-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
703 lines (632 loc) · 31.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
#!/usr/bin/env python3
import torch, os, sys, math, argparse, time, datetime, pickle, random, itertools
import torchvision
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as Optim
import torch.nn.functional as F
import torch.utils.data.distributed
from torch.utils.data import ConcatDataset
import torch.distributed as dist
import torch.multiprocessing as mp
import numpy as np
import copy
import re
from wide_resnet import Wide_ResNet_fet
from classifier import Classifier
from collections import OrderedDict
from PIL import Image
import multiprocessing
import math
from cutout import Cutout
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = False
best_error = 100
def set_args():
parser = argparse.ArgumentParser()
# Network settings
parser.add_argument('--network', type=str, default='wide_resnet',
choices=('resnet18', 'wide_resnet'))
parser.add_argument('--depth', type=int, default=28, help='depth of net') # WideResnet depth
parser.add_argument('--factor', type=int, default=10, help='factor of net') # WideResnet width
parser.add_argument('--input_channels', type=int, default=3)
parser.add_argument('--std_clf', type=float, default=0.1)
# Data settings
parser.add_argument('--dataset', type=str, default='cifar10',
choices=('cifar10', 'cifar100', 'svhn', 'fashion_mnist'))
parser.add_argument('--flgDataAug', type=bool, default=1)
parser.add_argument('--augment_type', type=str, default='basic', choices=('basic', 'cutout'),
help='Basic (horizontal flip, padding by 4px, and random crop), Cutout (Devries & Taylor, 2017)')
parser.add_argument('--padding', type=float, default=4, help='padding size')
parser.add_argument('--flgCutout', type=bool, default=0)
parser.add_argument('--co_length', type=int, default=16, help='cutout size')
# Optimizer settings
parser.add_argument('--optimizer', type=str, default='momentumSGD', choices=('sgd', 'momentumSGD', 'adam'))
parser.add_argument('--init_lr', type=float, default=0.1, help='learn rate')
parser.add_argument('--lr_drop_rate', type=float, default=0.2, help='lr drop rate')
parser.add_argument('--lr_step_schedule', type=int, default=[60, 120, 160, 200], help='schedule of learn rate') #global epoch
parser.add_argument('--weight_decay_rate', type=float, default=5e-4, help='weight decay rate')
parser.add_argument('--momentum_rate', type=float, default=0.9, help='momentum rate')
parser.add_argument('--flgNesterov', type=bool, default=1)
# PoF settings
parser.add_argument('--flgPoF', type=bool, default=0)
parser.add_argument('--gamma', type=float, default=2.0) # gamma=2->taigan
parser.add_argument('--weak_clf_batch_size', type=int, default=256) # For PoF argument
parser.add_argument('--numPartition', type=int, default=16)
parser.add_argument('--line_search_init_lr', type=float, default=1.0, help='learn rate of Line Search')
parser.add_argument('--PoFSave', type=str, default='./result/save/pof') # rewrite!
# Batch settings
parser.add_argument('--train_total_batch_size', type=int, default=64)
parser.add_argument('--test_total_batch_size', type=int, default=64)
parser.add_argument('--train_batch_size_per_gpu', type=int, default=64)
parser.add_argument('--test_batch_size_per_gpu', type=int, default=64)
# Settings for learning from pretrained model
parser.add_argument('--flgContinue', type=bool, default=0)
parser.add_argument('--PretrainedSave', type=str, default='./result/save/pret') # rewrite!
# GPU settings
parser.add_argument('--world_size', default=1, type=int) # number of total GPU
parser.add_argument('--idGPU', type=int, default=0)
parser.add_argument('--rank', default=0, type=int, help='node rank for distributed training')
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# Seed settings
parser.add_argument('--flgFixSeed', type=bool, default=0)
parser.add_argument('--seed', type=int, default=0)
# Epoch settings
parser.add_argument('--start_epoch', type=int, default=200) # global epoch when continued
parser.add_argument('--end_epoch', type=int, default=300) # global epoch
# Other
parser.add_argument('--flgDist', type=bool, default=0)
parser.add_argument('--freqValid', type=int, default=5, help='epoch')
parser.add_argument('--flgSaveModel', type=bool, default=1)
parser.add_argument('--freqSave', type=int, default=10, help='epoch')
parser.add_argument('--dirSave', type=str, default='./result/save/') # rewrite!
args = parser.parse_args()
return args
def print_config(args, train_loader, numParam):
print("==============================================================")
if args.flgContinue:
print("Continue Train from {:d} epoch".format(args.start_epoch))
else:
print("New Train")
print('Num Train Epoch: {}\tStep Lr schedule: {}'.format(args.end_epoch, args.lr_step_schedule))
print('Learning rate: {}\tLearning Rate Drop Rate: {}'.format(args.init_lr, args.lr_drop_rate))
print('Line Search Learning Rate: {}'.format(args.line_search_init_lr))
print('Weight Decay Rate: {}\tClassifier Init Std: {}'.format(args.weight_decay_rate, args.std_clf))
print('Minibatch-size: {}\t\tLine Search Minibatch-size: {}'.format(args.train_total_batch_size, args.weak_clf_batch_size*args.world_size))
print('Network: {}\tNetwork Depth: {}\tFactor: {}'.format(args.network, args.depth, args.factor))
print('Optimizer: {}\tNesterov flag: {}\tMomentum rate: {:.2f}'.format(args.optimizer, args.flgNesterov, args.momentum_rate))
print('PoF flag: {}'.format(args.flgPoF))
if args.flgPoF:
print('Gamma: {}\tPartition Num: {}'.format(args.gamma, args.numPartition))
print('Dataset: {}\tNum Train Data: {}'.format(args.dataset,len(train_loader.dataset)))
print('Data Augmentation: {}'.format(args.augment_type))
if args.augment_type=='cutout':
print('Cutout Length: {}'.format(args.co_length))
print('Params Number: {}'.format(numParam))
print('Distribution Train: {}'.format(args.flgDist))
print('==============================================================')
print("train start",flush=True)
f = open("{}config.txt".format(args.dirSave),"a")
f.write("==============================================================\n")
if args.flgContinue:
f.write("Continue Train from {:d} epoch\n".format(args.start_epoch))
else:
f.write("New Train\n")
f.write('Num Train Epoch: {}\tStep Lr schedule: {}\n'.format(args.end_epoch, args.lr_step_schedule))
f.write('Learning rate: {}\tLearning Rate Drop Rate: {}\n'.format(args.init_lr, args.lr_drop_rate))
f.write('Line Search Learning Rate: {}\n'.format(args.line_search_init_lr))
f.write('Weight Decay Rate: {}\tClassifier Init Std: {}\n'.format(args.weight_decay_rate, args.std_clf))
f.write('Minibatch-size: {}\t\tLine Search Minibatch-size: {}\n'.format(args.train_total_batch_size, args.weak_clf_batch_size*args.world_size))
f.write('Network: {}\tNetwork Depth: {}\tFactor: {}\n'.format(args.network, args.depth, args.factor))
f.write('Optimizer: {}\tNesterov flag: {}\tMomentum rate: {:.2f}\n'.format(args.optimizer, args.flgNesterov, args.momentum_rate))
f.write('PoF flag: {}\n'.format(args.flgPoF))
if args.flgPoF:
f.write('Gamma: {}\tPartition Num: {}\n'.format(args.gamma, args.numPartition))
f.write('Dataset: {}\tNum Train Data: {}\n'.format(args.dataset, len(train_loader.dataset)))
f.write('Data Augmentation: {}'.format(args.augment_type))
if args.augment_type=='cutout':
f.write('Cutout Length: {}'.format(args.co_length))
f.write('Params Number: {}\n'.format(numParam))
f.write('Distribution Train: {}\tGPU id: {}\n'.format(args.flgDist, args.idGPU))
f.write("==============================================================\n")
f.close()
# set save
result = dict()
result['train'] = open(os.path.join(args.dirSave, 'train.csv'), 'a')
result['test'] = open(os.path.join(args.dirSave, 'test.csv'), 'a')
return result
def set_network(args, numClass):
net = dict()
torch.cuda.set_device(args.idGPU)
if args.network == 'wide_resnet':
net['fet'] = Wide_ResNet_fet(args)
net['clf'] = Classifier(net['fet'].numFeatureDim, numClass)
net['fet'] = net['fet'].cuda(args.idGPU)
net['clf'] = net['clf'].cuda(args.idGPU)
optimizer = dict()
if args.optimizer == 'momentumSGD':
optimizer['fet'] = Optim.SGD(net['fet'].parameters(), lr=args.init_lr, momentum=args.momentum_rate, weight_decay=args.weight_decay_rate, nesterov=args.flgNesterov)
optimizer['clf'] = Optim.SGD(net['clf'].parameters(), lr=args.init_lr, momentum=args.momentum_rate, weight_decay=args.weight_decay_rate, nesterov=args.flgNesterov)
if args.flgDist:
print('Multi Processing Distributed Data Parallel')
process_group = dist.new_group([i for i in range(args.world_size)])
net['fet'] = nn.SyncBatchNorm.convert_sync_batchnorm(net['fet'], process_group)
net['clf'] = nn.SyncBatchNorm.convert_sync_batchnorm(net['clf'], process_group)
net['fet'] = nn.parallel.DistributedDataParallel(net['fet'], device_ids=[args.idGPU], output_device=args.idGPU)
net['clf'] = nn.parallel.DistributedDataParallel(net['clf'], device_ids=[args.idGPU], output_device=args.idGPU)
if args.flgContinue:
fet_state = torch.load("{}fet_{}.pth".format(args.PretrainedSave, args.start_epoch))
if not args.flgDist:
new_state_dict = OrderedDict()
for k, v in fet_state['param'].items():
if k.startswith('module.'):
k = k[7:]
new_state_dict[k] = v
net['fet'].load_state_dict(new_state_dict)
else:
net['fet'].load_state_dict(fet_state['param'])
optimizer['fet'].load_state_dict(fet_state['optim'])
clf_state = torch.load("{}clf_{}.pth".format(args.PretrainedSave, args.start_epoch))
if not args.flgDist:
new_state_dict = OrderedDict()
for k, v in clf_state['param'].items():
if k.startswith('module.'):
k = k[7:]
new_state_dict[k] = v
net['clf'].load_state_dict(new_state_dict)
else:
net['clf'].load_state_dict(clf_state['param'])
optimizer['clf'].load_state_dict(clf_state['optim'])
optimizer['clf'].param_groups[0]['lr'] = args.init_lr
if args.rank == 0:
if not args.flgPoF:
# Continue Standard Training
args.dirSave = "./result/e2e/result_{}_{}_{}_".format(args.network, args.optimizer,args.dataset) + "{0:%Y%m%d_%H%M%S}/".format(datetime.datetime.now())
else:
# PoF Training
args.dirSave = "./result/post/result_{}_PoF_{}_".format(args.network, args.dataset) + "{0:%Y%m%d_%H%M%S}/".format(datetime.datetime.now())
os.mkdir(args.dirSave)
else:
if args.rank == 0:
args.dirSave = "./result/e2e/result_{}_{}_{}_".format(args.network, args.optimizer,args.dataset) + "{0:%Y%m%d_%H%M%S}/".format(datetime.datetime.now())
os.mkdir(args.dirSave)
args.start_epoch = 0
if args.flgPoF:
if args.flgDist:
net['weight'] = net['clf'].module.classifiers[-1].weight.data.clone().cuda()
net['bias'] = net['clf'].module.classifiers[-1].bias.data.clone().cuda()
else:
net['weight'] = net['clf'].classifiers[-1].weight.data.clone().cuda()
net['bias'] = net['clf'].classifiers[-1].bias.data.clone().cuda()
net['numParam'] = sum([p.data.nelement() for p in net['fet'].parameters()]) + sum([p.data.nelement() for p in net['clf'].parameters()])
return net, optimizer
def adjust_learning_rate(args, optimizer, epoch):
"""Decay the learning rate based on schedule"""
lr = args.init_lr
for milestone in args.lr_step_schedule:
lr *= args.lr_drop_rate if epoch >= milestone else 1.0
optimizer['fet'].param_groups[0]['lr'] = lr
if not args.flgPoF:
optimizer['clf'].param_groups[0]['lr'] = lr
def test(test_loader, net, criterion, args):
net['fet'].eval()
net['clf'].eval()
test_loss = 0
test_error = 0
total = 0
iteration = 0
with torch.no_grad():
for idxBatch, (input, label) in enumerate(test_loader):
input, label = input.cuda(args.idGPU, non_blocking=True), label.cuda(args.idGPU, non_blocking=True)
feature = net['fet'](input)
output = net['clf'](feature)
test_loss += criterion(output, label).data.item()
pred = output.data.max(1)[1]
test_error += pred.ne(label.data).cpu().sum()
total += label.size(0)
iteration += 1
# Average
if args.flgDist:
test_loss = torch.Tensor([test_loss]).cuda(args.idGPU)
test_error = torch.Tensor([test_error]).cuda(args.idGPU)
dist.all_reduce(test_loss, op=dist.ReduceOp.SUM)
dist.all_reduce(test_error, op=dist.ReduceOp.SUM)
test_loss = test_loss.item()/ args.world_size
test_error = test_error.item() / args.world_size
test_loss /= iteration
test_error = 100.*float(test_error) / total
return test_loss, test_error
def batch_for_weak_clf(dataset, batch_size):
input_list = []
label_list = []
if args.flgDist:
train_num = int(len(dataset) / args.world_size)
idxData_list = np.random.randint(args.rank*train_num, (args.rank+1)*train_num, batch_size)
else:
idxData_list = np.random.randint(0, len(dataset), batch_size)
for idxData in idxData_list:
input, label = dataset[idxData]
input_list.append(input)
label_list.append(label)
input = torch.stack(input_list)
label = torch.tensor(label_list)
return input, label
def generate_weak_clf(args, input, label, net, criterion, optimizer):
# for DDP
if args.flgDist:
net['clf'].module.classifiers[-1].weight.data = net['weight'].clone()
net['clf'].module.classifiers[-1].bias.data = net['bias'].clone()
for m in optimizer['clf'].state.values():
m['momentum_buffer'].zero_()
# Calc mini-batch gradient
input, label = input.cuda(args.idGPU, non_blocking=True), label.cuda(args.idGPU, non_blocking=True)
with torch.no_grad():
feature = net['fet'](input)
optimizer['clf'].zero_grad()
output = net['clf'](feature)
loss = criterion(output, label)
loss.backward()
# Save Loss
loss_org = loss.data.item()
lr_search = args.line_search_init_lr
# Linear search on mini-batch loss
while True:
net['clf'].module.classifiers[-1].weight.data -= lr_search * net['clf'].module.classifiers[-1].weight.grad
net['clf'].module.classifiers[-1].bias.data -= lr_search * net['clf'].module.classifiers[-1].bias.grad
output = net['clf'](feature)
loss = criterion(output, label)
net['clf'].module.classifiers[-1].weight.data = net['weight'].clone()
net['clf'].module.classifiers[-1].bias.data = net['bias'].clone()
if loss.data.item() > loss_org:
break
else:
lr_search *= 2
if lr_search >= 10000:
# Reject
if args.bre:
break
else:
clf_lr = 0
return clf_lr
lr_line = torch.linspace(0, lr_search, args.numPartition+1)[1:]
loss_buffer = torch.zeros(args.numPartition)
for i in range(len(lr_line)):
net['clf'].module.classifiers[-1].weight.data -= lr_line[i] * net['clf'].module.classifiers[-1].weight.grad
net['clf'].module.classifiers[-1].bias.data -= lr_line[i] * net['clf'].module.classifiers[-1].bias.grad
output = net['clf'](feature)
loss = criterion(output, label)
loss_buffer[i] = loss.data.item()
net['clf'].module.classifiers[-1].weight.data = net['weight'].clone()
net['clf'].module.classifiers[-1].bias.data = net['bias'].clone()
min_loss_idx = torch.argmin(loss_buffer)
uni = torch.rand(1)
args.gamma = uni.item() * args.sampling_range
clf_lr = args.gamma * lr_line[min_loss_idx]
clf_grad = dict()
clf_grad['weight'] = net['clf'].module.classifiers[-1].weight.grad.clone()
clf_grad['bias'] = net['clf'].module.classifiers[-1].bias.grad.clone()
# for Single GPU
else:
net['clf'].classifiers[-1].weight.data = net['weight'].clone()
net['clf'].classifiers[-1].bias.data = net['bias'].clone()
for m in optimizer['clf'].state.values():
m['momentum_buffer'].zero_()
# Calc mini-batch gradient
input, label = input.cuda(args.idGPU, non_blocking=True), label.cuda(args.idGPU, non_blocking=True)
with torch.no_grad():
feature = net['fet'](input)
optimizer['clf'].zero_grad()
output = net['clf'](feature)
loss = criterion(output, label)
loss.backward()
loss_org = loss.data.item()
lr_search = args.line_search_init_lr
# Linear search on mini-batch loss
while True:
net['clf'].classifiers[-1].weight.data -= lr_search * net['clf'].classifiers[-1].weight.grad
net['clf'].classifiers[-1].bias.data -= lr_search * net['clf'].classifiers[-1].bias.grad
output = net['clf'](feature)
loss = criterion(output, label)
net['clf'].classifiers[-1].weight.data = net['weight'].clone()
net['clf'].classifiers[-1].bias.data = net['bias'].clone()
if loss.data.item() > loss_org:
break
else:
lr_search *= 2
if lr_search >= 100:
break
lr_line = torch.linspace(0, lr_search, args.numPartition+1)[1:]
loss_buffer = torch.zeros(args.numPartition)
for i in range(len(lr_line)):
net['clf'].classifiers[-1].weight.data -= lr_line[i] * net['clf'].classifiers[-1].weight.grad
net['clf'].classifiers[-1].bias.data -= lr_line[i] * net['clf'].classifiers[-1].bias.grad
output = net['clf'](feature)
loss = criterion(output, label)
loss_buffer[i] = loss.data.item()
net['clf'].classifiers[-1].weight.data = net['weight'].clone()
net['clf'].classifiers[-1].bias.data = net['bias'].clone()
min_loss_idx = torch.argmin(loss_buffer)
uni = torch.rand(1)
args.gamma = uni.item() * args.sampling_range
clf_lr = args.gamma * lr_line[min_loss_idx]
clf_grad = dict()
clf_grad['weight'] = net['clf'].classifiers[-1].weight.grad.clone()
clf_grad['bias'] = net['clf'].classifiers[-1].bias.grad.clone()
return clf_lr
def ConstantLoss(outputs, targets, idGPU):
return torch.norm(outputs-outputs)
def train(train_loader, train_loader_forPoF, net, criterion, optimizer, args):
net['fet'].train()
net['clf'].train()
train_loss = 0
train_error = 0
total = 0
iteration = 0
reject_counter = 0
perturbation_norm = 0
clf_lr = 1
for idxBatch, (input, label) in enumerate(train_loader):
input, label = input.cuda(args.idGPU, non_blocking=True), label.cuda(args.idGPU, non_blocking=True)
if args.flgPoF:
input_weak, label_weak = batch_for_weak_clf(train_loader_forPoF.dataset, args.weak_clf_batch_size)
clf_lr = generate_weak_clf(args, input_weak, label_weak, net, criterion, optimizer)
if clf_lr == 0:
# Reject
reject_counter +=1
if args.flgDist:
perturbation_norm += torch.cat([clf_lr * net['clf'].module.classifiers[-1].bias.grad.unsqueeze(dim=1), clf_lr * net['clf'].module.classifiers[-1].weight.grad], dim=1).norm()
net['clf'].module.classifiers[-1].weight.data -= clf_lr * net['clf'].module.classifiers[-1].weight.grad
net['clf'].module.classifiers[-1].bias.data -= clf_lr * net['clf'].module.classifiers[-1].bias.grad
else:
perturbation_norm += torch.cat([clf_lr * net['clf'].classifiers[-1].bias.grad.unsqueeze(dim=1), clf_lr * net['clf'].classifiers[-1].weight.grad], dim=1).norm()
net['clf'].classifiers[-1].weight.data -= clf_lr * net['clf'].classifiers[-1].weight.grad
net['clf'].classifiers[-1].bias.data -= clf_lr * net['clf'].classifiers[-1].bias.grad
feature = net['fet'](input)
output = net['clf'](feature)
loss = criterion(output, label)
optimizer['fet'].zero_grad()
optimizer['clf'].zero_grad()
loss.backward()
optimizer['clf'].step()
# loss and error rate
train_loss += loss.data.item()
pred = output.data.max(1)[1]
total += label.size(0)
iteration += 1
train_error += pred.ne(label.data).cpu().sum()
# Calculate Average loss & error rate per GPU
if args.flgDist:
train_loss = torch.Tensor([train_loss]).cuda(args.idGPU)
train_error = torch.Tensor([train_error]).cuda(args.idGPU)
reject_counter = torch.Tensor([reject_counter]).cuda(args.idGPU)
perturbation_norm = torch.Tensor([perturbation_norm]).cuda(args.idGPU)
dist.all_reduce(train_loss, op=dist.ReduceOp.SUM)
dist.all_reduce(train_error, op=dist.ReduceOp.SUM)
dist.all_reduce(reject_counter, op=dist.ReduceOp.SUM)
dist.all_reduce(perturbation_norm, op=dist.ReduceOp.SUM)
train_loss = train_loss.item() / args.world_size
train_error = train_error.item() / args.world_size
reject_counter = reject_counter.item() / args.world_size
perturbation_norm = perturbation_norm.item() / args.world_size
train_loss = train_loss / iteration
train_error = 100 * train_error / (iteration * args.train_batch_size_per_gpu)
reject = 100 * reject_counter / iteration
perturbation_norm = perturbation_norm / (iteration-reject_counter)
return train_loss, train_error, reject, perturbation_norm
def main(args):
global best_error
# Set DataParallel Arguments
if args.flgDist:
master_addr = os.getenv("MASTER_ADDR", default="localhost")
master_port = os.getenv('MASTER_PORT', default='8888')
method = "tcp://{}:{}".format(master_addr, master_port)
args.rank = int(os.getenv('OMPI_COMM_WORLD_RANK', '0')) # global addres of GPU
args.world_size = int(os.getenv('OMPI_COMM_WORLD_SIZE', '1')) # number of total GPU
ngpus_per_node = torch.cuda.device_count() # ngpus_per_node = 4
args.idGPU = args.rank % ngpus_per_node
print(f'rank : {args.rank} world_size : {args.world_size}')
torch.cuda.set_device(args.idGPU)
dist.init_process_group('nccl', init_method=method, world_size=args.world_size, rank=args.rank)
args.train_batch_size_per_gpu = int(args.train_total_batch_size / args.world_size)
args.test_batch_size_per_gpu = int(args.test_total_batch_size / args.world_size)
args.weak_clf_batch_size = int(args.weak_clf_batch_size / args.world_size)
# Fix Seed
if args.flgFixSeed:
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
# Set Transformers
if args.dataset == "cifar10":
mean = [0.4914, 0.4822, 0.4465]
std = [0.2023, 0.1994, 0.2010]
image_size = 32
elif args.dataset == "cifar100":
mean = [0.5071, 0.4867, 0.4408]
std = [0.2675, 0.2565, 0.2761]
image_size = 32
elif args.dataset == 'svhn':
mean = [0.4377, 0.4438, 0.4728]
std = [0.1980, 0.2010, 0.1970]
image_size = 32
elif args.dataset == 'fashion_mnist':
mean = [0.2859]
std = [0.3530]
image_size = 28
args.input_channels=1
train_form = transforms.Compose([
transforms.RandomCrop(image_size, padding=args.padding),
transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
if args.augment_type == "cutout":
train_form.transforms.append(Cutout(n_holes=1, length=args.co_length))
if args.augment_type == "aa":
train_form = transforms.Compose([
transforms.AutoAugment(policy=transforms.autoaugment.AutoAugmentPolicy.CIFAR10),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
test_form = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
# dataset
if args.dataset == "cifar10":
train_dataset = datasets.CIFAR10(
root="./../dataset/cifar10_data/train/",
train=True,
transform=train_form,
download=True
)
test_dataset = datasets.CIFAR10(
root="./../dataset/cifar10_data/test/",
train=False,
transform=test_form,
download=True
)
numClass=10
elif args.dataset == "cifar100":
train_dataset = datasets.CIFAR100(
root="./../dataset/cifar100_data/train/",
train=True,
transform=train_form,
download=True
)
test_dataset = datasets.CIFAR100(
root="./../dataset/cifar100_data/test/",
train=False,
transform=test_form,
download=True
)
numClass=100
elif args.dataset == 'svhn':
train_dataset = ConcatDataset(
[datasets.SVHN(
root="./../dataset/svhn/train/",
split='train',
transform=train_form,
download=True
),
datasets.SVHN(
root="./../dataset/svhn/extra/",
split='extra',
transform=train_form,
download=True
)]
)
test_dataset = datasets.SVHN(
root="./../dataset/svhn/test/",
split='test',
transform=test_form,
download=True
)
numClass=10
elif args.dataset == 'fashion_mnist':
train_dataset = datasets.FashionMNIST(
root="./../dataset/fashion_mnist/train/",
train=True,
transform=train_form,
download=True
)
test_dataset = datasets.FashionMNIST(
root="./../dataset/fashion_mnist/test/",
train=False,
transform=test_form,
download=True
)
numClass=10
# Set Sampler
if args.flgDist:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, num_replicas=args.world_size, rank=args.rank, shuffle=True)
test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset, num_replicas=args.world_size, rank=args.rank, shuffle=True)
else:
train_sampler = None
test_sampler = None
# Set DataLoader
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=args.train_batch_size_per_gpu,
shuffle=(train_sampler is None),
num_workers=args.workers,
pin_memory=True,
sampler=train_sampler)
test_loader = torch.utils.data.DataLoader(
dataset=test_dataset,
batch_size=args.test_batch_size_per_gpu,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
sampler=test_sampler)
# DataLoader for PoF
if args.flgPoF:
train_loader_forPoF = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=args.weak_clf_batch_size,
shuffle=(train_sampler is None),
num_workers=args.workers,
pin_memory=True,
sampler=train_sampler)
else:
train_loader_forPoF = None
# Set Network, optimizer, and loss
net, optimizer = set_network(args, numClass) # args gets changed!!
criterion = nn.CrossEntropyLoss().cuda(args.idGPU)
if args.rank == 0:
result = print_config(args, train_loader, net['numParam'])
# Train
else:
training_time = 0
for idxEpoch in range(args.start_epoch, args.end_epoch):
start_time = time.perf_counter()
if args.flgDist:
train_sampler.set_epoch(idxEpoch)
adjust_learning_rate(args, optimizer, idxEpoch)
train_loss, train_error, reject, perturbation_norm = train(train_loader,train_loader_forPoF,
net, criterion, optimizer, args)
if args.rank == 0:
epoch_time = time.perf_counter()-start_time
training_time = training_time + epoch_time
print('Epoch: {:.2f}\tLoss: {:.4f}\tError: {:.2f}%\tlr_fet: {:.0e}\tlr_clf: {:.0e}\tReject: {:.2f}%\tperturb_norm: {:.4f}\t{:.2f}s/iter'.
format(idxEpoch+1, train_loss, train_error, optimizer['fet'].param_groups[0]['lr'], optimizer['clf'].param_groups[0]['lr'], reject, perturbation_norm, epoch_time),
flush=True)
result['train'].write('{},{:.6f},{}\n'.format(idxEpoch+1, train_loss, train_error))
result['train'].flush()
# Test
if (idxEpoch+1) % args.freqValid == 0:
if args.flgPoF:
if args.flgDist:
net['clf'].module.classifiers[-1].weight.data = net['weight'].clone()
net['clf'].module.classifiers[-1].bias.data = net['bias'].clone()
else:
net['clf'].classifiers[-1].weight.data = net['weight'].clone()
net['clf'].classifiers[-1].bias.data = net['bias'].clone()
test_loss, test_error = test(test_loader, net, criterion, args)
if args.rank == 0:
print('Test Epoch: {:.2f} \tloss: {:.4f} \tError: {:.2f}%\n'.format(idxEpoch+1, test_loss, test_error), flush=True)
result['test'].write('{},{:.6f},{}\n'.format(idxEpoch+1, test_loss, test_error))
result['test'].flush()
is_best = test_error < best_error
best_error = min(test_error, best_error)
# Save Model
if args.flgSaveModel:
if ((idxEpoch+1)%args.freqSave==0) and (args.rank==0):
torch.save({'param': net['fet'].state_dict(), 'optim': optimizer['fet'].state_dict()}, os.path.join(args.dirSave, 'fet_{:d}.pth'.format(idxEpoch+1)))
if not args.flgPoF:
torch.save({'param': net['clf'].state_dict(), 'optim': optimizer['clf'].state_dict()}, os.path.join(args.dirSave, 'clf_{:d}.pth'.format(idxEpoch+1)))
if args.flgDist:
dist.barrier()
if args.rank == 0:
print('---------DONE---------')
print('BEST_Test_Error_Rate: {} %'.format(best_error))
result['train'].close()
result['test'].close()
if __name__=='__main__':
multiprocessing.set_start_method('forkserver')
p = multiprocessing.Process()
p.start()
args = set_args()
main(args)