forked from google/neural-logic-machines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearn_policy.py
636 lines (557 loc) · 19.6 KB
/
learn_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
#! /usr/bin/env python3
#
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The script for sorting or shortest path experiments."""
import collections
import copy
import functools
import json
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import jacinle.random as random
import jacinle.io as io
from difflogic.cli import format_args
from difflogic.nn.baselines import MemoryNet
from difflogic.nn.neural_logic import LogicMachine, LogitsInference
from difflogic.nn.neural_logic.modules._utils import meshgrid_exclude_self
from difflogic.nn.rl.reinforce import REINFORCELoss
from difflogic.train import MiningTrainerBase
from jacinle.cli.argument import JacArgumentParser
from jacinle.logging import get_logger, set_output_file
from jacinle.utils.container import GView
from jacinle.utils.meter import GroupMeters
from jactorch.optim.accum_grad import AccumGrad
from jactorch.optim.quickaccess import get_optimizer
from jactorch.utils.meta import as_cuda, as_numpy, as_tensor
parser = JacArgumentParser()
parser.add_argument(
'--model',
default='nlm',
choices=['nlm', 'memnet'],
help='model choices, nlm: Neural Logic Machine, memnet: Memory Networks')
# NLM parameters, works when model is 'nlm'.
nlm_group = parser.add_argument_group('Neural Logic Machines')
LogicMachine.make_nlm_parser(
nlm_group, {
'depth': 5,
'breadth': 3,
'residual': True,
'exclude_self': True,
'logic_hidden_dim': []
},
prefix='nlm')
nlm_group.add_argument(
'--nlm-attributes',
type=int,
default=8,
metavar='N',
help='number of output attributes in each group of each layer of the LogicMachine'
)
# MemNN parameters, works when model is 'memnet'.
memnet_group = parser.add_argument_group('Memory Networks')
MemoryNet.make_memnet_parser(memnet_group, {}, prefix='memnet')
parser.add_argument(
'--task', required=True, choices=['sort', 'path'], help='tasks choices')
data_gen_group = parser.add_argument_group('Data Generation')
data_gen_group.add_argument(
'--gen-method',
default='dnc',
choices=['dnc', 'edge'],
help='method use to generate random graph')
data_gen_group.add_argument(
'--gen-graph-pmin',
type=float,
default=0.3,
metavar='F',
help='control parameter p reflecting the graph sparsity')
data_gen_group.add_argument(
'--gen-graph-pmax',
type=float,
default=0.3,
metavar='F',
help='control parameter p reflecting the graph sparsity')
data_gen_group.add_argument(
'--gen-max-len',
type=int,
default=5,
metavar='N',
help='maximum length of shortest path during training')
data_gen_group.add_argument(
'--gen-test-len',
type=int,
default=4,
metavar='N',
help='length of shortest path during testing')
data_gen_group.add_argument(
'--gen-directed', action='store_true', help='directed graph')
MiningTrainerBase.make_trainer_parser(
parser, {
'epochs': 400,
'epoch_size': 100,
'test_epoch_size': 1000,
'test_number_begin': 10,
'test_number_step': 10,
'test_number_end': 50,
'curriculum_start': 3,
'curriculum_step': 1,
'curriculum_graduate': 12,
'curriculum_thresh_relax': 0.005,
'sample_array_capacity': 3,
'enable_mining': True,
'mining_interval': 6,
'mining_epoch_size': 3000,
'mining_dataset_size': 300,
'inherit_neg_data': True,
'prob_pos_data': 0.5
})
train_group = parser.add_argument_group('Train')
train_group.add_argument('--seed', type=int, default=None, metavar='SEED')
train_group.add_argument(
'--use-gpu', action='store_true', help='use GPU or not')
train_group.add_argument(
'--optimizer',
default='AdamW',
choices=['SGD', 'Adam', 'AdamW'],
help='optimizer choices')
train_group.add_argument(
'--lr',
type=float,
default=0.005,
metavar='F',
help='initial learning rate')
train_group.add_argument(
'--lr-decay',
type=float,
default=0.9,
metavar='F',
help='exponential decay of learning rate per lesson')
train_group.add_argument(
'--accum-grad',
type=int,
default=1,
metavar='N',
help='accumulated gradient (default: 1)')
train_group.add_argument(
'--candidate-relax',
type=int,
default=0,
metavar='N',
help='number of thresh relaxation for candidate')
rl_group = parser.add_argument_group('Reinforcement Learning')
rl_group.add_argument(
'--gamma',
type=float,
default=0.99,
metavar='F',
help='discount factor for accumulated reward function in reinforcement learning'
)
rl_group.add_argument(
'--penalty',
type=float,
default=-0.01,
metavar='F',
help='a small penalty each step')
rl_group.add_argument(
'--entropy-beta',
type=float,
default=0.1,
metavar='F',
help='entropy loss scaling factor')
rl_group.add_argument(
'--entropy-beta-decay',
type=float,
default=0.8,
metavar='F',
help='entropy beta exponential decay factor')
io_group = parser.add_argument_group('Input/Output')
io_group.add_argument(
'--dump-dir', default=None, metavar='DIR', help='dump dir')
io_group.add_argument(
'--dump-play',
action='store_true',
help='dump the trajectory of the plays for visualization')
io_group.add_argument(
'--dump-fail-only', action='store_true', help='dump failure cases only')
io_group.add_argument(
'--load-checkpoint',
default=None,
metavar='FILE',
help='load parameters from checkpoint')
schedule_group = parser.add_argument_group('Schedule')
schedule_group.add_argument(
'--runs', type=int, default=1, metavar='N', help='number of runs')
schedule_group.add_argument(
'--early-drop-epochs',
type=int,
default=40,
metavar='N',
help='epochs could spend for each lesson, early drop')
schedule_group.add_argument(
'--save-interval',
type=int,
default=10,
metavar='N',
help='the interval(number of epochs) to save checkpoint')
schedule_group.add_argument(
'--test-interval',
type=int,
default=None,
metavar='N',
help='the interval(number of epochs) to do test')
schedule_group.add_argument(
'--test-only', action='store_true', help='test-only mode')
schedule_group.add_argument(
'--test-not-graduated',
action='store_true',
help='test not graduated models also')
args = parser.parse_args()
args.use_gpu = args.use_gpu and torch.cuda.is_available()
args.dump_play = args.dump_play and (args.dump_dir is not None)
if args.dump_dir is not None:
io.mkdir(args.dump_dir)
args.log_file = os.path.join(args.dump_dir, 'log.log')
set_output_file(args.log_file)
else:
args.checkpoints_dir = None
args.summary_file = None
if args.seed is not None:
import jacinle.random as random
random.reset_global_seed(args.seed)
args.is_path_task = args.task in ['path']
args.is_sort_task = args.task in ['sort']
if args.is_path_task:
from difflogic.envs.graph import make as make_env
make_env = functools.partial(
make_env,
pmin=args.gen_graph_pmin,
pmax=args.gen_graph_pmax,
directed=args.gen_directed,
gen_method=args.gen_method)
elif args.is_sort_task:
from difflogic.envs.algorithmic import make as make_env
logger = get_logger(__file__)
class Model(nn.Module):
"""The model for sorting or shortest path tasks."""
def __init__(self):
super().__init__()
self.feature_axis = 1 if args.is_path_task else 2
if args.model == 'memnet':
current_dim = 4 if args.is_path_task else 6
self.feature = MemoryNet.from_args(
current_dim, self.feature_axis, args, prefix='memnet')
current_dim = self.feature.get_output_dim()
else:
input_dims = [0 for i in range(args.nlm_breadth + 1)]
if args.is_path_task:
input_dims[1] = 2
input_dims[2] = 2
elif args.is_sort_task:
input_dims[2] = 6
self.features = LogicMachine.from_args(
input_dims, args.nlm_attributes, args, prefix='nlm')
if args.is_path_task:
current_dim = self.features.output_dims[1]
elif args.task == 'sort':
current_dim = self.features.output_dims[2]
self.pred = LogitsInference(current_dim, 1, [])
self.loss = REINFORCELoss()
self.pred_loss = nn.BCELoss()
def forward(self, feed_dict):
feed_dict = GView(feed_dict)
states = None
if args.is_path_task:
states = feed_dict.states.float()
relations = feed_dict.relations.float()
elif args.is_sort_task:
relations = feed_dict.states.float()
def get_features(states, relations, depth=None):
inp = [None for i in range(args.nlm_breadth + 1)]
inp[1] = states
inp[2] = relations
features = self.features(inp, depth=depth)
return features
if args.model == 'memnet':
f = self.feature(relations, states)
else:
f = get_features(states, relations)[self.feature_axis]
if self.feature_axis == 2: #sorting task
f = meshgrid_exclude_self(f)
logits = self.pred(f).squeeze(dim=-1).view(relations.size(0), -1)
# Set minimal value to avoid loss to be nan.
policy = F.softmax(logits, dim=-1).clamp(min=1e-20)
if self.training:
loss, monitors = self.loss(policy, feed_dict.actions,
feed_dict.discount_rewards,
feed_dict.entropy_beta)
return loss, monitors, dict()
else:
return dict(policy=policy, logits=logits)
def make_data(traj, gamma):
Q = 0
discount_rewards = []
for reward in traj['rewards'][::-1]:
Q = Q * gamma + reward
discount_rewards.append(Q)
discount_rewards.reverse()
traj['states'] = as_tensor(np.array(traj['states']))
if args.is_path_task:
traj['relations'] = as_tensor(np.array(traj['relations']))
traj['actions'] = as_tensor(np.array(traj['actions']))
traj['discount_rewards'] = as_tensor(np.array(discount_rewards)).float()
return traj
def run_episode(env,
model,
number,
play_name='',
dump=False,
eval_only=False,
use_argmax=False,
need_restart=False,
entropy_beta=0.0):
"""Run one episode using the model with $number nodes/numbers."""
is_over = False
traj = collections.defaultdict(list)
score = 0
moves = []
# If dump_play=True, store the states and actions in a json file
# for visualization.
dump_play = args.dump_play and dump
if need_restart:
env.restart()
if args.is_path_task:
optimal = env.unwrapped.dist
relation = env.unwrapped.graph.get_edges()
relation = np.stack([relation, relation.T], axis=-1)
st, ed = env.current_state
nodes_trajectory = [int(st)]
destination = int(ed)
policies = []
elif args.is_sort_task:
optimal = env.unwrapped.optimal
array = [str(i) for i in env.unwrapped.array]
while not is_over:
if args.is_path_task:
st, ed = env.current_state
state = np.zeros((relation.shape[0], 2))
state[st, 0] = 1
state[ed, 1] = 1
feed_dict = dict(states=np.array([state]), relations=np.array([relation]))
elif args.is_sort_task:
state = env.current_state
feed_dict = dict(states=np.array([state]))
feed_dict['entropy_beta'] = as_tensor(entropy_beta).float()
feed_dict = as_tensor(feed_dict)
if args.use_gpu:
feed_dict = as_cuda(feed_dict)
with torch.set_grad_enabled(not eval_only):
output_dict = model(feed_dict)
policy = output_dict['policy']
p = as_numpy(policy.data[0])
action = p.argmax() if use_argmax else random.choice(len(p), p=p)
reward, is_over = env.action(action)
# collect moves information
if dump_play:
if args.is_path_task:
moves.append(int(action))
nodes_trajectory.append(int(env.current_state[0]))
logits = as_numpy(output_dict['logits'].data[0])
tops = np.argsort(p)[-10:][::-1]
tops = list(
map(lambda x: (int(x), float(p[x]), float(logits[x])), tops))
policies.append(tops)
if args.is_sort_task:
# Need to ensure that env.utils.MapActionProxy is the outermost class.
mapped_x, mapped_y = env.mapping[action]
moves.append([mapped_x, mapped_y])
# For now, assume reward=1 only when succeed, otherwise reward=0.
# Manipulate the reward and get success information according to reward.
if reward == 0 and args.penalty is not None:
reward = args.penalty
succ = 1 if is_over and reward > 0.99 else 0
score += reward
traj['states'].append(state)
if args.is_path_task:
traj['relations'].append(relation)
traj['rewards'].append(reward)
traj['actions'].append(action)
# dump json file storing information of playing
if dump_play and not (args.dump_fail_only and succ):
if args.is_path_task:
num = env.unwrapped.nr_nodes
graph = relation[:, :, 0].tolist()
coordinates = env.unwrapped.graph.get_coordinates().tolist()
json_str = json.dumps(
dict(
graph=graph,
coordinates=coordinates,
policies=policies,
destination=destination,
current=nodes_trajectory,
moves=moves))
if args.is_sort_task:
num = env.unwrapped.nr_numbers
json_str = json.dumps(dict(array=array, moves=moves))
dump_file = os.path.join(args.current_dump_dir,
'{}_size{}.json'.format(play_name, num))
with open(dump_file, 'w') as f:
f.write(json_str)
length = len(traj['rewards'])
return succ, score, traj, length, optimal
class MyTrainer(MiningTrainerBase):
def save_checkpoint(self, name):
if args.checkpoints_dir is not None:
checkpoint_file = os.path.join(args.checkpoints_dir,
'checkpoint_{}.pth'.format(name))
super().save_checkpoint(checkpoint_file)
def _dump_meters(self, meters, mode):
if args.summary_file is not None:
meters_kv = meters._canonize_values('avg')
meters_kv['mode'] = mode
meters_kv['epoch'] = self.current_epoch
with open(args.summary_file, 'a') as f:
f.write(io.dumps_json(meters_kv))
f.write('\n')
def _prepare_dataset(self, epoch_size, mode):
pass
def _get_player(self, number, mode):
if args.is_path_task:
test_len = args.gen_test_len
dist_range = (test_len, test_len) if mode == 'test' \
else (1, args.gen_max_len)
player = make_env(args.task, number, dist_range=dist_range)
else:
player = make_env(args.task, number)
player.restart()
return player
def _get_result_given_player(self, index, meters, number, player, mode):
assert mode in ['train', 'test', 'mining', 'inherit']
params = dict(
eval_only=True,
number=number,
play_name='{}_epoch{}_episode{}'.format(mode, self.current_epoch,
index))
backup = None
if mode == 'train':
params['eval_only'] = False
params['entropy_beta'] = self.entropy_beta
meters.update(lr=self.lr, entropy_beta=self.entropy_beta)
elif mode == 'test':
params['dump'] = True
params['use_argmax'] = True
else:
backup = copy.deepcopy(player)
params['use_argmax'] = self.is_candidate
succ, score, traj, length, optimal = \
run_episode(player, self.model, **params)
meters.update(
number=number, succ=succ, score=score, length=length, optimal=optimal)
if mode == 'train':
feed_dict = make_data(traj, args.gamma)
feed_dict['entropy_beta'] = as_tensor(self.entropy_beta).float()
if args.use_gpu:
feed_dict = as_cuda(feed_dict)
return feed_dict
else:
message = '> {} iter={iter}, number={number}, succ={succ}, \
score={score:.4f}, length={length}, optimal={optimal}'.format(
mode, iter=index, **meters.val)
return message, dict(succ=succ, number=number, backup=backup)
def _extract_info(self, extra):
return extra['succ'], extra['number'], extra['backup']
def _get_accuracy(self, meters):
return meters.avg['succ']
def _get_threshold(self):
candidate_relax = 0 if self.is_candidate else args.candidate_relax
return super()._get_threshold() - \
self.curriculum_thresh_relax * candidate_relax
def _upgrade_lesson(self):
super()._upgrade_lesson()
# Adjust lr & entropy_beta w.r.t different lesson progressively.
self.lr *= args.lr_decay
self.entropy_beta *= args.entropy_beta_decay
self.set_learning_rate(self.lr)
def _train_epoch(self, epoch_size):
meters = super()._train_epoch(epoch_size)
i = self.current_epoch
if args.save_interval is not None and i % args.save_interval == 0:
self.save_checkpoint(str(i))
if args.test_interval is not None and i % args.test_interval == 0:
self.test()
return meters
def _early_stop(self, meters):
t = args.early_drop_epochs
if t is not None and self.current_epoch > t * (self.nr_upgrades + 1):
return True
return super()._early_stop(meters)
def train(self):
self.lr = args.lr
self.entropy_beta = args.entropy_beta
return super().train()
def main(run_id):
if args.dump_dir is not None:
if args.runs > 1:
args.current_dump_dir = os.path.join(args.dump_dir,
'run_{}'.format(run_id))
io.mkdir(args.current_dump_dir)
else:
args.current_dump_dir = args.dump_dir
args.checkpoints_dir = os.path.join(args.current_dump_dir, 'checkpoints')
io.mkdir(args.checkpoints_dir)
args.summary_file = os.path.join(args.current_dump_dir, 'summary.json')
logger.info(format_args(args))
model = Model()
if args.use_gpu:
model.cuda()
optimizer = get_optimizer(args.optimizer, model, args.lr)
if args.accum_grad > 1:
optimizer = AccumGrad(optimizer, args.accum_grad)
trainer = MyTrainer.from_args(model, optimizer, args)
if args.load_checkpoint is not None:
trainer.load_checkpoint(args.load_checkpoint)
if args.test_only:
trainer.current_epoch = 0
return None, trainer.test()
graduated = trainer.train()
trainer.save_checkpoint('last')
test_meters = trainer.test() if graduated or args.test_not_graduated else None
return graduated, test_meters
if __name__ == '__main__':
stats = []
nr_graduated = 0
for i in range(args.runs):
graduated, test_meters = main(i)
logger.info('run {}'.format(i + 1))
if test_meters is not None:
for j, meters in enumerate(test_meters):
if len(stats) <= j:
stats.append(GroupMeters())
stats[j].update(
number=meters.avg['number'], test_succ=meters.avg['succ'])
for meters in stats:
logger.info('number {}, test_succ {}'.format(meters.avg['number'],
meters.avg['test_succ']))
if not args.test_only:
nr_graduated += int(graduated)
logger.info('graduate_ratio {}'.format(nr_graduated / (i + 1)))
if graduated:
for j, meters in enumerate(test_meters):
stats[j].update(grad_test_succ=meters.avg['succ'])
if nr_graduated > 0:
for meters in stats:
logger.info('number {}, grad_test_succ {}'.format(
meters.avg['number'], meters.avg['grad_test_succ']))