-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClass_imbalance.py
48 lines (38 loc) · 1.3 KB
/
Class_imbalance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import pandas as pd
import matplotlib.pyplot as plt
import glob
import numpy as np
from imblearn.over_sampling import SMOTE
import seaborn as sns
def load_data():
"""Load data from .csv files.
df_data: dataframe of gene expression data (merged from splitted .csv files).
df_data_labels: dataframe with sample annotation.
"""
#import data from .csv files
allFiles = glob.glob("data/raw_data*.csv")
list_ = []
print("loading files:")
for file_ in allFiles:
print(file_)
df = pd.read_csv(file_,index_col=0)
list_.append(df)
#expression data
df_data = pd.concat(list_, axis = 0, ignore_index = False)
#labels frame
df_data_labels = pd.read_csv("data/raw_labels.csv", index_col=0)
#add annotation to dataset
df_data = pd.concat([df_data_labels,df_data], axis = 1, join = "inner")
return df_data
def main():
df = load_data()
class_counts = df["cancer_type"].value_counts()
y_pos = np.arange(len(class_counts.index))
plt.bar(y_pos,height = list(class_counts),
color = sns.color_palette("bright", len(y_pos)))
plt.xlabel("Cancer Type")
plt.ylabel("Number of samples")
plt.xticks(y_pos, list(class_counts.index))
plt.savefig("images/Class_imbalance.png")
if __name__ == '__main__':
main()