (2019) source_license: CC-BY-NC 4.0 or ODbL 1.0 source_url: http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro - source_version: 1.0 + version: 1.0 path: merit_hydro/{variable}.tif + merit_hydro_1k: crs: 4326 data_type: RasterDataset @@ -591,8 +626,9 @@ merit_hydro_1k: paper_ref: Eilander et al. (in review) source_license: CC-BY-NC 4.0 source_url: https://doi.org/10.5281/zenodo.4138776 - source_version: 0.1 + version: 0.1 path: merit_hydro_1k/{variable}.tif + merit_hydro_index: crs: 4326 data_type: GeoDataFrame @@ -602,7 +638,9 @@ merit_hydro_index: paper_doi: 10.5194/hess-2020-582 paper_ref: Eilander et al. (in review) source_license: CC-BY-NC 4.0 + version: 1.0 path: merit_hydro_index.gpkg + modis_lai: crs: 4326 data_type: RasterDataset @@ -616,10 +654,11 @@ modis_lai: paper_ref: Myneni et al (2015) source_license: https://lpdaac.usgs.gov/data/data-citation-and-policies/ source_url: https://lpdaac.usgs.gov/products/mcd15a3hv006/ - source_version: MCD15A3H V006 + version: MCD15A3H V006 path: modis_lai.nc unit_mult: LAI: 0.1 + osm_coastlines: crs: 4326 data_type: GeoDataFrame @@ -630,8 +669,9 @@ osm_coastlines: source_info: OpenStreetMap coastlines water polygons, last updated 2020-01-09T05:29 source_license: ODbL source_url: https://osmdata.openstreetmap.de/data/coastlines.html - source_version: 1.0 + version: 1.0 path: osm_coastlines.gpkg + osm_landareas: crs: 4326 data_type: GeoDataFrame @@ -642,8 +682,9 @@ osm_landareas: source_info: OpenStreetMap coastlines land polygons, last updated 2020-01-09T05:29 source_license: ODbL source_url: https://osmdata.openstreetmap.de/data/coastlines.html - source_version: 1.0 + version: 1.0 path: osm_landareas.gpkg + rgi: crs: 4326 data_type: GeoDataFrame @@ -655,9 +696,10 @@ rgi: source_info: Randolph Glacier Inventory source_license: CC BY 4.0 source_url: https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-glaciers-extent?tab=overview - source_version: 6.0 + version: 6.0 path: rgi.gpkg -rivers_lin2019_v1: + +hydro_rivers_lin2019: data_type: GeoDataFrame driver: vector meta: @@ -666,8 +708,9 @@ rivers_lin2019_v1: paper_ref: Lin et al. (2019) source_license: CC-BY-NC 4.0 source_url: https://zenodo.org/record/3552776#.YVbOrppByUk - source_version: 1 + version: 1 path: rivers_lin2019_v1.gpkg + simard: crs: 4326 data_type: RasterDataset @@ -677,7 +720,9 @@ simard: paper_doi: 10.1029/2011JG001708 paper_ref: Simard et al (2011) source_url: https://webmap.ornl.gov/ogc/dataset.jsp?ds_id=10023 + version: 2011 path: simard.tif + soilgrids: crs: 4326 data_type: RasterDataset @@ -696,7 +741,7 @@ soilgrids: paper_ref: Hengl et al. (2017) source_license: ODbL source_url: https://www.isric.org/explore/soilgrids/faq-soilgrids-2017 - source_version: 2017 + version: 2017 path: soilgrids/{variable}.tif unit_mult: bd_sl1: 0.001 @@ -720,6 +765,7 @@ soilgrids: ph_sl5: 0.1 ph_sl6: 0.1 ph_sl7: 0.1 + vito: crs: 4326 data_type: RasterDataset @@ -729,8 +775,9 @@ vito: paper_doi: 10.5281/zenodo.3939038 paper_ref: Buchhorn et al (2020) source_url: https://land.copernicus.eu/global/products/lc - source_version: v2.0.2 + version: 2.0.2 path: vito.tif + wb_countries: crs: 4326 data_type: GeoDataFrame @@ -741,7 +788,9 @@ wb_countries: source_license: CC-BY 4.0 source_url: https://datacatalog.worldbank.org/dataset/world-bank-official-boundaries timestamp: February 2020 + version: 2020319 path: wb_countries.gpkg + worldclim: crs: 4326 data_type: RasterDataset @@ -751,5 +800,6 @@ worldclim: paper_doi: 10.1002/joc.5086 paper_ref: Fick and Hijmans (2017) source_url: https://www.worldclim.org/data/worldclim21.html - source_version: 2 + version: 2 + nodata: -999.0 path: worldclim.nc diff --git a/data/catalogs/artifact_data/v0.0.9/data_catalog.yml b/data/catalogs/artifact_data/v0.0.9/data_catalog.yml index 518ea84c5..f1e1a46f4 100644 --- a/data/catalogs/artifact_data/v0.0.9/data_catalog.yml +++ b/data/catalogs/artifact_data/v0.0.9/data_catalog.yml @@ -13,8 +13,9 @@ chelsa: paper_ref: Karger et al. (2017) source_license: CC BY 4.0 source_url: http://chelsa-climate.org/downloads/ - source_version: 1.2 + version: 1.2 path: chelsa.tif + chirps_global: crs: 4326 data_type: RasterDataset @@ -25,10 +26,11 @@ chirps_global: paper_ref: Funk et al (2014) source_license: CC source_url: https://www.chc.ucsb.edu/data/chirps - source_version: v2.0 + version: v2.0 path: chirps_global.nc unit_add: time: 86400 + corine: data_type: RasterDataset driver: raster @@ -37,8 +39,9 @@ corine: source_author: European Environment Agency source_license: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=metadata source_url: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 - source_version: v.2020_20u1 + version: v.2020_20u1 path: corine.tif + dtu10mdt: crs: 4326 data_type: RasterDataset @@ -48,9 +51,10 @@ dtu10mdt: paper_doi: 10.1029/2008JC005179 paper_ref: Andersen and Knudsen (2009) source_url: https://www.space.dtu.dk/english/research/scientific_data_and_models/global_mean_dynamic_topography - source_version: 2010 unit: m+EGM2008 + version: 2010 path: dtu10mdt.tif + dtu10mdt_egm96: crs: 4326 data_type: RasterDataset @@ -60,9 +64,10 @@ dtu10mdt_egm96: paper_doi: 10.1029/2008JC005179 paper_ref: Andersen and Knudsen (2009) source_url: https://www.space.dtu.dk/english/research/scientific_data_and_models/global_mean_dynamic_topography - source_version: 2010 unit: m+EGM96 + version: 2010 path: dtu10mdt_egm96.tif + eobs: crs: 4326 data_type: RasterDataset @@ -73,10 +78,11 @@ eobs: paper_ref: Cornes et al (2018) source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 22.0e + version: 22.0e path: eobs.nc unit_add: time: 86400 + eobs_orography: crs: 4326 data_type: RasterDataset @@ -87,8 +93,9 @@ eobs_orography: paper_ref: Cornes et al (2018) source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 22.0e + version: 22.0e path: eobs_orography.nc + era5: crs: 4326 data_type: RasterDataset @@ -102,7 +109,7 @@ era5: paper_ref: Hersbach et al. (2019) source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://doi.org/10.24381/cds.bd0915c6 - source_version: ERA5 daily data on pressure levels + version: ERA5 daily data on pressure levels path: era5.nc unit_add: temp: -273.15 @@ -114,6 +121,7 @@ era5: kout: 0.000277778 precip: 1000 press_msl: 0.01 + era5_hourly: crs: 4326 data_type: RasterDataset @@ -125,7 +133,6 @@ era5_hourly: paper_ref: Hersbach et al. (2019) source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://doi.org/10.24381/cds.bd0915c6 - source_version: ERA5 hourly data on pressure levels path: era5_hourly.nc unit_add: temp: -273.15 @@ -134,6 +141,7 @@ era5_hourly: kout: 0.000277778 precip: 1000 press_msl: 0.01 + era5_daily_zarr: crs: 4326 data_type: RasterDataset @@ -147,8 +155,8 @@ era5_daily_zarr: paper_ref: Hersbach et al. (2019) source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://doi.org/10.24381/cds.bd0915c6 - source_version: ERA5 daily data on pressure levels path: era5_daily_zarr.zarr + era5_hourly_zarr: crs: 4326 data_type: RasterDataset @@ -160,8 +168,8 @@ era5_hourly_zarr: paper_ref: Hersbach et al. (2019) source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://doi.org/10.24381/cds.bd0915c6 - source_version: ERA5 hourly data on pressure levels path: era5_hourly_zarr.zarr + era5_orography: crs: 4326 data_type: RasterDataset @@ -173,10 +181,10 @@ era5_orography: paper_ref: Hersbach et al. (2019) source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://doi.org/10.24381/cds.bd0915c6 - source_version: ERA5 hourly data on pressure levels path: era5_orography.nc unit_mult: elevtn: 0.10197162129779283 + gadm_level1: crs: 4326 data_type: GeoDataFrame @@ -187,8 +195,9 @@ gadm_level1: source_author: gadm source_license: https://gadm.org/license.html source_url: https://gadm.org/download_world.html - source_version: 1.0 + version: 1.0 path: gadm_level1.gpkg + gadm_level2: crs: 4326 data_type: GeoDataFrame @@ -199,8 +208,9 @@ gadm_level2: source_author: gadm source_license: https://gadm.org/license.html source_url: https://gadm.org/download_world.html - source_version: 1.0 + version: 1.0 path: gadm_level2.gpkg + gadm_level3: crs: 4326 data_type: GeoDataFrame @@ -211,8 +221,9 @@ gadm_level3: source_author: gadm source_license: https://gadm.org/license.html source_url: https://gadm.org/download_world.html - source_version: 1.0 + version: 1.0 path: gadm_level3.gpkg + gcn250: data_type: RasterDataset driver: raster @@ -222,9 +233,10 @@ gcn250: paper_ref: Jaafar et al. (2019) source_license: CC BY 4.0 source_url: https://doi.org/10.6084/m9.figshare.7756202.v1 - source_version: v1 nodata: 255 + version: v1 path: gcn250/{variable}.tif + gdp_world: crs: 4326 data_type: GeoDataFrame @@ -236,8 +248,9 @@ gdp_world: data combined from World Bank (https://data.worldbank.org/indicator/NY.GDP.MKTP.CD) and CIA World Factbook (https://www.cia.gov/the-world-factbook/field/real-gdp-per-capita/country-comparison) source_license: CC BY-4.0 - source_version: 1.0 + version: 1.0 path: gdp_world.gpkg + gebco: crs: 4326 data_type: RasterDataset @@ -248,22 +261,31 @@ gebco: paper_ref: Weatherall et al (2020) source_license: https://www.gebco.net/data_and_products/gridded_bathymetry_data/#a1 source_url: https://www.bodc.ac.uk/data/open_download/gebco/gebco_2020/geotiff/ - source_version: 2020 unit: m+MSL + version: 2020 path: gebco.tif -ghs-smod_2015_v2: - crs: 54009 + +ghs_smod_2015: + crs: ESRI:54009 data_type: RasterDataset driver: raster meta: category: socio economic - paper_doi: 10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218 - paper_ref: Pesaresi et al (2019) source_author: JRC-ISPRA EC source_license: https://data.jrc.ec.europa.eu/licence/com_reuse - source_url: https://data.jrc.ec.europa.eu/dataset/42e8be89-54ff-464e-be7b-bf9e64da5218 - source_version: R2019A_v2.0 - path: ghs-smod_2015_v2.tif + variants: + - version: R2016A_v1.0 + path: ghs_smod_2015.tif + meta: + paper_ref: Pesaresi and Freire (2016) + source_url: https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_smod_pop_globe_r2016a + - version: R2019A_v2.0 + path: ghs-smod_2015_v2.tif + meta: + paper_doi: 10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218 + paper_ref: Pesaresi et al (2019) + source_url: https://data.jrc.ec.europa.eu/dataset/42e8be89-54ff-464e-be7b-bf9e64da5218 + ghs_pop_2015: crs: 4326 data_type: RasterDataset @@ -275,10 +297,10 @@ ghs_pop_2015: source_author: JRC-ISPRA EC source_license: https://data.jrc.ec.europa.eu/licence/com_reuse source_url: https://data.jrc.ec.europa.eu/dataset/0c6b9751-a71f-4062-830b-43c9f432370f - source_version: R2019A_v1.0 path: ghs_pop_2015.tif + ghs_pop_2015_54009: - crs: 54009 + crs: ESRI:54009 data_type: RasterDataset driver: raster meta: @@ -287,20 +309,10 @@ ghs_pop_2015_54009: paper_ref: Florczyk et al (2019) source_license: CC BY 4.0 source_url: https://ghsl.jrc.ec.europa.eu/download.php?ds=pop + version: R2019A_v1.0 path: ghs_pop_2015_54009.tif -ghs_smod_2015: - crs: 54009 - data_type: RasterDataset - driver: raster - meta: - category: socio economic - paper_ref: Pesaresi and Freire (2016) - source_author: JRC-ISPRA EC - source_license: https://data.jrc.ec.europa.eu/licence/com_reuse - source_url: https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_smod_pop_globe_r2016a - source_version: R2016A_v1.0 - path: ghs_smod_2015.tif -globcover: + +globcover_2009: crs: 4326 data_type: RasterDataset driver: raster @@ -311,6 +323,7 @@ globcover: source_license: CC-BY-3.0 source_url: http://due.esrin.esa.int/page_globcover.php path: globcover.tif + glw_buffaloes: crs: 4326 data_type: RasterDataset @@ -322,8 +335,9 @@ glw_buffaloes: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_buffaloes.tif + glw_cattle: crs: 4326 data_type: RasterDataset @@ -335,8 +349,9 @@ glw_cattle: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_cattle.tif + glw_chicken: crs: 4326 data_type: RasterDataset @@ -348,8 +363,9 @@ glw_chicken: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_chicken.tif + glw_ducks: crs: 4326 data_type: RasterDataset @@ -361,8 +377,9 @@ glw_ducks: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_ducks.tif + glw_goats: crs: 4326 data_type: RasterDataset @@ -374,8 +391,9 @@ glw_goats: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_goats.tif + glw_horses: crs: 4326 data_type: RasterDataset @@ -387,8 +405,9 @@ glw_horses: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_horses.tif + glw_pigs: crs: 4326 data_type: RasterDataset @@ -400,8 +419,9 @@ glw_pigs: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_pigs.tif + glw_sheep: crs: 4326 data_type: RasterDataset @@ -413,8 +433,9 @@ glw_sheep: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + version: 3 path: glw_sheep.tif + grdc: crs: 4326 data_type: GeoDataFrame @@ -425,6 +446,7 @@ grdc: source_license: https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/210_prtl/tou.html;jsessionid=A56D50D4A36D3D8707CBF00CBD71F106.live11291?nn=2862854 source_url: https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser#dataDownload/StationCatalogue path: grdc.csv + grip_roads: crs: 4326 data_type: GeoDataFrame @@ -435,8 +457,9 @@ grip_roads: paper_ref: Meijer et al, 2018 source_license: CC0-1.0 source_url: https://www.globio.info/download-grip-dataset - source_version: v4 + version: v4 path: grip_roads.gpkg + grwl: data_type: GeoDataFrame driver: vector @@ -446,8 +469,9 @@ grwl: paper_ref: Allen and Pavelsky (2018) source_license: CC BY 4.0 source_url: https://doi.org/10.5281/zenodo.1297434 - source_version: 1.01 + version: 1.01 path: grwl.gpkg + grwl_mask: data_type: RasterDataset driver: raster_tindex @@ -463,9 +487,10 @@ grwl_mask: paper_ref: Allen and Pavelsky (2018) source_license: CC BY 4.0 source_url: https://doi.org/10.5281/zenodo.1297434 - source_version: 1.01 + version: 1.01 nodata: 0 path: grwl_tindex.gpkg + gswo: data_type: RasterDataset driver: raster @@ -474,9 +499,10 @@ gswo: paper_doi: 10.1038/nature20584 paper_ref: Pekel et al. (2016) source_url: https://global-surface-water.appspot.com/download - source_version: v1_1_2019 + version: v1_1_2019 nodata: 255 path: gswo.tif + gtsmv3_eu_era5: crs: 4326 data_type: GeoDataset @@ -487,8 +513,9 @@ gtsmv3_eu_era5: paper_ref: Copernicus Climate Change Service 2019 source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.8c59054f?tab=overview - source_version: GTSM v3.0 + version: 3.0 path: gtsmv3_eu_era5.nc + guf_bld_2012: crs: 4326 data_type: RasterDataset @@ -500,6 +527,7 @@ guf_bld_2012: source_license: https://www.dlr.de/eoc/en/PortalData/60/Resources/dokumente/guf/DLR-GUF_LicenseAgreement-and-OrderForm.pdf source_url: http://www.dlr.de/guf path: guf_bld_2012.tif + hydro_lakes: crs: 4326 data_type: GeoDataFrame @@ -508,10 +536,11 @@ hydro_lakes: category: surface water source_author: Arjen Haag source_info: HydroLAKES.v10_extract - source_version: 1.0 + version: 1.0 path: hydro_lakes.gpkg unit_mult: Area_avg: 1000000.0 + hydro_reservoirs: crs: 4326 data_type: GeoDataFrame @@ -520,8 +549,8 @@ hydro_reservoirs: category: surface water source_author: Alessia Matano source_info: GRanD.v1.1_HydroLAKES.v10_JRC.2016 - source_version: 1.0 nodata: -99 + version: 1.0 path: hydro_reservoirs.gpkg unit_mult: Area_avg: 1000000.0 @@ -529,6 +558,7 @@ hydro_reservoirs: Capacity_min: 1000000.0 Capacity_norm: 1000000.0 Vol_avg: 1000000.0 + koppen_geiger: crs: 4326 data_type: RasterDataset @@ -538,9 +568,10 @@ koppen_geiger: paper_doi: 10.1127/0941-2948/2006/0130 paper_ref: Kottek et al. (2006) source_url: http://koeppen-geiger.vu-wien.ac.at/present.htm - source_version: 2017 nodata: 0 + version: 2017 path: koppen_geiger.tif + mdt_cnes_cls18: crs: 4326 data_type: RasterDataset @@ -550,9 +581,10 @@ mdt_cnes_cls18: paper_doi: 10.5194/os-17-789-2021 paper_ref: Mulet et al (2021) source_url: https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mdt.html - source_version: 18 unit: m+GOCO05S + version: 18 path: mdt_cnes_cls18.tif + merit_hydro: crs: 4326 data_type: RasterDataset @@ -563,9 +595,10 @@ merit_hydro: paper_ref: Yamazaki et al. (2019) source_license: CC-BY-NC 4.0 or ODbL 1.0 source_url: http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro - source_version: 1.0 + version: 1.0 path: merit_hydro/{variable}.tif -merit_hydro_1k: + +merit_hydro_ihu: crs: 4326 data_type: RasterDataset driver: raster @@ -575,8 +608,9 @@ merit_hydro_1k: paper_ref: Eilander et al. (in review) source_license: CC-BY-NC 4.0 source_url: https://doi.org/10.5281/zenodo.4138776 - source_version: 0.1 + version: 0.1 path: merit_hydro_1k/{variable}.tif + merit_hydro_index: crs: 4326 data_type: GeoDataFrame @@ -587,6 +621,7 @@ merit_hydro_index: paper_ref: Eilander et al. (in review) source_license: CC-BY-NC 4.0 path: merit_hydro_index.gpkg + modis_lai: crs: 4326 data_type: RasterDataset @@ -600,10 +635,11 @@ modis_lai: paper_ref: Myneni et al (2015) source_license: https://lpdaac.usgs.gov/data/data-citation-and-policies/ source_url: https://lpdaac.usgs.gov/products/mcd15a3hv006/ - source_version: MCD15A3H V006 + version: 6 path: modis_lai.nc unit_mult: LAI: 0.1 + osm_coastlines: crs: 4326 data_type: GeoDataFrame @@ -614,8 +650,9 @@ osm_coastlines: source_info: OpenStreetMap coastlines water polygons, last updated 2020-01-09T05:29 source_license: ODbL source_url: https://osmdata.openstreetmap.de/data/coastlines.html - source_version: 1.0 + version: 1.0 path: osm_coastlines.gpkg + osm_landareas: crs: 4326 data_type: GeoDataFrame @@ -626,8 +663,9 @@ osm_landareas: source_info: OpenStreetMap coastlines land polygons, last updated 2020-01-09T05:29 source_license: ODbL source_url: https://osmdata.openstreetmap.de/data/coastlines.html - source_version: 1.0 + version: 1.0 path: osm_landareas.gpkg + rgi: crs: 4326 data_type: GeoDataFrame @@ -639,9 +677,10 @@ rgi: source_info: Randolph Glacier Inventory source_license: CC BY 4.0 source_url: https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-glaciers-extent?tab=overview - source_version: 6.0 + version: 6.0 path: rgi.gpkg -rivers_lin2019_v1: + +hydro_rivers_lin: data_type: GeoDataFrame driver: vector meta: @@ -650,8 +689,10 @@ rivers_lin2019_v1: paper_ref: Lin et al. (2019) source_license: CC-BY-NC 4.0 source_url: https://zenodo.org/record/3552776#.YVbOrppByUk - source_version: 1 + processing_notes: hydrography/rivers_lin2019/README + version: 1 path: rivers_lin2019_v1.gpkg + simard: crs: 4326 data_type: RasterDataset @@ -662,6 +703,7 @@ simard: paper_ref: Simard et al (2011) source_url: https://webmap.ornl.gov/ogc/dataset.jsp?ds_id=10023 path: simard.tif + soilgrids: crs: 4326 data_type: RasterDataset @@ -680,7 +722,7 @@ soilgrids: paper_ref: Hengl et al. (2017) source_license: ODbL source_url: https://www.isric.org/explore/soilgrids/faq-soilgrids-2017 - source_version: 2017 + version: 2017 path: soilgrids/{variable}.tif unit_mult: bd_sl1: 0.001 @@ -704,7 +746,8 @@ soilgrids: ph_sl5: 0.1 ph_sl6: 0.1 ph_sl7: 0.1 -vito: + +vito_2015: crs: 4326 data_type: RasterDataset driver: raster @@ -713,8 +756,9 @@ vito: paper_doi: 10.5281/zenodo.3939038 paper_ref: Buchhorn et al (2020) source_url: https://land.copernicus.eu/global/products/lc - source_version: v2.0.2 + version: 2.0.2 path: vito.tif + wb_countries: crs: 4326 data_type: GeoDataFrame @@ -726,6 +770,7 @@ wb_countries: source_url: https://datacatalog.worldbank.org/dataset/world-bank-official-boundaries timestamp: February 2020 path: wb_countries.gpkg + worldclim: crs: 4326 data_type: RasterDataset @@ -735,5 +780,5 @@ worldclim: paper_doi: 10.1002/joc.5086 paper_ref: Fick and Hijmans (2017) source_url: https://www.worldclim.org/data/worldclim21.html - source_version: 2 + version: 2 path: worldclim.nc diff --git a/data/catalogs/changelog.rst b/data/catalogs/changelog.rst index f47ff7746..1e45b50cf 100644 --- a/data/catalogs/changelog.rst +++ b/data/catalogs/changelog.rst @@ -24,6 +24,84 @@ Added deltares_data ============= +version v0.7.0 +-------------- + +added +^^^^^ +- version argument to data source where applicable +- variants argument for data sources that are of the same dataset but different versions +- processing_script / processing_notes arguments to data sources that have been (pre-) processed +- temporal extent of datasets that have a temporal dimension. +- spatial extents to datasets + +changed +^^^^^^^ +- removed source_version from data source meta +- kwargs to driver_kwargs +- updated source_url if url was not working anymore +- sorted datasets by alphabetical order +- Removed version from dataset names +- prefixed 'hydro' for all HydroSHEDS datasets +- added the epoch of the dataset to the name of the dataset + +See table below for mapping of old and new names: + ++--------------------------------+---------------------------+ +| Old name | New name | ++================================+===========================+ +| basin_atlas_level12_v10 | hydro_basin_atlas_level12 | ++--------------------------------+---------------------------+ +| eobs_v.. | eobs | ++--------------------------------+---------------------------+ +| eobs_orography_v.. | eobs_orography | ++--------------------------------+---------------------------+ +| lake_atlas_pol_v10 | hydro_lake_atlas_pol | ++--------------------------------+---------------------------+ +| river_atlas_v10 | hydro_river_atlas | ++--------------------------------+---------------------------+ +| ghs_pop_2015_54009_v2019a | ghs_pop_2015 | ++--------------------------------+---------------------------+ +| ghs_smod_2015_54009_v2019a | ghs_smod_2015 | ++--------------------------------+---------------------------+ +| glofas_era5_v31 | glofas_era5 | ++--------------------------------+---------------------------+ +| guf_bld_2012 | guf_bld_2012 | ++--------------------------------+---------------------------+ +| rivers_lin2019_v1 | hydro_rivers_lin2019 | ++--------------------------------+---------------------------+ +| SM2RAIN_ASCAT_monthly_025_v1.4 | SM2RAIN_ASCAT_monthly_025 | ++--------------------------------+---------------------------+ +| SM2RAIN_ASCAT_monthly_05_v1.4 | SM2RAIN_ASCAT_monthly_05 | ++--------------------------------+---------------------------+ +| vito | vito_2015 | ++--------------------------------+---------------------------+ +| vito_2015_v2.0.2 | vito_2015 | ++--------------------------------+---------------------------+ +| vito_2016_v3.0.1 | vito_2016 | ++--------------------------------+---------------------------+ +| vito_2017_v3.0.1 | vito_2017 | ++--------------------------------+---------------------------+ +| vito_2018_v3.0.1 | vito_2018 | ++--------------------------------+---------------------------+ +| vito_2019_v3.0.1 | vito_2019 | ++--------------------------------+---------------------------+ + + +- Some datasets have multiple versions, for these datasets the default can be changed if +you do not supply a version in your config file. See the table below for which dataset +the default version has changed. + ++----------------+-----------------+--------------------------+ +| Dataset name | Default version | Previous default version | ++================+=================+==========================+ +| eobs | 25.0e | 22.0e | ++----------------+-----------------+--------------------------+ +| eobs_orography | 25.0e | 22.0e | ++----------------+-----------------+--------------------------+ + + + version: 2024.1.30 --------------- diff --git a/data/catalogs/deltares_data/registry.txt b/data/catalogs/deltares_data/registry.txt index 252a212d4..87fef0706 100644 --- a/data/catalogs/deltares_data/registry.txt +++ b/data/catalogs/deltares_data/registry.txt @@ -1,4 +1,4 @@ -v0.5.0/data_catalog.yml 418f93cebb57c8d165556c874a3cd4077afca1d38e76640273c86b740d18c0ef v0.6.0/data_catalog.yml b002767a1cdd24ec8708caa0b658bdeed1cfb93d985efd78f6e9343e00da0f21 -v0.7.0/data_catalog.yml e3acaf4634a0302045d8b7249c27ba560b48050b13d268603bd1b3fe6006ce05 -v1.0.0/data_catalog.yml b3c1891d073ba0fe0de5283ac9ab8bbc4963623042768354b870cbb2aad700f5 +v0.5.0/data_catalog.yml 418f93cebb57c8d165556c874a3cd4077afca1d38e76640273c86b740d18c0ef +v1.0.0/data_catalog.yml 79ab491af13cbe83e1f7680ab502d52276f3257d40479b70d8b4f34cdbeec2d9 +v0.7.0/data_catalog.yml 24c77c0c5429353eeedb75d4c0f2dbfa305d81454b2fbf32239ab23166b3b1a6 diff --git a/data/catalogs/deltares_data/v0.7.0/data_catalog.yml b/data/catalogs/deltares_data/v0.7.0/data_catalog.yml index 805e36146..0111169f6 100644 --- a/data/catalogs/deltares_data/v0.7.0/data_catalog.yml +++ b/data/catalogs/deltares_data/v0.7.0/data_catalog.yml @@ -2,13 +2,14 @@ meta: root: p:/wflow_global/hydromt version: v0.7.0 + hydromt_version: '>=0.9, <1.0' name: deltares_data -basin_atlas_level12_v10: +hydro_basin_atlas_level12: crs: 4326 data_type: GeoDataFrame driver: vector - kwargs: + driver_kwargs: layer: BasinATLAS_v10_lev12 meta: category: hydrography @@ -17,48 +18,19 @@ basin_atlas_level12_v10: paper_ref: Linke et al. (2019) source_license: CC BY 4.0 source_url: https://www.hydrosheds.org/hydroatlas - source_version: 10 + source_spatial_extent: + West: -180.0 + South: -55.988 + East: 180.001 + North: 83.626 + version: 10 path: hydrography/hydro_atlas/basin_atlas_v10.gpkg -river_atlas_v10: - crs: 4326 - data_type: GeoDataFrame - driver: vector - meta: - category: hydrography - notes: renaming and units might require some revision - paper_doi: 10.1038/s41597-019-0300-6 - paper_ref: Linke et al. (2019) - source_license: CC BY 4.0 - source_url: https://www.hydrosheds.org/hydroatlas - source_version: 10 - path: hydrography/hydro_atlas/river_atlas_v10.gpkg - rename: - dis_m3_pyr: Dis_avg - -lake_atlas_pol_v10: - crs: 4326 - data_type: GeoDataFrame - driver: vector - kwargs: - layer: LakeATLAS_v10_pol - meta: - category: hydrography - notes: renaming and units might require some revision - paper_doi: 10.1038/s41597-022-01425-z - paper_ref: Lehner et al. (2022) - source_license: CC BY 4.0 - source_url: https://www.hydrosheds.org/hydroatlas - source_version: 10 - path: hydrography/hydro_atlas/lake_atlas_v10.gpkg - rename: - dis_m3_pyr: Dis_avg - chelsa: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -68,14 +40,19 @@ chelsa: paper_ref: Karger et al. (2017) source_license: CC BY 4.0 source_url: http://chelsa-climate.org/downloads/ - source_version: 1.2 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 84.0 + version: 1.2 path: meteo/chelsa_clim_v1.2/CHELSA_bio10_12.tif chirps: crs: 4326 data_type: RasterDataset driver: netcdf - kwargs: + driver_kwargs: chunks: lat: 160 lon: 150 @@ -89,7 +66,15 @@ chirps: paper_ref: Funk et al (2015) source_license: CC source_url: https://www.chc.ucsb.edu/data/chirps - source_version: v2.0 + source_temporal_extent: + start: '1981-01-02' + end: '2022-04-01' + source_spatial_extent: + West: -20.0 + South: -40.0 + East: 55.0 + North: 40.0 + version: 2.0 path: meteo/chirps_africa_daily_v2.0/CHIRPS_rainfall_{year}.nc rename: precipitation: precip @@ -100,7 +85,7 @@ chirps_global: crs: 4326 data_type: RasterDataset driver: netcdf - kwargs: + driver_kwargs: chunks: latitude: 112 longitude: 400 @@ -114,7 +99,15 @@ chirps_global: paper_ref: Funk et al (2014) source_license: CC source_url: https://www.chc.ucsb.edu/data/chirps - source_version: v2.0 + source_temporal_extent: + start: '1981-01-02' + end: '2023-02-01' + source_spatial_extent: + West: -180.0 + South: -50.0 + East: 180.0 + North: 50.0 + version: 2.0 path: meteo/chirps_global_daily_v2.0/chirps-v2.0.{year}.days_p05.nc rename: precipitation: precip @@ -124,49 +117,64 @@ chirps_global: copdem30: data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 meta: category: topography source_license: https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex+%281%29.pdf/83b44c0a-244a-7ba3-b00c-b578a34e88a7?t=1604070311399 - source_url: https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198#D4 - source_version: "2021_1" - nodata: -9999 # copdem has no actual nodata, this is to suppress a missing nodata warning + source_url: https://spacedata.copernicus.eu/web/guest/collections/copernicus-digital-elevation-model?p_l_back_url=%2Fweb%2Fguest%2Fsearch%3Fq%3Ddemhttps://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198#D4 + source_spatial_extent: + West: -180.001 + South: -90.0 + East: 180.0 + North: 84.0 + version: 2021.1 path: topography/copdem/copdem.vrt + nodata: -9999 rename: copdem: elevtn copdem30_mask: data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 meta: category: topography source_license: https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex+%281%29.pdf/83b44c0a-244a-7ba3-b00c-b578a34e88a7?t=1604070311399 - source_url: https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198#D4 - source_version: "2021_1" - nodata: -1 # copdem has no actual nodata, this is to suppress a missing nodata warning + source_url: https://spacedata.copernicus.eu/web/guest/collections/copernicus-digital-elevation-model?p_l_back_url=%2Fweb%2Fguest%2Fsearch%3Fq%3Ddemhttps://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198#D4 + source_spatial_extent: + West: -180.001 + South: -90.0 + East: 180.0 + North: 84.0 + version: 2021.1 path: topography/copdem/copdem_mask.vrt + nodata: -1 rename: copdem_mask: mask copdem30_masked: data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 meta: category: topography source_license: https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex+%281%29.pdf/83b44c0a-244a-7ba3-b00c-b578a34e88a7?t=1604070311399 - source_url: https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198#D4 - source_version: "2021_1" + source_url: https://spacedata.copernicus.eu/web/guest/collections/copernicus-digital-elevation-model?p_l_back_url=%2Fweb%2Fguest%2Fsearch%3Fq%3Ddemhttps://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198#D4 + source_spatial_extent: + West: -180.001 + South: -90.0 + East: 180.0 + North: 84.0 + version: 2021.1 path: topography/copdem/copdem_masked.vrt rename: copdem_masked: elevtn @@ -174,7 +182,7 @@ copdem30_masked: corine: data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 6000 y: 6000 @@ -183,14 +191,19 @@ corine: source_author: European Environment Agency source_license: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=metadata source_url: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 - source_version: v.2020_20u1 + source_spatial_extent: + West: 900000.0 + South: 900000.0 + East: 7400000.0 + North: 5500000.0 + version: 2020_20u1 path: landuse/corine/CLC2018_CLC2018_V2018_20.tif dtu10mdt: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -199,15 +212,20 @@ dtu10mdt: paper_doi: 10.1029/2008JC005179 paper_ref: Andersen and Knudsen (2009) source_url: https://www.space.dtu.dk/english/research/scientific_data_and_models/global_mean_dynamic_topography - source_version: 2010 unit: m+EGM2008 + source_spatial_extent: + West: -179.992 + South: -89.992 + East: 179.992 + North: 89.992 + version: 2010 path: topography/dtu10mdt/DTU10MDT_1min_float32.tif dtu10mdt_egm96: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -216,71 +234,22 @@ dtu10mdt_egm96: paper_doi: 10.1029/2008JC005179 paper_ref: Andersen and Knudsen (2009) source_url: https://www.space.dtu.dk/english/research/scientific_data_and_models/global_mean_dynamic_topography - source_version: 2010 + processing_notes: /topography/dtu10mdt/READ_ME.txt + processing_script: /topography/dtu10mdt/DTU10MDT_egm96_1min.ipynb unit: m+EGM96 + source_spatial_extent: + West: -179.992 + South: -89.985 + East: 179.995 + North: 89.992 + version: 2010 path: topography/dtu10mdt/DTU10MDT_1min_egm96.tif eobs: crs: 4326 data_type: RasterDataset driver: netcdf - kwargs: - chunks: - latitude: 100 - longitude: 100 - time: 100 - combine: by_coords - parallel: true - preprocess: round_latlon - meta: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 22.0e - path: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v22.0e.nc - rename: - pp: press_msl - qq: kin - rr: precip - tg: temp - unit_add: - time: 86400 - -eobs_v23.1e: - crs: 4326 - data_type: RasterDataset - driver: netcdf - kwargs: - chunks: - latitude: 100 - longitude: 100 - time: 100 - combine: by_coords - parallel: true - preprocess: round_latlon - meta: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 23.1e - path: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v23.1e.nc - rename: - pp: press_msl - qq: kin - rr: precip - tg: temp - unit_add: - time: 86400 - -eobs_v24.0e: - crs: 4326 - data_type: RasterDataset - driver: netcdf - kwargs: + driver_kwargs: chunks: latitude: 100 longitude: 100 @@ -294,64 +263,50 @@ eobs_v24.0e: paper_ref: Cornes et al (2018) source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 24.0e - path: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v24.0e.nc - rename: - pp: press_msl - qq: kin - rr: precip - tg: temp - unit_add: - time: 86400 - -eobs_v25.0e: - crs: 4326 - data_type: RasterDataset - driver: netcdf - kwargs: - chunks: - latitude: 100 - longitude: 100 - time: 100 - combine: by_coords - parallel: true - preprocess: round_latlon - meta: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 25.0e - path: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v25.0e.nc - rename: - pp: press_msl - qq: kin - rr: precip - tg: temp - unit_add: - time: 86400 - -eobs_v29.0e: - crs: 4326 - data_type: RasterDataset - driver: netcdf - kwargs: - chunks: - latitude: 100 - longitude: 100 - time: 100 - combine: by_coords - parallel: true - preprocess: round_latlon - meta: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 29.0e - path: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v29.0e.nc + source_temporal_extent: + start: '1950-01-02' + end: '2022-01-01' + source_spatial_extent: + West: -25.0 + South: 25.0 + East: 45.5 + North: 71.5 + variants: + - version: 22.0e + path: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v22.0e.nc + meta: + source_temporal_extent: + start: '1950-01-02' + end: '2020-07-01' + - version: 23.1e + path: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v23.1e.nc + meta: + source_temporal_extent: + start: '1950-01-02' + end: '2021-01-01' + - version: 24.0e + path: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v24.0e.nc + meta: + processing_script: meteo/eobs/scripts/v24.0e_fix_qq_dims_and_match_extent.py + processing_notes: correct lat/lon dimension for variable qq to match the grid of the other variables + source_temporal_extent: + start: '1950-01-02' + end: '2021-07-01' + - version: 25.0e + path: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v25.0e.nc + meta: + processing_script: v25.0e_fix_qq_dims_and_match_extent.py + processing_notes: correct lat/lon dimension for variable qq to match the grid of the other variables + source_temporal_extent: + start: '1950-01-02' + end: '2022-01-01' + - version: 29.0e + path: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v29.0e.nc + meta: + processing_script: meteo/eobs/scripts/v29.0e_fix_qq_dims_and_match_extent.py + source_temporal_extent: + start: '1950-01-01' + end: '2024-02-01' rename: pp: press_msl qq: kin @@ -360,30 +315,11 @@ eobs_v29.0e: unit_add: time: 86400 -eobs_orography_v20.0e: - crs: 4326 - data_type: RasterDataset - driver: netcdf - kwargs: - chunks: - latitude: 100 - longitude: 100 - meta: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 20.0e - path: meteo/eobs/elev_ens_0.1deg_reg_v20.0e.nc - rename: - elevation: elevtn - eobs_orography: crs: 4326 data_type: RasterDataset driver: netcdf - kwargs: + driver_kwargs: chunks: latitude: 100 longitude: 100 @@ -393,98 +329,48 @@ eobs_orography: paper_ref: Cornes et al (2018) source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 22.0e - path: meteo/eobs/elev_ens_0.1deg_reg_v22.0e.nc - rename: - elevation: elevtn - -eobs_orography_v23.1e: - crs: 4326 - data_type: RasterDataset - driver: netcdf - kwargs: - chunks: - latitude: 100 - longitude: 100 - meta: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 23.1e - path: meteo/eobs/elev_ens_0.1deg_reg_v23.1e.nc + source_spatial_extent: + West: -25.0 + South: 25.0 + East: 45.5 + North: 71.5 + variants: + - version: 20.0e + path: meteo/eobs/elev_ens_0.1deg_reg_v20.0e.nc + - version: 22.0e + path: meteo/eobs/elev_ens_0.1deg_reg_v22.0e.nc + - version: 23.1e + path: meteo/eobs/elev_ens_0.1deg_reg_v23.1e.nc + - version: 24.0e + path: meteo/eobs/elev_ens_0.1deg_reg_v24.0e.nc + - version: 25.0e + path: meteo/eobs/elev_ens_0.1deg_reg_v25.0e.nc + - version: 29.0e + path: meteo/eobs/elev_ens_0.1deg_reg_v29.0e.nc rename: elevation: elevtn -eobs_orography_v24.0e: - crs: 4326 - data_type: RasterDataset - driver: netcdf - kwargs: - chunks: - latitude: 100 - longitude: 100 - meta: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 24.0e - path: meteo/eobs/elev_ens_0.1deg_reg_v24.0e.nc - rename: - elevation: elevtn - -eobs_orography_v25.0e: - crs: 4326 - data_type: RasterDataset - driver: netcdf - kwargs: - chunks: - latitude: 100 - longitude: 100 - meta: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 25.0e - path: meteo/eobs/elev_ens_0.1deg_reg_v25.0e.nc - rename: - elevation: elevtn - -eobs_orography_v29.0e: - crs: 4326 - data_type: RasterDataset - driver: netcdf - kwargs: - chunks: - latitude: 100 - longitude: 100 - meta: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - source_license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - source_version: 29.0e - path: meteo/eobs/elev_ens_0.1deg_reg_v29.0e.nc - rename: - elevation: elevtn era5: crs: 4326 data_type: RasterDataset meta: category: meteo - notes: Extracted from Copernicus Climate Data Store; resampled by Deltares to daily frequency + notes: Extracted from Copernicus Climate Data Store; resampled by Deltares to + daily frequency using right label for time. paper_doi: 10.1002/qj.3803 paper_ref: Hersbach et al. (2019) + processing_script: https://github.com/Deltares/hydromt/blob/main/data/src/era5_download_resample_convert.py source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://doi.org/10.24381/cds.bd0915c6 - source_version: ERA5 daily data on pressure levels + source_temporal_extent: + start: '1950-01-02' + end: '2023-11-30' + source_spatial_extent: + West: -0.125 + South: -90.125 + East: 359.875 + North: 90.125 rename: d2m: temp_dew msl: press_msl @@ -509,7 +395,7 @@ era5: variants: - provider: netcdf driver: netcdf - kwargs: + driver_kwargs: chunks: latitude: 250 longitude: 240 @@ -517,10 +403,10 @@ era5: combine: by_coords decode_times: true parallel: true - path: meteo/era5_daily/nc_merged/era5_{year}*_daily.nc + path: meteo/era5_daily/nc_merged/era5_{year}_daily.nc - provider: zarr driver: zarr - kwargs: + driver_kwargs: chunks: auto path: meteo/era5_daily.zarr @@ -534,7 +420,15 @@ era5_hourly: paper_ref: Hersbach et al. (2019) source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://doi.org/10.24381/cds.adbb2d47 - source_version: ERA5 hourly data on single levels from 1940 to present + source_temporal_extent: + start: '1950-01-01' + end: '2023-03-01' + source_spatial_extent: + West: -0.125 + South: -90.125 + East: 359.875 + North: 90.125 + path: meteo/era5/{variable}/era5_{variable}_{year}_hourly.nc rename: d2m: temp_dew msl: press_msl @@ -564,7 +458,7 @@ era5_hourly: combine: by_coords decode_times: true parallel: true - path: meteo/era5/{variable}/era5_{variable}_{year}*_hourly.nc + path: meteo/era5/{variable}/era5_{variable}_{year}_hourly.nc - provider: zarr driver: zarr kwargs: @@ -575,7 +469,7 @@ era5_ocean: crs: 4326 data_type: RasterDataset driver: netcdf - kwargs: + driver_kwargs: chunks: latitude: 60 longitude: 60 @@ -590,13 +484,21 @@ era5_ocean: paper_ref: Hersbach et al. (2019) source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://doi.org/10.24381/cds.bd0915c6 + source_temporal_extent: + start: '1979-01-01' + end: '2022-04-08' + source_spatial_extent: + West: -0.25 + South: -90.25 + East: 359.75 + North: 90.25 path: ocean/era5/{variable}/era5_{variable}_{year}_hourly.nc era5_orography: crs: 4326 data_type: RasterDataset driver: netcdf - kwargs: + driver_kwargs: chunks: latitude: 120 longitude: 125 @@ -607,6 +509,14 @@ era5_orography: paper_ref: Hersbach et al. (2019) source_license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products source_url: https://apps.ecmwf.int/codes/grib/param-db?id=129 + source_temporal_extent: + start: '2018-01-01' + end: '2018-01-01' + source_spatial_extent: + West: -0.125 + South: -90.125 + East: 359.875 + North: 90.125 path: meteo/era5/meta/era5_orography_2018.nc rename: z: elevtn @@ -617,22 +527,31 @@ esa_worldcover: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 36000 y: 36000 meta: category: landuse + processing_notes: prepare vrt file with gdalbuildvrt source_license: CC BY 4.0 source_url: https://doi.org/10.5281/zenodo.5571936 - source_version: v100 + source_spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 84.0 + source_temporal_extent: + start: '2020-01-01' + end: '2020-12-31' + version: 100 path: landuse/esa_worldcover/esa-worldcover.vrt fabdem: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -642,7 +561,12 @@ fabdem: paper_ref: Hawker et al. (2022) source_license: CC BY-NC-SA 4.0 source_url: https://data.bris.ac.uk/data/dataset/25wfy0f9ukoge2gs7a5mqpq2j7 - source_version: 1.0 + source_spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 + version: 1.0 path: topography/fabdem/fabdem.vrt rename: fabdem: elevtn @@ -657,8 +581,13 @@ gadm: source_author: gadm source_license: https://gadm.org/license.html source_url: https://gadm.org/download_world.html - source_version: 4.1 processing_script: geography/gadm/version4_1/run_dissolve_level_0.sh + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 83.658 + version: 4.1 path: geography/gadm/version4_1/gadm_level0.fgb gadm_level1: @@ -671,8 +600,13 @@ gadm_level1: source_author: gadm source_license: https://gadm.org/license.html source_url: https://gadm.org/download_world.html - source_version: 4.1 processing_script: geography/gadm/version4_1/run_dissolve_level_1.sh + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 83.658 + version: 4.1 path: geography/gadm/version4_1/gadm_level1.fgb gadm_level2: @@ -685,8 +619,13 @@ gadm_level2: source_author: gadm source_license: https://gadm.org/license.html source_url: https://gadm.org/download_world.html - source_version: 4.1 processing_script: geography/gadm/version4_1/run_dissolve_level_2.sh + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 83.658 + version: 4.1 path: geography/gadm/version4_1/gadm_level2.fgb gadm_level3: @@ -699,14 +638,19 @@ gadm_level3: source_author: gadm source_license: https://gadm.org/license.html source_url: https://gadm.org/download_world.html - source_version: 4.1 processing_script: geography/gadm/version4_1/run_dissolve_level_3.sh + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 83.658 + version: 4.1 path: geography/gadm/version4_1/gadm_level3.fgb gcn250: data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -716,8 +660,13 @@ gcn250: paper_ref: Jaafar et al. (2019) source_license: CC BY 4.0 source_url: https://doi.org/10.6084/m9.figshare.7756202.v1 - source_version: v1 + source_spatial_extent: + West: -180.0 + South: -56.0 + East: 180.0 + North: 84.0 nodata: 255 + version: 1 path: landuse/gcn250/GCN250_*.tif rename: GCN250_ARCI: cn_dry @@ -730,10 +679,16 @@ gdp_world: driver: vector meta: category: socio-economic - notes: data combined from World Bank (https://data.worldbank.org/indicator/NY.GDP.MKTP.CD) and CIA World Factbook (https://www.cia.gov/the-world-factbook/field/real-gdp-per-capita/country-comparison) + processing_notes: data combined by Deltares (Wilfred Altena) from World Bank (https://data.worldbank.org/indicator/NY.GDP.MKTP.CD) + and CIA World Factbook (https://www.cia.gov/the-world-factbook/field/real-gdp-per-capita/country-comparison) source_author: Wilfred Altena source_license: CC BY-4.0 - source_version: 1.0 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 83.665 + version: 1.0 path: socio_economic/gdp_world/World_countries_GDPpcPPP.fgb rename: GDP: gdp @@ -744,7 +699,7 @@ gebco: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -753,18 +708,24 @@ gebco: paper_doi: 10.5285/a29c5465-b138-234d-e053-6c86abc040b9 paper_ref: Weatherall et al (2020) source_license: https://www.gebco.net/data_and_products/gridded_bathymetry_data/#a1 - source_url: https://www.bodc.ac.uk/data/open_download/gebco/gebco_2020/geotiff/ - source_version: 2020 + source_url: https://www.bodc.ac.uk/data/hosted_data_systems/gebco_gridded_bathymetry_data/ unit: m+MSL + processing_script: bathymetry/gebco/gebco_tiles.ipynb + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 2020 path: bathymetry/gebco/gebco.vrt rename: gebco: elevtn -ghs_pop: +ghs_pop_2015: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -775,14 +736,19 @@ ghs_pop: source_author: JRC-ISPRA EC source_license: https://data.jrc.ec.europa.eu/licence/com_reuse source_url: https://data.jrc.ec.europa.eu/dataset/0c6b9751-a71f-4062-830b-43c9f432370f - source_version: R2019A_v1.0 + source_spatial_extent: + West: -180.0 + South: -59.485 + East: 180.0 + North: 83.628 + version: R2019A_v1.0 path: socio_economic/ghs/GHS_POP_E2015_GLOBE_R2019A_4326_9ss_V1_0.tif -ghs_pop_2015_54009_v2019a: - crs: "ESRI:54009" +ghs_pop_2015_54009: + crs: ESRI:54009 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 1000 y: 1000 @@ -792,48 +758,49 @@ ghs_pop_2015_54009_v2019a: paper_ref: Florczyk et al (2019) source_license: CC BY 4.0 source_url: https://ghsl.jrc.ec.europa.eu/download.php?ds=pop + source_spatial_extent: + West: -18041000.0 + South: -9000000.0 + East: 18041000.0 + North: 9000000.0 + version: R2019A_v1.0 path: socio_economic/ghs/GHS_POP_E2015_GLOBE_R2019A_54009_250_V1_0.tif -ghs_smod: - crs: "ESRI:54009" - data_type: RasterDataset - driver: raster - kwargs: - chunks: - x: 3600 - y: 3600 - meta: - category: socio-economic - paper_ref: Pesaresi and Freire (2016) - source_author: JRC-ISPRA EC - source_license: https://data.jrc.ec.europa.eu/licence/com_reuse - source_url: https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_smod_pop_globe_r2016a - source_version: R2016A_v1.0 - path: socio_economic/ghs/GHS_SMOD_POP2015_GLOBE_R2016A_54009_1k_v1_0.tif - -ghs_smod_2015_54009_v2019a: - crs: "ESRI:54009" +ghs_smod_2015: + crs: ESRI:54009 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 meta: category: socio-economic - paper_doi: 10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218 - paper_ref: Pesaresi et al (2019) source_author: JRC-ISPRA EC source_license: https://data.jrc.ec.europa.eu/licence/com_reuse - source_url: https://data.jrc.ec.europa.eu/dataset/42e8be89-54ff-464e-be7b-bf9e64da5218 - source_version: R2019A_v2.0 - path: socio_economic/ghs/GHS_SMOD_POP2015_GLOBE_R2019A_54009_1K_V2_0.tif + source_spatial_extent: + West: -18041000.0 + South: -9000000.0 + East: 18041000.0 + North: 9000000.0 + variants: + - version: R2016A_v1.0 + path: socio_economic/ghs/GHS_SMOD_POP2015_GLOBE_R2016A_54009_1k_v1_0.tif + meta: + paper_ref: Pesaresi and Freire (2016) + source_url: https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_smod_pop_globe_r2016a + - version: R2019A_v2.0 + path: socio_economic/ghs/GHS_SMOD_POP2015_GLOBE_R2019A_54009_1K_V2_0.tif + meta: + paper_doi: 10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218 + paper_ref: Pesaresi et al (2019) + source_url: https://data.jrc.ec.europa.eu/dataset/42e8be89-54ff-464e-be7b-bf9e64da5218 globcover: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -843,12 +810,26 @@ globcover: paper_ref: Arino et al (2012) source_license: CC-BY-3.0 source_url: http://due.esrin.esa.int/page_globcover.php - source_version: v2.3 + source_spatial_extent: + West: -180.001 + South: -64.999 + East: 179.999 + North: 90.001 + version: 2.3 path: landuse/globcover/GLOBCOVER_L4_200901_200912_V2.3.tif -glofas_era5_v31: +glofas_era5: crs: 4326 data_type: RasterDataset + driver: netcdf + driver_kwargs: + chunks: + time: 180 + latitude: 150 + longitude: 360 + combine: by_coords + decode_times: true + parallel: true meta: category: hydro notes: Extracted from Copernicus Climate Data Store @@ -856,56 +837,75 @@ glofas_era5_v31: paper_ref: Harrigan et al. (2020) source_license: https://cds.climate.copernicus.eu/api/v2/terms/static/cems-floods.pdf source_url: https://doi.org/10.24381/cds.a4fdd6b9 - source_version: v31 - variants: - - provider: normal - driver: netcdf - kwargs: - chunks: - time: 180 - latitude: 150 - longitude: 360 - combine: by_coords - decode_times: true - parallel: true - path: hydro/glofas_era5/glofas_v31_{year}.nc - rename: - dis24: discharge - - provider: uparea - driver: raster - kwargs: - chunks: - x: 150 - y: 360 - path: hydro/glofas_era5/glofas_v31_uparea.tif - rename: - glofas_v31_uparea: uparea - unit_mult: - uparea: 0.000001 + processing_script: hydro/glofas_era5/glofas_cds_get.py + source_temporal_extent: + start: '1980-01-01' + end: '2021-05-31' + source_spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 90.0 + version: 31 + path: hydro/glofas_era5/glofas_v31_{year}.nc + rename: + dis24: discharge + +glofas_uparea: + data_type: RasterDataset + driver: raster + driver_kwargs: + chunks: + x: 150 + y: 360 + meta: + category: hydro + notes: Extracted from Copernicus Climate Data Store + paper_doi: 10.5194/essd-12-2043-2020 + paper_ref: Harrigan et al. (2020) + source_license: https://cds.climate.copernicus.eu/api/v2/terms/static/cems-floods.pdf + source_url: https://doi.org/10.24381/cds.a4fdd6b9 + source_spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 90.0 + version: 31 + path: hydro/glofas_era5/glofas_v31_uparea.tif + rename: + glofas_v31_uparea: uparea + unit_mult: + uparea: 1.0e-06 glw_buffaloes: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 meta: category: socio-economic + notes: last downloaded 2020-06-11 paper_doi: 10.7910/DVN/5U8MWI paper_ref: Gilbert at al (2018) source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 3 path: socio_economic/glw/5_Bf_2010_Da.tif glw_cattle: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -916,14 +916,19 @@ glw_cattle: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 3 path: socio_economic/glw/5_Ct_2010_Da.tif glw_chicken: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -934,14 +939,19 @@ glw_chicken: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 3 path: socio_economic/glw/5_Ch_2010_Da.tif glw_ducks: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -952,14 +962,19 @@ glw_ducks: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 3 path: socio_economic/glw/5_Dk_2010_Da.tif glw_goats: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -970,14 +985,19 @@ glw_goats: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 3 path: socio_economic/glw/5_Gt_2010_Da.tif glw_horses: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -988,14 +1008,19 @@ glw_horses: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 3 path: socio_economic/glw/5_Ho_2010_Da.tif glw_pigs: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -1006,14 +1031,19 @@ glw_pigs: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 3 path: socio_economic/glw/5_Pg_2010_Da.tif glw_sheeps: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -1024,14 +1054,19 @@ glw_sheeps: source_author: glw (Gridded Livestock of World 3 Dataverse) source_license: CC 4.0 source_url: https://dataverse.harvard.edu/dataverse/glw_3 - source_version: GLW 3, last downloaded 2020-06-11 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 3 path: socio_economic/glw/5_Sh_2010_Da.tif grdc: crs: 4326 data_type: GeoDataFrame driver: csv - kwargs: + driver_kwargs: index_col: grdc_no meta: category: observed data @@ -1052,7 +1087,13 @@ grip_roads: paper_ref: Meijer et al, 2018 paper_doi: 10.1088/1748-9326/aabd42 source_license: CC0-1.0 - source_version: v4 + processing_script: infrastructure/grip/merge.ipynb + source_spatial_extent: + West: -179.999 + South: -55.055 + East: 180.0 + North: 73.836 + version: 4 path: infrastructure/grip/GRIP4_world.fgb rename: GP_RTP: road_type @@ -1067,17 +1108,22 @@ grwl: paper_ref: Allen and Pavelsky (2018) source_license: CC BY 4.0 source_url: https://doi.org/10.5281/zenodo.1297434 - source_version: 1.01 + source_spatial_extent: + West: -180.0 + South: -54.31 + East: 180.0 + North: 82.311 + version: 1.01 path: hydrography/grwl/GRWL_vector_V01.01/grwl.fgb grwl_mask: data_type: RasterDataset driver: raster_tindex - kwargs: + driver_kwargs: chunks: x: 3000 y: 3000 - mosaic_kwargs: + mosaic_driver_kwargs: method: nearest tileindex: location meta: @@ -1086,14 +1132,14 @@ grwl_mask: paper_ref: Allen and Pavelsky (2018) source_license: CC BY 4.0 source_url: https://doi.org/10.5281/zenodo.1297434 - source_version: 1.01 nodata: 0 + version: 1.01 path: hydrography/grwl/tindex.gpkg gswo: data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 4000 y: 4000 @@ -1102,38 +1148,20 @@ gswo: paper_doi: 10.1038/nature20584 paper_ref: Pekel et al. (2016) source_url: https://global-surface-water.appspot.com/download - source_version: v1_1_2019 + source_spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 nodata: 255 + version: 1.1 path: hydrography/gswo/occur.vrt -gtsm_codec_reanalysis_{freq}_v1: - crs: 4326 - data_type: GeoDataset - driver: netcdf - kwargs: - chunks: - stations: 10 - time: -1 - meta: - category: ocean - paper_doi: 10.3389/fmars.2020.00263 - paper_ref: Muis at al (2020) - source_license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf - source_url: https://doi.org/10.24381/cds.8c59054f - source_version: v1 - path: p:/11205028-c3s_435/01_data/01_Timeseries/timeseries2/{variable}/reanalysis_{variable}_{freq}_{year}_{month:02d}_v1.nc - placeholders: - freq: [10min, hourly, dailymax] - rename: - station_x_coordinate: lon - station_y_coordinate: lat - stations: index - guf_bld_2012: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 1000 y: 1000 @@ -1143,6 +1171,12 @@ guf_bld_2012: paper_ref: Esch et al (2017) source_license: https://www.dlr.de/eoc/en/PortalData/60/Resources/dokumente/guf/DLR-GUF_LicenseAgreement-and-OrderForm.pdf source_url: http://www.dlr.de/guf + source_spatial_extent: + West: -180.0 + South: -65.0 + East: 180.0 + North: 85.0 + version: 2 path: infrastructure/guf/GUF04_DLR_v02.vrt hydro_lakes: @@ -1151,9 +1185,14 @@ hydro_lakes: driver: vector meta: category: surface water - notes: HydroLAKES.v10_extract - source_author: Arjen Haag - source_version: 1.0 + processing_notes: extract of hydrolakes to only include natural lakes and exclude reservoirs and control lakes (ie filter on Lake_type = 1) + source_author: HydroSHEDS + source_spatial_extent: + West: -180.0 + South: -55.865 + East: 180.0 + North: 83.576 + version: 1.0 path: hydrography/lakes/lake-db.fgb rename: Depth_avg: Depth_avg @@ -1173,9 +1212,15 @@ hydro_reservoirs: meta: category: surface water notes: GRanD.v1.1_HydroLAKES.v10_JRC.2016 + processing_notes: combined not natural lakes from HydroLAKES v10 (Lake_type != 1) with reservoirs attributes from GRanD v1.1 source_author: Alessia Matano - source_version: 1.0 + source_spatial_extent: + West: -153.059 + South: -45.881 + East: 176.825 + North: 70.396 nodata: -99 + version: 1.0 path: hydrography/reservoirs/reservoir-db.fgb rename: Depth_avg: Depth_avg @@ -1201,7 +1246,7 @@ koppen_geiger: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -1210,15 +1255,43 @@ koppen_geiger: paper_doi: 10.1127/0941-2948/2006/0130 paper_ref: Kottek et al. (2006) source_url: http://koeppen-geiger.vu-wien.ac.at/present.htm - source_version: 2017 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 nodata: 0 + version: 2017 path: meteo/climate_classification_v2017/Map_KG-Global.tif +hydro_lake_atlas_pol: + crs: 4326 + data_type: GeoDataFrame + driver: vector + driver_kwargs: + layer: LakeATLAS_v10_pol + meta: + category: hydrography + notes: renaming and units might require some revision + paper_doi: 10.1038/s41597-022-01425-z + paper_ref: Lehner et al. (2022) + source_license: CC BY 4.0 + source_url: https://www.hydrosheds.org/hydroatlas + source_spatial_extent: + West: -180.0 + South: -55.865 + East: 180.0 + North: 83.576 + path: hydrography/hydro_atlas/lake_atlas_v10.gpkg + version: 10 + rename: + dis_m3_pyr: Dis_avg + mdt_cnes_cls18: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 720 y: 720 @@ -1227,15 +1300,21 @@ mdt_cnes_cls18: paper_doi: 10.5194/os-17-789-2021 paper_ref: Mulet et al (2021) source_url: https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mdt.html - source_version: 18 unit: m+GOCO05S + processing_script: topography/mdt_cnes_cls18/convert_lon_fill_mdt.ipynb + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 18 path: topography/mdt_cnes_cls18/MDT_CNES_CLS18_global_filled.tif merit: crs: 4326 data_type: RasterDataset driver: netcdf - kwargs: + driver_kwargs: drop_variables: projection chunks: lat: 6000 @@ -1246,7 +1325,12 @@ merit: paper_ref: Yamazaki et al. (2018) source_license: CC-BY-NC 4.0 or ODbL 1.0 source_url: http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/ - source_version: 1.0.3 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 1.0.3 path: topography/merit/merit.nc rename: elevation: elevtn @@ -1255,7 +1339,7 @@ merit_hydro: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 6000 y: 6000 @@ -1263,9 +1347,16 @@ merit_hydro: category: topography paper_doi: 10.1029/2019WR024873 paper_ref: Yamazaki et al. (2019) + processing_notes: create vrt file with gdalbuildvrt; + additional variables for stream-order, basin index (basins), and slope (lndslp) derived with pyflwdir source_license: CC-BY-NC 4.0 or ODbL 1.0 source_url: http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro - source_version: 1.0 + source_spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 85.0 + version: 1.0 path: topography/merit_hydro/*.vrt rename: bas: basins @@ -1281,7 +1372,7 @@ merit_hydro_ihu: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 6000 y: 6000 @@ -1292,8 +1383,14 @@ merit_hydro_ihu: source_license: ODC-By 1.0 source_url: https://zenodo.org/record/5166932#.YVbxJ5pByUk source_doi: 10.5281/zenodo.5166932 - source_version: 1.0 + processing_notes: topography/merit_hydro_ihu/README + source_spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 85.0 path: topography/merit_hydro_ihu/30sec/*.tif + version: 1.0 rename: 30sec_basids: basins 30sec_flwdir: flwdir @@ -1313,6 +1410,13 @@ merit_hydro_ihu_index: paper_ref: Eilander et al. (2021) source_license: CC-BY-NC 4.0 source_url: https://zenodo.org/record/5166932#.YVbxJ5pByUk + processing_notes: topography/merit_hydro_ihu/README + source_spatial_extent: + West: -180.025 + South: -59.467 + East: 190.35 + North: 83.683 + version: 1.0 path: topography/merit_hydro_ihu/30sec/basins.gpkg merit_hydro_index: @@ -1324,13 +1428,19 @@ merit_hydro_index: paper_doi: 10.5194/hess-25-5287-2021 paper_ref: Eilander et al. (2021) source_license: CC-BY-NC 4.0 + source_spatial_extent: + West: -180.028 + South: -59.46 + East: 190.338 + North: 83.661 + version: 1.0 path: topography/merit_hydro/basin_index.fgb merit_hydro_patch: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 6000 y: 6000 @@ -1340,7 +1450,14 @@ merit_hydro_patch: paper_ref: Yamazaki et al. (2019) source_license: CC-BY-NC 4.0 or ODbL 1.0 source_url: http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro - source_version: 1.0 Deltares patch + processing_script: topography/merit_hydro/patches/scripts + processing_notes: local corrections of flow direction raster and re-derive the related maps (basins, uparea, strord) + source_spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 85.0 + version: 1.0 path: topography/merit_hydro/patches/*.vrt rename: bas: basins @@ -1356,19 +1473,28 @@ modis_lai: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 concat: true meta: category: landuse - notes: this dataset has been extracted from GEE ('MODIS/006/MCD15A3H') for the period '2003-01-01', '2017-12-31' paper_doi: 10.5067/MODIS/MCD15A3H.006 paper_ref: Myneni et al (2015) source_license: https://lpdaac.usgs.gov/data/data-citation-and-policies/ source_url: https://lpdaac.usgs.gov/products/mcd15a3hv006/ - source_version: MCD15A3H V006 + processing_notes: this dataset has been extracted from GEE ('MODIS/006/MCD15A3H') + for the period '2003-01-01', '2017-12-31' + processing_script: + GEE_script: landuse/modis/MODIS_MCD15A3H_LAI/GEE_MODIS_LAI.js + merge_script: landuse/modis/MODIS_MCD15A3H_LAI/merge_rasters_GEE_LAI.py + source_spatial_extent: + West: -180.004 + South: -90.002 + East: 180.004 + North: 90.002 + version: 6 path: landuse/modis/MODIS_MCD15A3H_LAI/*.tif unit_mult: LAI: 0.1 @@ -1383,7 +1509,12 @@ osm_coastlines: source_author: OpenStreetMap source_license: ODbL source_url: https://osmdata.openstreetmap.de/data/coastlines.html - source_version: 1.0 + source_spatial_extent: + West: -180.0 + South: -78.733 + East: 180.0 + North: 90.0 + version: 1.0 path: geography/osm/osm_coastlines-db.fgb rename: fid: coastline_id @@ -1398,7 +1529,12 @@ osm_landareas: source_author: OpenStreetMap source_license: ODbL source_url: https://osmdata.openstreetmap.de/data/coastlines.html - source_version: 1.0 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 83.666 + version: 1.0 path: geography/osm/osm_landareas-db.fgb rename: fid: land_id @@ -1407,7 +1543,7 @@ pcr_globwb: crs: 4326 data_type: RasterDataset driver: zarr - kwargs: + driver_kwargs: chunks: auto meta: category: water demand @@ -1415,8 +1551,12 @@ pcr_globwb: paper_doi: 10.5281/zenodo.1045339 paper_ref: Sutanudjaja, E. H., et al (2017) source_url: https://zenodo.org/records/1045339#.XWUr7E2P5aR - source_version: 2017.11b1 processing_script: hydro/pcr_globwb/prep_glob.py + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 variants: - version: 1990 path: hydro/pcr_globwb/glob_1990.zarr @@ -1453,7 +1593,12 @@ rgi: paper_ref: Pfeffer et al. (2014) source_license: CC BY 4.0 source_url: https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-glaciers-extent?tab=overview - source_version: 6.0 + source_spatial_extent: + West: -179.921 + South: -78.309 + East: 179.751 + North: 83.608 + version: 6.0 path: hydrography/rgi/rgi.fgb rename: C3S_ID: C3S_id @@ -1461,7 +1606,28 @@ rgi: ID: simple_id RGIID: RGI_id -rivers_lin2019_v1: +hydro_river_atlas: + crs: 4326 + data_type: GeoDataFrame + driver: vector + meta: + category: hydrography + notes: renaming and units might require some revision + paper_doi: 10.1038/s41597-019-0300-6 + paper_ref: Linke et al. (2019) + source_license: CC BY 4.0 + source_url: https://www.hydrosheds.org/hydroatlas + source_spatial_extent: + West: -179.998 + South: -55.877 + East: 179.998 + North: 83.59 + path: hydrography/hydro_atlas/river_atlas_v10.gpkg + version: 10 + rename: + dis_m3_pyr: Dis_avg + +hydro_rivers_lin: data_type: GeoDataFrame driver: vector meta: @@ -1470,7 +1636,13 @@ rivers_lin2019_v1: paper_ref: Lin et al. (2019) source_license: CC-BY-NC 4.0 source_url: https://zenodo.org/record/3552776#.YVbOrppByUk - source_version: 1 + processing_notes: hydrography/rivers_lin2019/README + source_spatial_extent: + West: -177.204 + South: -55.414 + East: 180.237 + North: 82.112 + version: 1 path: hydrography/rivers_lin2019/rivers_ge30m.fgb rename: width_m: rivwth @@ -1480,7 +1652,7 @@ simard: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -1489,44 +1661,70 @@ simard: paper_doi: 10.1029/2011JG001708 paper_ref: Simard et al (2011) source_url: https://webmap.ornl.gov/ogc/dataset.jsp?ds_id=10023 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 2011 path: landuse/simard/sdat_10023_canopy_height_simard.tif -SM2RAIN_ASCAT_monthly_025_v1.4: +SM2RAIN_ASCAT_monthly_025: crs: 4326 data_type: RasterDataset driver: netcdf - kwargs: + driver_kwargs: chunks: latitude: 360 longitude: 720 time: 84 meta: category: meteo - notes: crs guessed as it is neither mentioned in the data nor in the literature, 0.25-degree resolution + notes: crs guessed as it is neither mentioned in the data nor in the literature, + 0.25-degree resolution paper_doi: 10.5194/essd-11-1583-2019 paper_ref: Brocca et al. (2019) source_license: https://creativecommons.org/licenses/by/4.0/legalcode source_url: https://zenodo.org/record/4570192#.YueKJWNByUl + source_temporal_extent: + start: '2007-01-01' + end: '2020-12-01' + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 1.4 path: meteo/sm2rain_ascat/SM2RAIN_ASCAT_monthly_025_2007_2020.nc rename: rainfall: precip -SM2RAIN_ASCAT_monthly_05_v1.4: +SM2RAIN_ASCAT_monthly_05: crs: 4326 data_type: RasterDataset driver: netcdf - kwargs: + driver_kwargs: chunks: latitude: 180 longitude: 360 time: 84 meta: category: meteo - notes: crs guessed as it is neither mentioned in the data nor in the literature, 0.5-degree resolution + notes: crs guessed as it is neither mentioned in the data nor in the literature, + 0.5-degree resolution paper_doi: 10.5194/essd-11-1583-2019 paper_ref: Brocca et al. (2019) source_license: https://creativecommons.org/licenses/by/4.0/legalcode source_url: https://zenodo.org/record/4570192#.YueKJWNByUl + source_temporal_extent: + start: '2007-01-01' + end: '2020-12-01' + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 1.4 path: meteo/sm2rain_ascat/SM2RAIN_ASCAT_monthly_05_2007_2020.nc rename: rainfall: precip @@ -1535,7 +1733,7 @@ soilgrids: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 2400 y: 2400 @@ -1549,8 +1747,15 @@ soilgrids: paper_doi: 10.1371/journal.pone.0169748 paper_ref: Hengl et al. (2017) source_license: ODbL - source_url: https://www.isric.org/explore/soilgrids/faq-soilgrids-2017 - source_version: 2017 + source_url: https://www.isric.org/explore/soilgrids/faq-soilgrids-201 + processing_notes: "soilthickness is based on 1) soilgrids (global, depth to bedrock - BDRICM variable) and 2) dataset for Eurasia" + processing_script: p:/wflow_global/static_data/wflow_sbm_parameters/ + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 1.0 path: soil/soilgrids_v1.0/*_250m_ll.tif rename: BLDFIE_M_sl1_250m_ll: bd_sl1 @@ -1620,114 +1825,11 @@ soilgrids: ph_sl6: 0.1 ph_sl7: 0.1 -soilgrids_2020: - data_type: RasterDataset - driver: raster - kwargs: - chunks: - x: 2400 - y: 2400 - meta: - category: soil - notes: - "soilthickness is based on 1) soilgrids (global) and 2) dataset for Eurasia (ESDAC, 2004; Panagos et al., 2012): ESDAC, 2004. The european soil - database distribution version 2.0, european commission and the European soil bureau network. esdac.jrc.ec.europa.eu, accessed: 2017-11-17. Panagos, - P., Van Liedekerke, M., Jones, A., Montanarella, L., 2012. European soil data centre: Response to european policy support and public data requirements. - Land Use Policy 29 (2), 329–338. \n" - paper_doi: https://doi.org/10.5194/soil-2020-65 - paper_ref: de Sousa et al. (2020) - source_license: CC BY 4.0 - source_url: https://www.isric.org/explore/soilgrids/faq-soilgrids - source_version: 2020 - path: soil/soilgrids_v2.0/*/*_mean.vrt - rename: - bdod_0-5cm_mean: bd_sl1 - bdod_5-15cm_mean: bd_sl2 - bdod_15-30cm_mean: bd_sl3 - bdod_30-60cm_mean: bd_sl4 - bdod_60-100cm_mean: bd_sl5 - bdod_100-200cm_mean: bd_sl6 - clay_0-5cm_mean: clyppt_sl1 - clay_5-15cm_mean: clyppt_sl2 - clay_15-30cm_mean: clyppt_sl3 - clay_30-60cm_mean: clyppt_sl4 - clay_60-100cm_mean: clyppt_sl5 - clay_100-200cm_mean: clyppt_sl6 - soc_0-5cm_mean: oc_sl1 - soc_5-15cm_mean: oc_sl2 - soc_15-30cm_mean: oc_sl3 - soc_30-60cm_mean: oc_sl4 - soc_60-100cm_mean: oc_sl5 - soc_100-200cm_mean: oc_sl6 - phh2o_0-5cm_mean: ph_sl1 - phh2o_5-15cm_mean: ph_sl2 - phh2o_15-30cm_mean: ph_sl3 - phh2o_30-60cm_mean: ph_sl4 - phh2o_60-100cm_mean: ph_sl5 - phh2o_100-200cm_mean: ph_sl6 - silt_0-5cm_mean: sltppt_sl1 - silt_5-15cm_mean: sltppt_sl2 - silt_15-30cm_mean: sltppt_sl3 - silt_30-60cm_mean: sltppt_sl4 - silt_60-100cm_mean: sltppt_sl5 - silt_100-200cm_mean: sltppt_sl6 - sand_0-5cm_mean: sndppt_sl1 - sand_5-15cm_mean: sndppt_sl2 - sand_15-30cm_mean: sndppt_sl3 - sand_30-60cm_mean: sndppt_sl4 - sand_60-100cm_mean: sndppt_sl5 - sand_100-200cm_mean: sndppt_sl6 - SoilThickness_250_mean: soilthickness - TAXOUSDA_250_mean: tax_usda - unit_mult: - bd_sl1: 0.01 - bd_sl2: 0.01 - bd_sl3: 0.01 - bd_sl4: 0.01 - bd_sl5: 0.01 - bd_sl6: 0.01 - bd_sl7: 0.01 - oc_sl1: 0.01 - oc_sl2: 0.01 - oc_sl3: 0.01 - oc_sl4: 0.01 - oc_sl5: 0.01 - oc_sl6: 0.01 - oc_sl7: 0.01 - ph_sl1: 0.1 - ph_sl2: 0.1 - ph_sl3: 0.1 - ph_sl4: 0.1 - ph_sl5: 0.1 - ph_sl6: 0.1 - ph_sl7: 0.1 - clyppt_sl1: 0.1 - clyppt_sl2: 0.1 - clyppt_sl3: 0.1 - clyppt_sl4: 0.1 - clyppt_sl5: 0.1 - clyppt_sl6: 0.1 - clyppt_sl7: 0.1 - sltppt_sl1: 0.1 - sltppt_sl2: 0.1 - sltppt_sl3: 0.1 - sltppt_sl4: 0.1 - sltppt_sl5: 0.1 - sltppt_sl6: 0.1 - sltppt_sl7: 0.1 - sndppt_sl1: 0.1 - sndppt_sl2: 0.1 - sndppt_sl3: 0.1 - sndppt_sl4: 0.1 - sndppt_sl5: 0.1 - sndppt_sl6: 0.1 - sndppt_sl7: 0.1 - -vito: +vito_2015: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -1736,14 +1838,19 @@ vito: paper_doi: 10.5281/zenodo.3939038 paper_ref: Buchhorn et al (2020) source_url: https://land.copernicus.eu/global/products/lc - source_version: v2.0.2 + source_spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 + version: 2.0.2 path: landuse/vito/ProbaV_LC100_epoch2015_global_v2.0.2_discrete-classification_EPSG-4326.tif -vito_2016_v3.0.1: +vito_2016: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -1752,14 +1859,19 @@ vito_2016_v3.0.1: paper_doi: 10.5281/zenodo.3518026 paper_ref: Buchhorn et al (2020) source_url: https://land.copernicus.eu/global/products/lc - source_version: v3.0.1 + source_spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 + version: 3.0.1 path: landuse/vito/PROBAV_LC100_global_v3.0.1_2016-conso_Discrete-Classification-map_EPSG-4326.tif -vito_2017_v3.0.1: +vito_2017: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -1768,14 +1880,19 @@ vito_2017_v3.0.1: paper_doi: 10.5281/zenodo.3518036 paper_ref: Buchhorn et al (2020) source_url: https://land.copernicus.eu/global/products/lc - source_version: v3.0.1 + source_spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 + version: 3.0.1 path: landuse/vito/PROBAV_LC100_global_v3.0.1_2017-conso_Discrete-Classification-map_EPSG-4326.tif -vito_2018_v3.0.1: +vito_2018: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -1784,14 +1901,19 @@ vito_2018_v3.0.1: paper_doi: 10.5281/zenodo.3518038 paper_ref: Buchhorn et al (2020) source_url: https://land.copernicus.eu/global/products/lc - source_version: v3.0.1 + source_spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 + version: 3.0.1 path: landuse/vito/PROBAV_LC100_global_v3.0.1_2018-conso_Discrete-Classification-map_EPSG-4326.tif -vito_2019_v3.0.1: +vito_2019: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 3600 y: 3600 @@ -1800,7 +1922,12 @@ vito_2019_v3.0.1: paper_doi: 10.5281/zenodo.3939050 paper_ref: Buchhorn et al (2020) source_url: https://land.copernicus.eu/global/products/lc - source_version: v3.0.1 + source_spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 + version: 3.0.1 path: landuse/vito/ProbaV_LC100_global_v3.0.1_2019-nrt_discrete-classification-map_EPSG-4326.tif wb_countries: @@ -1813,6 +1940,12 @@ wb_countries: source_url: https://datacatalog.worldbank.org/dataset/world-bank-official-boundaries source_license: CC-BY 4.0 timestamp: February 2020 + source_spatial_extent: + West: -180.0 + South: -59.473 + East: 180.0 + North: 83.634 + version: 20200319 path: geography/wb/WB_countries_Admin0.fgb rename: ISO_A3: country_iso @@ -1827,7 +1960,7 @@ worldclim: crs: 4326 data_type: RasterDataset driver: netcdf - kwargs: + driver_kwargs: chunks: lat: 3600 lon: 3600 @@ -1836,8 +1969,13 @@ worldclim: paper_doi: 10.1002/joc.5086 paper_ref: Fick and Hijmans (2017) source_url: https://www.worldclim.org/data/worldclim21.html - source_version: 2 nodata: -999.0 + source_spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + version: 2.0 path: meteo/worldclim_v2.0/wc2.0_30s_prec.nc rename: prec: precip @@ -1845,7 +1983,7 @@ worldclim: worldpop_2020_constrained: data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: auto meta: category: socio-economic @@ -1853,22 +1991,38 @@ worldpop_2020_constrained: paper_ref: Stevens et al. (2015) source_license: CC BY 4.0 source_url: https://www.worldpop.org/doi/10.5258/SOTON/WP00684 + processing_script: socio_economic/worldpop/src/ + source_spatial_extent: + West: -180.0 + South: -55.985 + East: 180.0 + North: 83.628 nodata: -99999 - variants: - - provider: normal - path: socio_economic/worldpop/ppp_2020_constrained.vrt - rename: - ppp_2020_constrained: population - - provider: UNadj - path: socio_economic/worldpop/ppp_2020_UNadj_constrained.vrt - rename: - ppp_2020_UNadj_constrained: population + path: socio_economic/worldpop/ppp_2020_constrained.vrt + rename: + ppp_2020_constrained: population + +worldpop_2020_UNadj_constrained: + data_type: RasterDataset + driver: raster + driver_kwargs: + chunks: auto + meta: + processing_script: socio_economic/worldpop/src/ + source_spatial_extent: + West: -180.0 + South: -55.985 + East: 180.0 + North: 83.628 + path: socio_economic/worldpop/ppp_2020_UNadj_constrained.vrt + rename: + ppp_2020_UNadj_constrained: population wsf_bld_2015: crs: 4326 data_type: RasterDataset driver: raster - kwargs: + driver_kwargs: chunks: x: 1000 y: 1000 @@ -1878,4 +2032,10 @@ wsf_bld_2015: paper_ref: Marconcini at al (2020) source_license: CC0 1.0 source_url: https://un-spider.org/links-and-resources/data-sources/world-settlement-footprint-2015-wsf-dlr-eoc + source_spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 + version: 1 path: infrastructure/wsf/WSF2015_v1_EPSG4326.vrt diff --git a/data/catalogs/deltares_data/v1.0.0/data_catalog.yml b/data/catalogs/deltares_data/v1.0.0/data_catalog.yml index 94f36b32d..34a461351 100644 --- a/data/catalogs/deltares_data/v1.0.0/data_catalog.yml +++ b/data/catalogs/deltares_data/v1.0.0/data_catalog.yml @@ -2,59 +2,9 @@ meta: root: p:/wflow_global/hydromt version: v1.0.0 name: deltares_data - hydromt_version: '>1.0a,<2' -basin_atlas_level12_v10: - data_type: GeoDataFrame - uri: hydrography/hydro_atlas/basin_atlas_v10.gpkg - driver: - name: pyogrio - options: - layer: BasinATLAS_v10_lev12 - metadata: - category: hydrography - notes: renaming and units might require some revision - paper_doi: 10.1038/s41597-019-0300-6 - paper_ref: Linke et al. (2019) - url: https://www.hydrosheds.org/hydroatlas - version: 10 - license: CC BY 4.0 - crs: 4326 -river_atlas_v10: - data_type: GeoDataFrame - uri: hydrography/hydro_atlas/river_atlas_v10.gpkg - driver: - name: pyogrio - metadata: - category: hydrography - notes: renaming and units might require some revision - paper_doi: 10.1038/s41597-019-0300-6 - paper_ref: Linke et al. (2019) - url: https://www.hydrosheds.org/hydroatlas - version: 10 - license: CC BY 4.0 - crs: 4326 - data_adapter: - rename: - dis_m3_pyr: Dis_avg -lake_atlas_pol_v10: - data_type: GeoDataFrame - uri: hydrography/hydro_atlas/lake_atlas_v10.gpkg - driver: - name: pyogrio - options: - layer: LakeATLAS_v10_pol - metadata: - category: hydrography - notes: renaming and units might require some revision - paper_doi: 10.1038/s41597-022-01425-z - paper_ref: Lehner et al. (2022) - url: https://www.hydrosheds.org/hydroatlas - version: 10 - license: CC BY 4.0 - crs: 4326 - data_adapter: - rename: - dis_m3_pyr: Dis_avg + hydromt_version: '>1.0.0-alpha,<2' + + chelsa: data_type: RasterDataset uri: meteo/chelsa_clim_v1.2/CHELSA_bio10_12.tif @@ -67,11 +17,17 @@ chelsa: metadata: category: meteo paper_doi: 10.1038/sdata.2017.122 + crs: 4326 + version: 1.2 paper_ref: Karger et al. (2017) url: http://chelsa-climate.org/downloads/ - version: 1.2 license: CC BY 4.0 - crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 84.0 + chirps: data_type: RasterDataset uri: meteo/chirps_africa_daily_v2.0/CHIRPS_rainfall_{year}.nc @@ -87,17 +43,26 @@ chirps: parallel: true metadata: category: meteo + crs: 4326 + version: v2.0 paper_doi: 10.1038/sdata.2015.66 paper_ref: Funk et al (2015) url: https://www.chc.ucsb.edu/data/chirps - version: v2.0 license: CC - crs: 4326 + temporal_extent: + start: '1981-01-02' + end: '2022-04-01' + spatial_extent: + West: -20.0 + South: -40.0 + East: 55.0 + North: 40.0 data_adapter: unit_add: time: 86400 rename: precipitation: precip + chirps_global: data_type: RasterDataset uri: meteo/chirps_global_daily_v2.0/chirps-v2.0.{year}.days_p05.nc @@ -112,18 +77,27 @@ chirps_global: decode_times: true parallel: true metadata: + crs: 4326 + version: v2.0 category: meteo paper_doi: 10.3133/ds832 paper_ref: Funk et al (2014) url: https://www.chc.ucsb.edu/data/chirps - version: v2.0 license: CC - crs: 4326 + temporal_extent: + start: '1981-01-02' + end: '2023-02-01' + spatial_extent: + West: -180.0 + South: -50.0 + East: 180.0 + North: 50.0 data_adapter: unit_add: time: 86400 rename: precipitation: precip + copdem30: data_type: RasterDataset uri: topography/copdem/copdem.vrt @@ -136,12 +110,18 @@ copdem30: metadata: category: topography url: https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198#D4 - version: '2021_1' license: https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex+%281%29.pdf/83b44c0a-244a-7ba3-b00c-b578a34e88a7?t=1604070311399 + version: 2021.1 nodata: -9999 + spatial_extent: + West: -180.001 + South: -90.0 + East: 180.0 + North: 84.0 data_adapter: rename: copdem: elevtn + copdem30_mask: data_type: RasterDataset uri: topography/copdem/copdem_mask.vrt @@ -154,12 +134,18 @@ copdem30_mask: metadata: category: topography url: https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198#D4 - version: '2021_1' + version: 2021.1 license: https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex+%281%29.pdf/83b44c0a-244a-7ba3-b00c-b578a34e88a7?t=1604070311399 nodata: -1 + spatial_extent: + West: -180.001 + South: -90.0 + East: 180.0 + North: 84.0 data_adapter: rename: copdem_mask: mask + copdem30_masked: data_type: RasterDataset uri: topography/copdem/copdem_masked.vrt @@ -172,11 +158,17 @@ copdem30_masked: metadata: category: topography url: https://spacedata.copernicus.eu/web/cscda/dataset-details?articleId=394198#D4 - version: '2021_1' + version: 2021.1 license: https://spacedata.copernicus.eu/documents/20126/0/CSCDA_ESA_Mission-specific+Annex+%281%29.pdf/83b44c0a-244a-7ba3-b00c-b578a34e88a7?t=1604070311399 + spatial_extent: + West: -180.001 + South: -90.0 + East: 180.0 + North: 84.0 data_adapter: rename: copdem_masked: elevtn + corine: data_type: RasterDataset uri: landuse/corine/CLC2018_CLC2018_V2018_20.tif @@ -192,6 +184,12 @@ corine: author: European Environment Agency version: v.2020_20u1 license: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=metadata + spatial_extent: + West: 900000.0 + South: 900000.0 + East: 7400000.0 + North: 5500000.0 + dtu10mdt: data_type: RasterDataset uri: topography/dtu10mdt/DTU10MDT_1min_float32.tif @@ -209,6 +207,12 @@ dtu10mdt: url: https://www.space.dtu.dk/english/research/scientific_data_and_models/global_mean_dynamic_topography version: 2010 crs: 4326 + spatial_extent: + West: -179.992 + South: -89.992 + East: 179.992 + North: 89.992 + dtu10mdt_egm96: data_type: RasterDataset uri: topography/dtu10mdt/DTU10MDT_1min_egm96.tif @@ -226,6 +230,12 @@ dtu10mdt_egm96: url: https://www.space.dtu.dk/english/research/scientific_data_and_models/global_mean_dynamic_topography version: 2010 crs: 4326 + spatial_extent: + West: -179.992 + South: -89.985 + East: 179.995 + North: 89.992 + eobs: data_type: RasterDataset uri: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v22.0e.nc @@ -247,6 +257,11 @@ eobs: version: 22.0e license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles crs: 4326 + spatial_extent: + West: -25.0 + South: 25.0 + East: 45.5 + North: 71.5 data_adapter: unit_add: time: 86400 @@ -255,123 +270,44 @@ eobs: qq: kin rr: precip tg: temp -eobs_v23.1e: - data_type: RasterDataset - uri: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v23.1e.nc - driver: - name: raster_xarray - options: - chunks: - latitude: 100 - longitude: 100 - time: 100 - combine: by_coords - parallel: true - preprocess: round_latlon - metadata: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - version: 23.1e - license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - crs: 4326 - data_adapter: - unit_add: - time: 86400 - rename: - pp: press_msl - qq: kin - rr: precip - tg: temp -eobs_v24.0e: - data_type: RasterDataset - uri: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v24.0e.nc - driver: - name: raster_xarray - options: - chunks: - latitude: 100 - longitude: 100 - time: 100 - combine: by_coords - parallel: true - preprocess: round_latlon - metadata: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - version: 24.0e - license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - crs: 4326 - data_adapter: - unit_add: - time: 86400 - rename: - pp: press_msl - qq: kin - rr: precip - tg: temp -eobs_v25.0e: - data_type: RasterDataset - uri: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v25.0e.nc - driver: - name: raster_xarray - options: - chunks: - latitude: 100 - longitude: 100 - time: 100 - combine: by_coords - parallel: true - preprocess: round_latlon - metadata: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - version: 25.0e - license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - crs: 4326 - data_adapter: - unit_add: - time: 86400 - rename: - pp: press_msl - qq: kin - rr: precip - tg: temp -eobs_v29.0e: - data_type: RasterDataset - uri: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v29.0e.nc - driver: - name: raster_xarray - options: - chunks: - latitude: 100 - longitude: 100 - time: 100 - combine: by_coords - parallel: true - preprocess: round_latlon - metadata: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - version: 29.0e - license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - crs: 4326 - data_adapter: - unit_add: - time: 86400 - rename: - pp: press_msl - qq: kin - rr: precip - tg: temp -eobs_orography_v20.0e: + variants: + - version: 22.0e + uri: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v22.0e.nc + metadata: + temporal_extent: + start: '1950-01-02' + end: '2020-07-01' + - version: 23.1e + uri: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v23.1e.nc + metadata: + temporal_extent: + start: '1950-01-02' + end: '2021-01-01' + - version: 24.0e + uri: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v24.0e.nc + metadata: + processing_script: meteo/eobs/scripts/v24.0e_fix_qq_dims_and_match_extent.py + processing_notes: correct lat/lon dimension for variable qq to match the grid of the other variables + temporal_extent: + start: '1950-01-02' + end: '2021-07-01' + - version: 25.0e + uri: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v25.0e.nc + metadata: + processing_script: v25.0e_fix_qq_dims_and_match_extent.py + processing_notes: correct lat/lon dimension for variable qq to match the grid of the other variables + temporal_extent: + start: '1950-01-02' + end: '2022-01-01' + - version: 29.0e + uri: meteo/eobs/*/{variable}_ens_mean_0.1deg_reg_v29.0e.nc + metadata: + processing_script: meteo/eobs/scripts/v29.0e_fix_qq_dims_and_match_extent.py + temporal_extent: + start: '1950-01-01' + end: '2024-02-01' + +eobs_orography: data_type: RasterDataset uri: meteo/eobs/elev_ens_0.1deg_reg_v20.0e.nc driver: @@ -388,114 +324,33 @@ eobs_orography_v20.0e: version: 20.0e license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles crs: 4326 + spatial_extent: + West: -25.0 + South: 25.0 + East: 45.5 + North: 71.5 data_adapter: rename: elevation: elevtn -eobs_orography: - data_type: RasterDataset - uri: meteo/eobs/elev_ens_0.1deg_reg_v22.0e.nc - driver: - name: raster_xarray - options: - chunks: - latitude: 100 - longitude: 100 - metadata: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - version: 22.0e - license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - crs: 4326 - data_adapter: - rename: - elevation: elevtn -eobs_orography_v23.1e: - data_type: RasterDataset - uri: meteo/eobs/elev_ens_0.1deg_reg_v23.1e.nc - driver: - name: raster_xarray - options: - chunks: - latitude: 100 - longitude: 100 - metadata: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - version: 23.1e - license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - crs: 4326 - data_adapter: - rename: - elevation: elevtn -eobs_orography_v24.0e: - data_type: RasterDataset - uri: meteo/eobs/elev_ens_0.1deg_reg_v24.0e.nc - driver: - name: raster_xarray - options: - chunks: - latitude: 100 - longitude: 100 - metadata: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - version: 24.0e - license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - crs: 4326 - data_adapter: - rename: - elevation: elevtn -eobs_orography_v25.0e: - data_type: RasterDataset - uri: meteo/eobs/elev_ens_0.1deg_reg_v25.0e.nc - driver: - name: raster_xarray - options: - chunks: - latitude: 100 - longitude: 100 - metadata: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - version: 25.0e - license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - crs: 4326 - data_adapter: - rename: - elevation: elevtn -eobs_orography_v29.0e: - data_type: RasterDataset - uri: meteo/eobs/elev_ens_0.1deg_reg_v29.0e.nc - driver: - name: raster_xarray - options: - chunks: - latitude: 100 - longitude: 100 - metadata: - category: meteo - paper_doi: 10.1029/2017JD028200 - paper_ref: Cornes et al (2018) - url: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - version: 29.0e - license: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles - crs: 4326 - data_adapter: - rename: - elevation: elevtn + variants: + - version: 20.0e + uri: meteo/eobs/elev_ens_0.1deg_reg_v20.0e.nc + - version: 22.0e + uri: meteo/eobs/elev_ens_0.1deg_reg_v22.0e.nc + - version: 23.1e + uri: meteo/eobs/elev_ens_0.1deg_reg_v23.1e.nc + - version: 24.0e + uri: meteo/eobs/elev_ens_0.1deg_reg_v24.0e.nc + - version: 25.0e + uri: meteo/eobs/elev_ens_0.1deg_reg_v25.0e.nc + - version: 29.0e + uri: meteo/eobs/elev_ens_0.1deg_reg_v29.0e.nc + era5: data_type: RasterDataset variants: - provider: netcdf - uri: meteo/era5_daily/nc_merged/era5_{year}*_daily.nc + uri: meteo/era5_daily/nc_merged/era5_{year}_daily.nc driver: name: raster_xarray options: @@ -522,6 +377,14 @@ era5: version: ERA5 daily data on pressure levels license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products crs: 4326 + temporal_extent: + start: '1950-01-02' + end: '2023-11-30' + spatial_extent: + West: -0.125 + South: -90.125 + East: 359.875 + North: 90.125 data_adapter: unit_add: temp: -273.15 @@ -544,11 +407,12 @@ era5: tp: precip u10: wind10_u v10: wind10_v + era5_hourly: data_type: RasterDataset variants: - provider: netcdf - uri: meteo/era5/{variable}/era5_{variable}_{year}*_hourly.nc + uri: meteo/era5/{variable}/era5_{variable}_{year}_hourly.nc driver: name: raster_xarray options: @@ -574,6 +438,14 @@ era5_hourly: version: ERA5 hourly data on single levels from 1940 to present license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products crs: 4326 + temporal_extent: + start: '1950-01-01' + end: '2023-03-01' + spatial_extent: + West: -0.125 + South: -90.125 + East: 359.875 + North: 90.125 data_adapter: unit_add: temp: -273.15 @@ -593,6 +465,7 @@ era5_hourly: tp: precip u10: wind10_u v10: wind10_v + era5_ocean: data_type: RasterDataset uri: ocean/era5/{variable}/era5_{variable}_{year}_hourly.nc @@ -614,6 +487,15 @@ era5_ocean: url: https://doi.org/10.24381/cds.bd0915c6 license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products crs: 4326 + temporal_extent: + start: '1979-01-01' + end: '2022-04-08' + spatial_extent: + West: -0.25 + South: -90.25 + East: 359.75 + North: 90.25 + era5_orography: data_type: RasterDataset uri: meteo/era5/meta/era5_orography_2018.nc @@ -631,11 +513,20 @@ era5_orography: url: https://apps.ecmwf.int/codes/grib/param-db?id=129 license: https://cds.climate.copernicus.eu/cdsapp/#!/terms/licence-to-use-copernicus-products crs: 4326 + temporal_extent: + start: '2018-01-01' + end: '2018-01-01' + spatial_extent: + West: -0.125 + South: -90.125 + East: 359.875 + North: 90.125 data_adapter: unit_mult: elevtn: 0.10197162129779283 rename: z: elevtn + esa_worldcover: data_type: RasterDataset uri: landuse/esa_worldcover/esa-worldcover.vrt @@ -647,10 +538,20 @@ esa_worldcover: y: 36000 metadata: category: landuse + processing_notes: prepare vrt file with gdalbuildvrt url: https://doi.org/10.5281/zenodo.5571936 version: v100 license: CC BY 4.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 84.0 + temporal_extent: + start: '2020-01-01' + end: '2020-12-31' + fabdem: data_type: RasterDataset uri: topography/fabdem/fabdem.vrt @@ -668,6 +569,11 @@ fabdem: version: 1.0 license: CC BY-NC-SA 4.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 data_adapter: rename: fabdem: elevtn @@ -685,6 +591,12 @@ gadm: version: 4.1 license: https://gadm.org/license.html crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 83.658 + gadm_level1: data_type: GeoDataFrame uri: geography/gadm/version4_1/gadm_level1.fgb @@ -699,6 +611,12 @@ gadm_level1: version: 4.1 license: https://gadm.org/license.html crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 83.658 + gadm_level2: data_type: GeoDataFrame uri: geography/gadm/version4_1/gadm_level2.fgb @@ -713,6 +631,12 @@ gadm_level2: version: 4.1 license: https://gadm.org/license.html crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 83.658 + gadm_level3: data_type: GeoDataFrame uri: geography/gadm/version4_1/gadm_level3.fgb @@ -727,6 +651,12 @@ gadm_level3: version: 4.1 license: https://gadm.org/license.html crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 83.658 + gcn250: data_type: RasterDataset uri: landuse/gcn250/GCN250_*.tif @@ -744,11 +674,17 @@ gcn250: version: v1 license: CC BY 4.0 nodata: 255 + spatial_extent: + West: -180.0 + South: -56.0 + East: 180.0 + North: 84.0 data_adapter: rename: GCN250_ARCI: cn_dry GCN250_ARCII: cn_avg GCN250_ARCIII: cn_wet + gdp_world: data_type: GeoDataFrame uri: socio_economic/gdp_world/World_countries_GDPpcPPP.fgb @@ -756,17 +692,23 @@ gdp_world: name: pyogrio metadata: category: socio-economic - notes: data combined from World Bank (https://data.worldbank.org/indicator/NY.GDP.MKTP.CD) + processing_notes: data combined from World Bank (https://data.worldbank.org/indicator/NY.GDP.MKTP.CD) and CIA World Factbook (https://www.cia.gov/the-world-factbook/field/real-gdp-per-capita/country-comparison) author: Wilfred Altena version: 1.0 license: CC BY-4.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 83.665 data_adapter: unit_mult: gdp: 0.001 rename: GDP: gdp + gebco: data_type: RasterDataset uri: bathymetry/gebco/gebco.vrt @@ -785,10 +727,17 @@ gebco: version: 2020 license: https://www.gebco.net/data_and_products/gridded_bathymetry_data/#a1 crs: 4326 + processing_script: bathymetry/gebco/gebco_tiles.ipynb + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 data_adapter: rename: gebco: elevtn -ghs_pop: + +ghs_pop_2015: data_type: RasterDataset uri: socio_economic/ghs/GHS_POP_E2015_GLOBE_R2019A_4326_9ss_V1_0.tif driver: @@ -806,7 +755,13 @@ ghs_pop: version: R2019A_v1.0 license: https://data.jrc.ec.europa.eu/licence/com_reuse crs: 4326 -ghs_pop_2015_54009_v2019a: + spatial_extent: + West: -180.0 + South: -59.485 + East: 180.0 + North: 83.628 + +ghs_pop_2015_54009: data_type: RasterDataset uri: socio_economic/ghs/GHS_POP_E2015_GLOBE_R2019A_54009_250_V1_0.tif driver: @@ -822,7 +777,13 @@ ghs_pop_2015_54009_v2019a: url: https://ghsl.jrc.ec.europa.eu/download.php?ds=pop license: CC BY 4.0 crs: ESRI:54009 -ghs_smod: + spatial_extent: + West: -18041000.0 + South: -9000000.0 + East: 18041000.0 + North: 9000000.0 + +ghs_smod_2015: data_type: RasterDataset uri: socio_economic/ghs/GHS_SMOD_POP2015_GLOBE_R2016A_54009_1k_v1_0.tif driver: @@ -839,24 +800,24 @@ ghs_smod: version: R2016A_v1.0 license: https://data.jrc.ec.europa.eu/licence/com_reuse crs: ESRI:54009 -ghs_smod_2015_54009_v2019a: - data_type: RasterDataset - uri: socio_economic/ghs/GHS_SMOD_POP2015_GLOBE_R2019A_54009_1K_V2_0.tif - driver: - name: rasterio - options: - chunks: - x: 3600 - y: 3600 - metadata: - category: socio-economic - paper_doi: 10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218 - paper_ref: Pesaresi et al (2019) - url: https://data.jrc.ec.europa.eu/dataset/42e8be89-54ff-464e-be7b-bf9e64da5218 - author: JRC-ISPRA EC - version: R2019A_v2.0 - license: https://data.jrc.ec.europa.eu/licence/com_reuse - crs: ESRI:54009 + spatial_extent: + West: -18041000.0 + South: -9000000.0 + East: 18041000.0 + North: 9000000.0 + variants: + - version: R2016A_v1.0 + uri: socio_economic/ghs/GHS_SMOD_POP2015_GLOBE_R2016A_54009_1k_v1_0.tif + metadata: + paper_ref: Pesaresi and Freire (2016) + url: https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_smod_pop_globe_r2016a + - version: R2019A_v2.0 + uri: socio_economic/ghs/GHS_SMOD_POP2015_GLOBE_R2019A_54009_1K_V2_0.tif + metadata: + paper_doi: 10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218 + paper_ref: Pesaresi et al (2019) + url: https://data.jrc.ec.europa.eu/dataset/42e8be89-54ff-464e-be7b-bf9e64da5218 + globcover: data_type: RasterDataset uri: landuse/globcover/GLOBCOVER_L4_200901_200912_V2.3.tif @@ -874,7 +835,13 @@ globcover: version: v2.3 license: CC-BY-3.0 crs: 4326 -glofas_era5_v31: + spatial_extent: + West: -180.001 + South: -64.999 + East: 179.999 + North: 90.001 + +glofas_era5: data_type: RasterDataset variants: - provider: normal @@ -914,6 +881,16 @@ glofas_era5_v31: version: v31 license: https://cds.climate.copernicus.eu/api/v2/terms/static/cems-floods.pdf crs: 4326 + processing_script: hydro/glofas_era5/glofas_cds_get.py + temporal_extent: + start: '1980-01-01' + end: '2021-05-31' + spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 90.0 + glw_buffaloes: data_type: RasterDataset uri: socio_economic/glw/5_Bf_2010_Da.tif @@ -929,9 +906,16 @@ glw_buffaloes: paper_ref: Gilbert at al (2018) url: https://dataverse.harvard.edu/dataverse/glw_3 author: glw (Gridded Livestock of World 3 Dataverse) - version: GLW 3, last downloaded 2020-06-11 + notes: last downloaded 2020-06-11 + version: 3 license: CC 4.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + glw_cattle: data_type: RasterDataset uri: socio_economic/glw/5_Ct_2010_Da.tif @@ -947,9 +931,16 @@ glw_cattle: paper_ref: Gilbert at al (2018) url: https://dataverse.harvard.edu/dataverse/glw_3 author: glw (Gridded Livestock of World 3 Dataverse) - version: GLW 3, last downloaded 2020-06-11 + notes : last downloaded 2020-06-11 + version: 3 license: CC 4.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + glw_chicken: data_type: RasterDataset uri: socio_economic/glw/5_Ch_2010_Da.tif @@ -965,9 +956,16 @@ glw_chicken: paper_ref: Gilbert at al (2018) url: https://dataverse.harvard.edu/dataverse/glw_3 author: glw (Gridded Livestock of World 3 Dataverse) - version: GLW 3, last downloaded 2020-06-11 + notes: last downloaded 2020-06-11 + version: 3 license: CC 4.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + glw_ducks: data_type: RasterDataset uri: socio_economic/glw/5_Dk_2010_Da.tif @@ -983,9 +981,16 @@ glw_ducks: paper_ref: Gilbert at al (2018) url: https://dataverse.harvard.edu/dataverse/glw_3 author: glw (Gridded Livestock of World 3 Dataverse) - version: GLW 3, last downloaded 2020-06-11 + notes: last downloaded 2020-06-11 + version: 3 license: CC 4.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + glw_goats: data_type: RasterDataset uri: socio_economic/glw/5_Gt_2010_Da.tif @@ -1001,9 +1006,16 @@ glw_goats: paper_ref: Gilbert at al (2018) url: https://dataverse.harvard.edu/dataverse/glw_3 author: glw (Gridded Livestock of World 3 Dataverse) - version: GLW 3, last downloaded 2020-06-11 + notes: last downloaded 2020-06-11 + version: 3 license: CC 4.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + glw_horses: data_type: RasterDataset uri: socio_economic/glw/5_Ho_2010_Da.tif @@ -1019,9 +1031,16 @@ glw_horses: paper_ref: Gilbert at al (2018) url: https://dataverse.harvard.edu/dataverse/glw_3 author: glw (Gridded Livestock of World 3 Dataverse) - version: GLW 3, last downloaded 2020-06-11 + notes: last downloaded 2020-06-11 + version: 3 license: CC 4.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + glw_pigs: data_type: RasterDataset uri: socio_economic/glw/5_Pg_2010_Da.tif @@ -1037,9 +1056,16 @@ glw_pigs: paper_ref: Gilbert at al (2018) url: https://dataverse.harvard.edu/dataverse/glw_3 author: glw (Gridded Livestock of World 3 Dataverse) - version: GLW 3, last downloaded 2020-06-11 + notes: last downloaded 2020-06-11 + version: 3 license: CC 4.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + glw_sheeps: data_type: RasterDataset uri: socio_economic/glw/5_Sh_2010_Da.tif @@ -1055,9 +1081,16 @@ glw_sheeps: paper_ref: Gilbert at al (2018) url: https://dataverse.harvard.edu/dataverse/glw_3 author: glw (Gridded Livestock of World 3 Dataverse) - version: GLW 3, last downloaded 2020-06-11 + notes: last downloaded 2020-06-11 + version: 3 license: CC 4.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + grdc: data_type: GeoDataFrame uri: hydro/grdc/GRDC_Stations.csv @@ -1074,6 +1107,7 @@ grdc: data_adapter: rename: area: uparea + grip_roads: data_type: GeoDataFrame uri: infrastructure/grip/GRIP4_world.fgb @@ -1087,10 +1121,17 @@ grip_roads: version: v4 license: CC0-1.0 crs: 4326 + processing_script: infrastructure/grip/merge.ipynb + spatial_extent: + West: -179.999 + South: -55.055 + East: 180.0 + North: 73.836 data_adapter: rename: GP_RTP: road_type GP_RCY: country_code + grwl: data_type: GeoDataFrame uri: hydrography/grwl/GRWL_vector_V01.01/grwl.fgb @@ -1103,6 +1144,12 @@ grwl: url: https://doi.org/10.5281/zenodo.1297434 version: 1.01 license: CC BY 4.0 + spatial_extent: + West: -180.0 + South: -54.31 + East: 180.0 + North: 82.311 + grwl_mask: data_type: RasterDataset uri: hydrography/grwl/tindex.gpkg @@ -1137,35 +1184,14 @@ gswo: paper_doi: 10.1038/nature20584 paper_ref: Pekel et al. (2016) url: https://global-surface-water.appspot.com/download - version: v1_1_2019 + version: 1.1 nodata: 255 -gtsm_codec_reanalysis_{freq}_v1: - data_type: GeoDataset - placeholders: - freq: - - 10min - - hourly - - dailymax - uri: p:/11205028-c3s_435/01_data/01_Timeseries/timeseries2/{variable}/reanalysis_{variable}_{freq}_{year}_{month:02d}_v1.nc - driver: - name: geodataset_xarray - options: - chunks: - stations: 10 - time: -1 - metadata: - category: ocean - paper_doi: 10.3389/fmars.2020.00263 - paper_ref: Muis at al (2020) - url: https://doi.org/10.24381/cds.8c59054f - version: v1 - license: https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf - crs: 4326 - data_adapter: - rename: - station_x_coordinate: lon - station_y_coordinate: lat - stations: index + spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 + guf_bld_2012: data_type: RasterDataset uri: infrastructure/guf/GUF04_DLR_v02.vrt @@ -1182,6 +1208,12 @@ guf_bld_2012: url: http://www.dlr.de/guf license: https://www.dlr.de/eoc/en/PortalData/60/Resources/dokumente/guf/DLR-GUF_LicenseAgreement-and-OrderForm.pdf crs: 4326 + spatial_extent: + West: -180.0 + South: -65.0 + East: 180.0 + North: 85.0 + hydro_lakes: data_type: GeoDataFrame uri: hydrography/lakes/lake-db.fgb @@ -1193,6 +1225,11 @@ hydro_lakes: author: Arjen Haag version: 1.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -55.865 + East: 180.0 + North: 83.576 data_adapter: unit_mult: Area_avg: 1000000.0 @@ -1204,6 +1241,54 @@ hydro_lakes: Pour_lat: yout Pour_long: xout Vol_total: Vol_avg + +hydro_basin_atlas_level12: + data_type: GeoDataFrame + uri: hydrography/hydro_atlas/basin_atlas_v10.gpkg + driver: + name: pyogrio + options: + layer: BasinATLAS_v10_lev12 + metadata: + category: hydrography + crs: 4326 + version: 10 + notes: renaming and units might require some revision + paper_doi: 10.1038/s41597-019-0300-6 + paper_ref: Linke et al. (2019) + url: https://www.hydrosheds.org/hydroatlas + license: CC BY 4.0 + spatial_extent: + West: -180.0 + South: -55.988 + East: 180.001 + North: 83.626 + +hydro_lake_atlas_pol: + data_type: GeoDataFrame + version: 10 + uri: hydrography/hydro_atlas/lake_atlas_v10.gpkg + driver: + name: pyogrio + options: + layer: LakeATLAS_v10_pol + metadata: + category: hydrography + notes: renaming and units might require some revision + paper_doi: 10.1038/s41597-022-01425-z + paper_ref: Lehner et al. (2022) + url: https://www.hydrosheds.org/hydroatlas + license: CC BY 4.0 + crs: 4326 + spatial_extent: + West: -180.0 + South: -55.865 + East: 180.0 + North: 83.576 + data_adapter: + rename: + dis_m3_pyr: Dis_avg + hydro_reservoirs: data_type: GeoDataFrame uri: hydrography/reservoirs/reservoir-db.fgb @@ -1216,6 +1301,11 @@ hydro_reservoirs: version: 1.0 nodata: -99 crs: 4326 + spatial_extent: + West: -153.059 + South: -45.881 + East: 176.825 + North: 70.396 data_adapter: unit_mult: Area_avg: 1000000.0 @@ -1236,6 +1326,54 @@ hydro_reservoirs: Pour_lat: yout Pour_long: xout Vol_total: Vol_avg + +hydro_river_atlas: + data_type: GeoDataFrame + uri: hydrography/hydro_atlas/river_atlas_v10.gpkg + driver: + name: pyogrio + metadata: + category: hydrography + crs: 4326 + version: 10 + notes: renaming and units might require some revision + paper_doi: 10.1038/s41597-019-0300-6 + paper_ref: Linke et al. (2019) + url: https://www.hydrosheds.org/hydroatlas + license: CC BY 4.0 + spatial_extent: + West: -179.998 + South: -55.877 + East: 179.998 + North: 83.59 + data_adapter: + rename: + dis_m3_pyr: Dis_avg + +hydro_rivers_lin2019: + data_type: GeoDataFrame + uri: hydrography/rivers_lin2019/rivers_ge30m.fgb + driver: + name: pyogrio + metadata: + category: hydrography + notes: renaming and units might require some revision + paper_doi: 10.5281/zenodo.3552776 + paper_ref: Lin et al. (2019) + url: https://zenodo.org/record/3552776#.YVbOrppByUk + version: 1 + license: CC-BY-NC 4.0 + crs: 4326 + spatial_extent: + West: -179.998 + South: -55.877 + East: 179.998 + North: 83.59 + data_adapter: + rename: + width_m: rivwth + Q2: qbankfull + koppen_geiger: data_type: RasterDataset uri: meteo/climate_classification_v2017/Map_KG-Global.tif @@ -1252,6 +1390,12 @@ koppen_geiger: url: http://koeppen-geiger.vu-wien.ac.at/present.htm version: 2017 crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + mdt_cnes_cls18: data_type: RasterDataset uri: topography/mdt_cnes_cls18/MDT_CNES_CLS18_global_filled.tif @@ -1269,6 +1413,13 @@ mdt_cnes_cls18: url: https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mdt.html version: 18 crs: 4326 + processing_script: topography/mdt_cnes_cls18/convert_lon_fill_mdt.ipynb + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + merit: data_type: RasterDataset uri: topography/merit/merit.nc @@ -1287,9 +1438,15 @@ merit: version: 1.0.3 license: CC-BY-NC 4.0 or ODbL 1.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 data_adapter: rename: elevation: elevtn + merit_hydro: data_type: RasterDataset uri: topography/merit_hydro/*.vrt @@ -1307,6 +1464,11 @@ merit_hydro: version: 1.0 license: CC-BY-NC 4.0 or ODbL 1.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 85.0 data_adapter: rename: bas: basins @@ -1317,6 +1479,7 @@ merit_hydro: upa: uparea upg: upgrid wth: rivwth + merit_hydro_ihu: data_type: RasterDataset uri: topography/merit_hydro_ihu/30sec/*.tif @@ -1330,11 +1493,17 @@ merit_hydro_ihu: category: topography paper_doi: 10.5194/hess-2020-582 paper_ref: Eilander et al. (2021) - source_doi: 10.5281/zenodo.5166932 + doi: 10.5281/zenodo.5166932 url: https://zenodo.org/record/5166932#.YVbxJ5pByUk version: 1.0 license: ODC-By 1.0 + processing_notes: topography/merit_hydro_ihu/README crs: 4326 + spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 85.0 data_adapter: rename: 30sec_basids: basins @@ -1344,6 +1513,7 @@ merit_hydro_ihu: 30sec_uparea: uparea 30sec_rivlen: rivlen 30sec_rivslp: rivslp + merit_hydro_ihu_index: data_type: GeoDataFrame uri: topography/merit_hydro_ihu/30sec/basins.gpkg @@ -1355,7 +1525,14 @@ merit_hydro_ihu_index: paper_ref: Eilander et al. (2021) url: https://zenodo.org/record/5166932#.YVbxJ5pByUk license: CC-BY-NC 4.0 - crs: 4326 + processing_notes: topography/merit_hydro_ihu/README + crs: 4326 + spatial_extent: + West: -180.025 + South: -59.467 + East: 190.35 + North: 83.683 + merit_hydro_index: data_type: GeoDataFrame uri: topography/merit_hydro/basin_index.fgb @@ -1367,6 +1544,12 @@ merit_hydro_index: paper_ref: Eilander et al. (2021) license: CC-BY-NC 4.0 crs: 4326 + spatial_extent: + West: -180.028 + South: -59.46 + East: 190.338 + North: 83.661 + merit_hydro_patch: data_type: RasterDataset uri: topography/merit_hydro/patches/*.vrt @@ -1384,6 +1567,13 @@ merit_hydro_patch: version: 1.0 Deltares patch license: CC-BY-NC 4.0 or ODbL 1.0 crs: 4326 + processing_script: topography/merit_hydro/patches/scripts + processing_notes: local corrections of flow direction raster and re-derive the related maps (basins, uparea, strord) + spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 85.0 data_adapter: rename: bas: basins @@ -1394,6 +1584,7 @@ merit_hydro_patch: upa: uparea upg: upgrid wth: rivwth + modis_lai: data_type: RasterDataset uri: landuse/modis/MODIS_MCD15A3H_LAI/*.tif @@ -1414,9 +1605,20 @@ modis_lai: version: MCD15A3H V006 license: https://lpdaac.usgs.gov/data/data-citation-and-policies/ crs: 4326 + processing_notes: this dataset has been extracted from GEE ('MODIS/006/MCD15A3H') + for the period '2003-01-01', '2017-12-31' + processing_script: + GEE_script: landuse/modis/MODIS_MCD15A3H_LAI/GEE_MODIS_LAI.js + merge_script: landuse/modis/MODIS_MCD15A3H_LAI/merge_rasters_GEE_LAI.py + spatial_extent: + West: -180.004 + South: -90.002 + East: 180.004 + North: 90.002 data_adapter: unit_mult: LAI: 0.1 + osm_coastlines: data_type: GeoDataFrame uri: geography/osm/osm_coastlines-db.fgb @@ -1430,9 +1632,15 @@ osm_coastlines: version: 1.0 license: ODbL crs: 4326 + spatial_extent: + West: -180.0 + South: -78.733 + East: 180.0 + North: 90.0 data_adapter: rename: fid: coastline_id + osm_landareas: data_type: GeoDataFrame uri: geography/osm/osm_landareas-db.fgb @@ -1446,9 +1654,15 @@ osm_landareas: version: 1.0 license: ODbL crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 83.666 data_adapter: rename: fid: land_id + pcr_globwb: data_type: RasterDataset variants: @@ -1471,7 +1685,11 @@ pcr_globwb: paper_ref: Sutanudjaja, E. H., et al (2017) processing_script: hydro/pcr_globwb/prep_glob.py url: https://zenodo.org/records/1045339#.XWUr7E2P5aR - version: 2017.11b1 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 nodata: -9999 crs: 4326 data_adapter: @@ -1489,6 +1707,7 @@ pcr_globwb: industryGrossDemand: ind_gross livestockNettoDemand: lsk_net livestockGrossDemand: lsk_gross + rgi: data_type: GeoDataFrame uri: hydrography/rgi/rgi.fgb @@ -1503,28 +1722,18 @@ rgi: version: 6.0 license: CC BY 4.0 crs: 4326 + spatial_extent: + West: -179.921 + South: -78.309 + East: 179.751 + North: 83.608 data_adapter: rename: C3S_ID: C3S_id GLIMSID: GLIMS_id ID: simple_id RGIID: RGI_id -rivers_lin2019_v1: - data_type: GeoDataFrame - uri: hydrography/rivers_lin2019/rivers_ge30m.fgb - driver: - name: pyogrio - metadata: - category: hydrography - paper_doi: 10.5281/zenodo.3552776 - paper_ref: Lin et al. (2019) - url: https://zenodo.org/record/3552776#.YVbOrppByUk - version: 1 - license: CC-BY-NC 4.0 - data_adapter: - rename: - width_m: rivwth - Q2: qbankfull + simard: data_type: RasterDataset uri: landuse/simard/sdat_10023_canopy_height_simard.tif @@ -1540,7 +1749,13 @@ simard: paper_ref: Simard et al (2011) url: https://webmap.ornl.gov/ogc/dataset.jsp?ds_id=10023 crs: 4326 -SM2RAIN_ASCAT_monthly_025_v1.4: + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 + +SM2RAIN_ASCAT_monthly_025: data_type: RasterDataset uri: meteo/sm2rain_ascat/SM2RAIN_ASCAT_monthly_025_2007_2020.nc driver: @@ -1559,10 +1774,20 @@ SM2RAIN_ASCAT_monthly_025_v1.4: url: https://zenodo.org/record/4570192#.YueKJWNByUl license: https://creativecommons.org/licenses/by/4.0/legalcode crs: 4326 + version: 1.4 + temporal_extent: + start: '2007-01-01' + end: '2020-12-01' + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 data_adapter: rename: rainfall: precip -SM2RAIN_ASCAT_monthly_05_v1.4: + +SM2RAIN_ASCAT_monthly_05: data_type: RasterDataset uri: meteo/sm2rain_ascat/SM2RAIN_ASCAT_monthly_05_2007_2020.nc driver: @@ -1580,10 +1805,20 @@ SM2RAIN_ASCAT_monthly_05_v1.4: paper_ref: Brocca et al. (2019) url: https://zenodo.org/record/4570192#.YueKJWNByUl license: https://creativecommons.org/licenses/by/4.0/legalcode - crs: 4326 + version: 1.4 + crs: 4326 + temporal_extent: + start: '2007-01-01' + end: '2020-12-01' + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 data_adapter: rename: rainfall: precip + soilgrids: data_type: RasterDataset uri: soil/soilgrids_v1.0/*_250m_ll.tif @@ -1608,6 +1843,13 @@ soilgrids: version: 2017 license: ODbL crs: 4326 + processing_notes: "soilthickness is based on 1) soilgrids (global, depth to bedrock - BDRICM variable) and 2) dataset for Eurasia" + processing_script: p:/wflow_global/static_data/wflow_sbm_parameters/ + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90 data_adapter: unit_mult: bd_sl1: 0.001 @@ -1676,6 +1918,7 @@ soilgrids: SNDPPT_M_sl7_250m_ll: sndppt_sl7 SoilThickness_250m_ll: soilthickness TAXOUSDA_250m_ll: tax_usda + soilgrids_2020: data_type: RasterDataset uri: soil/soilgrids_v2.0/*/*_mean.vrt @@ -1699,6 +1942,11 @@ soilgrids_2020: url: https://www.isric.org/explore/soilgrids/faq-soilgrids version: 2020 license: CC BY 4.0 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90 data_adapter: unit_mult: bd_sl1: 0.01 @@ -1782,7 +2030,8 @@ soilgrids_2020: sand_100-200cm_mean: sndppt_sl6 SoilThickness_250_mean: soilthickness TAXOUSDA_250_mean: tax_usda -vito: + +vito_2015: data_type: RasterDataset uri: landuse/vito/ProbaV_LC100_epoch2015_global_v2.0.2_discrete-classification_EPSG-4326.tif driver: @@ -1796,9 +2045,15 @@ vito: paper_doi: 10.5281/zenodo.3939038 paper_ref: Buchhorn et al (2020) url: https://land.copernicus.eu/global/products/lc - version: v2.0.2 + version: 2.0.2 crs: 4326 -vito_2016_v3.0.1: + spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 + +vito_2016: data_type: RasterDataset uri: landuse/vito/PROBAV_LC100_global_v3.0.1_2016-conso_Discrete-Classification-map_EPSG-4326.tif driver: @@ -1812,9 +2067,15 @@ vito_2016_v3.0.1: paper_doi: 10.5281/zenodo.3518026 paper_ref: Buchhorn et al (2020) url: https://land.copernicus.eu/global/products/lc - version: v3.0.1 + version: 3.0.1 crs: 4326 -vito_2017_v3.0.1: + spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 + +vito_2017: data_type: RasterDataset uri: landuse/vito/PROBAV_LC100_global_v3.0.1_2017-conso_Discrete-Classification-map_EPSG-4326.tif driver: @@ -1828,9 +2089,15 @@ vito_2017_v3.0.1: paper_doi: 10.5281/zenodo.3518036 paper_ref: Buchhorn et al (2020) url: https://land.copernicus.eu/global/products/lc - version: v3.0.1 + version: 3.0.1 crs: 4326 -vito_2018_v3.0.1: + spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 + +vito_2018: data_type: RasterDataset uri: landuse/vito/PROBAV_LC100_global_v3.0.1_2018-conso_Discrete-Classification-map_EPSG-4326.tif driver: @@ -1844,9 +2111,15 @@ vito_2018_v3.0.1: paper_doi: 10.5281/zenodo.3518038 paper_ref: Buchhorn et al (2020) url: https://land.copernicus.eu/global/products/lc - version: v3.0.1 + version: 3.0.1 crs: 4326 -vito_2019_v3.0.1: + spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 + +vito_2019: data_type: RasterDataset uri: landuse/vito/ProbaV_LC100_global_v3.0.1_2019-nrt_discrete-classification-map_EPSG-4326.tif driver: @@ -1860,8 +2133,14 @@ vito_2019_v3.0.1: paper_doi: 10.5281/zenodo.3939050 paper_ref: Buchhorn et al (2020) url: https://land.copernicus.eu/global/products/lc - version: v3.0.1 - crs: 4326 + version: 3.0.1 + crs: 4326 + spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 + wb_countries: data_type: GeoDataFrame uri: geography/wb/WB_countries_Admin0.fgb @@ -1874,6 +2153,11 @@ wb_countries: author: World Bank license: CC-BY 4.0 crs: 4326 + spatial_extent: + West: -180.0 + South: -59.473 + East: 180.0 + North: 83.634 data_adapter: unit_mult: gdp_pc: 1000 @@ -1883,6 +2167,7 @@ wb_countries: POP_EST: population GDP_MD_EST: gdp_pc GDP_kD_PPP: gdp + worldclim: data_type: RasterDataset uri: meteo/worldclim_v2.0/wc2.0_30s_prec.nc @@ -1900,9 +2185,15 @@ worldclim: url: https://www.worldclim.org/data/worldclim21.html version: 2 crs: 4326 + spatial_extent: + West: -180.0 + South: -90.0 + East: 180.0 + North: 90.0 data_adapter: rename: prec: precip + worldpop_2020_constrained: data_type: RasterDataset variants: @@ -1925,8 +2216,15 @@ worldpop_2020_constrained: paper_doi: 10.1371/journal.pone.0107042 paper_ref: Stevens et al. (2015) url: https://www.worldpop.org/doi/10.5258/SOTON/WP00684 + processing_script: socio_economic/worldpop/src/ license: CC BY 4.0 nodata: -99999 + spatial_extent: + West: -180.0 + South: -55.985 + East: 180.0 + North: 83.628 + wsf_bld_2015: data_type: RasterDataset uri: infrastructure/wsf/WSF2015_v1_EPSG4326.vrt @@ -1943,3 +2241,9 @@ wsf_bld_2015: url: https://un-spider.org/links-and-resources/data-sources/world-settlement-footprint-2015-wsf-dlr-eoc license: CC0 1.0 crs: 4326 + version: 1 + spatial_extent: + West: -180.0 + South: -60.0 + East: 180.0 + North: 80.0 diff --git a/data/catalogs/test_data_catalog.py b/data/catalogs/test_data_catalog.py index c3a876362..79b0c6db3 100644 --- a/data/catalogs/test_data_catalog.py +++ b/data/catalogs/test_data_catalog.py @@ -19,15 +19,20 @@ In addition the passed data catalog yaml is checked if it is a valid data catalog yaml. """ + import argparse import json +from os.path import exists from dask.distributed import Client from pydantic_core import ValidationError from hydromt import DataCatalog +from hydromt._validators.data_catalog import DataCatalogValidator +from hydromt.data_catalog.uri_resolvers.raster_tindex_resolver import ( + RasterTindexResolver, +) from hydromt.utils import setuplog -from hydromt.validators.data_catalog import DataCatalogValidator def test_dataset(args, datacatalog): @@ -68,19 +73,27 @@ def test_data_catalog(args, datacatalog): """Tests the paths of the given data catalog.""" error_count = 0 logger.info("Checking paths of data catalog sources") - for source in datacatalog.get_source_names(): - try: - logger.info(f"Checking paths of {source}") - datacatalog.get_source(source)._resolve_paths() - except FileNotFoundError as e: - logger.error(f"File not found for dataset source {source}: {e}") - - error_count += 1 - except ValueError as e: - logger.error( - f"Something went wrong with creating path string for dataset source {source}: {e}" + for source_name, source in datacatalog.__iter__(): + logger.info(f"Checking paths of {source_name}") + if isinstance(source.driver.metadata_resolver, RasterTindexResolver): + if not exists(source.full_uri): + error_count += 1 + logger.error( + f"File {source.full_uri} not found for dataset source {source_name}" + ) + continue + + else: + paths = source.driver.metadata_resolver.resolve( + source.full_uri, source.driver.filesystem ) - error_count += 1 + for path in paths: + if not exists(path): + logger.error( + f"File {path} not found for dataset source {source_name}" + ) + error_count += 1 + if error_count > 0: logger.error(f"Encountered {error_count} errors") diff --git a/data/predefined_catalogs.yml b/data/predefined_catalogs.yml index ccb24fa3a..51f70b1c1 100644 --- a/data/predefined_catalogs.yml +++ b/data/predefined_catalogs.yml @@ -38,9 +38,8 @@ aws_data: v2023.2: 897e5c5272875f1c066f393798b7ae59721c9e9d notes: This data are stored in public Amazon Web Services. artifact_data: - urlpath: https://github.com/DirkEilander/hydromt-artifacts/releases/download/{version}/data.tar.gz + urlpath: https://raw.githubusercontent.com/Deltares/hydromt/{version}/data/catalogs/artifact_data.yml versions: - v0.0.8: v0.0.8 - v0.0.7: v0.0.7 - v0.0.6: v0.0.6 + v0.0.9: main + v0.0.8: 202874eb4fe3415d0608ea81cd61620af6f5816a notes: This data archive contains a sample dataset for the Piave basin (North Italy) to be used for tests and docs/demo purposes. diff --git a/docs/changelog.rst b/docs/changelog.rst index c7144e888..24fc0ebe0 100644 --- a/docs/changelog.rst +++ b/docs/changelog.rst @@ -33,6 +33,7 @@ Changed - The model region is no longer a subset of the `geoms` but rather it's own component class. See the migration guide for more info (#810) - The model class has been moved to a component architecture. See the migration guide for more info (#845) - Changed the `GeoDatasetAdapter` to transform vector data from tabular formats. (#912) +- Updated deltares_data data catalog to incorporate the newest data catalog features (#667) - Changed the logging in HydroMT to canonical logging using logging hierarchy (#1006) @@ -105,6 +106,11 @@ Added - Test script for testing predefined catalogs locally. (#735) - Option to write a data catalog to a csv file (#425) +Changed +------- +- Datacatalog preserves variant specific meta data (#521) +- Updated DataCatalogValidator to deal with provider and driver_kwargs (#521) + Fixed ----- - Reading Vector formats that consist of more than one file via geopandas. (#691) @@ -113,6 +119,7 @@ Fixed - Fix bug in `raster._check_dimensions` for datasets with multiple variables with varying dimension size (#761) - Fix bug when reading COGs at requested zoom level (#758) + v0.9.2 (2024-01-09) =================== This release adds additional bug fixes for the meridian offset functinality, and improvements to the new CLI commands. @@ -123,10 +130,12 @@ Added - New stats.skills VE and RSR (#666) - Check CLI command can now validate bbox and geom regions (#664) + Changed ------- - Export CLI now uses '-s' for source, '-t' for time and '-i' for config. (#660) + Fixed ----- - Double reading of model components when in appending mode. (#695) diff --git a/docs/conf.py b/docs/conf.py index df2a96756..3b282d9bd 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -26,6 +26,8 @@ import hydromt import hydromt.plugins +from docs.parse_predefined_catalogs import write_predefined_catalogs_to_rst_panels + os.environ["PYDEVD_DISABLE_FILE_VALIDATION"] = "1" diff --git a/docs/parse_predefined_catalogs.py b/docs/parse_predefined_catalogs.py new file mode 100644 index 000000000..323e5e695 --- /dev/null +++ b/docs/parse_predefined_catalogs.py @@ -0,0 +1,161 @@ + +from typing import Union +import os +import numpy as np +import pandas as pd +from hydromt import DataCatalog +from pathlib import Path + +FILE_ROOT = Path(__file__).parent + +N_VERSIONS = 5 # number of versions to include in the dropdown + +CATEGORIES = [ + "geography", + "hydrography", + "landuse", + "hydro", + "meteo", + "ocean", + "socio-economic", + "topography", + "climate", + "other", +] + +ATTRS = [ + "data_type", + "driver", + "version", + "provider", + "paper_ref", + "paper_doi", + "source_license", + "source_url", + "source_spatial_extent", + "source_temporal_extent", +] + + +def write_panel(f, name: str, content: str="", level: int=0, item: str="dropdown") -> None: + pad = "".ljust(level * 3) + f.write(f"{pad}.. {item}:: {name}\n") + f.write("\n") + if content: + pad = "".ljust((level + 1) * 3) + for line in content.split("\n"): + f.write(f"{pad}{line}\n") + f.write("\n") + + +def write_nested_dropdown(name, df_dict: dict, note: str=""): + path = Path(FILE_ROOT, f"_generated/{name.replace(' ', '_')}.rst") + with open(path, mode="w") as f: + write_panel(f, name, note, level=0) + for i, version in enumerate(df_dict): + df = df_dict[version] + df = df.sort_index() + name_str = f"{version}" + if i == len(df_dict)-1: + name_str += " (latest)" + write_panel(f, name_str, level=1) + write_panel(f, "", level=2, item="tab-set") + for category in CATEGORIES: + if category == "other": + sources = df.index[~np.isin(df["category"], CATEGORIES)] + else: + sources = df.index[df["category"] == category] + if len(sources) > 0: + write_panel(f, category, level=3, item="tab-item") + write_sources_panel(f, df, level=4, sources=sources) + + + write_panel(f, "all", level=3, item="tab-item") + write_sources_panel(f, df, level=4) + + return path.relative_to(FILE_ROOT) + +def write_sources_panel(f, df, level, sources=None): + attrs = [a for a in ATTRS if a in df.columns] # accomodate older versions + if sources is None: + sources = df.index + sources = sorted(set(sources)) + for source in sources: + df0 = df.loc[source, attrs] + if isinstance(df0, pd.Series): + df0 = df.loc[[source], attrs] + # combine all variants + var_cols = [c for c in ['version', 'provider'] if df0[c].notna().any()] + df_variants = df0[var_cols].sort_values(var_cols).reset_index(drop=True) + variants: list[dict] = list(reversed(df_variants.to_dict(orient='index').values())) + items = list(df0.iloc[0].drop(var_cols).items()) + if len(variants) > 0 and len(variants[0]) > 0: # list of dicts + items += [('variants', variants)] + # parse items to rst table + summary = "\n".join( + [parse_item(k, v) for k, v in items if not (v is np.nan or v is None)] + ) + write_panel(f, source, summary, level=level) + +def parse_item(k: str, v: Union[str , list , dict]) -> str: + def _parse_dict(d: dict) -> str: + return " ".join([f"**{k}:** {_parse(v)}" for k, v in d.items()]) + def _parse_list(l: list) -> str: + return "\n".join([f" - {_parse(d)}" for d in l]) + def _parse_str(s: str) -> str: + if s.startswith("http"): # make hyperlink + return f"`link <{s}>`__" + else: # escape special characters + return s.replace("*", "\\*").replace("_", "\\_") + def _parse(v): + if isinstance(v, dict): + return _parse_dict(v) + elif isinstance(v, list): + return _parse_list(v) + else: + return _parse_str(str(v)) + k = k.replace("source_", "").replace("paper_", "") + if k == "doi": + v = f"`{v} `__" + else: + v = _parse(v) + return f":{k}: {v}" + +def write_predefined_catalogs_to_rst_panels( + git_raw_uri: str = r"https://raw.githubusercontent.com/Deltares/hydromt", +) -> None: + """Generate panels rst files from data catalogs to include in docs""" + os.makedirs(Path(FILE_ROOT, "_generated"), exist_ok=True) + data_cat = DataCatalog() + predefined_catalogs = data_cat.predefined_catalogs + paths = [] + for name in predefined_catalogs: + urlpath = predefined_catalogs[name].base_url + + df_dict = {} + for iversion, version in enumerate(predefined_catalogs[name].versions): + if iversion >= N_VERSIONS: + break + + if urlpath.startswith(git_raw_uri): + # make sure to load the latest version from current branch + local_path = predefined_catalogs[name].get_catalog_file(version) + data_cat.from_yml(local_path, catalog_name=name) + else: + try: + data_cat.from_predefined_catalogs(name, version=version) + except OSError as e: + print(e) + continue + df = data_cat.to_dataframe().sort_index().drop_duplicates("path") + df_dict[version] = df.copy() + data_cat._sources = {} # reset + path = write_nested_dropdown(name, df_dict) + paths.append(path) + with open(Path(FILE_ROOT, "_generated/predefined_catalogs.rst"), "w") as f: + f.writelines( + [f".. include:: ../{path}\n" for path in paths] + ) + +if __name__ == "__main__": + write_predefined_catalogs_to_rst_panels() diff --git a/docs/user_guide/data_existing_cat.rst b/docs/user_guide/data_existing_cat.rst index ea861532a..80dc4f889 100644 --- a/docs/user_guide/data_existing_cat.rst +++ b/docs/user_guide/data_existing_cat.rst @@ -12,7 +12,94 @@ The summary per dataset contains links to the online source and available litera The ``deltares_data`` catalog is only available within the Deltares network. However a selection of this data for a the Piave basin (Northern Italy) is available online in the ``artifact_data`` archive and will be used if no data catalog is provided. Local or other datasets can also be included by extending the data catalog with new yaml :ref:`data catalog files `. -We plan to provide more data catalogs with open data sources in the (near) future. See the data catalog `changelog `_ for recent updates on the pre-defined catalogs. +We plan to provide more data catalogs with open data sources in the (near) future. +See the data catalog `changelog `_ for recent updates on the pre-defined catalogs. +Using a predefined catalog +-------------------------- + +From CLI +~~~~~~~~ + +To use a predefined catalog, you can specify the catalog name with the ``-d`` or ``--data`` option when running a HydroMT command. +For example, to use the ``deltares_data`` catalog with the `hydromt build` command, you can run the following: + +.. code-block:: bash + + hydromt build MODEL -d deltares_data ... + +Alternatively, deltares_data can also be accessed with the ``--dd`` option: + +.. code-block:: bash + + hydromt build MODEL --dd ... + + +You can specify a version of the catalog by adding the version number after the catalog name, e.g. ``deltares_data=2024.2``. + +.. code-block:: bash + + hydromt build MODEL -d deltares_data=2024.2 ... + +Once you have set the data catalog you can specify the data source(s) for each method in the HydroMT +:ref:`model configuration file ` as shown in the example below with the `setup_precip_forcing` method. + +.. code-block:: yaml + + setup_region: + region: + bbox: [4.5, 51.5, 6.5, 53.5] + + setup_maps_from_rasterdataset: + raster_fn: + source: 'eobs' + version: 'v22.0e' + + + +From Python +~~~~~~~~~~~ + +To use a predefined catalog in Python, you can specify the catalog name with the +``data_libs`` argument when initializing a :py:class:`DataCatalog` class. +You can specify a data catalog version by adding the version number after the +catalog name. You can then get data from the catalog using the +:py:meth:`DataCatalog.get_rasterdataset` or other :ref:`DataCatalog methods `. + +.. code-block:: python + + from hydromt import DataCatalog + data_catalog = DataCatalog(data_libs=["deltares_data"]) + # specify a data catalog version + data_catalog = DataCatalog(data_libs=["deltares_data=v2024.2"]) + # get data from the catalog + ds = data_catalog.get_rasterdataset("eobs") # get the most recently added + ds = data_catalog.get_rasterdataset("eobs", version="22.0e") # get a specific version + + +Similar when building a model using the :py:class:`Model` class you can specify the +data catalog and version. Subsequently you can use specific data sources for each +model :ref:`setup method ` + +.. code-block:: python + + from hydromt import Model + # initialize a model with a specific data catalog version + mod = Model(data_libs=["deltares_data=v2024.2"]) + # setup a region and create a map based on eobs orography + mod.setup_region(region = {'bbox': [4.5, 51.5, 6.5, 53.5]}) + # create a map using the latest version + mod.setup_maps_from_rasterdataset( + raster_fn='eobs_orography', + name="orography_latest", + ) + # create a map using a specific version + mod.setup_maps_from_rasterdataset( + raster_fn={'source': 'eobs_orography', "version": "22.0e"}, + name="orography_v22.0e", + ) + +Available pre-defined data catalogs +----------------------------------- .. include:: ../_generated/predefined_catalogs.rst diff --git a/docs/user_guide/hydromt_cli.rst b/docs/user_guide/hydromt_cli.rst index 9c309443a..77b081732 100644 --- a/docs/user_guide/hydromt_cli.rst +++ b/docs/user_guide/hydromt_cli.rst @@ -40,7 +40,7 @@ where HydroMT is installed): Commands: build Build models check Validate config / data catalog / region - clip Clip models. + clip Clip models export Export data update Update models diff --git a/hydromt/_validators/data_catalog.py b/hydromt/_validators/data_catalog.py index 20fa521c9..105618c96 100644 --- a/hydromt/_validators/data_catalog.py +++ b/hydromt/_validators/data_catalog.py @@ -93,6 +93,8 @@ class DataCatalogItemMetadata(BaseModel): source_url: Optional[AnyUrl] = None source_version: Optional[str] = None notes: Optional[str] = None + temporal_extent: Optional[dict] = None + spatial_extent: Optional[dict] = None model_config: ConfigDict = ConfigDict( str_strip_whitespace=True, coerce_numbers_to_str=True @@ -131,7 +133,9 @@ class DataCatalogItem(BaseModel): path: Optional[Path] = None crs: Optional[Union[int, str]] = None filesystem: Optional[str] = None - kwargs: Dict[str, Any] = Field(default_factory=dict) + provider: Optional[str] = None + driver_kwargs: Dict[str, Any] = Field(default_factory=dict) + kwargs: Dict[str, Any] = Field(default_factory=dict) # deprecated storage_options: Dict[str, Any] = Field(default_factory=dict) placeholders: Optional[Dict[str, Any]] = None rename: Dict[str, str] = Field(default_factory=dict) diff --git a/pixi.lock b/pixi.lock index 8b618c3da..6d4558a6d 100644 --- a/pixi.lock +++ b/pixi.lock @@ -104,7 +104,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.2-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fasteners-0.17.3-pyhd8ed1ab_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/fastparquet-2024.5.0-py39hd92a3bb_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.3-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/fiona-1.9.6-py39hde7962c_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-3.9.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-core-3.9.0-pyhd8ed1ab_1.conda @@ -232,15 +232,15 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.10.3-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.9.0-h471f4ab_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-h59595ed_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-h59595ed_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_11.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.25.0-h2736e30_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.25.0-h3d9a0c8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.49-h4f305b6_0.conda @@ -252,7 +252,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm14-14.0.6-hcd5def8_4.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-hb3ce162_4.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.7-hc9dba70_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.8-hc9dba70_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnetcdf-4.9.2-nompi_h135f659_114.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnl-3.9.0-hd590300_0.conda @@ -272,7 +272,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h6fbd9c4_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.0-hde9e2c9_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-255-h3516f8a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda @@ -319,7 +319,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py39hec96367_101.conda - conda: https://conda.anaconda.org/conda-forge/noarch/networkx-3.2.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/nh3-0.2.17-py39h9fdd4d6_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/nh3-0.2.17-py39ha68c5e3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-7.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda @@ -612,7 +612,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/expat-2.6.2-h63175ca_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fasteners-0.17.3-pyhd8ed1ab_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/fastparquet-2024.5.0-py39h4b0a98a_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.3-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/fiona-1.9.6-py39h85105a3_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-3.9.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-core-3.9.0-pyhd8ed1ab_1.conda @@ -751,7 +751,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/libutf8proc-2.8.0-h82a8f57_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libvorbis-1.3.7-h0e60522_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.15-hcd874cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.16-hcd874cb_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.12.7-h283a6d9_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzip-1.10.1-h1d365fa_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_1.conda @@ -791,7 +791,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/netcdf4-1.7.1-nompi_py39h9ffc7cd_101.conda - conda: https://conda.anaconda.org/conda-forge/noarch/networkx-3.2.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/nh3-0.2.17-py39he61d37a_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/nh3-0.2.17-py39h7d6e1d9_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-7.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda @@ -814,7 +814,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pcre2-10.43-h17e33f8_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py39h9ee4981_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py39hfa8c767_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pixman-0.43.4-h63175ca_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pkginfo-1.11.1-pyhd8ed1ab_0.conda @@ -1079,7 +1079,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.2-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fasteners-0.17.3-pyhd8ed1ab_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/fastparquet-2024.5.0-py310h261611a_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.3-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/fiona-1.9.6-py310h033d26a_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-3.9.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-core-3.9.0-pyhd8ed1ab_1.conda @@ -1206,15 +1206,15 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.10.3-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.9.0-h471f4ab_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-h59595ed_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-h59595ed_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_11.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.25.0-h2736e30_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.25.0-h3d9a0c8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.49-h4f305b6_0.conda @@ -1226,7 +1226,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm14-14.0.6-hcd5def8_4.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-hb3ce162_4.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.7-hc9dba70_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.8-hc9dba70_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnetcdf-4.9.2-nompi_h135f659_114.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnl-3.9.0-hd590300_0.conda @@ -1246,7 +1246,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h6fbd9c4_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.0-hde9e2c9_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-255-h3516f8a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda @@ -1293,7 +1293,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py310hf3005e6_101.conda - conda: https://conda.anaconda.org/conda-forge/noarch/networkx-3.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/nh3-0.2.17-py310hcb5633a_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/nh3-0.2.17-py310he421c4c_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-7.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda @@ -1586,7 +1586,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/expat-2.6.2-h63175ca_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fasteners-0.17.3-pyhd8ed1ab_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/fastparquet-2024.5.0-py310hb0944cc_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.3-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/fiona-1.9.6-py310he0eaba6_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-3.9.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-core-3.9.0-pyhd8ed1ab_1.conda @@ -1724,7 +1724,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/libutf8proc-2.8.0-h82a8f57_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libvorbis-1.3.7-h0e60522_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.15-hcd874cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.16-hcd874cb_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.12.7-h283a6d9_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzip-1.10.1-h1d365fa_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_1.conda @@ -1764,7 +1764,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/netcdf4-1.7.1-nompi_py310h0a2a089_101.conda - conda: https://conda.anaconda.org/conda-forge/noarch/networkx-3.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/nh3-0.2.17-py310h32a15e0_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/nh3-0.2.17-py310h4733a37_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-7.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda @@ -1787,7 +1787,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pcre2-10.43-h17e33f8_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py310hf5d6e66_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py310h3e38d90_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pixman-0.43.4-h63175ca_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pkginfo-1.11.1-pyhd8ed1ab_0.conda @@ -2051,7 +2051,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.2-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fasteners-0.17.3-pyhd8ed1ab_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/fastparquet-2024.5.0-py311h18e1886_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.3-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/fiona-1.9.6-py311h9718c99_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-3.9.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-core-3.9.0-pyhd8ed1ab_1.conda @@ -2178,15 +2178,15 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.10.3-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.9.0-h471f4ab_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-h59595ed_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-h59595ed_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_11.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.25.0-h2736e30_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.25.0-h3d9a0c8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.49-h4f305b6_0.conda @@ -2198,7 +2198,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm14-14.0.6-hcd5def8_4.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-hb3ce162_4.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.7-hc9dba70_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.8-hc9dba70_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnetcdf-4.9.2-nompi_h135f659_114.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnl-3.9.0-hd590300_0.conda @@ -2218,7 +2218,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h6fbd9c4_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.0-hde9e2c9_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-255-h3516f8a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda @@ -2265,7 +2265,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py311h25b3b55_101.conda - conda: https://conda.anaconda.org/conda-forge/noarch/networkx-3.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/nh3-0.2.17-py311h46250e7_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/nh3-0.2.17-py311h5ecf98a_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-7.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda @@ -2556,7 +2556,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/expat-2.6.2-h63175ca_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fasteners-0.17.3-pyhd8ed1ab_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/fastparquet-2024.5.0-py311h0a17f05_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.3-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/fiona-1.9.6-py311hee68897_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-3.9.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-core-3.9.0-pyhd8ed1ab_1.conda @@ -2694,7 +2694,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/libutf8proc-2.8.0-h82a8f57_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libvorbis-1.3.7-h0e60522_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.15-hcd874cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.16-hcd874cb_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.12.7-h283a6d9_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzip-1.10.1-h1d365fa_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_1.conda @@ -2734,7 +2734,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/netcdf4-1.7.1-nompi_py311hbdc12eb_101.conda - conda: https://conda.anaconda.org/conda-forge/noarch/networkx-3.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/nh3-0.2.17-py311h633b200_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/nh3-0.2.17-py311h9363f20_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-7.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda @@ -2757,7 +2757,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pcre2-10.43-h17e33f8_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py311h6819b35_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py311h5592be9_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pixman-0.43.4-h63175ca_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pkginfo-1.11.1-pyhd8ed1ab_0.conda @@ -3021,7 +3021,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.2-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fasteners-0.17.3-pyhd8ed1ab_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/fastparquet-2024.5.0-py39hd92a3bb_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.3-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/fiona-1.9.6-py39hde7962c_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-3.9.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-core-3.9.0-pyhd8ed1ab_1.conda @@ -3149,15 +3149,15 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.10.3-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.9.0-h471f4ab_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-h59595ed_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-h59595ed_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_11.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.25.0-h2736e30_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.25.0-h3d9a0c8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.49-h4f305b6_0.conda @@ -3169,7 +3169,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm14-14.0.6-hcd5def8_4.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-hb3ce162_4.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.7-hc9dba70_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.8-hc9dba70_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnetcdf-4.9.2-nompi_h135f659_114.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnl-3.9.0-hd590300_0.conda @@ -3189,7 +3189,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h6fbd9c4_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.0-hde9e2c9_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-255-h3516f8a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda @@ -3236,7 +3236,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/netcdf4-1.7.1-nompi_py39hec96367_101.conda - conda: https://conda.anaconda.org/conda-forge/noarch/networkx-3.2.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/nh3-0.2.17-py39h9fdd4d6_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/nh3-0.2.17-py39ha68c5e3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-7.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda @@ -3529,7 +3529,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/expat-2.6.2-h63175ca_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fasteners-0.17.3-pyhd8ed1ab_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/fastparquet-2024.5.0-py39h4b0a98a_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.3-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/fiona-1.9.6-py39h85105a3_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-3.9.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/flit-core-3.9.0-pyhd8ed1ab_1.conda @@ -3668,7 +3668,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/libutf8proc-2.8.0-h82a8f57_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libvorbis-1.3.7-h0e60522_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.15-hcd874cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.16-hcd874cb_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.12.7-h283a6d9_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzip-1.10.1-h1d365fa_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_1.conda @@ -3708,7 +3708,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/netcdf4-1.7.1-nompi_py39h9ffc7cd_101.conda - conda: https://conda.anaconda.org/conda-forge/noarch/networkx-3.2.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/nh3-0.2.17-py39he61d37a_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/nh3-0.2.17-py39h7d6e1d9_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nodeenv-1.9.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-7.2.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda @@ -3731,7 +3731,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pcre2-10.43-h17e33f8_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py39h9ee4981_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py39hfa8c767_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pixman-0.43.4-h63175ca_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pkginfo-1.11.1-pyhd8ed1ab_0.conda @@ -4010,12 +4010,12 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.9.0-h471f4ab_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_11.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.25.0-h2736e30_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.25.0-h3d9a0c8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.62.2-h15f2491_0.conda @@ -4040,7 +4040,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h6fbd9c4_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.0-hde9e2c9_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-h166bdaf_0.tar.bz2 @@ -4299,7 +4299,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/libtiff-4.6.0-hddb2be6_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libutf8proc-2.8.0-h82a8f57_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.15-hcd874cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.16-hcd874cb_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.12.7-h283a6d9_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzip-1.10.1-h1d365fa_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_1.conda @@ -4335,7 +4335,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/pandas-2.2.2-py310hb4db72f_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pcre2-10.43-h17e33f8_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py310hf5d6e66_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py310h3e38d90_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pixman-0.43.4-h63175ca_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.2.2-pyhd8ed1ab_0.conda @@ -4534,12 +4534,12 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.9.0-h471f4ab_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_11.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.25.0-h2736e30_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.25.0-h3d9a0c8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.62.2-h15f2491_0.conda @@ -4564,7 +4564,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h6fbd9c4_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.0-hde9e2c9_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-h166bdaf_0.tar.bz2 @@ -4822,7 +4822,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/libtiff-4.6.0-hddb2be6_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libutf8proc-2.8.0-h82a8f57_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.15-hcd874cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.16-hcd874cb_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.12.7-h283a6d9_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzip-1.10.1-h1d365fa_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_1.conda @@ -4858,7 +4858,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/pandas-2.2.2-py311hcf9f919_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pcre2-10.43-h17e33f8_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py311h6819b35_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py311h5592be9_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pixman-0.43.4-h63175ca_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.2.2-pyhd8ed1ab_0.conda @@ -5058,12 +5058,12 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.9.0-h471f4ab_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_11.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.25.0-h2736e30_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.25.0-h3d9a0c8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgrpc-1.62.2-h15f2491_0.conda @@ -5088,7 +5088,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h6fbd9c4_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.0-hde9e2c9_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-h166bdaf_0.tar.bz2 @@ -5349,7 +5349,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/libtiff-4.6.0-hddb2be6_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libutf8proc-2.8.0-h82a8f57_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.15-hcd874cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.16-hcd874cb_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.12.7-h283a6d9_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzip-1.10.1-h1d365fa_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_1.conda @@ -5385,7 +5385,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/pandas-2.2.2-py39h2366fc2_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pcre2-10.43-h17e33f8_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py39h9ee4981_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py39hfa8c767_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pixman-0.43.4-h63175ca_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.2.2-pyhd8ed1ab_0.conda @@ -5673,15 +5673,15 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.10.3-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.9.0-h471f4ab_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-h59595ed_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-h59595ed_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_11.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.25.0-h2736e30_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.25.0-h3d9a0c8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.49-h4f305b6_0.conda @@ -5693,7 +5693,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm14-14.0.6-hcd5def8_4.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-hb3ce162_4.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.7-hc9dba70_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.8-hc9dba70_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnetcdf-4.9.2-nompi_h135f659_114.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnl-3.9.0-hd590300_0.conda @@ -5713,7 +5713,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h6fbd9c4_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.0-hde9e2c9_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-255-h3516f8a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda @@ -6132,7 +6132,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/libutf8proc-2.8.0-h82a8f57_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libvorbis-1.3.7-h0e60522_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.15-hcd874cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.16-hcd874cb_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.12.7-h283a6d9_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzip-1.10.1-h1d365fa_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_1.conda @@ -6184,7 +6184,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pcre2-10.43-h17e33f8_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py310hf5d6e66_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py310h3e38d90_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pixman-0.43.4-h63175ca_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda @@ -6523,15 +6523,15 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.10.3-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.9.0-h471f4ab_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-h59595ed_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-h59595ed_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_11.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.25.0-h2736e30_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.25.0-h3d9a0c8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.49-h4f305b6_0.conda @@ -6543,7 +6543,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm14-14.0.6-hcd5def8_4.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-hb3ce162_4.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.7-hc9dba70_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.8-hc9dba70_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnetcdf-4.9.2-nompi_h135f659_114.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnl-3.9.0-hd590300_0.conda @@ -6563,7 +6563,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h6fbd9c4_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.0-hde9e2c9_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-255-h3516f8a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda @@ -6980,7 +6980,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/libutf8proc-2.8.0-h82a8f57_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libvorbis-1.3.7-h0e60522_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.15-hcd874cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.16-hcd874cb_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.12.7-h283a6d9_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzip-1.10.1-h1d365fa_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_1.conda @@ -7032,7 +7032,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pcre2-10.43-h17e33f8_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py311h6819b35_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py311h5592be9_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pixman-0.43.4-h63175ca_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda @@ -7372,15 +7372,15 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.6.2-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.10.3-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgdal-3.9.0-h471f4ab_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-h59595ed_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-h59595ed_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_11.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libglib-2.80.2-hf974151_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-2.25.0-h2736e30_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgoogle-cloud-storage-2.25.0-h3d9a0c8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgpg-error-1.49-h4f305b6_0.conda @@ -7392,7 +7392,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm14-14.0.6-hcd5def8_4.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm15-15.0.7-hb3ce162_4.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm16-16.0.6-hb3ce162_3.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.7-hc9dba70_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.8-hc9dba70_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnetcdf-4.9.2-nompi_h135f659_114.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.58.0-h47da74e_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnl-3.9.0-hd590300_0.conda @@ -7412,7 +7412,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libspatialite-5.1.0-h6fbd9c4_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.46.0-hde9e2c9_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.0-h0841786_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_10.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_11.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-255-h3516f8a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.19.0-hb90f79a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.6.0-h1dd3fc0_3.conda @@ -7832,7 +7832,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/win-64/libutf8proc-2.8.0-h82a8f57_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libvorbis-1.3.7-h0e60522_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/win-64/libwebp-base-1.4.0-hcfcfb64_0.conda - - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.15-hcd874cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.16-hcd874cb_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.12.7-h283a6d9_1.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzip-1.10.1-h1d365fa_3.conda - conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_1.conda @@ -7884,7 +7884,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/partd-1.4.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pcre2-10.43-h17e33f8_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py39h9ee4981_0.conda + - conda: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py39hfa8c767_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pip-24.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/win-64/pixman-0.43.4-h63175ca_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda @@ -12165,20 +12165,20 @@ packages: timestamp: 1717026919562 - kind: conda name: filelock - version: 3.15.1 + version: 3.15.3 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.1-pyhd8ed1ab_0.conda - sha256: 4b32cbd6082db21d463250cbfaaaaf37bfaa84950deeb1298753cae8d45771e7 - md5: ca4149866d80007713ff47906bba8cb3 + url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.15.3-pyhd8ed1ab_0.conda + sha256: b696060a1e372c49d29d0e7828f8de0894a91e3677a1812e7383cc7a2746b5a1 + md5: eae681f708bd52d9d172bd5c9af23898 depends: - python >=3.7 license: Unlicense purls: - pkg:pypi/filelock?source=conda-forge-mapping - size: 17437 - timestamp: 1718250206482 + size: 17607 + timestamp: 1718834705768 - kind: conda name: fiona version: 1.9.6 @@ -15523,6 +15523,7 @@ packages: constrains: - binutils_impl_linux-64 2.40 license: GPL-3.0-only + license_family: GPL purls: [] size: 707602 timestamp: 1718625640445 @@ -15716,6 +15717,7 @@ packages: - arrow-cpp <0.0a0 - parquet-cpp <0.0a0 license: Apache-2.0 + license_family: APACHE purls: [] size: 5079207 timestamp: 1718626552391 @@ -15755,6 +15757,7 @@ packages: - parquet-cpp <0.0a0 - arrow-cpp <0.0a0 license: Apache-2.0 + license_family: APACHE purls: [] size: 8209029 timestamp: 1718626122817 @@ -15773,6 +15776,7 @@ packages: - libgcc-ng >=12 - libstdcxx-ng >=12 license: Apache-2.0 + license_family: APACHE purls: [] size: 603897 timestamp: 1718626164549 @@ -15791,6 +15795,7 @@ packages: - vc >=14.2,<15 - vc14_runtime >=14.29.30139 license: Apache-2.0 + license_family: APACHE purls: [] size: 452825 timestamp: 1718626616277 @@ -15811,6 +15816,7 @@ packages: - libparquet 15.0.2 hacf5a1f_15_cpu - libstdcxx-ng >=12 license: Apache-2.0 + license_family: APACHE purls: [] size: 592203 timestamp: 1718626249721 @@ -15831,6 +15837,7 @@ packages: - vc >=14.2,<15 - vc14_runtime >=14.29.30139 license: Apache-2.0 + license_family: APACHE purls: [] size: 437992 timestamp: 1718626843015 @@ -15853,6 +15860,7 @@ packages: - vc >=14.2,<15 - vc14_runtime >=14.29.30139 license: Apache-2.0 + license_family: APACHE purls: [] size: 295236 timestamp: 1718626668703 @@ -15876,6 +15884,7 @@ packages: - libstdcxx-ng >=12 - ucx >=1.16.0,<1.17.0a0 license: Apache-2.0 + license_family: APACHE purls: [] size: 511740 timestamp: 1718626184887 @@ -15896,6 +15905,7 @@ packages: - vc >=14.2,<15 - vc14_runtime >=14.29.30139 license: Apache-2.0 + license_family: APACHE purls: [] size: 242442 timestamp: 1718626894690 @@ -15916,6 +15926,7 @@ packages: - libprotobuf >=4.25.3,<4.25.4.0a0 - libstdcxx-ng >=12 license: Apache-2.0 + license_family: APACHE purls: [] size: 201430 timestamp: 1718626268956 @@ -15939,6 +15950,7 @@ packages: - openssl >=3.3.1,<4.0a0 - re2 license: Apache-2.0 + license_family: APACHE purls: [] size: 903500 timestamp: 1718626208458 @@ -15963,6 +15975,7 @@ packages: - vc14_runtime >=14.29.30139 - zstd >=1.5.6,<1.6.0a0 license: Apache-2.0 + license_family: APACHE purls: [] size: 10719151 timestamp: 1718626720297 @@ -15986,6 +15999,7 @@ packages: - vc >=14.2,<15 - vc14_runtime >=14.29.30139 license: Apache-2.0 + license_family: APACHE purls: [] size: 368383 timestamp: 1718626947319 @@ -16007,6 +16021,7 @@ packages: - libprotobuf >=4.25.3,<4.25.4.0a0 - libstdcxx-ng >=12 license: Apache-2.0 + license_family: APACHE purls: [] size: 528291 timestamp: 1718626286722 @@ -16611,22 +16626,21 @@ packages: - kind: conda name: libgcc-ng version: 13.2.0 - build: h77fa898_10 - build_number: 10 + build: h77fa898_11 + build_number: 11 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_10.conda - sha256: 78931358d83ff585d0cd448632366a5cbe6bcf41a66c07e8178200008127c2b5 - md5: bbb96c5e7a11ef8ca2b666fe9fe3d199 + url: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-13.2.0-h77fa898_11.conda + sha256: bbdd49b5a191105cf4bf82a59d611afa1e8568efa556dd988e4e5d0efc3058b1 + md5: 0b3b218a596bb4c3854cc9ee799f94e5 depends: - _libgcc_mutex 0.1 conda_forge - _openmp_mutex >=4.5 constrains: - - libgomp 13.2.0 h77fa898_10 + - libgomp 13.2.0 h77fa898_11 license: GPL-3.0-only WITH GCC-exception-3.1 - license_family: GPL purls: [] - size: 802677 - timestamp: 1718485010755 + size: 796010 + timestamp: 1718867009281 - kind: conda name: libgcrypt version: 1.10.3 @@ -16792,37 +16806,35 @@ packages: - kind: conda name: libgfortran-ng version: 13.2.0 - build: h69a702a_10 - build_number: 10 + build: h69a702a_11 + build_number: 11 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_10.conda - sha256: de97f291cda4be906c9021c93a9d5d40eb65ab7bd5cba38dfa11f12597d7ef6a - md5: a78f7b3d951665c4c57578a8d3787993 + url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-ng-13.2.0-h69a702a_11.conda + sha256: f91aa928161201f189057c90db1508def36bef6329ebb29a71d8064b180250dd + md5: 4c3e460d6acf8e43e4ce8bf405187eb7 depends: - - libgfortran5 13.2.0 h3d2ce59_10 + - libgfortran5 13.2.0 h3d2ce59_11 license: GPL-3.0-only WITH GCC-exception-3.1 - license_family: GPL purls: [] - size: 48629 - timestamp: 1718485240765 + size: 48638 + timestamp: 1718867040994 - kind: conda name: libgfortran5 version: 13.2.0 - build: h3d2ce59_10 - build_number: 10 + build: h3d2ce59_11 + build_number: 11 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_10.conda - sha256: be5f5873c392bc4c25bee25cef2d30a9dab69c0d82ff1ddf687f9ece6d36f56c - md5: e3896e5c2dd1cbabaf4abb3254df47b0 + url: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-13.2.0-h3d2ce59_11.conda + sha256: de8535b5fb39a78f4b7473b88c400c922ae063f29500c097743b480fd0a4f326 + md5: c485da4fdb454539f852a90ae06e9bb7 depends: - libgcc-ng >=13.2.0 constrains: - libgfortran-ng 13.2.0 license: GPL-3.0-only WITH GCC-exception-3.1 - license_family: GPL purls: [] - size: 1463819 - timestamp: 1718485020621 + size: 1467184 + timestamp: 1718867019794 - kind: conda name: libglib version: 2.80.2 @@ -16869,19 +16881,18 @@ packages: - kind: conda name: libgomp version: 13.2.0 - build: h77fa898_10 - build_number: 10 + build: h77fa898_11 + build_number: 11 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_10.conda - sha256: bcea6ddfea86f0e6a1a831d1d2c3f36f7613b5e447229e19f978ded0d184cf5a - md5: 9404d1686e63142d41acc72ef876a588 + url: https://conda.anaconda.org/conda-forge/linux-64/libgomp-13.2.0-h77fa898_11.conda + sha256: f4112111fa350bcd8d6d354cdde3426751a579add88fa523f6483c714821e681 + md5: 8c462ced2af33648195dc9459f331f31 depends: - _libgcc_mutex 0.1 conda_forge license: GPL-3.0-only WITH GCC-exception-3.1 - license_family: GPL purls: [] - size: 444719 - timestamp: 1718484940121 + size: 444606 + timestamp: 1718866940233 - kind: conda name: libgoogle-cloud version: 2.25.0 @@ -17308,13 +17319,12 @@ packages: timestamp: 1701375139881 - kind: conda name: libllvm18 - version: 18.1.7 - build: hc9dba70_1 - build_number: 1 + version: 18.1.8 + build: hc9dba70_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.7-hc9dba70_1.conda - sha256: 0488d745b8222ef733d74edaee7a1e601d508e7456008521d02ecc15562b85f0 - md5: d321aff45652d36ced0fa1a2a71af4b7 + url: https://conda.anaconda.org/conda-forge/linux-64/libllvm18-18.1.8-hc9dba70_0.conda + sha256: e29a5f79a746f33a73fe540ae46eaaf8bbb64abceeb9f056347d9f2112b8e799 + md5: f94ed0c5953c78dcca7adb953f4c5bfb depends: - libgcc-ng >=12 - libstdcxx-ng >=12 @@ -17324,8 +17334,8 @@ packages: license: Apache-2.0 WITH LLVM-exception license_family: Apache purls: [] - size: 38402117 - timestamp: 1718317883519 + size: 38397164 + timestamp: 1718831290770 - kind: conda name: libnetcdf version: 4.9.2 @@ -17521,6 +17531,7 @@ packages: - vc >=14.2,<15 - vc14_runtime >=14.29.30139 license: Apache-2.0 + license_family: APACHE purls: [] size: 798766 timestamp: 1718626790395 @@ -17541,6 +17552,7 @@ packages: - libthrift >=0.19.0,<0.19.1.0a0 - openssl >=3.3.1,<4.0a0 license: Apache-2.0 + license_family: APACHE purls: [] size: 1186118 timestamp: 1718626227637 @@ -17942,19 +17954,18 @@ packages: - kind: conda name: libstdcxx-ng version: 13.2.0 - build: hc0a3c3a_10 - build_number: 10 + build: hc0a3c3a_11 + build_number: 11 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_10.conda - sha256: 9a5d43eed33fe8b2fd6adf71ef8f0253fd515e1440c9b7b7782db608e3085bea - md5: ea50441ab527f23ffa108ade07e2fde0 + url: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-13.2.0-hc0a3c3a_11.conda + sha256: e03f0f2712f45a85234016bcc5afa76023e31e00a2e74d8819a1b3bdf091fdb0 + md5: eaa8ea74083fb4a78ae19e431e556003 depends: - - libgcc-ng 13.2.0 h77fa898_10 + - libgcc-ng 13.2.0 h77fa898_11 license: GPL-3.0-only WITH GCC-exception-3.1 - license_family: GPL purls: [] - size: 3862528 - timestamp: 1718485050139 + size: 3874046 + timestamp: 1718867032452 - kind: conda name: libsystemd0 version: '255' @@ -18200,23 +18211,23 @@ packages: timestamp: 1682082368177 - kind: conda name: libxcb - version: '1.15' + version: '1.16' build: hcd874cb_0 subdir: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.15-hcd874cb_0.conda - sha256: d01322c693580f53f8d07a7420cd6879289f5ddad5531b372c3efd1c37cac3bf - md5: 090d91b69396f14afef450c285f9758c + url: https://conda.anaconda.org/conda-forge/win-64/libxcb-1.16-hcd874cb_0.conda + sha256: 3b1f3b04baa370cfb1c350cfa829e6236519df5f03e3f57ea2cb2eb044eb8616 + md5: 7c1217d3b075f195ab17370f2d550f5d depends: - m2w64-gcc-libs - m2w64-gcc-libs-core - pthread-stubs - - xorg-libxau + - xorg-libxau >=1.0.11,<2.0a0 - xorg-libxdmcp license: MIT license_family: MIT purls: [] - size: 969788 - timestamp: 1682083087243 + size: 989932 + timestamp: 1693089470750 - kind: conda name: libxcrypt version: 4.4.36 @@ -19956,6 +19967,7 @@ packages: - vc >=14.2,<15 - vc14_runtime >=14.29.30139 license: MIT + license_family: MIT purls: - pkg:pypi/netcdf4?source=conda-forge-mapping size: 994695 @@ -19981,6 +19993,7 @@ packages: - python_abi 3.10.* *_cp310 - setuptools license: MIT + license_family: MIT purls: - pkg:pypi/netcdf4?source=conda-forge-mapping size: 1134622 @@ -20006,6 +20019,7 @@ packages: - python_abi 3.11.* *_cp311 - setuptools license: MIT + license_family: MIT purls: - pkg:pypi/netcdf4?source=conda-forge-mapping size: 1140531 @@ -20033,6 +20047,7 @@ packages: - vc >=14.2,<15 - vc14_runtime >=14.29.30139 license: MIT + license_family: MIT purls: - pkg:pypi/netcdf4?source=conda-forge-mapping size: 1003846 @@ -20060,6 +20075,7 @@ packages: - vc >=14.2,<15 - vc14_runtime >=14.29.30139 license: MIT + license_family: MIT purls: - pkg:pypi/netcdf4?source=conda-forge-mapping size: 994884 @@ -20085,6 +20101,7 @@ packages: - python_abi 3.9.* *_cp39 - setuptools license: MIT + license_family: MIT purls: - pkg:pypi/netcdf4?source=conda-forge-mapping size: 1132122 @@ -20137,108 +20154,111 @@ packages: - kind: conda name: nh3 version: 0.2.17 - build: py310h32a15e0_0 + build: py310h4733a37_0 subdir: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/nh3-0.2.17-py310h32a15e0_0.conda - sha256: f0e61fd256f6ee1abcd0b2cd680cd161f46ecec212b93bf309cfcce0814c50d7 - md5: 8bb9a9c846b124df168057f2e4285ef9 + url: https://conda.anaconda.org/conda-forge/win-64/nh3-0.2.17-py310h4733a37_0.conda + sha256: a1c7ebb33207348e6324d01f942047f85c314884d681a09474f3e9202866fad2 + md5: f8f531c48dcb35d59b14a8b3d1f3fe2e depends: - python >=3.10,<3.11.0a0 - python_abi 3.10.* *_cp310 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.40.33810 license: MIT - license_family: MIT purls: - pkg:pypi/nh3?source=conda-forge-mapping - size: 495000 - timestamp: 1711546578588 + size: 496092 + timestamp: 1718811871062 - kind: conda name: nh3 version: 0.2.17 - build: py310hcb5633a_0 + build: py310he421c4c_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/nh3-0.2.17-py310hcb5633a_0.conda - sha256: 6779af00bead0e2fa91fc414187e340f85182923a138f5f47e3f7846451f6739 - md5: b39df2d5099976bb0715b8199f80dbed + url: https://conda.anaconda.org/conda-forge/linux-64/nh3-0.2.17-py310he421c4c_0.conda + sha256: 659d0c5607fe7d698121a27e9bc3b711ac0a7d1ca5c7c21f9c971efa2d2d1860 + md5: 854ce87ca8252392bc30f6a6b7b8bc73 depends: - libgcc-ng >=12 - python >=3.10,<3.11.0a0 - python_abi 3.10.* *_cp310 license: MIT - license_family: MIT purls: - pkg:pypi/nh3?source=conda-forge-mapping - size: 606993 - timestamp: 1711545757337 + size: 607380 + timestamp: 1718810890983 - kind: conda name: nh3 version: 0.2.17 - build: py311h46250e7_0 + build: py311h5ecf98a_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/nh3-0.2.17-py311h46250e7_0.conda - sha256: d74c76801291ca21d43a50cc6c9d9b608a1db710050e028e7842ca7386e03b78 - md5: 150f2688fe76cae6f5aba9d6d4614c81 + url: https://conda.anaconda.org/conda-forge/linux-64/nh3-0.2.17-py311h5ecf98a_0.conda + sha256: 1588fc7a5f6d0d4441cf382666930cb25460827a31296aa81c2fcbfb2cb9bb8b + md5: 3f8b8c234682f1a8888bc65b692ab69f depends: - libgcc-ng >=12 - python >=3.11,<3.12.0a0 - python_abi 3.11.* *_cp311 license: MIT - license_family: MIT purls: - pkg:pypi/nh3?source=conda-forge-mapping - size: 606639 - timestamp: 1711545692424 + size: 618845 + timestamp: 1718810856049 - kind: conda name: nh3 version: 0.2.17 - build: py311h633b200_0 + build: py311h9363f20_0 subdir: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/nh3-0.2.17-py311h633b200_0.conda - sha256: 29b056b00be46205c02eb1384f3b4d0ccfb59b7b5a5f90f76dde3735aad5df67 - md5: 1d4da9f1cce9b0f1622e1d1d96db2be9 + url: https://conda.anaconda.org/conda-forge/win-64/nh3-0.2.17-py311h9363f20_0.conda + sha256: 646e5b3a34a82f80f89a66d36c35d17e3eb0ee6694ad8b3867c8d8a3c8cf429d + md5: a2cbe1ec83b7bc66596296964fdc2690 depends: - python >=3.11,<3.12.0a0 - python_abi 3.11.* *_cp311 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.40.33810 license: MIT - license_family: MIT purls: - pkg:pypi/nh3?source=conda-forge-mapping - size: 494907 - timestamp: 1711546487622 + size: 495689 + timestamp: 1718811610822 - kind: conda name: nh3 version: 0.2.17 - build: py39h9fdd4d6_0 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/nh3-0.2.17-py39h9fdd4d6_0.conda - sha256: 7b542fabdf505c357f50ca8fc0f5113758fef4b820bb08237331c5663fccc99c - md5: d7f3edaab102fdfe0191742cb0a35f6e + build: py39h7d6e1d9_0 + subdir: win-64 + url: https://conda.anaconda.org/conda-forge/win-64/nh3-0.2.17-py39h7d6e1d9_0.conda + sha256: 0a6c8b3154886d076a9c905fc9711d3aa9a389dd2a832a0a8bea7626ce577f4e + md5: 66fa94f195d436ea9af885591d246da0 depends: - - libgcc-ng >=12 - python >=3.9,<3.10.0a0 - python_abi 3.9.* *_cp39 + - ucrt >=10.0.20348.0 + - vc >=14.3,<15 + - vc14_runtime >=14.40.33810 license: MIT - license_family: MIT purls: - pkg:pypi/nh3?source=conda-forge-mapping - size: 607854 - timestamp: 1711545780474 + size: 495986 + timestamp: 1718811706773 - kind: conda name: nh3 version: 0.2.17 - build: py39he61d37a_0 - subdir: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/nh3-0.2.17-py39he61d37a_0.conda - sha256: 29c2791b6264b5aeb560ef98f45452b0ec3fbcc6140a015953b195cdd9188007 - md5: 75f7ecf84642a980aed361ba977a07af + build: py39ha68c5e3_0 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/nh3-0.2.17-py39ha68c5e3_0.conda + sha256: 0dd27c1cf6a2b03f846b9d73971d90e2e5d73becaea0ebf4c780e639885222d9 + md5: 0fc0abb1b2cd34b363849b0aee77a503 depends: + - libgcc-ng >=12 - python >=3.9,<3.10.0a0 - python_abi 3.9.* *_cp39 license: MIT - license_family: MIT purls: - pkg:pypi/nh3?source=conda-forge-mapping - size: 494918 - timestamp: 1711546472789 + size: 607536 + timestamp: 1718810857449 - kind: conda name: nodeenv version: 1.9.1 @@ -21430,19 +21450,20 @@ packages: - kind: conda name: pillow version: 10.3.0 - build: py310hf5d6e66_0 + build: py310h3e38d90_1 + build_number: 1 subdir: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py310hf5d6e66_0.conda - sha256: d64813920c313c0e44040cd257c6e238a72ada45e8c2ce47c007deb7f049cba5 - md5: 510e3e5f72df4cb88e99cdd5ba730330 + url: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py310h3e38d90_1.conda + sha256: 50a0d0f8de51c47f8ca0820f0ebfc7730aec4a7a98069347a3395b21b67f7e21 + md5: ee35afda8b2154e7396fae5ca7fbea6b depends: - freetype >=2.12.1,<3.0a0 - lcms2 >=2.16,<3.0a0 - libjpeg-turbo >=3.0.0,<4.0a0 - libtiff >=4.6.0,<4.7.0a0 - - libwebp-base >=1.3.2,<2.0a0 - - libxcb >=1.15,<1.16.0a0 - - libzlib >=1.2.13,<2.0.0a0 + - libwebp-base >=1.4.0,<2.0a0 + - libxcb >=1.16,<1.17.0a0 + - libzlib >=1.3.1,<2.0a0 - openjpeg >=2.5.2,<3.0a0 - python >=3.10,<3.11.0a0 - python_abi 3.10.* *_cp310 @@ -21453,8 +21474,8 @@ packages: license: HPND purls: - pkg:pypi/pillow?source=conda-forge-mapping - size: 41590880 - timestamp: 1712155287394 + size: 41586648 + timestamp: 1718834463282 - kind: conda name: pillow version: 10.3.0 @@ -21510,19 +21531,20 @@ packages: - kind: conda name: pillow version: 10.3.0 - build: py311h6819b35_0 + build: py311h5592be9_1 + build_number: 1 subdir: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py311h6819b35_0.conda - sha256: aaf367926867e0cfe727b4f64b95d78b9db9166e634cd26ec6f847cdcb0e5adb - md5: 86b3e331bf65cca7b8b5aacf9fefa1be + url: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py311h5592be9_1.conda + sha256: 5404b51b1c93180940e0f8340e905d435bf187224512bab2993c5b7f30aa0615 + md5: 034f612fd103c2c1058538533598ce4f depends: - freetype >=2.12.1,<3.0a0 - lcms2 >=2.16,<3.0a0 - libjpeg-turbo >=3.0.0,<4.0a0 - libtiff >=4.6.0,<4.7.0a0 - - libwebp-base >=1.3.2,<2.0a0 - - libxcb >=1.15,<1.16.0a0 - - libzlib >=1.2.13,<2.0.0a0 + - libwebp-base >=1.4.0,<2.0a0 + - libxcb >=1.16,<1.17.0a0 + - libzlib >=1.3.1,<2.0a0 - openjpeg >=2.5.2,<3.0a0 - python >=3.11,<3.12.0a0 - python_abi 3.11.* *_cp311 @@ -21533,8 +21555,8 @@ packages: license: HPND purls: - pkg:pypi/pillow?source=conda-forge-mapping - size: 41717626 - timestamp: 1712155076324 + size: 41963513 + timestamp: 1718834441443 - kind: conda name: pillow version: 10.3.0 @@ -21564,19 +21586,20 @@ packages: - kind: conda name: pillow version: 10.3.0 - build: py39h9ee4981_0 + build: py39hfa8c767_1 + build_number: 1 subdir: win-64 - url: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py39h9ee4981_0.conda - sha256: 06e75a5a56d104dee181ef9e0dd78fd0998ee7f9cf6a1ee56308ecf035236404 - md5: 6d69d57c41867acc162ef0205a8efaef + url: https://conda.anaconda.org/conda-forge/win-64/pillow-10.3.0-py39hfa8c767_1.conda + sha256: e353056a257674af402208124caff0368eb12150544504de66caa68ece488d8a + md5: 1baf4859cddbc89d35ebbc01be62aece depends: - freetype >=2.12.1,<3.0a0 - lcms2 >=2.16,<3.0a0 - libjpeg-turbo >=3.0.0,<4.0a0 - libtiff >=4.6.0,<4.7.0a0 - - libwebp-base >=1.3.2,<2.0a0 - - libxcb >=1.15,<1.16.0a0 - - libzlib >=1.2.13,<2.0.0a0 + - libwebp-base >=1.4.0,<2.0a0 + - libxcb >=1.16,<1.17.0a0 + - libzlib >=1.3.1,<2.0a0 - openjpeg >=2.5.2,<3.0a0 - python >=3.9,<3.10.0a0 - python_abi 3.9.* *_cp39 @@ -21587,8 +21610,8 @@ packages: license: HPND purls: - pkg:pypi/pillow?source=conda-forge-mapping - size: 42541715 - timestamp: 1712155039095 + size: 42260182 + timestamp: 1718834451905 - kind: conda name: pip version: '24.0' @@ -22373,6 +22396,7 @@ packages: constrains: - apache-arrow-proc =*=cpu license: Apache-2.0 + license_family: APACHE purls: - pkg:pypi/pyarrow?source=conda-forge-mapping size: 3464838 @@ -22405,6 +22429,7 @@ packages: constrains: - apache-arrow-proc =*=cpu license: Apache-2.0 + license_family: APACHE purls: - pkg:pypi/pyarrow?source=conda-forge-mapping size: 4503311 @@ -22437,6 +22462,7 @@ packages: constrains: - apache-arrow-proc =*=cpu license: Apache-2.0 + license_family: APACHE purls: - pkg:pypi/pyarrow?source=conda-forge-mapping size: 4557411 @@ -22470,6 +22496,7 @@ packages: constrains: - apache-arrow-proc =*=cpu license: Apache-2.0 + license_family: APACHE purls: - pkg:pypi/pyarrow?source=conda-forge-mapping size: 3520069 @@ -22502,6 +22529,7 @@ packages: constrains: - apache-arrow-proc =*=cpu license: Apache-2.0 + license_family: APACHE purls: - pkg:pypi/pyarrow?source=conda-forge-mapping size: 4510348 @@ -22535,6 +22563,7 @@ packages: constrains: - apache-arrow-proc =*=cpu license: Apache-2.0 + license_family: APACHE purls: - pkg:pypi/pyarrow?source=conda-forge-mapping size: 3473912 diff --git a/tests/conftest.py b/tests/conftest.py index e58d7cda9..bce42a774 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -21,11 +21,6 @@ raster, vector, ) -from hydromt.gis.raster_utils import affine_to_coords -from hydromt.plugins import Plugins - -dask_config.set(scheduler="single-threaded") - from hydromt._typing import SourceMetadata from hydromt.data_catalog import DataCatalog from hydromt.data_catalog.adapters.geodataframe import GeoDataFrameAdapter @@ -33,12 +28,14 @@ from hydromt.data_catalog.drivers import GeoDataFrameDriver, RasterDatasetDriver from hydromt.data_catalog.drivers.geodataset.geodataset_driver import GeoDatasetDriver from hydromt.data_catalog.uri_resolvers import URIResolver +from hydromt.gis.raster_utils import affine_to_coords from hydromt.model.components.config import ConfigComponent from hydromt.model.components.geoms import GeomsComponent from hydromt.model.components.spatial import SpatialModelComponent from hydromt.model.components.spatialdatasets import SpatialDatasetsComponent from hydromt.model.components.vector import VectorComponent from hydromt.model.root import ModelRoot +from hydromt.plugins import Plugins dask_config.set(scheduler="single-threaded")