diff --git a/testdata/expected_output/.DS_Store b/testdata/expected_output/.DS_Store new file mode 100644 index 0000000..f94cbbc Binary files /dev/null and b/testdata/expected_output/.DS_Store differ diff --git a/testdata/expected_output/FastOMA_HOGs.orthoxml b/testdata/expected_output/FastOMA_HOGs.orthoxml new file mode 100644 index 0000000..dc3da8e --- /dev/null +++ b/testdata/expected_output/FastOMA_HOGs.orthoxml @@ -0,0 +1,167 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/testdata/expected_output/OrthologousGroups.tsv b/testdata/expected_output/OrthologousGroups.tsv new file mode 100644 index 0000000..e9fb9b2 --- /dev/null +++ b/testdata/expected_output/OrthologousGroups.tsv @@ -0,0 +1,29 @@ +Group Protein +OG_0000001 sp|P0CE13|G3P_CHLTR +OG_0000001 sp|O67161|G3P_AQUAE +OG_0000001 sp|P47543|G3P_MYCGE +OG_0000002 sp|O67118|DNAK_AQUAE +OG_0000002 sp|P47547|DNAK_MYCGE +OG_0000002 sp|P17821|DNAK_CHLTR +OG_0000003 sp|O67618|LEPA_AQUAE +OG_0000003 sp|O84067|LEPA_CHLTR +OG_0000004 sp|P0CD71|EFTU_CHLTR +OG_0000004 sp|P13927|EFTU_MYCGE +OG_0000004 sp|O66429|EFTU_AQUAE +OG_0000005 sp|O84081|FOLD_CHLTR +OG_0000005 sp|O67736|FOLD_AQUAE +OG_0000006 sp|O84332|TPIS_CHLTR +OG_0000006 sp|O66686|TPIS_AQUAE +OG_0000007 sp|P0C0Z7|CH60_CHLTR +OG_0000007 sp|O67943|CH60_AQUAE +OG_0000008 sp|P47639|ATPB_MYCGE +OG_0000008 sp|O67828|ATPB_AQUAE +OG_0000009 sp|P47641|ATPA_MYCGE +OG_0000009 sp|O66907|ATPA_AQUAE +OG_0000010 sp|O66778|ENO_AQUAE +OG_0000010 sp|O84591|ENO_CHLTR +OG_0000011 sp|O84026|RF1_CHLTR +OG_0000011 sp|O67032|RF1_AQUAE +OG_0000011 sp|P47500|RF1_MYCGE +OG_0000012 tr|O84829|O84829_CHLTR +OG_0000012 sp|O67547|SUCD_AQUAE diff --git a/testdata/expected_output/OrthologousGroupsFasta/OG_0000001.fa b/testdata/expected_output/OrthologousGroupsFasta/OG_0000001.fa new file mode 100644 index 0000000..b252b2d --- /dev/null +++ b/testdata/expected_output/OrthologousGroupsFasta/OG_0000001.fa @@ -0,0 +1,21 @@ +>sp|P47543|G3P_MYCGE sp|P47543|G3P_MYCGE||MYCGE||1000000005 sp|P47543|G3P_MYCGE [MYCGE] +MAAKNRTIKVAINGFGRIGRLVFRSLLSKANVEVVAINDLTQPEVLAHLLKYDSAHGELK +RKITVKQNILQIDRKKVYVFSEKDPQNLPWDEHDIDVVIESTGRFVSEEGASLHLKAGAK +RVIISAPAKEKTIRTVVYNVNHKTISSDDKIISAASCTTNCLAPLVHVLEKNFGIVYGTM +LTVHAYTADQRLQDAPHNDLRRARAAAVNIVPTTTGAAKAIGLVVPEANGKLNGMSLRVP +VLTGSIVELSVVLEKSPSVEQVNQAMKRFASASFKYCEDPIVSSDVVSSEYGSIFDSKLT +NIVEVDGMKLYKVYAWYDNESSYVHQLVRVVSYCAKL +>sp|P0CE13|G3P_CHLTR sp|P0CE13|G3P_CHLTR||CHLTR||1001000009 sp|P0CE13|G3P_CHLTR [CHLTR] +MRIVINGFGRIGRLVLRQILKRNSPIEVVAINDLVAGDLLTYLFKYDSTHGSFAPQATFS +DGCLVMGERKVHFLAEKDVQKLPWKDLDVDVVVESTGLFVNRDDVAKHLDSGAKRVLITA +PAKGDVPTFVMGVNHQQFDPADVIISNASCTTNCLAPLAKVLLDNFGIEEGLMTTVHAAT +ATQSVVDGPSRKDWRGGRGAFQNIIPASTGAAKAVGLCLPELKGKLTGMAFRVPVADVSV +VDLTVKLSSATTYEAICEAVKHAANTSMKNIMYYTEEAVVSSDFIGCEYSSVFDAQAGVA +LNDRFFKLVAWYDNEIGYATRIVDLLEYVQENSK +>sp|O67161|G3P_AQUAE sp|O67161|G3P_AQUAE||AQUAE||1002000010 sp|O67161|G3P_AQUAE [AQUAE] +MAIKVGINGFGRIGRSFFRASWGREEIEIVAINDLTDAKHLAHLLKYDSVHGIFKGSVEA +KDDSIVVDGKEIKVFAQKDPSQIPWGDLGVDVVIEATGVFRDRENASKHLQGGAKKVIIT +APAKNPDITVVLGVNEEKYNPKEHNIISNASCTTNCLAPCVKVLNEAFGVEKGYMVTVHA +YTNDQRLLDLPHKDFRRARAAAINIVPTTTGAAKAIGEVIPELKGKLDGTARRVPVPDGS +LIDLTVVVNKAPSSVEEVNEKFREAAQKYRESGKVYLKEILQYCEDPIVSTDIVGNPHSA +IFDAPLTQVIDNLVHIAAWYDNEWGYSCRLRDLVIYLAERGL diff --git a/testdata/expected_output/OrthologousGroupsFasta/OG_0000001.fa.gz b/testdata/expected_output/OrthologousGroupsFasta/OG_0000001.fa.gz new file mode 100644 index 0000000..ce7a41e Binary files /dev/null and b/testdata/expected_output/OrthologousGroupsFasta/OG_0000001.fa.gz differ diff --git a/testdata/expected_output/OrthologousGroupsFasta/OG_0000002.fa.gz b/testdata/expected_output/OrthologousGroupsFasta/OG_0000002.fa.gz new file mode 100644 index 0000000..41e8932 Binary files /dev/null and b/testdata/expected_output/OrthologousGroupsFasta/OG_0000002.fa.gz differ diff --git a/testdata/expected_output/OrthologousGroupsFasta/OG_0000003.fa.gz b/testdata/expected_output/OrthologousGroupsFasta/OG_0000003.fa.gz new file mode 100644 index 0000000..491baf2 Binary files /dev/null and b/testdata/expected_output/OrthologousGroupsFasta/OG_0000003.fa.gz differ diff --git a/testdata/expected_output/OrthologousGroupsFasta/OG_0000004.fa.gz b/testdata/expected_output/OrthologousGroupsFasta/OG_0000004.fa.gz new file mode 100644 index 0000000..584eadc Binary files /dev/null and b/testdata/expected_output/OrthologousGroupsFasta/OG_0000004.fa.gz differ diff --git a/testdata/expected_output/OrthologousGroupsFasta/OG_0000005.fa.gz b/testdata/expected_output/OrthologousGroupsFasta/OG_0000005.fa.gz new file mode 100644 index 0000000..9051dca Binary files /dev/null and b/testdata/expected_output/OrthologousGroupsFasta/OG_0000005.fa.gz differ diff --git a/testdata/expected_output/OrthologousGroupsFasta/OG_0000006.fa.gz b/testdata/expected_output/OrthologousGroupsFasta/OG_0000006.fa.gz new file mode 100644 index 0000000..d79d063 Binary files /dev/null and b/testdata/expected_output/OrthologousGroupsFasta/OG_0000006.fa.gz differ diff --git a/testdata/expected_output/OrthologousGroupsFasta/OG_0000007.fa.gz b/testdata/expected_output/OrthologousGroupsFasta/OG_0000007.fa.gz new file mode 100644 index 0000000..b99a403 Binary files /dev/null and b/testdata/expected_output/OrthologousGroupsFasta/OG_0000007.fa.gz differ diff --git a/testdata/expected_output/OrthologousGroupsFasta/OG_0000008.fa.gz b/testdata/expected_output/OrthologousGroupsFasta/OG_0000008.fa.gz new file mode 100644 index 0000000..0ce1005 Binary files /dev/null and b/testdata/expected_output/OrthologousGroupsFasta/OG_0000008.fa.gz differ diff --git a/testdata/expected_output/OrthologousGroupsFasta/OG_0000009.fa.gz b/testdata/expected_output/OrthologousGroupsFasta/OG_0000009.fa.gz new file mode 100644 index 0000000..d8d7ae7 Binary files /dev/null and b/testdata/expected_output/OrthologousGroupsFasta/OG_0000009.fa.gz differ diff --git a/testdata/expected_output/OrthologousGroupsFasta/OG_0000010.fa.gz b/testdata/expected_output/OrthologousGroupsFasta/OG_0000010.fa.gz new file mode 100644 index 0000000..1b82df3 Binary files /dev/null and b/testdata/expected_output/OrthologousGroupsFasta/OG_0000010.fa.gz differ diff --git a/testdata/expected_output/OrthologousGroupsFasta/OG_0000011.fa.gz b/testdata/expected_output/OrthologousGroupsFasta/OG_0000011.fa.gz new file mode 100644 index 0000000..f85ee2d Binary files /dev/null and b/testdata/expected_output/OrthologousGroupsFasta/OG_0000011.fa.gz differ diff --git a/testdata/expected_output/OrthologousGroupsFasta/OG_0000012.fa.gz b/testdata/expected_output/OrthologousGroupsFasta/OG_0000012.fa.gz new file mode 100644 index 0000000..4c84c5f Binary files /dev/null and b/testdata/expected_output/OrthologousGroupsFasta/OG_0000012.fa.gz differ diff --git a/testdata/expected_output/RootHOGs.tsv b/testdata/expected_output/RootHOGs.tsv new file mode 100644 index 0000000..1093d54 --- /dev/null +++ b/testdata/expected_output/RootHOGs.tsv @@ -0,0 +1,29 @@ +RootHOG Protein OMAmerRootHOG +HOG:0000001 sp|P0CE13|G3P_CHLTR HOG:E1027400 +HOG:0000001 sp|O67161|G3P_AQUAE HOG:E1027400 +HOG:0000001 sp|P47543|G3P_MYCGE HOG:E1027400 +HOG:0000002 sp|O67118|DNAK_AQUAE HOG:E0990770 +HOG:0000002 sp|P47547|DNAK_MYCGE HOG:E0990770 +HOG:0000002 sp|P17821|DNAK_CHLTR HOG:E0990770 +HOG:0000003 sp|O67618|LEPA_AQUAE HOG:E0990677 +HOG:0000003 sp|O84067|LEPA_CHLTR HOG:E0990677 +HOG:0000004 sp|P0CD71|EFTU_CHLTR HOG:E0990677 +HOG:0000004 sp|P13927|EFTU_MYCGE HOG:E0990677 +HOG:0000004 sp|O66429|EFTU_AQUAE HOG:E0990677 +HOG:0000005 sp|O84081|FOLD_CHLTR HOG:E1027325 +HOG:0000005 sp|O67736|FOLD_AQUAE HOG:E1027325 +HOG:0000006 sp|O84332|TPIS_CHLTR HOG:E1027829 +HOG:0000006 sp|O66686|TPIS_AQUAE HOG:E1027829 +HOG:0000007 sp|P0C0Z7|CH60_CHLTR HOG:E1027301 +HOG:0000007 sp|O67943|CH60_AQUAE HOG:E1027301 +HOG:0000008 sp|P47639|ATPB_MYCGE HOG:E0990823 +HOG:0000008 sp|O67828|ATPB_AQUAE HOG:E0990823 +HOG:0000009 sp|P47641|ATPA_MYCGE HOG:E0990823 +HOG:0000009 sp|O66907|ATPA_AQUAE HOG:E0990823 +HOG:0000010 sp|O66778|ENO_AQUAE HOG:E1027309 +HOG:0000010 sp|O84591|ENO_CHLTR HOG:E1027309 +HOG:0000011 sp|O84026|RF1_CHLTR HOG:E0990790 +HOG:0000011 sp|O67032|RF1_AQUAE HOG:E0990790 +HOG:0000011 sp|P47500|RF1_MYCGE HOG:E0990790 +HOG:0000012 tr|O84829|O84829_CHLTR HOG:E1027626 +HOG:0000012 sp|O67547|SUCD_AQUAE HOG:E1027626 diff --git a/testdata/expected_output/RootHOGsFasta/HOG0000001.fa b/testdata/expected_output/RootHOGsFasta/HOG0000001.fa new file mode 100644 index 0000000..b252b2d --- /dev/null +++ b/testdata/expected_output/RootHOGsFasta/HOG0000001.fa @@ -0,0 +1,21 @@ +>sp|P47543|G3P_MYCGE sp|P47543|G3P_MYCGE||MYCGE||1000000005 sp|P47543|G3P_MYCGE [MYCGE] +MAAKNRTIKVAINGFGRIGRLVFRSLLSKANVEVVAINDLTQPEVLAHLLKYDSAHGELK +RKITVKQNILQIDRKKVYVFSEKDPQNLPWDEHDIDVVIESTGRFVSEEGASLHLKAGAK +RVIISAPAKEKTIRTVVYNVNHKTISSDDKIISAASCTTNCLAPLVHVLEKNFGIVYGTM +LTVHAYTADQRLQDAPHNDLRRARAAAVNIVPTTTGAAKAIGLVVPEANGKLNGMSLRVP +VLTGSIVELSVVLEKSPSVEQVNQAMKRFASASFKYCEDPIVSSDVVSSEYGSIFDSKLT +NIVEVDGMKLYKVYAWYDNESSYVHQLVRVVSYCAKL +>sp|P0CE13|G3P_CHLTR sp|P0CE13|G3P_CHLTR||CHLTR||1001000009 sp|P0CE13|G3P_CHLTR [CHLTR] +MRIVINGFGRIGRLVLRQILKRNSPIEVVAINDLVAGDLLTYLFKYDSTHGSFAPQATFS +DGCLVMGERKVHFLAEKDVQKLPWKDLDVDVVVESTGLFVNRDDVAKHLDSGAKRVLITA +PAKGDVPTFVMGVNHQQFDPADVIISNASCTTNCLAPLAKVLLDNFGIEEGLMTTVHAAT +ATQSVVDGPSRKDWRGGRGAFQNIIPASTGAAKAVGLCLPELKGKLTGMAFRVPVADVSV +VDLTVKLSSATTYEAICEAVKHAANTSMKNIMYYTEEAVVSSDFIGCEYSSVFDAQAGVA +LNDRFFKLVAWYDNEIGYATRIVDLLEYVQENSK +>sp|O67161|G3P_AQUAE sp|O67161|G3P_AQUAE||AQUAE||1002000010 sp|O67161|G3P_AQUAE [AQUAE] +MAIKVGINGFGRIGRSFFRASWGREEIEIVAINDLTDAKHLAHLLKYDSVHGIFKGSVEA +KDDSIVVDGKEIKVFAQKDPSQIPWGDLGVDVVIEATGVFRDRENASKHLQGGAKKVIIT +APAKNPDITVVLGVNEEKYNPKEHNIISNASCTTNCLAPCVKVLNEAFGVEKGYMVTVHA +YTNDQRLLDLPHKDFRRARAAAINIVPTTTGAAKAIGEVIPELKGKLDGTARRVPVPDGS +LIDLTVVVNKAPSSVEEVNEKFREAAQKYRESGKVYLKEILQYCEDPIVSTDIVGNPHSA +IFDAPLTQVIDNLVHIAAWYDNEWGYSCRLRDLVIYLAERGL diff --git a/testdata/expected_output/RootHOGsFasta/HOG0000001.fa.gz b/testdata/expected_output/RootHOGsFasta/HOG0000001.fa.gz new file mode 100644 index 0000000..b58bc2f Binary files /dev/null and b/testdata/expected_output/RootHOGsFasta/HOG0000001.fa.gz differ diff --git a/testdata/expected_output/RootHOGsFasta/HOG0000002.fa.gz b/testdata/expected_output/RootHOGsFasta/HOG0000002.fa.gz new file mode 100644 index 0000000..8b458d4 Binary files /dev/null and b/testdata/expected_output/RootHOGsFasta/HOG0000002.fa.gz differ diff --git a/testdata/expected_output/RootHOGsFasta/HOG0000003.fa.gz b/testdata/expected_output/RootHOGsFasta/HOG0000003.fa.gz new file mode 100644 index 0000000..ed9eb48 Binary files /dev/null and b/testdata/expected_output/RootHOGsFasta/HOG0000003.fa.gz differ diff --git a/testdata/expected_output/RootHOGsFasta/HOG0000004.fa.gz b/testdata/expected_output/RootHOGsFasta/HOG0000004.fa.gz new file mode 100644 index 0000000..67231b1 Binary files /dev/null and b/testdata/expected_output/RootHOGsFasta/HOG0000004.fa.gz differ diff --git a/testdata/expected_output/RootHOGsFasta/HOG0000005.fa.gz b/testdata/expected_output/RootHOGsFasta/HOG0000005.fa.gz new file mode 100644 index 0000000..fbda060 Binary files /dev/null and b/testdata/expected_output/RootHOGsFasta/HOG0000005.fa.gz differ diff --git a/testdata/expected_output/RootHOGsFasta/HOG0000006.fa.gz b/testdata/expected_output/RootHOGsFasta/HOG0000006.fa.gz new file mode 100644 index 0000000..1f449c1 Binary files /dev/null and b/testdata/expected_output/RootHOGsFasta/HOG0000006.fa.gz differ diff --git a/testdata/expected_output/RootHOGsFasta/HOG0000007.fa.gz b/testdata/expected_output/RootHOGsFasta/HOG0000007.fa.gz new file mode 100644 index 0000000..06baf57 Binary files /dev/null and b/testdata/expected_output/RootHOGsFasta/HOG0000007.fa.gz differ diff --git a/testdata/expected_output/RootHOGsFasta/HOG0000008.fa.gz b/testdata/expected_output/RootHOGsFasta/HOG0000008.fa.gz new file mode 100644 index 0000000..84a8317 Binary files /dev/null and b/testdata/expected_output/RootHOGsFasta/HOG0000008.fa.gz differ diff --git a/testdata/expected_output/RootHOGsFasta/HOG0000009.fa.gz b/testdata/expected_output/RootHOGsFasta/HOG0000009.fa.gz new file mode 100644 index 0000000..914717d Binary files /dev/null and b/testdata/expected_output/RootHOGsFasta/HOG0000009.fa.gz differ diff --git a/testdata/expected_output/RootHOGsFasta/HOG0000010.fa.gz b/testdata/expected_output/RootHOGsFasta/HOG0000010.fa.gz new file mode 100644 index 0000000..bae880f Binary files /dev/null and b/testdata/expected_output/RootHOGsFasta/HOG0000010.fa.gz differ diff --git a/testdata/expected_output/RootHOGsFasta/HOG0000011.fa.gz b/testdata/expected_output/RootHOGsFasta/HOG0000011.fa.gz new file mode 100644 index 0000000..538e146 Binary files /dev/null and b/testdata/expected_output/RootHOGsFasta/HOG0000011.fa.gz differ diff --git a/testdata/expected_output/RootHOGsFasta/HOG0000012.fa.gz b/testdata/expected_output/RootHOGsFasta/HOG0000012.fa.gz new file mode 100644 index 0000000..77f1ead Binary files /dev/null and b/testdata/expected_output/RootHOGsFasta/HOG0000012.fa.gz differ diff --git a/testdata/expected_output/hogmap/AQUAE.fa.hogmap b/testdata/expected_output/hogmap/AQUAE.fa.hogmap new file mode 100644 index 0000000..cdc0855 --- /dev/null +++ b/testdata/expected_output/hogmap/AQUAE.fa.hogmap @@ -0,0 +1,128 @@ +!omamer-version: 2.0.0 +!query-md5: 8d83b9f39b91e3c36a90928838ad4409 +!date-run: 2024-10-18T02:45:42.779876 +!db-path: LUCA.h5 +!db-info-source: OMA / All.Jul2024 +!db-info-root_level: LUCA +!db-info-database_hash: c259ac11f2fe04d44b5e031a6ec1b496 +qseqid hogid hoglevel family_p family_count family_normcount subfamily_score subfamily_count qseqlen subfamily_medianseqlen qseq_overlap +sp|O67618|LEPA_AQUAE HOG:E0990677.124f p__Aquificota 1494.5837315062763 595 1.0 0.999999673266635 163 601 599 1.0 +sp|O67618|LEPA_AQUAE HOG:E0802555.6c Opisthokonta 847.6892322849468 270 0.44868416392731164 0.1387245101747195 58 601 661 0.995 +sp|O67618|LEPA_AQUAE HOG:E0821023 Eukaryota 456.3521981507304 88 0.14764935425874248 0.11260422324623964 67 601 395 0.5916666666666667 +sp|O67618|LEPA_AQUAE HOG:E0294910 Magnoliopsida 328.47997746848415 58 0.0973803599871207 N/A N/A 601 272 0.9433333333333334 +sp|O67618|LEPA_AQUAE HOG:E0786725 Eumetazoa 247.83444013917318 43 0.07220613366794268 N/A N/A 601 194 0.3233333333333333 +sp|O67618|LEPA_AQUAE HOG:E0815940 Eukaryota 202.91050347023153 41 0.06877370066494597 N/A N/A 601 222 0.47 +sp|O67618|LEPA_AQUAE HOG:E1027760 LUCA 190.58229880083738 37 0.06208870442783898 N/A N/A 601 192 0.9316666666666666 +sp|O67618|LEPA_AQUAE HOG:E1035617 LUCA 181.0254282175376 34 0.05707033898055816 N/A N/A 601 190 0.4066666666666667 +sp|O67618|LEPA_AQUAE HOG:E0171517 Pinidae 194.54363652442694 30 0.050400934353217706 N/A N/A 601 251 0.28833333333333333 +sp|O67618|LEPA_AQUAE HOG:E1027385 LUCA 23.923284076350924 32 0.04628738724672414 N/A N/A 601 844 0.9433333333333334 +sp|O67032|RF1_AQUAE HOG:E0990790.115a p__Aquificota 1343.5910074968604 357 1.0 0.9999996752037892 120 363 361 1.0 +sp|O67032|RF1_AQUAE HOG:E0802693.2c Opisthokonta 374.21467457336934 127 0.3506244039605542 0.14128450393990222 39 363 411 0.9033149171270718 +sp|O67032|RF1_AQUAE HOG:E0801680 Eukaryota 15.528873502293425 104 0.17408965516705402 0.13143041812720777 47 363 3978 0.9779005524861878 +sp|O67032|RF1_AQUAE HOG:E0802143 Eukaryota 42.935811379744685 78 0.17223384991325263 0.1315730556440387 47 363 1205 0.9806629834254144 +sp|O67032|RF1_AQUAE HOG:E0804945 Eukaryota 197.15462002254276 51 0.14202560906627115 0.14285325757125789 51 363 417 0.7762430939226519 +sp|O67032|RF1_AQUAE HOG:E0319392 Streptophyta 189.20322619792685 48 0.13373492475953505 0.1120412232144367 40 363 415 0.6519337016574586 +sp|O67032|RF1_AQUAE HOG:E0990860 Bacteria 17.753799448685857 62 0.12190228374848616 N/A N/A 363 849 0.9502762430939227 +sp|O67032|RF1_AQUAE HOG:E0803395 Eukaryota 105.44744782426821 43 0.11758695699338008 N/A N/A 363 453 0.8729281767955801 +sp|O67032|RF1_AQUAE HOG:E0779893 Eumetazoa 17.149629536226456 59 0.11681209968009154 N/A N/A 363 7339 0.9834254143646409 +sp|O67032|RF1_AQUAE HOG:E1033233 LUCA 25.119503299231013 44 0.10014937542730394 N/A N/A 363 442 0.9502762430939227 +sp|O66778|ENO_AQUAE HOG:E1027309 LUCA 1733.5806169529005 421 1.0 0.9999633099739694 421 427 433 1.0 +sp|O66778|ENO_AQUAE HOG:E0810478 Eukaryota 384.8096576046227 67 0.1589980325153238 0.15914406110385054 67 427 253 0.6408450704225352 +sp|O66778|ENO_AQUAE HOG:E0992793 Bacteria 330.0916929162799 52 0.12345475901383614 0.12351510301079195 52 427 188 0.5211267605633803 +sp|O66778|ENO_AQUAE HOG:E0320304 Streptophyta 203.91489071175891 48 0.11356073009794189 0.1092613217491124 46 427 475 0.9295774647887324 +sp|O66778|ENO_AQUAE HOG:E0807745 Eukaryota 206.64053446759635 42 0.09956517204204199 N/A N/A 427 161 0.48826291079812206 +sp|O66778|ENO_AQUAE HOG:E0801638 Eukaryota 40.134448435449016 39 0.08276918292558663 N/A N/A 427 771 0.8450704225352113 +sp|O66778|ENO_AQUAE HOG:E0802157 Eukaryota 14.892078010627824 45 0.0790240077790886 N/A N/A 427 1498 0.9248826291079812 +sp|O66778|ENO_AQUAE HOG:E0166221 Picea 225.61071791981504 33 0.07836337595405589 N/A N/A 427 332 0.9248826291079812 +sp|O66778|ENO_AQUAE HOG:E0734141 Amniota 206.10043385127932 33 0.07834609658809144 N/A N/A 427 222 0.4671361502347418 +sp|O66778|ENO_AQUAE HOG:E0825898 Eukaryota 168.34699812010047 29 0.06883293709827593 N/A N/A 427 136 0.33098591549295775 +sp|O66429|EFTU_AQUAE HOG:E0990677.124d p__Aquificota 1000.3619794899607 400 1.0 0.9999998937793705 66 406 402 1.0 +sp|O66429|EFTU_AQUAE HOG:E0801690 Eukaryota 882.4148026618643 273 0.6775596358711438 0.6049826079054897 242 406 470 0.9975308641975309 +sp|O66429|EFTU_AQUAE HOG:E0836721 p__Marinisomatota 765.9834514610116 116 0.28988949489418375 0.2874993581561958 115 406 445 0.9901234567901235 +sp|O66429|EFTU_AQUAE HOG:E0654214 Protostomia 463.02185692882006 104 0.2591345078094323 0.2574925968418363 103 406 458 0.8790123456790123 +sp|O66429|EFTU_AQUAE HOG:E1027386 LUCA 158.41267297598054 87 0.20673298769148402 0.17247501845765048 69 406 460 0.9703703703703703 +sp|O66429|EFTU_AQUAE HOG:E0814065 Eukaryota 433.0603033148141 73 0.18236083623494934 0.1524997287983926 61 406 256 0.6098765432098765 +sp|O66429|EFTU_AQUAE HOG:E0298444 Spermatophyta 483.9597607315873 70 0.17495009014621665 0.16249977529009674 65 406 228 0.7358024691358025 +sp|O66429|EFTU_AQUAE HOG:E1028189 LUCA 406.3199321194275 68 0.16987618174956748 0.16999908534029318 68 406 410 0.9358024691358025 +sp|O66429|EFTU_AQUAE HOG:E0252691 malvids 323.8038571808229 53 0.13241748807864026 0.13249967423521208 53 406 303 0.9481481481481482 +sp|O66429|EFTU_AQUAE HOG:E0811622 Eukaryota 280.54098020438755 52 0.12983488862990952 0.10249947147972463 41 406 155 0.2938271604938272 +sp|O67547|SUCD_AQUAE HOG:E1027626.42b p__Aquificota 1416.5642612393783 300 1.0 0.9999998359875993 80 306 294 1.0 +sp|O67547|SUCD_AQUAE HOG:E1036772 LUCA 219.46647886383772 47 0.15627091938881157 0.13999775419240354 42 306 695 0.7901639344262295 +sp|O67547|SUCD_AQUAE HOG:E0790433 Metazoa 292.44788530334307 44 0.14661599527688132 0.13666645196539415 41 306 217 0.7344262295081967 +sp|O67547|SUCD_AQUAE HOG:E1035033 LUCA 167.98882007792028 28 0.09327838776084224 N/A N/A 306 164 0.5344262295081967 +sp|O67547|SUCD_AQUAE HOG:E0049074 Acytosteliales 127.18582225459929 25 0.08321623744170374 N/A N/A 306 1233 0.5278688524590164 +sp|O67547|SUCD_AQUAE HOG:E0542584 Trichinella 145.44735854962644 24 0.07995826950401433 N/A N/A 306 933 0.6655737704918033 +sp|O67547|SUCD_AQUAE HOG:E0343351 Fungi incertae sedis 54.37428274373307 21 0.06887884036955755 N/A N/A 306 647 0.4262295081967213 +sp|O67547|SUCD_AQUAE HOG:E0833301 Eukaryota 112.17402326661363 20 0.06661663542437485 N/A N/A 306 253 0.5377049180327869 +sp|O67547|SUCD_AQUAE HOG:E0478112 Ascomycota 69.13874608780904 18 0.059750869375003006 N/A N/A 306 321 0.6622950819672131 +sp|O67547|SUCD_AQUAE HOG:E1028132 LUCA 27.000116491072795 18 0.0573022706564178 N/A N/A 306 615 0.7868852459016393 +sp|O66686|TPIS_AQUAE HOG:E1027829 LUCA 991.8682253938227 242 1.0 0.9999640502897859 242 248 254 1.0 +sp|O66686|TPIS_AQUAE HOG:E1027397 LUCA 41.69060988899004 42 0.154687099123846 0.13631239023704708 33 248 402 0.9352226720647774 +sp|O66686|TPIS_AQUAE HOG:E0793556.3d.2c Chromadorea 62.34072955689469 31 0.12379811836123425 0.10833251682277964 26 248 484 0.8097165991902834 +sp|O66686|TPIS_AQUAE HOG:E0821034 Eukaryota 84.22493118512625 16 0.06605508598911598 N/A N/A 248 126 0.26720647773279355 +sp|O66686|TPIS_AQUAE HOG:E1034633 LUCA 64.81048604248369 16 0.06591128378789075 N/A N/A 248 603 0.5748987854251012 +sp|O66686|TPIS_AQUAE HOG:E0809344 Eukaryota 54.633339965003636 12 0.049513501683019684 N/A N/A 248 109 0.3319838056680162 +sp|O66686|TPIS_AQUAE HOG:E0478744 Dikarya 24.01419032833911 12 0.04863038759712776 N/A N/A 248 277 0.6072874493927125 +sp|O66686|TPIS_AQUAE HOG:E0240924 Brassica 52.69051263424566 9 0.03717925834887873 N/A N/A 248 208 0.41700404858299595 +sp|O66686|TPIS_AQUAE HOG:E0168433 Pinaceae 44.88718069857099 8 0.033047425674798375 N/A N/A 248 141 0.32793522267206476 +sp|O66686|TPIS_AQUAE HOG:E0721121 Cercopithecidae 33.818627249104985 7 0.02890951936708994 N/A N/A 248 151 0.4008097165991903 +sp|O67828|ATPB_AQUAE HOG:E0990823.122c p__Aquificota 1578.0213438131404 473 1.0 0.9999997788415463 136 479 475 1.0 +sp|O67828|ATPB_AQUAE HOG:E1029317.1c Eukaryota 781.7230718336426 218 0.45765548429498437 0.20230070628913588 70 479 525 0.9707112970711297 +sp|O67828|ATPB_AQUAE HOG:E0305918 Spermatophyta 421.9665677664714 75 0.1583948645390601 0.14587684216662525 69 479 260 0.7719665271966527 +sp|O67828|ATPB_AQUAE HOG:E0308570 Euphyllophyta 426.2742003215494 67 0.14157790854579758 0.13530624202935657 64 479 283 0.5669456066945606 +sp|O67828|ATPB_AQUAE HOG:E0818196 Eukaryota 365.2368207150262 64 0.1351760931988736 N/A N/A 479 143 0.8158995815899581 +sp|O67828|ATPB_AQUAE HOG:E0233757 Gossypium 429.01809212031907 62 0.1310407828401247 0.13107797550000647 62 479 457 0.6736401673640168 +sp|O67828|ATPB_AQUAE HOG:E0178068 Magnoliidae 429.6804191276716 61 0.12893158136248312 0.12896387387551894 61 479 460 0.6736401673640168 +sp|O67828|ATPB_AQUAE HOG:E0295337 Magnoliopsida 368.75169504212994 54 0.11412976294890237 N/A N/A 479 139 0.41631799163179917 +sp|O67828|ATPB_AQUAE HOG:E0817605 Eukaryota 268.26648641864784 54 0.11393855277758212 N/A N/A 479 255 0.7698744769874477 +sp|O67828|ATPB_AQUAE HOG:E0226464 Solanum 344.79560566540493 51 0.10778717678871985 0.10782218124092055 51 479 370 0.4769874476987448 +sp|O67118|DNAK_AQUAE HOG:E0990770.113b c__Aquificae 1941.5845918323232 627 1.0 0.9999996571236821 219 633 623 1.0 +sp|O67118|DNAK_AQUAE HOG:E1027381 LUCA 763.0569565136248 264 0.41474228984732414 0.36202047533163584 227 633 673 0.9810126582278481 +sp|O67118|DNAK_AQUAE HOG:E0801582 Eukaryota 538.974366983486 241 0.37265956732039185 0.2790815807729813 175 633 646 0.9857594936708861 +sp|O67118|DNAK_AQUAE HOG:E0851963 p__Myxococcota 303.70950746570065 95 0.14960824060072808 0.10845077803962307 68 633 552 0.8227848101265823 +sp|O67118|DNAK_AQUAE HOG:E0268033 Pentapetalae 296.8572859729749 86 0.13583201693271796 0.11483004212181568 72 633 650 0.865506329113924 +sp|O67118|DNAK_AQUAE HOG:E0343351 Fungi incertae sedis 298.2875826884302 82 0.12973361458628535 0.10526076841486028 66 633 647 0.8433544303797469 +sp|O67118|DNAK_AQUAE HOG:E0802143 Eukaryota 46.56887515798982 111 0.1283265133520839 0.10996824146956508 69 633 1205 0.9240506329113924 +sp|O67118|DNAK_AQUAE HOG:E0174118 Acrogymnospermae 310.21587124263505 66 0.10497837425974213 N/A N/A 633 595 0.754746835443038 +sp|O67118|DNAK_AQUAE HOG:E0318583 Streptophytina 253.60384352096537 63 0.09994590522154928 N/A N/A 633 1127 0.7484177215189873 +sp|O67118|DNAK_AQUAE HOG:E0800108 Opisthokonta 245.09462365140553 63 0.09986837394915277 N/A N/A 633 645 0.810126582278481 +sp|O67736|FOLD_AQUAE HOG:E1027325 LUCA 1147.1317808715949 286 1.0 0.9999577542153266 286 292 293 1.0 +sp|O67736|FOLD_AQUAE HOG:E0801702.3c Opisthokonta 111.59857042454209 58 0.19430228178379505 0.11565500518672653 31 292 940 0.9106529209621993 +sp|O67736|FOLD_AQUAE HOG:E0270075 Pentapetalae 137.81597201829206 29 0.10118854140318571 0.10139778359661149 29 292 344 0.7319587628865979 +sp|O67736|FOLD_AQUAE HOG:E0776529 Bilateria 151.34375599285707 27 0.09432441765015012 N/A N/A 292 196 0.7903780068728522 +sp|O67736|FOLD_AQUAE HOG:E0802126 Eukaryota 22.38006277536421 26 0.08097616372337524 N/A N/A 292 979 0.7353951890034365 +sp|O67736|FOLD_AQUAE HOG:E0302732 Spermatophyta 135.34682133935118 22 0.07688796839071241 N/A N/A 292 193 0.6219931271477663 +sp|O67736|FOLD_AQUAE HOG:E0155721 Chlorophyta 108.32457672448291 21 0.07333801728332495 N/A N/A 292 345 0.6013745704467354 +sp|O67736|FOLD_AQUAE HOG:E0815105 Eukaryota 78.67009107999351 17 0.05933256812060498 N/A N/A 292 127 0.22336769759450173 +sp|O67736|FOLD_AQUAE HOG:E0831684 Eukaryota 68.07493375506755 13 0.04541792751830596 N/A N/A 292 147 0.10996563573883161 +sp|O67736|FOLD_AQUAE HOG:E0683727 Otophysi 43.74770084559871 13 0.04521560666056532 N/A N/A 292 895 0.5257731958762887 +sp|O67161|G3P_AQUAE HOG:E1027400.2a Bacteria 1337.9481959137313 337 1.0 0.9999827228433138 174 343 337 1.0 +sp|O67161|G3P_AQUAE HOG:E1035999 LUCA 237.5299594585181 37 0.10974589622522819 0.10979193876156035 37 343 164 0.5350877192982456 +sp|O67161|G3P_AQUAE HOG:E1034633 LUCA 128.6803461447481 28 0.08288534937489686 N/A N/A 343 603 0.9502923976608187 +sp|O67161|G3P_AQUAE HOG:E0282955 Mesangiospermae 151.48545601191174 26 0.07709848935461987 N/A N/A 343 225 0.9502923976608187 +sp|O67161|G3P_AQUAE HOG:E0322012 Viridiplantae 143.01632130787078 25 0.07412838229571883 N/A N/A 343 217 0.4502923976608187 +sp|O67161|G3P_AQUAE HOG:E0778953 Eumetazoa 107.92722920327364 22 0.06517746355718577 N/A N/A 343 194 0.6198830409356725 +sp|O67161|G3P_AQUAE HOG:E0168126 Pinaceae 108.7170007933872 21 0.062240306816594426 N/A N/A 343 472 0.9298245614035088 +sp|O67161|G3P_AQUAE HOG:E0166277 Picea 113.49238995121709 20 0.05930531130021299 N/A N/A 343 391 0.9385964912280702 +sp|O67161|G3P_AQUAE HOG:E0607214 Aculeata 108.63437663709209 20 0.05929378903541141 N/A N/A 343 352 0.9327485380116959 +sp|O67161|G3P_AQUAE HOG:E0635006 Neoptera 35.11695132247486 20 0.057160909081849585 N/A N/A 343 875 0.6140350877192983 +sp|O67943|CH60_AQUAE HOG:E1027301.3l Bacteria 1577.5574327141187 540 1.0 0.99997940514365 237 546 545 1.0 +sp|O67943|CH60_AQUAE HOG:E0990652 Bacteria 37.04151337223151 178 0.2028206060630296 0.1275664226165194 69 546 461 0.9779816513761468 +sp|O67943|CH60_AQUAE HOG:E0990653 Bacteria 21.541882117253557 189 0.18624129216702737 0.15896404726955887 86 546 1040 1.0 +sp|O67943|CH60_AQUAE HOG:E0811748 Eukaryota 338.60223551794644 71 0.13115079146141584 0.10925856059226118 59 546 243 0.47889908256880737 +sp|O67943|CH60_AQUAE HOG:E0817459 Eukaryota 240.1134059406317 54 0.09966274721377127 N/A N/A 546 205 0.581651376146789 +sp|O67943|CH60_AQUAE HOG:E0287422 Mesangiospermae 270.0723093252727 51 0.0943096538088191 N/A N/A 546 318 0.5944954128440367 +sp|O67943|CH60_AQUAE HOG:E1027294 LUCA 14.983005195219011 78 0.0907808077970031 N/A N/A 546 886 0.9559633027522936 +sp|O67943|CH60_AQUAE HOG:E0799601 Opisthokonta 231.69989221484013 47 0.08686038542163954 N/A N/A 546 256 0.8201834862385321 +sp|O67943|CH60_AQUAE HOG:E0990711 Bacteria 14.870792046357138 73 0.08654433511597255 N/A N/A 546 760 0.9669724770642202 +sp|O67943|CH60_AQUAE HOG:E0817515 Eukaryota 234.17575208722337 46 0.08503865054566996 N/A N/A 546 170 0.47155963302752296 +sp|O66907|ATPA_AQUAE HOG:E0990823.122b p__Aquificota 1662.135909013321 498 1.0 0.9999997181440436 140 504 504 1.0 +sp|O66907|ATPA_AQUAE HOG:E1029316.1a Eukaryota 713.613396532029 196 0.39079134209539373 0.29294377579847714 133 504 549 0.8230616302186878 +sp|O66907|ATPA_AQUAE HOG:E0877887 f__Clostridiaceae 576.0472826127908 98 0.1966241144738959 0.18875421583841176 94 504 503 0.8469184890656064 +sp|O66907|ATPA_AQUAE HOG:E0837546 p__Latescibacterota 530.082308896883 90 0.18057479496213696 0.13252990319778274 66 504 460 0.6898608349900597 +sp|O66907|ATPA_AQUAE HOG:E0308075 Euphyllophyta 477.47322809583403 79 0.1585234168231221 0.1546180800075335 77 504 289 0.48906560636182905 +sp|O66907|ATPA_AQUAE HOG:E0260232 fabids 472.73204487481144 78 0.15651866372948742 0.1566260524071221 78 504 445 0.4970178926441352 +sp|O66907|ATPA_AQUAE HOG:E0270285 Pentapetalae 512.1287651184592 76 0.15255717669903315 0.15261026839175498 76 504 153 0.5009940357852882 +sp|O66907|ATPA_AQUAE HOG:E0194323 Triticeae 475.39154460395605 68 0.1365094212616446 0.1305219272467445 65 504 219 0.4572564612326044 +sp|O66907|ATPA_AQUAE HOG:E0597357 Hemiptera 456.94693730614125 65 0.13048841482710596 0.13052187139212773 65 504 342 0.41749502982107356 +sp|O66907|ATPA_AQUAE HOG:E0145599.1a Stramenopiles 313.05465896780794 65 0.13021324581821533 0.12072418561550771 60 504 504 0.5666003976143141 diff --git a/testdata/expected_output/hogmap/CHLTR.fa.hogmap b/testdata/expected_output/hogmap/CHLTR.fa.hogmap new file mode 100644 index 0000000..5154316 --- /dev/null +++ b/testdata/expected_output/hogmap/CHLTR.fa.hogmap @@ -0,0 +1,108 @@ +!omamer-version: 2.0.0 +!query-md5: fdfb2b46bc8747644fccc8253bd16b57 +!date-run: 2024-10-18T02:45:42.779802 +!db-path: LUCA.h5 +!db-info-source: OMA / All.Jul2024 +!db-info-root_level: LUCA +!db-info-database_hash: c259ac11f2fe04d44b5e031a6ec1b496 +qseqid hogid hoglevel family_p family_count family_normcount subfamily_score subfamily_count qseqlen subfamily_medianseqlen qseq_overlap +sp|O84067|LEPA_CHLTR HOG:E0990677.134e o__Chlamydiales 1499.6526725525976 597 1.0 0.9999995166799925 252 603 603 1.0 +sp|O84067|LEPA_CHLTR HOG:E0802555 Eukaryota 643.35765520727 223 0.3676881175041601 0.3031465184679004 181 603 664 0.9617940199335548 +sp|O84067|LEPA_CHLTR HOG:E0821023 Eukaryota 468.8286652570006 90 0.1505048003081269 0.11892715442876291 71 603 395 0.9019933554817275 +sp|O84067|LEPA_CHLTR HOG:E0171517 Pinidae 391.79817975408554 54 0.09043383844149758 N/A N/A 603 251 0.21926910299003322 +sp|O84067|LEPA_CHLTR HOG:E0786725 Eumetazoa 319.40278224184505 53 0.08871556255201032 N/A N/A 603 194 0.3289036544850498 +sp|O84067|LEPA_CHLTR HOG:E1027760 LUCA 297.38785350993794 53 0.0886837768568137 N/A N/A 603 192 0.21096345514950166 +sp|O84067|LEPA_CHLTR HOG:E0294910 Magnoliopsida 260.2760003621831 48 0.08030151219035249 N/A N/A 603 272 0.9568106312292359 +sp|O84067|LEPA_CHLTR HOG:E0815940 Eukaryota 123.94040008815298 28 0.046764146329181355 N/A N/A 603 222 0.40365448504983387 +sp|O84067|LEPA_CHLTR HOG:E0815057 Eukaryota 80.97335228553351 23 0.03826896617186543 N/A N/A 603 186 0.2159468438538206 +sp|O84067|LEPA_CHLTR HOG:E0804877 Eukaryota 18.072242861537063 24 0.035318436065228005 N/A N/A 603 672 0.6262458471760798 +sp|O84026|RF1_CHLTR HOG:E0990790.125a o__Chlamydiales 1332.1875013013046 354 1.0 0.9999995438001533 165 360 360 1.0 +sp|O84026|RF1_CHLTR HOG:E0802693 Eukaryota 321.231063194142 114 0.31664823054949987 0.2965886606211868 105 360 405 0.8440111420612814 +sp|O84026|RF1_CHLTR HOG:E0319392 Streptophyta 316.0198365043671 71 0.199901021916704 0.16666307195393248 59 360 415 0.5821727019498607 +sp|O84026|RF1_CHLTR HOG:E0803395 Eukaryota 140.66857699493494 52 0.1441174581784544 0.10451421599264317 37 360 453 0.5766016713091922 +sp|O84026|RF1_CHLTR HOG:E0804945 Eukaryota 142.27209699621247 40 0.11213384591697927 0.11016560623953876 39 360 417 0.8913649025069638 +sp|O84026|RF1_CHLTR HOG:E0992160 Bacteria 36.906661862354774 24 0.06434293898400818 N/A N/A 360 140 0.5710306406685237 +sp|O84026|RF1_CHLTR HOG:E0032610 Guillardia theta 131.25291017900574 21 0.05929784822469229 N/A N/A 360 408 0.3649025069637883 +sp|O84026|RF1_CHLTR HOG:E0055847 Naegleria 104.45192479064607 18 0.05081772595147202 N/A N/A 360 402 0.6908077994428969 +sp|O84026|RF1_CHLTR HOG:E0144957 Alveolata 68.81758672517086 18 0.050631395608257634 N/A N/A 360 405 0.3732590529247911 +sp|O84026|RF1_CHLTR HOG:E0144810 Alveolata 59.1087917297363 15 0.042231632692916334 N/A N/A 360 297 0.39275766016713093 +sp|O84591|ENO_CHLTR HOG:E1027309 LUCA 1725.2812970159544 419 1.0 0.9999633099739694 419 425 433 1.0 +sp|O84591|ENO_CHLTR HOG:E0807745 Eukaryota 206.85056354730062 42 0.10004146958140551 N/A N/A 425 161 0.4882075471698113 +sp|O84591|ENO_CHLTR HOG:E0810478 Eukaryota 140.81103077427943 30 0.07143689432063204 N/A N/A 425 253 0.5542452830188679 +sp|O84591|ENO_CHLTR HOG:E0098813 Ichthyophthirius multifiliis 167.28855891545868 27 0.06440791913544452 N/A N/A 425 872 0.8915094339622641 +sp|O84591|ENO_CHLTR HOG:E0992793 Bacteria 140.7001026390286 26 0.061987570374140454 N/A N/A 425 188 0.47641509433962265 +sp|O84591|ENO_CHLTR HOG:E0825898 Eukaryota 132.7926678181646 24 0.057227931388861945 N/A N/A 425 136 0.25707547169811323 +sp|O84591|ENO_CHLTR HOG:E0801638 Eukaryota 15.407970637729363 27 0.05426510262889334 N/A N/A 425 771 0.7948113207547169 +sp|O84591|ENO_CHLTR HOG:E0166221 Picea 129.7361258552073 21 0.050097252590296584 N/A N/A 425 332 0.8254716981132075 +sp|O84591|ENO_CHLTR HOG:E0734141 Amniota 117.32312008536394 21 0.05007944327502538 N/A N/A 425 222 0.47877358490566035 +sp|O84591|ENO_CHLTR HOG:E0320304 Streptophyta 55.78335154689871 19 0.04485739024034894 N/A N/A 425 475 0.8844339622641509 +sp|P0CD71|EFTU_CHLTR HOG:E0990677.134c o__Chlamydiales 972.4828037351941 389 1.0 0.9999998159703379 94 395 395 1.0 +sp|P0CD71|EFTU_CHLTR HOG:E0801690 Eukaryota 685.6151295035038 229 0.5822888629385503 0.5501111426098599 214 395 470 0.9746192893401016 +sp|P0CD71|EFTU_CHLTR HOG:E0654214 Protostomia 489.4587369225511 108 0.2767900948184898 0.277627558281425 108 395 458 0.8756345177664975 +sp|P0CD71|EFTU_CHLTR HOG:E1028189 LUCA 549.4100816121655 87 0.2235345708438981 0.22364947094440626 87 395 410 0.9619289340101523 +sp|P0CD71|EFTU_CHLTR HOG:E0836721 p__Marinisomatota 456.4909489232003 75 0.1926764234649107 0.19280141471146575 75 395 445 0.9289340101522843 +sp|P0CD71|EFTU_CHLTR HOG:E0814065 Eukaryota 413.7275472036965 70 0.17980898802370648 0.1799483149166445 70 395 256 0.550761421319797 +sp|P0CD71|EFTU_CHLTR HOG:E0252691 malvids 446.7031849291361 69 0.17729964865254108 0.1773775662660604 69 395 303 0.934010152284264 +sp|P0CD71|EFTU_CHLTR HOG:E0298444 Spermatophyta 453.43840252293546 66 0.16961557721345477 0.15681211462171626 61 395 228 0.7233502538071066 +sp|P0CD71|EFTU_CHLTR HOG:E0811622 Eukaryota 371.0522408844344 65 0.1669370443403087 0.151670422636537 59 395 155 0.29441624365482233 +sp|P0CD71|EFTU_CHLTR HOG:E1027386 LUCA 95.1122696190667 64 0.15302847803323769 0.13622180509004123 53 395 460 0.9746192893401016 +tr|O84829|O84829_CHLTR HOG:E1027626 LUCA 1349.831371658741 286 1.0 0.9999724814311852 286 292 298 1.0 +tr|O84829|O84829_CHLTR HOG:E0790433 Metazoa 401.2819976147372 57 0.19925315334792595 0.18181796711690928 52 292 217 0.852233676975945 +tr|O84829|O84829_CHLTR HOG:E1035033 LUCA 222.82820239885933 35 0.12232443693942076 0.1223773592474914 35 292 164 0.5051546391752577 +tr|O84829|O84829_CHLTR HOG:E1036772 LUCA 145.6122418334255 34 0.11846764014751868 0.11188586608051543 32 292 695 0.8865979381443299 +tr|O84829|O84829_CHLTR HOG:E0049074 Acytosteliales 148.53150628760085 28 0.09778686303862515 N/A N/A 292 1233 0.563573883161512 +tr|O84829|O84829_CHLTR HOG:E0632190 Endopterygota 115.49290599997408 26 0.09066195085876066 N/A N/A 292 1292 0.5463917525773195 +tr|O84829|O84829_CHLTR HOG:E1035047 LUCA 146.94849918688752 25 0.08735704847299736 N/A N/A 292 97 0.3436426116838488 +tr|O84829|O84829_CHLTR HOG:E0833301 Eukaryota 142.63495414769847 24 0.08386697732712116 N/A N/A 292 253 0.6082474226804123 +tr|O84829|O84829_CHLTR HOG:E0401656 Debaryomycetaceae 79.15259274698553 24 0.08321878804257075 N/A N/A 292 1647 0.6219931271477663 +tr|O84829|O84829_CHLTR HOG:E0542584 Trichinella 139.034505911189 23 0.0803778689554415 N/A N/A 292 933 0.6151202749140894 +sp|O84332|TPIS_CHLTR HOG:E1027829 LUCA 1104.0291770034867 269 1.0 0.9999640502897859 269 275 254 1.0 +sp|O84332|TPIS_CHLTR HOG:E1027397 LUCA 37.440164415787336 42 0.1368695372354899 0.1337777501559386 36 275 402 0.864963503649635 +sp|O84332|TPIS_CHLTR HOG:E1034633 LUCA 80.43286986355383 19 0.07042854013829311 N/A N/A 275 603 0.6021897810218978 +sp|O84332|TPIS_CHLTR HOG:E0793556 Opisthokonta 25.239120295328725 20 0.06978324170988309 N/A N/A 275 474 0.8394160583941606 +sp|O84332|TPIS_CHLTR HOG:E0821034 Eukaryota 89.42473756080076 17 0.06313622008685478 N/A N/A 275 126 0.8394160583941606 +sp|O84332|TPIS_CHLTR HOG:E0809344 Eukaryota 79.73164308335132 16 0.059407041442452936 N/A N/A 275 109 0.2773722627737226 +sp|O84332|TPIS_CHLTR HOG:E0793337 Opisthokonta 15.338518262397614 17 0.05804681980687754 N/A N/A 275 637 0.8394160583941606 +sp|O84332|TPIS_CHLTR HOG:E0240924 Brassica 84.83770104030242 13 0.04831643845796281 N/A N/A 275 208 0.6021897810218978 +sp|O84332|TPIS_CHLTR HOG:E0293839 Magnoliopsida 21.433686288898514 13 0.04688132998297034 N/A N/A 275 525 0.6021897810218978 +sp|O84332|TPIS_CHLTR HOG:E0478744 Dikarya 18.906507406411485 11 0.039927054792537074 N/A N/A 275 277 0.5182481751824818 +sp|P17821|DNAK_CHLTR HOG:E0990770.123d o__Chlamydiales 2028.8897002932242 655 1.0 0.999999519585724 202 661 661 1.0 +sp|P17821|DNAK_CHLTR HOG:E1027381.1a Eukaryota 1025.3605224468292 328 0.4953218385595316 0.17918618033726327 81 661 676 0.9696969696969697 +sp|P17821|DNAK_CHLTR HOG:E0801582 Eukaryota 603.1605450501972 263 0.39014262189722415 0.3083716692836403 202 661 646 0.9590909090909091 +sp|P17821|DNAK_CHLTR HOG:E0318583 Streptophytina 482.1537201848767 105 0.15980820046465075 0.13282306049567114 87 661 1127 0.8303030303030303 +sp|P17821|DNAK_CHLTR HOG:E0800108 Opisthokonta 439.8622910294808 100 0.15209706055085248 0.15266773128705258 100 661 645 0.7712121212121212 +sp|P17821|DNAK_CHLTR HOG:E0851963 p__Myxococcota 307.9643910114615 97 0.14617699795102548 0.11144820916079866 73 661 552 0.7227272727272728 +sp|P17821|DNAK_CHLTR HOG:E0268033 Pentapetalae 302.07781233490704 88 0.13301774917168838 0.11144788791603752 73 661 650 0.9575757575757575 +sp|P17821|DNAK_CHLTR HOG:E0343351 Fungi incertae sedis 318.57105504643624 87 0.1317790057127287 0.10992127464226084 72 661 647 0.7166666666666667 +sp|P17821|DNAK_CHLTR HOG:E0815878 Eukaryota 393.2067963289662 69 0.10523794124434495 0.10534294289558334 69 661 373 0.4772727272727273 +sp|P17821|DNAK_CHLTR HOG:E0807568 Eukaryota 305.06160567966583 63 0.09595812284494107 N/A N/A 661 200 0.3303030303030303 +sp|O84081|FOLD_CHLTR HOG:E1027325 LUCA 1130.9002003031212 282 1.0 0.9999577542153266 282 288 293 1.0 +sp|O84081|FOLD_CHLTR HOG:E0801702.3c Opisthokonta 112.4688952795185 58 0.1972094901735263 0.12404351377162161 33 288 940 0.9651567944250871 +sp|O84081|FOLD_CHLTR HOG:E0270075 Pentapetalae 113.71939017836135 25 0.0884394426996848 N/A N/A 288 344 0.8641114982578397 +sp|O84081|FOLD_CHLTR HOG:E0776529 Bilateria 103.17960945548285 20 0.07083870400833879 N/A N/A 288 196 0.6585365853658537 +sp|O84081|FOLD_CHLTR HOG:E0815105 Eukaryota 98.23562228915429 20 0.07081531274767555 N/A N/A 288 127 0.4076655052264808 +sp|O84081|FOLD_CHLTR HOG:E0302732 Spermatophyta 105.16564859329367 18 0.06379418070831117 N/A N/A 288 193 0.6480836236933798 +sp|O84081|FOLD_CHLTR HOG:E0155721 Chlorophyta 75.52391030936116 16 0.056647437479542755 N/A N/A 288 345 0.6411149825783972 +sp|O84081|FOLD_CHLTR HOG:E0683727 Otophysi 60.15985371591949 16 0.056501474194128376 N/A N/A 288 895 0.5818815331010453 +sp|O84081|FOLD_CHLTR HOG:E0247220 Brassica 46.29849229489482 8 0.028361274253215066 N/A N/A 288 128 0.09407665505226481 +sp|O84081|FOLD_CHLTR HOG:E0831684 Eukaryota 33.500567642815014 8 0.028331520952439772 N/A N/A 288 147 0.2787456445993031 +sp|P0CE13|G3P_CHLTR HOG:E1027400.2a Bacteria 1305.8680908528884 329 1.0 0.9999827228433138 157 335 337 1.0 +sp|P0CE13|G3P_CHLTR HOG:E1034633 LUCA 325.0377249689463 58 0.17611149115551888 0.1762904818595827 58 335 603 0.8712574850299402 +sp|P0CE13|G3P_CHLTR HOG:E0635006.1b Endopterygota 161.89761170393555 52 0.15609785605823573 0.15805272824587607 52 335 644 0.7215568862275449 +sp|P0CE13|G3P_CHLTR HOG:E0773575 Bilateria 333.0639873435264 49 0.14889081832616335 0.14893590353118535 49 335 206 0.7155688622754491 +sp|P0CE13|G3P_CHLTR HOG:E0809515 Eukaryota 294.94619457130665 47 0.14278425482514606 0.1367778262198052 45 335 180 0.4550898203592814 +sp|P0CE13|G3P_CHLTR HOG:E0778953 Eumetazoa 282.1235690831757 47 0.14276137474495673 0.11854062017505823 39 335 194 0.6796407185628742 +sp|P0CE13|G3P_CHLTR HOG:E0294092 Magnoliopsida 107.74221651055274 47 0.13881830317768398 0.14283680047657502 47 335 2263 0.7874251497005988 +sp|P0CE13|G3P_CHLTR HOG:E0282955 Mesangiospermae 297.60114146292057 45 0.1367286840093429 0.13677793211757572 45 335 225 0.9311377245508982 +sp|P0CE13|G3P_CHLTR HOG:E0773654 Bilateria 269.1252239931601 44 0.13365944057997253 0.1306988314729468 43 335 285 0.718562874251497 +sp|P0CE13|G3P_CHLTR HOG:E0824800 Eukaryota 290.51597062716496 43 0.1306584610315417 0.1276593581525173 42 335 121 0.45808383233532934 +sp|P0C0Z7|CH60_CHLTR HOG:E1027301.3l.201a o__Chlamydiales 1574.6111666724737 539 1.0 0.9999997394527416 135 545 545 1.0 +sp|P0C0Z7|CH60_CHLTR HOG:E0990652 Bacteria 18.097570206316636 156 0.15501059741262102 0.10368474873484552 56 545 461 0.9926470588235294 +sp|P0C0Z7|CH60_CHLTR HOG:E0811748 Eukaryota 344.74442628977647 72 0.13325081427242205 0.11317184307697223 61 545 243 0.4742647058823529 +sp|P0C0Z7|CH60_CHLTR HOG:E0287422 Mesangiospermae 405.30388250074446 71 0.13159617602302515 0.12615906237092228 68 545 318 0.6415441176470589 +sp|P0C0Z7|CH60_CHLTR HOG:E0817459 Eukaryota 286.4643156154286 62 0.11469620783543372 N/A N/A 545 205 0.49264705882352944 +sp|P0C0Z7|CH60_CHLTR HOG:E0799601 Opisthokonta 275.81384853975936 54 0.10001142127795594 N/A N/A 545 256 0.5698529411764706 +sp|P0C0Z7|CH60_CHLTR HOG:E0817515 Eukaryota 234.2646289564217 46 0.08519671887611734 N/A N/A 545 170 0.7058823529411765 +sp|P0C0Z7|CH60_CHLTR HOG:E0802685 Eukaryota 14.851528454904592 39 0.05537221025593535 N/A N/A 545 1448 0.9430147058823529 +sp|P0C0Z7|CH60_CHLTR HOG:E0801624 Eukaryota 22.234624721066837 33 0.051834536923925645 N/A N/A 545 1089 0.9117647058823529 +sp|P0C0Z7|CH60_CHLTR HOG:E0541584 Trichinella 127.30394237566463 26 0.048152257163272386 N/A N/A 545 1166 0.7996323529411765 diff --git a/testdata/expected_output/hogmap/MYCGE.fa.hogmap b/testdata/expected_output/hogmap/MYCGE.fa.hogmap new file mode 100644 index 0000000..7117883 --- /dev/null +++ b/testdata/expected_output/hogmap/MYCGE.fa.hogmap @@ -0,0 +1,68 @@ +!omamer-version: 2.0.0 +!query-md5: 6a593d128f752f515d8f3bca50ef4fde +!date-run: 2024-10-18T02:45:42.779816 +!db-path: LUCA.h5 +!db-info-source: OMA / All.Jul2024 +!db-info-root_level: LUCA +!db-info-database_hash: c259ac11f2fe04d44b5e031a6ec1b496 +qseqid hogid hoglevel family_p family_count family_normcount subfamily_score subfamily_count qseqlen subfamily_medianseqlen qseq_overlap +sp|P47500|RF1_MYCGE HOG:E0990790.133a p__Firmicutes 1332.1875013013046 354 1.0 0.9999957075888449 188 360 360 1.0 +sp|P47500|RF1_MYCGE HOG:E0802693.2c Opisthokonta 265.21549350975823 100 0.2767860439982207 0.11331348944714861 34 360 411 0.7075208913649025 +sp|P47500|RF1_MYCGE HOG:E0803395 Eukaryota 117.22010461754388 46 0.12711316926809257 0.10168935723558102 36 360 453 0.8022284122562674 +sp|P47500|RF1_MYCGE HOG:E0804945 Eukaryota 142.27209699621247 40 0.11213384591697927 0.11016560623953876 39 360 417 0.83008356545961 +sp|P47500|RF1_MYCGE HOG:E0319392 Streptophyta 133.43469603684423 37 0.10377605635192641 0.10169132054150311 36 360 415 0.7325905292479109 +sp|P47500|RF1_MYCGE HOG:E0678641 Cyclostomata 140.93726829323663 23 0.06494045210958244 N/A N/A 360 323 0.3955431754874652 +sp|P47500|RF1_MYCGE HOG:E0032610 Guillardia theta 139.10442386305687 22 0.06212277961140492 N/A N/A 360 408 0.40668523676880225 +sp|P47500|RF1_MYCGE HOG:E0144957 Alveolata 79.90244131165682 20 0.05628239920582753 N/A N/A 360 405 0.3871866295264624 +sp|P47500|RF1_MYCGE HOG:E0055847 Naegleria 111.95039369416892 19 0.05364267319566407 N/A N/A 360 402 0.40668523676880225 +sp|P47500|RF1_MYCGE HOG:E0992160 Bacteria 25.28111963197702 20 0.053001641274723434 N/A N/A 360 140 0.7743732590529248 +sp|P13927|EFTU_MYCGE HOG:E0990677.142c p__Firmicutes 972.4828037351941 389 1.0 0.9999987072723381 81 395 396 1.0 +sp|P13927|EFTU_MYCGE HOG:E0801690.10c.22b Fungi 778.1787423479242 249 0.6345027550712316 0.10694581030182879 20 395 442 1.0 +sp|P13927|EFTU_MYCGE HOG:E0654214 Protostomia 454.9046617463899 102 0.26134789043738993 0.2622033937570034 102 395 458 0.7893401015228426 +sp|P13927|EFTU_MYCGE HOG:E0836721 p__Marinisomatota 478.58750306374975 78 0.20038970604327144 0.20051349697367654 78 395 445 0.9111675126903553 +sp|P13927|EFTU_MYCGE HOG:E0814065 Eukaryota 471.6040279264696 78 0.20037804161558845 0.19023109126625892 74 395 256 0.565989847715736 +sp|P13927|EFTU_MYCGE HOG:E1028189 LUCA 386.6846138147958 65 0.16697086408418207 0.16709420102152708 65 395 410 0.934010152284264 +sp|P13927|EFTU_MYCGE HOG:E0811622 Eukaryota 343.32381224800827 61 0.1566523164926582 0.1285341758499046 50 395 155 0.3096446700507614 +sp|P13927|EFTU_MYCGE HOG:E0252691 malvids 288.55831569046967 48 0.1233099380953641 0.12339299043058483 48 395 303 0.8096446700507615 +sp|P13927|EFTU_MYCGE HOG:E0574504 Tetranychidae 274.6447898738098 47 0.12072634683282919 0.12082202546443288 47 395 1157 0.7842639593908629 +sp|P13927|EFTU_MYCGE HOG:E1027386 LUCA 62.07919792052875 51 0.11914961715456718 N/A N/A 395 460 0.9289340101522843 +sp|P47639|ATPB_MYCGE HOG:E0990823.139g p__Firmicutes 1571.292178597126 471 1.0 0.9999971772432698 149 477 471 1.0 +sp|P47639|ATPB_MYCGE HOG:E1029317.1c Eukaryota 873.752047138475 236 0.49806998340459585 0.15093196378722726 48 477 525 0.9642857142857143 +sp|P47639|ATPB_MYCGE HOG:E0308570 Euphyllophyta 677.9327449157893 99 0.2101256234826036 0.19320563291645299 91 477 283 0.569327731092437 +sp|P47639|ATPB_MYCGE HOG:E0305918 Spermatophyta 562.5336437552457 95 0.2015395975020685 0.19108226627887798 90 477 260 0.6722689075630253 +sp|P47639|ATPB_MYCGE HOG:E0178068 Magnoliidae 651.4131560156413 87 0.1846829766558991 0.18471319047507995 87 477 460 0.75 +sp|P47639|ATPB_MYCGE HOG:E0233757 Gossypium 638.8316925449344 87 0.18467824563783394 0.18471312719470492 87 477 457 0.75 +sp|P47639|ATPB_MYCGE HOG:E0178070 Magnoliidae 626.6608018699211 81 0.17195248042694164 0.17197438636933088 81 477 335 0.75 +sp|P47639|ATPB_MYCGE HOG:E0817605 Eukaryota 403.61293382506034 75 0.15902083336456405 0.1443730967326777 68 477 255 0.453781512605042 +sp|P47639|ATPB_MYCGE HOG:E0204497 Oryza 437.3472603599773 74 0.1569877428604457 0.15711196993026488 74 477 1219 0.5567226890756303 +sp|P47639|ATPB_MYCGE HOG:E0226464 Solanum 492.9595694056791 69 0.1464631092345012 0.1464965863795532 69 477 370 0.5609243697478992 +sp|P47547|DNAK_MYCGE HOG:E0990770.131a p__Firmicutes 1826.2171270804188 590 1.0 0.9999957443947773 276 596 611 1.0 +sp|P47547|DNAK_MYCGE HOG:E1027381.1a Eukaryota 612.8740290431485 223 0.3711861305247136 0.10833478498378038 48 596 676 0.9663865546218487 +sp|P47547|DNAK_MYCGE HOG:E0801582 Eukaryota 351.2552165088008 180 0.2918661410865598 0.242347604074687 143 596 646 0.9512605042016806 +sp|P47547|DNAK_MYCGE HOG:E0343351 Fungi incertae sedis 353.3007701904959 92 0.15491463915443712 0.12372642407944548 73 596 647 0.9109243697478991 +sp|P47547|DNAK_MYCGE HOG:E0851963 p__Myxococcota 296.60627572850177 92 0.1540352194934846 0.10677748849835851 63 596 552 0.6605042016806723 +sp|P47547|DNAK_MYCGE HOG:E0800108 Opisthokonta 323.24586103327596 77 0.12991874729270028 0.13050445013813292 77 596 645 0.838655462184874 +sp|P47547|DNAK_MYCGE HOG:E0268033 Pentapetalae 246.90146929825664 74 0.12407658166695733 N/A N/A 596 650 0.8184873949579832 +sp|P47547|DNAK_MYCGE HOG:E0812186 Eukaryota 266.9651463186577 61 0.1030075808974774 N/A N/A 596 326 0.7714285714285715 +sp|P47547|DNAK_MYCGE HOG:E0802143 Eukaryota 25.64804025880057 90 0.10238589520390982 N/A N/A 596 1205 0.9529411764705882 +sp|P47547|DNAK_MYCGE HOG:E0318583 Streptophytina 226.0614081959211 57 0.09607531557847931 N/A N/A 596 1127 0.7747899159663866 +sp|P47543|G3P_MYCGE HOG:E1027400.2a.57d p__Firmicutes 1317.8981302507045 332 1.0 0.9999982594668269 157 338 337 1.0 +sp|P47543|G3P_MYCGE HOG:E0322012 Viridiplantae 202.49489849036578 33 0.09934351043851865 N/A N/A 338 217 0.4658753709198813 +sp|P47543|G3P_MYCGE HOG:E1035999 LUCA 125.02730848084218 22 0.06621640340009628 N/A N/A 338 164 0.4688427299703264 +sp|P47543|G3P_MYCGE HOG:E0778953 Eumetazoa 108.26633809973697 22 0.06616073453642377 N/A N/A 338 194 0.6201780415430267 +sp|P47543|G3P_MYCGE HOG:E0773575 Bilateria 110.20323377896736 20 0.06019088553726351 N/A N/A 338 206 0.6172106824925816 +sp|P47543|G3P_MYCGE HOG:E1034633 LUCA 81.99867935343408 20 0.06003525923767065 N/A N/A 338 603 0.6261127596439169 +sp|P47543|G3P_MYCGE HOG:E0795212 Opisthokonta 110.20519273495424 19 0.057194335360827055 N/A N/A 338 123 0.456973293768546 +sp|P47543|G3P_MYCGE HOG:E0809515 Eukaryota 81.1662914420452 17 0.051124137494702335 N/A N/A 338 180 0.3323442136498516 +sp|P47543|G3P_MYCGE HOG:E0294092 Magnoliopsida 16.863599511089618 18 0.04976035661874967 N/A N/A 338 2263 0.7151335311572701 +sp|P47543|G3P_MYCGE HOG:E0168126 Pinaceae 75.8588105938257 16 0.04811741987106121 N/A N/A 338 472 0.9258160237388724 +sp|P47641|ATPA_MYCGE HOG:E0990823.139h.43b g__Mycoplasmoides 1712.6046481334292 513 1.0 0.9999997943387811 250 519 519 1.0 +sp|P47641|ATPA_MYCGE HOG:E1029316.1a Eukaryota 544.4704694803678 162 0.31264955537218175 0.21648707930908162 105 519 549 0.7277992277992278 +sp|P47641|ATPA_MYCGE HOG:E0925415 g__Ureaplasma 661.9075877609051 92 0.1792972618413635 0.1793369000697009 92 519 800 0.5907335907335908 +sp|P47641|ATPA_MYCGE HOG:E0877887 f__Clostridiaceae 530.6726118796945 92 0.17917065590822642 0.16569120355536143 85 519 503 0.6583011583011583 +sp|P47641|ATPA_MYCGE HOG:E0260232 fabids 349.2712511843821 61 0.1187957167495252 0.11890792844930254 61 519 445 0.4671814671814672 +sp|P47641|ATPA_MYCGE HOG:E0308075 Euphyllophyta 326.57584674191986 58 0.11294328842901381 N/A N/A 519 289 0.6158301158301158 +sp|P47641|ATPA_MYCGE HOG:E0194323 Triticeae 384.18634253797387 57 0.11107326467865426 N/A N/A 519 219 0.45366795366795365 +sp|P47641|ATPA_MYCGE HOG:E0185761 Triticum 369.6767000470746 57 0.1110622881224814 0.11111087832973143 57 519 494 0.4671814671814672 +sp|P47641|ATPA_MYCGE HOG:E0837546 p__Latescibacterota 269.3595946739515 52 0.10120208059959426 N/A N/A 519 460 0.39768339768339767 +sp|P47641|ATPA_MYCGE HOG:E0270285 Pentapetalae 301.82303897826745 49 0.09545971533586 N/A N/A 519 153 0.4671814671814672 diff --git a/testdata/expected_output/orthologs.tsv b/testdata/expected_output/orthologs.tsv new file mode 100644 index 0000000..5b10134 --- /dev/null +++ b/testdata/expected_output/orthologs.tsv @@ -0,0 +1,20 @@ +sp|O67161|G3P_AQUAE sp|P0CE13|G3P_CHLTR +sp|P47543|G3P_MYCGE sp|O67161|G3P_AQUAE +sp|P47543|G3P_MYCGE sp|P0CE13|G3P_CHLTR +sp|O67118|DNAK_AQUAE sp|P17821|DNAK_CHLTR +sp|P47547|DNAK_MYCGE sp|P17821|DNAK_CHLTR +sp|P47547|DNAK_MYCGE sp|O67118|DNAK_AQUAE +sp|O67618|LEPA_AQUAE sp|O84067|LEPA_CHLTR +sp|O66429|EFTU_AQUAE sp|P0CD71|EFTU_CHLTR +sp|P13927|EFTU_MYCGE sp|P0CD71|EFTU_CHLTR +sp|P13927|EFTU_MYCGE sp|O66429|EFTU_AQUAE +sp|O67736|FOLD_AQUAE sp|O84081|FOLD_CHLTR +sp|O66686|TPIS_AQUAE sp|O84332|TPIS_CHLTR +sp|O67943|CH60_AQUAE sp|P0C0Z7|CH60_CHLTR +sp|O67828|ATPB_AQUAE sp|P47639|ATPB_MYCGE +sp|O66907|ATPA_AQUAE sp|P47641|ATPA_MYCGE +sp|O66778|ENO_AQUAE sp|O84591|ENO_CHLTR +sp|O67032|RF1_AQUAE sp|O84026|RF1_CHLTR +sp|P47500|RF1_MYCGE sp|O84026|RF1_CHLTR +sp|P47500|RF1_MYCGE sp|O67032|RF1_AQUAE +sp|O67547|SUCD_AQUAE tr|O84829|O84829_CHLTR diff --git a/testdata/expected_output/phylostratigraphy.html b/testdata/expected_output/phylostratigraphy.html new file mode 100644 index 0000000..7e4f4c1 --- /dev/null +++ b/testdata/expected_output/phylostratigraphy.html @@ -0,0 +1,79 @@ + + + + + Phylo.io + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + \ No newline at end of file diff --git a/testdata/expected_output/report.html b/testdata/expected_output/report.html new file mode 100644 index 0000000..c950975 --- /dev/null +++ b/testdata/expected_output/report.html @@ -0,0 +1,8775 @@ + + + + + +report + + + + + + + + + + + + +
+
+ +
+ +
+ +
+ +
+ +
+
+ +
+
+ +
+ + +
+
+ +
+ + +
+ + +
+
+ +
+ + +
+
+ +
+ + +
+ +
+
+ +
+ + +
+
+ +
+ + +
+
+ +
+ + +
+
+ +
+ + +
+
+ +
+ + +
+ + +
+
+ +
+ + +
+ +
+ + +
+ + +
+ + +
+
+ +
+ +
+ + +
+
+ +
+ + +
+
+ + diff --git a/testdata/expected_output/report.ipynb b/testdata/expected_output/report.ipynb new file mode 100644 index 0000000..8364096 --- /dev/null +++ b/testdata/expected_output/report.ipynb @@ -0,0 +1,1721 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "b871277b-6fec-4a08-abfc-80a9b36bdf9c", + "metadata": { + "editable": true, + "papermill": { + "duration": 0.007421, + "end_time": "2024-10-18T00:52:33.739130", + "exception": false, + "start_time": "2024-10-18T00:52:33.731709", + "status": "completed" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# Setup Preamble\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "c8ec78cf", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-10-18T00:52:33.748183Z", + "iopub.status.busy": "2024-10-18T00:52:33.747701Z", + "iopub.status.idle": "2024-10-18T00:52:47.248673Z", + "shell.execute_reply": "2024-10-18T00:52:47.247892Z" + }, + "papermill": { + "duration": 13.507185, + "end_time": "2024-10-18T00:52:47.250403", + "exception": false, + "start_time": "2024-10-18T00:52:33.743218", + "status": "completed" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "import os\n", + "import logging\n", + "\n", + "# Scientific libraries\n", + "import pandas as pd\n", + "from Bio import SeqIO\n", + "\n", + "# Graphic libraries\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "# other imports\n", + "import ete3\n", + "from FastOMA._utils_roothog import parse_proteomes\n", + "from FastOMA.zoo.hog import extract_hog_info\n", + "from FastOMA._wrappers import logger\n", + "logger.setLevel(logging.INFO)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "11145c04-7aca-40bb-b79c-5289c0b22849", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-10-18T00:52:47.262161Z", + "iopub.status.busy": "2024-10-18T00:52:47.261558Z", + "iopub.status.idle": "2024-10-18T00:52:47.389492Z", + "shell.execute_reply": "2024-10-18T00:52:47.388837Z" + }, + "papermill": { + "duration": 0.134813, + "end_time": "2024-10-18T00:52:47.390773", + "exception": false, + "start_time": "2024-10-18T00:52:47.255960", + "status": "completed" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# Extra options\n", + "pd.set_option('max_colwidth',200)\n", + "pd.options.display.max_rows = 150\n", + "\n", + "#style options\n", + "%matplotlib inline\n", + "plt.style.use('ggplot')\n", + "plt.rcParams['figure.figsize'] = (12.0, 8.0)\n", + "\n", + "#seaborn options\n", + "sns.set(rc={'axes.facecolor':'white', 'figure.facecolor':'white'}, font_scale=1.5)\n", + "sns.set_style('whitegrid')\n", + "palette=\"husl\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "c1eaf938-f3c9-4e79-9595-a42c75d1bd0f", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-10-18T00:52:47.400121Z", + "iopub.status.busy": "2024-10-18T00:52:47.399568Z", + "iopub.status.idle": "2024-10-18T00:52:47.402510Z", + "shell.execute_reply": "2024-10-18T00:52:47.401956Z" + }, + "papermill": { + "duration": 0.008555, + "end_time": "2024-10-18T00:52:47.403549", + "exception": false, + "start_time": "2024-10-18T00:52:47.394994", + "status": "completed" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "parameters" + ] + }, + "outputs": [], + "source": [ + "output_folder = \"Output\"\n", + "input_folder = \"testdata/in_folder\"\n", + "proteome_folder = input_folder + \"/proteome\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "0cc108f2", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:47.412140Z", + "iopub.status.busy": "2024-10-18T00:52:47.411901Z", + "iopub.status.idle": "2024-10-18T00:52:47.414556Z", + "shell.execute_reply": "2024-10-18T00:52:47.414009Z" + }, + "papermill": { + "duration": 0.008197, + "end_time": "2024-10-18T00:52:47.415602", + "exception": false, + "start_time": "2024-10-18T00:52:47.407405", + "status": "completed" + }, + "tags": [ + "injected-parameters" + ] + }, + "outputs": [], + "source": [ + "# Parameters\n", + "output_folder = \"./\"\n", + "proteome_folder = \"proteome\"\n" + ] + }, + { + "cell_type": "markdown", + "id": "5fb6ad37", + "metadata": { + "editable": true, + "papermill": { + "duration": 0.00387, + "end_time": "2024-10-18T00:52:47.423325", + "exception": false, + "start_time": "2024-10-18T00:52:47.419455", + "status": "completed" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# Stats on input dataset" + ] + }, + { + "cell_type": "markdown", + "id": "fb574a80-4506-4d5a-b1a7-930a0f7068ce", + "metadata": { + "papermill": { + "duration": 0.00384, + "end_time": "2024-10-18T00:52:47.430987", + "exception": false, + "start_time": "2024-10-18T00:52:47.427147", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "## Proteomes \n", + "\n", + "We first show some statistics on the input proteomes, e.g. size distributions, length distributions etc, which can indicate problems in annotations and raise further problems in downstream analyses." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "0ba60ef4", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-10-18T00:52:47.439604Z", + "iopub.status.busy": "2024-10-18T00:52:47.439289Z", + "iopub.status.idle": "2024-10-18T00:52:47.523261Z", + "shell.execute_reply": "2024-10-18T00:52:47.522669Z" + }, + "papermill": { + "duration": 0.089429, + "end_time": "2024-10-18T00:52:47.524281", + "exception": false, + "start_time": "2024-10-18T00:52:47.434852", + "status": "completed" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-18 02:52:47 INFO There are 3 species in the proteome folder.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are 3 species in the proteome folder.\n", + "In total, 28 proteins are in the dataset.\n", + "\n", + "The list of species is the following:\n", + " - MYCGE (with 6 proteins)\n", + " - CHLTR (with 10 proteins)\n", + " - AQUAE (with 12 proteins)\n" + ] + } + ], + "source": [ + "def get_protein_dataframe(folder):\n", + " species, seq_reqs, _ = parse_proteomes(folder)\n", + " print(f\"There are {len(species)} species in the proteome folder.\")\n", + " print(f\"In total, {sum(len(z) for z in seq_reqs.values())} proteins are in the dataset.\")\n", + " print(\"\\nThe list of species is the following:\")\n", + " prot_df = []\n", + " for sp in species:\n", + " print(f\" - {sp} (with {len(seq_reqs[sp])} proteins)\")\n", + " sp_df = pd.DataFrame({\"prot_len\": [len(z) for z in seq_reqs[sp]], \"species\": [sp for _ in range(len(seq_reqs[sp]))]})\n", + " prot_df.append(sp_df)\n", + " return pd.concat(prot_df)\n", + "\n", + "protein_df = get_protein_dataframe(proteome_folder)" + ] + }, + { + "cell_type": "markdown", + "id": "e762dcd8", + "metadata": { + "collapsed": false, + "papermill": { + "duration": 0.00396, + "end_time": "2024-10-18T00:52:47.532371", + "exception": false, + "start_time": "2024-10-18T00:52:47.528411", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "Next follows a visual overview of the size distribution of all these proteomes." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "e4aa8359", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:47.541249Z", + "iopub.status.busy": "2024-10-18T00:52:47.540912Z", + "iopub.status.idle": "2024-10-18T00:52:48.121841Z", + "shell.execute_reply": "2024-10-18T00:52:48.121106Z" + }, + "papermill": { + "duration": 0.586623, + "end_time": "2024-10-18T00:52:48.123026", + "exception": false, + "start_time": "2024-10-18T00:52:47.536403", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Distribution of number of proteins per species')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAUAAALZCAYAAADP1ZgaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChIklEQVR4nOzdd3gU5f7+8XuTbEIaEDqhF5NQBZESQQ7tKFZAkWLBAIpSVI5dEI4CAh4VC80ChKIoKGBBpYko0psgXUoooZeE9M0m8/sjv+yXQEK2pbnv13V5qTvPzPPZ3Wcmu/fOPGMyDMMQAAAAAADwOF5FXQAAAAAAACgahAIAAAAAAHgoQgEAAAAAADwUoQAAAAAAAB6KUAAAAAAAAA9FKAAAAAAAgIciFAAAAAAAwEMRCgAAAAAA4KEIBQAAAAAA8FCEAgAK3aZNmxQeHq7w8PCiLiVP2fVt2rQpx+MnT560LTt58mQRVZe/yZMnKzw8XI899lhRl1LoDhw4oOeee07t2rVTw4YNFR4erm7duhV1WcVCSdj3CsvWrVs1aNAgtWnTRg0aNFB4eLiGDBlS1GWVKIwnFCRP/jsGFDafoi4AQMkwefJkTZkyJcdjJpNJAQEBCgoKUmhoqBo0aKDWrVurU6dO8vX1LbTaTp48qSVLlkiSnnnmmULrtyjs27dPq1atUnBwsKKiooq6nGLnxIkT6tu3r5KSkiRJZcuWlY+Pj0JCQoq4MhQnf/75px5//HFZrVaZTCaVLVtW3t7eKlOmTFGX5jabNm3S5s2bVa1aNT3wwANFXQ4AoBgjFADgsAoVKtj+OzU1VefOndPZs2e1Y8cOzZ8/X2XLltXw4cPVt2/fXNf39/dXnTp13FZPbGysLbBwVyiQXZ+/v79btucu+/bt05QpU1StWrUbhgIhISGqU6eOqlatWnjFFQMLFixQUlKSatWqpXnz5qly5cpFXRKKoTlz5shqteqWW27R9OnTVbZs2aIuye02b96sKVOmqFWrVgUWCrj7WA5czVP/jgFFgVAAgMPWrVuX4/8zMjJ06NAhrV+/Xp9//rlOnjypN954Q1u3btW7774rk8mUo33Tpk21bNmywizZYcW9vvw8+uijevTRR4u6jEJ38OBBSVLnzp0JBJCn7HFyzz33/CMDgcJSEo7lKLk89e8YUBSYUwCAy7y9vRUeHq7+/ftr6dKluueeeyRJS5cu1aefflrE1cGTpKSkSJICAgKKuBIUZ4wTAAD+j8kwDKOoiwBQ/F09p8CBAwdu2NZisah3797au3evgoKC9Msvv+T4NW7Tpk3q169fnts6fPiwZs+erc2bN+vMmTPKzMxUuXLlVLlyZbVp00bdunVTvXr1JEmdOnVSbGxsnrX06NFDEydOzPEcWrVqpXnz5mn58uVasGCB9u3bp8uXL2vo0KG2yw+yJ86aO3euWrdubdveyZMn1blzZ0nSL7/8IqvVqo8//ljr16/XpUuXVKFCBbVv315Dhw7N9ZfqxYsX67XXXlO1atW0evXqXGu+to/q1avnqCkvw4YNs9V/7XPNzd69ezV79mxt2bJFFy5cUKlSpVSvXj117dpVDz/8cK7zQlxb/+7du/XZZ59p27ZtiouLU+XKldWlSxcNGTLEpeuzjx8/rpkzZ2rDhg06c+aMfHx8VKtWLXXu3FlRUVEKCgrK0T6/cXDt+5gXV5/fq6++qiVLluQYd/n1caP1Fy9erAULFujQoUPy8vJSo0aNNHToULVs2VKSZLVa9eWXX2rJkiWKiYmRyWTSLbfcouHDh6tRo0bX9X3tvvfXX3/ps88+0/bt2xUfH68qVaqoS5cuGjx4sEqXLp3n62SxWPT1119r2bJlOnjwoJKSklSmTBk1bdpUffr00b/+9a9c17t6v6pfv74+/fRTrVmzRmfOnFFqamq+x5ZrOTqG89uHrt7fbuTa/eunn37S/PnzdfDgQVksFtWtW1cPPPCA+vbtK29v7+vWv/p9njBhgr755hstXrxYR44cUVxcnCZMmJDjlP9Nmzbpiy++0I4dO3T58mUFBgYqIiJC999/v7p3756jj6uPH3m5dvvZ682ZM0fr16/XqVOnlJmZqapVq6pdu3YaMGCAQkNDr9vOjY7l7jhW7Ny5U3PnztWOHTt0/vx5eXt7KyQkRNWqVVNkZKQefPBBValS5YbP9UY1rVu3TtHR0dq9e7eSk5NVo0YN3XPPPRo4cKD8/Pzy3E5iYqLmz5+vX375RUePHlVycrLKly+vW265Rf369VPz5s2vW+fa43pmZqY+++wzrVu3TufOnVOlSpXy/JuQm59++kmLFy/W3r17FR8fL39/f5UrV05169bV7bffrp49e+Z4DteOua+++kqLFi3SkSNHJGXtGw8//LDuu+++G/brzDjJZrFY9N1332nZsmXat2+frly5orJly6patWq6/fbb1a1bN9WoUcPW3p6/Y5cuXdKcOXP022+/6cSJE7JYLKpUqZJat26t/v3766abbsp1vTNnzmjWrFlat26dYmNjZbVaVbZsWVWqVEm33nqr7r33XjVt2vSGrwXwT8LlAwDcztfXV0899ZSee+45JSYmatWqVerZs6dd665bt05PP/20LBaLJMlsNsvf319nzpzRmTNntHPnTpnNZtuX35CQECUmJio+Pl5SzvkOJF335THbxIkTFR0dLZPJpNKlS8vLy/ETp3bt2qXXX39dSUlJCggIkLe3t06fPq0FCxZo+fLlmjVrVq5fzJxVoUIFpaamKjExUV5eXipXrlyO5Y786jl79mxNnDhR2blwcHCwUlJStGPHDu3YsUOLFy/WjBkzVKlSpTy38cMPP+i1115Tenq6goODlZGRoZMnT2r27Nlat26dFixYoMDAQIef508//aRXXnnFNgYCAwOVnp6uvXv3au/evfrmm280c+ZMWzAkZY2DtLQ0xcfHKz09XQEBATleD7PZ7HAdBfX87JX9Id7Hx0d+fn66cuWKNmzYoC1btmjKlClq27atBg8erD/++ENms1lms1lJSUn6/ffftWXLFn3++edq3LhxnttftWqVhg8frvT0dAUFBckwDB0/flyzZs3S8uXLNXfu3Fy/IMfGxuqpp57S33//LSlrwtGgoCBduHBBq1ev1urVq9WnTx+9+eabefZ9/PhxPf/887pw4YL8/Pzk4+P4xxFnxnD28eHSpUvKzMxUUFCQSpUqZVue2xf4/LzzzjuaMWOG7ViSlpamPXv2aM+ePfr11181ffr0PCdeNQxDzz33nJYvXy4vLy8FBwdfdyyaMGGCZs+eLSnrtQ4ODlZCQoI2btyojRs36vvvv9fUqVNtxzpvb29VqFBBycnJSk5Oltlsvu5L99XPWZK+//57jRw50rbP+fr6ysvLS0ePHtXRo0e1ePFiffTRR2rXrp3Dr4/k3L60ZMkSvfbaa7b319fXV97e3jp16pROnTqlLVu2qGrVqk7Pl/DFF19o7NixMgxDpUuXtl0G9+GHH2rlypWaPXt2rmHFvn379PTTT+vMmTOSsl7vUqVK6cyZM/rpp5/0888/6z//+Y+eeuqpPPvesWOHRo8ereTkZPn7+zt8fHrttde0ePFi2/8HBATIarXq2LFjOnbsmH799Vf961//yjPgev755/XTTz/ZxtyVK1e0fft2bd++XevXr9f48eOvu+xPcm2cnDhxQkOGDLFdupO9vyQmJurPP//Un3/+qfj4eI0cOdLu12H9+vV67rnndOXKFUmyHQdPnjypkydP6vvvv9e4cePUvXv3HOvt379f/fr1s31u8Pb2th3Dzp8/rz179ujKlSuEAvAsBgDY4aOPPjLCwsKMsLAwu9onJiYaDRo0MMLCwoyXX345x7KNGzfmua0uXboYYWFhxoABA4wDBw7YHk9NTTUOHjxoTJ482Vi0aJHd28vtOTRr1swICwsz3nnnHePixYuGYRhGWlqacfLkSVvb7O1t3LgxxzZOnDhhW9aiRQvjvvvuM3bu3GkYhmFkZmYaa9euNTp06GCEhYUZHTp0MBISEnKsv2jRIiMsLMzo2LFjnnVe3ceJEyccXv/q5/roo49et2z16tW27Q8ePNg4fvy47TVYsmSJ0bx5cyMsLMzo3bu3YbVac+3/5ptvNho3bmyMHDnSOHXqlGEYhpGcnGx8/vnnRqNGjYywsDDjgw8+uGGNudm9e7dt/T59+hj79+83DMMwMjIyjF9++cVo27atERYWZnTp0sVITEy8bv1HH33UCAsLMz766COH+3bH83vllVeMsLAw45VXXsm3j9zew+z1b731VqNp06bGV199ZaSkpBiGYRiHDx82evToYVt3zJgxRqtWrYyffvrJsFgsRmZmpvHXX3/Z9qE+ffpct/2r95UWLVoYjz76qHHo0CHDMAwjPT3d+PHHH42WLVsaYWFhxoMPPnjd+5+UlGR07drVNrY2bdpkpKWlGYZhGFeuXDGio6Nt+9fs2bOv6z+772bNmhl33nmnsX79eiMjI8MwDMM4cuRInq/ZtVwZw4ZhGB07djTCwsKuO5bYK3v/atGihREWFmaMGTPGdixJSEgwpk6daoSHhxthYWHG+PHjr1s/+31u1qyZ0bBhQ2PmzJm2Y0ViYqJx9uxZwzAMY968ebbnOWrUKOPcuXOGYWS9D9HR0UbDhg2NsLAwY/jw4XnWmNsx4Gp//PGHERERYTRs2ND43//+Z5w4ccLIzMw0MjMzjcOHDxvPPvusERYWZtxyyy1GbGxsjnVvdOx1ZV9KTk62vYcvvviicezYMduypKQk46+//jLefvttY82aNTd8bjeqqVGjRsazzz5rqyklJcWYP3++0bhxYyMsLMwYOnTodeufPXvWiIyMNMLCwoxhw4YZf/31l2GxWAzDMIwLFy4YH3zwge09WblyZY51rz6uN2vWzHjooYeMXbt22ZbbO/63bNlihIWFGREREcann35qXL582bbs0qVLxtq1a41XXnnFOHPmTI71ssdcixYtjPDwcGPq1Km2MXfx4kVjzJgxtvrmzJlzXb+ujJOEhATjjjvuMMLCwoyWLVsaCxYsMK5cuWJbfvz4cWPWrFlGdHR0jvVuNIb3799vNG3a1AgLCzNef/1149ChQ7Z9PTY21njjjTeMsLAwo2HDhjleZ8MwjMcff9wICwszevToYezYscPIzMw0DCPr+HH06FFj5syZxmeffZbPOwH8szCnAIACERgYaDsN8Pjx43atc/HiRVvbCRMmKCwszLbMz89PN910k4YNG+byTNrJycnq37+/XnzxRduv7b6+vqpWrZpD2/H29lZ0dLTt1wSTyaR27dppxowZMpvNOnXqlL766iuXai0I77zzjiTp1ltv1eTJk23vk6+vr7p37653331XUtavWStXrsx1GykpKbrnnns0btw428zQ/v7+euSRR2wTQ/34448O1/b+++8rPT1dtWrV0qxZs2yne3t5ealTp0769NNP5ePjo+PHjxfoa1tQz89eV65c0dixY9W7d2/br7p169bVBx98ICnr1/rPP/9cU6dO1V133SWz2SyTyaTGjRtrzJgxkqTt27fbfs3MTfny5fXZZ5/Zzrjw8fHR3Xffbevjr7/+0ooVK3KsEx0drSNHjqhVq1aaNWuWWrVqZfsVPPs2mf/73/8kSdOnT5fVas21by8vL82ePVuRkZG2X8YdmcXeHWPYHRISEtStWzeNGjXKdiwJCgrSkCFD9PTTT0uSPv/8c509ezbX9ZOTk/Xqq69qwIABtl/6AwMDValSJaWmpmry5MmSpHvvvVdjxoxRxYoVJWX9MhwVFaVXX31VUtbZNbt373a4/szMTI0ZM0aZmZkaPXq0XnrpJVWvXl0mk0kmk0l169bVhx9+qE6dOikxMVHR0dEO9+HMvvT333/bzsCaMGGCatasaVsWEBCgxo0b6+WXX87zMhV7amrevLnef/99W02lSpVS3759NXr0aEnSypUrtWvXrhzrffDBB7p48aLuvfdeTZ48WY0bN7b9yl++fHk999xzeumllyTJ9t7lJiQkRNHR0WrSpIntMXvH/44dOyRJt912m5588skcl+aFhISoXbt2mjhxYp4TrSYkJGjw4MEaMmSIbcyVK1dOo0aN0v333y9Jmjp1qtLS0mzruDpOZsyYoZiYGPn6+mr27Nnq1auXgoODbctr1Kih/v37O3Sb3fHjxys1NVVPPfWUxo4dq3r16tnO9AkNDdV///tfPfbYY7JarZo+fXqur+GoUaPUrFkz21kRvr6+ql27tgYMGKAnnnjC7lqAfwJCAQAFJvvUy+xT9PITGBho+4Jw/vz5AqvLy8tLTz75pMvb6dOnj8qXL3/d4/Xq1dOdd94pKevDenGyf/9+HT58WJI0ePDgXE+X7tSpky3ouNEX38GDB+f6ePZ1s8eOHbNN6GaPK1eu6I8//pAkDRw4MNfbQTZs2FD//ve/863NHdz9/BwRGhqa67W9NWvWVK1atSRlfSG+9dZbr2tz9Rf1G12j/8QTT1x3GrmU9WUj+5roa8fvokWLJElRUVF5nvLcpUsXBQUF6fLly9qzZ0+ubbp16+bQteBXc+cYdoehQ4fm+nj262u1Wq8LV7KVKVNGvXv3znXZunXrFBcXJylrvpDcPPzww7agYOnSpQ5WLm3ZskUxMTEKCQnRQw89lGe77NOvs/dPRzm6L2V/YUxPT7e9Bu42ePDgXC8bu3qegqvHf1pamu01vtHfj27duknKGqcXLlzItc0jjzzi9KVH2XN9XLp0SRkZGQ6vX6pUKQ0cODDXZdljOS4uLsddhlwdJ9nHjYceekgNGzZ0uOZrnTx5Uhs3bpSPj48GDBiQbz0bNmzI8Vplj6+C/JwBlDTMKQCg2ChVqpQiIyO1bt06PfHEE+rTp486dOigBg0a5HlNrjNq1qyZ65d5R7Vp0+aGy5YuXaoDBw4oPT3dqWvaC0L2r4k+Pj5q1apVnu1uu+027dq1K89fH8uWLWv7cnqtq6/hvnLlSq5f7nOzZ88e2/XDt912W57t2rZtq59//rlAX9uCeH6OaNy4ca7X9EpZv0geO3Ysx6+MV8uejO3s2bM3DOTyG787duzI8f6fPXvWNpnjyJEjbb+o5iY5OVlS1hkNN99883XLb7nlljzXzY+7xrA7VK1aNc9xEhQUpEaNGmnbtm151tCkSZM8j23Z61StWjXPX5G9vb3Vpk0b/fDDD049z+3bt0vKmjjv9ttvz7Ndenq6JOnUqVMO9+HMvlSzZk3VrVtXR44cUa9evdSnTx/dfvvtCgsLc2reh2v5+PjkGqhJWaFxq1at9P333+d4TXfv3m379TyvL9XXOnXq1HXz3Eiujf/IyEj5+flp7969euSRR/Tggw+qTZs2OSbou5HGjRvnOddO7dq1VaVKFZ05c0a7d+9Wp06dJLk2TmJjY3Xu3DlJUseOHe2qMT/Z9WRmZtrudpSb7CAgOTlZcXFxtr/7HTt21MKFC/XKK69o+/bt6tSpk5o0aVIgx3KgpCAUAFBgsr+QOHIf8HHjxmnw4MHav3+/pk2bpmnTpslsNqtJkybq3Lmzevbs6fJ9xd0RCEjK8/TMq5dZrVbFx8fn+sGwKFy6dElS1mmmNwpasn8pu3jxYq7Lb/Qr19Uf2rM/JDpSm1T0r21BPD939Z89KZ89bfI6fV+y7zW++v2/+hT4y5cv57nu1VJTU3N93JV90F1j2B1u9BpevTyvGq6dLPRq2evk14crzzP7y1p6enqev2pfLa/380ac2Ze8vb31/vvva+jQoTp58qTee+89vffee/L391fz5s3173//Wz169HD6S1x+Yye39y37tZJk12slKc8ziVwZ/zVr1tS4ceP03//+1zapppQ1llq3bq17771XnTt3zjNUtGfMnjlzJtfn7sw4ubr9je5M4IjsejIzM516L1566SUdO3ZMmzZtUnR0tKKjo+Xt7a2IiAh16NBBvXv3zvd1Av5pCAUAFIikpCSdOHFCknJcD5qf0NBQLVmyROvWrdNvv/2m7du368CBA7aZkT/99FN9+OGHioyMdLo2d/zSBHiazMxM23//9NNPOe7+4Chn7vbxT1TUx6LsX1JvvvlmLVy4sEhruVZERIR+/vlnrVmzRn/88Yd27Nihv//+W+vXr9f69ev16aef6pNPPsn3NpPucvX437Vr1w1vWZgfV8f//fffr/bt22vZsmXatGmTduzYodOnT+vnn3/Wzz//rFtvvVWffPJJnmcEOMqVcZJXOOGK7PeiQoUKOS5zsFfp0qU1d+5cbd26Vb/++qu2b9+u3bt32+4aMnPmTL311lu699573V06UGzxVxlAgVi7dq3tg8SNTvHNjZeXl26//Xa9/vrrWrx4sTZt2qR3331XoaGhio+P14svvmi7JVJRymvysKuX+fj45LitVfaXgKsncbpWYmKimyq8XvYvk5cvX77ha5g9QZ27zqqwx9W/mt5ogry8XtviwJ73NyEhobDKuSF7xu/V7//VZ2Q4cxq5uxSnMXyj1/Dq5c7UkL3OjfaFq5c700f2fARF+X7eiK+vr+644w6NGTNGP/zwgzZs2KA333xTZcuW1enTp20TLToqv7GT3/jPvoymKJUtW1Z9+vTR+++/rzVr1mjlypUaNGiQTCaTtm7dmudEh86MWVfGSUEcN7K3efnyZdulSs649dZb9dJLL+nLL7/U1q1bNW3aNIWFhSk1NVUjRoyw+ywE4J+AUACA21ksFn3yySeSsib06dKli0vbCwoK0n333ae33npLUtbpiNn3OpZy/uqSfU16Ydi0aVO+y8LDw3Nc8579JfbixYt5fijduXNnntvNfq7OPs/s+9ZbrVZt3rw5z3YbNmyQpDyvWy8IjRo1sj2/7P5zs379eknXv7bFQfYkYKdPn86zzbUzmheVjRs35rkse/xmjxdJql69uu2U2l9//bVgi7uB4jSGT58+nefdVRITE20TLV79Otore50zZ87o6NGjubbJyMiwvVfXPs/sX2hvdKzIvrb9/Pnz+uuvvxyusbCFhISoT58+evHFFyVJe/futftSlqtZrVZt27Yt12WGYWjLli2Scr5vTZo0sR1vinL856VmzZp64YUXbL9uZx8nr7V7924lJSXluuzYsWO2kOnq5+7KOAkNDXX7cSO7noyMDP3+++9u2aafn586d+6sKVOmSMoKdvMaI8A/EaEAALdKTU3Va6+9pr1790qSBg0aZPuilJ/8fv2/+nTNq4OAq0+RvHLliiPluuSrr77KcR18tiNHjmj58uWSpLvuuivHsoiICElZHzxzu1VaamqqZs+enWef2c/V2ecZERGh+vXrS8q6ZVxus1f/9ttvtmDiRpM4uVvp0qXVrl07SdLMmTNzvR53//79tpnci+Opndnv7+7du3MNBg4fPpznTPSFbdasWbme0bBx40bbRF7Xjt9evXpJkr755hvbPp6Xgpo1vriN4WnTpuX6eHR0tFJTU+Xj46M77rjD4e22bdvWNn9K9heVa3311Ve266uvfZ72HCtat25tmwRwwoQJ+R6DC+o9vZazfwscMX369ByXBGRbsmSJbd+9++67bY8HBATY7gjy2Wef5furd0G9Vvm9Ntl3FMnrtP3U1FTNmjUr12XZt+4rW7as2rZta3vc1XHSs2dPSdLXX3+d73HDHrVr17adgfj+++/ne/bV1fVYrdZc3/dsV9+Rhcuc4EkY7QBclpmZqYMHDyo6Olr33HOP7bZN3bp1c+jWfzt27NB9992n2bNn6/Dhw7Y/3IZhaPv27XrjjTckZU2sdfV1pLVr17b9gvP1118X2tkCVqtVAwYMsP3yaxiG1q9fryeeeEIWi0VVq1ZV3759c6xTpUoVtWjRQlLWh6v169fbvtTs3r1bUVFRuQYN2W666SZJWb9COnu7w+xf2bZu3apnn33WNvdDenq6vv/+ez3//POSpObNm7t8loejhg8fLrPZrGPHjmngwIG2W+plZmbqt99+05NPPimr1aqaNWvmeSu3otSpUycFBAQoPT1dw4cP15EjRyRlvbarVq1SVFSUAgICirjKLOfPn9egQYNsNVqtVi1btkzPPfecpKwzN679Mtu/f3+FhYUpLS1N/fr10+eff57jl9orV67ot99+08svv6xHHnmkwGovLmM4ODhYS5Ys0bhx42z7bWJioj7++GNNnTpVUtZtA52ZtKxUqVJ65plnJGXdbnD06NG205lTUlI0d+5cTZgwQVLWl9drz0YICwuTJB06dMgW8lzLx8dHb775pnx8fLRt2zY9+uij2rBhQ45J/06cOKEvv/xSDz74oObPn+/w83DGjz/+qD59+uirr76yvbdS1i/Da9eu1XvvvScp6/115hIif39/bd++XS+88ILtl/G0tDQtWLDA9nemc+fOtttaZvvPf/6jSpUq6fLly+rdu7e+/fbbHJd7Xbp0ScuXL9fQoUP1wgsvOFyXPcaMGaPnnntOy5cvzzEZYFJSkr788kt9++23kqQOHTrkun5wcLCmTZumTz75xFb7pUuXNG7cOC1ZskRS1u0arw5eXB0nAwYMUO3atWWxWBQVFaWFCxfmeN2OHz+uKVOmaObMmXa/DqNGjVJAQIBiYmLUq1cvrVq1KkfIefbsWX377bd6/PHH9e6779oeP3PmjO644w5NmzZNe/fuzTEZ6/79+23HloCAALVs2dLueoCSjokGATjs6l8QLBaLEhMTcyTvISEhGj58uPr06ePwtg8ePKgJEyZowoQJMpvNCgwMVGJiou0Pd1BQkN57770cE3T5+/urW7du+uabb/TOO+9oypQpCgkJkclk0p133qlXXnnFhWebtzFjxuj111/XQw89pICAABmGYft1u3Tp0po8eXKuEz2NGjVKjz76qM6fP6/+/fvLz89P3t7eSk5OVoUKFfS///1PgwYNyrXPWrVqKTIyUhs2bNB//vMfvf7667ZfE/v166eoqKh86+7YsaNee+01TZw4UatWrdKqVatUunRppaSk2D7khYWF6cMPPyz0idAaNWqk//3vf3r55Ze1bds23X///QoKClJ6errtA1/VqlX18ccfO32f74IUHBysESNGaNSoUfrzzz911113KTAwUBaLRenp6WrWrJnuv/9+jRkzpqhL1cSJEzV8+HDdddddCg4OVlpamu0XwNDQUH344Ye2uxhkCwwM1IwZM/Tss8/qzz//1NixYzVu3DgFBwcrMzMzxwf9vG5D5w7FZQw3aNBATZs21YwZM/T555+rdOnSSkxMtAV9t912m+1LhjMeffRRnThxQrNnz9aCBQu0cOFClS5dWklJSbZjYuvWrTV27Njr1m3VqpXq1Kmjo0ePqm/fvipTpoztePTyyy+ra9eukrJucffhhx/q5Zdf1s6dOxUVFWU79iYnJ+f4VbiwQkLDMHLMrO/r66uAgABduXLF9remUqVKtkvKHFWuXDkNHDhQY8eO1U8//aQyZcooOTnZNnYiIiJy3XalSpU0e/ZsDRkyRDExMXrllVfk5eWl0qVLy2Kx5Li+/Ua3VXVFdni3bNkySVlfXn18fHKcEdKiRQs9/fTTua7fpUsXpaWladKkSfrwww8VFBSkK1eu2ML07t27q1+/ftet58o4CQoK0owZM/T000/r0KFDGjVqlP773/+qdOnSSktLs/3dzK3fvISFhWnGjBl67rnndOTIEQ0dOlTe3t4KDg5WampqjjsgXHu7xhMnTujDDz+0HR+Cg4OVlJRke//NZrMmTJjg8p2OgJKEUACAw7J/rTKZTPL391eFChUUGhqqBg0aKDIyUh07drzh7Z7y0qRJE33wwQfatGmTdu3apXPnzikuLk6+vr666aab1LZtW/Xr1y/XX93++9//qmrVqlq+fLlOnDhhO7XTmetN7dW0aVMtWrRIH3/8sTZs2KBLly6pcuXK+te//qWhQ4fabhV2rQYNGmjhwoWaOnWqNm7cqCtXrqhChQrq0aOHBg8efMNJ6iTpo48+0tSpU7VmzRqdPn3aNumVIxPYRUVFqWXLlpo9e7a2bNmiCxcuqFSpUmrUqJHuuusuPfzww069h+5w9913q1GjRpo5c6Y2bNigM2fOyMfHRw0aNFCXLl0UFRXltlm1C8JDDz2kSpUqadasWdq9e7esVqvq1Kmj++67T1FRUbYzaYpaly5d9OWXX+qzzz7Ttm3blJqaqurVq+uOO+7Q008/necvsJUrV9b8+fO1bNkyLV26VLt379bly5fl5eWlatWqKSwsTJGRkdddeuBuxWUMv/TSS2rUqJG++OILHTx4UGazWWFhYXrggQf0yCOPuBxKvPbaa+rYsaPmz5+v7du3Ky4uToGBgYqIiFC3bt3UvXv3XPvw8fHRnDlzNHnyZG3YsEFnz5613Sb22snZunTpopUrV2r+/Pn6/fffdezYMSUkJMjf319169ZVkyZN1KFDB7Vv396l52KvTp066e2339amTZu0d+9enT9/XvHx8QoMDFSdOnXUsWNHPfroo3ZfmpabRx55RLVr11Z0dLT++usvmUwm1a1bV/fee68GDhyY4zTyq9WrV08//PCDlixZohUrVmjfvn2Kj4+X2WxWrVq11KBBA7Vt21Z33nmn07XdyJAhQ9SoUSNt2rRJhw8f1oULF5ScnKzy5csrIiJC99xzT55jItukSZPUsmVLLVq0SEePHpW/v7/Cw8PVp08fde/ePc/1XBknNWrU0JIlS/TNN9/o559/1sGDB5WUlKSQkBBFRESoffv26tatm0OvRYsWLbRs2TItXLhQq1ev1t9//62EhAT5+fmpXr16atSokdq3b6/OnTvb1qlcubKmT5+uTZs26c8//7TdftHHx0e1atVS69at1a9fP9WuXduhWoCSzmQU5qxcAAAAJdzkyZM1ZcoUtWrVSvPmzSvqcmCnxYsX67XXXlO1atW0evXqoi6nUL366qtasmSJevTooYkTJxZ1OQCKGeYUAAAAAADAQxEKAAAAAADgoQgFAAAAAADwUIQCAAAAAAB4KCYaBAAAAADAQ3GmAAAAAAAAHsqnqAv4p9uxY4cMw5DZbC7qUgAAAAAAHiA9PV0mk0nNmzfPty1nChQwwzBUUq7QMAxDFoulxNSLosV4gaMYM3AUYwaOYszAUYwZOKqkjBlHvodypkAByz5DoEmTJkVcSf6Sk5O1b98+1a9fXwEBAUVdDoo5xgscxZiBoxgzcBRjBo5izMBRJWXM/PXXX3a35UwBAAAAAAA8FKEAAAAAAAAeilAAAAAAAAAPRSgAAAAAAICHIhQAAAAAAMBDEQoAAAAAAOChCAUAAAAAAPBQhAIAAAAAAHgoQgEAAAAAADwUoQAAAAAAAB6KUAAAAAAAAA9FKAAAAAAAgIciFAAAAAAAwEMRCgAAAAAA4KEIBQAAAAAA8FCEAgAAAAAAeChCAQAAAAAAPBShAAAAAAAAHopQAAAAAAAAD0UoAAAAAACAh/Ip6gLsdf78ea1bt067d+/WX3/9pX379iktLU2tWrXSvHnzXNr2xo0bFR0drZ07dyo5OVmhoaHq2rWrBg0apICAADc9AwAAAAAAipcSEwr8+OOPmjBhgtu3O2/ePL311lsyDENVqlRR1apVdejQIU2fPl0rVqzQ/PnzVbZsWbf3CwAAAABAUSsxoUBQUJBuu+02NWnSRE2aNNHevXs1bdo0l7a5e/dujR8/XpI0ZswY9erVSyaTSWfPntXgwYO1Z88ejRo1SpMnT3bHUwAAAAAAoFgpMaFAz5491bNnT9v/nz171uVtTps2TZmZmerevbt69+5te7xy5cqaNGmS7rrrLq1YsUL79+9XRESEy/0BAAAAAFCceOxEg0lJSVq7dq0kqVevXtctr127ttq0aSNJWrZsWaHWBgAAAABAYfDYUGDfvn2yWCzy9fVV06ZNc23TokULSdLOnTsLszQAAAAAAAqFx4YCR48elSSFhobKbDbn2qZmzZo52gIAAAAA8E9SYuYUcLf4+HhJUpkyZfJsk70su62zDMNQcnKyS9soDCkpKTKbzbJYLDKZTIXWr2EYhdYX3CclJSXHv4H8MGbgKMYMHMVnGTiK48w/Q2Hu7xaLRWazudiPGcMw7H5dPDYUSEtLk6Q8zxKQJF9f3xxtnZWenq59+/a5tI3CYDab1ahRI3l7exdanxkZGdqzZ4/S09MLrU+4V0xMTFGXgBKGMQNHMWZgLz7LwFkcZ0quwt7v/f39FRwcXCL2++zvs/nx2FDAz89Pkm74RloslhxtnWU2m1W/fn2XtlEYLBaLvL299euWo0pMsRZ4f2WCS6l98xq66aabSNhLoJSUFMXExKh27dry9/cv6nJQAjBm4CjGDBzFZxk4iuNMyWcymeTt7a3fd5xQfEJqgfcX5O+jji3rqGbNmnZ/6S4Khw4dsrutx4YC9lwaYM8lBvYwmUwKCAhwaRuFIfv0ksQUqxJSMgq8Px+frD/WHIBLNn9//xIxvlF8MGbgKMYM7MVnGTiL40zJl1RI+302Pz+/Yr3vO3JJhcdONFi7dm1J0qlTp/I8W+D48eM52gIAAAAA8E/isaFAgwYNbBPR7Nq1K9c227ZtkyQ1a9asECsDAAAAAKBweGwoEBQUpHbt2kmSFi5ceN3ymJgYbdy4UZLUtWvXQq0NAAAAAIDC8I8PBfr27atOnTpp9uzZ1y0bMmSITCaTvvvuOy1YsMA2Qcy5c+f0/PPPKzMzU126dFFEREQhVw0AAAAAQMErMRMNnj59Wt27d7f9f/adAbZv367WrVvbHn/iiSf05JNP2v7/7Nmzio2NVUJCwnXbbNq0qV599VVNnDhRo0eP1vTp0xUSEqJDhw7JYrGoTp06Gjt2bME9KQAAAAAAilCJCQUyMjIUFxd33eNWqzXH46mpjt2GIioqSuHh4Zo1a5Z27dqlixcvKjQ0VF27dtWgQYMUGBjoYuUAAAAAABRPJSYUqF69ug4cOODweqtXr863TWRkpCIjI50pCwAAAACAEusfP6cAAAAAAADIHaEAAAAAAAAeilAAAAAAAAAPRSgAAAAAAICHIhQAAAAAAMBDEQoAAAAAAOChCAUAAAAAAPBQhAIAAAAAAHgoQgEAAAAAADwUoQAAAAAAAB6KUAAAAAAAAA9FKAAAAAAAgIciFAAAAAAAwEMRCgAAAAAA4KEIBQAAAAAA8FCEAgAAAAAAeChCAQAAAAAAPBShAAAAAAAAHopQAAAAAAAAD0UoAAAAAACAhyIUAAAAAADAQxEKAAAAAADgoQgFAAAAAADwUIQCAAAAAAB4KEIBAAAAAAA8FKEAAAAAAAAeilAAAAAAAAAPRSgAAAAAAICHIhQAAAAAAMBDEQoAAAAAAOChCAUAAAAAAPBQhAIAAAAAAHgoQgEAAAAAADwUoQAAAAAAAB6KUAAAAAAAAA9FKAAAAAAAgIciFAAAAAAAwEMRCgAAAAAA4KEIBQAAAAAA8FCEAgAAAAAAeChCAQAAAAAAPBShAAAAAAAAHopQAAAAAAAAD0UoAAAAAACAhyIUAAAAAADAQxEKAAAAAADgoQgFAAAAAADwUIQCAAAAAAB4KEIBAAAAAAA8FKEAAAAAAAAeilAAAAAAAAAPRSgAAAAAAICHIhQAAAAAAMBDEQoAAAAAAOChCAUAAAAAAPBQhAIAAAAAAHgoQgEAAAAAADwUoQAAAAAAAB6KUAAAAAAAAA9FKAAAAAAAgIciFAAAAAAAwEMRCgAAAAAA4KEIBQAAAAAA8FCEAgAAAAAAeChCAQAAAAAAPBShAAAAAAAAHopQAAAAAAAAD0UoAAAAAACAhyIUAAAAAADAQxEKAAAAAADgoQgFAAAAAADwUIQCAAAAAAB4KEIBAAAAAAA8FKEAAAAAAAAeilAAAAAAAAAPRSgAAAAAAICHIhQAAAAAAMBDEQoAAAAAAOChCAUAAAAAAPBQhAIAAAAAAHgoQgEAAAAAADwUoQAAAAAAAB6KUAAAAAAAAA9FKAAAAAAAgIciFAAAAAAAwEMRCgAAAAAA4KEIBQAAAAAA8FCEAgAAAAAAeChCAQAAAAAAPBShAAAAAAAAHopQAAAAAAAAD0UoAAAAAACAhyIUAAAAAADAQxEKAAAAAADgoQgFAAAAAADwUIQCAAAAAAB4KEIBAAAAAAA8FKEAAAAAAAAeilAAAAAAAAAP5VPUBThq48aNio6O1s6dO5WcnKzQ0FB17dpVgwYNUkBAgMPbO3XqlGbNmqU//vhDp0+fVmZmpipWrKjWrVsrKipK4eHhBfAsAAAAAAAoeiXqTIF58+YpKipKa9askZ+fn+rVq6fY2FhNnz5dPXv2VFxcnEPb27Fjh+69917NmzdPJ0+eVNWqVVW7dm1dvHhRixcv1gMPPKCff/65YJ4MAAAAAABFrMSEArt379b48eMlSWPGjNGaNWu0ZMkSrVq1So0aNdLhw4c1atQou7dnGIZeeeUVJSUlqXnz5lqxYoWWLVumH374QX/88YfuvfdeWa1Wvf7660pISCiopwUAAAAAQJEpMaHAtGnTlJmZqW7duql3794ymUySpMqVK2vSpEny8vLSihUrtH//fru2d+jQIR07dkyS9MYbbyg0NNS2LDg4WBMmTFBAQIASExO1detW9z8hAAAAAACKWIkIBZKSkrR27VpJUq9eva5bXrt2bbVp00aStGzZMru2mZqaavvvGjVqXLfc19dXlStXliRZrVaHawYAAAAAoLgrEaHAvn37ZLFY5Ovrq6ZNm+bapkWLFpKknTt32rXNOnXqqFSpUpKy5ha41rlz53Ty5El5e3urYcOGTlYOAAAAAEDxVSJCgaNHj0qSQkNDZTabc21Ts2bNHG3zExQUpCFDhkiSXnvtNS1btkyXL19WYmKiNm7cqEGDBik9PV2DBg1StWrV3PAsAAAAAAAoXkrELQnj4+MlSWXKlMmzTfay7Lb2eOqpp1SxYkXNnDlTzz33XI5ltWvX1vvvv6+7777biYpzMgxDycnJLm+noFksFvn7+8tqtSo9veAvmbBavSVJKSkpMgyjwPuDe6WkpOT4N5AfxgwcxZiBo/gsA0dxnCn5TCbTVft9eoH3ZzVn7etpaWnFer83DMM2D19+SkQokJaWJkl5niUgZc0BcHVbe6Snp+vEiROKj4+Xj4+PqlevLrPZrGPHjunYsWP65ptvdMstt6hKlSou1Z+enq59+/a5tI3C4O/vr7JlyyohMUHnLyYWeH+mzCBJWWd3cCAuuWJiYoq6BJQwjBk4ijEDe/FZBs7iOFNy+fv7q2HDhrocd7lw9vvyWfv9qVOniv1+n/0dOT8lIhTw8/OTpBsmPxaLJUdbewwbNkxr1qxR+/btNW7cONvEgvHx8Ro3bpy+//579e7dWz/++KOCgoKcrt9sNqt+/fpOr19Ysl/D4KBgGV7+Bd5fSOmsOR3q1KlTrFM25C4lJUUxMTGqXbu2/P0Lfryg5GPMwFGMGTiKzzJwFMeZki/71/CQsiGFst8HB2R9hQ4NDbX7S3dROHTokN1tS0QoYM+lAfZcYnC11atXa82aNQoJCdGkSZMUHByco7/x48dr9+7dOnLkiObPn69BgwY5Xb/JZFJAQIDT6xeW7B3Kx8dHZrN9p5q4wscna/hxAC7Z/P39S8T4RvHBmIGjGDOwF59l4CyOMyVf1n6f95nl7usn67IhPz+/Yr3v23vpgFRCJhqsXbu2pKxTNPI6W+D48eM52uZn69atkqSmTZvmCASymc1mtW7dWpK0e/duBysGAAAAAKD4KxGhQIMGDWQ2m2WxWLRr165c22zbtk2S1KxZM7u2mZSUZHf/jsxTAAAAAABASVEiQoGgoCC1a9dOkrRw4cLrlsfExGjjxo2SpK5du9q1zTp16kiSdu3apYSEhOuWp6ena9OmTTnaAgAAAADwT1IiQgFJGjJkiEwmk7777jstWLDANpnLuXPn9PzzzyszM1NdunRRREREjvU6deqkTp06admyZTke79q1q3x9fXX58mU9//zzOnv2rG1ZfHy8RowYoSNHjshkMun+++8v+CcIAAAAAEAhKxETDUpZ1/6/+uqrmjhxokaPHq3p06crJCREhw4dksViUZ06dTR27Njr1ouNjZUkJScn53i8SpUqGjt2rEaOHKnff/9dnTp1ynFLQovFIpPJpBdffFENGzYslOcIAAAAAEBhKjGhgCRFRUUpPDxcs2bN0q5du3Tx4kWFhoaqa9euGjRokAIDAx3aXvfu3RUREaE5c+Zo69atOnXqlAzDUMWKFdW8eXM98sgjatGiRQE9GwAAAAAAilaJCgUkKTIyUpGRkXa3P3DgwA2XR0REaMKECa6WBQAAAABAiVNi5hQAAAAAAADuRSgAAAAAAICHIhQAAAAAAMBDEQoAAAAAAOChCAUAAAAAAPBQhAIAAAAAAHgoQgEAAAAAADwUoQAAAAAAAB6KUAAAAAAAAA9FKAAAAAAAgIciFAAAAAAAwEMRCgAAAAAA4KEIBQAAAAAA8FCEAgAAAAAAeChCAQAAAAAAPBShAAAAAAAAHopQAAAAAAAAD0UoAAAAAACAhyIUAAAAAADAQxEKAAAAAADgoQgFAAAAAADwUIQCAAAAAAB4KJ+C2vClS5e0bds2mUwmtWrVSqVLly6orgAAAAAAgBOcDgX++usvzZ8/XzfddJMGDBiQY9mPP/6okSNHKi0tTZLk7++vt99+W//+979dqxYAAAAAALiN05cPLF26VN9++628vHJu4uzZsxo5cqRSU1NlGIYMw1BycrJeeOEFHT9+3OWCAQAAAACAezgdCmzZskWS1KlTpxyPL1y4UKmpqQoPD9eKFSv022+/qWXLlkpPT9fcuXNdqxYAAAAAALiN06HA+fPnZTKZFBoamuPxNWvWyGQyafjw4apZs6YqV66skSNHyjAMbdq0yeWCAQAAAACAezgdCsTFxSk4OFg+Pv83LUFqaqr2798vX19ftW3b1vZ4RESEzGazTp486Vq1AAAAAADAbZwOBXx8fJSUlJTjsb/++ksZGRlq3LixfH19cywLCAhQRkaGs90BAAAAAAA3czoUqFatmjIyMrRr1y7bY6tXr5bJZNItt9ySo21GRoYSExNVvnx55ysFAAAAAABu5XQocNttt8kwDI0ZM0Y7d+7UqlWrtGDBAklSx44dc7Q9ePCgMjIyVLlyZdeqBQAAAAAAbuOTf5PcDRw4UN9++6327NmjPn36SJIMw1CbNm2uO1Mge/LB5s2bu1YtAAAAAABwG6fPFKhcubLmzp2r1q1by8/PTxUqVFCvXr00efLkHO0Mw9DixYtlGIZat27tcsEAAAAAAMA9nD5TQMq6q8Ds2bNv2CYzM9PWhssHAAAAAAAoPlwKBezh7e2tatWqFXQ3AAAAAADAQU5fPnAtwzB06dIlnTp1yl2bBAAAAAAABcjlMwX27Nmj6dOna/369UpJSZHJZNLevXtty+Pj4/Xee+9JkkaMGKFSpUq52iUAAAAAAHADl0KBb7/9Vq+//rqsVmuebcqUKaPjx49r06ZNat26te655x5XugQAAAAAAG7i9OUDhw4d0qhRo2S1WvXYY49p0aJFCgkJybVt9+7dZRiGfv/9d6cLBQAAAAAA7uX0mQLR0dFKT0/XI488opEjR0rKmlQwN5GRkZKyLjUAAAAAAADFg9NnCmzatEkmk0lPPvlkvm0rV66sUqVK6fTp0852BwAAAAAA3MzpUODcuXPy9/dXlSpV7GpfqlQppaWlOdsdAAAAAABwM6dDAV9fX6Wnp8swjHzbWiwWJSQkKDg42NnuAAAAAACAmzkdCtSoUUNWq1VHjx7Nt+3atWuVkZGh+vXrO9sdAAAAAABwM6dDgfbt28swDM2ZM+eG7RITE/Xee+/JZDKpc+fOznYHAAAAAADczOlQ4PHHH1dwcLAWLlyoDz74QFeuXMmxPDU1VStWrNBDDz2kI0eOqEKFCurVq5fLBQMAAAAAAPdw+paE5cqV04cffqghQ4bok08+0YwZM2zzC7Rr105xcXHKyMiQYRgKCAjQRx99pICAALcVDgAAAAAAXOP0mQKSdNttt2nBggVq1aqVrFarLQS4cOGCrFarDMNQq1attGDBAjVv3txdNQMAAAAAADdw+kyBbOHh4ZozZ45iY2O1fft2nTt3ThkZGapYsaJuueUW1apVyx11AgAAAAAAN3M5FMhWrVo1VatWzV2bAwAAAAAABcylywcAAAAAAEDJRSgAAAAAAICHcunyAcMwtGjRIv300086cOCA4uPjlZGRkWd7k8mkvXv3utIlAAAAAABwE6dDgaSkJA0aNEjbt2+33YoQAAAAAACUHE6HAlOmTNG2bdvk7e2te++9V+3atVOFChXk7e3tzvoAAAAAAEABcToUWLZsmUwmk0aMGKFHHnnEnTUBAAAAAIBC4PREgxcvXpS3t7ceeughd9YDAAAAAAAKidOhQMWKFeXv7y9fX1931gMAAAAAAAqJ06FAu3btlJiYqMOHD7uzHgAAAAAAUEicDgWeeuoplSlTRm+99ZbS09PdWRMAAAAAACgETk80GBoaqk8//VTDhw/XAw88oAEDBqhx48YKDAzMdz0AAAAAAFD0nA4FJKlu3brq1KmTPv/8c40YMSLf9iaTSXv37nWlSwAAAAAA4CZOhwKXLl1Sv379bHMKGIaR7zr2tAEAAAAAAIXD6VBg6tSpOnTokPz9/dW/f3+1a9dOFSpUkLe3tzvrAwAAAAAABcTpUODXX3+VyWTSW2+9pbvvvtudNQEAAAAAgELg9N0HLl68KLPZrDvvvNOd9QAAAAAAgELidChQqVIl+fj4cLkAAAAAAAAllNOhQKdOnZSSkqK//vrLnfUAAAAAAIBC4nQoMHjwYFWqVEn//e9/deXKFXfWBAAAAAAACoHTEw3+/fff+s9//qPx48fr7rvvVq9evdS0aVMFBgbecL2WLVs62yUAAAAAAHAjp0OBxx57TCaTyfb/06dPz3cdk8mkvXv3OtslAAAAAABwI6dDAUkyDKNA2wMAAAAAgILjdCiwf/9+d9YBAAAAAAAKmdMTDQIAAAAAgJKNUAAAAAAAAA/l0pwCV0tMTNTevXt18eJFSVL58uXVsGFDBQUFuasLAAAAAADgRi6HAgcOHND777+vtWvXKjMzM8cyLy8v/etf/9Jzzz2n8PBwV7sCAAAAAABu5NLlAytWrFCvXr3022+/KSMjQ4Zh5PgnIyNDv/76q3r16qWVK1e6q2YAAAAAAOAGTp8pcOLECb344ouyWCyqVq2annjiCbVt21ZVqlSRJJ05c0br1q3TzJkzdfLkSb344otaunSpatSo4bbiAQAAAACA85w+U2DmzJmyWCxq1qyZvv/+e/Xt21c1a9aUr6+vfH19VbNmTfXt21fff/+9mjVrJovFoujoaHfWDgAAAAAAXOB0KLBhwwaZTCa9+eabCgwMzLNdQECA3nzzTRmGoXXr1jnbHQAAAAAAcDOnQ4EzZ84oMDDQrgkEw8PDFRQUpDNnzjjbHQAAAAAAcDOnQwEfHx9ZrVa72hqGofT0dPn4uO0OiAAAAAAAwEVOhwK1atVSWlqa1q5dm2/btWvXKi0tTbVq1XK2OwAAAAAA4GZOhwKdOnWSYRgaNWqUDh8+nGe7Q4cOafTo0TKZTOrcubOz3QEAAAAAADdz+nz+qKgoff311zpz5oy6d++url27KjIyUpUrV5aUNefAhg0btHz5cqWnp6tKlSp6/PHH3VY4AAAAAABwjdOhQFBQkGbMmKGnn35asbGxWrp0qZYuXXpdO8MwVL16dU2fPl1BQUEuFQsAAAAAANzHpZn/brrpJn3//ff64osvtGzZMh04cEAZGRmSJG9vb4WHh+vuu+9W3759b3jbQgAAAAAAUPhcvh1AYGCgBg0apEGDBik9PV3x8fGSpDJlyshsNrtcIAAAAAAAKBhuvUeg2WxWhQoV3LlJAAAAAABQQJy++8C1DMPQpUuXdOrUKXdtEgAAAAAAFCCXzxTYs2ePpk+frvXr1yslJUUmk0l79+61LY+Pj9d7770nSRoxYoRKlSrlapcAAAAAAMANXAoFvv32W73++uuyWq15tilTpoyOHz+uTZs2qXXr1rrnnntc6RIAAAAAALiJ05cPHDp0SKNGjZLVatVjjz2mRYsWKSQkJNe23bt3l2EY+v33350uFAAAAAAAuJfTZwpER0crPT1djzzyiEaOHCkp6zaEuYmMjJSUdakBAAAAAAAoHpw+U2DTpk0ymUx68skn821buXJllSpVSqdPn3a2OwAAAAAA4GZOhwLnzp2Tv7+/qlSpYlf7UqVKKS0tzdnuAAAAAACAmzkdCvj6+io9PV2GYeTb1mKxKCEhQcHBwc52BwAAAAAA3MzpUKBGjRqyWq06evRovm3Xrl2rjIwM1a9f39nuAAAAAACAmzkdCrRv316GYWjOnDk3bJeYmKj33ntPJpNJnTt3drY7m40bN+qpp55SmzZt1LRpU3Xt2lUffPCBkpOTnd6mYRhaunSpBg4cqNtuu02NGzdWu3bt9Pjjj2vmzJku1wwAAAAAQHHkdCjw+OOPKzg4WAsXLtQHH3ygK1eu5FiempqqFStW6KGHHtKRI0dUoUIF9erVy6Vi582bp6ioKK1Zs0Z+fn6qV6+eYmNjNX36dPXs2VNxcXEObzMpKUkDBgzQCy+8oD/++EMBAQGKiIiQ2WzWli1b9Omnn7pUMwAAAAAAxZXTtyQsV66cPvzwQw0ZMkSffPKJZsyYYZtfoF27doqLi1NGRoYMw1BAQIA++ugjBQQEOF3o7t27NX78eEnSmDFj1KtXL5lMJp09e1aDBw/Wnj17NGrUKE2ePNnubRqGoWeeeUbr16/X7bffrtGjR6tmzZq25VeuXNGWLVucrhkAAAAAgOLM6TMFJOm2227TggUL1KpVK1mtVlsIcOHCBVmtVhmGoVatWmnBggVq3ry5S4VOmzZNmZmZ6tatm3r37i2TySQp63aHkyZNkpeXl1asWKH9+/fbvc3Fixdr3bp1uvnmm/Xxxx/nCAQkqXTp0m655AEAAAAAgOLI6TMFsoWHh2vOnDmKjY3V9u3bde7cOWVkZKhixYq65ZZbVKtWLZeLTEpK0tq1ayUp10sQateurTZt2mj9+vVatmyZIiIi7Nru7NmzJUmDBw+Wj4/LLwUAAAAAACWK274JV6tWTdWqVXPX5nLYt2+fLBaLfH191bRp01zbtGjRQuvXr9fOnTvt2ubx48d18OBBeXl5qXXr1tq5c6cWLVqk48ePKyAgQM2aNVPPnj1Vrlw5dz4VAAAAAACKDadDgSlTpigwMFD9+/e3q/3cuXN15coVDRs2zOG+sm97GBoaKrPZnGub7FP/7blFopQ1R4EklS1bVl988YXee+8925wIkvTLL7/os88+0+TJk9WmTRuHawYAAAAAoLhzKRSoUKGC3aHA7Nmzdfr0aadCgfj4eElSmTJl8myTvSy7bX7OnTsnKWsywXfffVcdOnTQSy+9pJo1a+ro0aMaP368Nm7cqGeeeUY//PCDqlSp4nDd2QzDcOmWiYXFYrHI399fVqtV6enWAu/PavWWJKWkpOQIZFAypKSk5Pg3kB/GDBzFmIGj+CwDR3GcKflMJtNV+316gfdnNWft62lpacV6vzcMwzYPX35KxIX0aWlpkpTnWQKS5Ovrm6NtfrK/pFutVtWsWVNTpkyxbT88PFwff/yx/v3vf+v8+fOaM2eOXnnlFafrT09P1759+5xev7D4+/urbNmySkhM0PmLiQXenykzSFLW2R0ciEuumJiYoi4BJQxjBo5izMBefJaBszjOlFz+/v5q2LChLsddLpz9vnzWfn/q1Kliv99nf0fOT6GFAvHx8fLz83Nq3ez1bpT8WCyWHG3t3aYkPfLII9cFDv7+/urTp48mT56stWvXuhQKmM1m1a9f3+n1C0v2axgcFCzDy7/A+wspXUqSVKdOnWKdsiF3KSkpiomJUe3ateXvX/DjBSUfYwaOYszAUXyWgaM4zpR82b+Gh5QNKZT9Pjgg6yt0aGio3V+6i8KhQ4fsblsoocDPP/+spKQk1alTx6n17bk0wJ5LDK5WunRp23/Xq1cv1zbZj588edKubebFZDIpICDApW0UhuwdysfHR2azfaeauCL7jg8cgEs2f3//EjG+UXwwZuAoxgzsxWcZOIvjTMmXtd/nfWa5+/rJumzIz8+vWO/79l46IDkQCsyZM0dz587N8djly5fVuXPnPNcxDEMJCQlKTEyUyWRShw4d7C7sarVr15aUdYpGenp6rm/28ePHc7TNT926dW3/ndfgyT6bIDMz04FqAQAAAAAoGewOBRISEhQbG5vjsYyMjOsey0tkZKSGDh3qWHX/X4MGDWQ2m2WxWLRr1y61aNHiujbbtm2TJDVr1syubTZs2FClSpVSamqqTpw4kesdBrKDBlcmGQQAAAAAoLiyOxTo0qWLqlWrJinrDIARI0YoODhYI0aMyHMdk8mkoKAghYWF2W4Z6IygoCC1a9dOv/76qxYuXHhdKBATE6ONGzdKkrp27WrXNv39/dWxY0f9/PPP+vbbb/XQQw/lWG4YhpYsWSJJ3JIQAAAAAPCPZHcoEBERoYiICNv/jxgxQn5+furRo0eBFHatIUOGaM2aNfruu+90yy23qFevXjKZTDp37pyef/55ZWZmqkuXLjlqlKROnTpJkl5++eXrAoNhw4Zp5cqV2rp1q6ZOnaqnn35a3t7eslqtmjRpkvbv3y8/Pz9FRUUVynMEAAAAAKAwOT3R4P79+91ZR76aNm2qV199VRMnTtTo0aM1ffp0hYSE6NChQ7JYLKpTp47Gjh173XrZlzdk34LwavXr19e4ceM0cuRIffTRR/r8889VvXp1HT9+XHFxcTKbzRo/fnyO+QcAAAAAAPinKLRbErpDVFSUwsPDNWvWLO3atUsXL15UaGiounbtqkGDBikwMNDhbfbo0UP169fXjBkztHXrVu3bt09ly5bVvffeqyeffPK6Mw8AAAAAAPincDkUMAxDK1eu1NKlS7V7925dunRJklSuXDk1adJE9913nzp37uzQLRFuJDIyUpGRkXa3P3DgQL5tmjRpog8//NCVsgAAAAAAKHFcCgUuXLigZ599Vjt27JCUFRBkO3XqlE6fPq0VK1bolltu0QcffKCKFSu6Vi0AAAAAAHAbp0MBi8WigQMH6uDBgzIMQ02bNtVtt91mu33fmTNntGHDBu3cuVPbt2/Xk08+qa+//lpms9ltxQMAAAAAAOc5HQp8+eWXOnDggIKCgvTOO++oY8eO17UZPny4fvvtN73wwgs6cOCAvvrqKz322GMuFQwAAAAAANzDy9kVf/75Z5lMJo0ePTrXQCDbv/71L40ePVqGYejHH390tjsAAAAAAOBmTocCR44ckY+Pj+6+++582959990ym806cuSIs90BAAAAAAA3czoUSE1Nlb+/v3x88r8CwcfHR/7+/kpNTXW2OwAAAAAA4GZOhwIVKlRQQkKCTp06lW/bkydP6sqVK6pQoYKz3QEAAAAAADdzOhS49dZbZRiGJkyYkONWhNcyDEMTJ06UyWRSy5Ytne0OAAAAAAC4mdOhQP/+/WUymbRq1Sr169dPGzZsUHp6um15enq61q9fr379+mnVqlUymUyKiopyR80AAAAAAMANnL4lYYMGDfTKK69o4sSJ2rp1qwYMGCBvb2+FhIRIki5fvqyMjAzbWQQvv/yyGjRo4J6qAQAAAACAy5wOBSQpKipKtWrV0jvvvKMjR47IarXq/PnzOdrUr19fL774ojp06OBKVwAAAAAAwM1cCgUkqWPHjurYsaMOHDig3bt36+LFi5Kk8uXLq3HjxgoPD3e5SAAAAAAA4H5OhwJTpkyRJD344IOqWrWqwsPDCQAAAAAAAChBnA4Fpk6dKm9vbz311FPurAcAAAAAABQSp0OBkJAQZWRkyGw2u7MeAAAAAABQSJy+JWFERIQSEhJ0+fJld9YDAAAAAAAKidOhQO/evZWZmanZs2e7sRwAAAAAAFBYnL584M4771T//v316aefKj09XU888YTKlSvnztoAAAAAAEABcjoU6NevnyTJ399f0dHRmjNnjmrWrKny5cvLyyv3ExBMJpPmzJnjbJcAAAAAAMCNnA4FNm/enOP/MzIydPToUR09ejTPdUwmk7PdAQAAAAAAN3M6FBg2bJg76wAAAAAAAIWMUAAAAAAAAA/l9N0HAAAAAABAyUYoAAAAAACAh3L68oGr7d69Wz/++KN2796tS5cuSZLKlSunxo0b6+6771aTJk3c0Q0AAAAAAHAjl0KBhIQEjRw5UitXrpQkGYZhW3b48GFt3bpVs2fPVpcuXTRu3DiVKVPGtWoBAAAAAIDbOB0KWCwWPf7449q3b58Mw1CVKlXUqlUrVa5cWZJ09uxZbdmyRadPn9aqVasUGxurr776Sr6+vm4rHgAAAAAAOM/pUGDmzJnau3ev/Pz8NGrUKD344IMymUzXtVu8eLHefPNN7du3T7NmzdLTTz/tUsEAAAAAAMA9nJ5o8Mcff5TJZNKIESPUs2fPXAMBSXrggQc0YsQIGYahH374welCAQAAAACAezkdCpw4cULe3t7q0aNHvm179OghHx8fnTx50tnuAAAAAACAmzl9+UBAQIAyMzPtmiPA19dXgYGB8vLiDogAAAAAABQXTn9Lb9Soka5cuaKzZ8/m2/bs2bOKj4/n1oQAAAAAABQjTocC/fv3lyS9/fbb+bZ9++23ZTKZbOsAAAAAAICi53Qo0LZtW40aNUorVqzQ448/ro0bNyo9Pd223Gq1auPGjYqKitLKlSs1atQoRUZGuqVoAAAAAADgOqfnFOjcubMkyWw2a/Pmzdq8ebO8vb0VEhIiSbp8+bIyMjIkSaVKldLMmTM1c+bM67ZjMpm0atUqZ8sAAAAAAABOcjoUiI2Nve4xq9Wq8+fPX/d4SkpKru0l5XkrQwAAAAAAULCcDgUmTJjgzjoAAAAAAEAhczoU6NGjhzvrAAAAAAAAhczpiQYBAAAAAEDJRigAAAAAAICHIhQAAAAAAMBDEQoAAAAAAOChCAUAAAAAAPBQhAIAAAAAAHgoQgEAAAAAADwUoQAAAAAAAB7KrlCgR48eGjhwYI7HtmzZoj///LMgagIAAAAAAIXAx55G+/btU4UKFXI89thjj6lixYpau3ZtgRQGAAAAAAAKll1nCnh7e8tqtV73uGEYbi8IAAAAAAAUDrtCgZCQEMXHx+v8+fMFXQ8AAAAAACgkdl0+0KJFCy1fvlyPPvqoOnfurICAAElScnKypkyZ4lCHw4YNc7xKAAAAAADgdnaFAkOHDtUff/yhY8eOKTo62vZ4SkqKpk6d6lCHhAIAAAAAABQPdoUCYWFh+u6777RgwQIdPHhQKSkp2rx5s3x8fNSsWbMCLhEAAAAAABQEu0IBSapevbpeeOEF2/9HRESoTJkymjdvXoEUBgAAAAAACpbdocC1QkNDVb58eXfWAgAAAAAACpHTocDq1avdWQcAAAAAAChkTocCucnIyFB8fLwkqUyZMvL29nbn5gEAAAAAgBu5HAqkpKToq6++0tKlS3XgwAFlZGRIkry9vRUREaF7771XvXv3lr+/v8vFAgAAAAAA93EpFDhy5IgGDx6s48ePyzCMHMusVqt2796tPXv26Msvv9THH3+sOnXquFQsAAAAAABwH6dDgcTERA0cOFCnT5+Wj4+P/v3vf+u2225TlSpVJElnzpzRhg0btGLFCh07dkwDBw7UDz/8oMDAQLcVDwAAAAAAnOd0KDBnzhydPn1alSpV0ieffKIGDRpc1+ahhx7S/v37NWjQIJ0+fVpz587V4MGDXSoYAAAAAAC4h5ezK/7yyy8ymUwaM2ZMroFAtoiICI0dO1aGYWjlypXOdgcAAAAAANzM6VDg2LFj8vX1VYcOHfJt2759e/n5+enYsWPOdgcAAAAAANzM6VDAarXKbDbb1dZkMslsNstqtTrbHQAAAAAAcDOnQ4EqVaooKSlJhw4dyrftwYMHlZiYaJuEEAAAAAAAFD2nQ4E2bdrIMAy98cYbSktLy7NdWlqa3nzzTZlMJkVGRjrbHQAAAAAAcDOnQ4EnnnhCvr6+2rZtm+6//359/fXXOnnypNLT05Wenq4TJ07o66+/1v33369t27bJbDZr4MCB7qwdAAAAAAC4wOlbEtaoUUMTJ07Uyy+/rGPHjmn06NG5tjMMQz4+Ppo4caJq1KjhdKEAAAAAAMC9nD5TQJLuvvtuLViwQO3atZOUFQBc/Y/JZFL79u21cOFC3X333W4pGAAAAAAAuIfTZwpka9SokWbMmKGEhATt2bNHly5dkiSVK1dOjRo1UnBwsMtFAgAAAAAA93M5FMgWHBysNm3auGtzAAAAAACggLl0+QAAAAAAACi5CAUAAAAAAPBQhAIAAAAAAHgoQgEAAAAAADwUoQAAAAAAAB6KUAAAAAAAAA9FKAAAAAAAgIciFAAAAAAAwEMRCgAAAAAA4KGcDgWuXLmiLVu2aO/evdctO3funJ599lm1aNFCLVu21EsvvaSLFy+6VCgAAAAAAHAvp0OBb775Rv369dOiRYtyPG61WjVw4ECtXLlSSUlJSkhI0NKlSxUVFSWLxeJywQAAAAAAwD2cDgXWrVsnSbrnnntyPP7TTz/p77//lp+fn55++mkNHz5cQUFBOnTokBYuXOhatQAAAAAAwG18nF3x2LFjkqSwsLAcj//8888ymUx65plnNHDgQElSzZo19fzzz2v58uV69NFHXSgXAAAAAAC4i9NnCly+fFkBAQEKCgrK8fjWrVslSffdd5/tsS5dushkMunvv/92tjsAAAAAAOBmTocCaWlpyszMzPHYkSNHlJCQoFq1aqlSpUq2x319fVW6dGklJiY6XykAAAAAAHArp0OB8uXLKzU1VefPn7c9tmHDBklS8+bNr2uflpam4OBgZ7sDAAAAAABu5nQo0KRJE0lSdHS0JCklJUVfffWVTCaTIiMjc7Q9e/asUlNTVbFiRRdKBQAAAAAA7uT0RIO9e/fWqlWrFB0drV9//VVJSUk6d+6cypcvrzvuuCNH240bN0q6flJCAAAAAABQdJw+U+D222/XsGHDZDKZdPToUZ07d04hISF69913VapUqRxtly5dKklq3bq1a9UCAAAAAAC3cfpMAUkaNmyYHnjgAe3cuVOlS5dW06ZNr5s3wGKxqFmzZrr55pvVoUMHV7oDAAAAAABu5FIoIEmhoaEKDQ3Nc7mvr6+GDh3qajcAAAAAAMDNnL58YMqUKbZJBu0xd+5cTZkyxdnuAAAAAACAm7kUCsycOdPu9rNnz9bUqVOd7Q4AAAAAALiZ06EAAAAAAAAo2QotFIiPj5efn19hdQcAAAAAAPJRKKHAzz//rKSkJFWtWrUwugMAAAAAAHaw++4Dc+bM0dy5c3M8dvnyZXXu3DnPdQzDUEJCghITE2UymbglIQAAAAAAxYjdoUBCQoJiY2NzPJaRkXHdY3mJjIzk1oQAAAAAABQjdocCXbp0UbVq1SRlnQEwYsQIBQcHa8SIEXmuYzKZFBQUpLCwMNWsWdP1agEAAAAAgNvYHQpEREQoIiLC9v8jRoyQn5+fevToUSCF5WXjxo2Kjo7Wzp07lZycrNDQUHXt2lWDBg1SQECAy9v/4osvNGbMGElSq1atNG/ePJe3CQAAAABAcWR3KHCt/fv3u7MOu8ybN09vvfWWDMNQlSpVVLVqVR06dEjTp0/XihUrNH/+fJUtW9bp7Z89e1aTJk1yX8EAAAAAABRjhXZLQlft3r1b48ePlySNGTNGa9as0ZIlS7Rq1So1atRIhw8f1qhRo1zq44033lBKSoo6duzojpIBAAAAACjWnD5T4GqZmZmKiYlRfHy8rFbrDdu2bNnSqT6mTZumzMxMde/eXb1797Y9XrlyZU2aNEl33XWXVqxYof379+e4zMFeP/30k1avXq1+/fqpdOnS+vXXX52qEwAAAACAksKlUODcuXOaNGmSli9frtTU1Hzbm0wm7d271+F+kpKStHbtWklSr169rlteu3ZttWnTRuvXr9eyZcscDgXi4+P11ltvqUqVKho+fLhmzZrlcI0AAAAAAJQ0TocCZ8+eVa9evXTu3DkZhmHXOva2u9a+fftksVjk6+urpk2b5tqmRYsWWr9+vXbu3Onw9idOnKgLFy5o6tSpCgwMdKpGAAAAAABKGqdDgSlTpujs2bMKDAzUf/7zH3Xu3FmVKlWSt7e3O+uTJB09elSSFBoaKrPZnGub7FseZre114YNG7R48WJ16tRJXbp0ca1QAAAAAABKEKdDgd9//10mk0lvvfWWunbt6s6arhMfHy9JKlOmTJ5tspdlt7VHamqqRo8erYCAAI0ePdq1Im/AMAwlJycX2PbdxWKxyN/fX1arVenpN54bwh2s1qwAKSUlxemzSFB0UlJScvwbyA9jBo5izMBRfJaBozjOlHwmk+mq/T69wPuzmrP29bS0tGK93xuGIZPJZFdbp0OBS5cuydvbu1B+XU9LS5OkPM8SkCRfX98cbe3x0Ucf6fjx43rttddUtWpV14q8gfT0dO3bt6/Atu8u/v7+Klu2rBISE3T+YmKB92fKDJKUdXYHB+KSKyYmpqhLQAnDmIGjGDOwF59l4CyOMyWXv7+/GjZsqMtxlwtnvy+ftd+fOnWq2O/32d+R8+N0KFC+fHklJibKx8ctNzC4IT8/P0m6YfJjsVhytM3P3r17NWfOHDVs2FCPPfaY60XegNlsVv369Qu0D3fIfg2Dg4JlePkXeH8hpUtJkurUqVOsUzbkLiUlRTExMapdu7b8/Qt+vKDkY8zAUYwZOIrPMnAUx5mSL/vX8JCyIYWy3wcHZH3/DQ0NtftLd1E4dOiQ3W2d/kYfGRmpb7/91rYTFSR7Lg2w5xKDq40cOVKZmZkaM2ZMgcyDcDWTyaSAgIAC7cMdsncoHx8fmc32nWriiuxAiQNwyebv718ixjeKD8YMHMWYgb34LANncZwp+bL2+7zPLHdfP1nfHf38/Ir1vm/vpQOSC6HA008/reXLl+vdd9/VlClTnN2MXbJDh1OnTik9PT3XN/v48eM52uZn79698vb21tNPP33dsuzr/3fs2KG2bdtKkr755psCvcQAAAAAAIDC5uXsirVq1dL06dO1ZcsW9e/fXxs3biywyfQaNGggs9ksi8WiXbt25dpm27ZtkqRmzZrZvd2MjAxduHDhun+yn0d6errtsYyMDJefBwAAAAAAxYnTZwo0aNDA9t8bN27Uxo0b813HZDJp7969DvcVFBSkdu3a6ddff9XChQvVokWLHMtjYmJs/dt7J4QDBw7kuWzy5MmaMmWKWrVqpXnz5jlcLwAAAAAAJYHTZwoYhuHUP84aMmSITCaTvvvuOy1YsMC2rXPnzun5559XZmamunTpooiIiBzrderUSZ06ddKyZcuc7hsAAAAAgH8ip88UmDt3rjvryFfTpk316quvauLEiRo9erSmT5+ukJAQHTp0SBaLRXXq1NHYsWOvWy82NlaSCuzSBgAAAAAASiqnQ4FWrVq5sw67REVFKTw8XLNmzdKuXbt08eJFhYaGqmvXrho0aJACAwMLvSYAAAAAAEoqp0OBohIZGanIyEi7299o7oC8PPPMM3rmmWccXg8AAAAAgJLE6TkFAAAAAABAyeb0mQJbtmxxar2WLVs62yUAAAAAAHAjp0OBxx57TCaTyaF1nL0lIQAAAAAAcD+X5hRw9BaDrtySEAAAAAAAuJfTocD+/ftvuDwxMVE7d+7Uxx9/rL///ltTpkzRrbfe6mx3AAAAAADAzQpsosGgoCC1bdtWc+fOVfPmzTV48GCdOHGioLoDAAAAAAAOKvC7D5hMJr300ktKSEjQtGnTCro7AAAAAABgp0K5JWHdunUVFBSk9evXF0Z3AAAAAADADi5NNGiv9PR0paamKi0trTC6AwAAAAAAdiiUMwVWrVolq9Wq8uXLF0Z3AAAAAADADgV2poDFYtGZM2e0fPlyffLJJzKZTGrfvn1BdQcAAAAAABzkdCjQoEEDu9sahqHKlStr6NChznYHAAAAAADczOnLBwzDsOsfPz8/3X///Vq4cKEqV67sztoBAAAAAIALnD5TYO7cuTdc7u3trTJlyqh27dry8SmU+QwBAAAAAIADnP623qpVK3fWAQAAAAAAClmh3H0AAAAAAAAUP249rz82NlYXL16UJJUvX17VqlVz5+YBAAAAAIAbuRwKnDt3Tp9++ql+/PFHxcXF5VhWtmxZ3XvvvXryySdVqVIlV7sCAAAAAABu5NLlA9u2bdP999+vL774QpcvX77uzgOXL1/W559/rm7dumn79u3uqhkAAAAAALiB02cKXLx4UUOGDFF8fLyCgoLUp08ftW3b1nbbwbNnz2r9+vVasGCBLl++rMGDB+unn35S+fLl3VY8AAAAAABwntOhwKxZsxQfH6+6desqOjraFgZkq1u3riIjI/Xoo4+qf//+Onr0qKKjo/Xiiy+6XDQAAAAAAHCd05cP/PbbbzKZTBo7dux1gcDVKleurLFjx8owDK1Zs8bZ7gAAAAAAgJs5HQrExsbK399fLVq0yLdtixYt5O/vr9jYWGe7AwAAAAAAbubSRIMAAAAAAKDkcjoUqFatmlJSUvTnn3/m23bHjh1KSUlRtWrVnO0OAAAAAAC4mdOhwO233y7DMDRq1ChdunQpz3YXL17U6NGjZTKZ1L59e2e7AwAAAAAAbub03QcGDhyoRYsW6dChQ7rrrrvUt29fRUZG2iYdPHPmjDZs2KAFCxYoLi5OpUuX1oABA9xWOAAAAAAAcI3ToUCFChU0ZcoUDRs2TPHx8frkk0/0ySefXNfOMAyVLl1aU6dOVYUKFVwqFgAAAAAAuI9LEw22atVK33//vXr37q3SpUvLMIwc/5QuXVp9+/bVDz/8oJYtW7qrZgAAAAAA4AZOnymQrUqVKnrzzTf15ptv6sSJE7b5BcqVK6caNWq4XCAAAAAAACgYLocCV6tRowZBAAAAAAAAJYRDoYDValVqaqokKSgoyK51EhMTJUn+/v7y9vZ2sDwAAAAAAFBQHJpT4Pnnn1fLli316quv2r3OiBEjHF4HAAAAAAAUPLtDgb///lsrVqxQUFCQxo8fb3cHY8eOVVBQkH788UfFxMQ4UyMAAAAAACgAdocCP/zwgyTp4YcfVunSpe3uoEyZMnr00UeVmZmp77//3vEKAQAAAABAgbA7FNi6datMJpPuuOMOhzvJXmfz5s0OrwsAAAAAAAqG3aFATEyMvLy81LBhQ4c7CQ8Pl5eXl44cOeLwugAAAAAAoGDYHQpcuXJFwcHBMplMjnfi5aXg4GAlJCQ4vC4AAAAAACgYdocC/v7+SkpKcrqj5ORklSpVyun1AQAAAACAe9kdCpQrV05Wq1XHjx93uJPjx48rPT1d5cqVc3hdAAAAAABQMOwOBZo1ayZJWrFihcOdLF++XJJ08803O7wuAAAAAAAoGHaHAh06dJBhGJo5c6bOnTtndwdnz57VrFmzZDKZ1KFDB2dqBAAAAAAABcDuUODOO+9UrVq1FBcXp4EDB9p1GcGxY8f0xBNP6PLly6pZs6buuusul4oFAAAAAADu42NvQy8vL7399tvq16+fDh06pPvvv1/333+/OnfurIYNG6pMmTKSpPj4eO3du1erVq3S0qVLlZKSIl9fX02cONGpOxcAAAAAAICCYXcoIGXNK/DBBx/o5ZdfVmJior7++mt9/fXXebY3DEMBAQH63//+p+bNm7tcLAAAAAAAcB+7Lx/I1qlTJy1atEhdu3aVyWSSYRi5/mMymdS1a1ctXrxYXbp0KYjaAQAAAACACxw6UyBbrVq19MEHH+jixYvatGmT/v77b8XFxUmSypYtq5tuukmtW7dW+fLl3VkrAAAAAABwI6dCgWzly5fX3Xff7a5aAAAAAABAIXL48gEAAAAAAPDPQCgAAAAAAICHIhQAAAAAAMBDEQoAAAAAAOChCAUAAAAAAPBQhAIAAAAAAHgoQgEAAAAAADwUoQAAAAAAAB6KUAAAAAAAAA9FKAAAAAAAgIciFAAAAAAAwEMRCgAAAAAA4KEIBQAAAAAA8FCEAgAAAAAAeChCAQAAAAAAPBShAAAAAAAAHopQAAAAAAAAD0UoAAAAAACAhyIUAAAAAADAQxEKAAAAAADgoQgFAAAAAADwUIQCAAAAAAB4KEIBAAAAAAA8FKEAAAAAAAAeilAAAAAAAAAPRSgAAAAAAICHIhQAAAAAAMBDEQoAAAAAAOChCAUAAAAAAPBQhAIAAAAAAHgoQgEAAAAAADwUoQAAAAAAAB6KUAAAAAAAAA9FKAAAAAAAgIciFAAAAAAAwEMRCgAAAAAA4KEIBQAAAAAA8FCEAgAAAAAAeChCAQAAAAAAPBShAAAAAAAAHopQAAAAAAAAD0UoAAAAAACAhyIUAAAAAADAQxEKAAAAAADgoQgFAAAAAADwUIQCAAAAAAB4KEIBAAAAAAA8FKEAAAAAAAAeilAAAAAAAAAPRSgAAAAAAICHIhQAAAAAAMBD+RR1AY7auHGjoqOjtXPnTiUnJys0NFRdu3bVoEGDFBAQYPd2MjIytHHjRq1Zs0Y7duxQTEyMUlNTVbZsWTVp0kS9e/dWhw4dCu6JAAAAAABQxErUmQLz5s1TVFSU1qxZIz8/P9WrV0+xsbGaPn26evbsqbi4OLu3tXjxYg0YMEBz587Vnj17VL58eYWFhSklJUWrV6/WU089pdGjR8swjIJ7QgAAAAAAFKESEwrs3r1b48ePlySNGTNGa9as0ZIlS7Rq1So1atRIhw8f1qhRoxzaZnh4uMaNG6fNmzdr+fLlWrx4sTZt2qSXX35ZJpNJCxYs0JdfflkQTwcAAAAAgCJXYkKBadOmKTMzU926dVPv3r1lMpkkSZUrV9akSZPk5eWlFStWaP/+/XZt79///re+++47PfTQQwoODrY97uPjo4EDB+qhhx6SJC1YsMD9TwYAAAAAgGKgRIQCSUlJWrt2rSSpV69e1y2vXbu22rRpI0latmyZXdssW7asLVjITfv27SVJR48edbRcAAAAAABKhBIRCuzbt08Wi0W+vr5q2rRprm1atGghSdq5c6db+kxNTZUk+fv7u2V7AAAAAAAUNyUiFMj+tT40NFRmsznXNjVr1szR1lU//vijpP8LGwAAAAAA+KcpEbckjI+PlySVKVMmzzbZy7LbumLVqlX69ddfZTKZ9MQTT7i8PcMwlJyc7PJ2CprFYpG/v7+sVqvS060F3p/V6i1JSklJ4S4PJVBKSkqOfwP5YczAUYwZOIrPMnAUx5mSz2QyXbXfpxd4f1Zz1r6elpZWrPd7wzBueLn81UpEKJCWliZJeZ4lIEm+vr452jrr8OHDevXVVyVJjz/+uG655RaXtidJ6enp2rdvn8vbKWj+/v4qW7asEhITdP5iYoH3Z8oMkpR1dgcH4pIrJiamqEtACcOYgaMYM7AXn2XgLI4zJZe/v78aNmyoy3GXC2e/L5+13586darY7/fZ35HzUyJCAT8/P0m6YfJjsVhytHXG6dOn9cQTTyghIUH/+te/9OKLLzq9rauZzWbVr1/fLdsqSNmvYXBQsAyvgp9LIaR0KUlSnTp1inXKhtylpKQoJiZGtWvXZu4N2IUxA0cxZuAoPsvAURxnSr7sX8NDyoYUyn4fHJD1FTo0NNTuL91F4dChQ3a3LRGhgD2XBthzicGNnD9/XlFRUTp16pRatWqlyZMn3/DMBEeYTCYFBAS4ZVsFKXuH8vHxkdls36kmrvDxyRp+HIBLNn9//xIxvlF8MGbgKMYM7MVnGTiL40zJl7Xfu+f72437ybpsyM/Pr1jv+/ZeOiCVkIkGa9euLSnrFI28zhY4fvx4jraOuHjxoh5//HHFxMSoefPm+vjjj1064wAAAAAAgJKgRIQCDRo0kNlslsVi0a5du3Jts23bNklSs2bNHNp2XFyc+vfvr8OHD6tRo0b67LPPFBgY6GrJAAAAAAAUeyUiFAgKClK7du0kSQsXLrxueUxMjDZu3ChJ6tq1q93bTUxM1IABA3TgwAGFhYVp5syZCg4Odk/RAAAAAAAUcyUiFJCkIUOGyGQy6bvvvtOCBQtsk7mcO3dOzz//vDIzM9WlSxdFRETkWK9Tp07q1KmTli1bluPxlJQUDRo0SHv27FHdunU1e/ZshYSEFNrzAQAAAACgqJWIiQYlqWnTpnr11Vc1ceJEjR49WtOnT1dISIgOHToki8WiOnXqaOzYsdetFxsbK0lKTk7O8fjcuXNtlxxI0rBhw/Ls+6OPPlLFihXd9EwAAAAAACgeSkwoIElRUVEKDw/XrFmztGvXLl28eFGhoaHq2rWrBg0a5NBcANm3rJGkI0eO3LBtWlqa0zUDAAAAAFBclahQQJIiIyMVGRlpd/sDBw7k+vgzzzyjZ555xl1lAQAAAABQ4pSYOQUAAAAAAIB7EQoAAAAAAOChCAUAAAAAAPBQhAIAAAAAAHgoQgEAAAAAADwUoQAAAAAAAB6KUAAAAAAAAA9FKAAAAAAAgIciFAAAAAAAwEMRCgAAAAAA4KEIBQAAAAAA8FCEAgAAAAAAeChCAQAAAAAAPBShAAAAAAAAHopQAAAAAAAAD0UoAAAAAACAhyIUAAAAAADAQxEKAAAAAADgoQgFAAAAAADwUIQCAAAAAAB4KEIBAAAAAAA8FKEAAAAAAAAeilAAAAAAAAAPRSgAAAAAAICHIhQAAAAAAMBDEQoAAAAAAOChCAUAAAAAAPBQhAIAAAAAAHgoQgEAAAAAADwUoQAAAAAAAB6KUAAAAAAAAA9FKAAAAAAAgIciFAAAAAAAwEMRCgAAAAAA4KEIBQAAAAAA8FCEAgAAAAAAeChCAQAAAAAAPBShAAAAAAAAHopQAAAAAAAAD0UoAAAAAACAhyIUAAAAAADAQxEKAAAAAADgoQgFAAAAAADwUIQCAAAAAAB4KEIBAAAAAAA8FKEAAAAAAAAeilAAAAAAAAAPRSgAAAAAAICHIhQAAAAAAMBDEQoAAAAAAOChCAUAAAAAAPBQhAIAAAAAAHgoQgEAAAAAADyUT1EXAADAP4nVapXVai3qMv4R0tLSbP/28uJ3DHfw8vKS2WyWyWQq6lIAAMUEoQAAAG6QnJysCxcuKCkpqahL+cfIzMyUj4+PTp06RSjgRmazWcHBwapQoYK8vb2LuhwAQBEjFAAAwEUWi0UnTpyQ2WxW1apV5efnxy+xbpCRkaG0tDT5+fnx5dUNDMNQRkaGEhMTFRcXp5SUFNWoUYPXFgA8HKEAAAAuOnfunLy9vVWrVi2+YLlRRkaGJKlUqVK8rm4UFBSkMmXK6Pjx47pw4YIqV65c1CUBAIoQ5+IBAOACwzCUnJysMmXK8MUVJYa/v79Kly6thIQEGYZR1OUAAIoQoQAAAC5IT09XRkaG/P39i7oUwCHBwcFKT09Xenp6UZcCAChChAIAALggMzNTkjhLACVO9pjNHsMAAM9EKAAAgBswsSBKGsYsAEAiFAAAAAAAwGMRCgAAAAAA4KEIBQAAAAAA8FCEAgAAAG4UHh6u8PDwoi4DAAC7+BR1AQAAAEXl5MmTWrJkiYKDgxUVFVXU5QAAUOg4UwAAgEJgGEZRl+CUklq3vWJjYzVlyhTNnTu3qEsBAKBIcKYAAACFwGQyaf2uU4pPTCvqUuxWJshPtzUNLeoyAABAASIUAACgkMQnpulyQskJBQAAwD8foQAAACg0nTp1UmxsrObOnavg4GBNnTpV27ZtU3JysurUqaNevXqpb9++8vL6vyscN2/erKioKFWrVk2rV6/W119/rYULF+rw4cNKSkrSli1bVLp0aUnSvn37NGPGDG3ZskWXLl1SYGCgmjRpor59+6pz5845annssce0efNmSVmXEVw7OeCBAwcK5DVYs2aNFixYoF27dik+Pl5lypRRixYtNHDgQN18883XtX/11Ve1ZMkSDRs2TAMGDNC0adO0bNkynT17VuXKlVPnzp01fPhwlSlTpkDqBQD8sxEKAACAQrdjxw5NmzZNXl5eqlu3ruLi4rR//36NGTNG27dv17vvvpvrem+88Ya+/PJLVa5cWXXr1tWJEydsy7799luNHDlSVqtVwcHBCg8P17lz57R27VqtXbtWjzzyiEaPHm1rHxYWpri4OB08eFC+vr5q3LhxgT7nzMxMjRw5UosXL5YklStXTjfddJNOnjyp5cuXa9WqVRozZox69uyZ6/oJCQnq06ePDh06pHr16qlGjRo6duyY5s+frz///FMLFiyQr69vgT4HAMA/D6EAAAAodFOmTFHHjh01fvx4BQcHS5JWrVql559/XkuXLlXr1q314IMP5ljnzJkzWrJkiSZPnqw77rhDkmSxWOTj46O///5br7/+uqxWq/r376/nn3/e9gU5Oyz44osv1KhRI9t2R40apU2bNqlfv36qWLGivvzyywJ9ztOmTdPixYtVu3ZtjRs3Ti1btpSUNZnjV199pbFjx+qNN95Qs2bNVL9+/evWnz9/vho2bKiVK1eqevXqkrLOZhg4cKD27t2rb7/9Vr169SrQ5wAA+Ofh7gMAAKDQBQcH65133rEFApLUpUsXPfnkk5KkTz/99Lo7H2RkZOjZZ5+1BQKS5OvrKy8vL82aNUvp6elq3ry5Xn311Ry/mHfv3l39+vWTJE2fPr0gn1aeLl++rBkzZsjX11fTpk2zBQJS1iSUffv21WOPPab09HTNmTMn122YTCa9//77tkBAksLDw/XEE09IyrosAQAARxEKAACAQtezZ0+VKlXquscfeeQRSdKJEycUExNz3fIePXrkur3ff/9dkmxf/q/Vv39/23aPHj3qTMku+e2335SSkqJbb71V9erVy7VNly5dJMk2z8G1br/9dlWrVu26x7PnIbj6UgoAAOzF5QMAAKDQ5fXFuFy5cipXrpwuXbqko0ePqmrVqrZlISEhKleu3HXrJCQk6MKFC5Ky5gnITaVKlVS2bFnFxcXpyJEjqlOnjhuehf2yJy38+++/1bdv31zbpKVl3ZnizJkzuS6vVatWro9XqFBBkpSUlORqmQAAD0QoAAAACl358uXzXFahQgVdunTpui+5AQEBuba/ut2NtluxYkXFxcUVyZfnhIQESdL58+d1/vz5G7ZNTU3N9fG8nr/JZHKtOACARyMUAAAAhe7ixYt5Lsv+1T8wMNCubV3d7uLFiwoJCcm1XfaXcXu3607ZX+gffvhh/fe//y30/gEAyAtzCgAAgEJ3+PDhXB+/dOmSLl26JEl2n+IfHBxsO4X+4MGDubY5d+6c4uLiJEl169a1PV5Yv7LfdNNNkrIuHwAAoDghFAAAAIVu0aJFtmvorzZ//nxJUvXq1VW7dm27t9e+fXtJ0ty5c3NdPnv2bElSzZo1c4QN2ZMd5nXKvrt07NhRfn5+2rp1q3bt2lWgfQEA4AhCAQAAUOiuXLmil19+WYmJibbHVq9erc8++0yS9OSTTzr0K/6AAQNkNpu1Y8cOvf3227JYLLZl33//vS0sGDx4cI71sm/vd/HixTzPXnCHChUqaNCgQTIMQ08//bRWrVp13S0XY2NjNXPmTH399dcFVgcAANdiTgEAAFDohg0bpmnTpqldu3aqV6+eLl++rNjYWEnSXXfdpd69eyszM9Pu7d10000aN26cRo4cqVmzZumbb75RrVq1dO7cOZ09e1ZS1vX8DzzwQI71ypUrp7Zt22rdunXq0aOHbrrpJtv1//PmzXPTs80ydOhQXb58WZ9//rmGDh2qMmXKqEaNGjIMQ+fOnbPNeTBs2DC39gsAwI0QCgAAUEjKBPkVdQkOKch6mzdvrq+++kpTp07V1q1blZycrLCwMPXu3VsPP/ywU9f6d+/eXeHh4ZoxY4Y2b96s/fv3KzAwUO3atVPfvn3VpUuXXNd79913NWnSJP3xxx/av3+/rFarq08vVyaTSaNGjdJdd92lL7/8Utu3b7fNgVCpUiXddddd6tKlizp06FAg/QMAkBtCAQAACoFhGLqtaWhRl+EwwzAKbDK+hg0baurUqfm2a9WqlQ4cOGDXNhs0aKD33nvPoTrKlSuncePGObTOjeRX66233qpbb73V7u1NnDhREydOzHN59erV7X59AAC4FnMKAABQCErqveRLat0AAMA+hAIAAAAAAHgoLh8AAADIxdixY7V3716723/00UeqWLFiAVYEAID7EQoAAADk4uDBg9q+fbvd7dPS0gqwGgAACgahAAAAKDSrV68u6hLs5u5bEgIAUBwxpwAAAAAAAB6KUAAAAAAAAA9FKAAAAAAAgIciFAAAwA0MwyjqEgCHMGYBABKhAAAALvHyyvpTmpGRUcSVAI7JHrPZYxgA4Jn4KwAAgAvMZrO8vb2VkpJS1KUADklISJDZbJbZbC7qUgAARYhQAAAAF5hMJgUEBCg+Pp6zBVBipKSk6MqVKwoODpbJZCrqcgAARcinqAsAAKCkq1SpkmJiYnTs2DGVK1dOfn5+fNFyg4yMDKWlpUmSvL29i7iaks8wDGVkZCghIUFXrlyRn5+fKlSoUNRlAQCKGKEAAAAu8vX1VfXq1XXhwgWdPn26qMv5x8jMzJTVapWPjw/XvbuR2WxW2bJlVaFCBcIWAAChAAAA7hAQEKCaNWvKarXKarUWdTn/CCkpKTpy5Ihq1qwpf3//oi7nH8HLy0tms5kzWQAANoQCAAC4kY+Pj3x8+PPqDpmZmZIkPz8/lSpVqoirAQDgn6nEfWrZuHGjoqOjtXPnTiUnJys0NFRdu3bVoEGDFBAQ4NQ2ly9frs8//1z79+9Xenq6atWqpfvvv1/9+vVjRl4AAAAAwD9WibpAb968eYqKitKaNWvk5+enevXqKTY2VtOnT1fPnj0VFxfn8DbffvttPfvss9q8ebPKli2rmjVr6u+//9b//vc/9e/fXxaLxf1PBAAAAACAYqDEhAK7d+/W+PHjJUljxozRmjVrtGTJEq1atUqNGjXS4cOHNWrUKIe2uXLlSs2aNUu+vr6aNm2aVq5cqe+//14//PCDqlevri1btmjSpEkF8XQAAAAAAChyJSYUmDZtmjIzM9WtWzf17t3bNkFO5cqVNWnSJHl5eWnFihXav3+/3ducMmWKJOnJJ59U586dbY/Xq1dP48aNkyR98cUXunTpkhufCQAAAAAAxUOJCAWSkpK0du1aSVKvXr2uW167dm21adNGkrRs2TK7thkTE2MLEHr37n3d8sjISNWqVUsWi0W//PKLs6UDAAAAAFBslYhQYN++fbJYLPL19VXTpk1zbdOiRQtJ0s6dO+3a5p9//ilJqlGjhipXruyWbQIAAAAAUJKUiFDg6NGjkqTQ0NA87wZQs2bNHG3zExMTk2M9d2wTAAAAAICSpETckjA+Pl6SVKZMmTzbZC/LbuvObV65csWubeYmPT39/7V35wFRlfv/wN8sw6IgaguuidtBDVxyS715vYiKu5LXrNRwI029mVpRWteti9fcF1zwimI3LUWIRMUUQwVBAxTwJqgEigmyyCLrIM/3D35zfozMIBAw0Lxff8E853nO55x5BuZ8zvM8B0IIREdH17iN+iKEgKGhIVo1KcHL5qLO92doWICYmBgIUff7otonhICBgQFu374tr/FBVBn2Gaou9hmqCQMDA36XoSrj35k/BwMDA7xoWoKWinr43BsYICYmBqWlpQ26zyiVyirH1yiSAkVFRQCgdZQAAJiYmKhtW5ttFhYWVqlNTVRvREPuMCqqGM1M67dbNIZzQxUZGBjA0LBRDDaiBoJ9hqqLfYZqit9lqKr4d+bPw8ykfj/3Db3fGBgY/LmSAqampgDKsh3aFBcXq21bm22amZlVqU1N+vTpU+O6RERERERERHWpYac3/p+qTA2oynSA8po1a1blNlXbEhEREREREf2ZNIqkgI2NDQDg999/13pn/969e2rbPk/Hjh0BAElJSVq3qW6bRERERERERI1Jo0gKdO/eHQqFAsXFxVoX7IuIiAAA9O7du0pt9urVCwCQnJyM1NTUWmmTiIiIiIiIqDFpFEkBCwsL/OUvfwEAfP/99xXKExMTERYWBgBwcnKqUpsdO3aEJEkAgO+++65C+ZUrV5CUlASFQoHhw4fXNHQiIiIiIiKiBqtRJAUA4IMPPoCBgQF++OEHfPfdd/KjXx49eoSlS5eitLQUjo6O6Natm1o9BwcHODg44MyZMxXaXLRoEQDA09MTQUFB8usJCQlYuXIlAOCdd95By5Yt6+qwiIiIiIiIiHTGQDSiB6sePHgQ69evhxACrVu3RosWLXDnzh0UFxejY8eO+PbbbytcwNva2gIA3N3d4ezsXKHNf/3rXzh06BAA4JVXXkGTJk1w+/ZtPH36FH379oWXl1eVn2hARERERERE1Jg0ikcSqri4uMDW1hYHDhxAdHQ0MjIy0KZNGzg5OcHV1RVNmzatdpuff/45+vTpg2+//Ra//vorHj16hM6dO2PChAlwcXGBQqGogyMhIiIiIiIi0r1GNVKAiIiIiIiIiGpPo1lTgIiIiIiIiIhqF5MCRERERERERHqKSQEiIiIiIiIiPcWkABEREREREZGeYlKAiIiIiIiISE81qkcSUt0JDg7GsWPHcP36dWRlZcHKygrt27fHwIEDsXjxYhgbs6vou+TkZAwfPrxK2zo7O8Pd3b2OI6LG4vHjx/Dy8sKFCxeQnJwMpVKJli1bok+fPpgxYwb69eun6xCpAcnPz8c333yD06dPIzExEQDwyiuvYNy4cXjvvfdgYmKi2wCp3qWlpSEkJASxsbGIiYnBr7/+iqKiIgwYMACHDx+utK5SqcShQ4fg7++Pe/fuQaFQoFu3bpgxYwZGjhxZT0dA9a2mfSY6OhqRkZGIiYlBTEwMkpKSAADu7u5wdnaur/BJB2rSZ548eYILFy7g8uXLiImJwYMHD1BaWgpra2sMGDAALi4ukCSpno+kZnilp+dKSkrw2Wefwd/fHwDQunVrdOvWDVlZWYiNjUVUVBRcXV2ZFCCYmpritdde01peVFSEmzdvAgD69OlTX2FRA5eYmIjp06cjLS0NhoaGaNu2LSwsLHDv3j2cOXMGgYGBcHNzg4uLi65DpQYgIyMDLi4uiI+Ph6GhIbp06QJDQ0Pcvn0bGzduxJkzZ3Do0CFYWFjoOlSqRwEBATVKNBcVFWHWrFmIiIiAkZERunTpgoKCAly9ehVXr17FvHnzsHz58jqImHStpn3miy++wK1bt+ogImroatJnVq9eLV9DmZmZoUOHDhBCIDExET4+PvD398fq1avx5ptv1kXItYpXenpu1apV8Pf3h729PdasWYMePXrIZQUFBQgNDeVdGQIAvPTSSzhy5IjWcl9fX7i5ucHMzAxjxoypx8ioIfvnP/+JtLQ02NjYYNeuXejSpQuAsi/rW7duxYEDB/D1119j2LBhsLGx0W2wpHOffPIJ4uPj0alTJ+zZswcdOnQAADx48AAffPABYmNjsWbNGmzYsEHHkVJ9srCwwODBg2Fvbw97e3v873//g4eHx3Prff3114iIiEC7du3g6emJTp06AQDOnz+PJUuWwNPTE6+99hocHBzq+hContW0z7Rv3x6dO3eW661ZswZxcXH1EDHpWk37zLBhw/DOO+9g0KBB8jVTVlYW1q5di5MnT+KLL76AnZ0dbG1t6/oQ/hAmBfRYWFgYjh07hrZt2+LgwYMV7ryYm5tXebg40YkTJwAAI0aM4F08AlA2rC48PBwA8PHHH8sJAaBs5Mknn3yC8+fPIykpCZcvX2ZSQM/FxcXh8uXLAICvvvpKTggAQNu2bfHvf/8bkydPhr+/P95//3107txZV6FSPZsyZQqmTJki/56amvrcOunp6Th69CiAsv6kSggAwPDhwzF37lx4eHhg586dTAr8CdWkzwDAzp071X7nSFn9UZM+8/nnn6NFixYVXm/evDnWr1+PuLg43L59G8ePH8eKFStqNd7axoUG9ZiXlxcAYPbs2byIoz8kOTkZ165dAwDOuSNZcXExhBAAyuaEP8vAwADt27cHUDaVifRbREQEAMDa2lrjVKVu3bqhU6dOEELg9OnT9R0eNTJBQUFQKpWwsbHB66+/XqF82rRpAICbN2/i3r179R0eEf0JaEoIqCgUCvlvz2+//VZfIdUY0196qqioCCEhIQCAQYMG4c6dO/juu+9w9+5dmJiYoHv37pgyZQratm2r40ipMfDz84MQAm3atNH45Yv0U8uWLdGqVSukpKQgKiqqwmI7+fn58txNe3t7XYRIDUh2djaAsqSANq1atcKdO3cQFRVVX2FRI3X9+nUAQN++fTWWW1tbo127dkhOTsb169c1Ji6JiP6IoqIiAGWjrxs6jhTQU7du3YJSqQRQdndm0qRJ8Pb2RkhICC5cuAAPDw84OTnh5MmTOo6UGjohBHx9fQEAEydOhKEh/6zQ/7ds2TIYGBhgw4YNOHbsGNLS0lBQUIDo6GgsWLAA6enpmDBhgtYv7qQ/mjVrBqDyIZspKSkAgISEhHqJiRqv8k+u0EZV1hju4hFR41JQUIDz588D0J6cbEg4UkBPpaWlyT+rFhhcuXIlunXrhocPH2LLli04ffo03Nzc0KlTJ7UFCInKu3r1KpKTkwFw6gBVNGHCBFhaWmL37t1YuXKlWtlLL72EVatWycN4Sb+pRoukpqbi+vXr6N27t1p5XFycfPGmGlVApI2qj1hZWWndRlWWk5NTLzERkf7YsmULMjIy0LJlS7W1Choq3tLTU3l5efLPZmZm8PT0RM+ePWFiYoIOHTpg8+bN6N69O5RKJfbs2aPDSKmhU40S6NevH4dfkkZJSUnIyMiQH0loa2sLc3NzpKWlwdfXF7dv39Z1iNQA9OzZU04MuLm5IT4+Xi5LTEzE8uXL8fTpUwBAYWGhTmKkxkM1bFehUGjdRrVSOPsTEdWmkydP4tChQwCAtWvXNoq125gU0FOmpqbyz5MnT66QSTc0NJSfG3758mWUlpbWZ3jUSOTl5SEwMBBAWT8ietbq1avh7u6OFi1a4NSpUwgKCoK/vz/CwsIwZ84c3LhxA2+//TYePHig61CpAdi4cSNefvll/Pbbb5gwYQJGjBiBUaNGYfTo0UhKSsKECRMAAE2bNtVxpNTQqb7nqKZKalJcXAyg7OYIEVFtCAkJgZubGwDgo48+gqOjo44jqhomBfRU+SSAtsc6qR7fk5eXh6ysrPoIixqZwMBA5Ofnw9zcHE5OTroOhxqYW7du4ciRI1AoFNi2bRs6duwol5mZmeGTTz7BoEGD8OTJE+zdu1eHkVJDYWNjAz8/P8yaNQuvvPIKUlJSkJWVhREjRsDHxwddu3YFALz44os6jpQaOtUaFZVNNVGVqbYlIvojrl27hoULF0KpVMLV1RXz58/XdUhVxjUF9FT55/VqG1pXfjQBRwqQJqqpA6NGjWoUQ6OofkVEREAIgQ4dOmh9ksmQIUNw5coVxMbG1nN01FC98MILcHNzk++0lOfp6QmAT6ug57OxsUFkZCSSkpK0bqN6FKGNjU09RUVEf1ZRUVFwdXVFQUEBZsyYgWXLluk6pGrhSAE9ZW1tLX9Jv3//vsZtVK+bmpqiefPm9RUaNRL379/HtWvXAHDqAGlWfu2S51EN4yXSRqlU4tKlSwCA4cOH6zgaauhUC1VGRkZqLE9NTZUXyX12UUsiouqIjY3FvHnzkJ+fjylTpmDFihW6DqnamBTQY6NHjwYA/PjjjygpKalQfvz4cQBA//79YWzMQSWkzs/PD0IItG3bFgMHDtR1ONQAqaYLJCUlaV0zICQkRG1bIm28vLyQmZmJ9u3bw8HBQdfhUAM3fPhwKBQKJCYmIiwsrEL50aNHAQA9evRAhw4d6js8IvqTiIuLw5w5c5Cbm4vx48dj7dq1MDAw0HVY1cakgB6bM2cOLC0tkZycjDVr1sgr9Qoh4O3tjQsXLsDAwACurq46jpQaGiEE/Pz8AJSNEmiMf/yo7g0ZMgQvvPAClEolPvzwQ7VngRcWFmLDhg24cuUKAGDixIm6CpMakF9++QWXLl2SnzIAlPWVvXv3YsuWLTAyMsK6desqXVGeCChbd+Ktt94CAKxYsQIJCQlyWVBQEPbv3w8AWLhwoU7iI6LGLzExEbNnz0ZWVhacnJzw73//G4aGjfPy2kAIIXQdBOlOaGgoFixYgMLCQlhaWsLGxgYpKSlIS0uDgYEBPv74Y8yZM0fXYVIDEx4ejpkzZ8LAwAA//fQT2rdvr+uQqIEKDQ3FwoULkZ+fD0NDQ7Rp0wZNmzbFvXv3UFBQAAB499138eWXX+o4UmoIDh48CHd3d5ibm6Ndu3ZQKBT47bffUFBQAHNzc7i7u8uj3Eh/PHz4EJMmTZJ/Ly4uRn5+PoyNjdXWs5k7dy7mzZsn/15YWAgXFxdERUXByMgIXbt2RX5+vryWwOzZs/Hpp5/W23FQ/alpn/H09JQTRgDw5MkTlJSUoEmTJvIjLIGy0ZKtW7eu24OgelWTPjNnzhxcvnwZQNljdbWNrH7ppZewffv2ugu+FnBMuJ4bPHgwfvjhB+zduxehoaG4desWLCws4ODggFmzZmHAgAG6DpEaINUCg/3792dCgCo1ePBg+Pv74+DBgwgNDcXvv/+O1NRUNG/eHIMHD8bUqVMxbNgwXYdJDcTAgQPh7OyMqKgo/P7773j69ClatWqFoUOHwsXFReuClfTn9vTpU41PQSopKVF7vbCwUK3czMwM3t7eOHjwIH788UckJiZCoVBgwIABmD59OkaNGlXHkZOu1LTPFBYWaqyXn5+P/Px8tfbpz6Umfab8ekjR0dFa224M/7s4UoCIiIiIiIhITzXOSQ9ERERERERE9IcxKUBERERERESkp5gUICIiIiIiItJTTAoQERERERER6SkmBYiIiIiIiIj0FJMCRERERERERHqKSQEiIiIiIiIiPcWkABEREREREZGeYlKAiIiIiIiISE8xKUBERNRAnThxAra2tnBwcNB1KFXS2OLVpfDwcNja2sLW1lbXoTRqycnJ8nlMTk7WdThERI0SkwJERHpux44d8pfqXr16ITU1Veu25b+Ah4eH12OUDc+5c+ewY8cOnDt3TtehEBEREdUYkwJERCQrLCzErl27dB1Go3Du3Dns3LmzTpMClpaW6NixI9q3b19n+6hNjS1eavwUCgU6duyIjh07QqFQ6DocIqJGyVjXARARUcPi4+ODWbNmoWPHjroORe+NGDECI0aM0HUYVdbY4qXGz9raGmfOnNF1GEREjRpHChAREQCgdevWsLW1RUlJCbZs2aLrcIiIiIioHnCkABERAQAMDQ2xbNkyuLq6IjAwENHR0ejZs2e12lAtmubt7Y0uXbpg3759+Pnnn5GSkoLCwkLExcVVqR03Nzf4+vpi8uTJcHd3x9GjR+Hj44OEhAR5P++88w7Gjx+vsf6MGTNw9epVLFq0CPPnz8fhw4dx8uRJ3Lt3D7m5ufD29sbAgQPl7c+ePQsfHx/ExMQgJycHzZo1g729PaZMmVLhznd4eDhmzpwp/+7r6wtfX1+1bZ5tHwDi4+Nx+PBhhIeHIzU1FYaGhmjXrh0cHBzw3nvvoWXLlhWO48SJE/jss8/Qtm1bBAUFqZXt2LEDO3fuxIABA3D48GFcuXIFXl5eiI6ORl5eHtq1a4exY8di3rx5MDU11XieLl26hO+++w7R0dHIzMyEiYkJWrRogQ4dOmDIkCF488030bx5c411NanreKsiMzMThw4dQnBwMO7fv4/i4mK8/PLLGDhwIGbNmoWuXbtqrHf9+nX89NNPiIqKwsOHD5Geng5TU1N06tQJjo6OePfdd9G0adNK933jxg0cPXoUv/zyCx49egQjIyO0atUKvXr1wpgxY/DGG29orZuUlIQ9e/YgNDQUGRkZaNmyJYYOHYrFixfD2tq6Rufi7t27OHjwIK5evYqUlBSUlpaiZcuWsLa2xuuvv46JEyeic+fO8vbl+3ZcXBxiYmLg6emJyMhIZGdno1WrVnB0dMSCBQvQrFkzrfstLi7GsWPHcObMGcTHxyMvLw9WVlbo2bMnpk2bhr/+9a+Vxl2d85icnIzhw4cDAM6fP4927dpVaK+0tBQnT57Ejz/+iJs3byInJwcWFhbo0aMHnJ2dMXbsWBgYGFSoV1JSAh8fH5w8eRLx8fF48uQJLCws0Lx5c3Tv3h1DhgzB3//+98rfBCKiRoBJASIikv31r3/FgAEDcPXqVWzcuBHe3t41aufevXtYunSpfGFlbFzzfzdLly7FqVOnYGhoCEtLS+Tk5CAyMhKRkZEIDQ3Fv/71L41f6AGgqKgIM2bMQFRUFIyNjdG0aVO1bYuLi/Hpp5/i1KlTACDv4/Hjx/j555/x888/Y9y4cVi/fr08X1mhUODFF19Ebm4uioqKYGpqCktLS7X9Pju32dPTE5s3b0ZpaSkAwNzcHEqlEvHx8YiPj4ePjw/27duHHj161Ogc7d+/Hxs3bgRQNq9fqVQiISEBO3bswNWrV+Hl5QUjIyO1Ojt37sSOHTvk383NzSGEQHJyMpKTkxESEgI7O7sKyY3aUJN4qyI0NBQffvghcnJyAJS9DwqFQj4mf39/rFu3DpMmTapQ96233pJ/Njc3h7m5ObKzs3Hjxg3cuHEDP/zwA7y9vfHCCy9UqPv06VO4u7vj8OHD8mtNmjSBsbExEhIScPfuXfz000/45ZdfNMYdFhaGBQsWID8/H02bNoUQAqmpqTh27BiCg4Nx/PjxaicGQkJCMH/+fBQXF8vnwtzcHCkpKUhJScGNGzegUCiwePFijfXPnTuHJUuWQKlUwsLCAkII3Lt3DwcOHEBgYCC8vb01XoA/ePAA77//Pm7fvg0AMDAwgIWFBdLT0xEUFISgoCBMmzYNq1evrvXzqElWVhYWLVqEa9euya+pPuMhISEICQlBQEAAtm3bBhMTE7VYXF1dERISolYvPz8fWVlZSExMxOnTp5kUIKI/B0FERHpt+/btQpIk8be//U0IIURUVJSQJElIkiSCg4PVtr1//75cFhYWVqEtVVnv3r3FqFGjRGhoqHj69KkQQoiEhIQqx/Tpp58KSZJE3759ha2trdi1a5fIzc0VQgiRkZEh1qxZI+/r0KFDFepPnz5djqN3797Cx8dHFBQUCCGEyMzMFI8fPxZCCLF+/XohSZKwtbUVW7duFdnZ2UIIIbKyssTmzZvlfXz99ddaY/z0008rPZbvv/9ejmX37t3i0aNHQgghSkpKRExMjJg5c6aQJEkMHTpUPHnyRK2uj4+P2ntTnup969evn+jWrZvYtGmTyMjIEEIIkZubK7Zt2ybHf+zYMbW6ycnJolu3bkKSJOHu7i5SUlLkspycHHHt2jWxatUqERMTU+mxPauu4q2KW7duiZ49ewpJksTKlSvFnTt3RElJiRBCiAcPHohVq1YJSZJEjx49RHR0dIX677//vggICJDfHyGEKCgoEGfPnhWjRo0SkiSJhQsXatz3hg0b5Ng/++wztb6ek5MjfvrpJ7FkyRK1OmFhYXKd/v37i/nz54s7d+4IIYQoKioSAQEBok+fPkKSJPHxxx9X+3w4OjoKSZLE7NmzRVxcnPx6YWGhiI+PFzt27BA+Pj5aY+rbt6+YPn26HJNSqRQBAQGif//+QpIk8eabb8rnVyUvL084OTkJSZLE9OnTRXh4uCgqKpLPg5eXl+jdu7eQJEkcPHiwVs5j+b9J9+/fVysrKSmR/xZMnDhRBAUFifz8fDlWX19fMWjQICFJkvjqq6/U6vr5+QlJkoS9vb34/vvv5c9maWmpSE9PF2fPnhWLFy9+/htBRNQIMClARKTnnk0KCCHEwoUL5S/SpaWl8utVTQq89tpr4uHDhzWOSXXBLUmS2Lp1q8Ztli9fLiRJEgMGDBCFhYVqZaoLAUmSxPnz5zXWT0lJET169BCSJIlNmzZp3Mbd3V1IkiReffVVkZqaqjHGypICubm5ol+/fkKSJHHx4kWN2yiVSjF58mQhSZLw8vJSK6vKRbYkSWL79u0a2160aJGQJEm4uLiovR4QECAkSRIjR47UGntN1FW8VaFKrmh7L4UQYu3atUKSJLFgwYJqtZ2SkiLs7OyEra2tePDggVpZQkKCnGDZsGFDldssfwE+Y8YMOXlWnre3t5AkSfTs2VMolcoqt52eni63/Wy/rWpMI0eOlBNp5YWEhMjbnDp1Sq1s586dckKguLhY4z7Onj0rJEkSAwcOVDummp7HypICvr6+QpIk4eTkJHJycjTWj4mJEba2tuLVV18V6enp8uv//Oc/hSRJ4osvvqhyLEREjRUXGiQiogo++ugjGBkZ4ddff8XJkyerXX/ixIlo1arVH47DzMwMc+bM0Vi2cOFCAGXDg8sP8S2va9eucHBw0FgWGBiIkpISmJqawtXVVeM2CxYsgImJCZRKJQIDA6sd/9mzZ5GTk4MePXponU9ubGyMcePGAQAuX75c7X2YmJhg9uzZGstUc62fXctBNR88Ly8P+fn51d7nH1GTeJ8nOTkZYWFhMDY21to2AHnawJUrV/D06dMqt29tbY1u3bpBCIGoqCi1Mj8/P5SWlqJ58+b4xz/+Ua24VebPnw9Dw4pfyVTno7CwEElJSVVur2nTpnJ7aWlpNYpp7ty5MDMzq/D64MGD0adPHwCQp92o+Pj4AABcXFy0Ph7Q0dERFhYWePz4MW7evCm/Xhvn8VmqeN5+++0KU3xU7Ozs0LVrVyiVSoSHh8uvqz4jNT1/RESNCdcUICKiCjp37gxnZ2ccO3YM27Ztg5OTU7WeAf7aa6/VShx2dnawsLDQWGZjY4NWrVohJSUFsbGxGi/+K4sjNjYWAGBvb691H1ZWVrCzs0NkZKS8fXVERkYCKFvwbciQIVq3KywsBAD8/vvv1d5H165dtS6A9/LLLwMAsrOz1V7v2bMnWrRogbS0NEydOhXTpk3DoEGD0KlTJ63rM9SWmsT7PKrzXFpairFjx2rdTpUIUM0LL78+QGlpKQICAhAQEIBbt24hMzMTRUVFFdpISUnRuO8hQ4bUeIFEbQt6qs4HUJb8qiozMzMMGjQIISEhmDt3LqZNm4Zhw4ahe/fuavPmK/P6669XWhYVFaX2mUhNTcWDBw8AACtWrMCXX36ptb4qEfXgwQP06tULQO2cx/KePn2K69evAyhbP2Pv3r1at1X1N1X8ADB06FDs27cPQUFBmDt3LiZNmoT+/fvXeNFHIqKGjEkBIiLSaPHixfjxxx9x//59HD16FDNmzKhyXU2LsdXE876AW1tbIyUlBRkZGRrLNa3or6Kq87x9qEY8aNtHZR49egSgbMFDTReYz1IlB6qjshXxVYv1lZSUqL3erFkzbN68GcuWLcPt27exdu1aAGULqfXr1w+jR4/GmDFjqpUIqst4n0d1nktLS5Genl6lOgUFBWo/v//++2p3ihUKBZo3by4vkpmdnQ2lUqlWD4C8vzZt2lQr5vK0JaXKL9BZ3XOybt06LFiwALdu3YKHhwc8PDygUChgb2+P4cOHY8qUKZU+WaKyz4WqrPxnIjU1Vf758ePHVYqxfH+vjfNYXnZ2trzIYlWTTOXj6devH5YvX46tW7fi0qVLuHTpEoCyvweDBw/GxIkTK02cEBE1JkwKEBGRRtbW1pg+fTr279+P3bt3w9nZucp1NQ2F1oWarGBfm1R3pseMGYMtW7boNJZnDR48GOfPn8fZs2cRFhaGqKgoJCYm4sKFC7hw4QI8PT3xn//8p1HcGVU91eHFF1/UOpWkMnv27EF4eDjMzMzw0UcfYeTIkWjdurXaqIl33nkHEREREEKo1a3rkRU11aZNG/j6+iIkJATBwcGIjIxEXFyc/OSOffv2Ydu2bRg0aFCt7E/1HgBl0wrKP+qwKmr7PJafHuLp6YmhQ4dWu425c+di/PjxOH36NK5du4aoqCikpKTgxIkTOHHiBEaNGoVNmzbVSfKMiKg+NYxvbURE1CC5urrCysoKGRkZ8PLyqvf9l7/7WFl5TUYmqOo8Oxz8WarymuzjpZdeAlCzaQH1oUmTJpg0aRLWr1+PwMBAXLx4EcuXL4epqanaCIKG7sUXXwRQdoe6JmskBAQEAChbp8LFxQVt2rSpcJGqbQSCat8N8T02NDTEG2+8gZUrV+LEiRMIDw/Hxo0b0aZNG2RnZ2P58uXy3fRnVfbZ0/S5U50HoGbnorbPY/lRHn+kTWtra7i4uGDXrl0IDQ2Fv7+//BjCwMBAHDlypFbiJSLSJSYFiIhIKysrK8ybNw8AcODAAWRmZtbr/mNjY5GXl6exLCkpSb5gt7Ozq3bbqjqxsbHIzc3VuE1OTo7a2gPlqS4an71zXJ5qTYObN2/KQ9wbMmtra8ybNw+zZs0CgBrdddcF1Xl++vQpLl68WO36qn7UvXt3jeXJyclaF/pTLboXEhJSpSkiumRhYYHx48fjq6++AlCW6IiPj9e4bVhYmNZ2VNMsyn/u2rVrJ48quXDhQrVjq+3zqJoqUdN4tLG1tcW6devkPhcaGlprbRMR6QqTAkREVKkZM2agVatWyMvLg4eHR73uu7CwEAcOHNBYtnv3bgBldwQrW8RPm1GjRsHY2BhFRUXw9PTUuM2ePXtQXFwMhUKBkSNHqpWp5oHn5ORo3YeTkxOaNWsGpVKJ9evXV5pAKC0trbSt2qTt7rCKatX5hjIN5HlsbGwwYMAAAMCWLVu0JnlUnl20T/Ve3rp1S+P2mzZt0tqWs7MzjIyMkJWVhe3bt1cj6rrzvPe3/EJ+2t7jAwcOaLw4DwsLkxcFHD16tFrZ1KlTAQDHjx/H//73v0pjePY9qIvz+NZbbwEAgoODERwcXK14qvoZaajTR4iIqqNx/LcnIiKdMTMzw6JFiwDU7h23qrC0tISHhwf27t2LJ0+eAAAyMzOxbt06+Pr6Aih7bGBNViu3trbGzJkzAQD79u3D9u3b5YvynJwcbN26Ff/5z38AlD1irfxK8AAgSRIAICIiAnfv3tW4j2bNmuHzzz8HUDZE3dXVFTdu3JDnX5eWluLu3bs4cOAAxo4dW2/nd9++fZg7dy78/PzUpk8UFxfj1KlT8nEPGzasXuKpDV988QWaNGmCxMRETJ06FefOnVO7qE1NTYWfnx/ee+89bNy4Ua2u6nGRu3fvxtmzZ+VF/e7fv49ly5bh9OnTsLKy0rjfDh06yI/N3L9/P1asWIHExES5/MmTJzh16pT8CM36EBUVhfHjx+PgwYO4e/eu3N+EEIiMjMSqVasAlC2aZ2trq7GNtLQ0uLq6IiEhAUDZQodnzpzBhx9+CAB49dVXKyTKZs2aBUmSUFRUhJkzZ+Kbb75RW3QwJycHwcHB+OSTT/Duu++q1a2L8zhhwgQMHjwYQggsXLgQHh4eatMi8vPzERYWhtWrV8PR0VGt7gcffIDPPvsMwcHBasm6rKwseHh44MqVKwAa12eEiEgbLjRIRETP5ezsjAMHDsgXCPXF0dERRUVF2Lx5M7Zt2wYLCwvk5OTId9wnTZokX9jXxEcffYSHDx/i9OnT2LVrF3bv3g1LS0vk5ubKF1Ljxo2TL4TKGzlyJDZv3ozMzEyMGTMGLVq0QJMmTQAAmzdvRu/evQEAkydPRmFhIb766itcvHgRFy9ehImJCZo0aYK8vDwolUq5zfq66yiEUFtR3czMDGZmZsjOzpbPbefOneHm5lYv8dQGSZKwf/9+fPjhh0hISMDChQthZGQES0tLFBYWqq0s3759e7W6S5YsQWhoKNLT07F48WIYGxvD3NxcHnGwdOlSXL58GVevXtW47yVLliAvLw///e9/cfz4cRw/fhxNmjSBQqGQ+6ulpWXdHbwG8fHxcHd3h7u7OxQKBZo2bYonT57ICQ8LCwts2rRJ62Kc69evx5IlSzB69GhYWlqiqKhIvnvepk0bbNu2Te3pCEDZkyX279+Pf/zjH7h+/TrWrl2LdevWwdLSEqWlpXJiDyhLAjyrts+jkZERduzYgeXLl+PChQvYtm2b/HfE0NAQubm5cn9/9liKiorkBQVV5wuA2jGMGjVKXl+AiKgxY1KAiIiey8jICEuXLpVHDNSnzZs3o3///vDx8cFvv/0Gc3Nz2NraYtq0aZg0adIfatvExARbt27F6NGjcfz4ccTGxiInJwfNmzeHnZ0dpk6dihEjRmisa2VlhW+++Qa7du3CL7/8gszMTPmu6LPDrt9++2288cYb+O9//4vQ0FAkJycjNzcXFhYWaN++Pfr06QMHB4d6e8TZ1KlTYW1tjfDwcMTHx+PRo0d48uQJrKys0KVLF4wcORLTpk2rlefF16e+ffvizJkz+P777xEUFITbt28jNzcXpqam6Ny5M1599VUMHToUw4cPV6vXtm1b+Pj4YMeOHbh48SIyMzNhamqKfv36Yfr06fjLX/6Cy5cva92vkZERvvzyS4wdOxZHjhxBREQE0tPTYWxsjC5duqBXr14YN25cXR++zN7eHlu3bkV4eDiio6Px6NEjZGVlwcTEBF27dsWQIUMwc+bMSp8s4ejoiCNHjsDT0xMREREoLCxEu3btMHLkSMyfP1/ryAlra2t8++23OHPmDE6ePInY2Fg8fvwYhoaGaNu2LSRJwqBBgypMPQDq5jxaWFhgz549CA4Ohp+fH65fv4709HQIIWBtbY0uXbpg4MCBFeJZuXIlLl68iGvXriEpKQlpaWkoLi7Gyy+/DDs7O0yePLnCSAkiosbKQFQ2wZGIiEgH3Nzc4Ovri8mTJ2P9+vW6DodIL4SHh8sjb+Li4nQcDRER1ReuKUBERERERESkp5gUICIiIiIiItJTTAoQERERERER6SkmBYiIiIiIiIj0FBcaJCIiIiIiItJTHClAREREREREpKeYFCAiIiIiIiLSU0wKEBEREREREekpJgWIiIiIiIiI9BSTAkRERERERER6ikkBIiIiIiIiIj3FpAARERERERGRnmJSgIiIiIiIiEhPMSlAREREREREpKf+D96Lx/UDnfvsAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=protein_df.groupby(\"species\", as_index=False).count(), stat=\"count\", bins=30)\n", + "plt.xlabel(\"Nr proteins in each species\")\n", + "plt.ylabel(\"Counts of proteomes\")\n", + "plt.title(\"Distribution of number of proteins per species\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "680634ac-3a01-4ab7-8676-01983498df2e", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:48.133693Z", + "iopub.status.busy": "2024-10-18T00:52:48.133375Z", + "iopub.status.idle": "2024-10-18T00:52:48.320073Z", + "shell.execute_reply": "2024-10-18T00:52:48.319383Z" + }, + "papermill": { + "duration": 0.193402, + "end_time": "2024-10-18T00:52:48.321443", + "exception": false, + "start_time": "2024-10-18T00:52:48.128041", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Number of proteins per genome')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/0AAAMVCAYAAAAlKJSPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABruUlEQVR4nO3dd2AU1f738c+mQBIChN4lgIZIU4pUFRRs1IAIWCiCoihX7lW5Fq6ooIBdiogKCiICoiSAdAS9l670EkBKKKGDSQjpyTx/8GR/xPTsZjecvF9/JTvnzPlOdneyn52ZMzbLsiwBAAAAAADjeLi7AAAAAAAAUDgI/QAAAAAAGIrQDwAAAACAoQj9AAAAAAAYitAPAAAAAIChCP0AAAAAABiK0A8AAAAAgKEI/QAAAAAAGIrQDwAAAACAoQj9AIAs1a9fX/Xr19fkyZPdXUqRlZqaqlmzZql3795q1qyZ/W/23HPPubs0o5w6dcr+t124cKG7ywEA4Ibi5e4CAKCo2bJliwYMGGD//aGHHtKnn36aY59XX31VoaGhkqSDBw8WZnkoQl588UWtWLHC3WUAAABki9APALlYsWKFDh48qPr167u7FBQh27dvtwf+Dh06aODAgapQoYJsNpv8/f3dXF3hS38/DB8+XP/4xz/cXA0AAMgOoR8AcmFZliZPnqwpU6a4uxQUIRs3bpQkeXp66qOPPioWQd9datasyRk0AAAUENf0A0AOypUrJ0lavXq19u/f7+ZqUJScP39eklShQgUCPwAAKLII/QCQg/79+6tEiRKSpEmTJrm5GhQlSUlJkiRvb283VwIAAJA9Tu8HgBxUq1ZNffv21ezZs7Vu3Trt3r1bTZo0yfd67r33XkVGRqpnz56aMGFCtu3SJwSsUaOG1q5dm2HZqVOn1LFjR0nS+PHj1atXL61atUrz5s1TeHi44uPjddNNN+mRRx5Rv3797GHUsiz9/PPP+uGHH3T48GHFxcWpbt266tOnj/r16yebzZanbdi4caO+/fZb7d27V9HR0apcubLat2+vZ555RlWqVMm1/759+zR//nxt2bJF58+fl2VZqlKlilq3bq1BgwapTp06WfZbuHChXnvtNUnSL7/8osqVK+v777/XsmXLdPz4cUVFRRX4uvKDBw/qu+++05YtW3Tu3Dl5eHioevXqateunQYMGKCaNWtm6vP3uR0iIyMzPZafU9Gvv3Tk4MGDiomJ0cyZM7Vy5UqdPn1a3t7eql+/vvr27auuXbtmu56/v8b27t2r7777Tlu3btX58+eVnJycqa6CbH/6OOmmTJmS6dKX7F7nx48f15w5c7Rp0yadPn1aycnJqlSpku644w49/vjjaty4cZbbltVrP6e/YWJiombPnq2lS5cqIiJCklSvXj2FhISoX79+8vLK/uPPpk2btGDBAu3cuVMXL16UzWZT+fLlValSJTVv3lx333232rRpk23/7DjreU6XmJioBQsWaPXq1Tp8+LCio6NVunRp1a9fX126dFHPnj2z3c6CvFby4q+//tJXX32lX375RWfOnJG/v7/q16+vxx57TPfdd1+m93JWry9nb9vRo0f19ddfa+PGjTp//rzKlCmjpk2b6umnn9btt9+e6zatXbtWYWFh2rlzpy5fvqxSpUopMDBQHTt21OOPP65SpUpl2S+r/dacOXO0ZMkSHT9+XJ6enqpfv76GDBmiDh062PvFxsZq7ty5Wrp0qU6cOCEPDw81btxYQ4cOzdPrrqDvMQBmI/QDQC6GDh2qBQsWKCEhQRMnTtSMGTPcXZIk6a233tLcuXMzPHbw4EG988472rp1qz799FOlpqbq5Zdf1sqVKzO0279/v9566y3t379fY8eOzXWsKVOmZLp136lTpzRnzhwtXrxY06ZNU4sWLbLsm5aWpvfee0+zZs2SZVkZlkVERCgiIkI//vijRo8erb59++ZYx19//aXhw4crPDw815pz88UXX+jTTz9VWlpahscPHz6sw4cPa+7cuRo7dqxCQkIcHiuvTp48qcGDB+vEiRMZHt+6dau2bt2qNWvW6MMPP8wxtErS3Llz9c477yglJSXbNq7e/hkzZuiTTz5RcnJyhsdPnTqlU6dOKSwsTMOGDdOIESMcGufixYt66qmnMr1G9uzZoz179mj9+vWaOnWqPDwyn+w4btw4zZo1K9Pjp0+f1unTp7Vr1y4tXLhQW7ZscahGR5/nAwcO6Lnnnsvw5YskXb58WZs2bdKmTZs0f/58TZs2TRUrVsyxlry8VvLi4MGDGjx4sC5evGh/LDExURs3btTGjRvVt2/fPIVsZ27b6tWrNXLkSMXHx9sfu3TpktasWaN169bpww8/VOfOnbPsm5iYqJdeekmrV6/O8HhUVJR27typnTt3avbs2fryyy9166235lhHbGysXnzxRe3atSvD4+nP92uvvaZBgwbp9OnTGjp0qP78888M7TZu3KhNmzbp/fffV/fu3bMdx1XvMQA3HkI/AOSicuXKevTRR/XNN99o/fr1+uOPP7INuK4yb9487dq1S+3bt9cjjzyi6tWr68yZM/ryyy+1a9curVq1SgsXLtTBgwe1cuVKde3aVd26dVOlSpV0/PhxTZ48WUePHtUPP/yg++67T3fffXe2Y/3666/au3ev6tSpo6eeekr169dXbGysli9frgULFujKlSt65pln9PPPP6tatWqZ+o8dO1bff/+9JOmOO+5Qz549VatWLfn4+OjgwYOaNWuW/vzzT40ePVoVK1a0H9HNyqhRo3To0CGFhISoc+fOqlixos6cOZPvU+znzJmjjz/+WJJUvnx5Pf3002rWrJlSU1O1adMmzZgxQ3FxcXr11VdVrlw5tW/f3t53yZIlkqRPP/3UfgTPWV8E/etf/9KpU6fUr18/Pfjgg/L399fBgwf11VdfKSIiQsuXL1flypX1+uuvZ7uOPXv2aPHixapataqGDBmiRo0aKSUlRdu2bXPK9s+YMUPJycnq1q2bJOnRRx/VY489lqGGsmXLZvh9+vTp+uCDDyRdO1Pi0UcfVWBgoEqXLq1jx45pzpw52rFjh6ZOnapy5cpluGVmfg0fPlyHDx9W//79de+996ps2bI6duyYpk6dqiNHjmjdunX64Ycf1K9fvwz91q1bZw/86TXWq1dPpUuXVkxMjA4fPqyNGzdq9+7dBa4tnSPP8/Hjx/XEE0/oypUr8vf31+OPP64mTZqoatWqioqK0tq1azV//nzt2bNHzz33nObMmZPt+yMvr5W8iImJ0VNPPWUP/D169FDXrl1Vvnx5nThxQt9++63mz5+vAwcO5LgeZ27boUOHtGzZMlWqVEmDBw9Wo0aNZFmW1q9fry+//FKJiYl644031Lp1a5UvXz5T/1deecUe+IODg/Xkk0+qXr16io6O1tKlSxUaGqrz589r0KBBWrx4cY5nO40ePVr79u2zn/FQpkwZhYeHa9KkSTp//rzee+89tW3bVq+++qpOnjypoUOH6q677pKvr6+2b9+uyZMn68qVK3rrrbfUrl07VahQIdMYrnyPAbgBWQCADDZv3mwFBQVZQUFB1k8//WRZlmVdvHjRuv32262goCCrf//+mfq88sor9j5Zueeee6ygoCDrlVdeyXHs9PXcc889mZadPHnSPkZQUJD17rvvZmoTFxdnH6tly5ZW/fr1rZkzZ2Zqd/78eatp06ZWUFCQ9eyzz2ZZy/Vj9ezZ04qNjc3UJjQ01N7mhRdeyLR8/fr19uU//PBDluMkJCRYAwYMsG93cnJyhuU//fRThlqyW09eXbp0ybrtttusoKAg684777ROnz6dqc2+ffvsz/ddd91lJSUlZWqT03OVH5MmTcqwfUuWLMnU5sqVK1b37t2toKAgKzg42Dp48GCmNunPe1BQkNW1a1crOjo6y/Gctf3pY02aNCnH7fvzzz+thg0b2tumpaVlapOammq9/PLLVlBQkHX77bdbUVFRGZZf/9pPf09e7/q/YcOGDa3NmzdnavPXX39Zbdu2tYKCgqxu3bplWj5y5Ej785nVa/369RSEs57nvn37WkFBQVZISIh16dKlLMf67bffrODgYCsoKMiaP39+puV5fa3k1bvvvmtfX1b7m5SUFGvYsGEZtv/kyZOFvm09e/a0rly5kqnNokWL7G2++eabTMvXrVtnXz5w4EArMTExU5v58+fb24wYMSLT8uv3W/Xr17dWr16dqU14eLh9W1q3bm01atTI2rlzZ6Z2v/76a471OuM9BsBsTOQHAHlQoUIFPf7445KkLVu2aPPmzW6tp1q1aho5cmSmx319fe2nY0dFRem2227TwIEDM7WrVKmS7rvvPknK01G9MWPGZHntakhIiP0sgTVr1ujChQsZln/55ZeSpAceeECPPPJIlusuWbKkRo8eLena9fE5nTrdunXrbNeTVz/99JP9dN/XXnsty7MTGjRooKFDh0qSzp07pzVr1jg0Zl7dc889WV7P7e/vb78MIy0tTfPmzctxPW+++abKlCmT5TJXb//XX3+t5ORkNWrUSMOHD89yDgkPDw+98cYbKlGihOLi4jJdjpIfTzzxhFq1apXp8YCAAPtcAIcOHdKVK1cyLE8/St2gQYNsr9NOX4+jCvo8//HHH9qxY4ckacKECVkeoZaku+++Ww888ICka9eW5ySn10peJCUlKTQ0VJLUuHHjLPc3np6eGjNmjEqWLJntegpj28aNG5flnTW6deumypUr28f9uzlz5ki6Nknn+PHj7ZO5Xq9Pnz5q27atpGuXEaTfzSMrDz30kDp16pTp8eDgYDVv3lzStcsXBg4cqNtuuy1Tu/bt26tGjRrZ1uvq9xiAGw+hHwDyaMiQIfYwMHHiRLfWct9992V7WmtwcLD954ceeijbdaS3i46OVkxMTLbtgoKC1KhRo2yXP/zww5KklJQUbd261f54bGys/ff0D+nZqVevnv32iOkf/LOSfkq5IzZt2iRJKlOmjP2Lj6xc/+VCep/C9vcJ6q7XpEkT3XLLLZKuXeObnWrVquV4+Ymrt3/dunWSrr0Gcpo0skyZMgoKCpKU82sgNzm9Rho2bCjp2uSWp06dyrCsUqVKkqTff/8907X2zlbQ5/mXX36RJNWpUyfT5JF/d8cdd0iS9u7dm+31+rm9VvJiz5499v1HTtebV6xYUXfeeWe2y529bUFBQRn2hdez2Wxq0KCBpGvzK1wvJSVFv//+uySpXbt2WX4pli79PfL3fd/fdenSJdtl19eYU7v098bf65Vc/x4DcOPhmn4AyKNy5cpp4MCBmjp1qrZv367//e9/uuuuu9xSS2BgYLbLSpcubf85uxnx/97u6tWr2R7ty2225+vvZnDo0CH7B9f9+/fbJ4l78cUX9eKLL+a4nnTXTwT2d7mFgbw4dOiQpGtHdHOaC6BixYqqUaOGIiMj7X0KW25/68aNG+vPP/9URESEkpKSsjwCmdvfyJXbHxkZqcuXL0uSPvroI3300Ud56pfTayA3devWzXbZ9XMNXL16NcOykJAQhYWFKSoqSl27dlXHjh115513qkWLFqpdu3aB68lKQZ/nvXv3SpKOHTuW5/dCcnKyoqOjs7wO3Bnvp+snnUv/UiU7jRo1sof7v3P2tuX0OpD+77Xw99fByZMn7WfC5HanluuPyv998r3r5XV/nVO79P3z3+t1x3sMwI2HI/0AkA9PPvmk/cPX32ezdyVfX99sl10/K7mPj0+e2qWmpmbbLqsP1Ne7fgbtqKgo+8+XLl3KsV92EhISsl329wniCiI6OlpS7tsl/d/R3/Q+hS2vf2vLsrI9OyO3U7Vduf2F8RrITV7fG39/zbdp00ajR4+Wj4+PEhMTtWzZMr3++uu6//77dffdd2v06NG5TkSXVwV9ntPDXX5dP3v99Rw5rT/d9fVld0p+XpY7e9tyeh1I//da+PvdK65/ref2PKW/P6SM+76/y+t+OC+v3b/X6473GIAbD0f6ASAfypQpo0GDBmnSpEnatWuX1q1bp3vuucfdZRWqnE4Xzcn1H07HjBmjpk2b5qlfTsE+q9usFVRBt6uo8/T0zFM7V2z/9a+B559/Xg8++GCe+uUW2ArL448/rgcffFBLlizRxo0btX37dl25ckXnzp3T/Pnz9cMPP+iZZ57Rv/71L7fUl/5FRXBwsH2m9rzIbmb5vL5WXMHZ2+YMN8I+4kZ7jwFwD0I/AOTTwIED9e233yoqKkqTJ0/OU+hP//D496M0fxcXF+eUGp0pt9NAr19+/SRn1//s4+Njv5bU3cqWLasLFy7k6fTW9IkJnXGGQV5cunQpx2uI02u22WwFPkrryu2//jXg5eVVZF4DOalQoYIGDRqkQYMGKS0tTeHh4Vq9erXmzJmjmJgYTZs2TY0bN85yYra8KujznP73jIuLKzJ/y+vru3z5co6XFOV0NL+obNv1r/Xc3iPXT1zqjAkeC+JGfI8BcD1O7weAfPL399eQIUMkSfv27bPfyzkn6RMA5jRhniRFREQ4XJ+z7dmzJ8/L0ycgk6Rbb73V/mXH9u3bC6e4Akj/ULx///5sJwGTrgWz06dPZ+hT2HL7W6df91y7du0sr+fPC1duf61atezXLBel10BeeXh4qGHDhvrnP/+pmTNn2h9fvny5Q+st6PN8/eRzf79ThrvcfPPN9p/37duXY9v07cpKUdm2WrVq2Y+C7969O8e21y+/ft/nSjf6ewyAaxD6AaAAnnjiCfv1npMmTZJlWTm2r1mzpqRrH4qza/vnn3/q4MGDzi3UCQ4dOqT9+/dnu/ynn36SdO1U4ZYtW9ofL1++vG6//XZJ0s8//1zga3adrU2bNpKufQGzatWqbNv9+OOP9ucqvU9hS7/1WVZ2795tn1Av/VZhBeGs7U+//VpSUlK26/D09FT79u0lSRs2bNCRI0cKXLe7NWzY0H4UOKfrt/OioM/zvffeK+natf7ffvutQzU4S+PGje2hc/Hixdm2u3jxotavX5/t8qKybV5eXva7A2zYsEFnz57Ntu2PP/5o73P9vs+VTHqPASg8hH4AKAA/Pz89/fTTkq6F4t9++y3H9ukfCM+fP6+ff/450/LY2FiNGjXK+YU6yRtvvJHlpQdLliyxb3unTp3s975ON2zYMEnXtu+FF17I8UyHpKQkzZkzR4mJiU6sPLOHH37YfiTvvffe07lz5zK1OXDggKZNmybp2jXDjpzKnR9r167VsmXLMj1+9epVvfnmm5KuHX3u27dvgcdw1vanT2KW2+3thg4dKk9PT6WlpemFF17IMUSlpqZq8eLFObYpLMuWLctxcrM9e/bYJ3lLv2d6QRX0eb7zzjvtM8rPmDEjy3Vc7+DBg1q7dq1DteamZMmSCgkJkXTtbzRr1qxMbdLS0jR69Ogc39tFadsef/xxSdfuDjBq1CglJydnavPjjz/av8S47777Mu37XOlGeY8BcB+u6QeAAnr00Uc1Y8YMXbhwQX/99VeObbt3767Jkyfbw/3x48d11113yWazae/evZo5c6bOnj2rBg0a5HhU3R0aNWqkvXv36uGHH9bTTz+toKAgXblyRStXrtT8+fMlXbt84d///nemvu3bt9eAAQP07bff6vfff1fnzp3Vr18/NW/eXAEBAYqLi9OJEyf0xx9/aPXq1YqOjlZISIj9KHJhKF++vEaOHKkxY8bo7Nmz6tWrl55++mk1a9ZMKSkp2rhxo2bMmKG4uDjZbDaNHTs2x1vbOVOjRo308ssv6/fff9cDDzwgf39/HTx4UF999ZWOHTsm6Vogye7+43nhrO1v2rSpTp06pbVr12revHlq1qyZ/Xnz9/e3nwlTv359/fvf/9b48eN1+PBhde3aVX369FHr1q1VsWJFJSYmKjIyUjt37tSKFSt04cIFLVmyRFWrVi3wNhbEhx9+qDfffFMdO3ZUixYtFBgYKD8/P0VFRWnbtm367rvvJF07spp+f/aCcuR5/uijj/TII48oKipK//rXv7R48WJ17txZgYGB8vDw0KVLlxQeHq5169Zp586dGjx4sP0oemEZPny4/bkbN26c9u3bp27duql8+fI6fvy4vv32W+3YsUNNmjSxnxKf1SR5RWXbOnTooAcffFArVqzQ+vXr1bdvXw0aNEh169ZVTEyMli5daj/DKSAgQK+99prTa8iPG+U9BsB9CP0AUEA+Pj569tlnNXbs2Fzbli9fXu+8845eeuklJSYmavLkyRlu+efj46P3339fv/76a5EL/R06dFCHDh00ZcqULD/c+vv76/PPP7dfwvB3r7/+usqWLavPP/9cFy5cyPFWh35+fi6ZUfzxxx/XlStXNHHiRF28eFHjx4/P1KZEiRIaO3as/dRZV/j00081aNAgff/99/r+++8zLX/ggQf06quvOjyOM7Z/yJAhWrlypZKSkuxHp9P17NlTEyZMsP8+aNAg+fn5ady4cbpy5YpmzJihGTNmZLleb2/vQv3SJycxMTEKDQ3N9vT7EiVK6O2331bjxo0dGseR5/mmm27SvHnz9MILL+jQoUNat26d1q1bl+1Y6fOJFKaAgABNnz5dTz75pC5fvqxFixZp0aJFGdr06tVLzZs3t4f+rJ7jorRt77//vlJTU7V69Wrt27dPI0eOzNSmcuXK+vLLLwv1DgJ5daO8xwC4B6EfABzQp08fTZ8+XWfOnMm17UMPPaQaNWroyy+/1LZt23TlyhVVrFhRrVu31pAhQ3TLLbfo119/LfyiC+Af//iHbr/9dn333Xfau3evoqOjVblyZbVv317PPPNMjkeMbDabhg8frh49emjevHnavHmzTp06pStXrsjHx0fVqlXTrbfeqjvvvFOdOnXK8Z7WzvTss8+qQ4cOmjNnjjZv3qzz58/Lw8ND1apVU7t27TRw4MBsv8goLLVq1dLChQv19ddfa/Xq1Tp9+rS8vLwUHBysPn36qHv37k4by9Htv/XWWzV//nzNmDFD27dv18WLF3O8vr9Pnz669957NW/ePG3YsEHHjh3TlStXVKJECVWuXFn169dX27Ztdf/99+d6v/fCMGvWLK1bt05//PGHjh07posXLyomJkY+Pj666aab1Lp1az322GOqVauWw2M5+jzXqVNHYWFhWr58uVatWqU9e/bo8uXLSk1NVUBAgOrUqaPmzZvrvvvuU8OGDR2uNy+Cg4O1dOlSffXVV1q7dq1Onz6tUqVKKSgoSH369FHXrl0zTIaYPg9AUd22kiVLasqUKVq7dq1CQ0O1c+dO/fXXX/Lz81NgYKA6deqkxx9/3CVfquRVUX+PAXAfm5Xb7FMAAKDQTJ48WVOmTJGkIjmRI5yD51kaNWqUfvzxR1WtWjXXeVAAAM7DRH4AAAAoVAkJCfrll18kSbfddpubqwGA4oXQDwAAAIecOHEi29uRpqam6q233rJPeNqzZ09XlgYAxR7X9AMAAMAhU6dO1e7du9W5c2fddtttqlChghISEnTw4EEtWLBA+/btkyS1bdtWHTp0cG+xAFDMEPoBAADgsCNHjuR4d45mzZrp448/zvJ2fQCAwkPoBwAAgEOGDh2qwMBAbdy4UZGRkbp8+bJSUlIUEBCgRo0aqXPnzurSpYs8PLiyFABcjdn7AQAAAAAwFEf6nWDHjh2yLEve3t7uLgUAAAAAUAwkJyfLZrOpadOmObYj9DuBZVnZzlgLAAAAAICz5TWDEvqdIP0If+PGjd1cCQAAAACgONizZ0+e2jGbCgAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKC93F5BXFy5c0IYNG7R3717t2bNH4eHhSkxMVMuWLTV79uws+8TGxmrdunVav3699uzZo8jISKWlpalKlSpq2bKlBg0apKCgIBdvCQAAAAAArnHDhP6lS5dq/Pjx+erz9ttva/HixZIkHx8f1a5dW5ZlKSIiQj/99JMWL16st99+Ww8//HBhlAwAAAAAgFvdMKHf399fbdu2VePGjdW4cWPt379fU6dOzbVfhw4d9Nhjj6lNmzYqUaKEJCkqKkpjx47Vzz//rDfeeEONGjVS/fr1C3sTAAAAAABwqRsm9Pfu3Vu9e/e2/37u3Llc+7z++usqV65cpscDAgI0YcIEHTx4UH/++ad+/PFHjRo1yqn1AgAAAADgbkZP5JdV4E/n7e2t1q1bS5KOHTvmqpIAAAAAAHAZo0N/bhITEyVJvr6+bq4EAAAAAADnu2FO73e2+Ph4/fLLL5Kk5s2bO7w+y7IUFxfn8HoKwmazuWVcAK5hWZa7SwAAAEARY1lWnrJgsQ39n3zyiS5duqTy5ctnmCugoJKTkxUeHu6EyvLH29tbDRo2kJdnsX0qAaOlpKZo/779Sk5OdncpAAAAKGLSJ6vPSbFMij///LNmzZolSRo7dqz8/f0dXqe3t7duvvlmh9eTXzabTV6eXvrit291Ojr3yQ0B3Diql62iZ9oP0C233MLRfgAAAGRw+PDhPLUrdqF/w4YNevXVVyVJ//rXv9SpUyenrNdms8nPz88p6yqI09HndPzSKbeND6DwMO8IAAAA/i6vl3kXq4n8fv/9dz3//PNKTk7W0KFD9eyzz7q7JAAAAAAACk2xCf07duzQ0KFDFR8fr/79++ull15yd0kAAAAAABSqYhH69+7dq6efflpxcXHq3bu3Ro0a5e6SAAAAAAAodMaH/oMHD2rIkCG6cuWKunXrprFjx3KLOwAAAABAsWB06I+IiNDgwYMVFRWlBx98UO+99548PIzeZAAAAAAA7G6Y2fvPnDmjkJAQ++9JSUmSpO3bt6tVq1b2x5966ik9/fTTkq7dju/ixYuSpNOnT+uJJ57Ict2VKlXSpEmTCqlyAAAAAADc44YJ/ampqYqKisr0eEpKSobHExIS7D+nfzEgSbt378523TVq1HBKjQAAAAAAFCU3TOivWbOmDh48mK8+s2fPLqRqAAAAAAAo+rjAHQAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQ3m5u4C8unDhgjZs2KC9e/dqz549Cg8PV2Jiolq2bKnZs2fn2Dc5OVmzZs3S4sWLdeLECXl7eys4OFj9+/fX/fff76ItAAAAAADAtW6Y0L906VKNHz8+3/0SExP15JNPatu2bfL09NTNN9+s+Ph4bd26VVu3btXTTz+tl19+uRAqBgAAAADAvW6Y0O/v76+2bduqcePGaty4sfbv36+pU6fm2u+DDz7Qtm3bVLNmTX311VeqW7euJOmXX37RP//5T3311Vdq1qyZ7r333sLeBAAAAAAAXOqGCf29e/dW79697b+fO3cu1z4XL17UvHnzJEnvvvuuPfBLUseOHfXUU09p6tSpmjJlCqEfAAAAAGAcoyfyW7t2rZKTkxUYGKjWrVtnWt6vXz9J0r59+3TixAlXlwcAAAAAQKEyOvTv3LlTktS8efMsl1epUkU1a9bM0BYAAAAAAFMYHfojIiIkSTfddFO2bdKXHTt2zBUlAQAAAADgMjfMNf0FER0dLUkqW7Zstm3Sl8XExDg0lmVZiouLc2gdBWGz2eTr6+vycQG4Tnx8vCzLcncZLmWz2dxdAoBCVNz2aQBQGCzLytNnJqNDf2JioiTJ29s72zYlSpSQJCUkJDg0VnJyssLDwx1aR0H4+vqqQYMGLh8XgOscO3ZM8fHx7i7DZby9vdWwYQN5ehr9LwootlJTU7Rv334lJye7uxQAuOGl59mcGP2JqmTJkpKU4z+VpKQkSZKPj49DY3l7e+vmm292aB0FwdEwwHx16tQpVkfFbDabPD29dOznrxR/6Yy7ywHgRL4VqqlO16d1yy23FKv9GgAUhsOHD+epndGhv0yZMpL+7zT/rKQvS29bUDabTX5+fg6tAwCyUlwv4Ym/dEbx57izCmCi4rpfAwBnyusBYKMn8gsMDJQkHT9+PNs26bfqS28LAAAAAIApjA79t99+uyRp+/btWS4/d+6cTp06laEtAAAAAACmMDr0d+zYUd7e3oqIiNDmzZszLZ83b54kqUGDBqpdu7arywMAAAAAoFAZHforVqyovn37SpJGjRqlo0eP2petXbtW06dPlyQ9//zzbqkPAAAAAIDCdMNM5HfmzBmFhITYf0+fdX/79u1q1aqV/fGnnnpKTz/9tP33kSNHat++fdqxY4e6du2qW265RXFxcfZr+QcPHqxOnTq5ZiMAAAAAAHChGyb0p6amKioqKtPjKSkpGR5PSEjIsNzHx0fffvutZs6cqSVLligiIkLe3t5q2bKlnnjiCT3wwAOFXDkAAAAAAO5xw4T+mjVr6uDBgwXqW6JECQ0dOlRDhw51clUAAAAAABRdRl/TDwAAAABAcUboBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoBwAAAADAUF7uLsBV/vrrL33zzTdat26dTp06peTkZJUvX15NmzZV//791aJFC3eXCAAAAACAUxWLI/0RERHq1q2bvvjiCx0+fFgVKlTQzTffrNjYWK1YsUJPPPGEZs6c6e4yAQAAAABwqmIR+t98801duHBBgYGBWrJkidasWaOwsDBt2rRJgwcPlmVZ+uCDDxQREeHuUgEAAAAAcBrjQ39sbKy2bNkiSRo5cqRuvvlm+7KSJUvq3//+t2rXrq2UlBStX7/eXWUCAAAAAOB0xof+pKQkWZYlSbrpppsyLbfZbKpVq5YkKSUlxaW1AQAAAABQmIwP/eXLl1fVqlUlSTt27Mi0PC4uTgcOHJAkNW7c2KW1AQAAAABQmIwP/ZL00ksvyWaz6f3339eCBQt04cIFxcfHa/fu3Ro2bJguXryo7t27q3nz5u4uFQAAAAAApykWt+zr3r27Spcurc8//1z/+c9/MiyrVKmS3nrrLfXr18+hMSzLUlxcnEPrKAibzSZfX1+XjwvAdeLj4+2XKRUH7NcA8xW3/RoAFAbLsmSz2XJtVyxCvyQdP35cly5dkoeHh6pVqyZ/f3+dOHFCFy5cUGhoqJo3b66goKACrz85OVnh4eFOrDhvfH191aBBA5ePC8B1jh07pvj4eHeX4TLs1wDzFbf9GgAUlhIlSuTapliE/rffflvff/+9GjdurOnTp6tOnTqSpISEBE2aNEkzZszQo48+qsWLF6tGjRoFGsPb2zvDnQFcJS/f7AC4sdWpU6dYHRFjvwaYr7jt1wCgMBw+fDhP7YwP/QcOHNDcuXPl7e2tiRMnZgj1Pj4++ve//639+/dr06ZN+uKLLzRmzJgCjWOz2eTn5+essgHAjlPdAZiG/RoAOC6vB0qMn8hv27ZtsixLtWvXzvYofrt27SRJe/fudWVpAAAAAAAUKuND/9WrV/PcNikpqRArAQAAAADAtYwP/enX7x8/flyRkZFZttmwYUOGtgAAAAAAmMD40N+uXTtVqFBBycnJGjFihI4dO2ZflpCQoPfff1+bNm2SJPXo0cNdZQIAAAAA4HTGT+Tn5+enDz/8UM8//7z27Nmjzp07q3r16ipVqpROnDhhv13M448/rk6dOrm5WgAAAAAAnMf40C9Jbdu21eLFizVz5kxt3LhRp0+f1rlz5xQQEKC2bduqT58+6tChg7vLBAAAAADAqYpF6JekWrVq6Y033nB3GQAAAAAAuIzx1/QDAAAAAFBcEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwFKEfAAAAAABDEfoBAAAAADAUoR8AAAAAAEMR+gEAAAAAMBShHwAAAAAAQxH6AQAAAAAwlEOhv2PHjurTp0+e2z/22GPq1KmTI0MCAAAAAIA88nKkc2RkpBITE/Pc/uzZszpz5owjQwIAAAAAgDxy6en9qamp8vDgigIAAAAAAFzBZQk8ISFBly5dUqlSpVw1JAAAAAAAxVq+Tu8/ffq0IiMjMzyWnJysP/74Q5ZlZdnHsizFxMRoyZIlSklJUVBQUMGrBQAAAAAAeZav0L9w4UJ99tlnGR6LiYlR//79c+1rWZZsNpv69u2bvwoBAAAAAECB5Hsiv+uP6NtstmyP8F/fxt/fX7fccov69eunbt265b9KAAAAAACQb/kK/cOHD9fw4cPtvwcHB6tixYpav3690wsDAAAAAACOceiWfSEhISpdurSzagEAAAAAAE7kUOifMGGCs+oAAAAAAABO5rJb9gEAAAAAANdy6Eh/utjYWP366686ePCgoqOjlZycnG1bm82mcePGOWNYAAAAAACQA4dD/8KFC/Xuu+8qLi7O/lhWM/qnz/RP6AcAAAAAwDUcCv3/+9//NGrUKFmWpZIlS+r2229X5cqV5eXllBMIAAAAAACAAxxK59OnT5dlWbr99ts1depUlS9f3ll1AQAAAAAABzk0kd++fftks9k0YcIEAj8AAAAAAEWMQ6E/NTVVfn5+CgwMdFI5AAAAAADAWRwK/bVq1VJSUpJSU1OdVQ8AAAAAAHASh0J/9+7dlZKSov/+97/OqgcAAAAAADiJQ6F/4MCBaty4sd5++21FREQ4qSQAAAAAAOAMDs3ev3TpUvXo0UOTJk1Sjx499MADD+i2225TqVKlcuwXEhLiyLAAAAAAACAPHAr9r776qmw2myTJsiwtWbJES5YsybGPzWYj9AMAAAAA4AIOhf7q1as7qw4AAAAAAOBkDoX+tWvXOqsOAAAAAADgZA5N5AcAAAAAAIouQj8AAAAAAIYi9AMAAAAAYCiHrul/7bXX8t3HZrNp3LhxjgwLAAAAAADywKHQHxoaKpvNJsuyslyefju/dJZlEfoBAAAAAHARh0J/SEhIpmB/vStXrmjv3r06e/asAgICdM899zgyHAAAAAAAyAeHQv+ECRNybWNZlhYuXKi33npL/v7+GjVqlCNDAgAAAACAPHIo9OeFzWbTww8/rCtXrui9997THXfcofvvv7+whwUAAAAAoNhz2ez9vXv3ls1m0+zZs101JAAAAAAAxZrLQr+/v7/8/f114MABVw0JAAAAAECx5rLQHxUVpZiYGKWkpLhqSAAAAAAAijWXhf6PPvpIklSnTh1XDQkAAAAAQLHm0ER+YWFhOS5PTEzUmTNntGbNGh05ckQ2m029evVyZEgAAAAAAJBHDoX+V199VTabLdd2lmVJkkJCQvTEE084MiQAAAAAAMgjh0J/9erVc165l5fKlCmj4OBgdenSRW3atHFkOKf47bfftGDBAu3cuVNRUVEqW7asatWqpVatWukf//iHvLwK/S6GAAAAAAC4hEMJd+3atc6qo9ClpKTotdde0+LFiyVJ1apVU3BwsKKiorR3717t2LFDQ4cOJfQDAAAAAIxRbBLuW2+9pcWLF6tx48YaM2aMGjRoYF8WHx+vjRs3qkSJEm6sEAAAAAAA5yoWoX/z5s1asGCBatSooZkzZ8rf3z/Dcl9fX3Xs2NFN1QEAAAAAUDicFvqTkpK0ceNG7d27V5cuXZIkVahQQY0bN1abNm3cehT9m2++kSQNHjw4U+AHAAAAAMBUTgn98+fP18SJE/XXX39lubxcuXL65z//qT59+jhjuHxJTEzUhg0bJElt2rTR4cOHNX/+fB05ckQlSpTQrbfeqt69e6tGjRourw0AAAAAgMLkcOj/4IMP9PXXX9tvy1elShVVrVpVknT27FmdO3dOly9f1ptvvqkTJ07o5ZdfdnTIfDlw4ICSk5MlSdu2bdOYMWPsv0vSunXrNH36dI0fP15du3Yt8DiWZSkuLs7hevPLZrPJ19fX5eMCcJ34+Hj7PrY4YL8GmK+47dck5ek21wBuXO7Yp1mWlad9i0Ohf+vWrZoxY4Yk6f7779eIESNUr169DG2OHj2qiRMnauXKlZoxY4Y6dOigFi1aODJsvly4cMH+c/oEfv/5z38UHBysM2fO6JNPPtHy5cv16quvqm7duhkm+MuP5ORkhYeHO6vsPPP19S1wzQBuDMeOHVN8fLy7y3AZ9muA+Yrbfs3b21sNGjSUl5enu0sBUAhSUlK1f/++DAeXXSUvl9E7FPrnzJkjSerdu7feeeedLNvUrVtXEydO1H/+8x/9+OOP+u6771wa+q9evWr/2cfHR1999ZXKli0rSapdu7Y+/vhjRUREKDw8XNOmTdOkSZMKNI63t7duvvlmp9ScH3xrDJivTp06xeqIGPs1wHzFcb/m5eWpz+ZuUOT5aHeXA8CJalQuq+cfbadbbrnF5fu1w4cP56mdQ6F/x44d8vDw0L/+9a9c2/7zn//UTz/9pO3btzsyZL6VLFnS/nPPnj3tgT+dh4eHBg0apFdeeUXr169XWlqaPDw88j2OzWaTn5+fw/UCwN9xqjsA0xTX/Vrk+WhFRGY9BxaAG5s79mt5PVCS/3R7nb/++kulS5dWhQoVcm1bsWJFlSlTJtvJ/grL9SH/75cepKtbt66ka2cFREVFuaIsAAAAAAAKnUOhv1SpUrp69aoSExNzbZuQkKCrV6+6/Gh4eqCXrp2Cn5XrzwZIS0sr9JoAAAAAAHAFh0J//fr1lZqaqh9//DHXtj/99JNSUlIUHBzsyJD5VqVKFfvt+E6ePJllm/THS5YsqYCAAFeVBgAAAABAoXIo9Hfr1k2WZem9997TggULsm23YMECTZgwQTabTT169HBkyAJ56KGHJElLlixRSkpKpuXpX1rccccd8vJy+C6GAAAAAAAUCQ4l3F69emnRokX6/fffNXr0aE2dOlWtWrVSlSpVJElnz57Vli1bdO7cOVmWpZYtW6pnz55OKTw/hgwZovnz5+vUqVMaM2aMRo0apZIlS8qyLM2ePVvr1q2TzWbT0KFDXV4bAAAAAACFxaHQ7+Hhoc8//1yvv/66Vq1apTNnzmjRokUZ2qTftuD+++/XuHHj3HIrpvLly2vSpEkaNmyY5s+fr2XLlikwMFBnz57VhQsXZLPZNHLkSLVq1crltQEAAAAAUFgcPpfd399fkyZN0u7du7Vs2TLt3btXly5dkiRVqFBBjRo1UufOndWkSROHi3VE27ZttWjRIn3xxRfauHGjDhw4IH9/f91777168skn1bJlS7fWBwAAAACAszntAvYmTZq4PdjnJjAwUOPHj3d3GQAAAAAAuIRDoT8pKUlHjx6Vt7e36tWrl2PbI0eOKDk5WfXq1cv21nkAAAAAAMB5HJq9f9myZerZs6dmzZqVa9tp06apZ8+eWrlypSNDAgAAAACAPHIo9K9atUqSFBISkmvb3r17y7IsQj8AAAAAAC7iUOj/888/5enpmadr+Zs1ayYvLy8dOnTIkSEBAAAAAEAeORT6z58/r9KlS8vLK/epAby9veXv76/z5887MiQAAAAAAMgjh0K/t7e3rl69mqe2lmUpLi5ONpvNkSEBAAAAAEAeORT6a9asqeTkZO3YsSPXttu3b1dSUpJq1KjhyJAAAAAAACCPHAr9bdu2lWVZ+uijj5SSkpJtu5SUFH388cey2Wxq166dI0MCAAAAAIA8cij0DxgwQCVLltS2bdv05JNPav/+/Zna7Nu3T4MGDdK2bdtUokQJDRgwwJEhAQAAAABAHuU+A18Oqlatqrfffluvvfaa/vjjDz388MOqWLGi/RT+yMhIXbx4UZZlyWazacyYMapevbpTCgcAAAAAADlzKPRLUkhIiAICAjR27FhFRkbqwoULunDhQoY2tWrV0htvvKG7777b0eEAAAAAAEAeORz6JalDhw666667tGXLFm3fvl0XL16UzWZTxYoV1axZM7Vq1UoeHg5dSQAAAAAAAPLJKaFfkjw9PdW2bVu1bdvWWasEAAAAAAAO4PA7AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGKpah/7ffflP9+vVVv3593Xvvve4uBwAAAACAQlHsQv/Vq1f11ltvubsMAAAAAAAKXbEL/Z988olOnz6tjh07ursUAAAAAAAKVbEK/Tt37tScOXPUsWNHderUyd3lAAAAAABQqIpN6E9OTtYbb7whHx8fjR492t3lAAAAAABQ6IpN6P/iiy906NAhjRgxQlWrVnV3OQAAAAAAFDovdxfgCkeOHNEXX3yhhg0bqn///oUyhmVZiouLK5R158Rms8nX19fl4wJwnfj4eFmW5e4yXIb9GmA+9msATOOO/ZplWbLZbLm2Mz70W5al//znP0pJSdHbb78tT0/PQhknOTlZ4eHhhbLunPj6+qpBgwYuHxeA6xw7dkzx8fHuLsNl2K8B5mO/BsA07tqvlShRItc2xof+77//Xtu3b1f//v3VuHHjQhvH29tbN998c6GtPzt5+WYHwI2tTp06xe6IGACzsV8DYBp37NcOHz6cp3ZGh/5z587p448/VpUqVfTPf/6zUMey2Wzy8/Mr1DEAFE+cEgrANOzXAJjGHfu1vH6haHToHzt2rGJjYzV+/Hj5+/u7uxwAAAAAAFzK6NC/f/9+SdLbb7+tt99+O8OyhIQESdKZM2fUrl07SdLkyZPVrFkz1xYJAAAAAEAhMTr0p7t48WK2y9LS0uzLk5OTXVUSAAAAAACFzujQv3bt2myXLVy4UK+99ppq1KiRYzsAAAAAAG5UHu4uAAAAAAAAFA5CPwAAAAAAhiL0AwAAAABgKKOv6c9Jr1691KtXL3eXAQAAAABAoeFIPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKC93F1DYLMvSjh07tHbtWm3btk1Hjx5VbGysSpcurQYNGigkJETdunWTzWZzd6kAAAAAADiV8aF/8+bNGjRokP33WrVqqUaNGoqMjNSGDRu0YcMGLV26VJMnT1aJEiXcVygAAAAAAE5m/On9lmWpZs2aGjVqlDZu3Kg1a9Zo4cKF2rJli9577z2VKFFCv/76qyZOnOjuUgEAAAAAcCrjQ3+TJk20YsUKDRgwQBUqVMiwLCQkRM8//7wk6ccff1RaWpo7SgQAAAAAoFAYH/r9/f3l7e2d7fK7775bkhQVFaXLly+7qiwAAAAAAAqd8aE/NwkJCfaffXx83FgJAAAAAADOZfxEfrlZunSpJCk4OFj+/v4FXo9lWYqLi3NWWXlms9nk6+vr8nEBuE58fLwsy3J3GS7Dfg0wH/s1AKZxx37Nsqw83YWuWIf+vXv3at68eZKkoUOHOrSu5ORkhYeHO6OsfPH19VWDBg1cPi4A1zl27Jji4+PdXYbLsF8DzMd+DYBp3LVfy8sd6Ipt6L948aL+8Y9/KCUlRffdd5+6dOni0Pq8vb118803O6m6vMvLNzsAbmx16tQpdkfEAJiN/RoA07hjv3b48OE8tSuWof/KlSt6+umndfr0aTVs2FATJkxweJ02m01+fn5OqA4AMuKUUACmYb8GwDTu2K/l9QvFYjeR39WrV/XUU09p//79uuWWWzRjxgyHruUHAAAAAKCoKlahPz4+Xs8884x27typwMBAffPNNypXrpy7ywIAAAAAoFAUm9CfmJioYcOG6ffff1eNGjU0c+ZMVapUyd1lAQAAAABQaIpF6E9OTtY//vEPbdq0SVWqVNGsWbNUrVo1d5cFAAAAAEChMj70p6am6qWXXtJvv/2mSpUqadasWapVq5a7ywIAAAAAoNAZP3v/8uXLtXLlSknX7mH4+uuvZ9v2jTfe4B6qAAAAAABjGB/6k5KS7D9HRkYqMjIy27ZXrlxxRUkAAAAAALiE8aG/V69e6tWrl7vLAAAAAADA5Yy/ph8AAAAAgOKK0A8AAAAAgKEI/QAAAAAAGIrQDwAAAACAoQj9AAAAAAAYitAPAAAAAIChCP0AAAAAABiK0A8AAAAAgKEI/QAAAAAAGIrQDwAAAACAoQj9AAAAAAAYitAPAAAAAIChCP0AAAAAABiK0A8AAAAAgKEI/QAAAAAAGIrQDwAAAACAoQj9AAAAAAAYitAPAAAAAIChCP0AAAAAABiK0A8AAAAAgKEI/QAAAAAAGIrQDwAAAACAoQj9AAAAAAAYitAPAAAAAIChCP0AAAAAABiK0A8AAAAAgKEI/QAAAAAAGIrQDwAAAACAoQj9AAAAAAAYitAPAAAAAIChCP0AAAAAABiK0A8AAAAAgKEI/QAAAAAAGIrQDwAAAACAoQj9AAAAAAAYitAPAAAAAIChCP0AAAAAABiK0A8AAAAAgKEI/QAAAAAAGIrQDwAAAACAoQj9AAAAAAAYitAPAAAAAIChCP0AAAAAABiK0A8AAAAAgKEI/QAAAAAAGIrQDwAAAACAoQj9AAAAAAAYitAPAAAAAIChCP0AAAAAABiK0A8AAAAAgKEI/QAAAAAAGIrQDwAAAACAoQj9AAAAAAAYitAPAAAAAIChCP0AAAAAABiK0A8AAAAAgKEI/QAAAAAAGIrQDwAAAACAoQj9AAAAAAAYitAPAAAAAIChCP0AAAAAABiK0A8AAAAAgKEI/QAAAAAAGIrQDwAAAACAoQj9AAAAAAAYitAPAAAAAIChCP0AAAAAABiK0A8AAAAAgKEI/QAAAAAAGIrQDwAAAACAoQj9AAAAAAAYitAPAAAAAIChCP0AAAAAABiK0A8AAAAAgKEI/QAAAAAAGIrQDwAAAACAoQj9AAAAAAAYitAPAAAAAIChCP0AAAAAABjKy90FuNLmzZv1zTffaNeuXYqLi1P16tX14IMPaujQofLz83N3eQAAAAAAOFWxOdI/e/ZsDRo0SL/++qtKliypevXqKTIyUp9//rl69+6tqKgod5cIAAAAAIBTFYvQv3fvXo0bN06SNGbMGP36668KDQ3VmjVr1LBhQx05ckRvvPGGm6sEAAAAAMC5ikXonzp1qtLS0tSjRw/17dtXNptNklSlShV9/PHH8vDw0KpVq3TgwAE3VwoAAAAAgPMYH/qvXr2q//3vf5KkPn36ZFoeGBio1q1bS5JWrFjh0toAAAAAAChMxof+8PBwJSUlqUSJEmrSpEmWbZo3by5J2rVrlytLAwAAAACgUBkf+o8dOyZJql69ury9vbNsc9NNN2VoCwAAAACACYy/ZV90dLQkqWzZstm2SV+W3ja/kpOTZVmWdu/eXaD+jrLZbHqg2p1KqZLqlvEBFA4vD0/t2bNHlmW5uxSXs9lsSgnuJFsQ+zXAJInFfL/WpWUlpaZVcHcpAJzI08PDbfu15ORk+3x1OTE+9CcmJkpStkf5JalEiRIZ2uZX+h86L3/wwlLax99tYwMoXO7ct7iTl19pd5cAoJAU1/1aGX8fd5cAoJC4Y79ms9kI/ZJUsmRJSde+BclOUlJShrb51bRp0wL1AwAAAACgMBl/TX9eTt3PyyUAAAAAAADcaIwP/YGBgZKk06dPZ3u0/8SJExnaAgAAAABgAuND/6233ipvb28lJSVlO9Hetm3bJEm33367CysDAAAAAKBwGR/6/f39deedd0qSfvjhh0zLIyIitHnzZknSgw8+6NLaAAAAAAAoTMaHfkl67rnnZLPZtGjRIs2fP99+O4Xz58/rxRdfVFpamjp16qTg4GA3VwoAAAAAgPPYrGJyo9SZM2dqwoQJsixL1apVU7ly5XT48GElJSWpTp06+v7771W+fHl3lwkAAAAAgNMUm9AvSZs2bdLXX3+t3bt3Ky4uTtWrV9eDDz6ooUOHqlSpUu4uDwAAAAAApypWoR8AAAAAgOKkWFzTDwAAAABAcUToBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoB4qAX375Rdu2bStQ34ULF2rKlClOrggA3MeyLC1ZskRdu3Z1dykAANzwbJZlWe4uAijugoOD1aJFC3333XeZlrVs2VJNmzbVF198kWXfxx57TDt27FB4eHhhlwkAhSotLU2LFy/WF198oYiICEli3wYAgIO83F0AgGuy+/4tJiZGsbGxLq4GAJwnLCxMy5cv16lTp+Tj46OGDRtq4MCBqlevnr3N8uXL9emnn+rEiROyLEs+Pj7q3bu3G6sGgKz17NlTDRo00Lvvvptp2bfffqsqVarogQceyLLvY489pp07d2r//v2FXSZgR+gHAACF5oUXXtDq1asl/d+Xm/v379eSJUv09ddfKzg4WC+//LLWrl0ry7Lk5+enRx99VIMHD1aFChXcWToAZCk8PFx+fn5ZLhs3bpyaN2+ebeiXsj/QAxQWQj8AACgUS5Ys0apVqyRJt99+u2677TbFx8dr06ZNOnnypMaOHavq1avrl19+ka+vrwYNGqRBgwapbNmybq4cAABzEPoBAEChCAsLk81m0/PPP6/hw4fbH09KStKwYcO0YcMGhYeHq0GDBvrss89UrVo1N1YLAICZmL0fAAAUigMHDqhUqVJ69tlnMzxeokQJ/fOf/5QkeXp6auLEiQR+AAAKCaEfAAAUiujoaN10003y8sp8YuHNN98sSapVq5Zq1arl6tIAACg2CP0AAKBQpKSkyNfXN8tl6Y+XL1/elSUBAFDscE0/UERs375dt956a6bHbTZbtssAAAAAICeEfqCIcOT2LTabzYmVAIDzXLp0SWFhYQVeHhIS4vSaAMBRZ86c0ZQpUwq0DHA1m8WNIgG327p1q8PraNmypRMqAQDnCQ4OduhLSZvNpv379zuxIgBwXE77tvRoldNym82m8PDwQqsP+DuO9ANFAIEdgImqV6/u7hIAwOnuuOMOd5cA5AtH+gEDnDx5ktmvAQAAAGTCkX7gBnX16lUtX75coaGh2rFjB6fAAgAAAMiE0A/cYDZu3KjQ0FCtWbNGCQkJ9mvDAKCo6dixo5o0aaJPPvnE3aUAAFBsEfqBG0BERIRCQ0O1ePFinT17VtK1iWDKlSunLl26qGfPnm6uEAAyi4yMVNWqVd1dBgC41OHDh7NdVrNmTfn4+LiwGoDQDxRZsbGxWrp0qUJDQ7Vr1y5J/zcjrJ+fn95//3116NBBXl68jQEAAFxpypQp2rp1q+677z71798/w7KuXbtmexZmv3799Oabb7qiRMCOtAAUIZZl6X//+5/CwsL0yy+/KCkpyR70mzRpoh49emjs2LHy8/NTp06d3FwtAABA8XP27FlNmzZNZcqU0ZQpU7Jsk91c6QsWLNCwYcNUuXLlwiwRyIDQDxQBR44c0cKFC7VkyRJduHDB/o+ievXq6t69u0JCQhQYGChJGjt2rBsrBQAAKN6WL1+ulJQU9e/fX2XKlMmyTfPmzTVnzpwMj82cOVMTJkzQ0qVL9eSTT7qiVEASoR8oErp06SKbzSbLsuTv768HH3xQPXr04D6wAAAARcymTZtks9nUrVu3fPULCQnRhx9+qM2bNxP64VKEfqAIKVu2rF555RV16dJFJUuWdHc5AOCwvXv3qmPHjgXqa7PZtGbNGidXBACOOXTokCpXrqyaNWvmq19AQIBq1qypQ4cOFVJlQNYI/UAR0LRpU+3YsUPR0dEaNWqU3n33Xd1///3q3r272rRp4+7yAKDAkpKSFBkZWaC+3I4UQFH0119/6ZZbbsl2efv27RUUFJTlsoCAAB04cKCwSgOyROgHioC5c+fqxIkT+umnn7RkyRKdPn1aoaGhCgsLU5UqVdS1a1f16NEjx38wAFAU1a5dW88884y7ywAAp0pNTc122RdffJHtssTExGwn+QMKi83iVQcUKZZlafPmzVq4cKHWrFmj+Ph4+9GuoKAgHTx4UBUrVtT69evdXCkA5Cw4ODjLyawA4EbWoUMHJSYmatOmTfnu26pVK/n6+urXX391fmFANjzcXQCAjGw2m9q0aaMPPvhA69ev19ixY9WsWTNJ0sGDB2Wz2XT58mUNGTJEP//8sxITE91cMQAAQPERHBysqKiofJ+mv3fvXkVHR6t+/fqFVBmQNUI/UISVKlVKjzzyiObMmaNVq1Zp2LBhqlatmtLS0rRhwwaNHDlS7dq106hRo9xdKgA41XPPPaeBAwe6uwwAyOTOO++UZVmaOnVqvvp99tlnstlsuvvuuwupMiBrhH7gBlGrVi2NGDFCa9eu1axZs9SjRw/5+PgoNjZWCxcudHd5AOBU27dv19atW91dBgBk8vDDDysgIECrV6/WRx99lOs1+mlpaXrvvfe0bt06BQQEqFevXi6qFLiG0A/cgFq1aqX33ntPGzZs0LvvvqsWLVq4uyQAAIBiwdfXV++++64kafr06erRo4fmzJmjgwcP6urVq7IsS1evXtWhQ4c0Z84c9ejRQzNnzpSHh4fGjh0rX19fN28Bihsm8gMAAIVi69atKl26tG699dZ8923durWio6MVHh5eCJUBgOMWLVqkN998UwkJCTneYtSyLJUsWVJvv/22QkJCXFcg8P8R+gEAQJFD6AdwIzh+/LimTZumlStXKi4uLtNyPz8/PfDAAxo6dKjq1KnjhgoBQj9QJHTs2DFP7Tw9PVW6dGnVqVNHd999tzp37iwvL69Crg4AXI/QD+BGkpqaqgMHDujcuXO6evWqSpUqpSpVqig4OFienp7uLg/FHKEfKAKCg4Pz3cdms6lOnTqaMmWK6tatWwhVAYD7EPoBAHAOQj9QBISGhuapXUpKimJiYhQeHq5169bp6tWrqlmzpsLCwuTv71/IVQKA6xD6ARRlFy9e1MWLF+Xn56ebbrop1/YnTpxQXFycKlasqIoVK7qgQuD/cF4wUAT07Nkz330uX76s5557Trt27dK8efP01FNPFUJlAFBwr732WoH7ZnVtLAAUBampqerfv78iIiI0ceLEPIX+AwcO6IUXXtAtt9yixYsX5zjxH+BsHOkHbmDHjx/XAw88oKZNm2ru3LnuLgcAMggODpbNZsv1HtZ/l97HZrNxpB9AkbNy5UqNGDFC9913nyZPnpznfi+88IJWr16tzz77TPfee28hVghkxJF+4AZWu3Zt1a5dW0ePHnV3KQCQSUhICEezABhn5cqVstlsGjJkSL76DRkyRKtWrdKyZcsI/XApQj9wgwsICFBkZKS7ywCATCZMmODuEgDA6fbs2aMyZcro9ttvz1e/2267TWXLltWePXsKpzAgGx7uLgCAY6KiolSqVCl3lwEAAFAsXLx4UTVq1ChQ3+rVq+v8+fNOrgjIGaEfuIGdOHFCx48f55Z9AAAALpKWllbgvjabzaH+QEEQ+oEbVHR0tF577TXZbDauCwMAAHCR8uXL6/Tp0wXqe/r0aZUrV87JFQE545p+oAgICwvLU7vU1FTFxMTowIEDWrduna5cuaJq1arp0UcfLdwCAaAAOnbs6FB/m82mNWvWOKkaAHCOW2+9VevWrdOuXbt022235bnfjh07FBUVpXvuuacQqwMyI/QDRcCrr76arxmu029/Vbt2bU2dOlX+/v6FVRoAFJijk4wy8z+AoqhDhw5au3atPvroI82cOVMeHrmfPJ2amqqPP/6YMzThFjYrvzfPBeB0ed35e3p6qnTp0qpTp47uuusude7cWSVKlCjk6gCgYEJDQ7N83LIsvf766woMDNQzzzyT4zp69uxZGKUBQIElJSXp/vvv17lz5/TAAw/onXfeyfEATGxsrEaNGqWVK1eqWrVqWrVqlby9vV1YMYo7Qj8AAHC54OBgNW/eXHPmzHF3KQCQb9u3b9egQYOUnJyssmXLqkePHrrjjjtUq1Yt+fn5KS4uTqdOndLWrVu1aNEiRUdHy9vbW998842aN2/u7vJRzBD6AQCAyxH6AdzoNm3apJdeekmXL1/O8XIky7JUvnx5ffTRR2rTpo0LKwSu4Zp+AAAAAMinNm3aaMWKFZo9e7aWLl2qo0ePZmpTt25ddenSRU888YTKli3rhioBjvQDRdLJkye1YsUK7dixQ+fOnVNsbKz8/PxUs2ZNNW3aVJ07d1bVqlXdXSYAFBhH+gHcqGbPnq3+/ftnejwqKkrnzp3T1atXVapUKVWpUkUBAQGuLxD4G0I/UITExsbq3Xff1eLFi5WWlqas3p42m02enp7q16+fXn75Zfn4+GRYHh8fL19fX1eVDAAFQugHcKMKDg7WHXfcoXHjxqlWrVruLgfIFaf3A0XE5cuX9dhjj+n48eOyLEtly5ZV06ZNVbt2bfn6+io+Pl7Hjx/Xjh07FB0drTlz5mj37t36+uuv7TPGLlq0SGfPns11NmwAAAAUTIUKFfT777+re/fuGjFihAYNGuTukoAcEfqBIuKFF15QRESEypcvr5EjR6pr165Z3s4lOTlZP//8sz744APt2bNHb775pj766CPNnj1b48eP13PPPeeG6gEAAIqHZcuWaezYsfr555/13nvvadWqVRo3bpwCAwPdXRqQJUI/UASsXr1af/zxh6pWrarvvvtONWvWzLatt7e3evbsqRYtWqh///5atmyZvLy8tGjRInl4eKh+/fourBwAshcWFpbj8kuXLuXaJiQkxGn1AIAzlC1bVh9++KG6du2q0aNHa/v27erRo4deeOEFDR48OMeZ/AF34Jp+oAgYMWKEVq1apSlTpqhjx4557rdmzRoNHz7c/s9lzJgxeuSRRwqrTADIl+DgYIc+/NpsNu3fv9+JFQGAc8XGxmr8+PH66aefZLPZ1KRJE40bN0716tVzd2mAHaEfKALuuecexcfHa9OmTfn6gJyWlqY2bdooJiZG48eP54gYgCLl3nvvdXgda9eudUIlAFC4Nm7cqNGjR+vUqVPy9vZW5cqVs21rs9m0Zs0aF1aH4o7T+4Ei4NKlSwoKCsr3ETEPDw/VrFlT+/fvJ/ADKHII7ACKi7Zt26pXr16aNGmSkpOTFRkZmW1bTv+HqxH6gSKgZMmSSkhIKFDfxMRE++z9AAAAcK2IiAi9/vrr2rFjhySpa9euateunZurAv4PoR8oAqpVq6ajR48qJiZGZcqUyXO/6OhoRUREqG7duoVYHQAU3IwZM7Rjxw7ddddd6tu3b67t582bp/Xr16tFixbcBgtAkWZZlr7++mtNnjxZCQkJqlixot5+++18zc8EuIKHuwsAcO2UsNTUVM2YMSNf/aZPn67U1FS+TQZQJJ08eVKffPKJdu3apc6dO+epT+fOnbVr1y599NFHOnPmTCFXCAAFc+TIEfXr108ffvihEhIS1L17dy1btozAjyKJ0A8UAY8//rg8PT311Vdfae7cuXnq8/3332v69Ony9PTUo48+WsgVAkD+hYaGKjU1Vc8884xKly6dpz5lypTRs88+q+TkZC1cuLCQKwSA/Js2bZp69uypXbt2qVKlSpo2bZref//9fJ2tCbgSoR8oAmrVqqXhw4crLS1NY8aM0aBBg7R69WpFR0dnaBcTE6PVq1dr0KBBGjt2rCzL0vPPP6+bbrrJTZUDQPY2b94sDw8PdenSJV/9unbtKk9PT23cuLGQKgOAgvv000+VlJSknj17aunSperQoYO7SwJyxDX9QBHx7LPPKi4uTl999ZW2bNmiLVu2SLp21MvPz09xcXGKiYmRdO0aMpvNpqefflrDhg1zZ9kAkK2jR4+qZs2aKleuXL76lS1bVjVr1tTRo0cLqTIAKLgqVapozJgxat++vbtLAfKE0A8UIS+++KLatm2rzz77TL///ruka5P1/f2I/x133KHnnntObdq0cUeZAJAnsbGxql27doH6li1bNsdbXgGAuyxdupQ7J+GGQugHipjWrVurdevWunjxorZv366zZ8/q6tWrKlWqlKpWraqmTZuqUqVKGfps2rSJLwAAFDmlSpWyn6GUX1euXFGpUqWcXBEAOG7mzJkOr2P48OGOFwLkkc2yLMvdRQDIvxMnTig0NFSLFi3S2bNntX//fneXBAAZhISE6M8//9SmTZvyNcFVTEyM2rRpo1tuuUVhYWGFVyAAFEBwcLBsNluB+qZfohkeHu7kqoDscaQfuIHExsZq+fLlCg0N1Y4dOyRd++fh5cVbGUDR07JlSx08eFA//vijBg8enOd+CxYsUGpqqlq2bFmI1QGAY+rWrat69eq5uwwgVxzpB4o4y7K0ceNGLVy4UL/88osSExOV/ratX7++evbsqW7duqlChQpurhQAMvrzzz/VvXt3+fj4aNasWWrSpEmufXbv3q2BAwcqMTFRYWFhCgoKckGlAJB3t99+uxISEmSz2dSwYUOFhISoa9euCggIcHdpQJYI/UARdfToUYWFhWnRokU6f/68JNnDfunSpTV79mwFBwe7s0QAyNXo0aP1ww8/qGTJkho2bJj69euX5QfjqKgozZ07V9OmTVNSUpIeeeQRjRkzxvUFA0Au0s+8XLRokbZt2yZJ8vLyUocOHdSjRw916NCBszBRpBD6gSLkypUr+vnnnxUWFqbdu3dLuhb0S5YsqXvvvVchISF65plnVLFiRa1fv97N1QJA7pKTk/Xss89qw4YNstls8vT01M0336xatWrZb0d66tQp/fnnn0pNTZVlWWrXrp2mTZsmb29vd5cPADk6efKkwsLCFBYWpsjISNlsNpUtW1Zdu3ZVSEiIGjVq5O4SAUI/UBT89ttvCg0N1bp165SUlGSf5KVFixbq3r27HnroIfutYYKDgwn9AG4olmVp2rRp+uabbzLM5m+z2XT9x5DSpUvrySef1LPPPisPDw93lAoABfbHH39o4cKFWrlypa5evSqbzaZ69eopJCRE3bp1U5UqVdxdIoopQj9QBKTPAmtZlgIDA9WjRw91795dNWrUyLItoR/Ajejq1av67bfftH37dp07d85+O9IqVaqoWbNmat++PbfpA3DDS0hI0KpVq7Ro0SJt2rRJlmWpbdu2mjFjhrtLQzHFxSZAEVK2bFn16tVL3bp1U7Vq1dxdDgA4ValSpdS5c2d17tzZ3aUAQKHx8fFRq1atdPbsWR05ckRnz54Vx1nhThzpB4qAl19+Wb/88ovi4+Nls9nsp/b36NFDDzzwgP3Ufokj/QAAAEVR+hH+sLAwbdmyRWlpabLZbGrTpo0GDBig9u3bu7tEFFOEfqCISJ8JduHChdqxY4eka9e7lixZUvfcc4969Oihu+66Sw0bNiT0AwAAFBFbt25VaGioVq1apbi4OFmWpZtvvlkhISHq3r27Kleu7O4SUcwR+oEi6MSJE1q4cKEWL16s06dPS7r2BUBAQID++usvQj8AAIAbHT9+XGFhYfbPapZlqVy5curSpQuz9qPIIfQDRdymTZsUGhqq1atXKz4+XtK1LwBq166tnj17qnv37lz/DwAA4CL9+vXTrl27JEleXl5q3769QkJC1KFDB3l5MWUaih5CP3CDiIuL07JlyxQWFqZt27bZb+tns9nUsmVLzZw5090lAgAAGC/9rkt169ZV586dFRAQkO91PP74484vDMgGoR+4AZ08eVKhoaFatGiRIiMjZbPZFB4e7u6yAAAAjJce+h3B5za4EuefADegWrVq6YUXXtALL7ygzZs3a9GiRe4uCQAAoFi444473F0CkC8c6QcAAAAAwFAe7i4AAAAAAAAUDkI/AAAAAACGIvQDAAAAAGAoQj8AAAAAAIYi9AMAgBvK5MmTVb9+ffXv39/dpQAAUOQR+gEAAAAAMBShHwAA3FDKlSunOnXqqFq1au4uBQCAIs9mWZbl7iIAAAAAAIDzcaQfAAAAAABDebm7AAAA4FzLli3TwoULtX//fkVHR8vX11fly5dX3bp1ddddd6l3794qWbKkJOnVV19VaGioevbsqfHjx2vevHn66aefdPToUUlS/fr19dhjj6lbt245jnnq1CnNmjVLGzdu1OnTp5WWlqZq1arpzjvv1ODBg1W9evVs+yYlJWnRokVasWKFwsPDFRMTo4CAANWoUUN33XWXevTooVq1atnbT548WVOmTFHLli01e/bsLNd5+fJlzZo1S7/99ptOnjyppKQkVa5cWa1atdKTTz6pW265Jct+Z8+e1ddff60NGzYoMjJSKSkpCggIUOXKldWiRQt17dpVTZo0yfFvAQBAUULoBwDAIK+99poWLlxo/93Pz08pKSk6fvy4jh8/rnXr1ql9+/aqWbNmpr4vvviili1bJg8PD5UuXVoxMTHavn27tm/fro0bN2rcuHGy2WyZ+i1evFijRo1SUlKSJKlEiRLy8PDQsWPHdOzYMS1cuFCTJk3SnXfemanvyZMn9dxzz+nQoUOSJJvNpjJlyig2NlY7d+7Uzp07FR0drVGjRuX5b7Bx40aNGDFCMTExkiRvb295e3vr1KlTOnXqlBYvXqx33nlHISEhGfodOHBAAwYMUHR0tCTJ09NT/v7+unjxoi5cuKB9+/YpJiaG0A8AuKEQ+gEAMMQff/yhhQsXysPDQy+++KIeeeQRBQQESJL++usv7du3Tz///LO8vb0z9V2zZo1iY2M1YsQIDRgwQP7+/rp8+bI+++wzfffdd1q4cKFuvfVWDRgwIEO/DRs26JVXXpGHh4eeeuopPfroo6pRo4Yk6dixY5o4caJWrFihESNGaMmSJRmO+MfGxuqpp55SRESEypYtq5dfflkPPfSQSpcuLenaFwJr1qzJ8ouG7Bw8eFDDhg1TQkKC+vTpo0GDBikwMFCenp46ffq0vvrqK33//fcaNWqU6tWrp8aNG9v7TpgwQdHR0WrYsKFGjx6t2267TTabTUlJSTp9+rTWrl2rtLS0PNcCAEBRwER+AAAY4quvvtKHH36oO++8UzNmzMhTn/TT+yXpueee04gRIzK1GTlypBYvXqyAgAD997//tV8akJaWpoceekgREREaM2aM+vbtm+UYw4YN09q1azVgwIAMR+w//fRTff755ypRooTmz5+vBg0a5KnmnE7vHzhwoDZv3qxnnnlGL774Ypb933nnHc2ePVsdO3bU1KlT7Y/fdtttSkhI0Lx589S0adM81QIAQFHHRH4AABiiTJkykq5dz56ampqvvj4+PhoyZEiWy55//nlJUlRUlDZs2GB//Pfff1dERITKlSunRx55JNt1p59Gv379+gyP//TTT5KkRx55JM+BPyenTp3S5s2b5eXlpcGDB+daz6ZNmzL8ndLPMLhw4YLDtQAAUFRwej8AAIZo06aNSpYsqf379+vxxx/Xww8/rNatW2eYBC87jRo1kr+/f5bLAgMDVbVqVZ09e1Z79+7VvffeK0navn27pGun6d91113Zrjs5OVmSdPr0aftjkZGROn/+vCTpnnvuydsG5iK9nrS0NHXp0iXbdulBPy4uTlFRUapQoYK9jh9++EGvvPKKtm/frnvvvVeNGzeWr6+vU+oDAMAdCP0AABjipptu0jvvvKM333xTO3bs0I4dOyRJ5cuXV6tWrdS1a1d17Ngxy2vkq1SpkuO6q1SporNnz+rSpUv2x9JDe3Jysi5evJhrfQkJCfafr2+f08z++ZFeT1paWp7qkaT4+Hj7zyNHjtTx48e1ZcsWffPNN/rmm2/k6emp4OBgdejQQX379s317wQAQFFD6AcAwCDdu3fX3XffrRUrVmjLli3asWOHzpw5o+XLl2v58uVq0aKFvvjii2yP6udH+hHz2267TT/88EO++uZncr68Sp9kr2LFihkuQ8irMmXK6Ntvv9Uff/yhdevWafv27dq7d6/27dunffv2acaMGXr33XfVtWtXZ5cOAECh4Zp+AAAMExAQoH79+umTTz7Rr7/+qtWrV2vo0KGy2Wz6448/NHny5Ex9zp07l+M605ennwovSZUqVZKU8bT9vKpYsaL954L0z2mdf/31l+Li4gq8nhYtWmjkyJGaO3eu/vjjD02dOlVBQUFKSEjQ66+/nuezCAAAKAoI/QAAGO6mm27SSy+9ZD9CvXHjxkxt9u7dq6tXr2bZ//jx4zp79qyka9f+p2vWrJmkaxPf7dmzJ181Va9e3X6q/Lp16/LVNzvp9aSmpuq///2vU9ZZsmRJdezYUVOmTJEkJSYmatu2bU5ZNwAArkDoBwDAEElJSTku9/HxkZT1qfUJCQn6+uuvs+z3+eefS7p2BkG7du3sj7dq1Uq1a9eWJI0fPz7X8aOiojL83rt3b0nSggULtH///hz75kVgYKBatmwpSfrkk0905cqVPNeTkpJivzwgK+l/O0ny8ODjEwDgxsF/LQAADDFmzBiNGDFCK1euzDDh3tWrVzV37lyFhYVJkjp06JCpb+nSpTV16lR98cUXio2NlXTt1n/vvPOOQkNDJUnDhg1TyZIl7X28vLz09ttvy8vLS9u2bdMTTzyhTZs22Wfrl6STJ09q7ty5evjhh/X9999nGHPw4MEKDAxUUlKSBg0apB9++ME+tiSdOHFCU6ZM0YwZM/L8N3jjjTfk5+eniIgI9enTR2vWrFFiYqJ9+blz5xQWFqaBAwfqww8/tD9+9uxZ3X///Zo6dar279+vlJQU+7IDBw7o5ZdfliT5+fnpjjvuyHM9AAC4GxP5AQBgiJSUFK1YsUIrVqyQdC2genl5KSYmxt6mefPmevbZZzP17dSpkxITE/Xxxx9r4sSJ8vf3V0xMjCzLknTt3vYDBgzI1K9NmzaaOHGi/v3vf2vXrl0aNGiQvL29VapUKcXFxWU4+t+pU6cMff39/TV9+nQ9++yzOnz4sN544w29+eabKlOmjBITE+0z62c1bnaCgoI0ffp0jRgxQkePHtXzzz8vT09PlS5dWgkJCRnuIPD3WxmePHlSEydO1MSJE+19rl69av8Sw9vbW+PHj1dAQECe6wEAwN0I/QAAGOK5555Tw4YNtWXLFh05ckQXL15UXFycKlSooODgYHXp0kUhISHy9PTMsv/HH3+sO+64Qz/99JOOHTsmX19f1a9fX/369VNISEi243bq1EmrV6/W999/r//+9786fvy4rly5Il9fX9WtW1eNGzdWhw4ddPfdd2fqW6tWLYWGhurHH3/U8uXLdejQIV29elXlypVTcHCw7r77bvXo0SNff4fmzZtrxYoV+uGHH7R27Vr9+eefunLlikqWLKl69eqpYcOGuvvuu9WxY0d7nypVqujzzz/Xli1btHPnTvvtCb28vFS7dm21atVKAwYMUGBgYL5qAQDA3WxW+lf4AACg2Hn11VcVGhqqnj17asKECe4uBwAAOBnX9AMAAAAAYChCPwAAAAAAhiL0AwAAAABgKEI/AAAAAACGYiI/AAAAAAAMxZF+AAAAAAAMRegHAAAAAMBQhH4AAAAAAAxF6AcAAAAAwFCEfgAAAAAADEXoBwAAAADAUIR+AAAAAAAMRegHAAAAAMBQ/w8azZ8kalUipQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = sns.countplot(x=\"species\", data=protein_df, \n", + " order = protein_df['species'].value_counts().index,\n", + " hue = \"species\")\n", + "plt.xticks(rotation=90)\n", + "plt.title(\"Number of proteins per genome\", fontsize=20)" + ] + }, + { + "cell_type": "markdown", + "id": "4ba69b43-8cb6-4a9e-acb7-0f18592480c5", + "metadata": { + "papermill": { + "duration": 0.004902, + "end_time": "2024-10-18T00:52:48.331786", + "exception": false, + "start_time": "2024-10-18T00:52:48.326884", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "Furthermore, a high proportion of proteins short in length may indicated a problem with genome quality. Below, we report the protein length distribution of all species used in this run. Suspect genomes are outlier peaks with a high number of short proteins." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "029177f0-08c0-4784-898d-9752a7cb5706", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:48.342993Z", + "iopub.status.busy": "2024-10-18T00:52:48.342622Z", + "iopub.status.idle": "2024-10-18T00:52:48.964954Z", + "shell.execute_reply": "2024-10-18T00:52:48.964189Z" + }, + "papermill": { + "duration": 0.629239, + "end_time": "2024-10-18T00:52:48.966103", + "exception": false, + "start_time": "2024-10-18T00:52:48.336864", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAMbCAYAAAB0ZnnvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXjU1fn38ffMZCZ7yEYCYQsEwiYoAgoqIEt/4IZYF9xQpIpKVVpr61bso7VoNyvVQls3VKTiAggqICiIK4uA7DsBEgjZyL7MJDPPH8MMCVnIJJPMDH5e1+XVMN/l3N+TzDR3zjn3MTgcDgciIiIiIiIifs7o6wBEREREREREGkMJrIiIiIiIiAQEJbAiIiIiIiISEJTAioiIiIiISEBQAisiIiIiIiIBQQmsiIiIiIiIBAQlsCIiIiIiIhIQlMCKiIiIiIhIQFACKyIiIiIiIgFBCazIOe6ll16iZ8+e9OzZ06dxrFu3zh3HunXrfBqLv/GX71F1o0aNomfPnjz22GO1jgXi9/Kxxx6jZ8+ejBo1qs7jrud56aWXWjmy5pk0aRI9e/Zk0qRJvg5FpF6B+JkhIv4ryNcBiDTXunXruOOOO+o8FhISQmxsLL179+aKK67giiuuIChIP/YiIiIiIoFII7ByTisvL+fYsWN8/vnnPPLII9x8881kZ2f7NKaFCxe6/xKdnp7u01ik5WjEoWkCdSTUm842WiwiIvJTpqEoOafccsst3Hrrre5/l5aWsn37dl5//XUyMjLYtm0b06ZN47333sNgMPgw0tbz4IMP8uCDD/o6DDmHXHzxxezZs8fXYXjk+eef5/nnn/d1GF739ttv+zoEkbMKxM8MEfFfSmDlnBIXF0dqamqN1y644AKuueYabrzxRg4fPszWrVtZvXq1RjdERERERAKMphDLT0KbNm2YOnWq+99fffWVD6MREREREZGm0Ais/GT079/f/fWxY8fcX1cvAvXWW28xePBgFi5cyEcffcSBAwfIy8tjwoQJNaYf2u12li5dyscff8zOnTspKCggIiKCHj16MG7cOG688UYsFkuN9usqNjV69Ohacb711ltcfPHFtV5ftWoVS5YsYevWreTm5hIcHEznzp0ZNWoUkyZNok2bNnU+90svvcTLL78MUOcUrlGjRpGRkcF1113H888/z8GDB3n99df59ttvycrKIioqigEDBnDPPfdwwQUX1NmGtzX1WR977DEWLVpEhw4d+OKLLygsLOSNN97gs88+IyMjg6CgIHr27MnEiRMZP378WeP44osveOedd9ixYwdlZWW0a9eOUaNGMWXKFNq2bVur7wDS09NrfV/rKjL23HPP8fOf/7zOdisqKnj77bf55JNPSEtLAyAlJYUJEyZw8803e6UQ2Zdffsm8efPYtm2b+9kuv/xypkyZQmJiYoPXnvmeqevn9dChQ8ybN49169aRkZGBzWYjOjqauLg4+vTpw7BhwxgzZoz7feLqS5eXX37Z/XPrUr2fPX3fnvmzcTbffvstb731Ftu3b6egoICEhARGjBjBvffeW2//nO29drb+q349QEZGRp2Vqavfe9KkSaxfv56LLrqowenEGzduZMGCBfzwww9kZ2cTHBxMx44dGTFiBHfeeSexsbGNjvXTTz9lwYIF7Nmzh9LSUtq3b8/o0aOZOnUq0dHR9cZwNmc+y8GDB3njjTf45ptvyM7Opk2bNgwcOJC77rqrUZ9F2dnZzJs3j6+++or09HRKS0uJi4vjggsuYOLEiVxyySV1Xlf9Pex6n3722We8//777Nq1i7y8PAYOHOjx9O3t27czf/58fvjhB06cOEFVVRWxsbHExcVx/vnnc9lllzFq1Kgay1vq+jn/4IMPWLhwIQcPHsRqtdK5c2euuuoqJk+eTHBw8FnjaOrna3VffvklS5cuZfPmzeTm5lJVVUXbtm3p27cvI0eO5IorriA0NLTe56jrM8Mb8Xn6uSMigUkJrPxkVP+lv6qqqs5zKioq+MUvfsG3335b733y8/O5//772bRpU43XT548yfr161m/fj3vvPMOr7zyCh06dGh23AUFBTz00EN8//33NV63Wq3s2LGDHTt2MH/+fGbPnt3sBHPlypX89re/payszP1abm4uq1atYvXq1fztb3/jyiuvbFYbDfHmsx48eJC77767RlIEzl/kN27cyJYtW3jqqafqvf7pp59m/vz5NV5LS0vj9ddfZ+nSpfz3v//17OEaKScnh7vvvptdu3bVeH3btm1s27aNr7/+mtmzZ2M0Nn0CzXPPPcfcuXNrvJaWlsbcuXNZsmRJs59t2bJl/Pa3v8Vms9V4PTs7m+zsbHbv3s3ChQtZunRprSn/TdGY960nXn755VpFpNLT03nnnXdYsmQJ//73vxk0aJBX2mppdrudZ599lnfeeafG61arlV27drFr1y7eeecdZs2axaWXXnrWe/32t79lyZIlNV5PS0vjtddeY9WqVbzzzju0bdu22XF/+eWX/OpXv6K0tNT9WnZ2NsuXL+ezzz7j0UcfZfLkyfVev2TJEv7whz/UuB4gMzOT5cuXs3z5cm644QaefvrpBv8g5HA4+N3vfsdHH33UrOeZO3cuf/7zn7Hb7bXiyczMdH+2bdq0ifDw8DrvYbPZmDp1aq0ZRHv27GHPnj0sWbKEuXPn1tv/3vh8PXnyJL/+9a/57rvvah3LyMggIyODzz77DKDeP9DVp7nxtfbnjoj4jhJY+cnYu3ev++uEhIQ6z/nb3/7Gnj17GDVqFD//+c9JSkoiJyeHkpISwJn43nfffWzevBmAiy66iNtuu42OHTuSlZXFhx9+yKpVqzhw4ACTJ09m8eLF7l9G+vXrx9KlS/n888958cUXAXjttddqxdKxY0f311arlbvuuosdO3ZgMpm4+uqrGTFiBB07dsRms7Fx40beeOMNcnNzmTp1qnuEqan98+mnn9K2bVumTJnCeeedh8Ph4Ouvv+a///0vFRUVzJgxgyFDhtQ7WtMc3nzWsrIy7r//fvcfGy655BLCwsLYtWsXL7/8MpmZmbzzzjuMHDmSYcOG1br+lVdecSev7du355577qFfv35YrVa++uor5s6dy0MPPVQj0XdJTExk6dKlbNu2jSeeeAKAmTNn0q9fvxrntWvXrs7YH3jgAfbv38+kSZMYNWoUbdq04dChQ8yePZsDBw6wevVq3nvvPW6++WaP+tdl7ty57uQ1ISGBe++9l/79+1NRUcGaNWt48803mT59ep3P1hg5OTk88cQT2Gw24uLiuO2227jggguIiYmhvLycI0eOsH79ej7//PMa17322mvYbDauueYaoHZBNqDekZezvW89sWbNGrZv307Xrl25++676dmzJ8XFxSxbtoz333+foqIi7r33Xj7++GPat2/v8f0bcuuttzJ27FhefPFFPv/8cxISEnjttdeadc+//e1v7uS1Y8eO3HPPPfTp04eysjL3DAPXM33wwQf06tWr3nvNmjWLzZs3M2bMGCZMmODu5/nz57NmzRoOHz7Mc889xwsvvNCsmLOysnjkkUcwmUw8/PDDXHTRRYBzFO+VV16huLiY5557jo4dOzJmzJha13/66af87ne/w+Fw0KlTJ26//XZSUlKIjY0lIyODDz74gC+//JIPPviAiIgIHn/88XpjefPNN9mzZw+DBg3illtuITk5maKiIo8qyO/evdudvHbs2JHbb7+dXr16ER0dTUlJCYcOHeL7778/68yAF198kW3btnHZZZdxyy230K5dOzIzM5k/fz7ffPMN+/fv57777uO9997DZDLVuNYbn69lZWXccccd7v8v7du3LxMnTqRHjx5YLBYyMzPZsGEDn376aaP7xlvxNfVzR0QClEMkwH3//feO1NRUR2pqquOf//xnnefYbDbHTTfd5D5v0aJFdV6fmprq+Mc//lFvW/PmzXOf97vf/c5ht9trnfPCCy+4z/nLX/5S6/iHH37oPn706NEGn811r0GDBjm2bdtW5znp6emOSy+91JGamup4+OGHax3/5z//6W6vLiNHjnQfv+666xxFRUW1zvnoo4/c57zxxhsNxlyf6v38/fff1zrujWd99NFH3W0MHDjQsXfv3lrnpKWlOfr16+dITU113HfffbWOZ2VluY//7Gc/c+Tm5tY654cffnD07dvX3dajjz7q8fNWV/171Ldv3zrPP3nypOOSSy5xpKamOq655poG71efnJwcx/nnn+9ITU11jBw50pGVlVXrnG+//dbRp0+fJj/b+++/7z62Z8+eemMpKytzlJWV1Xr9bO/lumI42/vW4Tj9szFy5Mg6j1e/13XXXecoLi6udc6iRYvc5zz00EO1jp/tvVZX7HV9r88Wa3W33367IzU11XH77bfXOrZ7925Hr169HKmpqY6rr77aUVBQUOucL7/80n3ODTfc0GCsqampjtmzZ9c6x263O6ZMmeJITU119OnTp873TGO4nsX1/t2/f3+tc/bu3eu48MILHampqY5hw4Y5rFZrjeO5ubmOgQMHOlJTUx2PP/64w2az1dmW6/OmV69ejgMHDtQ4dvTo0RrPXN9nfWO9+OKLjtTUVMcFF1zgyM7Orve8wsJCR1VVVY3Xzuz/GTNm1HntE0884T5n3rx5tY574/N15syZ7jaefvrpevukoqKi1nO29Od/cz93RCSwqIiTnNNKS0tZv349d911F1u2bAGgQ4cO9U6DTU5ObnDLGddIRmxsLDNmzKhzK54HH3yQbt26AfD+++9jtVqbFHtJSYm7venTp3PeeefVeV6HDh2YNm0aACtWrKg1Zc4TM2fOJCIiotbr11xzjXukeOPGjU2+f31a4lmnT59Ojx49ar3epUsX96jNmdPAARYtWkRFRQUATzzxRJ2jzRdeeCG33XbbWZ6qaW6//fY614dFR0e7p+Tt3buXoqIij++9aNEi98jqo48+WudUw6FDh3LjjTd6fG+XnJwcwDla2tA0vZCQEEJCQprcTnVne9966plnnqlzGueECRMYPnw44Fyn5+s9pc/mf//7n3vK6rPPPktUVFStc4YPH871118PwNatW9m6dWu99+vbty/33XdfrdcNBoN7Om9lZaV7hkpzTJs2jZSUlFqv9+jRwx3DiRMnao2o/e9//6OoqIjExET+3//7f/VOD37wwQdJTEzEbrc3OD04Kiqq3s/6xnK9J5KTk4mPj6/3vMjIyAaXBsTHx9c7Wlz9s+p///tfjWPe+HwtLCxkwYIFgPPn4Mknn6y3TywWS4PPeSZvxOeLzx0R8R0lsHJOefnll+nZs6f7vwEDBrgLg4Bzm51//etf9RZwuPLKK2tNvXI5ceIEBw4cAOCKK66oM9ED51pbV6JRUFDAjh07mvQsGzZscCcpY8eObfDcwYMHA841Uk1tLzU1td7pgwaDgT59+gBw9OjRJt2/Id5+VoPBwNVXX13vPfr27Qs41zMXFhbWOOZa2xUTE+NOVuoyYcKEBuNsKtcU2rq44nY4HB5NYXRxPVubNm3qLCDm4kpomsKVFBcUFLBq1aom38cTDb1vPZWamlrvL9Bwum8qKyvdnyv+yvX97tGjB+eff36959100021rqnLNddcU2/S4vrZhOZ/RhgMhgbfX9dff707jjPXPbum4V5++eUNFuoJCgpyr6NsKOEeOXJkvZ/1jeV6T+zfv7/BPxCczZmFkaoLDw/niiuuAGDfvn01/rjijc/X77//3v3HrzvuuMNr7zdvxeeLzx0R8R2tgZWfhI4dOzJ27Fh+8YtfEBcXV+95dVX8dNm3b5/76+oVjetS/ZfFffv2MWDAAA+iddq+fbv768suu6zR1zV1VMg1alwf1/rDpqwrPBtvP2tMTAwxMTH1Xld9LWVJSUmNkSnX97l3794NjoakpqZiNptrFQxproa+D2fG7SlX9drevXs3WLimd+/eTX62UaNGERUVRWFhIQ888AAXXXQRo0aNYtCgQfTu3durv/i6NPS+9dSZa5XPVP29v3fvXq666iqvte1NVqvVXcH6bJ9X1b/f1WsFnKmhn83q1Yeb+xnRsWPHBtfZx8bG0qFDB9LT02vEW1VVxe7duwFYsGCBe8TwbFyjd3Xxxs/WVVddxX//+1+sViu33HILw4YNY8SIEQwcOJAePXo0enS3oT+sgPP77BrJ3Lt3rzup88bn686dO91fDxw4sNH3aAxvxOeLzx0R8R0lsHJOqV74xWAwEBwcTExMDJGRkY26vqHy/AUFBe6vG0qCgRrTp/Lz8xvV9plyc3ObdF15eXmTrqvvL/surmTuzCqa3uDtZ23ss0DtitSu7/PZClWZTCaio6O9Po20odgbirsxXM92tp/foKCgJj9bTEwMc+bM4eGHH+bEiROsW7eOdevWARAREcHQoUO5/vrrGTlypMf3rk9jtv1orNZ4b7cGTz6vzGaz+/td/bozNTT1svrPZnM/I84WLzi/D+np6TXiLSgooLKy0uP2GvrMrGvatadSUlL4+9//zowZMygoKGD16tWsXr0acL5fhg0bxsSJE89a2fps/VL9ePV+8cbn68mTJ91f11cEsam8EZ8vPndExHeUwMo5JS4urlnl8Ru7NUlz1kM1VvUEZdGiRY3e+7O+6rb+7Kf0rP6gpX9+Bw0axMqVK1mxYgVffvklGzduJDMzk+LiYlauXMnKlSu57LLLePnll8/6x4bGaM6WQmdqjfd2awu0Z2pqvNU/R2688cY691+ui9lsrveYt0buxo4dyyWXXMKnn37K119/zcaNG8nLy+PkyZMsWbKEJUuWcN111zFz5sx6f5690S/++Pnqrfha+3NHRHxHCaxII1Uf5WloytmZx6tPrfNE9SmwsbGx53Sy5k/P2qZNG7Kzs8nLy2vwvKqqqgZHq/yR69nO9vNbWVnZ7NHF4OBgxo8fz/jx4wHnusgvv/ySt99+m7S0NL7++mv+8Y9/uLca8hfNeW9XTzDsdnu9iUhTtyjyhCefV9W/394czW6qs8Vb/Zzq8Vb/2uFw+N1en5GRkUycOJGJEycCcODAAT7//HPefvttsrKyWLRoEb179+bOO++s8/qz9Uv1kczqfeGNz9fq98jKyqJTp04e36Mx927u53+gfu6IiGdUxEmkkapXtD1bIY7qx8+shNvYv6L37t3b/XVd1XLPJf70rN27dwdg165dDU6F3Lt3b4MVpv1x1Mv1C/3u3bsbnGq5e/dur6/tde3H+eGHH7p/QV22bJlX2/CGbdu2Nfr4me/t6sV+Gvrjhmttan288bNjsVhITk4Gzv55tXPnTvf32x+SvvT09BpTVs+Ul5dHRkYGUDNei8Xi/p74+nOkMVJSUpg6dSrvvfceYWFhQMPvieprRetS38+mNz5fqxfp8nYl+pb8/A+Uzx0R8YwSWJFGSkxMdG/rsGzZsnoLlVRVVbFo0SLA+Vfw6v/HD86/ELs0lABdcskl7mlOb731Fg6Ho1nx+zN/etahQ4cCzjVfa9eurfe8xYsXN3ifxn6fW5Pr2fLz891r8Ory4YcftlgMERER7kJJdSUprn7zVZ/t3bu3RsGaM7n6xmQycdFFF9U41rFjR/fXDSUbn3zySYMxuKrnNrcPXN/vffv2NZjEfvDBB7Wu8SWHw9Hg1jYLFy50f0acGe+oUaMAOHjwIF999VXLBelF7du3d/+xoaHEffny5fWu1y0tLXUnZt27d6+xTtUbn68XX3yxO8l+++23m7QGvz6t8fl/ts8dEQksSmBFPODa+zMvL49nn322znNefvll9u/fDzjXYZ25lUP1vTcb2m4iKirK3d7mzZuZOXNmgyOCOTk5vP/++417ED/jT886YcIE9/ds5syZdU4l3rx5s7vaZ32qf5+PHDni3SCb6LrrrnMX4nnuuefqnJK4fv163nvvvSa38dVXX5GVlVXv8aKiIncyVT3hc3H1my/7bMaMGXXuMbx06VK+/PJLAMaMGVOrmM2AAQPc6/fmzp1b5y/ir7766llHRF19kJubS3FxcZOeAZxF7VzTmGfMmFHnvb7++mt3Atu/f/+zVixuLbNnz+bgwYO1Xj9w4AD//ve/AWc/nbkd1B133OFOtB5//PEa1ePrsmbNGnfl4payatWqWtt1VXf8+HH3s9b1nnDJzs7m+eefr/PY888/755CfMstt9Q45o3P16ioKPfU5x07djBz5sx6E02bzeZRYSZvxNfczx0RCSxaAyvigZtvvpmlS5eyefNmFi5cyLFjx7j11lvp2LEj2dnZfPjhh3z22WcAdO7c2b3penW9e/cmODiYiooKZs2aRVBQEElJSe5fNBMTE91JxvTp09mwYQM//vgjb731FuvXr+emm26iV69ehIWFUVBQwP79+/n2229Zu3Ytqamp3Hjjja3XIV7kL8+amJjIAw88wAsvvMDhw4e5/vrrueeeezjvvPOwWq18/fXXvPHGGyQkJFBWVkZeXl6dUz6TkpJo164dmZmZvP7667Rr146uXbu6i8LExcU1e39JT8XHxzN9+nT+/Oc/k5GRwc9//nPuvfde+vXrh9Vq5csvv2Tu3LkkJia6n81Tn3zyCffffz+XXHIJl156KampqbRp04aSkhL27t3LO++8w4kTJwDn++lMAwYMID09nS+++IJ3332XCy+80D0qGxER0agKtc1x3nnnsX37dvf3PTU1laKiIlasWOHeliU8PJzf/e53ta6Ni4tj3LhxfPzxx3z99dfcf//93HrrrcTHx3Ps2DGWLFnCihUrGDBgQIN7j1544YWAcx3tH/7wByZNmlRjnWCXLl0a9Sw9e/bkrrvu4rXXXmP37t1cd9113HPPPfTu3ZuysjJWr17tHk0zm80888wznnRVi+nSpQt5eXlMnDiRe+65xz3SvX79ev773/+69wydMWNGrT8QxsfH8+c//5mHHnqI7Oxsrr/+eq677jqGDx9Ou3btqKysJDMzk61bt7JixQqOHj3Kv//973r3wPaGN998k0ceeYQRI0YwZMgQUlJSiIyMpKCggO3btzNv3jz3yOqZyWd15513Hv/73/9IT0/n5ptvpn379hw/fpz//e9/fP311wD06dOnzveVNz5fp0+fzjfffMPevXuZN28emzdv5uabb3ZvKZaZmcnGjRv55JNP+NWvfuXeD70xmhtfcz93RCSwKIEV8YDJZOLf//43999/P5s2beL777/n+++/r3VeSkoKr7zyCuHh4bWORUREMGnSJF599VV27NjBlClTahx/6623uPjiiwHnVMLXX3+dxx9/nM8++4zdu3c3+EtmaydE3uRPzzp16lQyMjJYsGABx44d4+mnn65xPCYmhlmzZvHggw+6Y6/Lvffey9NPP016enqtP2Y899xzHv2C5y1Tpkzh2LFjvP3225w4caJWH8fExPDiiy/yq1/9qslt2Gw2vvzyS/doZV1uvvnmOqvE/uIXv2DFihVYrVb+8Ic/1Dh23XXX1TsC5S2XX345l19+OS+//DKPP/54reMRERHMmTOn3lGcxx9/nO3bt5OWllZjuxSXq666ihtvvJHJkyfXG8OQIUO44IIL2LJlCx9//DEff/xxjeOu/Xwb45FHHqGsrIz58+dz5MgRZsyYUeucyMhIXnzxxRprEX0pMTGRJ554gl/96lf8/e9/r3XcaDTy29/+lrFjx9Z5/f/93/8xe/ZsHn/8cfLz83n33Xd599136zzXaDS2SkXasrIyli9fzvLly+uN48EHH2TMmDH13uPXv/41b7zxBl999VWd06O7devGv//97zqr+Hrj8zU0NJQ333yThx56iA0bNrBjx446f56awhvxNedzR0QCixJYEQ9FR0fzzjvvsGTJEj7++GN27dpFQUEB4eHhpKamMm7cuDqnDlf3yCOPkJyczOLFi9m/fz9FRUX1rimKiIjgpZdeYuPGjSxevJiNGzeSlZVFRUUFERERdOrUif79+zNixAiPNoH3R/7yrAaDgWeeeYYRI0Ywf/58tm/fTllZGe3atWP48OHcfffdtGvXzj0ls759hl2jbwsWLHD/nDRln0pv+/3vf8+wYcN466236n22pnr88ce55JJL+P7779mzZ4+7orPJZKJdu3YMGDCAG264od49L3v37s2CBQt47bXX2LRpEzk5Oa2+HvbBBx/kggsuYN68eWzfvp2CggISEhIYMWIE9957b4P9Ex8fz3vvvccrr7zCypUrOXbsGGFhYfTo0YObbrqJ8ePHu/enrI/RaOS1117j1VdfZfXq1Rw5coSysrImrQ00Go384Q9/4KqrruLdd9/lhx9+ICcnB4vFQqdOnRgxYgR33nnnWfc9bm2XX345H374Ia+++irr1q0jKyuLqKgoBg0axF133cWAAQMavH7UqFF8/vnnvPfee3z55Zfs37+fgoICTCYT8fHx9OjRgyFDhjB27Fjat2/fos/y97//nTVr1rBu3ToOHDhATk4OJ0+exGKx0KFDBwYNGsTNN9981lFgs9nMf//7XxYsWMBHH33EwYMHsdlsdOrUiSuvvJK77rqrwb16vfH5Ghsby7x581i5ciVLly7lxx9/dM9CSUhIoG/fvowZM6bePy40pDnxNfdzR0QCi8FxLleGERFpIZmZmYwYMQKAZ599NmCnbov4i0mTJrF+/Xouuugi3n77bV+H4xfWrVvnHjGsPjtHROSnTEWcRESaoPq0zgsuuMB3gYiIiIj8hCiBFRE5Q2lpaYMVLXfu3Mns2bMB5/6IZ+4HKiIiIiItQ2tgRUTOkJeXx5VXXsmYMWMYNmwYXbt2xWKxkJWVxVdffcUHH3xAeXk5BoOhzkI/IiIiItIylMCKiNShoqKCTz75hE8++aTO42azmWeffZbBgwe3cmQiIiIiP11KYEVEzpCYmMg//vEPvvrqK7Zv305eXh4FBQWEhITQoUMHLrnkEm6//XY6dOjg61BFREREflJUhVhEREREREQCgoo4SQ179uxhz549vg5DRERERESkFiWwUoPVaqW4uJiKigpfhxIQKioq+OGHH9RfHlCfeU595jn1mWfUX55Tn3lOfeYZ9ZNI3ZTASp2qqqp8HUJAcPWT+qvx1GeeU595Tn3mGfWX59RnnlOfeUb9JFI3JbAiIiIiIiISEJTAioiIiIiISEBQAisiIiIiIiIBQQmsiIiIiIiIBAQlsCIiIiIiIhIQlMCKiIiIiIhIQFACKyIiIiIiIgFBCayIiIiIiIgEBCWwIiIiIiIiEhCUwIqIiIiIiEhAUAIrIiIiIiIiAUEJrIiIiIiIiAQEJbAiIiIiIiISEJTAioiIiIiISEBQAisiIiIiIiIBQQmsiIiIiIiIBAQlsCIiIiIiIhIQlMCKiIiIiIhIQFACKyIiIiIiIgFBCayIiIiIiIgEBCWwIiIiIiIiEhCUwIqIiIiIiEhAUAIrIiIiIiIiAUEJrIiIiIiIiAQEJbAiIiIiIiISEJTAioiIiIiISEBQAisiIiIiIiIBQQmsiIiIiIiIBAQlsCIiIiIiIhIQgnwdgIh4R3llBZ8f+Jq9uYeoqKwgOaYjI7teQmJEW1+HJiIiIiLiFUpgRc4BO7L2Muu718gvL3S/tun4dj7a9RlX9xzDLf2uxWjUhAsRERERCWxKYEUC3Obj2/nb1//BZq8kITyOMSnDCA0KYeOxH/kxcxcf7f6MIwXH+M2lU7GYzL4OV0RERESkyZTAigSwE8XZvPjda9jslQxK6s+vhv4CS5AFgLE9RvDtkR+Yvf5NNh/fzj+/f52Hh96jkVgRERERCVj6TVYkQNntdmZ99zpltnJ6xqfw8KVT3cmryyWdB/L48AcIMgaxPn0LC7Yv9VG0IiIiIiLNpwRWJECtSfuO/XlphJlDmT5kCkFGU53n9U1IZdpFkwBYvGsF207sbs0wRURERES8RgmsSAAqt5Xz7rYlANzQ90riw2MbPP+yLhcxuttlOHAwZ/3blFdWtEaYIiIiIiJepQRWJACtOvg1+eWFJIbHM7b7iEZdc+eAG2gbFktOaR7vb/+4hSMUEREREfE+JbAiAabKXsWne1cDMKH3WMyNrCwcEhTMLwbeAsAne78gozCzxWIUEREREWkJSmBFAsz6jC3klOYRFRzBsC4XeXTthUnnMTCpH3aHnXe2Lm6ZAEVEREREWogSWJEAs3L/VwD8X/fhtaoON8Zt51+H0WBkY8aP7M4+4O3wRERERERajBJYkQCSU5LHjqy9AIzsekmT7tExqr372oU7P/VabCIiIiIiLU0JrEgA+erwehw46NO2B23D45p8nwm9/w+DwcCWzJ0czDvsxQhFRERERFqOEliRALL28DoAhicPadZ9EiPacmnnwQAs3LW82XGJiIiIiLQGJbAiASKjMJOMwkxMRhNDOg5o9v2u6z0WgPXpW0gvON7s+4mIiIiItDQlsCIBYkPGjwCcl9CTMEtos+/XqU0SF3W4AIBFGoUVERERkQCgBFYkQLgS2MEd+nvtntf1GQfAt0c2crKswGv3FRERERFpCUpgRQJAflkB+3PTABiUdL7X7psS24We8SlUOeysOvCV1+4rIiIiItISlMCKBIAtmTtx4KBbTGdiw6K9eu+x3UcAsOrA11Taq7x6bxERERERb1ICKxIAtp3YDUD/dr29fu8hHQfQJiSKk+UFbMjY4vX7i4iIiIh4ixJYET/ncDhOJ7CJ3k9gg0xBjO52KQAr9n3p9fuLiIiIiHiLElgRP3e04Bj55YVYTGZ6xndrkTZ+ljIMo8HIzux9HMnPaJE2RERERESaSwmsiJ9zjb72btsDs8ncIm3EhcUw6FR141UHvm6RNkREREREmksJrIif25m9D3Du/9qSxnQbBsDXRzZgq7K1aFsiIiIiIk2hBFbEjzkcDnbnHACgd9vuLdpW/8RexIXGUGwtYeOxrS3aloiIiIhIUyiBFfFjx4tOUFRRjNlkpmtMpxZty2g0Mjz5YgDWHPquRdsSEREREWkKJbAifmxX9n4Auscmt9j61+pGdh0KOPedzSvNb/H2REREREQ8oQRWxI+dnj6c0irttYtMoHfb7jgcDr5M+75V2hQRERERaSwlsCJ+bM+pBLZnfOsksACXJztHYVcf+haHw9Fq7YqIiIiInI0SWBE/VVxRQmZxNgA9Yru2WrtDO11IcFAwmcXZ7Ms91GrtioiIiIicjRJYET914ORhANpFtCUiOLzV2g0xhzC4w/mAc0sdERERERF/oQRWxE/tz00DICW2S6u3fVnnwQB8d+QHquxVrd6+iIiIiEhdlMCK+KkDec4R2O6xya3edv92vYm0hFNQUcT2rD2t3r6IiIiISF2UwIr4IYfDwf68NAC6xyW3evtBRhNDOw0E4OvDmkYsIiIiIv5BCayIH8oryye/vBCjwUhydCefxHBZl4sAWJ++BWul1ScxiIiIiIhUpwRWxA+l5acD0DGqPcFBFp/EkBrflbZhsZRVlrPp+HafxCAiIiIiUp0SWBE/dOjkUQCSozv6LAajwcilXZzFnDSNWERERET8gRJYET+Uln8qgY3xXQILp6sRbzq+nRJrqU9jERERERFRAivihw6fdE4h9uUILEDn6A50apNEpb2SdelbfBqLiIiIiIgSWBE/U2ot40RJDoDPCjhV5xqF/ebIeh9HIiIiIiI/dUpgRfyMq4BTfFgsEcHhPo4G9zrY7Sf2kl9W4ONoREREROSnTAmsiJ85fCqB7RLdwceROCWEx5ES2wUHDtZnbPF1OCIiIiLyE6YEVsTPpBceB6BzG/9IYAGGdroQgO+ObvJxJCIiIiLyU6YEVsTPpBdmAtAhqp2PIzltSEdnArszex8F5YU+jkZEREREfqqUwIr4GdcIbMeo9j6O5LSEiHhSYrrgcDhUjVhEREREfEYJrIgfKSwvoqiiGAMGvxqBBbi40wAA1qVrGrGIiIiI+EaQrwPw1Pfff88bb7zBjz/+SGlpKUlJSYwbN46pU6cSFhbWpHuuWLGCefPmsXv3bmw2G126dGH8+PHccccdmM3meq/Lzc1lzpw5rF69mqysLKKiohg8eDD33nsvvXv3rvOa9PR0vvvuO7Zt28b27dvZu3cvNpuN6667jueff/6ssZaUlPDf//6XFStWcOzYMcLCwjj//POZMmUKF198cZOeX/yHa/S1bXgswUEWH0dT09BOFzJ/62K2Z+2lsLyIqJBIX4ckIiIiIj8xATUC+/bbbzN58mTWrFlDcHAwKSkpZGRkMGfOHG644Qby8/M9vuef//xnHnroIdavX090dDSdO3dm3759/OUvf+Guu+7CarXWed3hw4cZP348b7/9Nnl5efTo0QOHw8GyZcu48cYb+fzzz+u87s033+T3v/89CxYsYMeOHdhstkbHmpeXx/XXX8+///1vMjIySElJITg4mDVr1nDnnXfyzjvvePz84l9c61/9afqwS2JEW7rGdMLhUDViEREREfGNgElgt2/fzsyZMwF45plnWLNmDYsWLWLVqlX07duXAwcOMGPGDI/uuXLlSl5//XUsFguzZ89m5cqVLFmyhKVLl9KxY0c2bNjACy+8UOs6h8PB9OnTycnJYdiwYaxdu5aFCxeydu1apk2bhs1m45FHHiErK6vWtTExMVx++eU8+OCD/Pe//+WGG25odLxPPvkkhw4dom/fvqxatYpFixaxZs0annnmGRwOB3/605/YtWuXR30g/sW9/rWN/yWwAEM7DQRUjVhEREREfCNgEtjZs2djt9u59tprmThxIgaDAYDExEReeOEFjEYjn332Gbt37270PV9++WUA7rnnHkaPHu1+PSUlhWeffRaAd955h7y8vBrXff755+zatYvIyEj+/ve/ExnpnEoZFBTE9OnTGTx4MKWlpbz++uu12pw2bRr/+c9/eOCBBxgxYgRRUVGNinXnzp188cUXGI1G/vGPf5CYmAiAwWBg4sSJXHvttVRVVTF79uxGP7/4nww/LOBU3ZCOznWwO7L2UlhR7ONoREREROSnJiAS2JKSEr766isAbrrpplrHk5OTGTJkCADLly9v1D3T0tLcye7EiRNrHR86dChdunTBarXWmg68bNkyAMaNG0ebNm1qXeuK0XWeN6xYsQKAIUOG0KVLl1rHXc/w5ZdfUlpa6rV2pXWlF/jvFGKAdpEJJEd3xO6ws0HViEVERESklQVEArtr1y6sVisWi4X+/fvXec7Agc6pjT/++GOj7rllyxYAOnXq5B7NbOw9Xf8eNGhQnde5Xs/MzOTEiRONiudsXPHW12b//v2xWCxUVFRoGnGAKraWcLK8APCvPWDPNKSTc0/Y71WNWERERERaWUBUIT506BAASUlJ9VYF7ty5c41zzyYtLa3GdY29p9VqJSMjo8Fr27dvj9lsxmazcfDgwXoTZE+cLV6z2Uz79u05fPgwhw4dciffTVVWVtas638qXP3kjf46kJcGQGxINA6bnVKbf46kXxDfh3dZwvYTe8jOzyHc4ln1b2/22U+F+sxz6jPPqL88pz7znPrMM2VlZU3eYUPkXBYQCWxBgXNUqq7pui6uY65zvXnPwsJC92vFxcXY7fYGrzUYDERFRZGbm1vj2uZoarxN5UqYpXG80V8/FjintLcxRvj9KHq8JYYc60mWbVlF38geTbqHfsY8pz7znPrMM+ovz6nPPKc+a7y4uDhfhyDidwIiga2oqABocE9Wi8VS41xv3rO8vLzWddWPN/ba5mhqvE2VnJxMaGhos+9zrisrKyMtLc0r/bVlx17IhtR23erdR9hfDDUMZOm+VRw35HGDh7F6s89+KtRnnlOfeUb95Tn1mefUZ57RSLVI3QIigQ0ODgZocM9U136trnO9ec+QkJBa11U/3thrmyM4OJiysjKP422q0NBQTVvxgDf6K7M0B4Dk2E5+3/eXJg9m6b5VbMvejckSRHBQ/X/MqY9+xjynPvOc+swz6i/Pqc88pz4TkeYIiCJOjZke3JgpttW5tq9pzD2rb3UTERGB0Whs8FqHw+GextvYbXJaKl4JHP6+B2x1XWM60TYsFmuVjR8zd/o6HBERERH5iQiIBDY5ORmAY8eO1TsCeeTIkRrnnk3Xrl0BOHz4cL3n1HVPi8VCUlJSjeNnOn78uDtOVzvN5YqhvnhtNhvHjh2rFa8EhvLKCnJLTwLQIdJ/KxC7GAwGBnc4H4D1GVt8G4yIiIiI/GQERALbu3dvzGYzVquVrVu31nnODz/8AMAFF1zQqHuef77zl+/09PR6t7qp756uf2/cuLHO61yvt2vXjnbtvJOMuNp0xXSmrVu3YrPZCA4O9vv1k1LbieJsACIt4UQEh/s4msa5qOMFAPxwbBuV9irfBiMiIiIiPwkBkcBGRERw2WWXAfDee+/VOp6Wlsb3338PwLhx4xp1z65du5KamgrAggULah3/7rvvOHz4MGazmdGjR9c4NnbsWACWL19e55ReV4yNjaUxXG2uW7euzlFY1zMMHz6c8PDASIDktMxTCWxiRFsfR9J4veK7ExkcQYm1lF3Z+3wdjoiIiIj8BAREAgswbdo0DAYDH330EQsWLMDhcACQlZXFww8/jN1uZ8yYMfTq1avGdaNGjWLUqFEsX7681j0feOABAF555RW++OIL9+sHDx7k97//PQC33norsbGxNa4bM2YMPXv2pKioiEceeYSioiIAqqqqmDVrFhs2bCA0NJQpU6Z47fn79u3LyJEjqaqq4te//jVZWVmAc73tggUL+OijjzAajdx///1ea1Naj2sEtl0AJbBGo5FBSf0BWJ++xbfBiIiIiMhPQkBUIQbo378/jz32GM8//zxPPfUUc+bMISYmhv3792O1WunatSt//OMfa12XkZEBQGlpaa1jY8eO5c477+TNN9/k/vvvp3PnzoSFhbFv3z6qqqoYOHAgv/nNb2pdZzQamTVrFrfddhtr165l+PDhdO3alczMTHJzczGbzfz1r38lMTGx1rU//PAD06ZNc//bteXNJ598wurVq92vP/XUU1x11VU1rp05cya33HILO3bsYPTo0XTv3p2TJ09y/PhxDAYDTzzxBH379m1kj4o/ySw6lcBGBk4CC85pxKsPfcuGjB+568KbMBoC5m9iIiIiIhKAAiaBBZg8eTI9e/bk9ddfZ+vWreTm5pKUlMS4ceOYOnVqk6bOPvHEEwwYMID58+eza9cusrKySElJYfz48UyePLnefVe7du3KkiVLmDNnDqtXr2bv3r1ERUUxduxY7rvvPvr06VPndZWVleTn59d63Wq11tiWp679bGNjY/nwww955ZVXWL58Ofv37ycsLIzhw4fzi1/8giFDhnj8/OIfMt0jsAk+jsQz/RJ7ERIUTF5ZPgfzjtA9LtnXIYmIiIjIOSygEliAoUOHMnTo0Eafv2fPnrOec8UVV3DFFVd4HEt8fDwzZsxgxowZjb7m4osvblRM9YmIiODXv/41v/71r5t8D/E/p9fAxvs4Es9YTGYGtD+P747+wPqMLUpgRURERKRFab6fiI/ZqmzuLXQCaQ2sy0UdT22no3WwIiIiItLClMCK+FhWSS4OHIQGhRAVHOnrcDw2oP15BBmDOFZ0gvTC474OR0RERETOYUpgRXwss1oFYoPB4ONoPBdmDqVfYk9Ao7AiIiIi0rKUwIr4WGaRc0ukxACrQFzd4A4XALAh/UffBiIiIiIi5zQlsCI+lhmAe8CeaXCH/hgwcODkYXJK83wdjoiIiIico5TAivjYiXMggW0TEkVqXFcANh3b5uNoRERERORcpQRWxMc8GYF1OBwtHU6TDezQH4AflMCKiIiISAsJuH1gRc4llfYqsktyAWgXkVDnOQ57FUU/fkH+t4uoKi0kuF1XYkffSUhS99YM9awGdejP/K2L2XZiD+W2ckLMIb4OSURERETOMRqBFfGhnNI8qhx2LCYz0aFRtY47HA5yVrxKzqf/pjL/BA5rGeVHdnL87RkU7/7OBxHXr0NkO9pFtKXSXsmPJ3b5OhwREREROQcpgRXxIdf618TweIyG2m/Hwo3LKNr0GWAgdvQddLznBcK6D8RRaSX7o39iyzvWyhHXz2AwMDDJOY14Y8ZWH0cjIiIiIuciJbAiPpRZdCqBjaw9fbiyKI+8L94GIHb0JKKHXIsloQuJNz5KSHI/HJVWspa8jMNe1aoxN2TQqXWwm45vx263+zgaERERETnXKIEV8aGGCjid/Pp9HJVWgjv2pM3F492vG4wm2l49DYMllIqMPRTv/KbV4j2bnvEphFvCKKooZm/uIV+HIyIiIiLnGCWwIj6UVZIDQEJ4XI3XbfknKNryOQCxI2/HYDDUOG5uk0D00AkA5H+7EIfDP0Y7g4wmBrQ/D4CNxzSNWERERES8SwmsiA/llOQBtRPYos0rwV5FaNfzCe3cp85rowZdgSE4DFv2UUr3bmjxWBtr0Kl1sD9oHayIiIiIeJkSWBEfyip1bqETHxbrfs1hr6Jo6xoAoi78v3qvNYWE02bgOAAKNnzackF66IJ2fTAZjGQUZXK8KMvX4YiIiIjIOUQJrIiPlNnKKbGWAtC22ghs6f5NVBWfxBgWRViPgQ3eI3LAzwAoP7wdW4F/JIthllD6JKQC8IOmEYuIiIiIFymBFfGR7BLn6GuEJZxQc4j79eJtawCI7Hc5BpO5wXuYoxMI6XLeqevWtkicTTFI2+mIiIiISAtQAiviIzmlzvWvbatNH7ZXWik9sAWAiL6XNeo+kf0vB6Bo62ocDodXY2yqgae209mdc4CiimIfRyMiIiIi5wolsCI+knVqBDY+/HQCW562DYetHFNkLJZ23Rp1n/BeQzAEWag8mYn1RFpLhOqxhPA4OrfpgN1hZ/PxHb4OR0RERETOEUpgRXzEPQJbbf1ryd6NAIT3GFxr65z6GC2hhHY7H8C/qhF36AdoOx0RERER8R4lsCI+kl1Scwqxw2GndJ8zgQ1LHezRvcJTLwKgZO96L0bYPIOSnEn1j8d3UllV6eNoRERERORcoARWxEdcRZxcI7DWrCNUFedhMAcT0qWvR/cK6z4QDEasJw5RWZDt9ViboltsZ6JDoiirLGdn9j5fhyMiIiIi5wAlsCI+kn1qCrFrD9jyI861oiGdemEMsnh0L1N4G0I69gSgZN8PXoyy6YwGIwPaOyskax2siIiIiHiDElgRH7BWWikoLwScBY8AytK2AxB6alscT4WmXHjqPv6z5nRAe+dI8qbj23wciYiIiIicC5TAiviAq4BTSFAw4ZYwHA475Ud2Ol9ragKb7CyaVJ62DYe9yjuBNlP/xN6YDEaOF2WRWZTl63BEREREJMApgRXxgexqe8AaDAasJ9KwlxdjsIQQ3Mjtc84U3L4bxuAw7BWlVBw/6M1wmyzMEkqvtt0BTSMWERERkeZTAiviA64KxPGu6cOHXetfe2MwBTXpngajiZBTo7D+NY3YtQ52u48jEREREZFApwRWxAdOVyB2FnCqyNgDOBPY5ghN7g9A2SH/SWAvPJXA7sjaS0Wl1cfRiIiIiEggUwIr4gOnpxA7R2ArMpzbzIR0SG3WfUOTzzt1v704qmzNupe3dIhqR9uwWGz2SnZk7fF1OCIiIiISwJTAivhATrUR2Mrik1QW5gAGgtunNOu+5rgOGEMjcVRaqcg85IVIm89gMLinEW/SNGIRERERaQYlsCI+4FoD2zY8zj36am7bEWNwWLPuazAYCOnUC4Dyo7ubF6QXDUg6vR+sw+HwcTQiIiIiEqiUwIq0skp7FXnl+YCzCnHFsVPTh5N6eOX+IR1dCewur9zPG/ompGI2BpFdksvxYm2nIyIiIiJNowRWpJXllZ7E4XBgNgYRFRJJ+akENriZ619dXIWgytN3+81oZ0hQMH0SnM/3Y9ZOH0cjIiIiIoFKCaxIK8s5VcApLiwGA1Bx/AAAwV4agQ1u1w1DkAV7aSG2vGNeuac3DGjfF4CtJ/xnarOIiIiIBBYlsCKtLLc0H3AmsJX5WTgqSsEUhCW+o1fubwgyu4tBudbX+gPXdjp78w5SYdd2OiIiIiLiOSWwIq0st+wkAHGhMVSccFYKtrTtjMEU5LU2gpO6A7jX1/qDdpEJtI9IoMphJ600w9fhiIiIiEgAUgIr0sryTo3AxoZFY81MAyA4satX23BNR644tt+r920u1zTig6VHfRyJiIiIiAQiJbAiraz6CKzVNQKbmOzVNtwjsCfScFTavHrv5nBtp3OwJN1vCkyJiIiISOBQAivSyvLca2CjqTiRBkBwO++OwAa1ScAYFgX2Sncb/qBP2x5YTBaKq0o5Uug/BaZEREREJDAogRVpZa4R2FjMVBXlAmBJSPZqGwaDgeD2/rcO1mwy0yfeGdfWLP/Zp1ZEREREAoMSWJFWVFlVSUF5EQCRxQUABMW0wxgc6vW2QlzrYI/71zrYfgm9ANiRvdfHkYiIiIhIoFECK9KKTpYX4MBBkDGIoPwcACwJXVqkLcupacmudbb+4ry2PQHYl5dGua3cx9GIiIiISCBRAivSilx7wMaGtqEyJx0AS9tOLdKWa12tNScDe6X/7LuaEBZHm6BIqhxV7Mz2n+nNIiIiIuL/lMCKtKI8VwXisBis2UcA5x6wLcEUGYcxNALsVdiy01ukjaYwGAx0DesAwI+ZWgcrIiIiIo2nBFakFblHYEPaYHWNwMa3zAiswWDAcmp/WWtWWou00VTJpxLYrUpgRURERMQDSmBFWpGrAnF7YzCOilIwmjDHtW+x9oJPra+t8LN1sF1CkzBgIKMok5ySPF+HIyIiIiIBQgmsSCty7QGbaK0EwBzbHoPJ3GLtuUdg/WgvWIAQUzApMc6p01tPaBRWRERERBpHCaxIK8otdY42xpY5q++21PRhF0tiMuBMYB0OR4u25am+p6oRax2siIiIiDSWEliRVpRblg9AWJFzD1hzC1UgdrHEdwBTEPaKUioLslu0LU+d1zYVgG0ndmO3230cjYiIiIgEAiWwIq2kyl7FyXJn4hpU6ByJtcR3bNE2DSaze5TX3/aD7RbdmVBzCMXWEg7lH/V1OCIiIiISAJTAirSS/PJCHA4HJgw4TmYCYI7r0OLtuqYRV/jZOliT0US/hF4A/Ji508fRiIiIiEggUAIr0kpyS50ViJMskdjLSwBnEaeWFuxeB+tfI7AA/dv1BrSdjoiIiIg0jhJYkVaSd2r9azIWAIKi4jGag1u8XX+tRAxw/qkEdk/uQcps5T6ORkRERET8nRJYkVbiHoGtcr7tWmP6MJyeQlxZkE3VqZFff5EY0ZbEiLZU2avYmb3P1+GIiIiIiJ9TAivSSlwViNvaTu0BG5fUKu2aQsIJapMA+OcobL9E5zrY7Sf2+DgSEREREfF3SmBFWkneqRHYNqf2gDXHtk4CC2BJ7AL45zrY8xKc2+nsyFICKyIiIiINUwIr0kpcI7ChJYVA600hBrC0PZXAZvvfdjV9TiWwafnpFFUU+zgaEREREfFnSmBFWsnJsnyMDgemonwALK00hRjA0vbUXrA56a3WZmNFh0TRKcpZjVnrYEVERESkIUpgRVqBw+HgZFkBMbYqDA47hiALpqi4VmvfHN8RAFvOURwOR6u121h9E3sCWgcrIiIiIg1TAivSCkqspdjslcTZqgAwx7bDYGi9t585LgkMRuzlJVQV57dau411XsKpBFbrYEVERESkAUpgRVrByfICANo7TAAERbdr1faNQRbMMc42bTl+uA62bQ8MGMgozCS/rMDX4YiIiIiIn1ICK9IKTp5Kytx7wMa2bgILp6cRW/0wgY0IDic52hnf9qy9Po5GRERERPyVEliRVuBKYOMr7QCYY9q3egzuQk7Z/lfICU6vg92hBFZERERE6qEEVqQVuKYQt6moAHBP521NlnhnAuuPU4hB62BFRERE5OyUwIq0gpNlBRgcDsLKywAI8kECW30KsT9WIu7dtjtGg5ETxdnklOT5OhwRERER8UNKYEVawcmyAtpU2jHa7WAMIqgVt9BxcVciLiumqsT/CiWFmkNIie0CaBRWREREROqmBFakFZwsyz+9hU5MAgajqdVjMJqDCYpOAPx3GnHfhFRACayIiIiI1E0JrEgrOFle4E5gW3sLnepc62Ct2f6ZwLrWwe7I2uuX05xFRERExLeUwIq0MIfDwcmygmojsD5MYNu6Cjn5ZyXinvEpmIwmcktPcqI429fhiIiIiIifUQIr0sJKbKXY7JXEVLoS2ESfxeLPe8ECBAdZ6BGbDMDO7P2+DUZERERE/I4SWJEW5toDNq7SOSU2qE1bn8Xi3gvWT0dgAXq17Q7A7hwlsCIiIiJSkxJYkRbmSmBjKu0ABLVJ8Fks5rgOgAF7aaFfViIG53Y6ALs1AisiIiIiZ1ACK9LCTpYVYLY7CKusBHBXAvaF6pWI/XUacWpcNwwYyCzOJr/MP5NsEREREfENJbAiLexkeYF7/asxOAxTSLhP47GcWgdryz3m0zjqE24Jo3N0BwB25xzwcTQiIiIi4k+UwIq0sJNlBcS4ttDx4fRhF3NcEgC23AwfR1K/3vHOacS7NI1YRERERKpRAivSwk6WnR6BDYr2XQEnF3OsM4G1+nEC26ttCqB1sCIiIiJSkxJYkRZ2sryAGJvvCzi5OAs5+e8UYjhdiTitIJ1SW5mPoxERERERf6EEVqSFnSzLP70HrA8LOLm4phBXFmTjqLT5OJq6xYZGkxgej8PhYG/OIV+HIyIiIiJ+QgmsSAtyOBx+twbWFB6NITgMHHZsJ4/7Opx69XRNI87Z5+NIRERERMRfKIEVaUEltlJs9spqa2B9n8AaDAYssa5CTv47jfh0ISdVIhYRERERJyWwIi3ItQdsRJUDgKA2vi/iBKenEVv9OYE9tQ52f14atir/nOosIiIiIq1LCaxIC6pegdgYEu7zPWBd3IWc8vy3EnH7yESigiOwVdk4ePKIr8MRERERET+gBFakBfnb+leX03vB+u8IrMFgoJf2gxURERGRapTAirSg/PLC0+tf/WT6MJzeC9aWewyHw+HjaOrn2k5H+8GKiIiICCiBFWlR+eWFp/eA9YMCTi7m2PaAAXt5MfbSQl+HU69e8c5KxHtyDmB32H0cjYiIiIj4mhJYkRaUX356DazZj0ZgjeZggtrEA2DL899pxF1jOhEcFEyJrYz0Av/d8kdEREREWocSWJEWVFBe5JdrYKF6JWL/LeRkMproHtsFgH25h3wcjYiIiIj4mhJYkRZUYw2sH00hBjDHnqpE7MeFnAB6xHUFlMCKiIiIiBJYkRZVUprv3gPWn6YQQ2BUIgZIVQIrIiIiIqcogRVpIbYqG+aSIgAMIeEY/WQPWBd3AuvHe8ECdD+VwKYXZlJqLfNxNCIiIiLiS0pgRVpIQUVRtQJO/jV9GMAS1xEA28kTOKoqfRxN/aJDokgIj8OBg/15ab4OR0RERER8SAmsSAspKC8iuvLUFjpR8T6OpjZTZCwGczDYq7DlZ/k6nAalxnUDYG/uQR9HIiIiIiK+pARWpIXklxfSxlXAKSrOx9HUZjAYMMe0A6Ayz7+3qFEhJxEREREBJbAiLSa/rMCvR2ABzLHtAbCd9O8ENjXeNQJ7CIfD4eNoRERERMRXlMCKtJDqI7AmPxyBhWoJrJ+PwHZp0wGzyUyJtZTjRSd8HY6IiIiI+IgSWJEW4kxgXSOw/pnABsUExghskCmIbjGdAecorIiIiIj8NCmBFWkhBWXV18D6+RRiPx+BhdP7wSqBFREREfnpUgIr0kLKinMxn1quGRQR69tg6uFKYCsLcnBU2XwcTcNchZwO5Kb5NhARERER8RklsCItxF6UB4AjNAJDkNnH0dTNFB6NwRICDju2k/69tjQltgsARwoysPp5si0iIiIiLUMJrEgLMZQUAmCM9M/RV3BtpRMY04jjw2KJCo6gymEn7eRRX4cjIiIiIj6gBFakBZRXVhBqLQfA0ibBx9E0LFC20jEYDKTEJgNwIO+wb4MREREREZ8I8nUAnvr+++954403+PHHHyktLSUpKYlx48YxdepUwsLCmnTPFStWMG/ePHbv3o3NZqNLly6MHz+eO+64A7O5/qmfubm5zJkzh9WrV5OVlUVUVBSDBw/m3nvvpXfv3i3S5tKlS1m4cCG7du2iqKiI0NBQevTowVVXXcXEiRMbvFZaT0F5oXsP2OCotj6OpmGBVMgpJbYLm49vVwIrIiIi8hMVUCOwb7/9NpMnT2bNmjUEBweTkpJCRkYGc+bM4YYbbiA/P9/je/75z3/moYceYv369URHR9O5c2f27dvHX/7yF+666y6sVmud1x0+fJjx48fz9ttvk5eXR48ePXA4HCxbtowbb7yRzz//3KttOhwOfvWrX/HII4/w7bffAtCzZ0/Cw8PZtGkTf/zjH5k0aRKlpaUe94F4X40tdNr4ZwViF3NMOwAqAyCB7X5qHawSWBEREZGfpoBJYLdv387MmTMBeOaZZ1izZg2LFi1i1apV9O3blwMHDjBjxgyP7rly5Upef/11LBYLs2fPZuXKlSxZsoSlS5fSsWNHNmzYwAsvvFDrOofDwfTp08nJyWHYsGGsXbuWhQsXsnbtWqZNm4bNZuORRx4hKyvLa21+9NFHLFu2DIPBwLPPPst3333HwoUL+fLLL5k7dy7h4eFs3ryZV1991aM+kJbhTGBPbaET6Z97wLqYY5OAwBmBBThWdIJSW5mPoxERERGR1hYwCezs2bOx2+1ce+21TJw4EYPBAEBiYiIvvPACRqORzz77jN27dzf6ni+//DIA99xzD6NHj3a/npKSwrPPPgvAO++8Q15eXo3rPv/8c3bt2kVkZCR///vfiYyMBCAoKIjp06czePBgSktLef31173W5hdffAHA6NGjufHGG93PDzB06FDuvvtuANasWdPo55eWk192egTWFOXvCeyprXQKc7FX1j3jwF+0CYkiPiwWBw4O5h3xdTgiIiIi0soCIoEtKSnhq6++AuCmm26qdTw5OZkhQ4YAsHz58kbdMy0tzZ3sTpw4sdbxoUOH0qVLF6xWa63pwMuWLQNg3LhxtGnTpta1rhhd53mjzYqKCgA6d+5c5/N06eIcmaqsrKzzuLSugvKC0yOwfp7AGsOiMASHAQ4qT2b6OpyzStE0YhEREZGfrIBIYHft2oXVasVisdC/f/86zxk4cCAAP/74Y6PuuWXLFgA6depEYmKiR/d0/XvQoEF1Xud6PTMzkxMnTu+t2Zw2XUWhNm/ejMPhqHXdDz/8AFBv/0jrKinMwXzq2xTkx9voQGBtpQPVEtiTSmBFREREfmoCogrxoUOHAEhKSqq3yq5rZNJ17tmkpaXVuK6x97RarWRkZDR4bfv27TGbzdhsNg4ePOhOVpvaJsAdd9zBhx9+yObNm3niiSe4++676dixI7m5uSxcuJD//e9/JCQkMG3atAaeuvHKyrS+sDFc/XRmf5WfdP7hojI4lLIKG2Br7dA8YmzTFjIPUHriCIZO/Vq0rfr6rLE6hjuLTu3PSfvJFC1rbp/9FKnPPKP+8pz6zHPqM8+UlZU1eYcNkXNZQCSwBQUFAHVO13VxHXOd6817FhYWul8rLi7Gbrc3eK3BYCAqKorc3Nwa1za1TYDY2Fg++OAD/v73v/PJJ5+wcOHCGu1NnDiRadOm1Tuy6ylXsi2Nc2Z/VeQ5E9hycyi7du3yQUSeCak0EQrkHNrNkfBurdJmU3/GrFXOdbo5ZXn8sH0TYaZQL0bl3/S+9Jz6zDPqL8+pzzynPmu8uDj/XoYk4gsBkcC61n82tMepxWKpca4371leXl7ruurHPb3W0zZdTpw4QXZ2NjabjejoaDp06MCJEyfIyclh5cqVpKamctttt9V7b08kJycTGvrTSQyaqqysjLS0tFr9tXGr83sdEptI97PsCewPyhy5FBz4hkgq6NLC8dbXZ55ol9WWzJJszG1D6Z3o//3bXN7os58a9Zln1F+eU595Tn3mGY1Ui9QtIBLY4OBgAGy2+qdhuvZOdZ3rzXuGhITUuq76cU+v9bRNgI0bNzJlyhQMBgN//etfufrqq93H1q5dy29/+1ueeeYZbDYbkydPrvf+jRUaGqppKx6o3l8Oh4PgMufU1tDY9gHRj8b2yRQAVQUnWi3e5vyMdY9LJrMkm2NlWQwJG+jlyPyX3peeU595Rv3lOfWZ59RnItIcAVHEqTHTgxszPbe6qKioRt/TdS5AREQERqOxwWsdDod7CnD1a5vaJsDMmTOpqKjg/vvvr5G8AgwfPpzHH38ccG7T01BiLS2vzFZORKXzjxRh0d6Z0t3SXEWcqorysNsaN4vBl5JjOgFw6ORRH0ciIiIiIq0pIBLY5ORkAI4dO1bv6OWRI0dqnHs2Xbt2BeDw4formdZ1T4vFQlJSUo3jZzp+/Lg7Tlc7zWmztLSUnTt3AnDJJZfUed2wYcMAKCoq0toSHyuoKCLa5lwnHRwgCawpLBJjSARAQGyl0/VUApumBFZERETkJyUgEtjevXtjNpuxWq1s3bq1znNc28hccMEFjbrn+eefD0B6enqNrW4ac0/Xvzdu3Fjnda7X27VrR7t27ZrdZmlpaZ1b59SnseuApWUUlBcSVeVMYE2RgVN8wRwbOFvpdI12JrAnSnIosf40KhGLiIiISIAksBEREVx22WUAvPfee7WOp6Wl8f333wMwbty4Rt2za9eupKamArBgwYJax7/77jsOHz6M2Wxm9OjRNY6NHTsWgOXLl9c5HdgV45mxNLXN2NhY95Tib7/9ts7n+eqrrwAwmUx06dKlznOkdRSUF9KmsgqAoKh4H0fTeOYY5x9bAiGBjQgOp22Yc3/dtPx0H0cjIiIiIq0lIBJYgGnTpmEwGPjoo49YsGCBe0QyKyuLhx9+GLvdzpgxY+jVq1eN60aNGsWoUaNYvnx5rXs+8MADALzyyit88cUX7tcPHjzI73//ewBuvfVWYmNja1w3ZswYevbsSVFREY888ghFRUUAVFVVMWvWLDZs2EBoaChTpkzxSptGo5FrrrkGgDlz5vDJJ5/UuOfatWt57rnnABg5cmSt9bPSuooKsjA7wAEERcb4OpxGCwqgEViArjGn9kzWNGIRERGRn4yAqEIM0L9/fx577DGef/55nnrqKebMmUNMTAz79+/HarXStWtX/vjHP9a6LiMjA3BOwz3T2LFjufPOO3nzzTe5//776dy5M2FhYezbt4+qqioGDhzIb37zm1rXGY1GZs2axW233cbatWsZPnw4Xbt2JTMzk9zcXMxmM3/961/r3JO1qW0+/PDDbN26lW3btvHwww/zzDPP0KFDB7KyssjOzgac62b/8Ic/eNy34l0VBVkAWC3BGEz1b5nkb9xTiE8GRgKbHNOJ9RlbOHSy7rXoIiIiInLuCZgEFmDy5Mn07NmT119/na1bt5Kbm0tSUhLjxo1j6tSphIeHe3zPJ554ggEDBjB//nx27dpFVlYWKSkpjB8/nsmTJ9e7Z2vXrl1ZsmQJc+bMYfXq1ezdu5eoqCjGjh3LfffdR58+fbzaZkREBPPnz2fBggUsX76cffv2sXv3bkJDQ+nfvz9jxozh9ttvb1IfiHdZC3MAqAwNrO+FqxJxoIzAdlMhJxEREZGfnIBKYAGGDh3K0KFDG33+nj17znrOFVdcwRVXXOFxLPHx8cyYMYMZM2Z4fG1T2rRYLEyaNIlJkyZ53J60HntxPgCOsMCayu0aga0qPondWobR4t+bzLu20kkvyqSi0kpwkMXHEYmIiIhISwuYNbAigcJQ6twD2BgR7dtAPGQKjcAYGgmALc//t9KJCWlDm+BIHA4HRwoyfB2OiIiIiLQCJbAiXhZUVgKAOYC20HEJpHWwBoPBvR+sCjmJiIiI/DQogRXxMktFGQAhbRJ8HInnTu8F6/8jsHB6GrESWBEREZGfBiWwIl5UWVVJmM0GQHh0Ox9H47nAK+Tk2kpHlYhFREREfgqUwIp4UaG1mKhKOwDhp5LBQGKOdSbdlQEwhRhOj8AeLThGlb3Kx9GIiIiISEtTAiviRfkl+URUORPYgFwDG2AjsAnhcQQHBWOzV3K8OMvX4YiIiIhIC1MCK+JFRfnHMQJVgCk8sLbRAQhybaVTko/91Fpef2Y0GOncJgmAI/mqRCwiIiJyrlMCK+JFpfknACi3BGMwBN7byxQSjvHU/rWBUIkYoEubDgAcVgIrIiIics4LvN+wRfxYRUE2ANaQUB9H0nSBNo24S3RHAA7np/s4EhERERFpaUpgRbyosjgXgKrQCB9H0nSn94INjK10ukSfGoEt0AisiIiIyLlOCayIF9mL851fBOD6VxdzjLMScaCMwHY+NYU4t/QkxdYSH0cjIiIiIi1JCayIFxnLigAwRcT6OJKmc4/ABkgCG2YJpW2Ys7+P5B/zcTQiIiIi0pKUwIp4kbmsFIDgqMDbQsfFlcBWBsgUYji9DvaIphGLiIiInNOUwIp4UUhFufN/2yT6OJKmc00hdm6lU+rjaBqn86l1sGkq5CQiIiJyTlMCK+IlDoeDcJsNgIjYJB9H03TG6lvp5AXGKKyrkJP2ghURERE5tymBFfGS0rJCwuwOAKJjO/g4muY5XYk4MNbBuvaCPVpwDLvd7uNoRERERKSlKIEV8ZKTec7pqzaDgeDwGB9H0zyBVsipXUQCFpOZiiorJ0pyfB2OiIiIiLQQJbAiXlJyarSyxByEwWDwcTTNY44JrBFYo9FIpzbOaduHtQ5WRERE5JylBFbES0oLTgBQHhzi40iaL9BGYOH0NOLDWgcrIiIics5SAiviJdaCbABsIWE+jqT5XCOwgbSVTsdTI7BHC7UXrIiIiMi5SgmsiJdUFZ8EwBEa6eNIms8c69pKpyBgttLp1MaZdKcXBM6osYiIiIh4RgmsiLeUFDr/N6KNb+PwAmNwGKZw53MEyjRi1xrYzOJsbFU2H0cjIiIiIi1BCayIl5jKigEIioj1cSTeEeQu5BQY04hjQtoQbg7F7rBzrOiEr8MRERERkRagBFbESyzlZQCEtEnwcSTe4ZpGHCgjsAaD4fQ6WE0jFhERETknKYEV8ZJQawUAYdGJPo7EO9xb6QRIAgvQKcoZ89ECFXISERERORcpgRXxAru1HIvdDkDkqcQv0AXiVjodTxVyOloYODGLiIiISOMpgRXxAltxLgBWA7SJbOvjaLzDPQJ7MnCSQVchp3SNwIqIiIick5TAinhBcb6zaFBRkImI4HAfR+MdrhFYe2kh9vISH0fTOK4pxCeKc7BWWn0cjYiIiIh4mxJYES8oLXQmsKVmM0bDufG2MgaHYgqPBgJnGnGbkCgiLOE4cJChSsQiIiIi55xz4zdtER8rL8oBwGoJ8XEk3uVeBxsgW+kYDAY6tVEhJxEREZFzlRJYES+oLMpz/m9omI8j8a6gmMDaSgegoyoRi4iIiJyzlMCKeIG9tAAAR1ikjyPxrtMjsIGTwLoKOakSsYiIiMi5RwmsiBcYyooAMIa18XEk3nV6K53AmEIMqkQsIiIici5TAiviBabyUgDMkbE+jsS7zK4pxIE0AntqCnFWSS7llRU+jkZEREREvEkJrIgXWCrKAAiOjPdxJN7l2gvWXlpIVYBspRMVEklkcAQAxwpViVhERETkXKIEVqS5HHaCbTYAwqMTfRyMdwXiVjoAHSKd34djRYEz9VlEREREzk4JrEgzGSpKMQJ2ILJNO1+H43WudbCVATSNuMOpacQZGoEVEREROacogRVpJkOFs4BTsclI1DlWxAkgKMZVyCmQEljnCGxGoUZgRURERM4lSmBFmqmq3LmFTrHJSNSptZfnktOViAMngU2KdI6EZ2gKsYiIiMg5RQmsSDNVlecDUGw2ERIU7NtgWsDpvWADJxnsGOVMYI8XZWG3230cjYiIiIh4ixJYkWaynxqBrbCE+DiSluHeSieARmDjw2Ixm8xU2ivJKsnxdTgiIiIi4iVKYEWaq9y5BrYyJNTHgbQMc6wzgbWXFVFVVuzjaBrHaDSSFJEAQEaRCjmJiIiInCuUwIo0k7HCuT+qPfTcW/8KYLSEYoqIAQJrGnGHU9OIVchJRERE5NyhBFakmUzWUgAM52AFYhfXNOLKAJpGnHQqgT2mBFZERETknKEEVqSZLLZyAPco5bkoECsRaysdERERkXOPEliRZnA4HITYKgAIjor3cTQt53Ql4gBKYCOdMacXZeJwOHwcjYiIiIh4gxJYkWZwWMsJOrVNS2ibtj6OpuUExQTeCGxSZAIGDJRYSymqCIziUyIiIiLSMCWwIs1gL8kHoNxgIDL8JzCFOIBGYC1BFtqGxwKQrmnEIiIiIucEJbAizWAvzQegKMhIVHCkb4NpQa4iTvayYqrKinwcTeO5KhEfK1ICKyIiInIuUAIr0gxVp0Zgi0xGooLPzW10AIyWkNNb6eQFTjKYFOnaSkd7wYqIiIicC5TAijSDtSgPOPdHYKF6JeJjPo6k8U5XIg6cqc8iIiIiUj8lsCLNUF6YDUBxkIlQc4iPo2lZ5tgkILAS2KRIZwJ7vDjbx5GIiIiIiDcogRVpBluxcwTWGhyKwWDwcTQtyxzXAQBbbuAksO0iEwDILsmlsqrSx9GIiIiISHMpgRVpBlcV4qqQcN8G0grMcadGYAMogY0JaUNwUDB2h52skhxfhyMiIiIizaQEVqQZHGWFzi9Cz90CTi6WuNNTiB0Ou4+jaRyDwUBShHMU9lhRlo+jEREREZHmUgIr0gzGshIATOFtfBxJywtqkwBGE45KK1WFub4Op9Han5pGfFwJrIiIiEjAUwIr0kQOexVB1goAgsJjfBxNyzOYgjDHOIsiWQNoGnF7VyGnIm2lIyIiIhLolMCKNFFVaREGHNiB4PBYX4fTKsyxrkJOGT6OpPHcI7DFGoEVERERCXRKYEWaqOpUAadSo4HIkCjfBtNKzHGBu5XOMY3AioiIiAQ8JbAiTVRVUgBAcZCRyOBzvwoxBGYl4naRbQE4WVZAua3cx9GIiIiISHMogRVpItcIbLHJSKTl3K9CDGCJC7wpxBGWcCKDnd+fzOJsH0cjIiIiIs0R5OsARAKVewTWZKSbxf9HYLNPlrFx9wnyiypoHx/OkL7tCAn27CPAHOscga0szMFuq8BoDm6JUL0uKSKBPRXFHCvKIjmmk6/DEREREZEmUgIr0kS24jzAmcBGBfvvCKzD4eC9VXtZsGovtsrT+7dGhJq5+9rzGDWoEwaDoVH3MoZFYQyJwF5ejC3vOMGJyS0UtXe1j0xkT+5BVSIWERERCXCaQizSROWn9kItDjIRZg71cTR1czgc/GfRNuYt342t0k7PzjGMGdyZ9nHhFJfZePHdzby2ZAcOh6NR9zMYDNXWwQbONGLtBSsiIiJybtAIrEgTuUZgK8wWjAb//FvQyvVH+OSbQxgMcP/15zNuSBcMBgNVVXbe/2If7yzfzUdrDxBkMjD56r6Nuqc5LomKjL0BVcjpdAKrEVgRERGRQOafv3WLBADXGthKPx19zT5Zxn8WbQNg0hW9uWJosnuqsMlk5Oaf9eSBGy8A4MPV+1n9w9FG3de9F2wAbaXjSmCPaS9YERERkYCmBFakqcqKAKgKDvNxIHWb+8kOrLYq+naL4/qRPeo8Z+yQLkwckwrAnA+3kpVXetb7WgJwCnG7CGcCW2Itpaii2MfRiIiIiEhTKYEVaQKHw46xvMT5tR9uoXP4eCFrN2dgMMA9156H0Vh/kaZb/q8nvbrEUFZRyYvvbsZub3g9rGsNrDX3WKPXzvpacJCFuLAYAI5pGrGIiIhIwFICK9IE9rJiDKeSN0OI/yWwC9fsB+CS/kmkdIxu8FyTycivb72QEIuJbQdy+Pibgw2eb45pDwYjDmsZVcX5Xoq45bWLaAtAZpH2ghUREREJVEpgRZqgqiQfgBKjgVCTf00hziss58tN6QD8/PLujbomKT6Cu65xFnGav3w3BcUV9Z5rCDITFO2ckmvLTW9mtK3HNY34RIkSWBEREZFApQRWpAlcBZyKTUbCTP5VxGn1xqNU2R306hJDaueYRl83dkgy3Tq0oaS8knnLdzd4riW+IwDWnMBJYBMj4gHILM7xcSQiIiIi0lRKYEWawDUCWxxkJCwoxLfBVONwOFi5/ggAP7u4i0fXmowGpk7oB8Bn36dx6FhBveeaTyWwtgBKYF1TiE8UawRWREREJFApgRVpghojsEb/SWD3Hc0nI7uYYIuJy85P8vj6vt3iuPT8JOwOeGPpjnrPC8wRWCWwIiIiIoFOCaxIE7hHYE1GQv1oCvG3W517sw7unUhYiLlJ95h8VR9MRgOb92az61BeneeY4zsBgTUC65pCXFhRTKmtzMfRiIiIiEhTKIEVaQJb8UkAikxGwkz+MQLrcDj4dutxAC5twuirS7u4cEYP7gzA/BV1r4W1xHUAnIl81an9cP1dmDmUyGBnxegTWgcrIiIiEpCUwIo0gbXIOTJZEmQi1BTs42ic0o4Xcjy3BEuQkYG9Ept1r5vGpBJkMrBlXzbbD9RO9ozBoZiinCOatpyMZrXVmrQOVkRERCSwKYEVaQLXCKzNEoLR4B9vox92ZwHQv0dbQoODmnWvxNgwfnaRswjU/BV76jzHEu8chQ3EdbCZSmBFREREApJ//OYtEmDspYXOL8IifBtINZtOJbCDeiV45X43jk4lyGRk24Ectu6vnfCdXgd71CvttYZ2p9bBagqxiIiISGBSAiviIYfDgaGsGABDaBsfR+NUWm5j56FcAC5s5vRhl7YxoYwdUv8o7OlKxIEzhTgxXFOIRURERAKZElgRD9nLSzDYqwAICvePBHb7wVyq7A7ax4fTPj7ca/e9cXQPgkwGdhzMrVWR2OLeCzZwRmC1lY6IiIhIYFMCK+Ih1xY6ZUYD4X4yArvzoHP0tV9KvFfvG9cmlJEDnVOFP1y9r8Yxc5wzga0szMFuDYxtaVxTiHNKT2Krsvk4GhEREfkpeumll+jZsyeTJk3ydSgBSQmsiIeqSgoA5x6wkRbvjXY2x85To6N9usZ6/d4/H9kdgwHW7cjkcGah+3VTWCSmUyPQgVKJuE1IFMFBwThwkF2S6+twRERERMRDSmBFPOQagS02GYmy+L6IU4Wtin1HnVWR+3SN8/r9OyZEMrRfewA+/OKMUVj3OtjAqERsMBhoF+4chc1UIScRERHxgZiYGLp27Ur79u19HUpAanYCu3jxYqxWqzdiEQkIrhHYIpORyGDfj8DuO3KSyioHsVHBtIsLa5E2bhjVA4AvN2eQlVfqft1yahqxLTcwEljQOlgRERHxrdtvv53ly5fzl7/8xdehBKRmJ7CPPfYYw4YN409/+hP79u07+wUiAc49AhtkJNIPRmB3nKo+3LtrHAaDoUXa6NEphgt6tMVud7Doy/3u190jsNmBlMC6ttJRAisiIiISaIKae4PQ0FAKCgqYN28e8+bNY8CAAdx0001ceeWVWCwWb8Qo4ldqroGNoIQCn8bTkutfq7thVA+27Mvms3VHuPlnPWkTEYylrbPAkzUAKxFnlmgKsYiIiD/69NNPWbhwITt37qSgoIDQ0FBiY2Pp1q0bw4YN44YbbiA4OBhwDqYtWrSI6667jueee453332XDz/8kIMHDwLQs2dPbr31Vq655poG20xPT+fNN9/k22+/5dixY9jtdtq3b89ll13GlClTSEpKqvdaq9XKRx99xPLly9m1axeFhYVER0fToUMHhg0bxrXXXkunTp3c57/00ku8/PLLXHTRRbz99tt13jMvL48333yTL7/8kqNHj2K1WklISODiiy/mrrvuokePHnVel5mZyeuvv84333xDRkYGlZWVREdHk5CQwKBBg7j66qvp379/g33h75qdwH711VcsXbqU999/n507d7Jp0yY2b97Mc889x/jx45k4cSLdu3f3RqwifqGyxLnetPjUFGJfJrBVdge705wJbN8WWP9aXf8e8XTvFM3+o/ks/fogt4/r7R6BrczPwm6rwGgObtEYvKGdawpxkUZgRURE/M3jjz/OwoUL3f8OCwujsrKSw4cPc/jwYVavXs2IESPo2LFjrWsffvhhPv30U4xGI5GRkRQWFrJp0yY2bdrEt99+y8yZM+ucrbZkyRKefPJJ97JIi8WC0Wjk0KFDHDp0iIULF/LPf/6Tyy67rNa1R48eZdq0aezduxdw1tuIioqiuLiYLVu2sGXLFgoKCnjyyScb3Qfffvst06dPp7DQWTzTbDZjNptJT08nPT2dJUuW8OyzzzJhwoQa1+3evZs77riDggLn76Ymk4mIiAhycnLIzs5mx44dFBYWKoGNiIjglltu4ZZbbmHHjh0sWLCATz75RKOycs6yFVVLYC3hZPowlsPHCyktryQ0OIjk9lEt2pbBYOCGUT14/s0NfPL1IX5+eXdCw6MxhkVhLy3ElpNOcPuUFo3BG1xTiLNKcrA77BgNqmUnIiLiDzZu3MjChQsxGo08/PDD3HjjjURHRwNw8uRJduzYwccff4zZbK517apVqyguLmb69OnccccdREREkJeXx7/+9S/mzZvHwoUL6d27N3fccUeN67755hseffRRjEYjd999N7fccgsdOnQA4NChQ8yaNYvly5czffp0li5dWmMktri4mLvvvpu0tDTatGnDI488whVXXEFkZCTgTG5XrVrl0RKvPXv2cP/991NeXs5NN93E5MmTSU5OxmQycezYMV555RXmz5/Pk08+SUpKCv369XNf+/zzz1NQUEDfvn156qmnOP/88zEYDFitVo4dO8YXX3yB3W5vdCz+yqu/ufXt25dnnnmGr7/+mj/+8Y/069cPh8PBpk2bePzxx91rZffv33/2m4n4qcpTa2BtIaEEGZv9N6Bm2XPYOfras0sMJlPLJ2JDzmtPh7bhFJfZWPH9YQwGA5a2nQGwZh1u8fa9IT4sFpPBiM1eSV5Zvq/DERERkVM2b94MwCWXXMI999zjTl7BWbn3sssu4/nnnycxMbHWtUVFRdx///1MmzaNiAhnjZLY2FhmzJjB+PHjAfjXv/5FRUWF+xq73c4zzzyD3W7nqaee4re//S0dO3bEYDBgMBjo1q0bs2bNYtSoURQXF/PGG2/UaPPVV18lLS0Ni8XC3Llzuemmm9zJK0CnTp246667mDx5cqP7YObMmZSXl3Pvvffyxz/+kZSUFEwmEwBJSUn84Q9/YNKkSVRWVjJnzpw6+2/GjBlccMEF7sTZYrGQnJzMlClTuPvuuxsdi79qkd94Q0NDufHGG3nvvfdYsmQJt99+O1FRUe5R2WuuuYZbb72VpUuXUllZ2RIhiLQIh8OBo9Q5ncMQGnmWs1vegQznFJHuHaNbpT2T0cDPRzrXXCz+8gC2yiosCV2AwElgTUYTbcOd061PaCsdERERvxEV5ZxNlpeXR1VVlUfXhoSE8Itf/KLOY7/85S8ByM/P55tvvnG/vmHDBtLS0oiJieHGG2+s996uqbpff/11jdc//PBDAG688Ub69OnjUbx1SU9P5/vvvycoKIgpU6acNZ7vvvuuRj+5kufs7HN7mVSLDx916NCBlJQUEhISKCwsxOFwALjXyv7jH//g8ccf52c/+1lLhyLSbI6KUgxVzj+6mMKjfRsMpxPYlI5tWq3NkQM78s7y3eQVlrPmh3QuTgisEVhwFnLKLM7mRHE2fRNSfR2OiIiIAEOHDiU4OJidO3dy2223cf311zNkyJAaBZDqc95557lHXs+UnJxMu3btyMzMZPv27YwaNQpw5iPgnAo8bNiweu9ts9kAOHbsmPu1jIwMsrKyABg5cmTjHvAsXPHY7Xauuuqqes9zJa2lpaXk5+cTFxfnjuO9997j0UcfZdOmTYwaNYp+/foRGhrqlfj8RYslsFu3bmXBggUsW7aMsrIyHA4HFouFcePGMW7cOL755hs++ugjjh07xkMPPcSLL77I2LFjWyocEa+oPFWBuMJgIDys9ZLGOmOpsnP4uHM0uFuH1ovFHGTi2uHdeOPjnSxcs59LbzuVwGYfabUYmsu1DjZTW+mIiIj4jc6dO/Pss8/yhz/8gc2bN7unxMbGxnLxxRdz9dVXM3r06DrXlNY1rfjM45mZmeTm5rpfcyWgNpuNnJyzz8oqLy93f139/IYqFHvCFY/dbm9UPABlZWXur3/7299y+PBh1q1bxxtvvMEbb7yByWSiV69eXH755UycOPGs/RQIvJrAFhcX89FHH/Hee++5K3E5HA66dOnCxIkT+fnPf+6eyz5q1Ch+/etf86c//YlFixbxn//8Rwms+D3XHrBFQUaign27B+zRE0XYKu2EhQTRLja8VdseNzSZBav2kp5VzI85ISRioKqkgMrifIIiols1lqZwVSJWAisiIuJfxo8fz/Dhw1m+fDnr1q1j8+bNHD9+nGXLlrFs2TIGDRrEf/7zn3pHWz3hGsk8//zzee+99zy61pPCTI3lKrAUHx9fY6pzY0VFRfHWW2+xceNGVq9ezaZNm9i+fTs7duxgx44dvPbaa/zpT3/i6quv9nborcorCeymTZt4//33Wb58OeXl5TgcDoKCghg1ahQ333wzl1xySZ3XRURE8PTTT7Ns2TL3Xk0i/qz6HrBRIb5dA3vw1PThrkltMBq9/yHakLAQM1cMTebD1ftZ9NVhHohJpPJkJtbswwGRwLr2gj2hBFZERMTvREdHc/PNN3PzzTcDcOTIEd5//31eeeUVNm7cyEsvvcTjjz9e45oTJ040eE/Xcdd0W4C2bZ2/D1SfGtxY8fHx7q+PHTtGSkrzd2Jw3fPkyZOUlpYSFhbWpPsMGjSIQYMGAVBRUcHXX3/Niy++yN69e3niiScYMmRIjfgDTbOLOF1zzTXcdtttLF68mLKyMhITE3nwwQf54osv+Oc//1lv8upisViIjY2tURFMxF+5RmCLTb4fgfXF+tfqxg9PIchkZFdaHodDegFgzQqMacTuvWCLc9zr8kVERMQ/de7cmd/85jfukcNvv/221jnbt2+npKSkzusPHz5MZqZz48PzzjvP/fqFF14IOIsebdu2zaOYkpKS3NNxV69e7dG19XHFU1VVxdq1a71yz+DgYEaPHs3LL78MOBPaH374wSv39pVmJ7D79u0D4LLLLuNf//oXX3zxBb/85S9JSEho9D3uvPNOd3UwEX9WM4H1jxHYlA7RPmk/NiqEUYOcRRU+y3XulxYoCWxiuPOvjqW2Moqtdf+fnYiIiLQuq9Xa4PGQkBCg7um75eXlvP7663Ve59puJjo6mksvvdT9+sUXX0yXLs7dFJ577rmztp+fn1/j3zfccAMA77//Pjt37mzw2sZITk7moosuAuAf//gHRUVFjY6nsrKywT1eXX0HYDS2/NaLLanZ0d9zzz2sXLmSV155hdGjRzepQ+68804eeOCB5oYi0uJOTyE2+HQE1m53cDAjH4CUVizgdKbrLk/BYIAtmSaOV7YJmErEliALMaHOftNWOiIiIv7hmWeeYfr06axYsaJGsaWSkhL+97//sXjxYgAuv/zyWtdGRkYye/Zs/vOf/1BcXAw4t+N59tlnWbRoEQD3338/wcHB7muCgoJ4+umnCQoK4ocffuD222/nu+++c1cdBjh69Cj/+9//uP7665k/f36NNqdMmUJycjJWq5XJkyfz3nvvudsG59Tnl19+mddee63RfTBjxgzCwsJIS0vjpptuYtWqVTVmqp44cYLFixdz55138re//c39emZmJv/3f//H7Nmz2blzZ42tSnfv3s0jjzwCQFhYGIMHD250PP6o2Wtgf/Ob33gjDpGA4C9FnDJzSyirqMISZKRjgu/i6JgQyZDz2vPdtuN8Ud6X23M24rBXYTCafBZTYyWExXGyrICskly6xyX7OhwREZGfvMrKSpYvX87y5csBZ7IVFBREYWGh+5yBAwdy33331bp2zJgxVFRU8MILLzBr1iwiIiJqbOE5YcIE7rjjjlrXDR06lFmzZvG73/2OH3/8kcmTJ2M2mwkPD6e0tLTGqOyYMWNqXBsREcGrr77Kfffdx/79+5kxYwZ/+MMfiIqKoqKiwl0huK5265Oamsqrr77K9OnTOXjwIL/85S8xmUxERkZSXl5eoxLymdsLHT16lFmzZjFr1iz3NSUlJe6E3Gw289xzz7mL6gaqZiewo0ePJi4urtGVu2699VaysrJYtWpVc5sWaXU1ijj5cArxgXRnHMlJUZhMvp0Gcv3I7ny37Tg/WLtylXULHU5mYonr4NOYGqNtRDx7cg+SXZJ79pNFRESkxU2bNo2+ffuybt06Dhw4QE5ODqWlpcTFxdGrVy+uuuoqJkyYgMlU9x/KX3jhBQYPHsyHH37IoUOHCA0NpWfPntx8881MmDCh3nbHjBnDypUrmT9/PmvXruXw4cMUFRURGhpKt27d6NevH5dffjnDhw+vdW2nTp1YtGgRH3zwAcuWLWPv3r2UlJQQExNDr169GD58ONdee61H/TBw4ECWL1/Oe++9xxdffMG+ffsoKioiODiYlJQU+vbty/Dhwxk9erT7msTERObMmcO6devYsmWLe8ugoKAgunTpwsUXX8wdd9xBcnKyR7H4o2YnsBkZGR4VYMrMzOT48ePNbVbEJyqLTwKnizhVWivPckXLSMt0/iWya5Jv96IF6Nkllr7d4thxMJc15b1JzToSEAlsQrizCmFWiaYQi4iI+IPOnTszadIkJk2a1KTrDQYDt956K7feeqvH18bFxfHggw/y4IMPenytxWLxqN3GtBMREcGUKVOYMmVKo+5pNpsZNWoUo0aNatT5gazVh26qqqoCfuGw/HS5RmCtwSFYgiw+i+PoCeei/s7tfFtIyuWGUT0A+LY8lZPpgbEO9nQCqxFYERERkUDhlX1gG6u8vJzc3FzCw8ObfI/vv/+eN954gx9//JHS0lKSkpIYN24cU6dObfJeSStWrGDevHns3r0bm81Gly5dGD9+PHfccQdms7ne63Jzc5kzZw6rV68mKyuLqKgoBg8ezL333kvv3r1bpE1w7jU1d+5c1q5dS2ZmJiaTiYSEBC688EImTZpEr169mtQP0jC7tQwqnesgDGFRPo3lSOapBDbRPxLYgb0S6NgG0gvMrNxxkik/83VEZ+dKYDWFWERERCRweJzAHjt2jIyMjBqv2Ww2Nm7cWO9+ig6Hg8LCQpYuXUplZSWpqalNCvbtt9/mT3/6Ew6Hg3bt2tG+fXv279/PnDlz+Oyzz5g/f77Hi5L//Oc/u0tud+7cmdDQUPbt28df/vIXVq9ezeuvv47FUnuk7fDhw9x6663k5OQQFhZGjx49yMzMZNmyZaxatYpZs2bVmJfujTbBmfg+9thjlJaWEh4eTteuXamsrCQzM5MPPviA3r17K4FtIe7RVwOEhvougbVVVnE817n1Syc/SWANBgMTLkrg5ZVZrDrWhtttVVjM/l3IqW21BNbusGM0aGaIiIiIiL/zOIFduHAh//rXv2q8VlhY2Ki56g6HA4PBwMSJEz1tlu3btzNz5kzAWWL7pptuwmAwcOLECe6//3527NjBjBkzeOmllxp9z5UrV7qTxRdffNGdcB44cICpU6eyYcMGXnjhBR577LFazzF9+nRycnIYNmwY//jHP4iMjKSyspJ//etfzJ49m0ceeYQVK1bU2g+3qW0CrF+/nocffhiLxcLMmTMZP358jdHanTt3nnX0VprOXYHYZCQqxHcJbEZ2CXa7g/CQIGKjQs5+QSu5fNh5zPt8KflV4az6dh9XjvDvP6TEhcViMBiw2SspKC9yb6sjIiIiIv6rSUMODofD/Z/BYKjx77r+A+dC5AsvvJA///nPXHPNNR63OXv2bOx2O9deey0TJ050b2CcmJjICy+8gNFo5LPPPmP37t2NvufLL78MOPeyrT5ampKSwrPPPgvAO++8Q15eXo3rPv/8c3bt2kVkZCR///vfiYx0joIFBQUxffp0Bg8eTGlpaZ2bKTe1zcrKSp588kkqKyt54YUXuP7662slq3369KFHjx6Nfn7xTFVx9QrEvtu65uip6cOdEiPr3MjbV4LDIxkdcxSARV8eoMpe94wMfxFkNBEfGgOokJOIiEigev7559mzZw/PP/+8r0ORVuJxAvvAAw+we/du938Oh4P4+Pgar535365du9iwYQPz589n/PjxHgdZUlLCV199BcBNN91U63hycjJDhgwBcO8bdTZpaWnuZLeuEeGhQ4fSpUsXrFYrn3/+eY1jy5YtA2DcuHG0aVN71MYVo+s8b7S5atUqjhw5Qt++fRk5cmSjnlG8yzUCW+zjPWCPnDidwPqbkT3MhBkqyCyo5Pvt/l9t3DWNOKtY62BFREREAkGzF31NmDCBK664whux1GvXrl1YrVYsFgv9+/ev85yBAwcC8OOPPzbqnlu2bAGcezclJiZ6dE/XvwcNGlTnda7XMzMzOXHihFfadCW0l1xyCaWlpcydO5dp06Zx1113MWPGDHeCLy3HX/aA9bcKxNW16dCVy4L3APDhF/vqXRfvLxLC4wHILlUCKyIiIhIIml2FuDWG6w8dOgRAUlJSvWs8O3fuXOPcs0lLS6txXWPvabVa3UWs6ru2ffv2mM1mbDYbBw8edCerTW0TnGuAAUwmE9ddd537Xi7vvfce48aN469//Wu9BaA8UVZW1ux7nGvKC5zTTItNRmINFkpLS9391Jr9dfi4M5FOiHbG4E8cMR0YHvIBqyv6su9oPht3ZtC3a2yNc3zRZ/WJtjj/CHCsINPv+rI6f+qzQKE+84z6y3PqM8+pzzxTVlbW5B02RM5lrbqNTlMVFDh/Ya9ruq6L65jrXG/es7Cw0P1acXExdru9wWsNBgNRUVHk5ubWuLapbQJkZ2cD8Nprr2E2m3nuuef4v//7P+x2O59++ikzZ85k+fLlJCUl8eijj9Z7/8Y6M0EWCD+RjgVnEaf8rJPsKtnlPtZa/VVld3Asx1mBuKzgOLt2ZbdKu41lsFYQbSznIst+vqnoyfxl27l9ZNs6z/WHnzFbYQUAh7PT2bVr11nO9j1/6LNAoz7zjPrLc+ozz6nPGi8uLs7XIYj4HY8S2MWLFwPOgkxjxoyp8ZqnJkyY0OhzKyqcv2Q2VGHXNeroOteb9ywvL691XfXjnl7raZuAe3TIZrPx9NNP8/Of/9x97Oabb6a8vJznnnuOefPmcc899xAbW3PUy1PJycmEhoY26x7nmtytDmw418D2SelFSkwXysrKSEtLa7X+Ss8qxu7IIMRiYsjA8/yqiJNL9sZ4RlXt4FtrT/YfryAspiNdqk13bu0+a4gxN5hPsr6k1FBx1r2bfcmf+ixQqM88o/7ynPrMc+ozz2ikWqRuHiWwjz32GAaDga5du7oTWNdrnjAYDB4lsMHBwYAzeauP1Wqtca437xkScnqrkur3dx339FpP23RdW1paSnR0NNdee22t62655Rb+8Y9/UF5ezvr16xk3bly9bTRGaGiopq2cIafMOSpebDKS0Ca+Rv+0Vn9lF+YDzvWv4eHhLd5eUwS3TyG+cB0XdYB16fDpd+n85raBtc7zh5+xTiQBkFd2kpCQEIxG/94L1h/6LNCozzyj/vKc+sxz6jMRaQ6PEtikJOcve9X3NnW91pIaMz24MdNzq4uKimr0PV3ngnP02Wg0Yrfb673W4XC4pwBXv7apbbr+XVpaSnJyMkFBtb9twcHBdOzYkf3795Oenl7v/aXp/KGI01E/rkDsEtw+hdI96/hZfDrr0juydksGk67oTUKs//2yEhsSjcloospeRV5ZPvHhzZu5ICIiIiIty6ME9osvvmjUa96WnJwMwLFjx7DZbHVOwT1y5EiNc8+ma9euABw+fLjec+q6p8ViISkpifT0dI4cOcKFF15Y67rjx4+7R1ld7TSnTYBu3bqRmZnZ4PRj1wiva42ueI/dVoHD6pzKU262EBLUuJF+b8vIKgagQ1vfbeNzNsHtugGQVLyb83tcwI/7cli89gBTJ/TzcWS1GY1G4sNiOVGcTVZJjhJYERERET/n3/PlTunduzdmsxmr1crWrVvrPOeHH34A4IILLmjUPc8//3wA0tPTa2x105h7uv69cePGOq9zvd6uXTvatWvnlTZdifLRo0frvM7hcLiPVW9TvMM1+mozQHBolM/Wnh7LcSawSQGQwNryjnHdZc6q2p+tO0xhSf1T7n0pwbUXbIm20hERERHxdwGRwEZERHDZZZcBzu1izpSWlsb3338P0Oi1n127diU1NRWABQsW1Dr+3XffcfjwYcxmM6NHj65xbOzYsQAsX768zunArhjPjKU5bV5xxRUYDAYyMzP57rvval27cuVKCgsLMZlMXHTRRfU+tzRNVUk+cGr6cIjvpu8ey3ZWIE6K98/1rwCm8DaYIp1JYe/IAroltaHCWsUn3zRui6vW5toLVgmsiIiIiP9r8QR2z549zJ07lzfffJMDBw40+T7Tpk3DYDDw0UcfsWDBAhwOBwBZWVk8/PDD2O12xowZQ69evWpcN2rUKEaNGsXy5ctr3fOBBx4A4JVXXqkxFfrgwYP8/ve/B+DWW2+tVdF3zJgx9OzZk6KiIh555BGKipzrEquqqpg1axYbNmwgNDSUKVOmeK3N7t27c9VVVwHw//7f/6uxT+zevXuZOXMmANdee61GYFtAjfWvIb4Z/SwssVJc5pya3t6PE1iA4PanRmFPpPHzkd0B+Pjrg5RbK30ZVp3anpo2nK0EVkRERMTvNXsf2O+++445c+ZwwQUX8PDDD9c49sYbb/DXv/7VnWwajUYee+wxJk2a5HE7/fv357HHHuP555/nqaeeYs6cOcTExLB//36sVitdu3blj3/8Y63rMjIygNPb0FQ3duxY7rzzTt58803uv/9+OnfuTFhYGPv27aOqqoqBAwfym9/8ptZ1RqORWbNmcdttt7F27VqGDx9O165dyczMJDc3F7PZzF//+lcSExO91ibA008/zaFDh9ixYwdXXnklPXr0wOFwsG/fPhwOBwMGDODJJ5/0tGulEaqPwEb6qICTa/pwXJsQQiz+vYVzcLsUSvduoPzYPi675kreWraLrLxSPl9/hJEX+tcfWDQCKyIiIo0xadIk1q9fDziX+9U1o9KluLiYyy67zL0d0gMPPMDkyZO56qqrOHHiBNOnT2fatGn1Xp+fn89VV11FTk4OTzzxBHfeeaf7mNVqZfHixaxevZpdu3aRl5fnrOsRH0+/fv0YO3YsY8aMqbPwKzjzooULF/LVV1+xe/duTp48CUBMTAypqakMHTqUK664gvbt2zfYBw3p1asXH3300VnPa4pm/xa8fPlyNmzY4B4ddDl06BB/+9vfsNvtWCwWTCYTZWVlPPfccwwcOJA+ffp43NbkyZPp2bMnr7/+Olu3biU3N5ekpCTGjRvH1KlTm7StyBNPPMGAAQOYP38+u3btIisri5SUFMaPH8/kyZPrLZrUtWtXlixZwpw5c1i9ejV79+4lKiqKsWPHct999zX4fE1tMyIignfffZe5c+fyySefuItB9enTh/Hjx3Prrbc2uDetNJ17BDbISFSwb0ZgT08f9t/1ry7BHZ1T5SvS92IyGZkwPIX/Lt7G0q8PcfmA2n/Y8aXTa2BzfByJiIiIBIotW7Zw6NChGgVbq1u2bFmtvXwjIyP54x//yNSpU5k9ezY/+9nP6NGjR53XP/vss+Tk5DBw4MAag3+bNm3i4Ycf5vjx4wBER0fTrZtz5tuxY8f49NNP+fTTT+natStvvfVWjd1jAD7//HOefPJJd9IaHR1N165dMZlMZGdns3btWtauXcvf//537r33Xh566KE642vfvn2dCa5LYwvrNkWzE9jNmzcDMHz48Bqvv//++1RVVTF48GD+85//YDabeeSRR1ixYgXz58/n2WefbVJ7Q4cOZejQoY0+f8+ePWc954orruCKK67wOJb4+HhmzJjBjBkzPL62qW1aLBamTp3K1KlTPb5Wms41AltkMhLrqwT21Aisv08fBghJ6gEYqCzIorLoJKMHd+LtZTvJyC5m+8G85n/weJErgc0ry6eyqpIgkz9FJyIiIv6mW7duHDx4kMWLF/PrX/+6znMWL15c41yXESNGcN1117Fo0SKeeOIJ3n33XUwmU41r16xZw9KlSwkJCWHmzJnufeq/++47pk6ditVqZfDgwTz88MMMGDDAXVzUbrezZcsWXnvtNVatWkVubm6NBPajjz7i0UcfxeFwMGbMGKZNm0afPn1qFCc9evQoS5Ys4e2332bDhg319sH111/Pgw8+6FnHeUmz18Dm5eVhMplqrbv86quvMBgM/PKXvyQsLAyz2eyeGttQZ4j4oxpFnHw0hfh4jv8XcHIxBodhSXBWIK7I2ENYiJmRAzsBsGKdf+1T3CYkCrPJjMPhIKfspK/DERERET931VVXYTabWbp0qXupZHVHjx7lhx9+oG/fvnWOsD7xxBMkJCSwdetWXn/99RrHioqKeOqppwCYPn26eySzoKCA3/zmN1itVsaOHcvcuXO58MILaySfRqORCy+8kH/961/MmjWL0NBQ97G0tDSeeuopHA4Hv/jFL/jXv/5F3759a+2s0alTJ375y1+yfPlyxowZ0+Q+aknNTmDz8/MJDw+v8fDFxcXs37+f0NDQGhVxO3fuTHBwcL1byIj4qxpFnHw2AnsqgW3r/wksQHDHngCUpztnQVx5qXOKzcbdWRSU+E8xJ4PBQEKYcxRWhZxERETkbKKjoxkxYgQZGRmsW7eu1vHFixfjcDiYMGFCnddHRUXxzDPPAPDSSy/VGKF9/vnnOXHiBAMGDGDy5Mnu1+fNm0dubi7R0dE8++yz9a5vdRk3blyNabz/+c9/KC8vJzU1td56O2c+Y/V1t/6k2QlscHAwxcXFNf76sHnzZhwOB+eff757yNslJCSkuU2KtDpfj8A6HA6OZ5/aAzYA1sAChHQ4lcBmOBPYLu2i6JcSj8MBG/eX+DK0WhIiTq2DLdY6WBERETm76667Djg9VdjF4XCwePFizGYzV199db3Xjxw5kvHjx1NRUcETTzyB3W7n22+/5YMPPsBisfCnP/2pRh718ccfAzB+/HiioqI8irWystK9I8vEiRNrTVkONM1OYLt06YLdbq9RjWrlypUYDAYGDhxY41yr1UpRURFxcXHNbVakVblGYIuCfLONTmGJlZJy56hluwCYQgwQcmoEtuL4ARyVzu1/rrw0GYBNB0qwVdp9FVotbV0jsKUagRUREZGzGzFiBDExMaxYsaLGbicbN24kPT2d4cOH19oW80y///3vadu2LZs3b2bOnDnuujoPPvggKSkp7vNOnjzpHqWtPru1sXbv3u2OcdCgQR5f72+ancCOGDECh8PBk08+yaeffsrcuXNZuHAhAD/72c9qnLtr1y7sdjtJSUnNbVak1TgqbdjLnSOGvppC7KpAHB8dSrA5MP5qFhTTDmNYFFRVUpHp/NAdcl57YiKDKSm3s36n/ywlOD0CqwRWRETExeFwUF5RGZD/1bU21ZvMZjNXXXUVpaWlfPbZZ+7XFy1aBFDv9OHq2rRpw//7f/8PgH/+85+kp6fTr18/fvGLX9Q4r/ryy06dOnkca/XrO3bs6PH1dXn55Zfp2bNnvf/NnTvXK+3UpdnlNu+66y4WL15Menq6ez61w+HgyiuvpGfPnjXO/fzzzzEYDFx44YXNbVak1VSVOkdfKwGryUS4OazVY3BVIA6EAk4uBoOBkA49Kd23gfKMPYR07EmQycjoQR34YPVBPlufzs+GpJz9Rq1Ae8GKiIjU5HA4ePTlr9mVlufrUJqkd3Isf37gslpFirxpwoQJzJs3j8WLFzNhwgTKyspYvnw50dHRXH755Y26x5gxY7j66qv5+OOPMZvNPPfcc7Wm+JaUnF56FRbm+e+h1a+vXtipunvvvZc1a9bUen3p0qWkpqbWev1s2+gkJrbctonNTmCjoqJ49913+ec//8mWLVuIjIxk5MiRtf5yYLVa+fDDD3E4HAwZMqS5zYq0mqrifABKTEaiQqJa9IOwPqcLOAXG+leXkI7OBLYifQ9c7Hxt9KAOfLjmILsP55ORXUwHP3imtuEq4iQiIiKe6devH927d2fdunVkZmayfv16SkpKuO2227BYLI2+z6WXXsrHH39MQkJCnVWLw8NPD2BUn67cWNWvLysrIyKi9u9e3bt3p7Cw0P3vTZs2NXhPX26j45UNDxMTE/nTn/7U4DkWi4VvvvnGG82JtKoa6199VIHYtYVO+7jAGYGF6pWI9+JwODAYDMRGhdC9fQj7jpWzav0R7ryqj4+jPL0X7MnyAqyVVixBjf8/HRERkXORwWDgzw9cRoW1ytehNEmwxdQqgw4TJkzgb3/7Gx999JG7InFjpg97ovpoZnp6Or169fL69b/97W9r/PvMmbT+pNlrYEXOdZUlzr1Bi02+KeAEcCLPmcC2i2v96cvNEdw+BYwmqorzqCzMdr8+IMWZiH+x8QhVVb4v5hRhCSc4KBhAe8GKiIicYjAYCAkOCsj/WmvG3Pjx4zEajcyfP5/vvvuOlJQU+vfv79U2YmJi6NatG0Cd2/acTa9evdxTjzds2ODV2HxBCazIWVTfAzbSB1voAJzIc04XSYwNrATWaA4mONG5/2vF0T3u11OTQogKN5NXWMEPe7J8FZ6bwWCgbZizUmBOSWCu9REREZHWl5iYyCWXXEJmZiZ2u93ro68uV111FQBLliyhqKjIo2uDgoIYN24cAO+++y6VlZVej681eWUKscvmzZvZs2cPBQUF2Gy2Bs994IEHvNm0SIupuQds64/AllVUUlBsBaBdgE0hBgjp3JuK4/spO7ydiPOGARBkMjDs/PZ88u0RVq47zEV92v1/9u47zK6y3P//e+0+e3ovmUwmbVIJLfQeEAICCgpIFfWACijnKP4Uj/g9IgexgyJYzgEVUcFjKIqEEkInEFoSSC+TZHrve2a39ftjl2SYkil71rTP67pyafZa63nWXuyBfc99P/czzncJuclZVLRVax2siIiIDMvVV19NKBQptb7wwgvHZI6rrrqKhx9+mKamJv7zP/+Tn/3sZzgcA4dyzzzzDAsWLKC0tBSA6667jqeeeoqdO3fy4x//mFtvvXVM7tMKCQlgX3/9dW677TaqqqqGfI0CWJks4hlYh42iccjAxrKvKUlOkpOcls8/Wkmly2h98x/4yjf2ev2Mo2bw1Ov7eHtLLe1dflK947vuNCeWge1SCbGIiIgM3emnnz7krsMjlZGRwU9/+lOuv/56nnnmGa699lq+9rWvceSRR8bLpU3TZOPGjfzv//4vzzzzDI8//nj8+jlz5vC9732PW2+9ld///vfs3buXG2+8kaVLl/Yqt25ubuaJJ54Y0/cyWqMOYDdu3MgXv/jFeMa1uLiYvLy8Pu2fRSarWAa2fZwysLWNkfWv+ZNs/WuMp2QR2OwEW+oINNeAOw2AmfkpzClKZ3dVK69uqOLcE0rH9T5jAWx9lzKwIiIiMvGceOKJ/P73v+frX/8669ev5/LLLycjI4OioiJM06S6upqWlhYg0lU4Ozu71/UXXXQRKSkpfOc732Ht2rWsXbuWjIwMCgsLcbvdtLS0UFFRQTAYxG638+lPf3rAfWP//ve/8/rrrw96v3/5y18S8r4/atQB7H333UcgEGDOnDncfffd/e4TJDKZHbwGdlwC2Em6/jXG5krCM6OM7v1b8JVvwrHgpPix044qZndVKy+9WzHuAWxustbAioiIyMS2fPlynnvuOR577DHWrl3L5s2b2blzJzabjby8PE466STOO+88zjjjjH4Tih/72Mc48cQTWbVqFS+//DLbtm1j165dGIZBZmYmJ554IscddxwXXHDBoHu5VldXU11dPZZvdUCjDmDfe+89DMPgRz/6kYJXmZJ6r4EdvxLigqzJt/41xlN6WDyATe0VwM7g9099yIe7G6lr6iJvHIP0HG90L9guBbAiIiLS10MPPTTsa37xi18c8pyLL76Yiy++eMhjulwuLrvsMi677LJh3w9E9oW9+uqrufrqq4d97UieQaKNugtxd3c3Ho+HpUuXJuJ+RCYUMxQk7OsAImtgx2MbnZrGaAZ2kpYQAySVHgaAr3wTpnlg25zs9CQOm5sDwEvvVYzLvcXEMrBNXc2Ew+O/tY+IiIiI9DXqADZWcy0yFcXKh0NAl80gfVwysNE1sJO0hBjAM2M+htNNuKuNYEPvQPW0oyJrK158d3wD2ExPOnbDRsgM09zdOq73IiIiIiL9G3UAe/bZZ9PT0zMlNsUV+ahYANtpt2HY7CS7rA0iTdOc9GtgAQy7E0/JYgD8+z/sdezEZUU47Ab7atrZV9M2HrcHgM1mI8ubCUC91sGKiIiITEijDmCvv/56Zs6cye23305zs7afkKnl4PWvqa5kbMaof2SGpa3TT7c/hGFAXubkDWAhsp0OgH/f5l6vpyQ5OaIsD4DXN41PM4CY3PhWOupELCIiIjIRjbqJ0+bNm7n55pu5/fbbOf/887n00ks5/PDDSU4evOHMMcccM9qpRcZcfAsdx/h2IM5K8+ByTu6tqWLrYP0VW2H+Ob2OnbSsiLe31PLahio+87EF43F7AOQkZ0G9MrAiIiIiE9WoA9irr7661+a3v/71rw95jWEYbN68+ZDniYy3XlvoeKxf/1rTOPnXv8a48mdh86YR7mrD0VIJHGj8dtzSAux/MyivbqOyvoMZudb/sgAgV52IRURERCa0hNRDmqY5rD/q8CmTxUTZQmcqBLCGYcM75wgAnPU7ex1L9bo4fH4uAK9vrLL61uJyomtgGxXAioiIiExIo87Abt26NRH3ITIh9crAjmMJcUH25N0D9mDe+cvp+OBlnHU7+hw7cVkR726r47WNVVxy5vjsKZ2bHM3AqoRYREREZEKytiONyCQz7mtgG6dOBhYgac4RYLNj72wk2FLb69jxSwuwGbCropW6aOButZzoXrD1XU3aHkxERERkAlIAKzKI4EEZ2PRxWANb1xwJ5CZ7B+IYuycZ14xIdrVn93u9jqWnuFk0O5IBXb+5xvJ7A8iJdiHuCfbQ4e8cl3sQERERkYElNIANh8Ns3LiR1atX8/jjjydyaJFxMZ5rYE3TpL7FB0BuZpKlc48l95yjAOje9U6fY8cuzgfgzQ/HJ4B12Z2ke9IAlRGLiIiITEQJC2AfeughTj75ZC677DL+4z/+g1tvvbXX8dbWVs4//3xWrlxJQ0NDoqYVGTNmOES4qx0YnzWwLR09BIJhDAOy06dOAOuZtxyAQMU2gh0tvY4du6QAgE27GunqDlh9a8CBRk4NauQkIiIiMuEkJID93ve+x5133klTUxPJycm9ttWJSU9PZ/Hixezdu5fVq1cnYlqRMRXqagNMwkCn3bA8A1vfHMm+ZqV5cDqmTrW/PS2HYHoRYNK17c1ex4rzUinKSSYYCvPe9vpxub/YVjoKYEVEREQmnlF/K3755Zf5y1/+gtfr5d577+Xtt98mKyur33PPP/98TNPk9ddfH+20ImMu1oG4025gGobl+8DGAtjcjKmTfY3xFywEoHPrG32OxbKwb41TGXG8kZNKiEVEREQmnFEHsH/9618xDIOvfvWrnHXWWYOee+SRRwKwffv20U4rMuYOXv9qGAYpLmsbKU21Bk4HC+QvAMC398O+ZcSLIwHs21tqCYWt7wSc6411Im60fG4RERERGdyoA9iNGzcC8KlPfeqQ56amppKSkqI1sDIpHBzAprqSsRnWlvFOxQZOMWFvJs6CuWCG6dz8aq9ji2dnkZzkpK3Tz459zZbfWywD26AMrIiIiMiEM+pv5C0tLfHAdEgT2myEw+HRTisy5kIHbaFj9fpXIL4Xau4UzMACeBadBED7ppd6vW632zhifi4A726rs/y+YhlYrYEVERERmXgcox0gJSWFtrY2AoEATqdz0HNbWlpob28nLy9vtNOKjLl4BtYxPnvAxjKweVMwAwuQtOB42l96GH/Nbvz1+3HlzowfO3JBHq9trOLdbXVccc5CS+8rloFt6+mgJ+jH7XBZOr+IiIhMfNu3b+f//u//ePPNN6mpqaGzs5Pk5GTmzJnD8ccfz0UXXURJSUn8/BUrVlBZWckPfvADLr744gHHXbVqFbfeeiszZszghRde6HXsW9/6Fo899hgXXXQRd911V69jb775Jtdcc82w38fB88Tu8WAOh4P09HQWLVrEJz7xCS644IJ+G/ZaadQBbFlZGevXr2fDhg0sX7580HOfeuopTNNk6dKlo51WZMzFMrDtdhupFm+hA1DfPLUzsLakVLxzj6Jrx3raN75A9pmfjR87akHkl1w79jXT0eUnxWtdEJns9JLk8OALdtPQ1cSMtALL5hYREZGJze/3c8cdd/Doo49imiY2m42SkhJKSkpoaWnh/fff59133+W3v/0t//7v/851111nyX2lpqZy1FFH9Xm9qamJ8vJyXC5XvzFYbm5un9dKS0vjTXl9Ph/79u3j1Vdf5dVXX+W5557jnnvuwWYbvx0yRh3AnnPOObz11lvce++9PPDAAwO+ma1bt3L33XdjGAYf//jHRzutyJg7eA1sjsUBrK8nSHtXZB/UqZqBBUg94sxIALthLVmnXYHhiFRx5GYmMTM/lf217by/o56TD59h2T0ZhkFOchb7W6uo71QAKyIiIhHhcJgvf/nLvPrqqyQlJXHjjTdyySWXkJGRET+nqamJf/7zn/z2t7/lvffes+zeFi9ezF/+8pc+r8cyurm5uf0e788Xv/jFXlliv9/Pb37zG+69916effZZHn/88UGzyGNt1KHzpZdeyrx583jzzTf53Oc+x9q1awmFQgCUl5fz2muvcccdd/CZz3yG9vZ2Dj/8cM4999xR37jIWAt1jN8a2Fj2NdnjwOsZvDR/MvPOOwp7ajZhXzudW9f1OhbLwr671fp1sDnxdbDqRCwiIiIRv/nNb3j11VdxuVz8/ve/57rrrusVvAJkZWVxzTXX8NRTT3HKKaeMz40mmMvl4itf+Up8R5mnn356XO9n1AGs0+nkN7/5DaWlpbz55pvccMMNtLS0AHDuuefyb//2bzz88MN0d3dTVlbGL3/5y3GvmxYZil5rYC0OYOtie8BO0fLhGMNmJ+2IyPZbbe8+0+tYPIDdVodpWrudjho5iYiIyME6Ojp44IEHAPjSl77EEUccMej56enpXH755RbcmXWWLVsGQEVFxbjeR0KKl2fMmMGqVav4yle+QmFhIaZp9vqTl5fHTTfdxF//+td+66xFJhrTDBPqagMia2DTPNaWEB9o4DS1A1iA1CPPApud7v1b6KnaGX99ydxsXA4bja3d7Kttt/SeYo2c6rWVjoiIiAAvv/wybW1t2O32KReYDlV3dzcASUnju7xt1GtgY2J14DfeeCO1tbXU1dURDofJyclhxgzr1q+JJEK4qx3MyHZPneNYQjwV94D9KEdqFilLTqZj00u0vPkk+Rd9DQC3087i2dm8v6OejTsamFWQZtk95SYrAysiIiIHvPPOOwDMmzcv3uBoOunp6eH1118HYNGiReN6LwkLYA+Wn59Pfn7+WAwtYolYB+Iuu42wYZBmcROnuqapvYXOR6UfdyEdm16ic8sbBM6ow5kRKR9eNj+H93fUs2lXAxecMsey+8n1ZgPKwIqIyPRmmiZmoGe8b2NEDKc7ocsWa2trAZg5c+Yhzhzcrbfeyq233pqIW7JEV1cXO3fu5J577mH//v0kJSXxuc99blzvadQBbFtbG88//zzr169n3759tLZGvvhnZGQwc+ZMjjvuOM466yxSUqzfhkRkpGLrX9vtkX/xWR3A1rdEM7AZU7+EGMCdX0rSnMPx7d5Ay2t/J/fjXwZg2bwcADbtbCAUNrHbrFk/H2vi1ORrIRwOj2ureBERkfFgmiZVf/xPeiq2jfetjIi7eCFF19yRsCC2s7MTAK93dN/NDt6ipj+xbW/G00BB9uLFi/nP//xP5s2bNw53dcCoAtjf/va3/O53v6OjoyP+WqzZimEYvPPOOzz++OPceeedfPGLX+QLX/jC6O5WxCKxDGyH3YaBQaprfNbATocS4pjMUy7Ft3sD7RvXknHSxTgz8plXnEGS20GHL8CeqlbmFWdYci8ZnjTsho2QGaa5u5Vsb6Yl84qIiEwsarwak5ycDEQykqPx0S1qPiq27c14OjjIbmpqYv/+/YRCIQoLC8e9fBhGEcB+4xvf4J///Gc8YLXb7RQXF8dbSbe0tFBRUUEoFKKtrY2f/OQn7Ny5kx/84AcJuXGRsRSMZ2BtpLiTLc3AhcImTa2RRfI5GdMngPUUL4xnYZtfeZS8C76C3W5jyZxs3t5Sy6adDZYFsDabjaykDOq7mmjoalIAKyIi045hGBRdc4dKiKNiyyPHuwOvFT4aZO/bt4+bb76ZNWvWcMstt3D//feP492NMID961//yj/+8Q8gkkr+4he/yCmnnNInpd7V1cXLL7/Mb3/7WzZv3szjjz/OUUcdxSWXXDL6OxcZQ/EtdOw2y8uHWzt6CIVNbAZkprotnXu8ZZ52Bb7dG+jY+BLpy8/DXTiXw+fn8PaWWjbubOCi060rWclJzooHsAuYa9m8IiIiE4VhGBguz3jfxoRw9NFH86c//YkdO3bQ1NQ0rRo5lZSU8Ktf/YqPf/zjvPDCC/zrX//ivPPOG7f7GXZaKRAIcPfdd2MYBh//+Md55JFHOOecc/qtB/d6vaxcuZJHHnmEj3/845imyc9//nOCwWBCbl5krBxcQmx1B+KGaPlwZpoHu316rb30FM0jZempgEnjcw9imibL5kW23vpwdwPBUNiye8lOimRdG7uaLZtTREREJqZTTz2V1NRUQqEQf/nLX8b7dixXVFTEZz/7WYBxj+eG/e34hRdeoKWlheLiYu68806cTuchr3E6ndx5550UFxfT3NzM2rVrR3SzIlYJdbQA0O6wkT5OAex0Kh8+WNYZV2I4XHTv30LHxrWUFqaR6nXi6wmxc3+LZfcR2wu2oVMBrIiIyHSXkpIS777761//mvfff3/Q81tbW6dcoHvttdfi9XrZt29fvBp3PAw7gH3zzTcxDIMrr7wSt3vo5Y1ut5srr7wS0zR54403hjutiKXGs4S4oTUawKZPzwDWkZZD5qmXAdC45g+YvjaWzo10I/5gd6Nl9xHLwDb4FMCKiIgIfOlLX+LEE0/E7/fzuc99jv/5n/+J78AS09LSwsMPP8zHP/5xXnnllXG607GRkZHB5ZdfDkSC+FAoNC73MewAdvPmzQCcdNJJw57s5JNP7jWGyEQVOqiJU5rH4gC2Zfo1cPqo9GPPx5VXStjXQf1T97N4diQb+qGFAWwsA9uovWBFRESESNPa3/zmN1xyySX4fD5+/OMfc8IJJ7By5UouueQSzj77bE488URuv/12WlpaWL58+Zjcx1NPPcVxxx034J8vf/nLYzIvwOc//3k8Hg/l5eU89dRTYzbPYIYdwFZXV2MYxoj2/5k3bx42m43q6uphXytiFdMMH1gD67B+DWxjvIR4+jZNMOwOci+4CewOunasZ1bPdgC2lDcRDpuW3IMysCIiIvJRLpeLO+64g8cff5yrr76aefPm0djYyObNm2ltbeXwww/npptu4plnnuHzn//8mNyD3++npaVlwD8Hb3GaaDk5OfGGvL/+9a8Jh63rTxIz7C7EHR0dJCcnj6gttWEYpKSkjOlDFRmtsK8DzMgP47g0cYqWEGdP0xLiGHfBbLLOuJKm5/9Ayjt/xO28gk5fgL01bcwuSh/z+XOSIwFse08HPUE/bodrzOcUERGRyWHhwoV85zvfGfL5L7zwwpDOu/jiiwfcJ/auu+7irrvuGvKchxrvo4Z6j9/5zneG9d4TbdgZ2K6urmGtff0ol8uFz+cb8fUiYy3WwMlntxM2DOvXwEYzsLnTuIQ4Jv3Y8/EuOA57OECprRaAzRaVESc7vbgdkX/XNSoLKyIiIjIhDDuANc3Rl+8lYgyRsRJv4OSI/HhYGcCGwyaNrZE1sNM9AwtgGDbyLvwqrvzZzLFVAfDBznqL5jbI8UbLiLUOVkRERGRCmF6bTIoMQTAawLZFfzrSPNaVELd29BAKm9gMyEobeaXDVGJzeSi49FvMT+kE4IOt+wj5uy2ZO8cbbeSkvWBFREREJoRhr4EFaGxsZNGiRSOa0DTNEa2fFbHKwR2IDQxSXcmWzV0fLR/OTPNgt+v3SzGOtByO/cwXsP/yQ1oCLjb/+R6WXPUf2MZ4XWp2LAPbpQysiIiIyEQwom/IpmmO+I/IRBfvQGy3keLyYrfZLZu7cZrvATuY9NIFzCnwAvDh7gbq/v4TzFBgTOdUBlZERERkYhl2Bvamm24ai/sQmTBiTZzax2ELndgesNnTeAudwSxZUMyOml3sDefTtfMNav72I/I//Y0xy8TG18AqgBURERGZEBTAinxEvImT3UaaZ3w6EOeoA3G/Fs7KAnZRkbIEw3gH3653qX3kTvIv+RY2V+KD/lgAqwysiIiIyMSgRXYiHxErIW4fxz1gVULcvwWzIgHlvsYAGZ/6NobLg698EzV/vYNwT1fC58uOlhA3dDVpCYSIiIjIBKAAVuQjQh2RbFuHw2b5HrCxLXQUwPYvJyOJ7HQP4bBJpVFI4RX/D5vbS/f+LVT/+XZCvo6EzpedlAFAT8hPpz/xAbKIiIiIDI8CWJGDmOEQoa42YHwysPUqIT6kWBZ2295mPDPKKLzye9iSUump2kH1w/8Vz6Angsvhiv8SQ52IRURERMafAliRg4R9HWCGMYFOu7UZ2HDYpClaQqwmTgNbUBIp6922L5IpdxfOoeiq27EnZ+Cv3UPVw/+PUFd7wubLiZcRax2siIiIyHhTACtykFgDpx6Hg7BhWNrEqbWzh2DIxGZAVpoC2IHEMrBbyw+sS3XllVB49e3YU7MI1O+n5m8/IBzoSch82gtWREREZOJQACtykGA0gO10RBp0p1tYQhzrQJyR6sFh14/mQOYWp2O3GTS398RLrgFc2TMovPw2bJ5keiq2Uff4zzHDoVHPp71gRURERCYOfUsWOUhsD9g2uwFg6RrY2B6wOSofHpTH5WB2URoA2/f1DipduSUUXHorht1J1/b1ND7zv6OeTxlYERERkYlDAazIQWINgFqNSGmqlWtgG1vVwGmoykoONHL6KM/MReR98t8Bg7Z3n6Ht/edHNZcysCIiIiIThwJYkYOEOiNBSrsjkoFNsTCAjZUQawudQ1swK9rIqZ8AFiB54fFknvYZABpX/w89NbtHPFdOPAOrAFZERERkvCmAFTlILAPbbreR4krGYbNbNneshDhbAewhLYw2ctpZ0UIgGO73nIyTLsY7fzlmKEDd43ePuKlTLAPb5GshHO5/LhERERGxhgJYkYPEuhB3WLyFDkBDtIQ4VyXEh1SYk0yq10kgGGZPVf/7vhqGjdzzb8SekkmgsZKmFx4a0VwZnjTsho2wGaa5O3F7zIqIiMjkdsstt7BgwQIWLFjAiy++OKRr9u3bx1133cUFF1zA8uXLOeywwzj99NP56le/yrPPPjvotStWrGDBggWsWrVq0PNWrVrFggULWLFixSHv5/LLL4+/hx07dgx67ptvvhk/91B/nn9+dEu4BuMYs5FFJqFYE6f28QhgW7QH7FAZhsGCWVm8vaWWrXub4mtiP8ruTSP3gpuo+cv3aXt7NSmLT8Yzc+Gw5rLZbGQlZVDf1URDV1O8qZOIiIhMXx0dHb2CtFWrVnH66acPes2vf/1r7r33XgKBAA6Hg1mzZuHxeKisrOSZZ57hmWeeYfny5fziF78gOzt7jN8B7N27l3fffTf+91WrVvHNb35zSNceddRRgx7PyMgYza0NSgGsyEFiJcQdDhszLexAbJomja3RLsQqIR6SspJM3t5Sy479LYOe551zBKmHr6B9wwvU/+t+iv/tJxh257DmyvZmUt/VpEZOIiIiAsDTTz+Nz+cjLS2NtrY21q5dS2trK+np6f2e/7Of/Yzf/OY3GIbBddddx7/927/Fg7xQKMTatWu5/fbbefvtt7niiiv4v//7P1JTx/a7aCyTG3sP//jHP7jllluw2w+9hO4vf/nLmN7bYFRCLBJlhkOEutqAaAmxx7oAtq3TTzAUWV+ZmaYM7FDMK478B2JXRcshz80687PYk9MJNFTQuv7pYc8VWwerrXREREQEDgR/X/jCFygtLcXv9/PPf/6z33PXrVvHb3/7WwBuu+02brnlll4ZSrvdzllnncXDDz9MVlYW5eXl3HHHHWN6/+FwmCeffBKAb37zm6SkpFBfX8+rr746pvMmggJYkahQVzuYYUyg0+IS4qa2SPY1I8WN06Efy6GYV5wBQEVdB76e4KDn2pNSyDrjKgCaX/0bwWip+FBlqxOxiIiIRMVKbw3D4IILLuATn/gEAI8//ni/5//qV7/CNE2OPfZYrrzyygHHnTlzJt/4xjcAePLJJ9m3b1/C7z3mzTffpKqqCq/Xy8c//nFWrlwJwGOPPTZmcyaKvimLRMUaOPmdLsKGYfEesJEANkvZ1yHLTPOQne7BNGF35aGbK6UsOx134VzMni6aX3lkWHMdyMAqgBUREZnuYkHe8uXLmTFjBhdeeCGGYbBx40Z27drV69z6+nreeustAK666qpDjn3++eeTkZFBOBxm9erVib/5qFgG+eyzzyYpKSkehK9Zs4a2trYxmzcRFMCKRMUC2C5nZGl4moVrYOMBbLoC2OGIZWGHUkZsGDayzvosAO3vryHQXDPkeWIZ2EaVEIuIyDRimibdwZ5J+cc0zTF7Jk888QRAPOgrLi5m+fLlQN8M5sFNko499thDju9yuTjyyCP7XJtIHR0dPPfcc8CB93DMMccwY8YM/H4/Tz311JjMmyhq4iQSdfAWOoC1JcTRLXSyFcAOy9ziDN78sIadQwhgAZJKlpA050h8u9+j+eVHyPvEzUO6ThlYERGZbkzT5LtrfsK2xt3jfSsjsiBnLrev+DqGYSR03HXr1lFVVYXb7Y6X3UIkEFy/fj1PPPEE//Ef/xFvhFRTE/mFeVpaGpmZQ9vJoKSkBIC6urqE3ntMrAFVfn4+xx9/PEC8HPrXv/41jz32GJdffvmgYyxYsGDAY6mpqbz99tsJveeDKQMrEhXrQNwa/anI8KRZNndjdA1stkqIhyXWyGlnxdD3Z806/QoAOj54BX9j1ZCuyUmO/AenvacDf9A/zLsUERGZpBIc/E0FsQzr6aef3qtL8MqVK3G73dTV1fH666/HX+/s7ATA6/UOeY6kpMiOFB0dHYm45T5ia3U//vGPY7MdCAc/+clPArBhwwZ27x78FxdHHXXUgH+OOOKIMbnvGGVgRaJie8A2GZFuwFZ2IVYJ8cjESogr69rx9QRJch/6X2nuwjl45x1N1853aH3jcXLPv+GQ1yQ7vbgdbnqCPTT4milKzR/trYuIiExohmFw+4qv0xOanL+4ddtdCc++dnZ29im9jUlNTWXFihU8/fTTPPbYY5xyyikAJCcnA9DV1TXkeXy+SGVeLJBNpP379/POO+8Afd/D7NmzWbZsGRs3buSxxx7j61//+oDjaBsdkQngQAmxgYFBmsv6LsTZ2gN2WDLTPGSleQgPsZFTTMZJnwKgfdNLBNsaDnm+YRjkxNfBqoxYRESmB8Mw8Djck/JPooNXiJTednV1kZGRwamnntrneCyD+fzzz9Pe3g5AQUEBAG1tbbS0tAxpnlj34eLi4l6vx7KloVBo0Otjxw/OrsasWrUK0zQpKytj4cKFA76HJ598knA4PKT7tZoysCJRsQC23W4j1Z3c7w/9WGlSF+IRm1ecwVuba9hV0cKSOdlDusZTvABPyRK6931I69tPk73i6kNek+PNpLKthoZONXISERGZjmLlwy0tLSxdunTA83p6evjXv/7FZZddFm/IBJGta84555xB5/D7/bz33nsAva4F4iXLh+oS3Noa+aV+Wlrv5XAHN6Davn37oOtYa2pqeP311zn55JMHnWs8KAMrEhXPwDpspFu4/jUYCtPS0QOoidNIHFgH2zKs69KPuwCA9veeI+zvPuT52dFGTo0+ZWBFRESmm4NLb7Ozs8nJyen3T0pKpIIvFuzm5eXFuw8//PDDh5znqaeeoqWlBYfDwXnnndfr2OzZswHYunXroGNs2bKl1/kxb775JpWVlZHKsgHuPycnJ75ed6LuCasMrEhUrIlTh91GtoVb6MTKhx12g7Rkl2XzThXzZmYAw2vkBOCddxSOjHyCLbV0bHqJtKMH/41orIRYGVgREZHp57HHHsM0TUpLS3nmmWcGPG/Lli188pOf5L333qO8vJzS0lJuuOEG1q9fz5tvvsnDDz/MlVde2e+1+/fv50c/+hEAl156KUVFRb2On3rqqTz11FOsXbuW5ubmfrsaNzU1sXbtWoD4OtyD3wPACSecwIMPPjjge3j++ee58cYbef755+no6IgH5ROFMrAigBkOEeqMlGO02+2kW9jA6eDy4bFYrzHVHdzIqbsnOOTrDJud9GMiv9lsfWf1IfeLy1EGVkREZFoyTTPeufejjY8+atGiRfHS3IMDxi984QsAfP/73+cnP/lJr/WwoVCI559/nquuuoqmpiaWLl3KN77xjT5jn3feeZSWltLe3s6NN97I3r17ex3fu3cvN9xwA52dnZSWlvbK4HZ2dvLss88CB9a5DuS0004jMzOT7u5unn766UHPHQ/KwIoAoa42wMTEoNNukG5hBrZRDZxGJdbIqamtm91VrSyePbR1sAAph51O0wt/IlC/D3/1LtxF8wY8NzuegVUAKyIiMp0cXHp7qAAW4KKLLuKuu+7iySef5Oabb8Zms/GNb3wDr9fLfffdx+9+9zsefPBBSktLcbvdVFZWxgPa8847j9tvv73fbXdcLhe/+tWvuO6663jnnXc4++yzmTVrFhkZGbS0tMQD2hkzZvCrX/0Kl+tAZd/q1avp6uoiOTmZs88+e9D7dzqdnH/++Tz00EOsWrWKSy65pM85h9on9lOf+hSf/vSnD/WoRkQZWBEObKHjd7kwDcPSNbCNrZFW6WrgNHKxLOxw18Hak1LwLjwOgPYNLwx6biwD2+BrPmS2VkRERKaOWPb1mGOOYcaMGYc8/4ILLsDhcFBVVcW6devir99444089dRTXHvttcyZM4eamho+/PDDePB64YUX8vOf/7zX/rIfNW/ePJ588km+/vWvc+SRR9LS0sIHH3xAS0sLRx55JF//+td54oknmDev9y/lY+/hnHPOGdL2PLEs7bvvvtsn0xt7fbA/1dXVh5xjpJSBFeFAAyef0wkwLiXEauA0cvOK06OdiIe3DhYg9fAVdH74Kh0fvkLWWZ/F5nT3e152UgYAPcEeOv1dpLiTR3PLIiIiMkncdddd3HXXXUM+Pycnhw8//LDfY6Wlpdx66629Xlu1ahXf/va3efLJJznssMO45pprBh0/NTWV66+/nuuvv37I9/TQQw8N+VyApUuXsm3btl6vHXfccX1eGw/KwIrQu4ETYG0Gtk1b6IzW3GgGdjh7wcYklR6GIy2HcE8XXdveGvA8l8NFmjvSxKBBe8GKiIhIglx88cXcfvvtGIbBnXfeGc+WSv+UgRXhQAa2NforHSvXwCoDO3qlRZFfOOyvbScQDOF02Id8rWHYSDl8BS2vPEr7hjWkLD1lwHOzvZm09XTQ0NVEaWbxgOeJiIiIDMell15Keno627dvp7q6ms7OTpKTVe3VHwWwIhwIYJuNEGBtCXFjq5o4jVZuRhIpSU46fAH213YwZ0b6sK5PXXYGLa88iq98E4GWOpwZef2el+PNYk/zfhqVgRUREZEEO+ecczjnnMG39ROVEIsAB5o4tdoi29hYmoFtizZxUgZ2xAzDYHZRJGgdSRmxMyOPpNLDAOjY+OKA58U7EXdpL1gRERGR8aAAVoQDGdh2h40khweXwzX4BQnS1R3A1xPJ+moN7OjMjpYR76kefgALkS11ADq2vj7gOfG9YJWBFRERERkXCmBFgGA0gO2w20gbh/Jhr8dBklsV/aMRy8CWV7WN6Hpv2TFgcxCo34+/oaLfc3KUgRUREREZVwpgRThQQtxut5FhafmwGjglSiwDu7uydUT7tNo9ySTNXgZA55Y3+j1HGVgRERGR8aUAVqY9MxQg7GsHIiXE45GBVfnw6JUUpGK3GXT4AjS0dI9ojJRFJwDQubX/ADa2BrbR10I4HB7ZjYqIiIjIiCmAlWkvln0NGza6bIale8AeyMCqA/FoOR12ZuZHfvkw0nWwkTJiO/66vfgbq/ocz/SkYzNshM0wLd0jK1UWERERkZFTACvTXrAjUg7qd7vBMCztQNzYGulArBLixIjtB7tnBJ2IAexJqSSVLgWgc+u6PsdtNhtZSRmA1sGKiIiIjAcFsDLthaIBbJfTCVi7B2wsA6sS4sSYXRhp5LRnhI2cAJIXRsuIt/TfjViNnERERETGjwJYmfZiJcQdDjtgbQAbWwOrDGxizJkRbeRUNbIMLEDyguPAsOGv3UOguabP8VgjJwWwIiIiItZTACvTXqyEuMVmAJDutm4NrJo4JVZsK52axk58PcERjWH3puGZtQSAzm1v9TmeHc/AqhOxiIiIiNUUwMq0FyshbjJCgHUZ2HDYpFlNnBIqPcVNVpob04S91aMoI56/HADfrnf7HNNWOiIiIiLjRwGsTHsHAtjItihWBbCtnT2EwiaGARmpbkvmnA5iWdjRlBEnzT0KAN++LYR7fL2O5SSrhFhERERkvCiAlWkvGF0D2+6wYbfZSXZ6LZm3KVo+nJHixmHXj2KixALY0TRycmYV4sgsgHAQX/nGXsdyVEIsIiIiMm4c430Dw7Vu3ToefPBBNmzYQFdXF0VFRaxcuZLrr78er3dkgcczzzzDn/70J7Zu3UogEGDWrFlceOGFXHPNNTijnWn709jYyP3338/atWupq6sjLS2NY445hi9+8YssWrRoTOY8mM/n4/zzz6eiogKAP/7xjxx33HFDf+MCHMjAttltpLtTMQzDknkbYx2I1cApoebEAtgRbqUDYBgG3rlH0fb2v+ja+W6ksVNUbA1se08HPUE/bodrdDcsIiIiIkM2qdI+Dz30ENdeey0vvvgibrebuXPnUllZyf3338+nP/1pWlpahj3mD3/4Q7761a/y1ltvkZGRQUlJCTt27OBHP/oRn/vc5/D7/f1et3fvXi688EIeeughmpqamD9/PqZp8vTTT3PJJZewZs2ahM/5UXfffXc8eJWRMc0woc4WIJKBtXIP2FgGNjtN618TKbYX7L7aNsJhc8TjeOdFyoi7dr2LaR4YJ9npxeOIlHw3+pSFFREREbHSpAlgP/jgA+68804Abr/9dl588UUee+wxnn/+eZYsWcKuXbu47bbbhjXmc889xwMPPIDL5eK+++7jueee48knn+Qf//gHxcXFrF+/np/97Gd9rjNNk5tvvpmGhgZOOeUUXn75ZVatWsXLL7/MDTfcQCAQ4JZbbqGuri5hc37Uxo0beeihhzjzzDOH9Z6lt3BXO5hhTKDDbtMWOlNAYU4yDrsNX0+IuuauEY/jKVmM4XARam/CX7c3/rphGAe20unUOlgRERERK02aAPa+++4jHA7ziU98gssuuyxe5pmfn8/PfvYzbDYbzz77LFu3bh3ymPfeey8A1113Xa9AcO7cudxxxx0APPzwwzQ19f6SumbNGrZs2UJqaio//elPSU2NBD0Oh4Obb76ZY445hq6uLh544IGEzXmwYDDId77zHdxuN9/97neH/H6lr9gWOiG3h7BhkGZpABtpDqQS4sRy2G0U56UAsK+mfcTj2JxukkoPA/p2I9Y6WBEREZHxMSkC2M7OTl555RUALr300j7HS0tLOf744wFYvXr1kMYsLy+PB7uXXXZZn+MnnHACs2bNwu/39ykHfvrppwFYuXIl6enpfa6N3WPsvETMebD/+Z//Ydu2bdx8880UFBQM9jblEGLrX7tdkSAyw2PdHrBNsS10tAdswpUWRv457q0ZeSMnONCNuGtn7wA226tOxCIiIiLjYVIEsFu2bMHv9+NyuVi2bFm/5xx99NEAbNiwYUhjvv/++wDMnDmT/Pz8YY0Z+/vy5cv7vS72ek1NDbW1tQmZM2bPnj3cd999LFmyhKuvvrrfc2ToYgFsV7RxVpqFa2BjJcTKwCZeSUHkn+Pe6pFnYAG8844EoLtiGyFfR/z1WAZWe8GKiIiIWGtSdCHes2cPAEVFRQN26C0pKel17qGUl5f3um6oY/r9fiorKwe9trCwEKfTSSAQYPfu3fFgdaRzxpimyXe/+10CgQDf+973sNvtA44zWj6f79AnTQG+5sg65TZ7pCQ9yXDT1TX0dZOx5zSS5xUrIU52Maw5J7vRPLOhKsiKNFnaU9UyumfrSsWeWUiouZrWHe/imRf55VSaI1KiXNdeb8k/Oyue2VSjZzY8el7Dp2c2fHpmw+Pz+Ua8w4bIVDYpAtjW1sh2GP2V68bEjsXOTeSYbW0HyhA7OjoIh8ODXmsYBmlpaTQ2Nva6dqRzxjz66KO89dZbXH311Rx22GEDjpEIsWB7qkvavwcP0BgOAXZaapvZ0rFl2OMM93kFQybtXQEA6mv20tk8dr+MmKjG8jPW0xEEoKK+gw8+3IzdNvKtkZJSC/E0V1Oz4VV8gWQAOroiP8vVrXVs2TL8z8tITZefy0TSMxsePa/h0zMbPj2zocvOzh7vWxCZcCZFANvT0wMw6P6oLper17mJHLO7u7vPdQcfH+61w50ToK6ujh//+Mfk5+fz7//+7wNenyilpaUkJU397V2adz1HD9Aa/UeydP5iZqXPGPL1Pp+P8vLyYT+vumYfUInTYeOow5dYtvfsRDDSZzYcpmnym9X1dPtDZOSWxJs6jUS3o4OWfe+S3FFNaXR/5+zOXP5S9S86Ql0sXLhwzP/5WfHMpho9s+HR8xo+PbPh0zMbHmWqRfo3KQJYtztSDhgIBAY8J7Z3auzcRI7p8RxYo3jw+IPt1zrYtcOdEyJbB7W3t3PnnXeSkjLyL+NDlZSUNC3KVpp9kTWS9QQBO/kZuXiThv++h/u8umoj/1HKTveQnJw87PmmgrH+jM0qTGPb3mZqmwOUlY58HnfZUbRgEGqqwhXqwZGayQx3IQD+cICQwyTNbc0/w+nyc5lIembDo+c1fHpmw6dnJiKjMSmaOA2lPHgo5bkHS0tLG/KYsXMBUlJSsNlsg15rmma8BPjga0c655o1a3juuec444wzOPvsswd+UzJssSZOsTWwVjVxinUgzlIH4jEzqyAxnYjtSam4CmYD4Nu7CQCn3RnvWK29YEVERESsMykysKWlpQBUVVURCAT6LcHdt29fr3MPZfbsyBfSvXv3DnhOf2O6XC6KioqoqKhg3759HHXUUX2uq66ujmdZY/OMZs7NmzcD8Pbbb3PSSScNeO1XvvIVnE4n5557Lt/5zncGPE8iTNOMB7DtDhsprmQcNmvWosY6EGenq4RqrMyKdSIeZQALkFS6FH/NbrrLN5G69FQAcrxZtHS30dDVxJysgRuziYiIiEjiTIoM7KJFi3A6nfj9fjZu3NjvOe+88w4ARxxxxJDGPPzwwwGoqKjotdXNUMaM/f3tt9/u97rY6wUFBb32aR3NnADt7e00NDT0+RPT2tpKQ0MDHR0dfa6Vvky/DzMYKdlut9tJH48tdJSBHTOz4nvBjm4rHYCk0sj2Xb7yD+KvZWsrHRERERHLTYoANiUlhZNPPhmIdOL9qPLyctatWwfAypUrhzTm7NmzKSsrA+CRRx7pc/yNN95g7969OJ1OzjzzzF7HzjnnHABWr17dbzlw7B4/ei8jnfMrX/kK27ZtG/BPzB//+Ee2bdvGXXfdNaRnMN0Fo9nXsNNFwGaQ7rEugG2KZ2AVwI6VWAlxTWMn3T3BUY3lmbkQbHaCrXUEmmuASAYWoKFLJcQiIiIiVpkUASzADTfcgGEYPPHEEzzyyCOYpglEuvN+7WtfIxwOc9ZZZ7Fw4cJe161YsYIVK1awevXqPmPedNNNAPzud7/jhRdeiL++e/fueAnuFVdcQVZWVq/rzjrrLBYsWEB7ezu33HIL7e2RDE8oFOKee+5h/fr1JCUl8fnPfz5hc0rixcqHA+5II4k0CwPYxrZIEydlYMdORqqb9BQXpgn760aXhbW5knAXzQcOZGFzohnYBmVgRURERCwzKdbAAixbtoxvfetb3HXXXXz3u9/l/vvvJzMzk507d+L3+5k9ezbf//73+1xXWVkJQFdXV59j55xzDp/97Gf5wx/+wJe//GVKSkrwer3s2LGDUCjE0Ucfzde//vU+19lsNu655x6uvPJKXn75ZU499VRmz55NTU0NjY2NOJ3O+JY3iZpTEi8WwPa43YBJhjtt8AsSSBlYa8wqSGPjzgb2Vrczf2bmqMZKKj2Mnoqt+Mo3knbkWeQkKwMrIiIiYrVJk4EFuPbaa3nwwQc59dRT8fl87Ny5k6KiIr70pS/x97//fURZy29/+9vcfffdHHvssTQ3N1NeXs7cuXO55ZZb+MMf/jDgtjyzZ8/mySef5KqrriIzM5Pt27cDkQD10Ucf5WMf+1jC55TEipUQdzoiv8exKgNrmiaNsS7ECmDH1IF1sIlo5HQYAN17P8A0TbKTtAZWRERExGqTJgMbc8IJJ3DCCScM+fyD14gO5Nxzz+Xcc88d9r3k5ORw2223cdtttw372pHO2Z+hvEfpK76FjiPye5wMiwLYru4gPf4QoC7EYy3eibh69AGsZ0YZhsNFqLOVQFNVPAPb7GslGA5Z1sFaREREZDqbVBlYkUQKdbQA0GKLrKe2ag/YxtbI+teUJCdup4KesXRgL9jRdyI2HE7cRfMA6N63hTR3Ck6bAxOTJl/LqMcXERERkUNTACvTViwD20CkQ21mUrol8zapfNgyJdEMbFNbN+1d/lGP5ymONInr3r8Fm2EjK76VjtbBioiIiFhBAaxMW7E1sLXhSGCT4bGmiVNsD9hsdSAec16Pk7zMSJn2vgRkYT0li4FIAAsHdSLu1DpYERERESsogJVp60AJceTv6RYHsMrAWqMkWkZcnoh1sMULwLARbKkl2N6kvWBFRERELKYAVqalcNBPuLsDgHaHjWRnEi6705K5YyXEauBkjXgjpwR0Ira5vbjyZgGRLKwCWBERERFrKYCVaSmWfTVtdnw2gwyPNetf4UATpyyVEFuiNLqVTiJKiAE8JYsA6N63mWyvttIRERERsZICWJmWQp0tkf9NSgbDICPJmvJhODgDqwDWCrG9YMur2zBNc9TjeWYeWAd7IAOrAFZERETECgpgZVoKtUcCDr87EkRatf4VDmripADWEsV5KdgM6PQFaG7vGfV4npmRTsT+un1kO9yASohFRERErKIAVqalWAdin9MFWNeBOBQ240GUSoit4XTYKcxJBmB/AsqIHSmZODILAJPUxnoAugI+ugK+UY8tIiIiIoNTACvTUmwP2A6HHYBMi9bAtnb0EA6b2AzISFUAa5WZ+ZFGTvtqE7QONlpGHK7eSbLLC2gdrIiIiIgVFMDKtBQLYFvtBmDlHrCRLF1Gqge7zbBkTjkQwO5PUACbFG3k5NunTsQiIiIiVlIAK9NSrIlToxECsKyJU5PWv46LRGdg3cXRdbDVu8iNZu8bOpWBFRERERlrCmBlWoqtga03/YCFGVh1IB4Xic7AOrMKsSWlYIYClIYi/xpVBlZERERk7CmAlWkpVkJcGw4AVpYQRwJYNXCyVnFeCoYBbZ1+WjtG34nYMAzcRWUAFHZGysK1BlZERERk7CmAlWnHDIcIdbYC0OYwsBk2Ul0plswdWwObnZ5kyXwS4XE5yMuMNFtKVBbWU7wAgMzWSOCqDKyIiIjI2FMAK9NOqLMNzDAYBp12G+nuVGw2a34UtAfs+El0GbF7xnwAkppqAAWwIiIiIlZQACvTTqgjEmiEPSmEDcOy8mGAJq2BHTclid5Kp2g+YGC0N5MSDNHoayFshhMytoiIiIj0TwGsTDvB9kgAG0iKlJRa1YEYDs7AqoTYajPzI2XiicrA2txeXHkzAZjVEyQUDtHanZixRURERKR/CmBl2gm1NwLQ7Y5kQdMtysB2+4N0+iJNo5SBtV6iS4iBeCOnsqAdUBmxiIiIyFhTACvTTrA90nSnw+kArOtAHNsD1uOyk+R2WDKnHBALYJvaeujo8idkzFgjp1ndkV9MKIAVERERGVsKYGXaiZUQt9ojH3+rt9DJTvdgGIYlc8oBXo+TnGjme39tR0LGdM+IZGBzOzuxmaa20hEREREZYwpgZdoJdURKiJtsJgAZnnRL5tUWOuMvXkZcl5gyYmd2ETZPMvZwmMKeIA2dysCKiIiIjCUFsDLtxEqI681I2adlJcTRDsRZWv86bmYWJHYdrGHY4utgS7oDNCgDKyIiIjKmFMDKtBOKlhBXmz2AdV2I4yXEaQpgx0uit9IB8BQfHMAqAysiIiIylhTAyrQSDvQQ7o6sf6wjCFi/BlYZ2PEzNp2I5wNQ3BPUGlgRERGRMaYAVqaVUEc0wHA46bYZuOxOkhzWBJRaAzv+YgFsfbOPrmjn4NFyF84FIDcQoqerFX8wMR2ORURERKQvBbAyrQSje8Ca3jQwDDI8aZZ1BG5sO9CFWMZHqtdFRqobgIq6xHQitnvTcGTkATCjJ0ijryUh44qIiIhIXwpgZVqJrX8NJCUDkG5R+XA4bNIcC2DTlIEdT7F1sBUJ6kQM4C6cB0BxT4BGrYMVERERGTMKYGVaiXUg7nZHsqCZSdZsodPW6ScYMjEMyExzWzKn9C9WRryvJpHrYCMB7MzuoDoRi4iIiIwhBbAyrYSiJcQdTgcAWZ4MS+aNrX9NT3HjsOvHbjwdaOSUmBJiOBDAFveoE7GIiIjIWNI3aZlWgtES4tZoEGnZFjpa/zphlIxFJ+KCOZgYZATDtDVVJWxcEREREelNAaxMK7EuxI1GCICspAxL5j2wB6zWv463WAa2pqmTnkAoIWPaXEkE0rMAMOr3J2RMEREREelLAaxMK7EuxLE9YK1aA3tgCx1lYMdbeoqLVK8L04TKBHUiBrDlzQIgqak+YWOKiIiISG8KYGXaME2TULSJU1UoElBmeqwJYJtaVUI8URiGwcz8FAD2JbCMOGlGGQCZ7a2YppmwcUVERETkAAWwMm2EfR2YoQAA1WYPYGEGVmtgJ5RYGXFFAgPYrFmHAVDU7aetO3HjioiIiMgBCmBl2oiVDxtJKYQMA4fNQYor2ZK5YxnYLK2BnRBijZwSmYH1Fs4laBgkh03qa3YkbFwREREROUABrEwbsQZOYW8keMn0pGEYhiVzaw3sxDJzDDoRG3YnzV4vAO37NydsXBERERE5QAGsTBuxDKzfEwkyMi3qQNwTCNHeFSldVgA7MZQURALYqoZOAsFwwsbtyMgGIFCzJ2FjioiIiMgBCmBl2ghF94DtdrkB69a/NkfXv7qcdpKTnJbMKYPLSvPg9TgIh02q6hPXiTicWwyAo6EyYWOKiIiIyAEKYGXaCEY7ELc7HYB1HYgbD+pAbFXJsgzOMAxm5kXLiOsSV0bsLJgLQEprM2Y4MXvMioiIiMgBCmBl2ghFS4hbop96q/eAzUpT+fBEcmAdbOIysBkF8+gxDBzhEAFlYUVEREQSTgGsTBvBaAlxoy2y5tG6AFZb6ExEsb1gE9nIKTc1h0p3JMPfXbU9YeOKiIiISIQCWJk2Yk2cakw/MB4BrLbQmUjGohNxjjeL/Z7IOufOim0JG1dEREREIhTAyrQQDvoJd7UBUBGKBJTWrYHVFjoTUSyArazvIBQ2EzKm2+GiKSUyrq9Ke8GKiIiIJJoCWJkWYh2IDYeL+lB0TapF2+g0tamEeCLKy/TictoJBMPUNnUmbNyerDwAzMYqzFAgYeOKiIiIiAJYmSaCbQ2R/5OaCYaB0+Yg2eW1ZO5YCbGaOE0sNptBcV50HWxN4sqIPVlFdNkMjHAIf93+hI0rIiIiIgpgZZoItkXWv4aSIuWdGUnplmxpY5rmQRlYrYGdaA5spZO4TsS5ydnxRk49NbsSNq6IiIiIKICVaSIWwPYkRbKuWRatf23r9BMIRroeKwM78cwsGINOxMnZVLojjZx6qncnbFwRERERUQAr00QoWkLc6XIBkQysFWLZ1/QUF06HftwmmngGNuEBbCQD61cGVkRERCSh9I1apoXYFjptDjswDlvopKl8eCKKdSKuqGvHNBPTiTjXm0VVrIS4bi9mKJiQcUVEREREAaxME7ES4qZI/GrhFjrRBk7qQDwhFeYkY7cZ+HpCNLR0J2TM3ORsGp12fDYDQkH89WrkJCIiIpIoCmBlWoh1Ia4lkg2zLgOrPWAnMofdRlFuYtfBJjk9pLhTDmRhVUYsIiIikjAKYGXKCwd6CPsiwUl1OJoRtWgP2IaWSACbm6ES4olqZn40gK1L4DpYbxYV0UZOfjVyEhEREUkYBbAy5YWi618Np4fqQGS7lAxPmiVzxwJYbaEzccXWwSaykVNOctZBW+kogBURERFJFAWwMuXF1r/aU7PoDEQDSm+mJXM3RNfAKgM7cY15J+LacjVyEhEREUkQBbAy5cUC2HByZN2r2+HG67QmoIxnYDO0BnaiKimIBLD7ahLbibjJaSdgd2CGAvgbKhIyroiIiMh0pwBWprxYAyd/kheArKR0DMMY83m7ugP4eiKZtxyVEE9YRbkpGAZ0+AK0dPQkZMzc5GxMw6DBG/nn7lcZsYiIiEhCKICVKS+Wge1yuwHITrKmfLg+mn1NSXLiiZaTysTjdtopyEoGoKK2IyFj5iZnA7DPFflXbE+1OhGLiIiIJIICWJnyYk2c2hyRIDLLm2HJvI3RfUVztP51wiuOdiLel6B1sLnJWQDsdkRKktXISURERCQxFMDKlBcrIW60RYIJqzOwCmAnvpJoJ+KKBAWwyU4vSQ5P70ZO4VBCxhYRERGZzhTAypQXKyGuNSLrUbOtysC2xrbQUQOniS62lU6iMrCGYZCbnE2j047pdGMG/QTUyElERERk1BTAypQW9ncT7o6sa6wKRxr0ZCVlWDJ3rAOxttCZ+GIBbEVdYveCNQ2D7owcQGXEIiIiIomgAFamtGB0/avhSqLG3wZAlkUlxPEtdNSBeMIrzousgW1q66HDF0jImHneSCOnlpRIcNxTrQBWREREZLQUwMqUFlv/6kjLprU7kl2zqoS4oTXSxEkZ2InP63GSEy31TtQ62JxoI6fqpEj3654adSIWERERGS0FsDKlhaLrX8PJ6ZiYOGwOUt0plswdz8BmaA3sZJDodbB50a109kR3UFIjJxEREZHRUwArU1qsgVMgyQtAVlI6NmPsP/Zd3QF8PZGmUTkqIZ4UYgHs/oRtpRMJYHeFOjGcHsxAD4HGyoSMLSIiIjJdKYCVKS1WQtzpimRBrWrgFNtCJyXJiSe6lYpMbIkOYGMZ2KaeNpz5swCtgxUREREZLQWwMqXFAth2px2ALK81DZwaWyLrX7UH7OQRD2DrOhIyXoormSRn5BcnwexCQJ2IRUREREZLAaxMacHWegAa7AYA2RZnYBXATh6xALauqYvuaPn3aBiGQV5yZAud9rQMAPwKYEVERERGRQGsTFmmacYD2BpbpHlOtlUZ2FYFsJNNWrKL9BQXABX1icnC5kcD2HpvZA12T80eNXISERERGQUFsDJlhbvaMIN+wKA6FCnptWoNbKwDcWxrFpkcxmod7H5bCMPpxgx0E2iqTsjYIiIiItORAliZsgLR7Ks9NZP6njbA+gA2Wx2IJ5WZeQkOYFMiGdi6riZc+aUA9FRrP1gRERGRkVIAK1NWrHzYkZZLs68FsK6EuKE1kvHNVQnxpJL4DGw0gO1sxF0wF1AjJxEREZHRUAArU1awtQ6AcEoGITOMYRhkeNIsmTuegc1QCfFkMjM/BYD9tQlaAxvLwHY04CqYA6iRk4iIiMhoKICVKSuWgfV7I0FJpicdu80+5vN2dQfwRbvY5qiEeFKJZWCrGzsJBMOjHi83ugbWF+wmFN9KZw+mOfqxRURERKYjBbAyZcUC2E63G7Bu/WtsC52UJCcet8OSOSUxstI8JHschMMmVQ2jz8K67E4yk9IBaHQ7MRwuTL9PjZxERERERkgBrExZsRLiFmckiMzyZlgyb2NLZP2rttCZfAzDoHis1sH6WuKNnPzVKiMWERERGQkFsDJlBVobAGiwmYD1GVgFsJNTSTyATexesHWdDbij62B7atSJWERERGQkFMDKlBTq7sTs6QKgCj8Aud5sS+ZubFUAO5kVJ3wrncjnrq6jAXdhtBOxMrAiIiIiI6IAVqakYEukfNjmTaO2uxWAnGRrttCpb44GsOnqQDwZlRSMTQlxbeeBTsQ9tWrkJCIiIjISCmBlSoo1cHKm59LQ1QxYl4Gta45kfnMzvZbMJ4lVnBfpWl1Z30EoNPog8+C9YF25MyONnHq6CDbXjHpsERERkelGAaxMScG2SABrS8+lqbsFgByvRRnY6BrYvEyVEE9GeZleXE47gWCY2qauUY8X2wu2obMREwNX3ixAZcQiIiIiI6EAVqakWAlx0JuKaZo4bQ7SPKljPm84bMZLiPOUgZ2UbDYjnoVNRBlxZlI6DpuDkBmm0desRk4iIiIio6AAVqakQLSEuMsdWYea7c3EZoz9x72lo4dgKIzNZpCtNbCTVqwT8b4EBLA2w0ZuchYAtR0NuAqjAawysCIiIiLDpgBWpqRgdAudVldkD9gcb5Yl88bWv2ane7Db9eM1WRXnRzKwFXWJ2Uonr9dWOpFOxP6a3ZimmZDxRURERKYLfcOWKSnYGikhbrBH/p6TbE0AW98UKR/O1RY6k1oiM7BwYB1sbUdDpJGT3UlYjZxEREREhk0BrEw5YX83YV8k8Kg2g4D1GVitf53cYnvBVtS2JyRLWpCSB0BNRz2G3XGgkVONyohFREREhkMBrEw5sS10bG4vNYFIIGt1AJurDsSTWmFOMg67Qbc/FO8qPRoF0QxsTUekMsBdGCkj7qlWIycRERGR4VAAK1NOrHzYkZ5HQ1cTQLyJzlirUwfiKcFht1GYE10HWzv6dbAHZ2BN08SlAFZERERkRBTAypQTy8A60nNo6IwEsFZlYBtaFMBOFYlcB5uXkoOBgS/QTbu/80AGtmY3phke9fgiIiIi04UCWJlyAtE9YM3UTHpCfiCyjY4VVEI8dRzoRDz6ANZld5KVlAFATXtdpJGTw4XZ00WgSY2cRERERIZKAaxMOcGWWgB83kgAku5Jw2V3jvm8Hb4AXd2RplEKYCe/eAa2JjGdiAtSc4FoIyebHVd+KQB+lRGLiIiIDJkCWJlyAs2RALbV5QIgx6Lsa300+5qW7MIT3X9WJq+Z0QB2f4I6EeenRALY2o5IifuBRk47Rz22iIiIyHShAFamFNM0CUT31mx0Rj7eud5sS+aua4ptoaPs61QwIzcFmxHJrLd09Ix6vIKUAxlYoNc6WBEREREZGgWwMqWEfe2Y/kgjpRpie8Batf41Mm+uGjhNCS6nnfzsZCBRnYgHDmDNcGjU44uIiIhMBwpgZUqJZV/tqVnU9UT3gLVsC51YBlYB7FQxMy9xnYgLPlJC7MyegeF0Y/q7CTRVj3p8ERERkelAAaxMKbEGTs6M/PgesFZtoVMf30JHJcRTxcxYJ+IEBLCxNbBtPR10+X0YNjvugjmA1sGKiIiIDJUCWJlSYg2cHJkF1FsdwMa30FEGdqooKYhkYPcmoBNxktNDujsyXqyM2BVv5KROxCIiIiJDoQBWppRYAGtLz6W1uw2AXMtKiGNrYJWBnSpKCtIA2FvTlpBOxPEy4s7oOth4BlYBrIiIiMhQKICVKSXYElkD6/NGmu+47S5SXMljPq8/EKKlPdKpVmtgp46Z+anYDGjr9CekE3GsjLimvXcjJ39tuRo5iYiIiAyBAliZUmIZ2BanE4C8lBwMwxjzeRtauwHwuOykep1jPp9Yw+20U5gT+QXI3uq2UY9XkNq7E7EzuwjD5cEM9BBoqBz1+CIiIiJTnWO8b2C41q1bx4MPPsiGDRvo6uqiqKiIlStXcv311+P1jizz9cwzz/CnP/2JrVu3EggEmDVrFhdeeCHXXHMNTufAwUhjYyP3338/a9eupa6ujrS0NI455hi++MUvsmjRooTOWVtby7PPPssbb7zBli1bqK+vx+l0MnPmTM444ww++9nPkpVlTansRBUO+gm1R9a91trDAOQn51gyd0NLJIDNzfRaEjCLdUoK0qis72RvTTtHlOWNaqz85N6diA3DhrtgLt37PqSneieuvJJR36+IiIjIVDapMrAPPfQQ1157LS+++CJut5u5c+dSWVnJ/fffz6c//WlaWlqGPeYPf/hDvvrVr/LWW2+RkZFBSUkJO3bs4Ec/+hGf+9zn8Pv9/V63d+9eLrzwQh566CGampqYP38+pmny9NNPc8kll7BmzZqEznnppZdyxx13sGbNGrq6uigrKyMrK4sdO3bw61//mvPPP5/NmzcP+/1PJcGWOsDEcCVRHegEIC8525K51YF46iotjK6DHYMMLBy0H6zWwYqIiIgc0qQJYD/44APuvPNOAG6//XZefPFFHnvsMZ5//nmWLFnCrl27uO2224Y15nPPPccDDzyAy+Xivvvu47nnnuPJJ5/kH//4B8XFxaxfv56f/exnfa4zTZObb76ZhoYGTjnlFF5++WVWrVrFyy+/zA033EAgEOCWW26hrq4uYXO6XC4uv/xy/v73v7Nu3TpWrVrFmjVr+Oc//8mSJUtobGzkpptuoqdn9Ov0Jqtg84EtdOqiHYjzUqzNwGr969QzK9rIqTwRAWx0DWyTr4XuYORnVQGsiIiIyNBNmgD2vvvuIxwO84lPfILLLrssXqaZn5/Pz372M2w2G88++yxbt24d8pj33nsvANdddx1nnnlm/PW5c+dyxx13APDwww/T1NTU67o1a9awZcsWUlNT+elPf0pqamRrDIfDwc0338wxxxxDV1cXDzzwQMLmfPTRR/mv//ovli5d2qtEde7cufzyl7/E6XRSWVnJK6+8MuT3P9UEog2cHJn51HU0AAea5oy12BpYdSCeemYVRn6+99W2Ew6PrhNxqjsl3lSs30ZOoeCoxhcRERGZ6iZFANvZ2RkPzC699NI+x0tLSzn++OMBWL169ZDGLC8vjwe7l112WZ/jJ5xwArNmzcLv9/cpB3766acBWLlyJenp6X2ujd1j7LxEzJmZmTnge5kxYwZz5kS249i9e/eA5011gYMysDXRbUqsWgMbKyHWHrBTT2F2Mk6HjR5/iNqmrlGPV5SaD0BV+4E9i21uL2YogL9+/6jHFxEREZnKJkUAu2XLFvx+Py6Xi2XLlvV7ztFHHw3Ahg0bhjTm+++/D8DMmTPJz88f1pixvy9fvrzf62Kv19TUUFtbm5A5DyVWOpyUNH0zgMHmSAY2nJqFLxDNiFq0BrauKRLAFmYrgJ1q7HYbM/MjWdi9NaMvIy5MjTSCqo4GsIZh4FIZsYiIiMiQTIouxHv27AGgqKhowK7AJSUlvc49lPLy8l7XDXVMv99PZWXloNcWFhbidDoJBALs3r07HqyOdM5D+eCDD+JjDxRUD5fP50vIOFbyN0UC2EZbpMQ63Z1KyB+kyz92ZZk+n49gyKSpLfILhLQkG11do8/STWWxz9Zk+owV53rZXdnKjn2NLJvTt+piOHI9kW7h+5qr4p8Ve84sKN9E5/6tOBac2OeayfjMxpue2fDoeQ2fntnw6ZkNj8/nG/EOGyJT2aQIYFtbWwH6LdeNiR2LnZvIMdvaDmRdOjo6CIfDg15rGAZpaWk0Njb2unakcw4mEAjwve99D4CTTz75kNv3DFUsIJ40TJOMlloM4IPGSPOsFCOJLVu2jPnULZ1BTMDpMKjct5MqbaMzJJPpM+YmEmh+uKOKxfmja5QW7IhcX96wL/75dAZdpADt5R9SNchndjI9s4lCz2x49LyGT89s+PTMhi4725pKMpHJZFIEsLHy2MH2ZHW5XL3OTeSY3d3dfa47+Phwrx3unIP5/ve/z8aNG0lLS+P2228f0jVDUVpaOqnKkUMdzdSHg2DYMAtyoBVKsmcmLKAfiM/nY8frkXXNhdnJLF68eEznmwp8Ph/l5eWT6jPW42jgufffo9VnG/VnKrUtg8dr1tASamfhwoUYhkFoZj7176/C0VHPgnmzsTk9va6ZjM9svOmZDY+e1/DpmQ2fntnwKFMt0r9JEcC63W4gkm0cSGzv1Ni5iRzT4znwZfLg8QfaI/ZQ1w53zoHce++9PPLII7hcLn7xi18wY8aMQ14zVElJSZOqbMXXUA6AIz2H5mAHAEXp+Za8h+aOSIlyYU7KpHpm420yfcbKZkW6WVc1duF0uXE67CMeq9Q1EwMDX7CboD1EuicNvF6aUrMItTdhb60hqaT/X4RMpmc2UeiZDY+e1/DpmQ2fnpmIjMakaOI0lPLgoZTnHiwtLW3IY8bOBUhJScFmsw16rWma8RLgg68d6Zz9eeCBB+Lb59xzzz2ccMIJg54/1QWaqgFwZhYetIWONR2IYwFsvho4TVnZ6R6Sk5yEwyYVdR2jGsvlcJGTHFkHG+tEDOAumg9AT9WOUY0vIiIiMpVNigC2tLQUgKqqqgGzl/v27et17qHMnj0bgL179w54Tn9julwuioqKeh3/qOrq6vh9xuYZzZwf9ac//Ykf/vCH2O12fvSjH7FixYoBz50uAk1VADizi6jtjASweRZtodPSGQKgICvZkvnEeoZhMKsg2om4evSdiIvinYjr4q95YgFspQJYERERkYFMigB20aJFOJ1O/H4/Gzdu7Pecd955B4AjjjhiSGMefvjhAFRUVPTa6mYoY8b+/vbbb/d7Xez1goICCgoKEjJnzKOPPsodd9yBYRj893//N+edd16/5003gcZIZ2hHZiENnY2AMrCSWLMKI1URe2vaRz1W4Uf2ggVwz4gEsN3KwIqIiIgMaFIEsCkpKZx88slAJID7qPLyctatWwfAypUrhzTm7NmzKSsrA+CRRx7pc/yNN95g7969OJ1OzjzzzF7HzjnnHABWr17dbzlw7B4/ei+jmRPgiSee4P/9v/+HaZr813/9FxdddNFQ3uq0ECsh9qWkEjLDOGwOMpNGt93JUJimGQ9gC7IUwE5lswoiAWx5QjKwsQD2QAbWXTgXDBuhtgaC7c2jnkNERERkKpoUASzADTfcgGEYPPHEEzzyyCOYpglAXV0dX/va1wiHw5x11lksXLiw13UrVqxgxYoVrF69us+YN910EwC/+93veOGFF+Kv7969m+985zsAXHHFFWRlZfW67qyzzmLBggW0t7dzyy230N4eyciEQiHuuece1q9fT1JSEp///OcTNuezzz7LrbfeSjgc5j//8z/5zGc+M4SnNj2Y4RCB6B6wTdEuzrnJWdiMsf94d/qC9AQin8U8BbBTWmk0A7uvJnEBbHXbgQyszZWEM6cY0DpYERERkYFMii7EAMuWLeNb3/oWd911F9/97ne5//77yczMZOfOnfj9fmbPns33v//9PtdVVkZKS7u6uvocO+ecc/jsZz/LH/7wB7785S9TUlKC1+tlx44dhEIhjj76aL7+9a/3uc5ms3HPPfdw5ZVX8vLLL3Pqqacye/ZsampqaGxsxOl08uMf/5j8/PyEzfm1r32NUChEUlISTz/9NE8//XS/z+m0007jS1/60iGf51QSbKmDcBDD4aLWiJbzWrT+tbY58rnKTHXhcU2aHycZgdga2LpmH13dAbyegbfDOpRYAFvTWU8oHMJui3Q19hTNJ1C/j56qHSQvOHb0Ny0iIiIyxUyqb9zXXnstCxYs4IEHHmDjxo00NjZSVFTEypUruf7660lOHn4TnW9/+9sceeSR/PnPf2bLli3U1dUxd+5cLrzwQq699toB92ydPXs2Tz75JPfffz9r165l+/btpKWlcc455/ClL31p0P1ARzJnrCmUz+fj3XffHXDsWbNmDfMJTH7xBk5ZBdRG17/mWbT+ta4pskdbbqb2s5vqUrwustM9NLZ2s7e6nUWzsw590QCyvBm47E78oQD1nY0URJs6uWfMp33DGmVgRURERAYwqQJYgBNOOGFYW8Zs27btkOece+65nHvuucO+l5ycHG677TZuu+22YV873DmH8j6mK39jLICdQZ3FHYhrmyMBbH6myoeng1kFaZEAtqZtVAGszbBRmJLH3tZKqtprDwSw0U7E3dW7MM0whgVl8CIiIiKTib4dyaQXiAewhdR01ANQkJJrydx10QA2TxnYaSHeiTgBjZwK+2nk5MqdieF0Y/Z0EWioHPUcIiIiIlONAliZ9GIlxI7sovi+moXRjNZYUwA7vcT3gk3AVjpFaZHPaFVbTfw1w2aPdCNGjZxERERE+qMAVia9WAbWn5pBV8CHgUG+RRnYmsZIE6e8LAWw00EsA1te3RrvhD5SM1ILAahsr+n1eryMWAGsiIiISB8KYGVSC/f4CHU0AdDgjHRyzUnOwmUfeYfYoQoEQzS0dgNQmK01sNNBSX4qdptBe1eAhpbuUY1VnB4JYPe3VvcKht0zIgFsT6UCWBEREZGPUgArk1qgqRoAmzeNKn8HAEUWlQ/XNHZhmuByGGSkuCyZU8aXy2lnZn6kjHhPVeuoxipKzcfAoMPfSVvPgZJkTzQD66/bSzjQM6o5RERERKYaBbAyqQWaIo1uXNkzqG6vBaAwpe/+u2OhuqETgKxUB4ZhWDKnjL/ZRZEy4t2jDGDdDhd5ydkAVBy0Dtaemo09JRPMMP6aPaOaQ0RERGSqUQArk1qgMZKBdWYVUt1hbQOnqlgAmzLpdqOSUZgzIx2A3ZWjC2DhQBlxRWt1/DXDMA5aB7t91HOIiIiITCUKYGVS80czsM7sGZZ3IK5qiJQsZ6UqgJ1OYgHsaEuIAYrTogFsW3Wv12MBrNbBioiIiPSmAFYmtVgHYntmATUWB7DV9ZEMbLYC2GlldlEkgK1p7KLTFxjVWAMFsJ7iMgC6K7aNanwRERGRqUYBrExapmnG94DtTE4hEA5it9nJ9WZbMn9V44E1sDJ9pHpd5Eb3/R1tFjZeQtzWz1Y6ho1QeyPB1vpRzSEiIiIylSiAlUkr1N6E6e8Gw0adLbINSUFKLjbb2H+sA8EQDc2RPWAVwE4/c6JZ2NE2cpqRGmk41trdRntPR/x1m9ONu2A2oCysiIiIyMEUwMqk5W/YD0QbOHVF9oItTLWmA3FNYxdhEzwuOyke/RhNN7Ey4j2VbaMax+P0kOvNAvpZB1u8EIDuiq2jmkNERERkKtE3b5m0/PX7AHDlzoxvoWPVHrCxLXQKsr3aQmcamjMjMVvpwMGdiHuXEXuKFwDKwIqIiIgcTAGsTFr+umgGNrfkwBY6KdZ2IC7I8loyn0wsc2ZkALCvpp1AMDyqsQZu5BTJwPprywn7u0c1h4iIiMhUoQBWJq1AtITYlVtCldVb6EQ7EBdmK4CdjvIyk0j2OAiGwlTUtY9qrIECWEdaNo60HDDDBGp2jWoOERERkalCAaxMSqYZxl8fCWDtWYXUdTYA1q2BPbiEWKYfwzCYnaD9YA90Iq7uc8w9M5KFDVRpP1gRERERUAArk1SwtR4z0A12B40uJ6Zp4nG4yfCkWTJ/vIQ4O8mS+WTiiXUi3lU5yk7EaQUANPta6fR39TrmmRFZB+uv2j6qOURERESmCgWwMin566INnLJnUNMVzb6m5FnSUKnbH6S+xQdAUU7ymM8nE1OiOhF7nUlkJ2UCsL/1I+tgYxnY6p1gmqOaR0RERGQqUAArk9LB619jX/pnREsxx1pVfSemCaleF2nJLkvmlIlnzowDe8GaowwuSzJmALC3paLX6668WRhOD6bfh62jflRziIiIiEwFCmBlUoqtf3XmzmR/dO3gzDRrAtj9tZGmPcV5KZbMJxPTzPxUHHYbnb4AtU1dh75gELNiAWxrZa/XDZsdz4z5ADiaK/pcJyIiIjLdKICVSSleQpxbQkVrFQAzLcrAVtRF1r/OzE+1ZD6ZmJwOG7OLImuud+xrGdVYpRnFQN8MLIA7up2Oo3n/qOYQERERmQoUwMqkY4ZDBBojmSpHdjGV7bUAFKcXWTL//jplYCVi/swMALbvbx7VOLES4n2tVYTN3vvKJs1aAoCzad+oS5VFREREJjsFsDLpBJprMEMBDKebRqdBIBTAZXeSl5xtyfyVysBKVCyA3VnRMqpxClPycNqd9AR7qO1o6HXMPaMMbHZsPe2EWrUOVkRERKY3BbAy6fjro+XDOcVUtNUAka1IbMbYf5xDYZPK+kgAqwyszJ8Z6R68q6KFUHjk2VG7zU5JWqSC4KNlxDanG2f+HAD8lVtHPIeIiIjIVKAAViadQF2sgVMJFfEGTtaUD9c1dREIhnE5bORmei2ZUyau4rwU3C47vp4QldHS8pE60Im4ss8xV3QdrL9iy6jmEBEREZnsFMDKpONvONDAaX+0gVOxZQ2cIkFKUW4KdtvY7zkrE5vdbmNudDud0ZYRzxpgKx04EMAGKraNag4RERGRyU4BrEw6sS10XLkzqYjuATvTqgZOtSoflt5iZcQJ60Tc2jcD6yyaj2kYhNrqCbY19DkuIiIiMl0ogJVJJRzoIdAYybracw50ILZqD9hYBlYNnCRmXrSR0479LaMaJ1ZCXN/ZSJff1+uYzZVEKK0AAN/eD0c1j4iIiMhkpgBWJhV/3V4ww9iTM2ggSDAcxG13kZOcZcn8sT1glYGVmLJoALu7qpVAMDz4yYNIcSWT7Y1kc/e29i0jDmaWANC9b/OI5xARERGZ7BTAyqTSU70LAFfBHPZHGzgVpxVa0oHYNE1lYKWPwpxkkj0OAsEw+2raRjXWrFgZcT+NnIJZCmBFREREFMDKpOKv2Q2Au2BOvAOxVQ2cmtt7aO8KYDMiTZxEAAzDSFgZ8az0gTsRBzNnAgaBpiqC7c2jmkdERERkslIAK5NKT80eIBLA7o83cLImgC2vjmTXCnOScTvtlswpk0O8kdNoA9hoBra8ZX+fY6bTgyM3loXVOlgRERGZnhTAyqRhBgP466Nb6BTOpiK2hY5Fe8DujQawswrTLJlPJo9YBnbnKAPYOdEy4b0tlQRDwT7HXTMXA+Ar3zSqeUREREQmKwWwMmn46/dBOIQtKYVwcgZV0Q7EJRnWBLCxDGxpgQJY6W1+NIAtr2mjJxAa8Tj5yTkkO5MIhoPsi/6C5mDukiUA+PZswDTNEc8jIiIiMlkpgJVJo+cj619DZphUVzLZSZmWzB9r0KMMrHxUbkYSGaluwmGTXRUtIx7HMAzmZM0CYHfz3j7HnTMWgM1BsLWeYEvtiOcRERERmawUwMqkEQtgXQVz2NMcWSNYmjkTwzDGfO5Q2GRfTaQDcakCWPkIwzBYUBL5RcrW8tE1WJobDWB3NvUNYG0uD57iMgB8ezaOah4RERGRyUgBrEwa/uoDGdg9zZG1sLOje2OOtZrGTvzBMC6nnfzsZEvmlMllUWlkL+Kte5tGNU4sgN3dTwALkFS6DFAAKyIiItOTAliZFMxQEH9d5Au9u2AO5dEM7OzMYkvmj61/LSlIxW4b+4yvTD4LYwFsedOo1qfGAtj9rVX4g/4+x5NmRwPYvZswwyNfbysiIiIyGSmAlUnB31CBGQpguL0Y6TnsbY3skzk7Y6Yl8+9VAyc5hHkzM7DbDJrbe6ht6hrxONlJmaS7UwmZYcpbKvocdxfNw3AlEfZ14K8tH8Udi4iIiEw+CmBlUvDHGjjlz6a6ox5/KIDH4aYgNc+S+cu1hY4cgttpZ25xOgBb9458HWzvRk77+h632UmatRRQGbGIiIhMPwpgZVLoqdkDgLvwQAOnWRnF2AxrPsLxDGxhqiXzyeS0cNaBMuLRiJUR7xpoHWysjLhcAayIiIhMLwpgZVLoqd4JRDoQH1j/ak35cLc/SHVjJ6AMrAwutg52i0UBbPe+LYQDPaOaS0RERGQyUQArE1440ENPtAOxZ0YZe1qiAaxF61/Lq9swTchIdZOZ6rFkTpmcYhnY8uo2fD3BEY8zN9pdu7Kthu5Ad5/jzuwZ2FOzMEMBuvdtHvE8IiIiIpONAliZ8Pw1uyEcxJ6cgT09z/IM7K79LQDMK86wZD6ZvHIzk8hJ9xAOm2zfN/J1sBlJ6WQnZWJixn9hczDDMPDOPQqArp3vjngeERERkclGAaxMeN0V2wBwFy+goauJzoAPh81BcVqhJfPvrGgFYO6MdEvmk8lt8ZxsAD7c3TiqcWJlxNsb9vR73DsvFsC+M6pte0REREQmEwWwMuF1V2wFwFO8MN6VdWZ6IQ67w5L5d1W2ADBXGVgZgqUJCmAX5MwFYFvDrn6PJ5UuA5uDYEstgaaqUc0lIiIiMlkogJUJzTTNeAbWM/NAAGvV+ld/IMS+mnZAJcQyNEvn5gCRTsSBYGjE4yzImQNEAtj+Mqw2dxJJsxYDKiMWERGR6UMBrExoweZqwl1tGHYn7vzZ7GiMlFOWRb/cj7Xy6jZCYZO0ZBc5GWrgJIdWnJdCeooLfzDMjuj66ZGYk1mC0+6k3d9JdUddv+d45x0NgG/nOyOeR0RERGQyUQArE1os++oqnEvIZmNnYzkAZdnWBLC7KlqASPbVMAxL5pTJzTAMlkTLiD/YNfIyYofdwbysUgB2NPW/DjYp2sjJt28L4R7fiOcSERERmSwUwMqEFi8fLl7AvpYKekJ+kp1JFKXlWzJ/vIFTsRo4ydAtnRMpIx7tOtiF0XWwO5rL+z3uyi7CkVkA4SC+PRtHNZeIiIjIZKAAVia0gxs4bY+WD8/Pno3NsOajqwZOMhJL50YysFvKGwmFwiMeZ2FuNIAdIAMLB3Uj3qV1sCIiIjL1KYCVCSvU3UmgPrIHpqd4Qbwba1k0KzXWAsEQe6vbADVwkuGZVZBGSpITX0+IXZWtIx6nLHsOBga1nQ10Brv6PSe2Djaync7Ig2URERGRyUABrExYPZXbAXBkFmBPTo9nYMuyZ1syf3l1G8GQSUqSk7zMJEvmlKnBZjuwDnbjzoYRj5Ps8jIzvQiAiu7afs9JKlmC4Uoi1NFMT+WOEc8lIiIiMhkogJUJq3v/gfLhJl8L9Z2NGIbBvOxSS+bfWt4MwIJZmWrgJMN2RFkuAO9v77+D8FDFttOp8PUfwBoOJ975kSxs59Z1o5pLREREZKJTACsTlm/vBwB4ShazvWE3ACXpM/A6rcmGbi1vAmBRaZYl88nUcvj8SAC7eU8TPYGR7we7MGceAJUDZGABkhceD0DntnX97hkrIiIiMlUogJUJKez30VMVKYdMKj3M8vJhgC17IwHswlkKYGX4ivNSyEn3EAiG2TyKbsSxRk41PQ34At39nuOdcySGw0WwpQ5/7cANn0REREQmOwWwMiF1798K4RCO9DycGXnxDOwCixo4Nbb6qG/2YTNgfkmGJXPK1GIYBkeU5QHw/vb6EY+Tm5xNrjcbE5Otjbv6Pcfm8pA090hAZcQiIiIytSmAlQkpVj6cVLqUQCjA7uZ9gHUZ2Nj619LCdLwepyVzytRzeHwd7MgDWIAluWUAbG4YuElTysITAAWwIiIiMrUpgJUJqbt8EwCeWUvZ3riHYDhIuieN/JRcS+bfGi0fXlCaacl8MjUdEV0Hu7uqldaOnhGPsyQnEsB+WL99wHO8844Cm4NAYyX+6PZTIiIiIlONAliZcEJd7fRUR0qGk2YtZVPtFgAOy19oWTfgLWrgJAmQkepmdlEaABt2jDwLuzjayKmqo5bGruZ+z7F5kkmavQyAzm1vjnguERERkYlMAaxMOL49GwATZ24JjrRsNtVuA+CwvAWWzO8PhNhV0QIogJXROzK6DvbtLQN3ET6UZJeXQnckm7upduvA50W7EXdsfk3diEVERGRKUgArE07X7vcB8M49gi6/j51N5UAkA2uFnRUtBEMmGSlu8rO8lswpU9cxi/MBeHtLHaHwyIPKUm8RABsPEcAadieB+n34a8tHPJeIiIjIRKUAViYU0zTxRQPYpDlH8GH9dkzTpDA1j5xka7Khm3Y2ALB4TpZlJcsydS0qzSI5yUl7l5/te/sv/x2K0qQZQCQDO1B21e5Jxjt/OQAdH7w04rlEREREJioFsDKh+Ov2EupoxnC48MxcFC+XtCr7CrAxGsAePt+ahlEytdntNo5eGCkjXr+lZsTjFCXl47K7aO1uY39r1YDnpRx2GgAdH7yCGQ6NeD4RERGRiUgBrEwoXTvfBSLdh20Ol+UBbE8gFG/gtGxejiVzytR3zOICANZvHvk6WIdhZ0HWHAA2Rhub9cc79whsSamEOlvw7dk44vlEREREJiIFsDKhdO1YD0By2TE0dbVQ2VaDgcGSvDJL5t+6p4lAMExWmocZuSmWzClT39EL87AZUF7dRl1T14jHWRptZPZO1aYBzzHsTlIWnwRAxwcvj3guERERkYlIAaxMGMGOFnoqdwDgnXc0H9RFug/PySohxZVsyT1s2BnZ6uTw+Tla/yoJk+p1sWh2NgDrN4+8jPiogiUAbKnfSXtPx4DnxcqIO7e9SdjvG/F8IiIiIhONAliZMLp2vgOYuAvn4kjLZmPNgf1frRJb/7psnta/SmIdG+1G/Pqm6hGPkevNZlZGMWEzPGgW1l00H2dWIWagh86t60Y8n4iIiMhEowBWJoyu7ZHyYe/8YwiHw7xX8yEAhxcstmb+7gA79rcAWv8qiXfissg2OB/saqClvWfE4xwz43AA1lduGPAcwzBIOex0ANree37Ec4mIiIhMNApgZUII93TFt89JXnAs2xv30N7TQbLLy4KcuZbcwwe7GwmHTQqzk8nT/q+SYAXZycwrTidswhsfjDwLe2w0gN1Qs5meoH/A81IPPxNsdnoqttKjPWFFRERkilAAKxNC1453MEMBnNlFOHNLeKcq0j31yIIlOGx2S+4h1iH2iDKVD8vYOOnwyF6ur22oHPEYszKKyfVm4Q8F2FCzecDzHKmZJC84FoC2d58Z8XwiIiIiE4kCWJkQOra8BkDywhMxDIO3owHs8hnLLJnfNM14c51jlxRYMqdMPycfHikj3rSzgdaOkZURG4YxpDJigLSjVwLQsellwj0j734sIiIiMlEogJVxF+7pwrfrfQCSF51AZVsNlW012G12y9a/7qpspbG1G4/LrvWvMmYKspOZGysjHkUzp2OLjwAi2+mEwqEBz/OULMGZU4wZ6KZ900sjnk9ERERkolAAK+Ouc+u6ePmwK28W6/a/C8Cy/EUku6xZi7r+w0j29YiyXFxOa0qWZXo6OVpG/OK7FSMeY0HOXFLdKXT4O9lUu23A8wzDIO2ocwBoe2c1pmmOeE4RERGRiUABrIy7WGYoZelpGIYRD2CPLz7Ssnt4K1Y+vFjlwzK2TjuyGMOAD3c3UtPYOaIx7DY7J848GoCXyt8Y9NzUw07DcLoJNFTQvfeDEc0nIiIiMlEogJVxFWytp3tvZLuclMNOpaq9lr2tldgNW3yd31hrbPWxs6IVw4Dl0b06RcZKbmYSh8+PNAp74e39Ix7ntNLjAXircgNdft+A59k8yaRGt9RpeeOJEc8nIiIiMhEogJVx1f7By4AZWauXnsere98C4LD8haS4ky25h7ei3YfLSjLJTPVYMqdMb2ceUwLAmrf3Ew6PrKx3btYsZqQVEAgFeGP/O4Oem378hWDY8O1+j57q3SOaT0RERGQiUAAr48Y0w7S/vwaA1GWnY5omr5RHAthTZh1n2X28/F5kLeLxSwstm1Omt+OXFuD1OKhr6uLD3Y0jGsMwjHgW9qXydYOe68wsIGXJyQC0vL5qRPOJiIiITAQKYGXc+PZsIthSi83tJXnxSWxv3E1tZwNuh5tjiq0pH65v9sUDiFOPnGHJnCIel4NTjoh83p57a++Ixzl11nEYhsHWhl3UdNQPem7GCRcBkaZp/oaRN5ASERERGU8KYGXctL/3LAAph52GzenmpT2RLNJxxUfgcbgtuYdX3q/ANGHJnGzyMq3peCwC8LFjI2XEr26oGvGesFneDJblLwTg5UNkYV15JXjnHwOYWgsrIiIik5YCWBkXwbYGOrevByDtyI/hC3Tz6r7I38+YfaJl9/HSu5UAnH5UsWVzikBkzfW8mRkEgmGeWTfyLOxppScA8MLu1wkOsicsQMZJFwPQ8cFLBFpqRzyniIiIyHhRACvjovXtpyEcwjNrKa68Wby2bz3dwR6KUvNZnDvfknvYV9PG7qpWHHaDkw4vsmROkRjDMLjg5DkAPP36HoKh8IjGOa74CNI9aTT5Wlh3iGZOnhllJM0+HMIhmtY+PKL5RERERMaTAlixXNjvo/3dSPlw+rHnY5omz+18BYCz5p6MYRiW3MfadyLrAI9emE+q12XJnCIHO+WIIjJS3DS0drPug+oRjeG0O1k57zQA/rltDaY5eFfjrBVXAwadm1+ju3L7iOYUERERGS8KYMVybe89T7inC2dWId75R7Olfid7WvbjtDs5NdpVdaz5AyGefTNStnnmMTMtmVPko5wOO+ecMAuAJ1/efcjgcyAfm3cqTruT3c372Nqwc9Bz3QWzSVl2OgBNa/444jlFRERExoMCWLFUOOindV2kgUz68Z/EMGw8tT2ylc5ps44jzZ1iyX28uqGKtk4/ORlJHLu4wJI5Rfpz3omzcTpsbClvYtOuhhGNkeZO4bTo1lP/3LbmkOdnnXY5hsNF9/4tdG17a0RzioiIiIwHBbBiqfb31xDqaMaRlkPqstOobq/j7cqNAJy3YIVl9/HUa7sBOPeEUux2/RjI+MlK83DOcZEs7F+e3TbicWI/P29XbqSmvW7Qcx1p2aQfdyEAjS/8kXDQP+J5RURERKykb+5imbC/m5bX/g5A+gkXYdidPLZlNSYmRxUupTit0JL72L6vme37WnDYbZwdDRxExtOnVszHYbfxwa7GEWdhi9MKObJwKSYmf/vwqUOen3HCJ7GnZBJsrqHllUdHNKeIiIiI1RTAimVa3/pnJPuakUfaEWdS19HAy+VvAvCpJedZdh9PvhzJvp58RBEZqdbsNysymJyMpPi+sH99dtuI16VetvQCAF7du57y5v2DnmtzJ5Gz8joAWt54gp7q3SOaU0RERMRKCmDFEsGOFlreeByArNOvwHA4+duHTxE2wyzLX8T87NmW3Mf+2nZeeT/SffgTp8y1ZE6Rofj0mZEs7MadDazfPLI9WudklXBSyXJMTB7e+Pghz09ecBzJi04EM0z9P3+FGQqOaF4RERERqyiAFUs0vfAQpt+Hu3AuyYtPory5Ip59/cxhF1p2H399bhthE45bUsC8mRmWzStyKHmZXj5xamRf2P998gMCwZHtC/uZwy7EbrOzoWYzm2q3HvL8nHP+DVtSKv66clpeXzWiOUVERESsogBWxpxv34d0bHoRMMg+5zrA4KENf8fE5ISZRzMvu9SS+9hX08Yr71cCcPnZCyyZU2Q4Lj2rjIxUN1UNnfFGY8OVn5LLx+aeAsCfNqwiHB48ELYnp5N99ucBaH7lb/jKN41oXhERERErKICVMRUO9NDw1P0ApB55Fp4Z81lX8S6barfitDm4fNknLLuXh5/ZimnC8UsLmFucYdm8IkPl9Ti55txFQKQjcX2zb0TjfHrxeXidSexp3s8zO1865PkpS04h5bDTwQxT9/jPCbY1jmheERERkbGmAFbGVNPaPxFoqsaemkXWiqvp8vv4/Xt/A+ATi86hICXXkvt4d2sdr2+sxmbAFecstGROkZFYcUwJC2Zl0tUd5JePvjeihk5pnlSuWPZJAP6y6QnqOwcPSA3DIOfc63HlzSLU2UrtYz/FDAVGcvsiIiIiY0oBrIyZzu3raVv/LwByP34Ddk8yv3/vbzT7WilIyeWTC8+25D78gRC/fiyy1+z5J89hdlG6JfOKjITdZvDvnzkSl8PGe9vreWbd3hGNc9bck1mQM5fuYA93v/G/BMOhQc+3Od3kf/r/w+b20lOxjYanfzvibsgiIiIiY0UBrIyJQEst9f+4F4C0Yz6Od+6RrNv/Li+Wv4GBwQ3HfhaXw2XJvfzfCzuobugkK83DlSuVfZWJrzgvlavPWwxEGjpV1HUMewybYeMrx38OrzOJHY17eGTTk4e8xplZQO4nbgbDRvuGF2ha80cFsSIiIjKhKICVhAt3d1LzyJ2EuztwF80n+8yrqWmv4/71DwFw4cKPsTDXmi1stuxp4pHntwPwbxcuxetxWjKvyGhdcMocls3Lodsf4id/3oDPP/yuxHnJ2XzpmKsAeGLrs7xf/eEhr0mev5zcj38ZgNY3n6Tltb8Pe14RERGRsaIAVhIqHOih5u8/JtBQgT0li/xPfYOuUIAfvno/vkA3C3PmcplF2+a0dfr50UPrCYdNTj1iBicfUWTJvCKJYLcZfOOq5eRkJFHd2MWq15sIh4efDT1+5lGcPe9UAO5+438pb6445DWph68g+2OfA6D5pb/Q/PKjysSKiIjIhKAAVhImHPRTt+qndJdvwnB5KLj0VsLJafzktd9Q2VZDVlIG/37iv+Gw2cf8XkKhMD/78zs0tHZTlJPMjZccjmEYYz6vSCJlpLr5z2uPxemwsaOqm18/vnlEQew1R3yahTlz6Qr4+O+Xf0lNe90hr0k/9nwyT/0MAM2vPELDU/dhhoLDnltEREQkkRTASkKEe3zUPHInXTvfwXC4KLjs2xh5M/npa7/lw7rteBxuvnXKjWQlZYz9vYRNfvHo+7yztQ6Xw8Y3rzlGpcMyac2bmcFXPr0Uw4CX3qviN49tHHY21GV38s1TbmBWRjGt3W18/6Vf0NDZdMjrMk+5hJyV18fXxNY8eiehrraRvhURERGRUVMAK6MWaK6h8g/fPpB5vezbmAVz+MHL9/Je9Qe47E6+dcqNlGYWj/m9hMMm//PkB7zw9n5sNoNvXnMMc2ao67BMbsctyeeTx2diGPCv18v52Z/fJRAcvKvwRyW7vPznaV+hICWX+s5Gvv38D9nZWH7I69KOPof8S76J4XTj272Bit99ja7dG0b4TkRERERGRwGsjErH1jeofOD/I1C/D3tyBkVXfo+a9Ay++dwP+LBuO0kOD9865UYW580f83vxB0L89OF3+McruwG4+bIjOXZJwZjPK2KFw2cn86VPLsFmM3jx3Qpu+80bNLd3D2uMDE8a3z3j3ylJn0FLdxv/tfZnvL7vnUNelzx/OUWfvRNn9gxCHc3U/OV2Gp79X8LdnSN9OyIiIiIj4hjvGxiudevW8eCDD7Jhwwa6urooKipi5cqVXH/99Xi93hGN+cwzz/CnP/2JrVu3EggEmDVrFhdeeCHXXHMNTufApaeNjY3cf//9rF27lrq6OtLS0jjmmGP44he/yKJFiybcnIkUaKmj8fnf07XtTQDcR+Al1gAAMW9JREFURfPJ/dTXWVu7mT++9n8EwkFyvFncctIXmZNVMub3U9fUxU8efoct5U3YbQZfufQIViyfOebziljp9KOKKMxN464/rufD3Y185Sdr+eqlw/tFTY43i9vP/Dr3vPEA71V/wN1v/A9vV23kc0deQqo7ZcDr3PmlzPjCj2la80fa3llN2/p/0fHhq2SddjmpR5yJYcHadhERERHDnEStJR966CH++7//G9M0KSgoICsri507d+L3+5k7dy5//vOfycjIGNaYP/zhD3nggQcAKCkpISkpiZ07dxIKhTjmmGN44IEHcLn67le6d+9errjiChoaGvB6vcyePZuamhoaGxtxOp3cc889nHnmmRNmzqHatGkTfr+fRYsW9fsLgZCvg9b1T9H6xuOYQT8YNjJO+CQNi4/lwY1/Z1fTXgCOKjqMm479LCnu5FHdz6GEwybPr9/H/zzxAb6eIMkeB7deeyyHz88d03ljurq62LJly4DPS/rSMxu+jz6zfTVt/PhP71BeHVmPetKyIq49fzEF2UP/eQuFQzzywT94YuuzmKZJujuVy5d9klNLjztko7WuXe/R+NyDBBorAXBmFZJ+7PmkLDsDm9M98jeaQPqcDY+e1/DpmQ2fntnwdHV16TmJ9GPSBLAffPABl1xyCaZp8r3vfY9LL70UwzCora3ly1/+Mh9++CFnn302v/zlL4c85nPPPcdNN92Ey+Xi7rvvjgd/u3bt4vrrr6eiooLPfe5zfOtb3+p1nWmaXHTRRWzZsoVTTjmFn//856SmphIMBvnVr37Ffffdh9fr5ZlnniEvL2/c5xyOgQLYQFMVreufpn3DC5iBSNmip2QJrcecxT8aNvN2ZWRNXJLDw6VLz+fcsjOwGWNXoW6aJu9sreOhf21hd1UrAItKs/iPy4+iMGdsg+aD6T/Gw6dnNnz9PbNAMMRDT2/liZd2EjbBYbfxsWNL+OTpcynKGTiT+lE7Gvdw/1sPUdFWDUB+Si4XL1rJSSXLcTn6/iItxgwFaXv3WZpfeYSwrwMAW1IqqYedRsrSU3EVzBnXzt/6nA2Pntfw6ZkNn57Z8CiAFenfpAlgb7jhBtasWcMnP/lJfvjDH/Y6Vl5ezrnnnks4HOaJJ55g4cKFQxrzE5/4BFu3buXGG2/kq1/9aq9jb7zxBtdeey0ul4uXXnqJrKys+LHnn3+eG2+8kdTUVNasWUN6eu8mQVdddRXr16/vNxAdjzmH4+AA1k2I9g1r6Nj8Ov6aXfFzjJwZlM9ZxL9CjextjWRgDAxOn30Clx92IRlJY9c0qbm9m1ffr+LpN/awvzbypdnrcXDZWQv4xGlzsdus/cKs/xgPn57Z8A32zMqr2/jfJz7g/R31ABgGHDE/lzOWz+TYxQUkJx26A3cgFGD1jpd4YusztPVEf66cSZxYspyTSpazIGfugFnZsN9H+4a1tL71D4ItB7bncWYV4Z1/NEmzD8dTstjyzKw+Z8Oj5zV8embDp2c2PApgRfo3KdbAdnZ28sorrwBw6aWX9jleWlrK8ccfz+uvv87q1auHFMCWl5ezdetWAC677LI+x0844QRmzZrF3r17WbNmDZdcckn82NNPPw3AypUr+wSSsXtcv349Tz/9dK9gcjzmHI26J+7Bt/s9AEzDoDE7j1fTvayjA5o2ApHtOU4rPZ5zy86gOK0wIfP2p7api3v++h4f7G4g9iuXJLedc44v5ZIzy0hLHjhTJDKVlRamcfsXT+CDXY2senEnb2+p5b3t9by3vR6bAfNLMjlifi6L52SzZE42bmffQNRpd3LBwrP42LxTeHbnSzyz82XqOxt5ftcrPL/rFZIcHg7LX8ii3HmcMedEvM6k+LU2VxLpx5xH2tHn0LXzXTo+eJmuHW9HqjberKL1zX+AzYE7fxbuwnm4CubgyinGmTMDe1KqlY9KREREpoBJEcBu2bIFv9+Py+Vi2bJl/Z5z9NFH8/rrr7Nhw9C2d3j//fcBmDlzJvn5+QOOuXfvXjZs2NArmIzNsXz58n6vi71eU1NDbW1tfPzxmHM0khcej2F3sDctlV83baTTbgKd2Aw7S/LKOL74KI6feeSgjV8SZdPOejbtagAi+2KeuXwmK5bP1P6uIoBhGBw2L4fD5uVQ3dDJi+9W8PJ7FVTUdbBtbzPb9jYDsGRONnfdePKA43gcbi5ceDbnLziLzXXbebF8He9Vf0h7TwdvVb7PW5XvU9FWwxePubLvPdjsJJcdQ3LZMYR7fHTtehff7g107X6fUHsjPdW76Kne1eua1CPPJve8Lyb2YYiIiMiUNikC2D179gBQVFQ0YIfekpKSXuceSnl5ea/rhjqm3++nsrJy0GsLCwtxOp0EAgF2794dDybHY87hCgQCAOzYsQPDngcLz8MVDvH57COwG3acdgdOmxObYUAX7Nm2e0TzDFeeB/7fFSXY7bZomXAHO7dvsWTuwcQq8Hfs2DGu6/0mEz2z4RvuM1tSAEvOzSUUzsEfCOEPhgkGw7icdjZu3DjkeU9NOopT5xxFIBwkEAoQDIdIcriHOEYqlJwMJSdjhkMQCmKGApH/DYcgHKLN6aZ6GPczHPqcDY+e1/DpmQ2fntnwmKaJx+NhwYIF430rIhPKpAhgW1sjTXr6K52NiR2LnZvIMdva2uKvdXR0EA6HB73WMAzS0tJobGzsde14zDlcsf+g2GwHGjA57A4y7GkjHjNR3K6J93E1DKPfjtEyMD2z4RvpM3PYDRx2G6NdQeWyO3HZR17tYNgdYHcAnlHeyTDm1OdsWPS8hk/PbPj0zIZHQb5I/yZeRNCPnp4egEH3R439CzF2biLH7O7u7nPdwceHe62Vcw7XkUceOeJrRURERERExtLY7XOSQG53pHtlrLy1P36/v9e5iRzT4zmQNTh4/Njx4V5r5ZwiIiIiIiJTxaQIYIdSHjyU8tyDpaWlDXnM2LkAKSkp8fLaga41TTNexnvwteMxp4iIiIiIyFQxKQLY0tJSAKqqqgbMXu7bt6/XuYcye/ZsAPbu3TvgOf2N6XK5KCoq6nX8o6qrq+P3GZtnvOYUERERERGZKiZFALto0SKcTid+v3/A7pfvvPMOAEccccSQxjz88MMBqKiooLa2dlhjxv7+9ttv93td7PWCggIKCgrGdU4REREREZGpYlIEsCkpKZx8cmTvwkcffbTP8fLyctatWwfAypUrhzTm7NmzKSsrA+CRRx7pc/yNN95g7969OJ1OzjzzzF7HzjnnHABWr17db0lv7B4/ei/jMaeIiIiIiMhUMSkCWIAbbrgBwzB44okneOSRR+J7idXV1fG1r32NcDjMWWedxcKFC3tdt2LFClasWMHq1av7jHnTTTcB8Lvf/Y4XXngh/vru3bv5zne+A8AVV1xBVlZWr+vOOussFixYQHt7O7fccgvt7e0AhEIh7rnnHtavX09SUhKf//znJ8ScIiIiIiIiU4FhxiLBSeD3v/89d911F6ZpUlhYSGZmJjt37sTv9zN79mz+/Oc/9wn8Yps//+AHP+Diiy/uM+add97JH/7wBwBKSkrwer3s2LGDUCjE0UcfzYMPPthvZ+M9e/Zw5ZVX0tjYiNfrZfbs2dTU1NDY2IjT6eTnP/85H/vYx/p9H+Mxp4iIiIiIyGQ3qQJYiJTZPvDAA2zcuJGuri6KiopYuXIl119/PcnJyX3OP1QAC/D000/z5z//mS1bthAIBCgpKeHCCy/k2muvHXTP1oaGBu6//37Wrl1LXV0daWlpLF++nC996UssXrx40PcxHnOKiIiIiIhMZpMugBUREREREZHpadKsgRUREREREZHpTQGsiIiIiIiITAoKYEVERERERGRSUAArIiIiIiIik4JjvG9AJoZ169bx4IMPsmHDhj7dnb1e73jfXkKZpsl7773HCy+8wDvvvMPu3bvp6OggNTWVxYsX88lPfpILLrgAwzD6XBvraj2QnJwcXnvttQGPb968md/+9resX7+etrY28vLyOOOMM7jhhhv6bAE10fzyl7/k3nvvHfSc//qv/+Lyyy/v83ogEOAPf/gDTz75JPv27cPpdLJw4UKuvvpqzj777EHHnKzPrKKigjPPPHNI51588cX84Ac/iP99xYoVVFZWDnrNxo0b+91uC2D//v3cd999vPbaazQ1NZGdnc1JJ53El7/8ZWbOnDn0NzEG6uvree211/jggw/YtGkTW7Zsoaenh2OPPZaHHnpo0GvH43M0mjkTZSTPrKOjg7Vr1/Lqq6+yadMmKisrCYfD5Ofnc+yxx3LttddSVlbW77WrVq3i1ltvHfSerrvuOm655ZZ+j5mmyf/93//xt7/9jZ07dwIwb948LrnkEj796U/3++/WRBrpZ2y8fu7G+3nByJ7ZUP6bEPPQQw9x7LHHxv/+5ptvcs011wx6zXnnncfPf/7zAY8/88wz/OlPf2Lr1q0EAgFmzZrFhRdeyDXXXDPobg6JMJrvEQCdnZ389re/5ZlnnqGqqgqv18vhhx/O5z//eY477rhB5x7p97XRzCky0SiAFR566CH++7//G9M0KSgooLCwkJ07d3L//ffz7LPP8uc//5mMjIzxvs2EWbduHddee2387zNnzmTGjBlUVlby2muv8dprr/HUU0/xy1/+EpfL1e8YS5cu7ffYYM/p2Wef5Wtf+xqBQIDs7Gzmz5/Pnj17eOihh1i9ejV/+ctfxj24GIrs7GxmzZrV77Hc3Nw+r/X09PC5z32Od955B7vdzrx58/D5fLz11lu89dZbg34RnszPzO12c9RRRw14vKenhw8//BCAI488st9zysrKSElJ6ffYQF+M3nvvPT7/+c/T1dVFeno6ZWVl7N+/n7///e+sXr2a3//+9yxbtmyY7yZxnnrqqV7B+lCNx+doNHMm0kie2fe+9z2efPJJADweD7NmzcI0TcrLy/n73//Ok08+yfe+9z0+9alPDThGSkrKgEHujBkz+n09HA7zH//xH6xevRqIBGIAGzZsYMOGDbzxxhv89Kc/HdOgbKSfsRgrf+4mwvOCkT2zwsLCQf8dV11dTXV1NR6PZ8Bt/lwuF0uXLu332Jw5cwYc+4c//CEPPPAAACUlJSQlJbFjxw5+9KMfsXbtWh544IEB//udCKP5HtHU1MQVV1zBnj17cLlczJs3j6amJl588UVeeuklbrvtNq688sp+5x3p97XRzCkyIZkyrW3atMlcuHChuWDBAvOvf/2rGQ6HTdM0zZqaGvOiiy4yy8rKzJtuummc7zKxXnvtNXPFihXmH/7wB7OhoaHXsccee8xcunSpWVZWZv7oRz/qc21ZWZlZVlZm7t+/f1hz1tTUmIcffrhZVlZm3n333WYgEDBN0zTb2trML3zhC2ZZWZl58cUXx5//RPSLX/zCLCsrM7/5zW8O67rvf//7ZllZmblixQpz165d8deff/75+LNes2ZNn+umwjMbzKpVq8yysjJz2bJlZnt7e69jZ5xxhllWVmauW7duWGN2dnaaJ510kllWVmbeeuutZnd3t2maptnd3W1+61vfMsvKysxTTz3V9Pl8CXsfw/W3v/3NvPbaa82f/vSn5rPPPmvefffdZllZmXnVVVcNet14fI5GOmeijeSZ3XLLLeb1119vvvjii2ZPT0/89ebmZvNrX/uaWVZWZi5atMjcunVrn2v//ve/D+mfSX8efPBBs6yszDz22GPNd999N/76u+++ax577LFmWVmZ+cc//nHY4w7HSD9j4/FzNxGel2mO/JkN5qqrrjLLysrMr3/9632OrVu3ziwrKzPPOOOMYY/77LPPmmVlZebSpUvN559/Pv76zp07zRUrVphlZWXmD37wgxHf91CM5nvEl770JbOsrMy86KKLzJqaGtM0TTMcDpt//etf4z+Xmzdv7nPdaL6vjXROkYlKAew09+Uvf9ksKysz/7//7//rc2zPnj3mwoULzbKyMnPLli3jcHdjo7293fT7/QMev//+++NfKEKhUK9jIw1g77jjDrOsrMy88sor+xxraWkxjz76aMu+DI/USALY+vp6c8mSJWZZWZn5/7d353FRlfsDxz8gg4CjKCIoIGoFuOeWit3saiSmiXrTXEpfpmCaWW7XLMtelXazvNcXapqm4nKztFRMLb0VpYaIqOCKuaOAS6ISMOrAML8/eM35zTAziAMyM/h9/zWc7TnnO88ZnuecZ0lKSjJbbygkDRw40GxddYhZWcoq3NlakDYUhp999lmzPH737l19RERElRWIy2vt2rX3LCjbIx9VJM0HrTwxu3HjhtV1Wq1W37dvX31oaKh+9uzZZuttrcBqtVp9ly5d9KGhofrvvvvObP23336rDw0N1YeHhysPEqpCeeKl11f9feeo8dLryx8zay5duqQPCwvTh4aG6hMTE83WV6QCGxUVpQ8NDdXHxsaardu7d69Suc3JybHp3MvD1nLE8ePH9aGhofrmzZvrL1y4YLbfP//5T6sVUVvLaxVJUwhHJYM4PcQKCgrYs2cPAC+++KLZ+qZNm9K1a1cApXlTdaBWq8vsH9O9e3cAbt26xY0bNyolzZ07dwKW4+zt7U3v3r0B+PHHHyslPUeRkJBAYWGhSV4yNnToUACOHz/OxYsXTdZV55hlZmaSkpIClPR/rSyG+3TgwIFmedzd3V1Jy9liZo98VJE0HUG9evWsrlOpVMo1nT9/vtLS3L9/Pzdv3sTLy4t+/fqZrY+KisLLy4ucnBwl/1cHtt531Tle8fHx6PV6GjVqZPH+sdWFCxc4efIkAEOGDDFbHx4eTpMmTdBqtfzyyy+Vlm5ptpYjDL9HXbt2tdgVx3BNu3btQqPRKMsrUl6zNU0hHJn0gX2Ipaeno9VqcXd3t9onrmPHjuzdu5fDhw9X8dnZz507d5TPHh4eFrdZvHgx165dQ6fT4e/vT9euXenTp4/FPjeXL1/m6tWrADzxxBMWj9epUye+/fZbp4jzyZMnmTp1Kn/++Se1atUiLCyMvn37EhISYrZtWloaUJKPLPH39ycoKIjMzEzS0tIIDg4Gql/MSjMU7gICAsos3H3zzTesXLmSO3fu4OvrS6dOnejXr5/F/nk6nY5jx44BZccM4OjRo+h0OmrUqFEJV/Pg2SMf2Zqms7h79y4Anp6eVrfJzs5mxowZSj/GRx55hMjISNq1a2dxe0PM2rZta/G30N3dnTZt2pCcnExaWhrh4eEVvo4Hoaruu+oSr9L0ej3x8fEADBgwAFdX6+9K8vPzmTVrljJAWnBwMD179uTJJ5+0uL0hZo0bN8bf39/iNh07diQjI4PDhw8zePDgCl2LrayVIwznb8gTpRnywt27d0lPT1d+fypSXrM1TSEcmVRgH2KGJ+8BAQFWnyQaCmWV+ZTe0W3fvh2A5s2bWx3IY+PGjSZ/b968mQULFrBw4UJatWplsu7ChQtAyVuPhg0bWjyeYQCZS5cuUVhY+MBHUKyI9PR00tPTlb8TEhL44osvGDlyJG+99ZZJpchw7WUV7oODg8nMzDTJY9UtZsb0ej2bN28GoH///mUW7n744QeTv7dt20ZsbCz//ve/zQp4WVlZFBYWAlgd2MrwPWi1WrKzsx12AKzS7JGPbE3TGdy+fVt5O1VWYTUzM5PMzEzl799++42VK1fSt29f5syZY1b5LW/MkpOTHTpmVXXfVZd4lZaSksKlS5eAe7cwyc3NZf369SbL/vvf/xIeHs5//vMfsxHCyxszsG+5xVo54l7nr1KpaNSoERkZGZw/f165PytSXrM1TSEcmVRgH2K5ublASTM6awzrDNtWd8eOHeObb74BYOzYsWbrn3nmGfr370/z5s1p2LAhBQUFJCUlMX/+fC5dusTo0aOJj4+nUaNGyj63bt0CSmJpbSRJw6iBxcXF5Ofnl9n8z178/Px44403eOqppwgKCkKtVnP+/HnWrVvHN998w+rVq3Fzc2P69OnKPveTx/766y9lWXWJmSX79+9XKgXWCnedO3ema9eutGnThoCAAAoLCzl48CALFizgxIkTjB8/nq+//trkYYkhZmB9NGzj7yE3N9dpKrD2yEe2pukM5s+fT05ODj4+PgwaNMhsfZ06dYiOjqZHjx40adIEb29vsrKyiI+PZ/ny5Wzfvh2dTkdsbKzJfs4es6q+75w9XtZs2rQJKHk4Yq3S5OnpybBhw4iMjKRZs2b4+Pjw559/snPnThYuXEhSUhKvvfYaX331lclDUWeIWVnlCFvPvyLlNWeImRD3SyqwDzFDE7Ky3lwZmjUZtq3Orl+/zsSJEykqKuLZZ5+lb9++ZtssXrzY5O+aNWvSt29fwsPDeeGFF8jOzmbRokXMmTNH2eZ+4my8vaOx1N8oLCyMDz74gKCgIObNm8fq1asZPnw4QUFBwP1du3GTq+oSM0sMb187depktXD3ySefmPzt6elJjx49CA8PZ/jw4Rw/fpzPPvuMVatWKdtotVrls7W4GcfMON6Ozh75yNY0Hd22bdtYvXo1AB999JHFViYRERFERESYLGvWrBmTJ08mLCxMmfblwIEDJs0SnT1mVX3fOXu8LCkoKFD6XJb19rVt27ZmTWEDAwMZPXo07du356WXXiI1NZVt27bRv39/ZRtHj9m9yhFV8VtW+v+ho8dMCFvIIE4PMcNk7IbmT5YY/jlbm7i9usjLyyMmJobs7GxatWplVpC5Fx8fH+VJ688//4xer1fW3U+cjbd3JqNHj8bPz4+ioiISEhKU5fdz7cb9hKprzIwLdwMHDrzv/T08PJg0aRIAycnJJk/ajQvJ1uJmHDNr/bsdkT3yka1pOrLExERmzJgBwOTJk80qqeXRp08fHn/8cQB++uknk3XVMWbw4O676hivnTt3otFo8PT0VAZIu1/t27cnMjIScK48Vp5yRFX8lpX+f+jIMRPCVlKBfYiVp3lweZqeOLuCggKio6M5ceIEISEhrFixwmrf17K0b98eKGlSZtyszDjOxhVbY4btXV1dbUrb3mrUqKEUajMyMpTlderUAcqXxwzbQvWNWWUU7jp06ACUNHk19DMD03vUOP8ZM/4enOmetkc+sjVNR5WSksKECRMoLCxk7NixjBs3zuZjGX7rjO91qH4xM/Yg7rvqGC9DC5NevXpV6HfZ2fJYecsRlfFbdq/9Sv+2O2rMhKgIqcA+xJo2bQqUjDRp7cmcYXoIw7bVze3bt3n11VdJS0ujadOmxMXF2dyX0rh5jk6nUz4bYldYWMjly5ct7msoEAUFBTnNYESlGc67qKhIWWa49tKFEGOW8lh1jZmhcBcZGWlz4c5aPgsMDFTWWZvWxbDc3d2dgIAAm9K3B3vkI1vTdESpqamMHTuW27dvM2LECKZOnVqh41m616F6xay0B3HfVbd4Xbp0qdKmB7OWx5o1awY4Vszupxxxr++8sLCQ7Oxsk22NP9tSXrM1TSEcmVRgH2ItWrRApVKh1Wo5cuSIxW0OHjwIYHXaBGd29+5dxo8fT0pKCoGBgaxatYoGDRrYfLzTp08DJc11jAfzCAgIwM/PD4ADBw5Y3New3JnjbLh+49FeDddz6NAhi/tcvXpVGdDI+NqrY8yMC3e2NB82OHXqlPLZONZubm60bt0auHfM2rRp4zRT6IB98pGtaTqaY8eOERMTg0ajYdCgQcycObPCx7R0r8P/x+Ho0aMmzWYNtFotR48eBf7/DZuzeBD3XXWLl2F6sMDAQLp06VKhY1nLY4aWPpmZmcoUWaVVZbnlfssRhnMynGNpR44cobCwkJo1a9KiRQtleUXKa7amKYQjkwrsQ0ytVvO3v/0NgA0bNpitv3DhAvv27QOwubmjoyosLGTixIkkJSXh7+/P6tWrTUYOvl9FRUXExcUBJZOFu7mZjo9m6M9jKc65ubnKxOPOGufffvtNKXAYTzPxzDPPoFKpTPKSMcNIjS1btjSbYL26xayyCndffvklAI899pjZPIiGmG3evNnsKb1Wq1VGB3WWmBnYIx9VJE1H8ccffzBmzBjy8vLo168fH330kdXRmMvr5MmT7NmzB8BsSpkuXbpQt25dNBoNW7duNdv3+++/R6PR4OPjY3XOVEf1IO676hSv0nO/ViSfXb16le+//x4wz2PNmjUjNDQUwGz6HYCkpCQyMjJQqVQ888wzNp9DedhSjjDkleTkZItvRA3X1L17d2rVqqUsr0h5zdY0hXBkUoF9yL322mu4uLiwZcsW1q9fr/QTu3btGlOmTKG4uJiIiAiaN29u5zOtPDqdjqlTp7Jr1y4aNGjA6tWryzWdyLx589i8eTP5+fkmyy9fvswbb7xBWloabm5uTJgwwWzfMWPG4OHhQUpKCrGxsUoTtLy8PKZOnUpeXh4tW7akZ8+elXORlez06dPMmjWLkydPmiwvLi5m27ZtSpPEHj16mIws6evrq4xePHPmTM6dO6esS0hIYPny5QDVMmbGjAt3AwcOLLNwt2LFCtauXcvNmzdNlt+8eZNZs2Ypg0C98cYbZvsOGTKEBg0akJGRwfvvv6+MPnn37l3ef/99Ll68iJ+fH4MHD66kK6sa9shHFUnTEVy4cIHRo0dz69Ytevfuzdy5c8ucc9ggPz+fSZMmcejQIbN+w3v27CEmJgadTkfz5s3p1auXyXqVSsWrr74KwKeffkpqaqqyLjU1lc8++wyAcePGmT3kszd73HfOHK/SDNODubi4lKuFyZtvvsnvv/9u1kT4yJEjvPLKK+Tl5eHn58fQoUPN9n399deBkocKxoMGnjt3jnfffReA4cOHm80hW5lsLUe0atWKHj16oNPpmDx5MteuXQNK/kesX7+eLVu24Orqyvjx4832tbW8VpE0hXBULnprI1uIh8aqVav45JNP0Ov1NGrUiHr16nHmzBm0Wi3NmjVj3bp1D/QfQVUzrnAFBgaaPU039t5779GyZUug5J/HL7/8Qo0aNWjcuDHe3t7k5eVx/vx59Ho9NWvWZPbs2URFRVk81o4dO5g6dSpFRUXUr1+fhg0bcv78eTQaDb6+vqxbt85h3+Skp6czYMAAoGSuw4CAAGrUqMHFixeVwR86derEkiVLzAaBuHPnDqNGjSI1NZUaNWoQEhKCRqNR+uuMHj2at956y2K6zhwzY8nJyYwcORIXFxd++umnMgs6c+bMYc2aNbi4uBAYGIiPjw937tzh3LlzFBUV4erqypQpU4iJibG4/8GDB4mOjkaj0eDt7U1QUBCZmZnk5ubi5eVFXFycXZu8Xr58WclLUPKGSqPR4ObmZtIvODo62uQa7ZGPKpJmZbIlZmPGjOH3338HSqYssVYBatCgAQsWLFD+/uuvv5S3fbVq1aJx48a4u7uTnZ3N9evXAQgJCWHZsmUW+1EXFxfz5ptv8r///Q8oeWMJcObMGaDk7dD8+fPLVZm2lS3xstd95wjxAtvvS4MZM2awefNmOnfuzNq1a++ZXqdOncjLy8PDw4Pg4GA8PT25du2a0le9YcOGLF261OrD848//liZDio4OBgvLy9Onz6NTqejY8eOxMXFPdDR6W0tRwDcuHGDYcOGceHCBdzd3Xnssce4efMmly9fxsXFhZkzZzJixAiLx7K1vFaRNIVwRI79SE9UiVGjRhEWFsbKlSs5cuQIOTk5BAQE0Lt3b8aOHVvtmpQY9zXKysoiKyvL6rZ5eXnK52HDhuHr68uxY8e4du0aWVlZqFQqQkJCCA8P5+WXX7Y6ryeUFEQaN27M0qVLOXDgAKdOncLPz49//OMfvPbaa9SvX79yLvABCAwMZNKkSaSlpXH27FkyMjLQarV4e3vTvXt3nn/+eZ5//nmL/So9PDxYs2YNq1atYuvWrVy4cAGVSkXnzp15+eWXleZNljhzzIwZBm964okn7vmU3jBv4JEjR8jOzubkyZPUqFGDoKAgOnfuzPDhw8vsp9SxY0e2bNnC4sWLSUxM5NSpU9SrV0+JWXneEjxIOp3O4mitRUVFJstLz0doj3xUkTQrky0xM/6ds9ZnDkrubWOenp5Mnz6dtLQ0Tp06RXZ2NhqNBrVaTZcuXYiMjGTQoEFWKweurq4sWLCADRs28O2333L27FmgpP/niy++yODBgyvcjPlebImXve47R4gX2H5fgm3Tg02dOpUDBw6Qnp7OtWvXyM/Px8vLi/bt29OzZ0+GDh1a5oi477zzDu3bt2fdunXKMR599FGioqIYNWrUAx/Yz9ZyBJRMu7dx40a+/PJLduzYwZkzZ/Dy8qJ79+6MGTOGrl27Wj2WreW1iqQphCOSN7BCCCGEEEIIIZyC9IEVQgghhBBCCOEUpAIrhBBCCCGEEMIpSAVWCCGEEEIIIYRTkAqsEEIIIYQQQginIBVYIYQQQgghhBBOQSqwQgghhBBCCCGcglRghRBCCCGEEEI4BanACiGEEEIIIYRwClKBFUIIIYQQQgjhFKQCK4QQwu5GjBhBWFgYCxcurPK0e/bsSVhYGJs2barytO0tMzOTsLAwwsLCyMzMtPfpCCGEEPfkZu8TEEKIh93ChQtZtGiR2XJ3d3fq1atHy5YtiYqK4rnnnsPFxcUu5wcwcOBAgoKCqjx9YZtVq1aRl5dHREQELVq0sPfpCCGEEJVCKrBCCOFAfH19lc95eXlcvXqVq1ev8uuvv7J582Y+//xz3N3dq/ScDJXrzp07P7AKbKNGjWjWrBn16tV7IMd/GK1Zs4asrCwCAwOlAiuEEKLakAqsEEI4kMTEROVzcXExZ8+e5V//+heJiYns3r2b+fPn89Zbb9nxDB+MTz/91N6nIIQQQggnIH1ghRDCQbm6uhISEsKSJUto0qQJAOvXr6eoqMjOZyaEEEIIYR9SgRVCCAdXs2ZNevfuDUBBQQHnzp0DzAfguXjxIu+99x49e/akdevW9OzZ0+Q4eXl5LFq0iIEDB9KhQwfatm1Lr169eP/997l06ZJZujNmzCAsLEz5e+TIkUp6YWFhZseHkrfG33//PTExMXTr1o3WrVvTtWtXRo8ezbZt29Dr9RavsaxBnIwHWdJqtSxfvpyoqCjatWtHx44dGTlyJLt37y5/QG1w8OBBpk2bRo8ePWjTpg0dO3Zk0KBBLFu2jIKCAov7GOI3Y8YMAHbs2MGIESPo3Lkzjz/+OP3792f16tUUFxdbTVev17Nx40aGDBlC+/bt6dixI4MHD2b9+vXo9XqzNKCkz3JYWBhZWVkAvP322ybfm/F3Wtr169eZPXs2PXv2pE2bNnTr1o3Jkydz9uxZW8ImhBBCVDppQiyEEE7A399f+Zyfn2+2PjU1lVmzZqHRaPD09ESlUpmsP336NNHR0Vy5cgUoqRS7ubmRkZFBRkYGmzZtYt68eURGRir7qNVqfH19uX79OgDe3t4mxy3dX/XWrVu8/vrrpKSkKMtq167NzZs3SUxMJDExke3btxMbG2tTP16NRsPLL7/M4cOHUalUqFQq8vPzSU5OZv/+/cyePZtBgwbd93HLUlxczMcff8zatWuVZV5eXty+fZujR49y9OhRNm3axIoVKwgMDLR6nA8//JCvvvoKV1dX1Go1d+7c4eTJk3z88cecOHGCuXPnmu2j0+mYNm0aP/zwAwAuLi7UqVOHY8eOceTIEfbv32/2PRvOz9fXlxs3blBcXIxarcbDw+Oe13rmzBneeecdcnJy8PT0BCAnJ4cffviB3bt389VXX9G8efN7HkcIIYR4kOQNrBBCOAHD2zQoqUiWNmvWLEJCQvjuu+9IS0sjNTWVFStWACUV3nHjxnHlyhX8/f1ZtmwZaWlpHDp0iC1bttCuXTu0Wi3Tpk3j5MmTyjHfffddkz65CxcuVCqiiYmJbNy4UVmn0+mYOHEiKSkptGjRgi+++IK0tDQOHDhAamoqc+fOpX79+iQkJDBv3jybYrBgwQKuXLnC559/TmpqKqmpqfz444+0a9cOvV7PnDlzyMvLs+nYZaW5du1a6tevz6xZs0hOTiY1NZXDhw+zZs0aWrZsyfnz55k4caLVN6kJCQls2LCBt99+m5SUFFJSUti3bx+DBw8GID4+nqSkJLP9VqxYoVReX3nlFZKSkti/fz8pKSlMmTKF7du3k5CQYLbfmDFjSExMpFGjRgDMnDnT5Hsz/k6NTZ8+nSZNmpjkobi4OBo0aEB+fj4fffSRTTEUQgghKpNUYIUQwsHl5+ezdetWAOrWrUuzZs3MtqlXrx5xcXG0adNGWWbYbt26dWRmZqJSqVi+fDlPP/00rq4lP//NmzdX3h5qtVrmz59v0zlu3bqV/fv388gjj7B27Vp69OihvMXz8vJiwIABLFu2DBcXF9atW0dOTs59p3H79m3i4uKIiIhQ3jw+8sgjLFmyhJo1a6LRaPj1119tOn9LMjMzWbZsGR4eHqxcuZKXXnqJunXrAqBSqejSpQtr166lYcOGHD9+3GJlEiA3N5cPP/yQUaNGoVargZLva/bs2bRq1QqA7du3m+yj0WhYunQpAIMGDWLGjBnKG2+1Ws2rr77KhAkTyM3NrbTrrV+/vkkecnNzo1u3bnz44YcAHDhwQHmDL4QQQtiLVGCFEMJB/fXXXyQlJTFy5EiuXbsGlPQVNVQ+jb300kvUqlXL4nF+/PFHACIjIwkNDTVbr1ariY6OBmD37t02vcU0vI0dNmwYtWvXtrhN69atCQkJobCwkOTk5PtOIzIykkcffdRsuY+PD+3atQPgjz/+uO/jWrN582Z0Oh1PPfWU1aazarWaiIgIAPbs2WNxm0aNGjFw4ECL6wz9iEufd2JiotJUfNy4cRb3feWVV5SHBJVh9OjRFpsad+/eXXlgUJnxFUIIIWwhfWCFEMKBlDXATlRUFOPHj7e4rkOHDhaXa7VapdIRHh5u9dhPPvkkUNLn8/jx43Tt2rW8p4xOpyMtLQ0omTPW8ObQEsMbQ+Mm0eX1+OOPW13n5+dncvzKcOjQIaCkMmmIjyUajQaA7Oxsi+vbtGmDi4uLxXWGvs2lz/v48eMABAQE0LhxY4v7qtVqWrVqxYEDB8q4ivJr27atxeVubm74+Phw9erVSo2vEEIIYQupwAohhAPx9fVVPru7u1OvXj1atGhBv379yqxU1q9f3+Ly3NxcdDodYDoQVGkNGzZUPt+4ceO+zjk3NxetVqt8Lo87d+7cVxqA1TfMUFLJAip1iiHDW2+NRqNUUsti7ZrKOu8aNWoA5udt+A4MFXNryvpO71dVx1cIIYSwhVRghRDCgVgbYOdeLDUrriqGCjLAl19+Sffu3e12LpXJcF0xMTFMmzbNLudg7c2tEEII8bCSPrBCCFGNeXt7K2/5yhqAx3idj4/PfaVRt25d5Q2dtWa0zqhBgwaAfa7J8B0Y3gJbc/Xq1ao4HSGEEMJhSAVWCCGqMXd3d6Vf7b59+6xut3fvXqDkTa5hZFwDw1tAvV5vcV+VSqWMXFuZowDbm6Ff8d69e7l7926Vpm34DrKyssjMzLS4TUFBgdJX1pJ7fW9CCCGEM5IKrBBCVHN9+vQBYOfOnZw6dcpsfUFBAcuXLwfg6aefNhtF2DD1S1mjEw8ZMgSAXbt2sWvXrjLP59atW+U+d3t64YUXcHNz4+bNmyxYsKDMbbVaLQUFBZWW9pNPPqnE3dqgWKtWreL27dtWj1Ge700IIYRwNlKBFUKIam7YsGEEBQVRWFhITEwMu3btori4GCiZFmXMmDFkZmbi7u7OpEmTzPYPCQkBSuZ6tVZhioqKolu3buj1eiZMmMDixYtNmrdqNBr27dvHBx98oEw74+iCg4OVUZ+XL1/O9OnTTR4AFBUVkZ6ezqJFi+jVqxfp6emVlraXlxcxMTEAbNiwgU8//VSp+Ofn57Ns2TIWLVqEt7e31WMYvrcdO3bI6MFCCCGqDRnESQghqjm1Ws2SJUuIjo7mypUrjB07lpo1a6JSqZS5Rt3d3fnss88sznc6dOhQDh06xM6dO0lISMDHxwc3Nzf8/f35+uuvgZLRdBcuXMi0adP49ddfiY2NJTY2FrVajaurK3l5eUpTVkN/WWcwYcIEdDodS5YsYcuWLWzZsgUPDw88PDzIy8szGcCqsgdcio6O5sSJE+zcuZMVK1YQFxdH7dq1yc/PR6fT0b9/f1xcXIiPj8fd3d1s/yFDhrBt2zZSU1MJDw/Hx8dH2S4hIaFSz1UIIYSoKs5TihBCCGGz0NBQtm/fzurVq/n555/JyMhAq9USHBxMt27dGDNmDMHBwRb37d+/PwDr16/n1KlT/Pnnn8obXGNqtZovvviCXbt2ER8fT1paGtevX0ev1+Pv789jjz1Gly5deO655x7otVYmFxcX3nzzTZ577jm+/vprkpOTuXz5Mvn5+dSpU4emTZvSoUMHnn32Wdq3b1+pabu5uREbG8t3333Hhg0bOHPmDEVFRbRu3ZrBgwczePBg5Q1xnTp1zPZ/4oknWLp0KatWreLEiRPk5ORY/N6EEEIIZ+Kil9EdhBBCCKej1+v5+9//zpUrV5g7dy4DBgyw9ykJIYQQD5z0gRVCCCGc0JYtW7hy5Qpubm5069bN3qcjhBBCVAmpwAohhBAOasqUKezYsYMbN24oy65fv86yZct49913gZIm3n5+fvY6RSGEEKJKSRNiIYQQwkF16tRJmQbH09MTNzc3k2lxOnXqxNKlS5Upc4QQQojqTiqwQgghhIOKj49n9+7dnDhxghs3bqDRaKhduzYtWrSgT58+9O/fH5VKZe/TFEIIIaqMVGCFEEIIIYQQQjgF6QMrhBBCCCGEEMIpSAVWCCGEEEIIIYRTkAqsEEIIIYQQQginIBVYIYQQQgghhBBOQSqwQgghhBBCCCGcglRghRBCCCGEEEI4BanACiGEEEIIIYRwClKBFUIIIYQQQgjhFKQCK4QQQgghhBDCKfwfg3ZXqzurnq0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "species_list = list(set(protein_df[\"species\"]))\n", + "if len(species_list)<100:\n", + " sns.displot(protein_df, x=\"prot_len\", hue=\"species\", kind=\"kde\", height=8)\n", + " plt.xlim(0, 2000)\n", + " plt.title(\"Protein length distribution per species\", fontsize=20)\n", + " plt.xlabel(\"Protein length\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "6ea45379-b1b3-4440-b2fa-721a633f5157", + "metadata": { + "papermill": { + "duration": 0.005675, + "end_time": "2024-10-18T00:52:48.978136", + "exception": false, + "start_time": "2024-10-18T00:52:48.972461", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "## Species tree \n", + "\n", + "Next, we look at the species input species tree. Note that errors in it can lead to wrong ortholog / paralog inference. FastOMA has identified on every internal level the set of orthologous groups in a hierarchically nested way, the Hierarchcial Orthologous Groups (HOGs).\n", + "With tools such as pyHAM you can extract the group memebers in a programmable way for any internal level of the below species tree." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "1a0cbfd4", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:48.991927Z", + "iopub.status.busy": "2024-10-18T00:52:48.991576Z", + "iopub.status.idle": "2024-10-18T00:52:49.013518Z", + "shell.execute_reply": "2024-10-18T00:52:49.012908Z" + }, + "papermill": { + "duration": 0.029492, + "end_time": "2024-10-18T00:52:49.014570", + "exception": false, + "start_time": "2024-10-18T00:52:48.985078", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are 2 taxonomic levels in the input species tree with 3 species as leaves.\n", + "\n", + " /-AQUAE\n", + " /inter1\n", + "-inter2 \\-CHLTR\n", + " |\n", + " \\-MYCGE\n" + ] + } + ], + "source": [ + "species_tree = ete3.Tree(os.path.join(output_folder, \"species_tree_checked.nwk\"),format=1)\n", + "num_leaves = 0\n", + "num_internal = 0\n", + "for node in species_tree.traverse(strategy=\"postorder\"):\n", + " if node.is_leaf():\n", + " num_leaves += 1\n", + " else:\n", + " num_internal += 1\n", + "print(f\"There are {num_internal} taxonomic levels in the input species tree with {num_leaves} species as leaves.\")\n", + "\n", + "print(species_tree.get_ascii(show_internal=True))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "64a5b04a", + "metadata": { + "papermill": { + "duration": 0.005669, + "end_time": "2024-10-18T00:52:49.025992", + "exception": false, + "start_time": "2024-10-18T00:52:49.020323", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "187e2a2c", + "metadata": { + "papermill": { + "duration": 0.005727, + "end_time": "2024-10-18T00:52:49.037481", + "exception": false, + "start_time": "2024-10-18T00:52:49.031754", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "# Stats on Orthoxml" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "ecde4231", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:49.049885Z", + "iopub.status.busy": "2024-10-18T00:52:49.049648Z", + "iopub.status.idle": "2024-10-18T00:52:49.067769Z", + "shell.execute_reply": "2024-10-18T00:52:49.067118Z" + }, + "papermill": { + "duration": 0.025626, + "end_time": "2024-10-18T00:52:49.068873", + "exception": false, + "start_time": "2024-10-18T00:52:49.043247", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-18 02:52:49 INFO start mapping of orthoxml formatted input file\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
genesnot_in_groupminor_splice
species
AQUAE1200
CHLTR1000
MYCGE600
\n", + "
" + ], + "text/plain": [ + " genes not_in_group minor_splice\n", + "species \n", + "AQUAE 12 0 0\n", + "CHLTR 10 0 0\n", + "MYCGE 6 0 0" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hog_file = os.path.join(output_folder, \"FastOMA_HOGs.orthoxml\")\n", + "genome_coverage_stats = extract_hog_info.SpeciesAnalyser()\n", + "with open(hog_file, 'rt') as xml:\n", + " hog_df = pd.DataFrame.from_records(extract_hog_info.parse_orthoxml(xml, genome_coverage_stats))\n", + "hog_summary_df = pd.DataFrame.from_records(genome_coverage_stats.summary())\n", + "df_seq = pd.merge(hog_summary_df, protein_df.groupby(\"species\", as_index=False).count(), on='species')\n", + "df_seq['minor_splice'] = df_seq['prot_len']-df_seq['genes']\n", + "df_seq = df_seq[['species', 'genes', 'not_in_group','minor_splice']]\n", + "order = species_tree.get_leaf_names()\n", + "df_seq = df_seq.sort_values(by=['species'], key=lambda s: s.apply(order.index)).set_index('species')\n", + "df_seq" + ] + }, + { + "cell_type": "markdown", + "id": "32f416c2-0ee2-464e-a671-4f25afc69d20", + "metadata": { + "papermill": { + "duration": 0.005852, + "end_time": "2024-10-18T00:52:49.080892", + "exception": false, + "start_time": "2024-10-18T00:52:49.075040", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "## Genes in HOGs\n", + "\n", + "First, let's check the fraction of genes that are in any HOG per species. Note that OMA will only use one isoform per gene (if properly annotated). The toal barchart height will indicated the total number of proteins in the fasta input file. The blue part (genes) is the number of genes that are in a HOG. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "96b4619e-529b-48f4-8795-89f48f78fe1b", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:49.094097Z", + "iopub.status.busy": "2024-10-18T00:52:49.093589Z", + "iopub.status.idle": "2024-10-18T00:52:49.419029Z", + "shell.execute_reply": "2024-10-18T00:52:49.418319Z" + }, + "papermill": { + "duration": 0.333151, + "end_time": "2024-10-18T00:52:49.420178", + "exception": false, + "start_time": "2024-10-18T00:52:49.087027", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/0AAAMPCAYAAACHZbVyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACaWklEQVR4nOzdZ3gUZf/28XPTExJAeu8klASBUEQEaQJ6K1K8BSkWiqIiFuAGwYIiIqiAgCAqRVARRYqiKAgoHYSAgoQSSCgBElogkJ7M84Jn909MArvJJguT7+c4PNRp128nk9mcM9dcYzEMwxAAAAAAADAdN1cXAAAAAAAA8gehHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShH7BTu3btFBQUpKCgIP3yyy85Lvfkk08qKChIS5cuLcDqHNevXz8FBQVp+/btri4l361bt069e/dW48aNbT/DwvC5HWHdL7ci6+/eyZMn872tpUuXKigoSO3atbvhctu3b7drn23YsEHDhg1Tu3btdOedd6px48Z64IEH9Pbbb+vw4cN21ZSUlKSvv/5agwcP1r333qs777xTDRo0UOvWrTVgwAB9+umnOnHihN2f0RnatWunJk2aKCUlxenbvlWOxenTpysoKEjTp093dSkuM3LkSAUFBenvv/92WQ2F6bvKGUaNGpXt3yDWc9uoUaNcVNnt4+TJk3Z9DwC3E0I/kAtTpkxRWlqaq8uAHcLDwzV06FDt2bNHDRs2VNeuXdWtWzeVKlXK1aU5jD/abh9XrlzRM888o0GDBmnlypXy8/NTmzZt1KJFC129elVfffWVunTpoilTpsgwjBy3s3nzZrVv315vvfWW/vjjD5UsWVKtW7dWhw4dVLVqVYWFhenDDz9Up06dNG/evAL5bHv37lV0dLTatm0rLy+vAmnzVmK94NOvXz9Xl5KvUlNTtW7dOpUvX14hISGuLgcodLj4AGfycHUBwO3G19dXUVFR+u677/TYY4+5uhzcxG+//abU1FQNHjxYL7/8sqvLuWX9/PPPri4hR/Pnz1dqaqrKli3r6lLskpKSov79++uvv/5SpUqVNGnSJIWGhtrmG4ahFStWaOzYsfrkk0+UlJSkV199Nct21q9fr+eff17p6enq3r27XnrppSz7wBrMZs+ercjIyHz/bJK0evVqSVKnTp3yZfu38rFYmGzbtk2XL19W165dZbFYXFbHxIkTlZiYqAoVKrisBjO47777dOeddyogIMDVpdzyypYtq59//lmenp6uLgVwGkI/4KDHH39cs2fP1scff6yuXbvK19fX1SXhBk6dOiVJqlq1qosrubXVrFnT1SXkqEqVKq4uwSEff/yx/vrrLxUtWlQLFixQxYoVM823WCzq2rWrihUrpsGDB2v+/Pm69957dffdd9uWuXjxokaMGKH09HQ9+eST2V4UkCRPT0916tRJHTp0UHh4eL5+LqvVq1fLz89P99xzT75s/1Y+FgsT68Wdjh07urQOwr5zBAQEEPjt5OnpyXkIpkP3fsBBrVu3VrNmzXT27FnNnz/f7vVyes7OKqeu29dPj4+P14QJE9SuXTuFhISoY8eO+vTTT5WRkSFJiomJ0RtvvKF7771XwcHB6tSpkxYuXHjT2nbs2KH+/furWbNmuvPOO/XII49o+fLlN1xn69atGjJkiO655x4FBwerRYsWev7557V79+5sl7/+Od3vv/9ePXv2VGhoqEPPaqelpWnRokXq1auXQkNDbfvgnXfeUUxMTKZlrc/jWvf3q6++aqvB3m6519f87bffqnv37mrYsKGaNGmiQYMGac+ePdmud/0z6L/99psef/xxNWvWLMtzqUeOHNGrr76qtm3bKjg4WM2aNdMTTzyR7Z3Odu3a2YLfsmXLbLXl9Hl++eUXDRgwQHfddZeCg4PVqlUrDR8+XBERETf9rDl9lm3btql///5q2rSpGjRooG7duuV4nMTHx2vKlCl66KGH1LBhQwUHB+uee+5Rr1699NFHHyk1NTXb9bKT0zP91z/rGx4eriFDhqh58+YKDg7WAw88oLlz596w63x+uHLlir788ktJ0nPPPZcl8F+vbdu2tm6bs2bNyjTvyy+/VHx8vEqXLq1hw4bdtF13d3cFBwdnmb5v3z699NJLat26tYKDg9W4cWO1b99eL7zwgn777TdHPpok6dChQ4qKilKrVq3k4+Nj1zqOHgvOPhalaxdR3nnnHbVp00bBwcFq27atxo8fr8uXL9/03Hy9fv366fHHH5d07bx5/e/hv7vgOnK+yu6z//rrr3rsscfUuHFjNWzYUL169dIff/yR7XqxsbF655131KlTJ4WEhOjOO+/UvffeqyeeeEJz5sy56ef6t4yMDK1du1alSpXK1EvlRq4fAyEmJkZjxozRPffcowYNGujBBx/Ud999Z1v2yJEjGjZsmFq2bKmQkBB16dIlxx4eOT3Tf/3P7cSJExoxYoRatmyp4OBgdejQQVOmTLnhmBM//fSTnnjiCTVr1sx2TLz66qs59pix97yek4yMDC1evFi9evVSkyZNVL9+fbVo0UJdunTRuHHjspzfrm9vzZo1tmOhUaNG6tevX47HQk5u9nhYTEyMJk6cqIceekiNGjVSw4YN1alTJ40aNUphYWFZlk9KStLcuXP16KOPqkmTJgoJCVGnTp00adIkXbx40e66vvnmGwUFBWnAgAE5LnPx4kUFBwcrODhYFy5csE3fsmWLxo0bp4cffth27m/durVeeumlHMehuP44PXXqlEaPHq17771X9evXt+2bG3Wr//vvvzVp0iQ98sgjtuPt7rvv1uDBg7Vly5Zs27x+3yckJOjDDz/Ufffdp+DgYLVs2VIjR47Mck4YNWqU2rdvL0mKjo7OdK65/vzo6HGFwos7/UAuDB8+XI8++qg+//xz9erVS3fccUe+t3n58mX17NlTcXFxatKkia5evaqdO3fqww8/VExMjJ544gn17t1bHh4eatSokS5cuKCdO3fqnXfeUWJiop5++ulst7tmzRp99dVXqlGjhu655x7FxsZq165dGjlypA4cOJDtHwgTJ07U3Llz5ebmpuDgYIWGhur06dNau3at1q9fr3HjxqlHjx7Ztjdu3Dh9/fXXatSokdq0aaMTJ07Y1XU0JSVFzzzzjLZs2SJvb281b95c/v7+2r17txYuXKiVK1dqzpw5ql+/viSpbt266tatm3bt2qXjx4+rcePGtrv9NWrUsHe3S5ImTJigL774whaYDh06pA0bNmjLli2aOnWq7rvvvmzXmzdvnr788ktb6I6NjZW7u7sk6ffff9fQoUOVnJys6tWrq2PHjjp//rz+/PNPbdu2TZs2bdK7775r21anTp20Z88ehYWFqUqVKpn+EL/+86SlpWn48OFatWqVvLy8VL9+fZUtW1ZRUVH68ccftWbNGk2fPl2tW7d2aB98//33mjVrlurVq6dWrVopOjpae/bs0ciRIxUXF6cnn3zStmxiYqJ69+6tQ4cOqUSJErrrrrvk5+ens2fPKjIyUjNnztRTTz3ltK6TmzZt0rx581SlShW1bNlSZ8+e1a5duzRx4kSdPn1aY8aMcUo79ti2bZuuXLkiSXr44YdvunzXrl21bt067dy5U/Hx8bY7cWvXrpUkde7cOdfPzW/dulWDBg1Samqq6tSpo4YNGyojI0MxMTH6/ffflZ6erg4dOji0TUe79ufHseDIsShdC8R9+vTR8ePHVbx4cbVt21YZGRlasWKFNm7c6NAdvVatWsnLy0ubNm1SqVKl1KpVK9u8678HHD1f/du0adM0c+ZMNWrUSPfee6+OHj2q3bt365lnntH06dMznXPOnj2rHj16KDY2VhUqVFCrVq3k7e2t2NhYHThwQP/8888NA1V2du7cqfPnz6tnz55yc3Ps/tCpU6fUo0cPeXp6qkmTJrbvotdee03x8fFq3Lix+vfvrzJlyqh58+Y6deqUdu/ebXv86oEHHnCovfDwcI0fP17FihVT06ZNdenSJYWFhemTTz5RRESEPv7440zLG4ahUaNGafny5fLw8FCTJk1UsmRJ/fPPP1q6dKlWrVqladOm5XiOvNF5/UbGjBmjpUuXytvbW6GhoSpRooTi4uJ08uRJffnll2rRooUqVaqUZb2FCxdq/vz5tgsTx48f144dO7Rjxw699tprThlbYuvWrRo6dKguX76skiVLqkWLFvL09FR0dLRWrlwpSWrcuLFt+ZiYGA0cOFCHDh1S8eLFFRISoiJFimj//v2aM2eOfvnlFy1cuPCGFz2t/vOf/2jChAnasmWLYmJisn2Ma+XKlUpNTVXHjh1VokQJ2/Q333xTp0+fVu3atdW4cWN5eHjo6NGjWrVqldasWaPJkyfneK6KiopSt27d5OnpqcaNG8swDLv+lps8ebK2b9+uWrVqqX79+vL19dWJEye0fv16rV+/XqNHj9YTTzyR7brx8fHq1auXTp8+rdDQUNWuXVt79uzR8uXL9eeff2rFihW274DQ0FAlJCTo119/lZ+fX46fI7fHFQohA4Bd2rZtawQGBhp//vmnYRiGMWTIECMwMNB49913My33xBNPGIGBgcb333+fafrIkSOznW71/fffG4GBgcbIkSOznR4YGGg888wzRkJCgm3evn37jHr16hl16tQxHnjgAeONN94wUlNTbfPXrFljBAYGGo0bN860nmEYRt++fW3b/eSTTzLN2759u9GgQQMjMDDQ2LBhQ6Z5ixcvNgIDA4377rvPCA8PzzRvx44dRqNGjYz69esbkZGRmeZZ22rcuLGxe/fubPfBjbz//vtGYGCg0aFDB+PEiRO26SkpKcbo0aONwMBAo127dkZycnKm9W6232/EWnODBg2MLVu2ZJr32WefGYGBgUZoaKhx7ty5TPOsx0rdunWN3377Lct2z549a4SGhhqBgYHGzJkzjYyMDNu8v//+22jatKkRGBhoLF68ONN6OR0j15s8ebIRGBho/Pe//zWOHz+ead6qVauMunXrGk2bNjUuXbqU7Wf9N+tnqV+/vrFu3bps6wkNDTUSExNt05ctW2YEBgYaAwcONFJSUjKtk56ebmzfvj3Lz+lGrDVc/3M3jMzH8KJFizLN27JlixEUFGTUrVvXOH36tN1tWT9T27Ztb7jctm3bst1nU6dOtR2L9oiOjrZtZ+vWrYZhGEZqaqpRp04dIzAw0Fi+fLndtf9bv379jMDAQGPFihVZ5l2+fDlXv4cPPvigERwcbMTHx9u1fG6OBWcei4ZhGM8//7wRGBho9O3bN1Pdly5dMh577DFbe/8+R0ybNs0IDAw0pk2blmm69Wfft2/fHD93bs9X1lqaNGli7NmzJ9t6OnbsmGn69OnTjcDAQOP111/PdC6xtvfvc5c9xo0bZwQGBhqbNm2yex1rfYGBgVm+i9auXWsEBgYajRo1Mtq2bZvlvDd//nzb98q/WX/Pt23blmm69dweGBhoTJ482UhLS7PNO3jwoNGwYUMjMDDQCAsLy7Te119/bQQGBhrNmzc39u/fb5uekZFh+wxNmjQxzp8/n2m9m53Xb8T6e966dWsjNjY2y/yIiAgjOjo62/aCgoKy/A7/9NNPRlBQkFGvXj3j4MGD2e6Xfx/POX1/nDp1yvZ99MEHH2Q5Js+dO2f7u8cwru2nXr16GYGBgcbo0aMz/U6lpqYa7733nhEYGGj069fPjj1zzbBhw4zAwEBj9uzZ2c7v2rWrERgYmOX3fs2aNUZcXFyW5desWWPUq1fPaNasWZbzwfXH6fDhw7P9Ljpx4kSO3wO///67ERMTk2V6WFiY0bhxY6N+/frGmTNnMs27/u+4/v37Z9pncXFxxsMPP5zt32I3qsMwcndcofCiez+QSy+//LI8PDz09ddfKzo6Ot/b8/Pz0/jx4zONIVC/fn21bt1aGRkZSkhI0OjRo+Xh8X8deDp06KDAwEBduXJF+/bty3a79erV0zPPPJNpWrNmzdS7d29JyjQieEZGhu31VZMnT1adOnUyrde0aVM999xzSk1N1eLFi7Ntr3///mrYsKH9H1xScnKyvvrqK0nXuulff9Xa09NTr732mkqVKqWTJ0/q119/dWjb9ujZs6datGiRadrAgQMVHBys+Pj4TN1Wr9e1a1db97zrffvtt4qPj1f9+vX17LPPZurpEBISosGDB0uSw91y4+LiNH/+fHl7e2v69OmqXLlypvmdO3dWz549denSJf3www8Obbtv375q27Ztpmndu3dXjRo1FB8fn+n4OnfunCSpZcuWWe7gurm5qVmzZk4d9b1jx47q1atXpmktWrTQPffco/T0dG3bts3hbWbXnfL6f6xdvP/N2vXU3rdDXL+cdd1Lly7ZHtm5/q7W9b766iuNGjUqyz/XO3/+vCTp3nvvzbJ+QECAw7+HUVFROnTokFq2bCl/f3+71smPY8GRYzE6Olq//fab3NzcNHbs2Ex1Fy1aVGPHjnX6IHXOOF8NHTpUd955Z6ZpzzzzjAICAhQVFaXTp0/bplt/zq1atcryWTw9PbOcu27GMAytWbNGxYoVU/PmzR1aV7r2DP6/v4usXdWvXr2qkiVLavDgwZlq7dOnj4oXL65jx47ZxmGxV/369fXSSy9lutseGBioLl26SFKWLtdz586VJD3//POqW7eubbrFYtGQIUMUFBSky5cv69tvv822vZzO6zdi/T2oV6+eSpcunWV+zZo1cxy7oH379rbPYvXAAw+oY8eOSktLs+sRvhuZN2+e4uPj1bZtWw0bNizL72PJkiXVpEkT2/9v3LhRYWFhqlu3rt56661Mv1MeHh4aMWKEAgMDtX37dh06dMiuGqw9A7N7xObAgQPav3+/SpcunalnjXTtb5xixYplWadDhw7q3Lmz4uLicnz0onjx4nrjjTccPv/ce++9KlOmTJbpjRo1Up8+fZSamprjo1N+fn6aMGFCpn1WrFgxW0/MnB4PyElejisUPoR+IJdq1KihHj16KCUlRR999FG+txccHKySJUtmmV6tWjVJUvPmzeXt7Z3j/NjY2Gy3m1MX5K5du0qSdu3apfT0dEnS/v37FRsbqypVqmT7/LB07YKBpByf7e/cuXO2029k7969SkhIUPHixbN9xs7X19fWJTQ/3uXcrVu3bKdb99GOHTuynZ9Tdzzr8jlt95FHHpF0LWTl9OxvdrZv366kpCQ1btw4x5Hub/bzycm/Q5aVtWv09XVaX+/1+eefa/ny5YqLi3OoLUfdrLacjv0b8fPzU7du3XL8x1mD2Bm5HHNg+/btWrZsWZZ/rtegQQNJ1x5H2rlzZ55fM5qbgd3y41hw5FjcuXOnDMNQvXr1su3GHxgYmO34AXnhjPNVdp/Ry8vLdiHv+s9o/Tl/8MEHWr16ta5evZqn+v/++2+dOXNG7dq1yxTc7XWz76LWrVtnuTjh4eFh6wru6O9r27Zts71wk93xcObMGR0/flxS9udfi8Wi7t27S8r5Z5Obt1bUqFFDRYoU0YYNGzRr1iydOHHC7nVz+/1jr40bN0q6dnHbHtaxBDp27Jjt8eHm5ma7SGDv98xdd92lihUrKjIyMss633//vaRrf6tk115MTIy+/fZbvffeexozZoztAujhw4clKccxGlq0aJHrgQ0vXryo5cuXa9KkSXrttddsbVp/Fjm1GRwcnO0FA+sjeo5831vXy+1xhcKHZ/qBPBgyZIh++OEH/fjjj+rfv3+WO9/OVL58+Wyn+/n53XB+kSJFJF27+5SdnJ71sk5PSkpSXFycSpYsaftCOX78+E3/UL5+sJ3r2fOM379Z/wi80brWEd4d/dK0x8320ZkzZxxaz1pjTvOLFi2q4sWLKy4uLsdnHLNj/fls3bo11z+fnOR0t8B6x+L646t58+YaNGiQ5syZo5EjR8pisahq1aq2MRHatWvn8HPCN5LTsZ9dbfa644479N577+U4f/v27dq0aVO260n/dwfmZqx3aaX/u6tfrFgxWSwWGYaR489p2rRptv8+c+ZMtnfzX3nlFR08eFAbNmzQhg0b5OPjo3r16qlZs2bq0qWLw6NTr169Wh4eHg69Mzo/jgVHjkXr79qNzh0VK1bUgQMHHKrhRpxxvnLkMz788MPavHmzfvzxR73wwgtyd3dXzZo1FRoaqk6dOjl8p9/a+yC3o/bn13eVo+1Z99X1g/lZ93fx4sVz7K1ys59Nbp6P9vf314QJE/Tqq69q6tSpmjp1qkqXLq2GDRuqVatWevDBB22f3972bvb9Yy9rzwp7x7qxfs989NFHN73hYe/3jPViy/Tp07V06VI1atRI0rVXkv7444+SZLsYc70ZM2bok08+ueHAsNYxVv4tN3+LSNd66k2YMEEJCQk5LpPThTdHjlV75OW4QuFD6AfyoEyZMrZX+E2ePFmffvpprrdl7c6bk5v9YezMEPVv1ruR1n+XLl36pnc6cxoQx94Rv28nOd2tze5uV36yHkPWUHUjjg5m6GgX6OHDh6tXr15av369du3apbCwMC1dulRLly5VSEiIFixYYAsBeZWfx76jrD1gTp48qQsXLuTYPd/KOsK0m5ub6tWrJ+naXc+goCAdOHBA+/bts2tAwOyULl1a33//vXbs2KEtW7YoLCxMf//9t8LCwjR79my98sorOQ7w+W+nTp3S3r171bJlSxUvXtyhOpx9LOSmO/6N1nHlO+hz4sgx7ebmpg8++ECDBw/W77//rrCwMIWFhWnRokVatGiR2rZtq48//tiuweakaxd3ihQpkuveLAX9XVXQv/+5Pa936tRJd999t9auXWv7PVizZo3WrFmjadOmae7cubnqdZLb3kK5Zf2eCQ0NvenrVGvXrm33drt166YZM2Zo1apVGjNmjHx8fLR+/XpdvHhRDRs2zHKRcvXq1Zo+fbr8/Pz0+uuv66677lKZMmXk4+Mji8WiyZMna/bs2Tnun9z8LbJv3z698cYbcnd31/Dhw9WuXTuVL19evr6+slgsWrx4sd54440c28yPYzW/jiuYD6EfyKNBgwZp8eLF+uOPP/Tnn3/muJz1edacrgA7+hyjs+T0OhfrOAXe3t62P/LLlSsn6dpdkhvdBXU2a3e4G42dYL37YO9dcUecPHky07OfVtZ6rPvFXmXLltXRo0dz7IoXHx9v6wbtyOex3kWoXr16gf58clKpUiX169fPNrr033//rREjRmjv3r36/PPPNXToUBdX6Hx33XWXihQpoqtXr2r58uXq37//DZe3vmauSZMmKlq0qG16u3btdODAAa1atUr/+9//cv2mA4vFoubNm9uezU5OTtbSpUv19ttva8qUKercufNN/3CX/q9rf05vqrgZVx0L9pw7nD0mi6vOV7Vq1VKtWrUkXQuC27Zt07Bhw7R+/XotX748xzeqXC88PFwnTpzQAw884NRxN24V1v0dFxenK1euZHu3Pz+/SwICAtS1a1db1/zTp09r3LhxWrt2rcaNG2d73ef1Tp48mW0vwtx+//xb+fLlFRkZqaNHj9recHOz5aVrYw04+laIG6lYsaLuuusubd26VatXr1aXLl1sz/hnd+yuWrVK0rXxlbJ7NCEqKspptVn98ssvMgxDffv21aBBgwqkTXvk5rhC4XPr3B4BblMBAQG2gdfef//9HJez/gFx5MiRLPMMw9CGDRvyp8CbyGlAN2sYCQ0NtT1HFxISojvuuEMRERG25+UKQkhIiPz8/BQXF2d7ldn1kpKSbO94zs3AUzezYsWKG063PidvL+vyOb1X3PoMY7Vq1TL94WkNfjk9m219zdKOHTsydRu/VTRo0MA2QGR4eLiLq8kf/v7+6tOnjyRp1qxZNwx+1lc8ScoymGa/fv3k7++vs2fPasqUKU6rz9vbW4899piCgoKUkZGhgwcP2rXemjVr5ObmluvQ/28FdSw0adJEFotF//zzT7bP2UZERDjctf9mv4euPl9J1y72tGjRQg8++KAk+/dxbsZtuJ2UK1fOdpEru0HjDMOwjY2RXz+b65UvX952wSunn1FO3z/W7w9Hv3/+zTo4Xk4DF/6b9VWG1gDsTNZwv2zZMp07d04bN26Uj49Ptq9xvHTpkqTsH4U5f/68w4Pi2eNGbSYnJ9t+f5zlZueanNhzXKHwIfQDTtCnTx9VqFBBf/31l/bs2ZPtMtbnKlesWKGIiAjb9NTUVL3//vvau3dvQZSaxT///KPPPvss07SdO3fq66+/lqRM77z29PTUkCFDZBiGhgwZop07d2bZXnp6urZu3ZrjfsgNb29vW5CaOHFipiCVmpqq8ePH6+zZs6pUqVKuBlm6mUWLFmUZ1Gn+/Pn6+++/VaRIEdvAe/Z69NFH5e/vr3/++UeffPJJpj+c9u/fr1mzZklSlrso1js62V04kq6NBN+vXz8lJCRo8ODB2Qa6lJQUrV27NsdtOMOaNWv0559/ZnlkJTU11TZoVG6fp7wdvPDCCwoODtbly5f1+OOPKywsLNN8wzC0YsUK23vJ+/Xrl6UrdYkSJTRx4kS5ublpzpw5eu2117Id4MwwjCzbt5ozZ062PYiOHDmiY8eOScr52fHrnTt3TmFhYWrcuLHdbyWwcvWxUKlSJbVt21YZGRkaO3Zspud74+PjNXbsWIeDi/X38NixY9k+S1zQ56vly5dn+3aWK1eu2AYWs3cfr169Wj4+PtmOEWEW1t43M2fOzHTBxzAMzZw5U+Hh4SpatKgeffRRp7W5f/9+/fzzz0pKSsoyb926dZJy/l1cs2aNfvrpp0zTfvnlF9sYG3379s1TbU899ZSKFCmidevWacqUKVmO6fPnz2f6rm/fvr1CQkL0999/69VXX832uf1Lly5p0aJFDofVjh07qmjRotq2bZs++eQTpaWlqWPHjtn2yLA+ovbtt99mehY+Pj5eI0eOVHx8vENt28P6iMHy5csznUuSk5M1duzYHHtO5laJEiXk6empc+fOZTsIal6OKxQ+dO8HnMDLy0tDhw7VqFGjlJiYmO0yoaGhat++vdauXasePXooNDRU3t7e2r9/v65cuaLHH39cCxYsKODKrwWOyZMna8WKFQoKClJsbKx27typjIwMPf7441n++Ovbt69OnTqlOXPmqE+fPqpdu7aqVKkiHx8fnT17VgcOHNDly5c1duxYh18JdiNDhw7Vvn37tHXrVj3wwANq3ry5ihQpoj179ujUqVMqXry4Pvroo3zpktqzZ0898cQTatKkicqWLatDhw7p0KFDcnd317vvvpvtq3JupFSpUvrggw/04osvasqUKVqxYoXq1aun8+fP688//1RaWpq6d++e5Y/OO++8U2XKlNH+/fvVrVs3BQYGysPDQ9WrV9fAgQMlScOGDVNsbKxWrlyprl27qk6dOqpcubLc3d115swZHThwQAkJCfrss88cHsjNXjt27NCCBQt0xx13qF69eipRooSuXr2qv/76S+fPn1fZsmVt9ZqRl5eX5s+fr5dfflkbN27UY489psDAQNWsWVNpaWnau3evzpw5Izc3Nw0cOFDDhw/PdjsdOnTQ7NmzNXLkSH333XdaunSp6tSpo0qVKsnb21txcXEKDw/X2bNn5ebmluW1XrNmzdKkSZNUo0YN1axZU97e3oqNjVVYWJjS0tLUtWtX1a9f/6afZ82aNcrIyMjV3d9b4VgYO3asDh48qG3btql9+/Zq1qyZDMPQn3/+aRthf926dXY/QlGhQgUFBwdr3759euihhxQcHCxvb2/dcccdtp9lQZ6vVq9erZEjR6pMmTKqW7euihYtqsuXLyssLEzx8fEKDAzUf//735tu58iRI4qIiFCHDh2cNt7GrahXr17avXu3VqxYoR49eqhp06YqWbKkrTeIj4+PPvjgg5uOx+GIU6dO6eWXX7YNplm+fHmlpaXp0KFDioyMlKenp0aMGJHtuo8//rheeeUVzZs3T1WrVtWJEyf0119/SZJGjhyZ5wGEK1SooGnTpmno0KH65JNPtGTJEjVs2FAeHh46deqUwsPD9eCDD9pG5Hdzc9PHH3+sZ555RsuWLdOvv/6qoKAgVahQQampqTpx4oQOHTqk9PR0de/e3aE3QHh7e+uBBx7QN998Y3sVYU6PpTzxxBNasWKF/vjjD3Xo0EENGzZUamqq/vzzT/n4+KhHjx62XnPO0r17dy1YsED79+9X+/bt1aRJE7m7u2vnzp1KSkpy+t9xnp6eateunX799Vd17dpVoaGhtrEIxo8fn6fjCoUPoR9wkocfflhz58694Xtpp06dqpkzZ2rlypXasWOHihYtqhYtWujFF1/M9q55QbjvvvvUvn17zZ49W3/88YdSU1NVr1499e3bN8dXBf3vf/9Thw4d9PXXXyssLEwbN26Up6enSpcurWbNmqlNmzZO7x7q5eWlzz//XN9++61WrFihnTt3KiUlReXLl1e/fv00aNCgfHkGU5JGjx6t6tWra/Hixdq7d688PDzUqlUrPffcczcdMC8nbdu21bJly/TZZ59p69at+vXXX+Xr66vQ0FD16tUr2+6MXl5emjNnjqZMmaI9e/bowIEDysjIULNmzWzBycPDQx9++KG6dOmiJUuW6K+//tLhw4fl6+ur0qVLq23btmrXrp2aNm2ap31yI927d5ePj4927dqliIgIXbhwQQEBASpfvryeeOIJPfroozkO9GgWAQEB+vzzz/XHH39oxYoV2r17t9atWyd3d3eVLVtWjz32mK2b/Y20bt1aa9eu1bJly/THH3/owIEDioiIkGEYKl68uGrXrq3evXvroYcesr3OzeqNN97Q1q1btW/fPv35559KSEhQ6dKldffdd6tnz552v2s8L12+b4VjoWzZslqyZIlmzJihtWvXav369SpVqpT+85//aOjQoXrxxRcl5Tz4aHamT5+uDz/8UNu3b9eqVauUlpamihUr2kJ/QZ6v+vfvr0qVKmn37t3av3+/4uLiVLx4cdWqVUsPPvigunfvbleIz+u4DbcLi8WiSZMmqXXr1lq8eLH++ecfJSYmqlSpUurevbsGDRrk8ECnN3PnnXdq2LBh2rlzp44cOaLw8HC5u7urXLly6tOnj/r27Ztjm48//rgaNWqkL774wnb3tkmTJho4cGCOr6901D333KOVK1dq3rx52rhxozZu3Ch3d3eVKVNGXbp0yXIBumzZsvr222+1dOlS/fzzzzp48KD27t2rYsWKqUyZMurVq5fatWuXq0EPe/TooW+++UbStR4qOT1mUblyZS1btkxTp07Vrl27tH79epUuXVr/+c9/9MILL2jRokWO74ibKFq0qJYsWaLp06dr06ZN2rBhg4oXL66WLVtqyJAh2rVrl9PbfPvtt1W8eHFt3LhRv/76q60nxvjx4/N0XKHwsRgFPewnANwmrIHM3ueeAbOJi4tTy5YtVbduXS1ZssTV5Tjd5cuX1aFDB8XHx2vz5s1Ovbt7u+nevbsOHTqkLVu2ZBpUEq7Rrl07RUdHa+3atbl6TSAAXI87/QAAIFtxcXEaPHiw7b3Zt6u///5bDRo0yDTtwoULGjNmjC5duqR27doV6sCfkpKidu3aqWfPngR+ADAh7vQDQA640w+YQ1BQkMqVK6eaNWuqePHiiomJ0f79+5WQkKAKFSro66+/tr2KDLgVcKcfgDNxpx8AAJjas88+q23bttkGGvX09FTlypXVtm1bPfnkk6YfYwIAULhxpx8AAAAAAJNyc3UBAAAAAAAgfxD6AQAAAAAwKZ7pd4Ldu3fLMAx5enq6uhQAAAAAQCGQmpoqi8Vy07fscKffCQzDEEMjoCAYhqGUlBSONwCmwXkNgNlwXkNBsTeHcqffCax3+ENCQlxcCcwuISFB4eHhqlWrlvz8/FxdDgDkGec1AGbDeQ0FZe/evXYtx51+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUh6uLgAAAACAaxmGodTUVGVkZLi6lNtecnKy7d9ubtxjxc15eHjIwyP/ojmhHwAAACik0tPTde7cOcXHxys1NdXV5ZhCRkaGPDw8dOrUKUI/7FakSBGVKlVKfn5+Tt82oR8AAAAohNLT03XixAklJyerWLFi8vf3l7u7uywWi6tLu62lp6crOTlZ3t7ecnd3d3U5uMUZhqHk5GRduHBBJ06cUPXq1eXl5eXUNgj9AAAAQCF07tw5JScnq0qVKvL19XV1OaaRnp4uSfLx8SH0wy6+vr4KCAhQZGSkYmNjValSJadun/4mAAAAQCFjGIbi4+NVrFgxAj9wC3B3d1exYsWUkJAgwzCcum1CPwAAAFDIpKamKjU1Vf7+/q4uBcD/5+vrq/T0dKePr0HoBwAAAAoZ6yj9dD8Hbh3W30dnv0WD0A8AAAAUUgzaB9w68uv3kdAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQ8XF2Avc6ePavNmzdr37592rt3r8LDw5WcnKxmzZpp4cKF2a5z5coVrV+/Xps2bdLevXsVHR2tjIwMlS1bVs2aNdOTTz6pwMDAAv4kAAAAwO0hI8OQm9vtN9jf7Vo3kB9um9D/008/acKECQ6t89Zbb+mHH36QJPn4+Khq1aoyDENRUVH6/vvv9cMPP+itt95Sjx498qNkAAAA4Lbm5mbRB1/t0smYeFeXYrdKZQM0vE+oq8sAbhm3Tej39/fX3XffrZCQEIWEhGj//v2aOXPmTddr06aNevfurRYtWsjLy0uSFBcXp3HjxmnlypV6/fXXFRwcrKCgoPz+CAAAAMBt52RMvI5EX3J1GQBy6bYJ/Y888ogeeeQR2//HxMTcdJ3Ro0frjjvuyDK9ePHieu+993Tw4EEdPnxYS5Ys0ZgxY5xaLwAAAAAArnbbhP7cyC7wW3l6euquu+7S4cOHFRkZWYBVAQAAALgdxcTE6KOPPtKGDRt06dIllS9fXg888ICeffZZvfnmm1q2bJnGjx+v+++/P9N60dHRmjt3rjZt2qQzZ87I3d1dNWvWVNeuXdWzZ095eGSOZdu3b9fjjz+uihUrat26dfr555+1YMECHTx4UBaLRQ0aNNALL7yg0NCcH2MICwvTwoULtWvXLl24cEFFihRRgwYN1K9fP7Vu3TrL8unp6fr222+1YsUKRUREKDExUcWKFVPp0qXVtGlTPfbYY6pZs6ZzdiQKlKlD/80kJydLknx9fV1cCQAAAIBbWWRkpPr06aPz58/L09NTtWvXVlJSkmbNmqWtW7eqUqVK2a63fv16vfLKK0pISJCPj4+qVKmiq1evau/evfr777+1bt06zZo1y/Yo8r9NnTpVs2bNUpkyZVS9enVFRUVp69at2rlzp7744otsg/+0adP08ccfS5KKFSum2rVr68yZM9qwYYM2bNigF154QUOGDMm0zogRI/TTTz9JksqVK6eqVavq8uXLioyM1IEDB1SpUiVC/22q0Ib+xMRErV27VpJueIXMXoZhKCEhIc/bKUwsFkZUdVRKSop8fX2VkpLC/nOQYRiuLgFANhITEzP9G0DBSE5OVkZGhtLT05Wenp7jcu7u7gVYlXPd6HM5yjAMDR8+XOfPn1ejRo00ZcoUlSlTRpK0f/9+Pffcc9q3b59tWeu/Dx06pJdfflkpKSkaNmyY+vXrZwv3Bw4c0PDhw7Vp0ybNmDFDL774oq29jIwMSdd6FsyfP19Tp05Vx44dJUlJSUkaNWqUVq9erffff19fffVVplqXL1+ujz/+WCVLltSbb76pDh062OatXr1aY8aM0fTp03XnnXfq7rvvtn2Gn376Sf7+/po5c6aaNGliWyc1NVWbNm2Sv7+/U/cpskpPT1dGRoYSExNtx8CNGIZhVyYotKF/ypQpOn/+vEqUKJFprIDcSk1NVXh4uBMqKxw8PT1Vr159eXjcvl8kruDr66vixYu7uozbTlpauvbv/0epqamuLgVADqKiolxdAlDoeHh42Hq+ZsfNze227hGbkpJiV3Cyx44dO7Rv3z75+PjovffeU9GiRZWUlCRJqlGjhsaOHavnnntOkpSWlibp2oWVadOmKTExUYMGDVKfPn2UkZFhW69atWoaP368evfura+++kpPPvmkvL29bbVbt/Xcc8+pdevWtvWka3fl169fr927dys2NlZFixaVdC2TfPTRR5Kkd999V02bNs20XuvWrfXcc8/p/fff1+eff67GjRtLkg4fPixJatq0qYKDgzOtI0ktWrSQpCzT4VzJyclKS0vT0aNH7V4npx4i1yuUoX/lypX64osvJEnjxo2Tv79/nrfp6empWrVq5Xk7hYXFYpGHh/tt9woY3H6sr+2pXbs2d/uBW1BiYqKioqJUrVq12zpcALeb5ORknTp1St7e3vLx8XF1OfnCnjBkrx07dki6FporV66cZX6bNm1UoUIFnTp1yvZ8vsVi0caNGyVJvXv3znY/33nnnapYsaJOnjypo0ePqlGjRllqz27dihUrqmLFioqKitLZs2dtvQ727dunmJgYValSRa1atcr2s3Tq1Envv/++9uzZI09PT7m7u6tKlSq29c+fP6+KFSs6tH/gPB4eHqpSpYrtAtCNRERE2LfNvBZ1u9m8ebNGjRolSXr55ZczdXfJC4vFIj8/P6dsqzDhFTAoKIQJ4Nbm6+vL9yhQgNzc3OTm5iZ3d/fbugv/jTjzcx07dkySVLdu3Ry3W6dOHZ06dcrW3fr48eNKSkqSm5ubhg0bluO2L168KEmKjY21bdvNzU3StYHJcxqcvFSpUoqKilJSUpJtPWsIvHTpkvr27ZvtetabIElJSYqPj1fJkiXVuHFjhYaGateuXbr//vvVrFkzNWnSRKGhoWrcuLFTL6AgZ+7u7rYeNvZcjLP3cd9CFfr//PNPPf/880pNTdXTTz+twYMHu7okAAAAALc469hdRYoUyXGZf8+Lj7/WmzUjI0NhYWE3bSO7rvM3uhhqvTBwfU/Gy5cvS7oW+u1p0zqeipubmz799FPNmjVLK1as0JYtW7RlyxZJUkBAgHr37q0hQ4YQ/m9ThSb07969W08//bQSExPVr1+/G15tAwAAAAAra/i+evVqjsv8e551HV9fX+3ZsyffasuuzXvvvVeffvqpQ+v6+/trxIgRGjFihI4cOaJdu3Zpw4YNWr9+vWbPnq34+Hi9+eab+VE28pmbqwsoCPv27dOgQYOUkJCgRx55RGPGjHF1SQAAAABuE9WqVZMkHTx4MMdl/j2vatWq8vT0VGJiok6cOJGf5dkEBgZKsv9Z75zUrFlTjz76qGbMmKH3339fkrRkyRLbIIW4vZg+9B88eFADBgxQfHy8HnroIY0bN45XnQEAAACwm3VQvA0bNujcuXNZ5m/dulXR0dGZpvn6+qpNmzaSpHnz5uV7jdK1V5GXLl1a0dHR+uWXX5yyTesI/ykpKYqLi3PKNlGwTB36o6Ki1L9/f8XFxalz586aOHGi7dkXAAAAALDHXXfdpZCQECUkJGjo0KGKjY21zQsPD9eoUaPk6emZZb2XXnpJfn5++uqrrzRp0iRdupR5AOvExEStWbNGr732mlPq9PLysj3G/Oqrr2rJkiVZXll87tw5LVq0KFP3/xUrVmj69Om2AQuvr2/mzJmSpPLly6tkyZJOqRMF67Z5pv/06dPq2rWr7f+t764MCwtT8+bNbdMHDhyoQYMGSbr2Oj7rlbhTp07lOIJl6dKlNW3atHyqHAAAALh9VSob4OoSHJIf9VosFr3//vvq06ePdu3apXbt2ql27dpKSUlRRESE7rzzTjVp0kQrV67MNLp/rVq1NGPGDL300kuaM2eOvvjiC1WvXl1+fn66dOmSTpw4ofT0dKe+Iq9bt246e/aspkyZojFjxmj8+PGqXr263NzcdO7cOZ0+fdq2nNXFixc1Y8YMzZgxQ6VKlVK5cuWUlpam48ePKyEhQV5eXnrrrbfoMX2bum1Cf3p6erbdSdLS0jJNv37US+uFAUn6+++/c9w276EEAAAAssrIMDS8T6iry3BYRoYhNzfnBtTq1atr6dKlmjZtmjZs2KCIiAiVLVtWTz/9tJ577jmNHDlSUtZR/Fu2bKlVq1Zp4cKF2rBhg44dO6bk5GQFBASocePGat26te677z6n1vr000+rdevW+vLLL7V9+3ZFREQoIyNDpUqVUtu2bdW+fXu1b9/etnynTp2Unp6urVu36ujRozpy5IjS0tJUrlw5PfDAA3rqqadUq1Ytp9aIgmMxrn/HA3Jl7969kqSQkBAXV3L7eWny7zoSfenmCwK5VLNiMU19pY2rywCQg4SEBIWHh6tu3bo3fDUVAOdKSkpSZGSkqlevbtf7wHFzDz74oA4fPqylS5eqWrVq8vHxyXTXH7gZR38v7c2hPOAOAAAAAHnw119/6fDhwypevDh3xHHLIfQDAAAAwE1ERUVpwYIFunz5cqbpu3bt0ksvvSRJevTRR+Xhcds8QY1CgiMSAAAAAG4iPj5e48eP13vvvadq1arJ399fMTExOnPmjCSpUaNGev75511cJZAVoR8AAAAAbqJKlSoaPHiwNm/erFOnTun48ePy9vZWw4YN9cADD+ixxx6Tl5eX0tPTXV0qkAmhHwAAAABuolixYnr55Zf18ssvu7oUwCE80w8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAACYWFBQkIKCglxdBlzEw9UFAAAAAACuOXnypJYtW6aAgAA9+eSTri4HJkDoBwAAAJAtIyNDFrfbr3Pw7Vq3JEVHR2vGjBmqWLGi00J/9erVnbId3J4I/QAAAACyZXFzU+zyqUo5f9LVpdjNq2Qllen6kqvLuKX88ssvri4BLkToBwAAAJCjlPMnlXIm0tVlAMil27PPCwAAAAAUkHbt2ikoKEjbt2/XsWPHNGzYMLVs2VIhISG6//779fnnnysjIyPbdcPDwzVs2DC1bt1awcHBat68uQYOHKi1a9dmWbZfv356/PHHJV3r5m8dgC+vA/HltH6/fv0UFBSkpUuX6ty5c3rzzTdtdbZv316TJ09WcnJyrtu93uXLl/Xuu++qbdu2CgkJUdu2bfXOO+8oLi5O06dPV1BQkKZPn55pne3btysoKEjt2rWTJH333Xf673//q8aNGysoKEiXL1+2LevIfpakpUuXKigoSKNGjcqxZuvP/eTJzD1dRo0aZav3woULevPNN9WmTRsFBwerXbt2mjhxoq5cuZLbXeV03OkHAAAAADuEh4frueeeU1pammrWrCkPDw8dPXpU77//vk6dOqU33ngj0/LLly/XmDFjlJaWpoCAAAUFBSk2NlYbN27Uxo0b1adPn0zrBAYGKi4uTocOHZKXl5eCg4ML5HOdPn1a3bp108WLF1WrVi15eXnp5MmTmj17tg4dOqRPPvkkT9s/f/68evfuraioKLm5ualWrVqyWCz66quv9Mcff+jee++96TbGjh2rRYsWqWzZsqpRo4ZOnDhhm+fofnaWuLg4PfLIIzp9+rRq1aolf39/RUREaO7cudq4caMWLlyoO+64w+ntOorQDwAAAAB2+OCDD9S1a1e9+uqrKlKkiCTp559/1iuvvKKvv/5a/fr1U5UqVSRJhw8f1muvvaa0tDQ99dRTeuWVV+Tl5SXp/0LqV199pfr166tHjx6SpNdff13bt2/X448/rtKlS2vRokUF8rlmzZqle+65R++++65KlCghSdqxY4eeeeYZrV+/Xps3b1bLli1zvf233npLUVFRql69umbOnKkaNWpIko4fP67nn39e33zzzQ3XP3PmjJYtW6bp06erY8eOkqSUlBR5eHjkaj87y+LFi1WlShWtWrVK1apVkyRFRERo8ODBOnz4sN555x19+OGHTm0zN+jeDwAAAAB2qFatmt566y1b4JekBx54QG3btpVhGPrjjz9s0+fNm6fU1FQ1atRIo0aNsgVRSeratautG/+sWbMK7gPkoGjRovrggw9sgV+SmjVrZgvJv//+e663ffz4ca1evVqSNHXqVFvgl6QqVapo6tSpSk9Pv+E20tPTNXToUFvglyQvLy+5ublp7ty5LtvPqampmjhxoi3wS1KtWrU0fvx4SdcuCP370QBXIPQDAAAAgB0eeeQRubu7Z5nesGFDScrU5Xzjxo2SZAud//bUU0/Z1omMdO1Aif/5z3/k7++fZXp2n8tRGzdulGEYCg4OVp06dbLMr1mzpkJDQ2+6nW7dumU7fcOGDZJcs58bNmyokJCQLNObN2+u2rVrKyMjQ5s2bXJqm7lB6AcAAAAAO1x/R/d6JUuWlCQlJCRIkuLj43X+/HlJ157Tz06ZMmVUvHhxSdLRo0edW6iDbva5rl69muttR0VFSVK2gd/qRvMk6Y477sjUC8EqPj5e586dk+Sa/VyzZs2bznP1BR2J0A8AAAAAdvH19c12upvbtVhlGIak/wv/0v8F5+yULl1aUt5CtTPc7HPlhXVfXP9IxL/daJ4k+fn5ZTv9+v3miv18ozZLlSqVL23mBqEfAAAAAJzo+pBqveOfnbNnz0q6eei9nVn3xY3Cb26D8fX7zdH9bLFYJP3fhZrsXH/xJjs3atPaA+FW+NkS+gEAAADAiQICAmx3gQ8dOpTtMrGxsYqLi5OkTIPbWcOoWVgfHTh48GCOy9xo3o0EBATY7qg7up+tvRus4fzfLl26pIsXL96w/SNHjuQ4z/ooQfXq1W+4jYJA6AcAAAAAJ2vVqpUkacGCBdnOnz9/vqRrI9hfHwx9fHwkSUlJSflbYAFp1aqVLBaL9u3bl224j4yM1K5du3K9/datW0tyfD9bL0aEh4crJSUly3pff/31Tdves2eP9u3bl2X6jh07dOjQIVksljy96tBZCP0AAAAA4GRPPfWUPD09tXv3bk2cODFTsPzhhx9sIfXZZ5/NtF6lSpUkXes6fqM7ybeLKlWqqGPHjjIMQy+//LJtYD/p2oj6L774Yp7GDujfv3+u9nNgYKAqVKig8+fPa9KkSZleG/jzzz9r9uzZ8vT0vGHbnp6eGjVqlI4dO2abduTIEb322muSrr3OsXLlyrn+bM7i4eoCAAAAAMBsateurXfeeUdjxozR3LlztWTJElWtWlWxsbGKiYmRJPXu3Vvdu3fPtF6JEiXUsmVLbd68Wd26dVPt2rVtz8UvXLiwwD+HM7z55ps6ePCgjhw5ovvvv1+1atWSxWJRRESEKlSooF69emnhwoW5Cv+53c9ubm4aNWqUXnzxRS1cuFArVqxQlSpVFBMTo7Nnz2rIkCFatmyZoqOjc2y7Z8+eWr9+vTp37qzatWvLMAwdPnxYhmGoZs2atvDvaoR+AAAAADnyKlnJ1SU45Faqt2vXrgoKCtLnn3+uHTt26MCBAypSpIjuuecePfbYY+rQoUO2633wwQeaPHmyNm3apAMHDigtLa2AK3eukiVL6ttvv9XHH3+s1atXKzIyUqVKldKjjz6qF198UZ9++qkkyd/fP1fbz+1+7tSpk2bPnq3Zs2crPDxcR48eVVBQkMaMGaP7779fy5Ytu2G7xYsX15IlS/TRRx/p999/1/nz51W+fHl17txZzz33nAICAnL1eZzNYtxouELYZe/evZKkkJAQF1dy+3lp8u86En3J1WXAxGpWLKapr7RxdRkAcpCQkKDw8HDVrVs3x1cyAXC+pKQkRUZGqnr16rZnyLNjZGTI4oTXthU0V9adnp6upKQk+fj4yN3d3SU13G6eeeYZ/f777/r4449zDOi3klGjRmnZsmUaMmSIXnjhBadt197fSyt7c+jt9xsMAAAAoEDcjoFfun3rLoxOnz6tzZs3y8PDQ40aNXJ1OabEbwMAAAAAIN/Ex8fr448/1tmzZzNNP3TokAYPHqzU1FR16tTJ9ppDOBfP9AMAAADAbWDcuHHav3+/3ctPmzZNpUuXdlr7S5Ys0ffff2/38oMHD9a9996r1NRUTZs2TdOnT1eVKlVUvHhxXbhwQSdOnJB07V32o0ePdlqdyIzQDwAAAAC3gUOHDiksLMzu5ZOTk53a/unTpx1q//z585KuDdD30ksvaePGjTp+/LhOnTolT09P1a1bVx06dNCTTz6Z60H8cHMM5OcEDOSXewzkh/zGQH7ArY2B/ADXcHTAMNiPgfyQWwzkBwAAAAAAHELoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAArY0qVLFRQUpFGjRrm6lNvayZMnFRQUpHbt2mWZ165dOwUFBenkyZMuqOzWQegHAAAAkK0MI8PVJeTK7Vo3kB88XF0AAAAAgFuTm8VN07bNVfTlM64uxW4Vi5bT0Lv6u7qMmwoICFD16tVVunRpV5diWpUrV5aXl5c8PT1dXYpLEfoBAAAA5Cj68hlFXjzh6jJM57777tN9993n6jJM7YsvvnB1CbcEuvcDAAAAAGBShH4AAAAAuAHrgHDbt29XRESEXnzxRbVo0UINGzZUjx499Ntvv9mWjYmJ0fjx49WuXTuFhISoc+fO+vLLL7NsM6eB/KwD0wUFBUmStmzZoieffFJNmjRRw4YN1bNnT61bt+6G9f72228aMGCAmjdvruDgYN17770aPny4Dhw4kO3y06dPt9WSmJioKVOmqHPnzmrQoIEefvhhR3eXJCkpKUmffvqpunfvrkaNGik4OFj33HOPevTooffff19nzmR+ZKRfv34KCgrS0qVLdeLECQ0fPlz33HOPbR/OmjVLKSkpDtVws4H8wsLCNGzYMLVp00YhISG666671KNHD82YMUOxsbFZlr969apmz56tHj16KDQ0VA0aNFDnzp31wQcfKC4uzqHaChLd+wEAAADADnv37tXHH38sNzc3Va1aVdHR0dq3b5+GDBmiyZMnq27duurXr5/i4+NVs2ZNpaenKzIyUuPGjdPVq1f1zDPPONTed999p9dff13FixdXlSpVdPLkSe3Zs0fPPfecpkyZovvvvz/LOm+88YYWL14sSSpTpowqVaqkY8eO6ccff9Qvv/yi9957Tw8++GC27SUlJalPnz76559/VL16ddWqVStXz8Onp6erf//+2rVrl6Rrz9YXL15cFy5c0MGDB7Vv3z41atRI5cqVy7LusWPH9N577ykhIUG1a9dWkSJFFBkZqalTp2rLli36/PPP5e3t7XBN//bhhx/q008/lSQVKVJEtWvX1tWrV231VahQQd27d89U18CBA3X8+HF5eHioQoUK8vLy0rFjx/TZZ5/p559/1oIFC1SpUqU81+ZshH4AAAAAsMPUqVPVq1cvjRgxQt7e3kpPT9fYsWP17bffatKkSSpVqpQaN26s0aNHq3Tp0nJ3d9eMGTM0ffp0zZw5U71791ZAQIDd7b3zzjt644031KtXL7m5uSk9PV0TJkzQwoULNXHiRHXq1Elubv/Xefu7777T4sWL5enpqQkTJuihhx6SJKWkpGjSpElauHChRo8erbp166pmzZpZ2lu9erUqVqyoH3/8UYGBgZKuXQhw1Lp167Rr1y6VK1dOn332mW1b1u399ttvOYbjOXPmqEGDBpo6darKlCkj6dod+WeffVY7duzQzJkz9fLLLztc0/UWLVqkTz/9VJ6enho5cqR69eplu7iRkpKiX3/9VeXLl7ctn5ycrGeffVbHjx/Xww8/rJEjR6pkyZKSpAsXLmjMmDFat26dRowYoUWLFuWptvxA934AAAAAsEPNmjU1evRo251md3d32wWA06dP68yZMxo/fnymYD948GCVKVNGSUlJ2r59u0Ptde3aVb1797YFe3d3d/3vf/9TyZIldfr0aR08eNC2rGEY+uSTTyRJ/fv3twV+SfLy8tJrr72m4OBgJScn6/PPP8+2vfT0dE2ePDlTSPfx8XGoZkmKjIyUJHXq1CnTtqzbe/DBB1WnTp0c158yZYot8EtS48aNNXLkSEnSwoULdfXqVYdrskpJSdH06dMlScOHD1e/fv0y9Wbw8vLSQw89pCZNmtimff/99zpy5IiaNWum9957zxb4JalEiRL68MMPVa5cOYWFhSksLCzXteUXQj8AAAAA2KFHjx6Z7qxLUtGiRW13rf/zn//Iz88v03wPDw/b8/nHjx93qL1evXplmebl5aW6detm2d7Ro0dtz64/8cQT2W7vqaeekiRt3Lgx2/m1a9dWSEiIQzVmx3qXfOvWrbp48aJD63bs2FFly5bNMv3BBx9UsWLFdPXq1TwF6127dun8+fMKCAhQ79697Vrn119/lST997//zfLzlyQ/Pz/dfffdkqQdO3bkurb8Qvd+AAAAALBDlSpVsp1eokQJHTlyJMf51jvDCQkJDrVXtWpVu7dnvbteokSJTHeir2e963727FlduXJF/v7+mebXqFHDofpy0qFDB1WtWlWHDh1SmzZt1KJFC4WGhqpJkyZq0KCB3N3dc1w3u8cOpGsXO6pUqaK9e/cqMjJSrVq1ylVtERERkqS6devKy8vLrnWsPSrmzJmTY/f9U6dOSVKWAQpvBYR+AAAAALCDr69vttMtFotd8w3DcKi9f/casLLebb5+e9Yu76VKlcpxe9fPu3r1apbQn1N7jvL19dVXX32l6dOn65dfftH69eu1fv16Ww0DBgzQk08+me1d85wuWFxff16691+5ckWSHBpbIT4+XpJyfPvB9XIzBkJ+I/QDAAAAwG2uSJEikqRz587luMz186zL55fSpUvr7bff1tixY3Xw4EHt3LlTv//+uzZt2qSJEycqIyNDAwcOzLLe+fPnc9ymtf681G690GEN8vbw8/PT5cuX9d1336lBgwa5bttVeKYfAAAAAG5z1atXl3RtNPmcgv/hw4clXQvk/77Ln1/c3NxsrzKcM2eOhg8fLkn65ptvsl3+yJEj2U5PTU3ViRMnJP3fZ82N2rVrS5LCw8OVkpLi0DrW/Xe7IfQDAAAAwG2uRo0atgEFFyxYkO0y8+bNkyS1bt26wOr6t0aNGkmSYmNjs52/evXqbOetXLlScXFx8vPzU+PGjXPdfuPGjVWqVCnFx8dr8eLFdq3TuXNnSdKXX36p1NTUXLftKoR+AAAAALjNWSwWDR48WJI0d+5c/fTTT7Z5KSkpevfdd7V37155e3trwIAB+VrLvHnzNHfuXMXExGSafunSJc2ZM0eSVL9+/RzXHzZsmM6ePWv7/927d2vSpEmSpL59++ape7+Xl5eGDh0qSZo4caK++uorpaWl2eanpKRo5cqV2rlzp23ao48+qpo1a2r//v169tlndezYsUzbTE9P186dOzVmzJgsn/lWwDP9AAAAAHJUsWg5V5fgkNutXmf673//q71792rx4sV65ZVXNGnSJJUuXVpRUVGKj4+Xh4eHxo8fn+MI+c5y6tQpLViwQBMnTlS5cuVUpkwZJSUlKSoqSikpKSpatKhee+21bNcdMGCAFi1apLZt26p27dpKTEy0vZmgSZMmev755/NcX8+ePXX8+HF9/vnnevvttzV58mRVq1ZNV65cUXR0tFJTUzVhwgQ1adJEkuTj46NPP/1UgwcP1saNG9WxY0dVrlxZJUuWVEJCgo4fP24bwO/ZZ5/Nc33ORugHAAAAkK0MI0ND7+rv6jIclmFkyM1SODs1v/3222rVqpUWLVqkf/75RwcOHFCJEiXUpk0bDRw4UHXq1Mn3Gnr16qXixYtr+/btOn78uA4cOCA3NzdVqlRJLVu21IABA1S+fPls161ataq+//57ffTRR9q2bZvi4uJUrVo1denSRYMGDbL7NXs3M2LECLVp00YLFy5UWFiYDh48qKJFi6pu3bpq06ZNllcCVqpUSd9//72WLFmiX375RYcOHdKpU6fk6+urGjVq6K677lKHDh1UsWJFp9TnTBbD0fdGIIu9e/dKkkJCQlxcye3npcm/60j0JVeXAROrWbGYpr7SxtVlAMhBQkKCwsPDVbduXae9KgrAzSUlJSkyMlLVq1eXj4+Pq8sxlfT0dCUlJcnHx+eG76NHZv369dOOHTs0YcIEde/e3dXluISjv5f25tDCefkLAAAAAIBCgNAPAAAAAIBJ8Uw/AAAAACBbf/zxhz755BO7l+/Ro4ceeeSRfKwIjiL0AwAAAACydf78eYWFhdm9/N13352P1SA3CP0AAAAAgGx17969QAbWW7hwYb63UVjxTD8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAACikDMNwdQkA/r/8+n0k9AMAAACFjIfHtfG8k5OTXVwJAKvU1FRJkru7u1O3e9uM3n/27Flt3rxZ+/bt0969exUeHq7k5GQ1a9bspiM9pqam6osvvtAPP/yg48ePy9PTU3Xq1FG/fv3UsWPHAvoEAAAAwK3Bw8NDRYoU0YULFxQQEOD0kAHAMYZh6NKlS/L29panp6dTt33bhP6ffvpJEyZMcHi95ORkPfXUU9q1a5fc3d1Vq1YtJSYmaseOHdqxY4cGDRqk4cOH50PFAAAAwK2rVKlSOnHihCIjI1WsWDH5+vrK3d1dFovF1aXd1tLT0209KLiYgpsxDEOpqam6dOmSrly5oooVKzq9jdsm9Pv7++vuu+9WSEiIQkJCtH//fs2cOfOm673//vvatWuXKlWqpM8++0w1atSQJK1du1YvvfSSPvvsMzVu3Fjt2rXL748AAAAA3DL8/PxUvXp1xcbG6uLFizp37pyrSzKFjIwMpaWlycPDQ25uPE0N+3h7e6tixYoqWrSo07d924T+Rx55RI888ojt/2NiYm66zrlz5/TNN99IksaPH28L/JLUvn17DRw4UDNnztSMGTMI/QAAACh0vLy8VKlSJdvdxoyMDFeXdNtLTEzU0aNHVaVKFfn6+rq6HNwG3N3dnd6l/3q3TejPjXXr1ik1NVXVqlXTXXfdlWV+r169NHPmTP3zzz86fvy4qlSp4oIqAQAAANeyWCzy8vJydRmmYL1w4u3tLR8fHxdXA5h89P49e/ZIkkJDQ7OdX7ZsWVWqVCnTsgAAAAAAmIWpQ39UVJQk3fAOvnVeZGRkQZQEAAAAAECBMXX3/kuXLkmSihUrluMy1nmXL1/OU1uGYSghISFP2yhMLBYLzzihQCUmJsowDFeXAZNjxGvHpaSkyNfXVykpKew/B3FOA25NiYmJmf4N5BfDMOz67jR16Le+KuNGgyJYn11KSkrKU1upqakKDw/P0zYKE19fX9WrV8/VZaAQiYyM5MsX+crT01P16tWXhwevZ3KEr6+vihcv7uoybjtpaenav/8fpaamuroUADmw9joG8pM9Y3GYOvR7e3tL0g2/EFNSUiQpz4NseHp6qlatWnnaRmHC3RwUtOrVq3NXDPnKYrHIw8NdH3y1Sydj4l1dDkysUtkADe8Tqtq1a3NeA25BiYmJioqKUrVq1ejZinwVERFh13KmDv3Wdxxau/lnxzovr+9DtFgs8vPzy9M2AOQfvnRRUE7GxOtIdM7fO4CzcF4Dbm2+vr7kA+Qre2+kmnogv2rVqkmSjh07luMyx48fz7QsAAAAAABmYerQ37BhQ0lSWFhYtvNjYmJ08uTJTMsCAAAAAGAWpg797du3l6enp6KiorRt27Ys87/55htJUr169VS1atWCLg8AAAAAgHxl6tBfqlQp9ezZU5I0ZswYHT161DZv3bp1+vzzzyVJzz//vEvqAwAAAAAgP902A/mdPn1aXbt2tf2/ddT9sLAwNW/e3DZ94MCBGjRokO3/R4wYoX/++Ue7d+/Wgw8+qNq1ayshIcH2LH///v3VoUOHgvkQAAAAAAAUoNsm9KenpysuLi7L9LS0tEzTk5KSMs338fHRggULNH/+fP3444+KioqSp6enmjVrpr59+6pTp075XDkAAAAAAK5x24T+SpUq6eDBg7la18vLS08//bSefvppJ1cFAAAAAMCty9TP9AMAAAAAUJgR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEzKw9UFFJSLFy9q3rx5Wr9+vU6ePKnU1FSVKFFCjRo1Ur9+/dSkSRNXlwgAAAAAgFMVijv9UVFReuihhzR79mxFRESoZMmSqlWrlq5cuaJffvlFffv21fz5811dJgAAAAAATlUoQv+bb76ps2fPqlq1avrxxx/122+/afny5dq6dav69+8vwzD0/vvvKyoqytWlAgAAAADgNKYP/VeuXNH27dslSSNGjFCtWrVs87y9vfW///1PVatWVVpamjZt2uSqMgEAAAAAcDrTh/6UlBQZhiFJqlKlSpb5FotFlStXliSlpaUVaG0AAAAAAOQn04f+EiVKqFy5cpKk3bt3Z5mfkJCgAwcOSJJCQkIKtDYAAAAAAPKT6UO/JA0bNkwWi0WTJk3Sd999p7NnzyoxMVF///23nn32WZ07d05dunRRaGioq0sFAAAAAMBpCsUr+7p06aKAgADNmjVLr732WqZ5pUuX1tixY9WrV688tWEYhhISEvK0jcLEYrHI19fX1WWgEElMTLQ96gPkB85rKGic14BbU2JiYqZ/A/nFMAxZLJabLlcoQr8kHTt2TOfPn5ebm5vKly8vf39/HT9+XGfPntWyZcsUGhqqwMDAXG8/NTVV4eHhTqzY3Hx9fVWvXj1Xl4FCJDIyki9f5CvOayhonNeAWxtvBkNB8PLyuukyhSL0v/XWW/r6668VEhKizz//XNWrV5ckJSUladq0aZozZ44ee+wx/fDDD6pYsWKu2vD09Mz0ZgDcmD1XpABnql69OnfEkK84r6GgcV4Dbk2JiYmKiopStWrV6AGGfBUREWHXcqYP/QcOHNCiRYvk6empjz76KFOo9/Hx0f/+9z/t379fW7du1ezZs/X222/nqh2LxSI/Pz9nlQ3AyfjSBWA2nNeAW5uvry/5APnK3hsOph/Ib9euXTIMQ1WrVs3xLn7Lli0lSfv27SvI0gAAAAAAyFemD/1Xr161e9mUlJR8rAQAAAAAgIJl+tBvfX7/2LFjio6OznaZzZs3Z1oWAAAAAAAzMH3ob9mypUqWLKnU1FS9+OKLioyMtM1LSkrSpEmTtHXrVknSww8/7KoyAQAAAABwOtMP5Ofn56cPPvhAzz//vPbu3asHHnhAFSpUUJEiRXT8+HHbq2769OmjDh06uLhaAAAAAACcx/ShX5Luvvtu/fDDD5o/f762bNmiU6dOKSYmRsWLF9fdd9+tRx99VG3atHF1mQAAAAAAOFWhCP2SVLlyZb3++uuuLgMAAAAAgAJj+mf6AQAAAAAorAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYFKEfAAAAAACTIvQDAAAAAGBShH4AAAAAAEyK0A8AAAAAgEkR+gEAAAAAMClCPwAAAAAAJkXoBwAAAADApAj9AAAAAACYVJ5C/+XLl/Xnn39q//79WebFxsZq6NChCg0NVdOmTTVixAidP38+L80BAAAAAAAH5Cn0L1myRI8//ri+//77TNPT0tI0YMAArVmzRlevXlV8fLxWrlypJ598UikpKXkqGAAAAAAA2CdPoX/z5s2SpP/85z+Zpv/88886fPiwvL29NXjwYL300kvy9/dXRESEvv3227w0CQAAAAAA7OSRl5WPHTsmSQoMDMw0fdWqVbJYLHrhhRc0YMAASVKVKlX0yiuv6Ndff1Xfvn3z0iwAAAAAALBDnu70X7x4UX5+fvL39880fefOnZKkhx56yDatQ4cOslgsOnz4cF6aBAAAAAAAdspT6E9OTlZGRkamaUePHlV8fLyqVq2qMmXK2KZ7eXmpaNGiunLlSl6aBAAAAAAAdspT6C9ZsqSSkpJ09uxZ27StW7dKkho1apRl+eTkZAUEBOSlSQAAAAAAYKc8hf6QkBBJ0rx58yRJiYmJ+uabb2SxWNSiRYtMy8bExCgpKUmlS5fOS5MAAAAAAMBOeRrIr2fPnvrtt980b948rV+/XlevXlVsbKxKliypjh07Zlp227ZtkrIO+gcAAAAAAPJHnu70t2rVSkOGDJHFYlFkZKRiY2N1xx136IMPPpCPj0+mZVeuXClJat68eV6aBAAAAAAAdsrTnX5JGjJkiLp3766//vpLRYsWVYMGDbI8t5+SkqKGDRvqzjvvVJs2bfLaJAAAAAAAsEOeQ78kVahQQRUqVMhxvpeXl55//nlnNAUAAAAAAOyUp+79M2bMsA3iZ48FCxZoxowZeWkSAAAAAADYKc+hf86cOXYvP3/+fH388cd5aRIAAAAAANgpT6EfAAAAAADcugo09F+6dEne3t4F2SQAAAAAAIVWgYX+VatW6erVqypfvnxBNQkAAAAAQKHm0Oj9X3zxhRYsWJBp2sWLF9W+ffsc1zEMQ/Hx8bpy5YosFguv7AMAAAAAoIA4FPrj4+MVHR2daVp6enqWaTlp0aIFr+4DAAAAAKCAOBT6O3TooIoVK0q6dgd/9OjRCggI0OjRo3Ncx2KxyN/fX4GBgapSpUreqgUAAAAAAHZzKPTXqVNHderUsf3/6NGj5e3trW7dujm9MAAAAAAAkDcOhf5/O3DggLPqAAAAAAAATlagr+wDAAAAAAAFJ093+q+XkZGhqKgoXbp0SWlpaTdctmnTps5qFgAAAAAA5CDPoT82NlaTJ0/Wr7/+qqSkpJsub7FYtH///rw2CwAAAAAAbiJPoT8mJkaPPvqoYmNjZRiGXevYuxwAAAAAAMibPIX+GTNmKCYmRkWKFNHLL7+s9u3bq0yZMnJ3d3dWfQAAAAAAIJfyFPo3bNggi8Wi8ePHq3Pnzs6qCQAAAAAAOEGeRu+/cOGC3N3d1aFDB2fVAwAAAAAAnCRPob9kyZLy8fGRh4fTXgIAAAAAAACcJE+hv0WLFrp69aqioqKcVA4AAAAAAHCWPIX+wYMHy9fXVx988IGz6gEAAAAAAE6Sp9BftWpVzZo1S3/++aeeeuopbdu2TQkJCc6qDQAAAAAA5EGeHsavW7eu7b+3bdumbdu23XQdi8Wi/fv356VZAAAAAABghzyFfsMwnFUHAAAAAABwsjyF/gULFjirDgAAAAAA4GR5Cv3NmjVzVh0AAAAAAMDJ8jSQHwAAAAAAuHUR+gEAAAAAMKk8de//888/c7Ve06ZN89IsAAAAAACwQ55Cf79+/WSxWBxah1f2AQAAAABQMPIU+iXHX9vHa/4AAAAAACgYeQr9Bw4cuOH8K1eu6K+//tInn3yiw4cPa8aMGWrSpElemgQAAAAAAHbK14H8/P391bJlSy1YsECNGjXSs88+qxMnTuRnkwAAAAAA4P8rkNH7LRaLRowYofj4eM2cObMgmgQAAAAAoNArsFf21ahRQ/7+/tqyZUtBNQkAAAAAQKGW54H87JWamqqkpCQlJycXVJPZ+uOPP/Tdd99pz549iouLU7FixVS5cmU1b95cL7zwgjw8CmyXAAAAAACQrwos4f72229KS0tTuXLlCqrJTNLS0vTqq6/qhx9+kCSVL19ederUUVxcnPbt26fdu3fr6aefJvQDAAAAAEwjXxNuSkqKzpw5o19//VWzZ8+WxWJR69at87PJHI0dO1Y//PCDQkJC9Pbbb6tevXq2eYmJidqyZYu8vLxcUhsAAAAAAPkhT6G/bt26di9rGIbKli2r559/Pi9N5sq2bdv03XffqWLFipo/f778/f0zzff19VX79u0LvC4AAAAAAPJTngbyMwzDrn+8vb3VpUsXffvttypbtqyzarfbvHnzJEn9+/fPEvgBAAAAADCrPN3pX7BgwQ3nu7u7q1ixYqpWrZrLnpVPTk7W5s2bJUktWrRQRESEFi9erCNHjsjLy0t169bVI488oooVK7qkPgAAAAAA8kueknizZs2cVUe+OXDggFJTUyVJu3bt0ttvv237f0lav369Pv/8c02YMEEPPvhgrtsxDEMJCQl5rrewsFgs8vX1dXUZKEQSExNlGIary4CJcV5DQeO8hoJgsVhcXcJtJyUlRb6+vkpJSWH/OYhzmmMMw7DrGDP9UPVnz561/bd1AL/XXntNderU0enTpzVlyhStWrVKo0aNUo0aNTIN8OeI1NRUhYeHO6ts0/P19c31vgZyIzIyUomJia4uAybGeQ0FjfMa8punp6fq1asvDw93V5dyW/H19VXx4sVdXcZtJy0tXfv3/5PpBi1uzp7B6J0e+qOjo3X+/HlJUsmSJV3ebf7q1au2//bx8dFnn32mYsWKSZKqVq2qyZMnKyoqSuHh4frkk080bdq0XLXj6empWrVqOaXmwoCrniho1atX5+ox8hXnNRQ0zmvIbxaLRR4e7vrgq106GRPv6nJgYpXKBmh4n1DVrl2b85oDIiIi7FrOKaE/NjZWn376qX766SfFxcVlmle8eHE9+OCDGjRokMqUKeOM5hzi7e1t++9u3brZAr+Vm5ubnnzySY0cOVKbNm1SRkaG3NwcH9/QYrHIz88vz/UCyB90uwZgNpzXUFBOxsTrSPQlV5eBQoDzmmPsveGQp9H7pWvPyXfp0kVfffWVLl68mGXk/osXL+rLL7/Uww8/rLCwsLw257DrQ37NmjWzXaZGjRqSrvUK+PdFCwAAAAAAbld5utN//vx5Pffcc7p06ZL8/f3Vq1cvtWzZ0vZavpiYGG3ZskWLFy/WxYsX9eyzz+rnn39WyZIlnVK8PayBXrrWBT871/cGyMjIyPeaAAAAAAAoCHkK/XPnztWlS5dUo0YNzZs3zxb2rWrUqKEWLVqob9++euqppxQZGal58+Zp+PDheSraEWXLllXFihUVHR2tEydOZLuMdbq3tzeDbgAAAAAATCNP3fv/+OMPWSwWjRs3Lkvgv17ZsmU1btw4GYah33//PS9N5sr9998vSfrxxx+VlpaWZf6SJUskSU2bNpWHh+lfaAAAAAAAKCTyFPqjo6Pl6+ur0NDQmy4bGhoqX19fRUdH56XJXBkwYIACAgJ08uRJvf3220pOTpZ07b2GCxYs0Pr162WxWPT0008XeG0AAAAAAOSXQnFbu0SJEpo2bZqeffZZLV68WD///LOqVaumM2fO6OzZs7JYLBoxYoSaN2/u6lIBAAAAAHCaPN3pr1ixohITE7Vnz56bLrt7924lJiaqYsWKeWky1+6++26tWLFC3bt3V5EiRXTgwAGlpaWpXbt2WrBggQYMGOCSugAAAAAAyC95utPfqlUrRURE6PXXX9cXX3yhEiVKZLvc+fPn9cYbb8hisah169Z5aTJPqlWrpgkTJrisfQAAAAAAClKeQv+AAQP0/fffKyIiQvfff78ee+wxtWjRwjao35kzZ7R161YtXrxYcXFxKlq0qPr37++UwgEAAAAAwI3lKfSXKlVKM2bM0JAhQ3Tp0iXNnj1bs2fPzrKcYRgqWrSoPv74Y5UqVSovTQIAAAAAADvl6Zl+SWrWrJl++OEH9ezZU0WLFpVhGJn+KVq0qB577DH9+OOPatq0qTNqBgAAAAAAdnDK6P3lypXTW2+9pbfeeksnTpzQhQsXJF0bNb9y5crOaAIAAAAAADjI4dCflpampKQkSZK/v3+W+ZUrV84S9K9cuSJJ8vX1lbu7e27qBAAAAAAADnK4e/8rr7yipk2batSoUXavM3r0aIfXAQAAAAAAeeNQ6D98+LBWr14tf39/vfvuu3avN27cOPn7++unn35SVFSUozUCAAAAAIBccCj0//jjj5Kk3r17q2jRonavV6xYMfXt21cZGRn64YcfHKsQAAAAAADkikOhf+fOnbJYLOrYsaPDDVnX2bFjh8PrAgAAAAAAxzkU+qOiouTm5qZ69eo53FBQUJDc3Nx09OhRh9cFAAAAAACOcyj0X758WQEBAbJYLI435OamgIAAxcfHO7wuAAAAAABwnEOh39fXV1evXs11YwkJCfLx8cn1+gAAAAAAwH4Ohf4SJUooLS1Nx48fd7ih48ePKzU1VSVKlHB4XQAAAAAA4DiHQn/Dhg0lSatXr3a4oV9//VWSdOeddzq8LgAAAAAAcJxDob9NmzYyDENz5sxRbGys3evFxMRo7ty5slgsatOmjaM1AgAAAACAXHAo9Hfq1ElVq1ZVXFycBgwYYFc3/2PHjmngwIG6ePGiqlSpovvvvz/XxQIAAAAAAPt5OLKwm5ubJk6cqMcff1wRERHq0qWLunTpovbt26tevXoqVqyYJOnSpUvav3+/fvvtN61cuVKJiYny8vLSe++9l6uR/wEAAAAAgOMcCv3Stef6p06dqv/973+6cuWKvvvuO3333Xc5Lm8Yhvz8/DRp0iQ1atQoT8UCAAAAAAD7OdS936pdu3b6/vvv1blzZ1ksFhmGke0/FotFnTt31tKlS9WhQwdn1w4AAAAAAG7A4Tv9VlWrVtXUqVN1/vx5bd++XYcPH1ZcXJwkqXjx4qpdu7aaN2+ukiVLOqtWAAAAAADggFyHfquSJUvqgQcecEYtAAAAAADAiXLVvR8AAAAAANz6CP0AAAAAAJgUoR8AAAAAAJMi9AMAAAAAYFKEfgAAAAAATIrQDwAAAACASRH6AQAAAAAwKUI/AAAAAAAmRegHAAAAAMCkCP0AAAAAAJgUoR8AAAAAAJMi9AMAAAAAYFKEfgAAAAAATIrQDwAAAACASRH6AQAAAAAwKUI/AAAAAAAmRegHAAAAAMCkCP0AAAAAAJgUoR8AAAAAAJMi9AMAAAAAYFKEfgAAAAAATIrQDwAAAACASRH6AQAAAAAwKUI/AAAAAAAmRegHAAAAAMCkCP0AAAAAAJgUoR8AAAAAAJMi9AMAAAAAYFKEfgAAAAAATIrQDwAAAACASRH6AQAAAAAwKUI/AAAAAAAmRegHAAAAAMCkCP0AAAAAAJgUoR8AAAAAAJMi9AMAAAAAYFKEfgAAAAAATIrQDwAAAACASRH6AQAAAAAwKUI/AAAAAAAmRegHAAAAAMCkCP0AAAAAAJgUoR8AAAAAAJMi9AMAAAAAYFKEfgAAAAAATIrQDwAAAACASRH6AQAAAAAwKUI/AAAAAAAmRegHAAAAAMCkCP0AAAAAAJgUoR8AAAAAAJMi9AMAAAAAYFKEfgAAAAAATIrQDwAAAACASRH6AQAAAAAwKUI/AAAAAAAmRegHAAAAAMCkCP0AAAAAAJgUoR8AAAAAAJMqlKH/jz/+UFBQkIKCgtSuXTtXlwMAAAAAQL4odKH/6tWrGjt2rKvLAAAAAAAg3xW60D9lyhSdOnVK7du3d3UpAAAAAADkq0IV+vfs2aOvvvpK7du3V4cOHVxdDgAAAAAA+arQhP7U1FS9/vrr8vHx0RtvvOHqcgAAAAAAyHeFJvTPnj1bhw4d0osvvqhy5cq5uhwAAAAAAPKdh6sLKAhHjhzR7NmzVb9+ffXr1y9f2jAMQwkJCfmybTOyWCzy9fV1dRkoRBITE2UYhqvLgIlxXkNB47yG/MZ5DQWN85pjDMOQxWK56XKmD/2GYei1115TWlqa3nrrLbm7u+dLO6mpqQoPD8+XbZuRr6+v6tWr5+oyUIhERkYqMTHR1WXAxDivoaBxXkN+47yGgsZ5zXFeXl43Xcb0of/rr79WWFiY+vXrp5CQkHxrx9PTU7Vq1cq37ZuNPVekAGeqXr06V46RrzivoaBxXkN+47yGgsZ5zTERERF2LWfq0B8TE6PJkyerbNmyeumll/K1LYvFIj8/v3xtA0Du0T0RgNlwXgNgNpzXHGPvhTlTh/5x48bpypUrmjBhgvz9/V1dDgAAAAAABcrUoX///v2SpLfeektvvfVWpnlJSUmSpNOnT6tly5aSpOnTp6tx48YFWyQAAAAAAPnE1KHf6ty5cznOy8jIsM1PTU0tqJIAAAAAAMh3pg7969aty3He0qVL9eqrr6pixYo3XA4AAAAAgNuVm6sLAAAAAAAA+YPQDwAAAACASRH6AQAAAAAwKVM/038j3bt3V/fu3V1dBgAAAAAA+YY7/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQ8XF1AfjMMQ7t379a6deu0a9cuHT16VFeuXFFAQIDq1aunrl276qGHHpLFYnF1qQAAAAAAOJXpQ/+2bdv05JNP2v6/cuXKqlixoqKjo7V582Zt3rxZP/30k6ZPny4vLy/XFQoAAAAAgJOZvnu/YRiqVKmSxowZoy1btui3337T0qVLtX37dk2cOFFeXl76/fff9dFHH7m6VAAAAAAAnMr0ob9Bgwb65Zdf9Pjjj6tkyZKZ5nXt2lXPP/+8JGnJkiXKyMhwRYkAAAAAAOQL04d+f39/eXp65ji/devWkqS4uDhduHChoMoCAAAAACDfmT7030xSUpLtv318fFxYCQAAAAAAzmX6gfxu5qeffpIk1alTR/7+/rnejmEYSkhIcFZZpmexWOTr6+vqMlCIJCYmyjAMV5cBE+O8hoLGeQ35jfMaChrnNccYhmHXW+gKdejft2+fvvnmG0nS008/nadtpaamKjw83BllFQq+vr6qV6+eq8tAIRIZGanExERXlwET47yGgsZ5DfmN8xoKGuc1x9nzBrpCG/rPnTunF154QWlpabrvvvv0n//8J0/b8/T0VK1atZxUnfnZc0UKcKbq1atz5Rj5ivMaChrnNeQ3zmsoaJzXHBMREWHXcoUy9MfHx2vQoEE6deqU6tevr/feey/P27RYLPLz83NCdQDyA90TAZgN5zUAZsN5zTH2XpgrdAP5Xb16VQMHDtT+/ftVu3ZtzZkzJ0/P8gMAAAAAcKsqVKE/MTFRzzzzjPbs2aNq1app3rx5uuOOO1xdFgAAAAAA+aLQhP7k5GQ9++yz+vPPP1WxYkXNnz9fpUuXdnVZAAAAAADkm0IR+lNTU/XCCy9o69atKlu2rL744guVL1/e1WUBAAAAAJCvTB/609PTNWzYMP3xxx8qXbq0vvjiC1WuXNnVZQEAAAAAkO9MP3r/qlWr9Ouvv0q69g7D0aNH57js66+/zrtIAQAAAACmYfrQn5KSYvvv6OhoRUdH57hsfHx8QZQEAAAAAECBMH3o7969u7p37+7qMgAAAAAAKHCmf6YfAAAAAIDCitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAkyL0AwAAAABgUoR+AAAAAABMitAPAAAAAIBJEfoBAAAAADApQj8AAAAAACZF6AcAAAAAwKQI/QAAAAAAmBShHwAAAAAAk/JwdQEFadu2bZo3b57++usvJSQkqEKFCurcubOefvpp+fn5ubo8AAAAAACcqtDc6V+4cKGefPJJ/f777/L29lbNmjUVHR2tWbNm6ZFHHlFcXJyrSwQAAAAAwKkKRejft2+f3n33XUnS22+/rd9//13Lli3Tb7/9pvr16+vIkSN6/fXXXVwlAAAAAADOVShC/8yZM5WRkaGHH35YPXv2lMVikSSVLVtWkydPlpubm1avXq0DBw64uFIAAAAAAJzH9KH/6tWr2rhxoyTp0UcfzTK/WrVquuuuuyRJv/zyS4HWBgAAAABAfjJ96A8PD1dKSoq8vLzUoEGDbJcJDQ2VJP31118FWRoAAAAAAPnK9KE/MjJSklShQgV5enpmu0yVKlUyLQsAAAAAgBmY/pV9ly5dkiQVK1Ysx2Ws86zLOio1NVWGYejvv//O1fqFlcVi0WOtiikjo6irS4GJublZtHfvXhmG4epSUAhwXkNB4LyGgsR5DQWB81rupKam2saruxHTh/7k5GRJyvEuvyR5eXllWtZR1h1tzw5HZn4+pj8EcYvg9xMFhfMaCgrnNRQUzmsoKJzXHGOxWAj9kuTt7S3p2lWQnKSkpGRa1lGNGjXK1XoAAAAAAOQn0z/Tb0/XfXseAQAAAAAA4HZj+tBfrVo1SdKpU6dyvNt//PjxTMsCAAAAAGAGpg/9devWlaenp1JSUnIcaG/Xrl2SpIYNGxZgZQAAAAAA5C/Th35/f3/dc889kqRvv/02y/yoqCht27ZNktS5c+cCrQ0AAAAAgPxk+tAvSc8995wsFotWrFihxYsX214FERsbq1deeUUZGRnq0KGD6tSp4+JKAQAAAABwHotRSF6GOH/+fL333nsyDEPly5fXHXfcoYiICKWkpKh69er6+uuvVaJECVeXCQAAAACA0xSa0C9JW7du1dy5c/X3338rISFBFSpUUOfOnfX000+rSJEiri4PAAAAAACnKlShHwAAAACAwqRQPNMPAAAAAEBhROgHAAAAAMCkCP0AAAAAAJgUoR8AAAAAAJMi9AMAAAAAYFKEfgAAAAAATIrQDwAAAACASRH6gVvA2rVrtWvXrlytu3TpUs2YMcPJFQGA6xiGoR9//FEPPvigq0sBAOC2ZzEMw3B1EUBhV6dOHTVp0kRffvlllnnNmjVTo0aNNHv27GzX7d27t3bv3q3w8PD8LhMA8lVGRoZ++OEHzZ49W1FRUZLEuQ0AgDzycHUBAK7J6frb5cuXdeXKlQKuBgCcZ/ny5Vq1apVOnjwpHx8f1a9fX0888YRq1qxpW2bVqlWaOnWqjh8/LsMw5OPjo0ceecSFVQNA9rp166Z69epp/PjxWeYtWLBAZcuWVadOnbJdt3fv3tqzZ4/279+f32UCNoR+AACQb4YOHao1a9ZI+r+Lm/v379ePP/6ouXPnqk6dOho+fLjWrVsnwzDk5+enxx57TP3791fJkiVdWToAZCs8PFx+fn7Zznv33XcVGhqaY+iXcr7RA+QXQj8AAMgXP/74o1avXi39v/buPK7KMv//+PvmoGwiuGuBW6mYk+Wa6JhbYQPIYlNjU06Wk3s6Nc1M5uOrk4zZZjaljZmVjePYTCPnUGqJmrlBYEjoBIZJKKKYKwiyCef3hz/ORCwCAueAr+dfeK77c/uGhwifc133dUm68847dccddyg/P1+xsbHKyMhQRESEbrrpJu3YsUNubm6aMmWKpkyZIi8vLzsnBwCg+aDpBwAADcJiscgwDM2ePVtz5syxvV5UVKSZM2dq3759SklJ0W233aaVK1eqS5cudkwLAEDzxO79AACgQRw+fFgeHh6aMWNGuddbtmyp3/3ud5Ikk8mkv/71rzT8AAA0EJp+AADQILKzs9W1a1c5O1dcWHjrrbdKknx9feXr69vY0QAAuGHQ9AMAgAZx5coVubm5VTpW9nrbtm0bMxIAADccnukHHMSBAwfUt2/fCq8bhlHlGAAAAABUh6YfcBDXc3yLYRj1mAQA6s+5c+dksVjqPB4WFlbvmQDgep06dUorVqyo0xjQ2AwrB0UCdhcfH3/d9xg6dGg9JAGA+uPn53ddb0oahqHk5OR6TAQA16+6/9vKWqvqxg3DUEpKSoPlA36KmX7AAdCwA2iObrrpJntHAIB6N2TIEHtHAGqFmX6gGcjIyGD3awAAAAAVMNMPNFF5eXn69NNPZTablZiYyBJYAAAAABXQ9ANNTExMjMxms7Zv366CggLbs2EA4GjGjRun/v37a/ny5faOAgDADYumH2gC0tPTZTab9fHHHysrK0vS1Y1g2rRpo6CgIIWHh9s5IQBUlJmZqc6dO9s7BgA0qu+++67KMR8fH7m6ujZiGoCmH3BYubm52rx5s8xms5KSkiT9b0dYd3d3vfzyyxo9erScnfk2BgAAaEwrVqxQfHy87r33Xk2ePLncWHBwcJWrMCdNmqRFixY1RkTAhm4BcCBWq1V79uyRxWLRjh07VFRUZGv0+/fvr9DQUEVERMjd3V333HOPndMCAADceLKysrRq1Sq1bt1aK1asqPSaqvZK/+ijjzRz5kx17NixISMC5dD0Aw7g6NGjioyM1CeffKIzZ87YflDcdNNNCgkJUVhYmLp37y5JioiIsGNSAACAG9unn36qK1euaPLkyWrdunWl1wwaNEjr168v99ratWv14osvavPmzXrssccaIyogiaYfcAhBQUEyDENWq1WtWrXSfffdp9DQUM6BBQAAcDCxsbEyDEMTJkyoVV1YWJheffVVffnllzT9aFQ0/YAD8fLy0p/+9CcFBQXJxcXF3nEA4Lr997//1bhx4+pUaxiGtm/fXs+JAOD6pKamqmPHjvLx8alVnbe3t3x8fJSamtpAyYDK0fQDDmDAgAFKTExUdna2FixYoCVLliggIEAhISHy9/e3dzwAqLOioiJlZmbWqZbjSAE4ogsXLqhXr15Vjo8aNUq9e/eudMzb21uHDx9uqGhApWj6AQewYcMGHT9+XBs3btQnn3yikydPymw2y2KxqFOnTgoODlZoaGi1P2AAwBF169ZN06dPt3cMAKhXJSUlVY69/fbbVY4VFhZWuckf0FAMK//qAIditVr15ZdfKjIyUtu3b1d+fr5ttqt379769ttv1b59e+3du9fOSQGgen5+fpVuZgUATdno0aNVWFio2NjYWtfeddddcnNz0xdffFH/wYAqONk7AIDyDMOQv7+/XnnlFe3du1cREREaOHCgJOnbb7+VYRg6f/68pk6dqk2bNqmwsNDOiQEAAG4cfn5+unjxYq2X6f/3v/9Vdna2+vTp00DJgMrR9AMOzMPDQw888IDWr1+v6OhozZw5U126dFFpaan27dunP/zhDxoxYoQWLFhg76gAUK9mzZqlRx991N4xAKCCn//857JarXrrrbdqVbdy5UoZhqG77767gZIBlaPpB5oIX19fzZs3T59//rk++OADhYaGytXVVbm5uYqMjLR3PACoVwcOHFB8fLy9YwBABffff7+8vb21bds2LVu27JrP6JeWluqll17Szp075e3trYkTJzZSUuAqmn6gCbrrrrv00ksvad++fVqyZIkGDx5s70gAAAA3BDc3Ny1ZskSStGbNGoWGhmr9+vX69ttvlZeXJ6vVqry8PKWmpmr9+vUKDQ3V2rVr5eTkpIiICLm5udn5M8CNho38AABAg4iPj5enp6f69u1b69phw4YpOztbKSkpDZAMAK5fVFSUFi1apIKCgmqPGLVarXJxcdHzzz+vsLCwxgsI/H80/QAAwOHQ9ANoCo4dO6ZVq1Zp69atunz5coVxd3d3jR8/XtOmTVOPHj3skBCg6Qccwrhx42p0nclkkqenp3r06KG7775bgYGBcnZ2buB0AND4aPoBNCUlJSU6fPiwTp8+rby8PHl4eKhTp07y8/OTyWSydzzc4Gj6AQfg5+dX6xrDMNSjRw+tWLFCPXv2bIBUAGA/NP0AANQPmn7AAZjN5hpdd+XKFeXk5CglJUU7d+5UXl6efHx8ZLFY1KpVqwZOCQCNh6YfgCM7e/aszp49K3d3d3Xt2vWa1x8/flyXL19W+/bt1b59+0ZICPwP64IBBxAeHl7rmvPnz2vWrFlKSkrShx9+qN/+9rcNkAwA6m7+/Pl1rq3s2VgAcAQlJSWaPHmy0tPT9de//rVGTf/hw4c1d+5c9erVSx9//HG1G/8B9Y2ZfqAJO3bsmMaPH68BAwZow4YN9o4DAOX4+fnJMIxrnmH9U2U1hmEw0w/A4WzdulXz5s3TvffeqzfffLPGdXPnztW2bdu0cuVKjR07tgETAuUx0w80Yd26dVO3bt2UlpZm7ygAUEFYWBizWQCana1bt8owDE2dOrVWdVOnTlV0dLS2bNlC049GRdMPNHHe3t7KzMy0dwwAqODFF1+0dwQAqHeHDh1S69atdeedd9aq7o477pCXl5cOHTrUMMGAKjjZOwCA63Px4kV5eHjYOwYAAMAN4ezZs7r55pvrVHvTTTfphx9+qOdEQPVo+oEm7Pjx4zp27BhH9gEAADSS0tLSOtcahnFd9UBd0PQDTVR2drbmz58vwzB4LgwAAKCRtG3bVidPnqxT7cmTJ9WmTZt6TgRUj2f6AQdgsVhqdF1JSYlycnJ0+PBh7dy5U5cuXVKXLl300EMPNWxAAKiDcePGXVe9YRjavn17PaUBgPrRt29f7dy5U0lJSbrjjjtqXJeYmKiLFy9qzJgxDZgOqIimH3AAzz77bK12uC47/qpbt25666231KpVq4aKBgB1dr2bjLLzPwBHNHr0aH3++edatmyZ1q5dKyenay+eLikp0WuvvcYKTdiFYa3t4bkA6l1N//M3mUzy9PRUjx49NHLkSAUGBqply5YNnA4A6sZsNlf6utVq1XPPPafu3btr+vTp1d4jPDy8IaIBQJ0VFRUpICBAp0+f1vjx4/WXv/yl2gmY3NxcLViwQFu3blWXLl0UHR2tFi1aNGJi3Oho+gEAQKPz8/PToEGDtH79entHAYBaO3DggKZMmaLi4mJ5eXkpNDRUQ4YMka+vr9zd3XX58mWdOHFC8fHxioqKUnZ2tlq0aKH3339fgwYNsnd83GBo+gEAQKOj6QfQ1MXGxur3v/+9zp8/X+3jSFarVW3bttWyZcvk7+/fiAmBq3imHwAAAABqyd/fX5999pnWrVunzZs3Ky0trcI1PXv2VFBQkB555BF5eXnZISXATD/gkDIyMvTZZ58pMTFRp0+fVm5urtzd3eXj46MBAwYoMDBQnTt3tndMAKgzZvoBNFXr1q3T5MmTK7x+8eJFnT59Wnl5efLw8FCnTp3k7e3d+AGBn6DpBxxIbm6ulixZoo8//lilpaWq7NvTMAyZTCZNmjRJzzzzjFxdXcuN5+fny83NrbEiA0Cd0PQDaKr8/Pw0ZMgQvfDCC/L19bV3HOCaWN4POIjz58/r17/+tY4dOyar1SovLy8NGDBA3bp1k5ubm/Lz83Xs2DElJiYqOztb69ev18GDB/Xee+/ZdoyNiopSVlbWNXfDBgAAQN20a9dO+/fvV0hIiObNm6cpU6bYOxJQLZp+wEHMnTtX6enpatu2rf7whz8oODi40uNciouLtWnTJr3yyis6dOiQFi1apGXLlmndunVaunSpZs2aZYf0AAAAN4YtW7YoIiJCmzZt0ksvvaTo6Gi98MIL6t69u72jAZWi6QccwLZt2/TVV1+pc+fO+sc//iEfH58qr23RooXCw8M1ePBgTZ48WVu2bJGzs7OioqLk5OSkPn36NGJyAKiaxWKpdvzcuXPXvCYsLKze8gBAffDy8tKrr76q4OBgLVy4UAcOHFBoaKjmzp2rxx9/vNqd/AF74Jl+wAHMmzdP0dHRWrFihcaNG1fjuu3bt2vOnDm2Hy6LFy/WAw880FAxAaBW/Pz8ruuXX8MwlJycXI+JAKB+5ebmaunSpdq4caMMw1D//v31wgsv6JZbbrF3NMCGph9wAGPGjFF+fr5iY2Nr9QtyaWmp/P39lZOTo6VLlzIjBsChjB079rrv8fnnn9dDEgBoWDExMVq4cKFOnDihFi1aqGPHjlVeaxiGtm/f3ojpcKNjeT/gAM6dO6fevXvXekbMyclJPj4+Sk5OpuEH4HBo2AHcKIYPH66JEyfqjTfeUHFxsTIzM6u8luX/aGw0/YADcHFxUUFBQZ1qCwsLbbv3AwAAoHGlp6frueeeU2JioiQpODhYI0aMsHMq4H9o+gEH0KVLF6WlpSknJ0etW7eucV12drbS09PVs2fPBkwHAHX37rvvKjExUSNHjtSvfvWra17/4Ycfau/evRo8eDDHYAFwaFarVe+9957efPNNFRQUqH379nr++edrtT8T0Bic7B0AwNUlYSUlJXr33XdrVbdmzRqVlJTwbjIAh5SRkaHly5crKSlJgYGBNaoJDAxUUlKSli1bplOnTjVwQgCom6NHj2rSpEl69dVXVVBQoJCQEG3ZsoWGHw6Jph9wAA8//LBMJpPeeecdbdiwoUY1//znP7VmzRqZTCY99NBDDZwQAGrPbDarpKRE06dPl6enZ41qWrdurRkzZqi4uFiRkZENnBAAam/VqlUKDw9XUlKSOnTooFWrVunll1+u1WpNoDHR9AMOwNfXV3PmzFFpaakWL16sKVOmaNu2bcrOzi53XU5OjrZt26YpU6YoIiJCVqtVs2fPVteuXe2UHACq9uWXX8rJyUlBQUG1qgsODpbJZFJMTEwDJQOAunv99ddVVFSk8PBwbd68WaNHj7Z3JKBaPNMPOIgZM2bo8uXLeueddxQXF6e4uDhJV2e93N3ddfnyZeXk5Ei6+gyZYRh64oknNHPmTHvGBoAqpaWlycfHR23atKlVnZeXl3x8fJSWltZAyQCg7jp16qTFixdr1KhR9o4C1AhNP+BAnn76aQ0fPlwrV67U/v37JV3drO+nM/5DhgzRrFmz5O/vb4+YAFAjubm56tatW51qvby8qj3yCgDsZfPmzZychCaFph9wMMOGDdOwYcN09uxZHThwQFlZWcrLy5OHh4c6d+6sAQMGqEOHDuVqYmNjeQMAgMPx8PCwrVCqrUuXLsnDw6OeEwHA9Vu7du1132POnDnXHwSoIcNqtVrtHQJA7R0/flxms1lRUVHKyspScnKyvSMBQDlhYWE6cuSIYmNja7XBVU5Ojvz9/dWrVy9ZLJaGCwgAdeDn5yfDMOpUW/aIZkpKSj2nAqrGTD/QhOTm5urTTz+V2WxWYmKipKs/PJyd+VYG4HiGDh2qb7/9Vv/5z3/0+OOP17juo48+UklJiYYOHdqA6QDg+vTs2VO33HKLvWMA18RMP+DgrFarYmJiFBkZqR07dqiwsFBl37Z9+vRReHi4JkyYoHbt2tk5KQCUd+TIEYWEhMjV1VUffPCB+vfvf82agwcP6tFHH1VhYaEsFot69+7dCEkBoObuvPNOFRQUyDAM9evXT2FhYQoODpa3t7e9owGVoukHHFRaWposFouioqL0ww8/SJKt2ff09NS6devk5+dnz4gAcE0LFy7Uv//9b7m4uGjmzJmaNGlSpb8YX7x4URs2bNCqVatUVFSkBx54QIsXL278wABwDWUrL6OiopSQkCBJcnZ21ujRoxUaGqrRo0ezChMOhaYfcCCXLl3Spk2bZLFYdPDgQUlXG30XFxeNHTtWYWFhmj59utq3b6+9e/faOS0AXFtxcbFmzJihffv2yTAMmUwm3XrrrfL19bUdR3rixAkdOXJEJSUlslqtGjFihFatWqUWLVrYOz4AVCsjI0MWi0UWi0WZmZkyDENeXl4KDg5WWFiYfvazn9k7IkDTDziCXbt2yWw2a+fOnSoqKrJt8jJ48GCFhIToF7/4he1oGD8/P5p+AE2K1WrVqlWr9P7775fbzd8wDP341xBPT0899thjmjFjhpycnOwRFQDq7KuvvlJkZKS2bt2qvLw8GYahW265RWFhYZowYYI6depk74i4QdH0Aw6gbBdYq9Wq7t27KzQ0VCEhIbr55psrvZamH0BTlJeXp127dunAgQM6ffq07TjSTp06aeDAgRo1ahTH9AFo8goKChQdHa2oqCjFxsbKarVq+PDhevfdd+0dDTcoHjYBHIiXl5cmTpyoCRMmqEuXLvaOAwD1ysPDQ4GBgQoMDLR3FABoMK6urrrrrruUlZWlo0ePKisrS8yzwp6Y6QccwDPPPKMdO3YoPz9fhmHYlvaHhoZq/PjxtqX9EjP9AAAAjqhsht9isSguLk6lpaUyDEP+/v76zW9+o1GjRtk7Im5QNP2AgyjbCTYyMlKJiYmSrj7v6uLiojFjxig0NFQjR45Uv379aPoBAAAcRHx8vMxms6Kjo3X58mVZrVbdeuutCgsLU0hIiDp27GjviLjB0fQDDuj48eOKjIzUxx9/rJMnT0q6+gaAt7e3Lly4QNMPAABgR8eOHZPFYrH9rma1WtWmTRsFBQWxaz8cDk0/4OBiY2NlNpu1bds25efnS7r6BkC3bt0UHh6ukJAQnv8HAABoJJMmTVJSUpIkydnZWaNGjVJYWJhGjx4tZ2e2TIPjoekHmojLly9ry5YtslgsSkhIsB3rZxiGhg4dqrVr19o7IgAAQLNXdupSz549FRgYKG9v71rf4+GHH67/YEAVaPqBJigjI0Nms1lRUVHKzMyUYRhKSUmxdywAAIBmr6zpvx783obGxPoToAny9fXV3LlzNXfuXH355ZeKioqydyQAAIAbwpAhQ+wdAagVZvoBAAAAAGimnOwdAAAAAAAANAyafgAAAAAAmimafgAAAAAAmimafgAAAAAAmimafgAA0CRNnjxZffr00ZtvvmnvKAAAOCyO7AMAoBmxWq367LPPtGnTJiUnJ+vcuXMymUxq166dOnTooP79+2vw4MHy9/dXq1at7B0XAAA0MJp+AACaiZycHM2ePVvx8fG215ydneXm5qZTp04pIyNDBw4c0Nq1a7V06VJNnDjRjmmvX5cuXdSjRw+1adPG3lEAAHBYNP0AADQTf/zjHxUfHy+TyaRHH31Uv/rVr9S1a1c5OTnpypUr+u6777Rnzx5t2rTJ3lHrxcsvv2zvCAAAODzDarVa7R0CAABcn/T0dI0fP16S9Pvf/17Tpk2r9vqCggK5uro2RjQAAGBHzPQDANAMpKSk2D4eN27cNa//acM/duxYZWZmaunSpQoICNDbb7+t6OhonTp1Sm5ubho0aJCmT5+uO+64o9r7JiQkaMOGDUpISNDZs2fVsmVL9ejRQwEBAXr44Yfl4eFRZe2FCxe0fv167dq1S8eOHVN+fr46dOig7t2765577tGECRPk6elpu37y5MmKj4/XnDlz9OSTT1Z6z9TUVK1bt05xcXE6ffq0nJyc5OPjo7Fjx+rRRx9V27ZtK61LSkrS3//+dyUmJurMmTMymUxq06aNbr75Zvn7++v+++9X586dq/1aAADgCGj6AQBoZrKysnTLLbfUqTYnJ0e//OUv9f3336tFixZycXHRxYsXtWPHDu3cuVMRERH65S9/WaGutLRUL7zwgtatW2d7zd3dXfn5+Tp06JAOHTqkyMhIvfvuu7r55psr1O/du1dPP/20srOzJV3di6BVq1b64YcflJmZqX379qljx4665557avy5vPPOO3rttddUWloqSXJzc1NxcbFSU1OVmpqqjRs3avXq1brtttvK1ZnNZs2fP19liyFbtmwpk8mkkydP6uTJk9q/f7+6dOnS5PdEAADcGDiyDwCAZuD222+XYRiSpBdffFHff/99ne6zYsUKnT9/Xq+//rq+/vprJSQkaMuWLRo6dKhKS0u1aNEiffPNNxXq3njjDa1bt07t2rXTwoULFRcXp8TERNuM+W233abvv/9eTz75pK0JL5OcnKxZs2YpOztbvXr10urVq/X1118rLi5OSUlJ2rhxox5//PFqVwn81EcffaRXX31Vrq6ueuqpp7R37159/fXXtvsNGzZMZ86c0cyZM5WXl2ery8/PV0REhKxWq0JCQrRt2zYdOnRICQkJSkxM1MaNGzV16lS1a9euTl9fAAAaG8/0AwDQTPzf//2f/v3vf0uSDMNQ3759deedd6pfv37q37+/evXqZXtj4KfKlvdL0tq1a+Xv719uvKCgQKGhoUpPT9eoUaO0evVq29iJEycUEBCgFi1a6F//+pf8/Pwq3D83N1dBQUHKysrSypUry83Y//rXv1ZCQoK6d++u//znP+WW8FenquX9ubm5GjNmjHJycrRmzRqNHDmyQu2VK1f04IMP6ptvvtH8+fM1ZcoUSdLBgwf1wAMPyN3dXfv375ezM4siAQBNGzP9AAA0E4sWLdKsWbPk7u4uq9Wq5ORk/fOf/9SCBQs0YcIEjRgxQkuXLtXZs2ervMfAgQMrNPzS1T0Apk6dKknas2ePLl26ZBszm80qKSnRyJEjK234JalVq1a2Rn/Pnj2219PT05WQkCBJeuqpp2rc8FcnOjpaOTk5uu222ypt+KWrjw8EBwdLuvpoQZmyv7+4uFgXL1687iwAANgbb18DANBMODs7a968eXr88cf1+eefa//+/Tp06JCOHj2q4uJinTt3TmvXrlVUVJRWr16t/v37V7jHsGHDqrx/2Vhpaam++eYb258PHDggSdq3b59GjBhRZf3ly5clSSdPnrS9lpiYKEkymUy6++67a/kZV64sz9GjR6vNU1BQUCFP165d1bNnT6WlpenBBx/UpEmTNHLkSPXu3Vsmk6le8gEA0Jho+gEAaGY8PT0VGhqq0NBQSVJhYaESEhL097//XTt37tSFCxf05JNPKjo6Wi4uLuVqO3XqVOV9fzx2/vx528c//PCDpKtNfVljX52yZluSzpw5I0lq06aN3N3da/DZXVtZnsLCQhUWFtYqj8lk0vLlyzV79mydOHFCy5Yt07Jly+Tm5qYBAwbo3nvvVXh4uNzc3OolKwAADY2mHwCAZs7FxUXDhw/X8OHD9eyzz8psNisrK0t79uyp1W74VSkpKZEkPfHEE3rmmWdqVVvVHgP1kScwMFDLly+vdb2fn58+/fRTffHFF9q7d68SExN15MgRxcTEKCYmRqtXr9bbb7+tPn361Hd0AADqHc/0AwBwA3nwwQdtH6elpVUYP336dJW1Px778fn2HTp0kFR+mXxNldVeuHChRqsEanPPuuQp07JlSwUEBGjx4sX65JNPFBsbq+eff17e3t46deqUnn322XrJCgBAQ6PpBwDgBvLjJfQtW7asMB4XF1dlbdmYk5NTubPtBw4cKEmKiYmp0XL6HxswYICkq7Pzu3fvrlVtVcryfPPNN7al/terTZs2mjRpkm0lQ3Jysi5cuFAv9wYAoCHR9AMA0AxkZGTo+++/v+Z1FovF9nG/fv0qjCckJFTa+BcWFuq9996TJP385z9X69atbWP333+/nJ2ddeHCBb3xxhvV/v1FRUXKy8uz/blbt24aMmSIJGn58uXKzc295udwLffdd59at26t4uJivfjii6rudOLS0lLl5OSUy1edH++B4OTEr1EAAMfHTysAAJqB7777ToGBgZo2bZosFotOnDhhGysuLlZycrLmz5+v999/X5LUv39/DRo0qMJ9PD09NXfuXH322We6cuWKpKu74E+bNk1paWkymUyaO3duuZquXbtq5syZkqQ1a9boj3/8o1JTU23jV65cUUpKilasWKGAgAClpKSUq1+wYIFcXFyUnp6uhx56SLt371ZxcbGkqysADh48qIULFyomJqZGX4vWrVvrueeekyRt3rxZ06ZNU1JSkkpLSyVdbfSPHj2q9957T0FBQdq5c6etdvPmzZo0aZI+/PBDZWRk2F4vKSnRnj17tGzZMklXVyh4eXnVKA8AAPbERn4AADQDzs7OKi0t1a5du7Rr1y5JUosWLeTh4aHs7Oxys939+vXTihUrKp2pnjNnjj788EPNmzdPLVu2lIuLiy5duiTp6qZ7f/7zn3X77bdXqJs9e7ZKSkr0t7/9TVFRUYqKipKrq6tcXV116dIl2+Z6Zff5sb59++qtt97S7373O6WmpuqJJ56wZc/Ly7O9AVCbI/3Cw8NVUFCgJUuWaPfu3dq9e7datmwpd3f3cvf8aR6r1arExETbUYJlNTk5ObY3DTp27KglS5bUOAsAAPZkWKtb8wYAAJqMY8eOadeuXUpISNCRI0eUlZWl/Px8ubq6qmPHjurbt68CAgJ03333VWj4x44dq8zMTC1dulQBAQF6++23FR0drVOnTtmOq5s+fbrtGfyqpKamasOGDYqLi9OpU6dUVFQkT09Pde/eXQMHDtS9995b5T3Onz+vDz74QLt379bx48dVXFys9u3bq0ePHgoICFBQUJBatWplu37y5MmKj4/XnDlz9OSTT1Z6zxMnTmj9+vWKiYnRiRMnlJ+fr1atWsnX11cDBgzQ2LFjNWzYMNvX4+LFi/riiy8UFxen5ORknTlzRtnZ2XJzc1OPHj00ZswYPfLII+UebwAAwJHR9AMAgHJN/8SJE+0dBwAA1BOe6QcAAAAAoJmi6QcAAAAAoJmi6QcAAAAAoJmi6QcAAAAAoJliIz8AAAAAAJopZvoBAAAAAGimaPoBAAAAAGimaPoBAAAAAGimaPoBAAAAAGimaPoBAAAAAGimaPoBAAAAAGimaPoBAAAAAGimaPoBAAAAAGim/h+TRAIvIyYUXgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df_seq.plot(kind='bar', stacked=True)\n", + "plt.title('Number of proteins in HOGs / singltons / minor splice variants', fontsize=16)\n", + "plt.xlabel('Species')\n", + "plt.ylabel('Counts')\n", + "plt.xticks(rotation=90);" + ] + }, + { + "cell_type": "markdown", + "id": "15f874d2-650a-485f-9a9c-6f0e905d68eb", + "metadata": { + "papermill": { + "duration": 0.007761, + "end_time": "2024-10-18T00:52:49.434966", + "exception": false, + "start_time": "2024-10-18T00:52:49.427205", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "## Group sizes\n", + "\n", + "As HOGs are nested groups, we first look at the rootlevel HOGs, so the deepest level of each HOG. The level itself can be at any of the internal taxonomic levels" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "46a7e584-80bb-4881-90b2-6d5b3227f3d5", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:49.449010Z", + "iopub.status.busy": "2024-10-18T00:52:49.448559Z", + "iopub.status.idle": "2024-10-18T00:52:49.457303Z", + "shell.execute_reply": "2024-10-18T00:52:49.456732Z" + }, + "papermill": { + "duration": 0.016886, + "end_time": "2024-10-18T00:52:49.458362", + "exception": false, + "start_time": "2024-10-18T00:52:49.441476", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idlevelCompletenessScorenr_membersis_roothog
0HOG:0000001_2inter11.02False
1HOG:0000001_1inter21.03True
2HOG:0000002_2inter11.02False
3HOG:0000002_1inter21.03True
4HOG:0000003_2inter11.02True
5HOG:0000004_2inter11.02False
6HOG:0000004_1inter21.03True
7HOG:0000005_2inter11.02True
8HOG:0000006_2inter11.02True
9HOG:0000007_2inter11.02True
10HOG:0000008_1inter21.02True
11HOG:0000009_1inter21.02True
12HOG:0000010_2inter11.02True
13HOG:0000011_2inter11.02False
14HOG:0000011_1inter21.03True
15HOG:0000012_2inter11.02True
\n", + "
" + ], + "text/plain": [ + " id level CompletenessScore nr_members is_roothog\n", + "0 HOG:0000001_2 inter1 1.0 2 False\n", + "1 HOG:0000001_1 inter2 1.0 3 True\n", + "2 HOG:0000002_2 inter1 1.0 2 False\n", + "3 HOG:0000002_1 inter2 1.0 3 True\n", + "4 HOG:0000003_2 inter1 1.0 2 True\n", + "5 HOG:0000004_2 inter1 1.0 2 False\n", + "6 HOG:0000004_1 inter2 1.0 3 True\n", + "7 HOG:0000005_2 inter1 1.0 2 True\n", + "8 HOG:0000006_2 inter1 1.0 2 True\n", + "9 HOG:0000007_2 inter1 1.0 2 True\n", + "10 HOG:0000008_1 inter2 1.0 2 True\n", + "11 HOG:0000009_1 inter2 1.0 2 True\n", + "12 HOG:0000010_2 inter1 1.0 2 True\n", + "13 HOG:0000011_2 inter1 1.0 2 False\n", + "14 HOG:0000011_1 inter2 1.0 3 True\n", + "15 HOG:0000012_2 inter1 1.0 2 True" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hog_df" + ] + }, + { + "cell_type": "markdown", + "id": "44872248-8ad8-487c-89c2-147337d2c5f1", + "metadata": { + "papermill": { + "duration": 0.006498, + "end_time": "2024-10-18T00:52:49.471634", + "exception": false, + "start_time": "2024-10-18T00:52:49.465136", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "Now, we can slice the HOGs in various ways. Remember, they are nested, so it usually makes sense to analyse either all the HOGs at their root level or alternativly look at a specific taxonomic level.\n", + "\n", + "## Roothogs (deepest levels for every HOG)\n", + "\n", + "Here, we first look at the all the RootHOGs. We can select them using the `is_roothog` column" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "0a8c5e3f-daed-431c-ba79-46a0f701a779", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:49.485810Z", + "iopub.status.busy": "2024-10-18T00:52:49.485490Z", + "iopub.status.idle": "2024-10-18T00:52:49.495651Z", + "shell.execute_reply": "2024-10-18T00:52:49.495064Z" + }, + "papermill": { + "duration": 0.018457, + "end_time": "2024-10-18T00:52:49.496699", + "exception": false, + "start_time": "2024-10-18T00:52:49.478242", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of RootHOGs: 12\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CompletenessScorenr_members
count12.012.000000
mean1.02.333333
std0.00.492366
min1.02.000000
25%1.02.000000
50%1.02.000000
75%1.03.000000
max1.03.000000
\n", + "
" + ], + "text/plain": [ + " CompletenessScore nr_members\n", + "count 12.0 12.000000\n", + "mean 1.0 2.333333\n", + "std 0.0 0.492366\n", + "min 1.0 2.000000\n", + "25% 1.0 2.000000\n", + "50% 1.0 2.000000\n", + "75% 1.0 3.000000\n", + "max 1.0 3.000000" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "roothog_df = hog_df[(hog_df['is_roothog']==True)]\n", + "print(f\"Number of RootHOGs: {len(roothog_df)}\")\n", + "roothog_df.describe()" + ] + }, + { + "cell_type": "markdown", + "id": "ec10e7c9-b803-45c1-b131-302c12b1da6c", + "metadata": { + "papermill": { + "duration": 0.006619, + "end_time": "2024-10-18T00:52:49.510177", + "exception": false, + "start_time": "2024-10-18T00:52:49.503558", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "We can further analyse how complete these roothogs are. The `CompletenessScore` contains the fraction of species that have at least one gene in the HOG. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "c90ff7ef-c88f-4c74-bfbb-0cf2fa0d5901", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:49.525006Z", + "iopub.status.busy": "2024-10-18T00:52:49.524577Z", + "iopub.status.idle": "2024-10-18T00:52:49.815341Z", + "shell.execute_reply": "2024-10-18T00:52:49.814511Z" + }, + "papermill": { + "duration": 0.299493, + "end_time": "2024-10-18T00:52:49.816559", + "exception": false, + "start_time": "2024-10-18T00:52:49.517066", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAHhCAYAAAC7jKLDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/pklEQVR4nO3dd1QU1+M28GeBBQUUrCA2bAsqYMFGbBGNYvnGksResGE3xtiNJrFHE2OLJsaIxkSjiaLGiiVGLKhYIAhYAaVZUASl7ALz/uG782NlF3aXkebzOScnuHNn5s7d2dlnZ+7ckQmCIICIiIiIiCRjUtQVICIiIiIqbRiyiYiIiIgkxpBNRERERCQxhmwiIiIiIokxZBMRERERSYwhm4iIiIhIYgzZREREREQSY8gmIiIiIpIYQzYRERERkcQKFLLPnz+PuXPnolu3bmjevDlcXFzQrl07jBw5Etu2bcOzZ8+kqmexsn79ejg5OWH9+vWFtk5PT084OTkhJiam0NYppWHDhsHJyQmXLl3SeH3OnDlwcnLCvn37iqhmmkpKPYGi2Q8L07Vr1zBq1Ci0atUKzs7ORrV/cHAwvvzyS/Ts2RMtWrSAi4sLPDw8MHToUGzcuBFxcXFvqfZFq6QfL0qqlJQUbNy4EZ988gnc3d3RuHFjvPfee/jf//6HmTNn4o8//kBqampRV7NQCYKALVu2oFevXnBzc4OTkxOcnJyKulpG0fU9sG/fPjg5OWHOnDkGLU/dFjn/c3Nzg6enJz777DMEBQVJWf23Rt0u+W2/+jtr2LBhOsuoVCrs2bMHY8aMQbt27eDi4oLWrVvjk08+wYYNG/TOlY8ePcL69esxePBgtG3bFi4uLmjWrBm6du2KqVOn4s8//0RycrJB22kMM2NmevbsGT7//HNcuHABAFC9enW0bt0alpaWePLkCa5fv44LFy5g7dq12LZtG5o0aSJppUubOXPmwM/PD8uXL0e/fv2Kujol0rBhw3D58mX8+uuvaN26dVFXp8AuXbqE4cOHo1WrVtixY0dRV6fQPXr0COPGjUNKSgrc3d1RvXp1mJiYoFatWnrNn5aWhi+++AKHDh0CAFSpUgXu7u6wtrZGUlISQkJCcOXKFWzcuBFr1qxBly5d3ubmlHjqUHTr1q0irknxdf/+fYwcORIJCQkwNzdHkyZNULVqVWRkZODevXs4ePAgDh48iObNm0OhUBR1dQvNzp07sWrVKpQrVw4dOnSAtbV1UVep2GnXrh2qVKkCAHj+/DlCQ0Nx5MgRHD16FHPnzsWIESOKrG779u3D3Llz0bdvX6xYseKtruvevXuYOHEioqKiYGpqiiZNmqB169Z48eIFrl27hpCQEPj6+mL58uXo2rWrzuX88ssvWLNmDZRKJcqUKQNXV1dUqVIFWVlZiIuLw8mTJ3H8+HGsWLECP/30E1q0aPHWtsngkJ2SkoLBgwcjMjISdevWxeLFi3NVUKlUws/PD+vXr8eTJ08kq+y7bNu2bVCpVLCzsyvqqkhq+vTpGDt2LKpWrVrUVQEAfPPNN0hLS4ODg0NRVyVfQ4YMQY8ePVChQoWirorkzp8/j+TkZPTq1QvfffedQfOqVCqMHj0aV69eRZUqVfD111+jc+fOGmUyMzNx4sQJfP/99zzbS5KYOXMmEhIS0Lp1a6xZswYVK1bUmB4XFwc/Pz9YWloWUQ2LxrFjxwAAa9euRdu2bYu4NsWTj4+PxsmhtLQ0zJo1C/7+/li1ahW8vLxK3Xf/mx4+fIjBgwcjKSkJ7733HpYuXarxPZyeno61a9di69at+PTTT7F+/XqtJ0dWrVqFLVu2QC6XY+bMmRg6dCjKlCmjUSYlJQV79+7Fli1b8OjRo7e6XQaH7MWLFyMyMhLVq1fHrl27YGtrm6uMubk5BgwYgM6dOxfK6fh3gb5n8EqaqlWrFpuADaBEhGu1ihUr5voiLy3U3TgcHR0Nnnfjxo24evUqypcvj127dqFmzZq5ypiZmaF79+7o0KEDoqOjC1pdesc9ePAAoaGhAICvv/5a6+fSwcEBkyZNKuyqFTn1Z7l27dpFXJOSo2zZsvjiiy/g7+8PlUqFgIAAfPzxx0Vdrbdq1qxZSEpKQtOmTfHTTz/B3NxcY3qZMmUwe/ZsAMDWrVsxZ84cnDhxQuMk04ULF7BlyxYAyPMKZbly5eDt7Y2+ffsiKSnp7WzQ/2dQn+yHDx+Kl1/nzp2rNWDnVLlyZdStW1f8d379WnX1a8r5ekpKCpYvXw5PT0+4urqia9eu2Lx5M7KzswG8vsy8cOFCdOzYES4uLujWrZvOy+359Vs0tB+uSqXCgQMH8Pnnn8PLywvNmzeHm5sbunXrhiVLluT6xRQTEwMnJyf4+fkBeN2mOftm5exr+2Zds7Ky0KFDBzg5OeHGjRs66/TNN9/AyckJy5YtyzXt4sWLmDx5stjvycPDA5MmTcL169f12t43xcfHY+7cuWjXrp343nz//fdIT0/XOY+uNs7Ozsbu3bsxcOBAtGjRAo0bN4aHhwc+/PBDLF68WGyHS5cuwcnJCZcvXwYADB8+XKMN1ctVt7WnpyeysrLg6+uLPn36oFmzZhr9A3X1yc4pIiICkydPRps2beDm5ob//e9/2L59O7KysvTePjVt+/ywYcMwfPhwAMDly5c1tsfT01Msl1+f7ICAAIwbNw4eHh7i/RLTpk3Df//9p7V8zm0PDw/H5MmT0bp1a7i4uKBHjx7YunUrBEHQ2S55OXz4MEaMGIFWrVrBxcUFnTp1wty5cxEZGam1PdTbtGHDBq3brsvLly/x66+/AgAmTZqkNWDnZGVlhUaNGuV6vSBtd+PGDfHMVLNmzTB06FCNvpVnz57FiBEj0LJlSzRr1gwjR47EzZs3cy0z5z6bmZmJn3/+GT179oSbmxtat26NTz/9FPfu3cu3TbQ5duwYRo8ejTZt2sDFxQXt27fHjBkzcPfuXY1y6n1M7c3+o28eOyMjI7Fw4UJ06dIFrq6ucHd3x5AhQ3DgwIF8282Yfc7QY1hUVBTmzp0LT09PsY9mp06d4OPjg7179+Yqf/ToUXh7e6N169Zo3LgxWrdujR49euCLL75ARESEWO7p06fi35UqVdJZ37xcvHgRU6dORYcOHeDi4oI2bdrgo48+wrp16/D8+fNc5QuyjwYFBWH8+PFo06YNnJ2dNY5P6enp2Lp1K/r3748WLVrA1dUV3bp1w8qVK7XWQxf1+tT7SOfOnbV+t73NbdHF0O/qomBnZydmrMTExFzT09LSsHnzZvTt2xfNmjVDkyZN0LNnT3z//fd48eKFzuXeu3cPc+fORadOneDi4oJWrVphxIgROHLkSK6ynp6emDt3LgDAz89P47OfV79qQ12+fBnXrl0DACxYsCBXwM5p2rRpqFSpElJSUvD7779rTNu0aRMA4IMPPtCrC6CNjY3WH3/6fu71YdCZ7H/++QdZWVkoX768Xl94UktOTsaAAQOQlJSEFi1a4NWrVwgKCsJ3332HR48eYcSIERg8eDDMzMzQrFkzPHv2DEFBQViyZAnS0tLg4+PzVuuXmJiIWbNmoVy5cqhXrx6cnJyQlpaG8PBw7NixA4cPH8Yff/whvqmWlpbo27cvrl69igcPHqB58+Yab3jDhg11rsvU1BR9+vTBTz/9hH379qFp06a5ymRmZuLgwYMAgI8++khj2jfffIOtW7fCxMQELi4ucHd3R3x8PE6dOoV//vkHixcvzjVPXu7du4dhw4YhMTERVapUgaenJ9LS0rBt27Y8A6su8+fPx759+2BhYQF3d3dUrFgRSUlJiImJwW+//QYPDw/UqFEDlStXRt++fREQEICnT59q9G0Dcl8BEAQBkydPRkBAAFq0aIF69erhzp07etcrJCQEX331FSpXrgwPDw8kJyfj0qVLWLZsGa5evYq1a9dCJpMZvL05tW/fHubm5jh37hwqV66M9u3bi9P07RqyZs0abNq0CTKZDM2aNYODgwPu3buHo0ePwt/fH4sWLdJ5ZuTcuXPw9fVFrVq10LZtWzx58gRXr17FN998g/j4eMyfP1/vbREEAXPmzMH+/fthZmaGFi1aoFKlSrh58yb27duHo0ePYt26dejQoQOA1+9X3759ER4ejoiICDg7O4ufA322/dKlS3j58iVkMhl69+6tdz1zKkjbnTlzBr/++isUCgXee+89REZG4sqVKxg5ciS2b9+O8PBwLFmyBE2aNEHbtm0RHh6OCxcuYOjQodi/f7/Os32fffYZ/vnnH7Rs2RJOTk4ICQnBsWPHcPbsWWzduhXNmjXTa9syMzMxY8YMHD16FObm5mjcuDHs7OwQFRWFv//+GydOnMD69evF96Nhw4bo27eveCKgb9++GsvL2fXh6NGjmD17NjIyMlC3bl107NgRKSkpCAkJwaxZsxAYGIjly5drrZcx+5yhx7Dbt29j0KBBePnyJerUqYNOnTrBxMQEjx49wpUrV/Do0SON8hs2bMD69evF7xM7OzukpKQgPj4ef/31F+rXrw9nZ2cAmlfAfv31V0yePFmv90NtyZIl4smghg0bokWLFkhJSUFkZCR++OEHtG7dWqM7QUH20WPHjuGPP/5A3bp18d577+HFixdiqHn06BHGjBmD27dvw9bWFq6urrCyskJYWBh++eUXHDt2DDt27ED16tXz3ab27dujevXqOH78OFJTU9GtWzdxf8n53fa2tiUvhn5XF4Xs7GzxJtk3f7glJSXB29sb4eHhsLa2Rps2bSCXy3H58mX8+OOPOHToELZv344aNWpozHfmzBlMnToVGRkZqFOnDrp27YrExERcuXIFgYGBOHfunMYJuW7duuHGjRu4du0aatWqBXd3d3FazhOoBXXy5EkAQIMGDeDi4pJnWQsLC3Tv3h2//fYbTp8+LX7WXrx4IZ7MMPbYDxj2udeLYICZM2cKCoVCGD58uCGziWbPni0oFAph7969Wqfv3btXUCgUwuzZs7W+rlAohHHjxgmpqanitNDQUKFRo0aCs7Oz0KNHD2HhwoWCSqUSp584cUJQKBRC8+bNNeYTBEHo1KmToFAohIcPHxpU33Xr1gkKhUJYt26dxuspKSnCyZMnhYyMDI3XlUql8N133wkKhUIYO3aswe2iq66RkZGCQqEQWrRoIaSnp+ea5+TJk4JCoRD69u2r8fru3bsFhUIhfPDBB0J4eLjGtMuXLwvNmjUTGjduLERGRuqsz5s++ugjQaFQCJ9++qlGXWJjY4UuXbqI719gYGC+2x4bGysoFAqhQ4cOwuPHj3Ot6+7du0JsbKzGa0OHDtW6fLWHDx+KdejQoYNw//59reV0LUddT4VCIXz11Vca+9jt27eFNm3aCAqFQti1a1e+25eTrn0+MDBQUCgUwtChQ7XOJwi698N///1XUCgUgqurq3Du3DmNaXv27BEUCoXQuHFj4fbt21q3Xdt2XLhwQXBychIaNmwoxMfH66zTm3bu3CkoFAqhdevWQlhYmPh6dna2WP8WLVoIiYmJem1bftasWSMoFAqhc+fOBs2nVtC2c3JyEvbv368xbfny5YJCoRC6desmNG3aVLhw4YI4LTMzU5gyZYqgUCiE+fPna8yXc59t3bq1xmc1MzNTWLx4saBQKIROnTrlOuboOratXr1aUCgUwieffCI8ePBAY9rRo0eFhg0bCi1bthRevHihMU1dD10iIiIEFxcXwdXVVTh+/LjGtJiYGKFXr16CQqEQ/Pz8tLabofucMcewOXPmCAqFQti4cWOu+qelpQmXL18W/52RkSG4ubkJTZs2Fe7du5erfExMjHD37l2N1yZMmCBuS48ePYQVK1YIhw8fFqKjo3M3WA6//vqroFAohFatWgkXL17MNT04OFiIi4sT/y3F5/u3337LtZ7s7Gxh4MCBgkKhEObNmyekpKSI01QqlbBixQpBoVAIw4YNy3N73pTX9+zb2pb8SP1dres4nh9d34uCIAjnzp0Ttz8hIUFj2rRp08TP8bNnz8TXX758KYwZM0ZQKBTCgAEDNOZ58uSJ4O7uLn4GsrOzxWkhISFCy5YtBYVCIezevdvgbVO3S37brz6uv/m9NnjwYEGhUAhz5szJc341Pz8/QaFQCM7OzuJ38YULF8T2NOQ7KidjPvf5Mai7iHroFGMvhxWUpaUlli5dirJly4qvNW7cGB06dBB/9c2bNw9mZv93gr5Lly5QKBR4+fKl2GfubbG2tkbnzp1z/ZKWy+WYPn06qlatioCAALx8+VKS9Tk6OqJFixZITk7GiRMnck1XXzbLeXYmOztbvFS3evXqXL/IWrZsiYkTJ0KlUmH37t161ePq1av477//YGlpiS+//BIWFhbiNAcHB7Eflb7Ul14bNWqkcVZarV69egXqO/3ZZ5+hTp06Rs1bpUoVzJkzR2Mfa9CggdjX0tfX1+h6SWXr1q0AIA5dlNMnn3yCTp06QaVSid0q3tS1a1cMHDhQ4zUPDw+0a9cOWVlZCAwMNLgukyZN0jh7JZPJMHnyZDg5OSE5ORl79uzRe5l5KegxqqBt161bt1xnUcaPHw/gdVeKQYMGwcPDQ5xmamqKcePGAXjdXUCXCRMmaHxWTU1NMWvWLNjZ2SE2NhbHjx/Pd9uSkpKwbds2WFhYYP369bm60nh5eWHAgAF48eKFeAVMXz/++COUSiWmTZuW667/6tWrY+nSpQAgyT5n7DFMfcm9Y8eOudZfpkwZtGzZUvz3y5cvkZ6ejpo1a2o9Y1e9enXUq1dP47WVK1fiww8/hEwmw927d7F161Z89tln+OCDD9CxY0esXr0612X8zMxMbNy4EcDr+53atGmTa11ubm6oVq2a+O+C7qNt2rTBkCFDcr0eEBCAa9euoWHDhvj66681RgExMzPDzJkzoVAocOnSJdy+fVvrsg31trYlP4X9XW2IZ8+e4dixY5gzZw5MTEywcOFCjZse4+LicOzYMchkMixatEjjCp+VlRWWLFkCCwsLXL9+XeyCAQB79uxBSkoKGjdujAkTJmhccXV1dRWPU7/88ovRdX+zS8mb/23YsEHnNgOvuxjrQ318z87OFj9TObsy6bpXafHixZgzZ47Gf5s3bxanG/O5z0+JehiNi4uL1i9P9c1RrVu31gh4b05//Pjx26yeKCIiAr6+vli8eDHmzp0rvplZWVnIzs7GgwcPJFuXesg/9eVctWfPnuHff/+Fubk5evXqJb4eFhaGx48fo1atWjovy7Rq1QoA9O6bre4P3b59e62X9Dt37oxy5crptSzg9WUoKysrnD17Fps2bcLDhw/1nlcf3bp1M3re7t27a93H+vTpA+B1n8+i7M+XmZkpHljfvLSvpr70qqsbT6dOnbS+rj646Ps5SkhIEPd1bXWRyWTi/mtMlyKpSdF22gKcra2t2LdS23T1Jem82lVbfczNzdGjRw8A//cZzMulS5eQnp6O5s2b6xypwNDPPvD6i+7s2bMAINbnTa6urrC0tER4eDgyMjJyTTdknzP2GObm5gYA+OqrrxAQEKC1HmoVK1ZE9erVcevWLaxYsSJXX3VtrK2tsWrVKpw4cUJ8foT6h0xCQgJ++ukn9OnTR6Mf+82bN/Hs2TNUqFABH3zwQb7rkGIf1XX8+/fffwG8/sGT8ySCmomJiTiSmLH37eT0NrdFX4X5XZ2XnPcSeXh44NNPP0VycrLYNz6nK1euIDs7G40aNdLabcHOzg7t2rUDoNlu6mNEfm1dkO8wdXc/Xf8Z1M0iD4KR9wYdOnQIfn5+Gv8FBASI04353OfHoD7Z6l8H2jrhF4acv+ZzUvfz0jXdysoKAPI8qEohNTUVs2bN0npWOScpfx13794dS5YswYULF5CQkAB7e3sAwMGDB6FSqdCjRw/Y2NiI5dWB9cGDB/k+EEDfQd8TEhIAQGc/PZlMhurVq+t9w4C1tTWWL1+OuXPnYs2aNVizZg2qVKmCpk2bon379ujVq5f4nhqqUqVKGldCDPVmH7ecdba1tUVSUhIePXpUZMMtJSUlifu5rrqqv/h1HUh1fY7UZ7b0/Rypl29ra6tzbFx1n3mpfpgU5Bj1NtvOysoKSUlJWq/AqNtGqVRqnbd8+fIoX7681mnqeqo/g3lRf/YvXrwo2WcfeN1u6mOath8R2sq/+fkwZJ8z9himHtbxwoULGDNmDORyOZycnNCyZUv06NFDDOFqK1euxNSpU+Hr6wtfX1/Y2trCzc0Nbdu2xYcffqjzbFnNmjXh7e0Nb29vAEBsbCz++usvbNmyBXFxcVi0aJF49iw2NhYAUKdOHb3u5ZBiH9V1nFa369q1a7F27do86yHFg+be5rbkpyi+q/OivpcoOzsbT58+xZUrV5Ceno6ZM2fmGiFJ3Ra62gzQflzNb77y5csX+DvM3d09z7G0169frzUHqE/O5byBOC/q/c/ExETMNzlP8D179kzMQjnl/NFx4MABzJo1K1cZYz/3uhgUshs3bowDBw4gLCwMWVlZMDU1NWhl+VGPEKKLiUneJ97zm26o/OrzptWrV+PEiROoW7cuPv/8c7i6uqJChQriJamBAwfi+vXrRv8K08bS0hLdu3fH3r17sX//fvGSj7qryJsPt1Gvu0qVKuKvXV2Kcvzlbt264b333sOpU6dw9epVXLt2DSdOnMCJEyewbt06bN261ainhr05XubbYMj7a+g+Vhik/hwVpsaNGwN4PTLH8+fPC30fzq/tCnpTrC767HPqfa127dpo3rx5nmUNuakp5z6s6yxZTnK5PNdrhuxzxh7DypYtC19fX4SEhCAgIADXr1/H9evXERoaCl9fXwwePBhffvmlWL5FixY4ffo0zpw5gytXruD69es4d+4czp49i3Xr1uGHH37Q6PqjS/Xq1fHpp5/CxsYGy5cvx/nz55Genl4oxyJtdK1X/T66u7vnO2RsgwYNJK+XMYxtw6L4rs7Lm+Nk57wB9fPPP8fu3bvf2rGjOGjcuDGuXr2KkJAQvcqryzk7O4tXXRo2bAgTExNkZ2cjNDRUa8jWh1SfezWDQnanTp2wYsUKJCcn4/Tp03pd3spJfXB99eqV1umF/Yhjqetz9OhRAMD333+v9bJIVFSUYRXUU79+/bB37174+flh/PjxuHnzJm7dugV7e/tc/dzUO56tra1kT29S/+JVn5XRxpj3tly5cujTp4/YFSM+Ph6LFy/GqVOnsHjxYvz2229G1bcgdA33+PLlS3G8zZwf7sLe521tbWFubg6lUomHDx9q3Q/VZ6ze9tl29fLVZzq1nc2Wui5t2rSBlZUVXr16hQMHDohnE/VRnNoup+TkZCQnJ2s9m63+zOnzhaI+W1ynTh1Jn9xWoUIFlClTBunp6Zg1a9ZbH7u9oMcwNzc38ax1ZmYmTp48idmzZ2Pnzp3o1q2bRr/oMmXKwMvLC15eXgBenyFbs2YNdu/ejXnz5uGff/7Re73qY3FmZiaSk5NRpkwZ8cpGVFQUBEHIN0i9zX1UvX907twZo0ePNmheYxTl562ovqv1ZWdnhzVr1qB3794IDg7GwYMHxXs91G2RVzdKbe1mZ2eH+/fv65wvJSVF/A4r7CuxnTt3xq+//oq7d+8iNDQ0zxFGMjIyxPcv5yh3tra2aN68OYKCgnDw4MECPcVXys+9QaesatWqhZ49ewIAVqxYke8g3omJibh//774b/Ubp21sV0EQxH59hUX9EBRt9Xny5InWsWvzou6Ar+0SVkBAgM4xRtVBTNs4y/po0aIFHB0dERUVhatXr4pnsfv06ZPrDJH6F/vdu3cNGrouL+r+jwEBAVr3iVOnTknyUKJq1aph6tSpAIDw8HCNaQVtQ30dO3ZM62V99TjAtWvXznVgAwzf59Xbk5mZaVD9zMzMxGGW3uynr6YeD/htP37e3t5ePCOmbexaQRDEOkpVF2tra3H81h9++CHf/vyvXr1CWFgYgOLVdm/SNs60UqkUx7ZVfwbz4uHhIQ7zZWh3mrz2R1NTU7z33nsA/i+8vE1SHsPMzMzg5eUlnhHPr0tbxYoVMXPmTACvfyCrj/n6nPFU/6A2NzcXz7C7uLigQoUKePbsmTiMWX71fVv7qHrYxmPHjhXKGdyi/LwZ+11dmOrVqyfeDLxhwwbxs9eyZUuYmJiIw5y+6fHjx2I/45ztpj5G7N+/X+v61G3t6Oio8R1m7HeRIdq0aSMOQ7xo0SKdXeeA10M+Pnv2DNbW1rluep0wYQIAwN/fH2fOnJGsfro+9/ow+LrwggULULt2bcTExGDw4MEaD1lQUyqV+Ouvv9CnTx+NkK0+xX7gwAGNDuUqlQqrVq3SOfD826L+YtiyZYtGCHz27Blmz54tjlGpL/Ul1jcffnP//n2Ny5BvUu/QBfnCUI8g8scff4gPDHqzqwjw+gMzefJkcbxobe9fVlYWLl68mOdDbnJSPywmNTU11wckPj4eK1euNGhbwsLCcOTIEa0PsTl9+jSA3E9mlKIN9fH48WN88803GmH+3r174ggBI0aM0Chv7D6vPlsXHR0NlUplUB1HjhwJANi1a1euESv27duH06dPQy6Xiw+8eZtGjRoF4PVTGHN+IQiCgI0bNyI8PBzly5fPdXNPQUyaNAnNmjVDcnIyBg8eLO4zOWVlZeHEiRPo16+fxk2Dxantctq4caPGiA7Z2dn49ttvkZCQgGrVqul1A1jlypUxbNgwpKamYvz48bh161auMkqlEqdOncr1o1D9+dJ1I9DkyZMhl8uxatUq+Pn5ae0Gdfv2bfj7++dbz/wYewz7/fffNb6P1J48eSKOPKU+rsTGxuLPP//U2idXvT/Z2NiIV2du3bqFYcOG4cSJE1oDQkREhDj+cNeuXcXgYmZmJnbxW7BgAa5cuZJr3pCQEI0+929rH+3cuTNcXV0REhKCuXPnau13/eLFC+zatUuywFVUnzdjv6sL28SJE2FpaYkHDx6IP0QcHBzg5eUFQRCwcOFCjR8EqampWLhwITIyMtCsWTONbmH9+/eHtbU1bt68iR9//FHjh1RYWJj4IJc3r2Kov4uMffCVvlatWoXy5csjODgY48aNQ3x8vMb09PR0rFy5Elu3boVMJsOyZctyXTVr164dRo0aBUEQMGXKFPj6+mrNEUqlUutoc4Z+7vVh8GPVbWxssGvXLkybNg2XL1/GkCFDUKNGDTg5OaFs2bJ4+vQpQkJCkJqaCmtra41HZru7u6Nz5844deoUPvroI7i7u8PCwgJhYWF4+fIlhg8frnOonrdhyJAh+PPPP3Hz5k14eXmhadOmSEtLw3///Ydq1aqhS5cuep1dUJs8eTKmTp2KtWvX4ujRo2jQoAESExNx9epVuLu7o2rVqlrvyu7SpQt++OEH7NixA3fu3IG9vT1MTEzg6emJzp0767Xu3r17Y82aNeLQWy1bttQ5kP7QoUMRFxeHX375BUOGDEGDBg1Qq1YtlClTBk+ePEFERASSk5Px1VdfaX3IjTYrV67EsGHDcPjwYVy5cgXu7u5IT09HYGAgnJyc0KxZM73vSI+Li8Nnn32GMmXKoFGjRqhWrRoyMzNx+/ZtREZGQi6Xi78q1bp164Z9+/Zh1apVuHjxIipWrAiZTIaPPvoo3/6nhhg4cCD+/PNPnDlzBk2aNMGLFy9w6dIlqFQqfPDBBxg8eLBGeWP3eQcHB7i4uCA0NBT/+9//4OLiAgsLC1SoUAEzZszIs44dO3bEhAkTsGnTJowcORLNmzdHtWrVEBkZiZs3b8LU1BRfffVVofSrVPdtPHDgAD766CO0bNlSfBhNZGQkypQpg2+//VbSLgbm5ub45ZdfMH/+fBw9ehQTJkxAlSpV4OLiIt6AGBoaiqSkJJibm2vcCFSc2k7NwcEBjRs3Rr9+/dCqVSvY2triv//+w4MHD2BpaYlvv/1W64g32nz++ed4/PgxDh06hD59+sDZ2Rk1a9aEqakpEhISEBERgdTUVPz8888aQ1V17doVW7duhbe3t9glBwBmzJiBChUqoHHjxli1apU4QsOaNWtQv359VKhQAS9evMDt27eRkJCAHj165BrizxjGHMP27NmDRYsWoUaNGmjQoAGsra3x/PlzBAUFIT09HW3atBEvPycnJ+OLL77A119/DWdnZ3EfiY6ORlhYGGQyGWbOnCnelyQIAi5fvozLly/D0tISDRs2hJ2dHVQqFWJiYsQrbw0bNsz1YJ0RI0YgMjISf/zxB4YOHYpGjRqhTp06ePnypXh5/9dffxXDztvaR01MTPDDDz9g3Lhx8PPzw/Hjx+Hk5AQHBweoVCo8fPgQt2/fRlZWFvr166d1BBJDFdXnzdjv6sJWsWJFjBw5Ej/88AM2bdqEPn36QC6XY+HChbh//z6Cg4PxwQcfoHXr1jA1NcWVK1fw7Nkz1KhRA99++63GsipXroxvv/0Wn376Kb7//nscOHAAjRo1Eh9Gk5mZiX79+uU64dGkSRNUrVoVYWFh6Nu3LxQKBczMzFCnTh2MGTNGsm2tVasWdu7ciYkTJ+LChQvo0qULmjRpgmrVqiE5ORnXrl3Dy5cvYWlpiWXLluk8sTB79mxUqFAB69atw4oVK7B27Vq4urqiSpUqkMlkePz4MUJDQ5GamgorKyuxSwhg+OdeH0Z9SipVqoQdO3bg7NmzOHz4MK5fv46LFy9CpVLB1tYWzZo1Q8eOHdG7d+9cj15fs2YNNm7ciEOHDuHy5csoX768OGSNtjMSb1P58uWxa9curF69GgEBATh79izs7OzQv39/TJo0CYsXLzZoeV27dsVvv/2GDRs2ICIiAg8fPkTNmjUxefJkjBo1Smc/N2dnZ6xfvx6//PILgoODcfHiRQiCAHt7e71DtnrYHvUwTNrOYuc0a9YsdOnSBTt37sS1a9cQEBAAuVyOKlWqoFWrVnj//fcN+jKsX78+9u7di/Xr1+Ps2bM4efIk7O3tMXToUEyaNMmgp202adIEn3/+OYKCgnDv3j2Eh4fD1NQU9vb2GDJkCIYOHZrrxqz3338fS5Yswa5duxAYGIi0tDQAr0OulCG7SZMmGDBgANatW4fz588jNTUVjo6O+PjjjzF06FCtfSqN3efXr1+P7777DpcuXcLRo0eRmZmJ6tWr5xuygdePnm3evDl+++03BAcHIzg4GBUqVICXlxdGjx6daySFt0Umk2HlypXo0KEDdu/ejZs3byItLQ2VK1dGv379MHbsWEmfHKZmZWWFNWvWwNvbG/v27UNQUJB4x365cuXQoEEDtGvXDn379s3V/7C4tJ2aTCbDmjVrsGXLFhw4cABXrlyBpaUlunXrhqlTp6J+/fp6L8vMzAzfffcdPvzwQ/z1118IDg7GnTt3ULZsWVSpUgWdOnWCp6enxpjRwOs2MTExwYkTJ3Dy5Enx6sqECRPErg/du3eHq6srduzYgQsXLuDatWvIyspC5cqVUatWLQwZMkTjC62gDD2GffbZZzhz5oz4nqakpKBSpUpwc3PDRx99hJ49e4rBsWbNmpg3bx6uXLmCO3fuiMfVqlWrok+fPhg2bJhGv9EGDRrgt99+w8WLF3HlyhXEx8cjLCwMmZmZqFChAtq3b4+uXbuib9++uW78lMlk+Prrr9G5c2f88ccf4ntSrlw51KhRA3369Ml1k/fb2kft7OywZ88e7Nu3D0eOHMGtW7fw33//wcbGBlWrVsXAgQPh6emp9486fRTF583Y7+qiMGrUKOzatQuxsbHYu3cvBg4ciAoVKuCPP/7Ajh07cOTIEZw/fx7Z2dmoUaMG+vfvj1GjRmmMKqbWqVMn+Pn54eeff8bFixdx/PhxlC1bFu7u7hg4cKDWITjVJy2+//573LhxAxEREcjOzkarVq0kDdnA68/R4cOH4efnB39/f0RERCAkJASWlpZwdHREx44dMXTo0HxPyvj4+ODDDz/Enj17cPHiRdy9exfXrl2Dubk5KlWqhLZt26J9+/bw8vLSaCdDP/f6kAmFdfsslSpPnjzB+fPnERoaiv/++08c/7ZVq1a5LsEZKjAwEL6+vggODkZqaqp4eczHx0fjMc5EpVlMTAw6d+6M6tWra+3yQkRExVvBr/fQO+nw4cNYvny55MvdsWMHli5dKp7Jr1atGu7evYtNmzbB398fO3fuzHV1hIiIiKi4Ycgmo1hbW+O9996Dq6srXF1dERYWJt78Z6zQ0FDx5qBFixahf//+kMlkePToESZMmICbN29iwYIF4iOViYiIiIorhmwyyscffyw+hhWQ5ol9GzduRHZ2Nvr06YMBAwaIr9vZ2WH16tXo3r272E9LqsezEhEREb0NJffRblSqvHr1ShzbU9twbo6OjuJDIo4dO1aodSMqCjVq1MCtW7fYH5uIqIRiyKZiITw8HEqlEubm5jrvJlc/uCA4OLgwq0ZERERkMIZsKhYiIyMBvB4T+M0hrtTUTw9UlyUiIiIqrhiyqVhQP6ZU29ieaupphjzS9E23bt3S+qQ7IiIiIinxxkcqFjIyMgBA51ls4PWg+DnLGkOpVEKpVOLq1atGL4OoKCgzs7FsTxwAYF5/B5ib8RwJlSzqLn9E7wqGbCoW1E8QUz9JThulUqlR1lhyudygp+TllJaWhqioKDg6OqJs2bIFqse7iO1nvHRlFoDXIbt2rdqwtbEu2gqVMNz3CobtR2Q4hmwqFvTpCqJPlxJ9yGSyAj85smzZsnz6ZAGw/QxnYpop/l2G7Wc07nsFw/Yj0h+vN1Kx4OjoCACIi4vTeTb7wYMHGmWJiIiIiiuGbCoWGjZsCLlcDqVSiZCQEK1l1P2omzZtWog1IyIiIjIcQzYVC9bW1mjXrh0AYM+ePbmmR0VFITAwEADg5eVVqHUjIiIiMhRDNhWqQYMGwdPTE9u2bcs1beLEiZDJZDhw4AB2794NQRAAAI8fP8b06dORnZ2NLl268JHqREREVOzxxkcySnx8PPr06SP+Wz3yx7Vr19C6dWvx9TFjxmDs2LHivx89eoTY2FikpKTkWqabmxvmzJmDFStWYOHChdi0aRMqVKiAu3fvQqlUok6dOli8ePHb2ygiIiIiiTBkk1GysrKQlJSU6/XMzEyN19PT0w1arre3N5ycnLB161aEhIQgMTERDg4O8PLygo+PD6ysrApYcyIiIqK3jyGbjFKjRg2jnpx4+vTpfMt4eHjAw8PDmGoRERERFQvsk01EREREJDGGbCIiIiIiiTFkExERERFJjCGbiIiIiEhiDNlERERERBJjyCYiIiIikhhDNhERERGRxBiyiYiIiIgkxpBNRERERCQxhmwiIiIiIokxZBMRERERSYwhm4iIiIhIYgzZREREREQSY8gmIiIiIpIYQzYRERERkcQYsomIiIiIJMaQTUREREQkMYZsIiIiIiKJMWQTEREREUmMIZuIiIiISGIM2UREREREEmPIJiIiIiKSGEM2EREREZHEGLKJiIiIiCTGkE1EREREJDGGbCIiIiIiiTFkExERERFJjCGbiIiIiEhiDNlERERERBJjyCYiIiIikhhDNhERERGRxBiyiYiIiIgkxpBNRERERCQxhmwiIiIiIokxZBMRERERSYwhm4iIiIhIYgzZREREREQSY8gmIiIiIpIYQzYRERERkcQYsomIiIiIJMaQTUREREQkMYZsIiIiIiKJMWQTEREREUmMIZuIiIiISGIM2UREREREEmPIJiIiIiKSGEM2EREREZHEGLKJiIiIiCTGkE1EREREJDGGbCIiIiIiiTFkExERERFJjCGbiIiIiEhiDNlERERERBJjyCYiIiIikhhDNhERERGRxBiyiYiIiIgkxpBNRERERCQxs6KuAJVsgYGB8PX1RXBwMFJTU+Hg4AAvLy/4+PjA0tLS4OXFxcVh69atOHfuHOLj45GdnY0qVaqgdevW8Pb2hpOT01vYCiIiIiJp8Uw2GW3Hjh3w9vbGmTNnYGFhgXr16iE2NhabNm3Cxx9/jKSkJIOWd/36dfTq1Qs7duxATEwMqlWrBkdHRyQmJmLfvn3o168fjh49+nY2hoiIiEhCDNlklNDQUCxbtgwAsGjRIpw5cwZ+fn44efIkGjdujHv37mHBggV6L08QBMyePRuvXr1Cs2bN4O/vj2PHjuHvv//GuXPn0KtXL2RmZuKLL75ASkrK29osIiIiIkkwZJNRNm7ciOzsbPTu3RsDBgyATCYDANjZ2WH16tUwMTGBv78/IiIi9Fre3bt3ER0dDQD46quv4ODgIE4rV64cli9fDktLS7x8+RJBQUHSbxARERGRhBiyyWCvXr1CQEAAAKB///65pjs6OqJNmzYAgGPHjum1zPT0dPHvmjVr5ppubm4OOzs7AEBmZqbBdSYiIiIqTAzZZLDw8HAolUqYm5vDzc1Naxl3d3cAQHBwsF7LrFOnDsqUKQPgdd/sNz1+/BgxMTEwNTVFo0aNjKw5ERERUeHg6CJksMjISACAg4MD5HK51jK1atXSKJsfa2trTJw4EatXr8bcuXMxf/58tG7dGnK5HKGhoVixYgVUKhUmTJiA6tWrF6j+giAgNTXVqHnT0tI0/k+GYfsZL12Z9X9/p6Uh1dy0CGtT8nDfKxgp2s+YEaeISjKGbDLYixcvAAA2NjY6y6inqcvqY9y4cahSpQp++eUXfPrppxrTHB0d8f3336NHjx5G1FiTSqVCeHh4gZYRFRVV4Hq8y9h+hlNmZot/Rz+IRrwZL0Qag/tewRSk/dRXOIneFQzZZLCMjAwA0HkWG3jdhzpnWX2oVCo8fPgQL168gJmZGWrUqAG5XI7o6GhER0fjr7/+QvPmzWFvb1+g+svlctSvX9+oedPS0hAVFQVHR0eULVu2QPV4F7H9jPf6THYcAKB2rdqwtbEu2gqVMNz3CobtR2Q4hmwymIWFBYDXoVgXpVKpUVYfkydPxpkzZ9ChQwcsWbJEvNHxxYsXWLJkCQ4ePIgBAwbg8OHDsLY2PmDIZLICX7YsW7YsL30WANvPcCam/3fDbxm2n9G47xUM249If7zeSAbTpyuIPl1Kcjp9+jTOnDmDChUqYPXq1WLAVi9j2bJlqFu3LhISErBz584C1J6IiIjo7WPIJoM5OjoCeP0IdF1nsx88eKBRNj/qsa/d3NxQrly5XNPlcjlat24N4PWDcIiIiIiKM4ZsMljDhg0hl8uhVCoREhKitczVq1cBAE2bNtVrma9evdJ7/Yb08yYiIiIqCgzZZDBra2u0a9cOALBnz55c06OiohAYGAgA8PLy0muZderUAQCEhIRofWy6SqXCpUuXNMoSERERFVcM2WSUiRMnQiaT4cCBA9i9ezcEQQDw+qEx06dPR3Z2Nrp06QJnZ2eN+Tw9PeHp6ZnrSZBeXl4wNzfH8+fPMX36dDx69Eic9uLFC8ybNw/379+HTCbDhx9++PY3kIiIiKgAOLoIGcXNzQ1z5szBihUrsHDhQmzatAkVKlTA3bt3oVQqUadOHSxevDjXfLGxsQCQ62Ew9vb2WLx4MebPn4+zZ8/C09NTYwg/pVIJmUyGGTNm8ImPREREVOwxZJPRvL294eTkhK1btyIkJASJiYlwcHCAl5cXfHx8YGVlZdDy+vTpA2dnZ2zfvh1BQUGIi4uDIAioUqUKmjVrhiFDhvBhBkRERFQiMGRTgXh4eMDDw0Pv8rdu3cpzurOzM5YvX17QahEREREVKfbJJiIiIiKSGEM2EREREZHEGLKJiIiIiCTGkE1EREREJDGGbCIiIiIiiTFkExERERFJjCGbiIiIiEhiDNlERERERBJjyCYiIiIikhhDNhERERGRxBiyiYiIiIgkxpBNRERERCQxhmwiIiIiIokxZBMRERERSYwhm4iIiIhIYgzZREREREQSY8gmIiIiIpIYQzYRERERkcQYsomIiIiIJMaQTUREREQkMYZsIiIiIiKJMWQTEREREUmMIZuIiIiISGIM2UREREREEmPIJiIiIiKSGEM2EREREZHEGLKJiIiIiCTGkE1EREREJDGGbCIiIiIiiTFkExERERFJjCGbiIiIiEhiDNlERERERBJjyCYiIiIikhhDNhERERGRxBiyiYiIiIgkxpBNRERERCQxhmwiIiIiIokxZBMRERERSYwhm4iIiIhIYgzZREREREQSY8gmIiIiIpIYQzYRERERkcQYsomIiIiIJGZW1BUg6QmCAD8/Pxw+fBi3bt1CUlISsrKydJaXyWQICwsrxBoSERERlW4M2aWMUqmEj48PLl26BEEQiro6RERERO8khuxSZvPmzQgMDAQAdO3aFZ6enrCzs4OpqWkR14yIiIjo3cGQXcocOXIEMpkMkyZNwuTJk4u6OkRERETvJN74WMrExMRAJpNh5MiRRV0VIiIioncWz2SXMlZWVsjOzoaVlVVRV4WIiIjoncUz2aWMq6srUlJSkJSUVNRVISIiInpnMWSXMiNHjoQgCNi2bVtRV4WIiIjoncWQXcp4eHhgxowZ+Pnnn/HDDz8gLS2tqKtERERE9M5hn+xSZvjw4QBe983esGEDNm/ejPr16+fZR1smk2H79u2FVUUiIiKiUo8hu5S5fPmyxr8zMjJw8+bNPOeRyWRvs0pERERE7xyG7FKGY2MTERERFT2G7FKGIZuIiIio6DFkU4EEBgbC19cXwcHBSE1NhYODA7y8vODj4wNLS0ujlikIAg4fPgw/Pz+Eh4cjOTkZtra2qFevHjp06IDRo0dLvBVERERE0uLoImS0HTt2wNvbG2fOnIGFhQXq1auH2NhYbNq0CR9//LFRY3W/evUKo0aNwueff45z587B0tISzs7OkMvluHLlCjZv3iz9hhARERFJjGeyS7GwsDD8/fffCA0NxbNnzwAAFStWhKurK3r16oVGjRoZvezQ0FAsW7YMALBo0SL0798fMpkMjx49woQJE3Dz5k0sWLAA69ev13uZgiBgypQpuHDhAtq3b4+FCxeiVq1a4vTk5GRcuXLF6DoTERERFRaG7FIoNTUVCxYswJEjRwC8Dq9q9+7dQ1BQEHx9fdGjRw8sXrzYqG4dGzduRHZ2Nvr06YMBAwaIr9vZ2WH16tXo3r07/P39ERERAWdnZ72WuW/fPpw/fx5NmjTBjz/+CDMzzd2zfPny6Ny5s8F1JSIiIipsDNmlTHZ2NiZOnIhLly5BEARUqVIFbdq0gb29PQAgISEBly5dwuPHj3HkyBE8e/YMW7duNWgYv1evXiEgIAAA0L9//1zTHR0d0aZNG1y4cAHHjh3TO2Srn1I5YcKEXAGbiIiIqCRhkill9u/fj8DAQJiZmWHOnDkYPHgwTEw0u95nZ2dj165dWL58OQIDA3HgwAH06dNH73WEh4dDqVTC3Nwcbm5uWsu4u7vjwoULCA4O1muZDx48wO3bt2FiYoLWrVsjODgYe/fuxYMHD2BpaYmmTZvi448/RsWKFfWuJxEREVFRYcguZQ4ePAiZTIZZs2Zh6NChWsuYmJhgyJAhyMrKwrJly7B//36DQnZkZCQAwMHBAXK5XGsZdV9qddn8hIaGAgBsbW3x+++/47vvvtPo5nLq1Cn8/PPPWL9+Pdq0aaN3XYmIiIiKAkN2KRMREQFTU1Ot3Tje1L9/f6xcuRLh4eEGrePFixcAABsbG51l1NPUZfPz+PFjAK9vbvz222/x/vvvY+bMmahVqxYiIyOxbNkyBAYGYsqUKfj777/F7i/GEAQBqampRs2blpam8X8yDNvPeOnKrP/7Oy0NqeamRVibkof7XsFI0X7GDutKVFIxZJcyr169gpWVFcqUKZNv2TJlysDKysrgwJmRkQEAOs9iA4C5ublG2fyo65CZmYlatWphw4YN4vKdnJzw448/4oMPPsCTJ0+wfft2zJ4926A656RSqQz+YfGmqKioAs3/rmP7GU6ZmS3+Hf0gGvFmHIHVGNz3CqYg7efu7i5dRYhKAIbsUqZChQp4+vQpEhMTUalSpTzLJiYmIjk5GZUrVzZoHRYWFgBeh1VdlEqlRll9lwkAQ4YMyRXgy5Yti4EDB2L9+vUICAgoUMiWy+WoX7++UfOmpaUhKioKjo6OKFu2rNF1eFex/Yz3+kx2HACgdq3asLWxLtoKlTDc9wqG7UdkOIbsUqZp06Y4ceIE1q9fj6+++irPsuvWrYMgCGjevLlB69CnK4g+XUpyKl++vPh3vXr1tJZRvx4TE6PXMnWRyWQFvmxZtmxZXvosALaf4UxMM8W/y7D9jMZ9r2DYfkT64/XGUmbIkCEQBAG7d+/GzJkzER0dnatMdHQ0ZsyYgd27d0Mmk2HIkCEGrcPR0REAEBcXp/Ns9oMHDzTK5qdu3bri37q6oajPdmdnZ2udTkRERFRc8Ex2KdO6dWuMGDEC27dvx6FDh3Do0CFUq1YNVatWBQA8evQICQkJYnlvb2+0atXKoHU0bNgQcrkcSqUSISEhWvvZXb16FcDrM+v6aNSoEcqUKYP09HQ8fPhQ6wgi6uBekJseiYiIiAoDz2SXQnPnzsUXX3yB8uXLQxAExMXF4caNG7hx4wbi4+MhCAJsbGywYMECo/o2W1tbo127dgCAPXv25JoeFRWFwMBAAICXl5deyyxbtiw6deoE4PVY328SBAF+fn4AwCH8iIiIqNjjmexSaujQofjkk09w/vx5hIaGIjExEQBQqVIluLi4oG3btnrflKjNxIkTcebMGRw4cADNmzdH//79IZPJ8PjxY0yfPh3Z2dno0qVLrqc9enp6AgBmzZqVK4BPnjwZJ06cQFBQEH744QeMHz8epqamyMzMxOrVqxEREQELCwt4e3sbXW8iIiKiwsCQXYpZWFjA09NTDLZScnNzw5w5c7BixQosXLgQmzZtQoUKFXD37l0olUrUqVMHixcvzjVfbGwsAGgdNrB+/fpYsmQJ5s+fj3Xr1uG3335DjRo18ODBAyQlJUEul2PZsmUa/beJiIiIiiOGbDKat7c3nJycsHXrVoSEhCAxMREODg7w8vKCj48PrKysDF5m3759Ub9+fWzZsgVBQUEIDw+Hra0tevXqhbFjx+Y6M05ERERUHDFkU4F4eHjAw8ND7/K3bt3Kt4yrqyvWrl1bkGoRERERFSmG7BJs7ty5AICqVavis88+03jNEDKZDMuWLZO0bkRERETvMobsEszPzw8ymQx16tQRQ7b6NUEQ8p1fXY4hm4iIiEhaDNklWJ8+fSCTyVClSpVcrxERERFR0WHILsFWrFih12tEREREVLj4MBoiIiIiIokxZJcy+/fvx9GjR/Uu7+/vr/UJi0RERERkPHYXKWXmzJmDKlWqoHv37nqVX7FiBRISEtCnT5+3WzEiIiKidwjPZJdC+owsUpDyRERERJQ3hux33KtXryCXy4u6GkRERESlCkP2O+z69et48eIF7OzsiroqRERERKUK+2SXcH5+fvDz89N47cWLFxg+fLjOeQRBQEpKCu7evQuZTGbQY9GJiIiIKH8M2SVcbGwsLl++rPGaSqXK9ZouderUweTJk99G1YiIiIjeWQzZJVyrVq00QvKGDRtgaWmJUaNG6ZxHJpPB2toaCoUCrVq1gqmpaWFUlYiIiOidwZBdwrVq1QqtWrUS/60O2Tw7TURERFR0GLJLmVOnTiEhIQEZGRmwsLAo6uoQERERvZMYskuZzp07w8TEBP/88w9HDSEiIiIqIgzZpYylpSXkcjkDNhEREVER4jjZpUz16tWRlpaGrKysoq4KERER0TuLIbuU6dKlC1QqFf7999+irgoRERHRO4shu5QZO3YsatWqhS+//BIRERFFXR0iIiKidxL7ZJcy/v7+GDhwINavX4+PP/4Y7dq1Q/PmzVGpUqU8x8Pu06dP4VWSiIiIqJRjyC5l5syZA5lMBuD149P//ffffLuOyGQyhmwiIiIiCTFklzIODg5FXQUiIiKidx5Ddilz+vTpoq4CERER0TuPNz4SEREREUmMIZuIiIiISGLsLlLK3blzB6GhoUhMTAQAVKpUCa6urqhfv34R14yIiIio9GLILqUCAgKwatUq3LlzR+t0hUKBmTNnol27doVcMyIiIqLSj91FSqHffvsN48aNw507dyAIAkxMTFCpUiVxrGxBEHDr1i2MHTsWv//+e1FXl4iIiKjU4ZnsUiYiIgLLli1DdnY2mjRpgkmTJqFNmzYwNzcHACiVSgQGBmLjxo24ceMGli1bBnd3dzg7OxdxzYmIiIhKD57JLmV8fX2RnZ2NTp06YefOnejQoYMYsAHA3NwcHTp0wO+//45OnTohKysL27dvL8IaExEREZU+DNmlzJUrVyCTyTB//vw8H6NuamqKefPmAQAuXbpUWNUjIiIieicwZJcyT58+Rbly5VCjRo18y9asWRPly5fH06dPC6FmRERERO8OhuxSpkyZMkhLS0NmZma+ZTMzM5GWloYyZcoUQs2IiIiI3h0M2aVM3bp1kZmZiePHj+db9tixY1CpVKhbt24h1IyIiIjo3cGQXcp4eXlBEAR8/fXXuHjxos5yFy5cwNdffw2ZTIbu3bsXYg2JiIiISj8O4VfKDB48GHv37sWdO3cwatQoNG3aFO+99x7s7OwAAAkJCbh48SJu3LgBQRDQoEEDDBo0qIhrTURERFS6MGSXMubm5tiyZQumTJmCkJAQXL9+HTdu3NAoIwgCAKBJkyZYt26dxhB/RERERFRwDNmlkJ2dHf744w8cO3YMR48eRWhoKBITEwEAlSpVgouLC3r06IFu3brBxIQ9hoiIiIikxpBdSpmYmKBHjx7o0aNHUVeFiIiI6J3D05hERERERBLjmex3QGxsrEZ3kerVqxdxjYiIiIhKN4bsUurRo0fYvHkzjhw5gqSkJI1pNjY26NmzJ8aOHQt7e/uiqSARERFRKcbuIqXQuXPn0KtXL+zcuRPPnz+HIAga/yUlJWHnzp3o1asXzp49W9TVJSIiIip1eCa7lLl//z4mTZqEjIwM2NjYYODAgWjTpo04TvajR49w6dIl7N69G8+fP8eUKVPg5+fHpz4SERERSYghu5TZuHEjMjIy4OTkBF9fX1SsWFFjet26deHh4YHhw4dj5MiRuH37NjZt2oRVq1YVUY2JiIiISh92FyllAgMDIZPJsGTJklwBO6eKFSti8eLFEAQhz8evExEREZHhGLJLmeTkZFhaWsLV1TXfsm5ubrC0tERycnIh1IyIiIjo3cGQXcpUqVIF2dnZepcXBAFVqlR5izUiIiIievcwZJcyHTt2RHp6ul5dQC5evIi0tDR06tSpEGpGRERE9O5gyC5lJk6ciEqVKmH+/PmIjIzUWS4qKgpffPEFqlSpggkTJhRiDYmIiIhKP44uUspERkZi+vTpWL58OXr37g0vLy+tQ/gdO3YMFhYWmDt3Lu7fv4/79+/nWlbLli0Lu/pEREREpQJDdikzbNgwyGQy8d9///03/v77b61llUol5s2bp3WaTCZDWFjYW6kjERERUWnHkF0KCYJQLJZBRERE9K5iyC5lIiIiiroKRERERO883vhIRERERCQxhmwqkMDAQIwbNw5t2rSBm5sbvLy8sGbNGqSmpkqy/N9//x1OTk5wcnLCsGHDJFkmERER0dvG7iKl3MuXLxEWFobExEQAQKVKldCoUSNYW1sXeNk7duzA0qVLIQgC7O3tUa1aNdy9exebNm2Cv78/du7cCVtbW6OX/+jRI6xevbrA9SQiIiIqbAzZpdStW7fw/fffIyAgINcTIE1MTNCxY0d8+umncHJyMmr5oaGhWLZsGQBg0aJF6N+/P2QyGR49eoQJEybg5s2bWLBgAdavX2/0Nnz11Vfiw3L++ecfo5dDREREVNjYXaQU8vf3R//+/fHvv/8iKysLgiBo/JeVlYV//vkH/fv3x4kTJ4xax8aNG5GdnY3evXtjwIAB4rCBdnZ2WL16NUxMTODv72/0jZhHjhzB6dOnMWTIEDRu3NioZRAREREVFYbsUubhw4eYMWMGMjIy4ODggC+//BL+/v4ICQlBSEgI/P398eWXX6J69erIyMjAjBkz8PDhQ4PW8erVKwQEBAAA+vfvn2u6o6Mj2rRpAwA4duyYwdvw4sULLF26FPb29pg2bZrB8xMREREVNYbsUuaXX36BUqlE06ZNcfDgQQwaNAi1atWCubk5zM3NUatWLQwaNAgHDx5E06ZNoVQq4evra9A6wsPDoVQqYW5uDjc3N61l3N3dAQDBwcEGb8OKFSvw9OlTLFiwAFZWVgbPT0RERFTUGLJLmYsXL0Imk+Hrr7/OM6BaWlri66+/hiAIOH/+vEHriIyMBAA4ODhALpdrLVOrVi2Nsvq6ePEi9u3bB09PT3Tp0sWgeYmIiIiKC974WMokJCTAyspKrxsanZycYG1tjYSEBIPW8eLFCwCAjY2NzjLqaeqy+khPT8fChQthaWmJhQsXGlQnQwiCYPQQg2lpaRr/J8Ow/YyXrsz6v7/T0pBqblqEtSl5uO8VjBTtZ2lpKVV1iEoEhuxSxszMDJmZmXqVFQQBKpUKZmaG7QYZGRkAoPMsNgCYm5trlNXHunXr8ODBA8ydOxfVqlUzqE6GUKlUCA8PL9AyoqKipKnMO4rtZzhl5v+NEhT9IBrxZrwQaQzuewVTkPZTdyMkelcwZJcytWvXRnh4OAICAtC+ffs8ywYEBCAjIwP16tUzaB0WFhYAXodVXZRKpUbZ/ISFhWH79u1o1KjRW3/ojFwuR/369Y2aNy0tDVFRUXB0dETZsmUlrlnpx/Yz3usz2XEAgNq1asPWpuBj3b9LuO8VDNuPyHAM2aWMp6cnwsLCsGDBAvzyyy86A/Tdu3excOFCyGQydO7c2aB16NMVRJ8uJTnNnz8f2dnZWLRoEUxN3+5lcJlMVuDLlmXLluWlzwJg+xnOxPT/rlCVYfsZjftewbD9iPTHkF3KeHt7488//0RCQgL69OkDLy8veHh4wM7ODsDrPtsXL17E8ePHoVKpYG9vjxEjRhi0DkdHRwBAXFwcVCqV1m4jDx480Cibn7CwMJiammL8+PG5pqn7T1+/fh1t27YFAPz1119vtUsJERERUUEwZJcy1tbW2LJlC8aPH4/Y2FgcOnQIhw4dylVOEATUqFEDmzZtMvgR6w0bNoRcLodSqURISIjWfnZXr14FADRt2lTv5WZlZeHp06c6p6tUKnF6VlaWznJERERERY0huxRq0KABDh48iN9//x3Hjh3DrVu3xFBqamoKJycn9OjRA4MGDTJqHGpra2u0a9cO//zzD/bs2ZMrZEdFRSEwMBAA4OXlpdcyb926pXPa+vXrsWHDBrRq1Qo7duwwuL5EREREhY0hu5SysrKCj48PfHx8oFKpNPpI5zUqiL4mTpyIM2fO4MCBA2jevDn69+8PmUyGx48fY/r06cjOzkaXLl3g7OysMZ+npycAYNasWXoHcCIiIqKShmNAlTLqh7hER0eLr8nlclSuXBmVK1eWJGADgJubG+bMmQMAWLhwITp16oS+ffuic+fOuHnzJurUqYPFixfnmi82NhaxsbFGj1NNREREVBLwTHYp8+TJE8jlctSuXfutr8vb2xtOTk7YunUrQkJCkJiYCAcHB3h5ecHHx4ePRCciIqJ3FkN2KVO1alU8e/as0Nbn4eEBDw8Pvcvn1fdalylTpmDKlCkGz0dERERUVNhdpJR57733kJ6ejrCwsKKuChEREdE7iyG7lPHx8UHZsmWxaNEipKWlFXV1iIiIiN5J7C5SypiammLRokVYuHAhevXqhWHDhqFZs2aoWLFink9SdHBwKMRaEhEREZVuDNmlTM5HpKelpeGbb77Jdx6ZTMbuJUREREQSYsguZQRBKJR5iIiIiEg3huxS5tSpU0VdBSIiIqJ3HkN2KZKdnY20tDS8fPkSNjY2qFOnTlFXiYiIiOidxJBdCqhUKqxZswa7d+/Gq1evxNdtbGwwYsQIjB8/HjKZrAhrSERERPRuYcguBSZNmoSAgIBcfauTkpKwbt06REdHY8WKFUVUOyIiIqJ3D0N2CXf06FGcPXsWAFC7dm14eXnBzs4OsbGx+Pvvv/H48WMcOHAA/fr1Q6tWrYq4tkRERETvBobsEu7gwYMAgLZt22LTpk0wNzcXp02YMAHDhw9HeHg4/v77b4ZsIiIiokLCJz6WcGFhYZDJZJg3b55GwAYAa2trzJw5E4IgcBxsIiIiokLEkF3CPX/+HBYWFqhXr57W6S4uLmI5IiIiIiocDNklnFKphLW1tc7p5cqVE8sRERERUeFgyCYiIiIikhhDNhERERGRxDi6SCmQmJiIhg0b6pwuk8nyLCOTyXhjJBEREZGEGLJLgTcfQkNERERERYshu4SbPHlyUVeBiIiIiN7AkF3CMWQTERERFT+88ZGIiIiISGIM2UREREREEmPIJiIiIiKSGEM2EREREZHEGLKJiIiIiCTGkE1EREREJDGGbCIiIiIiiTFkExERERFJjCGbiIiIiEhiDNlERERERBJjyCYiIiIikhhDNhERERGRxBiyiYiIiIgkxpBNRERERCQxhmwiIiIiIokxZBMRERERSYwhm4iIiIhIYgzZREREREQSY8gmIiIiIpIYQzYRERERkcQYsomIiIiIJMaQTUREREQkMYZsIiIiIiKJMWQTEREREUmMIZuIiIiISGIM2UREREREEmPIJiIiIiKSGEM2EREREZHEGLKJiIiIiCTGkE1EREREJDGGbCIiIiIiiTFkExERERFJjCGbiIiIiEhiDNlERERERBJjyCYiIiIikhhDNhERERGRxMyKugJUsgUGBsLX1xfBwcFITU2Fg4MDvLy84OPjA0tLS72Xk5WVhcDAQJw5cwbXr19HVFQU0tPTYWtrC1dXVwwYMADvv//+29sQIiIiIgnxTDYZbceOHfD29saZM2dgYWGBevXqITY2Fps2bcLHH3+MpKQkvZe1b98+jBo1Cr/++itu3ryJSpUqQaFQIC0tDadPn8a4ceOwcOFCCILw9jaIiIiISCIM2WSU0NBQLFu2DACwaNEinDlzBn5+fjh58iQaN26Me/fuYcGCBQYt08nJCUuWLMHly5dx/Phx7Nu3D5cuXcKsWbMgk8mwe/du7Nq1621sDhEREZGkGLLJKBs3bkR2djZ69+6NAQMGQCaTAQDs7OywevVqmJiYwN/fHxEREXot74MPPsCBAwfwySefoFy5cuLrZmZmGD16ND755BMAwO7du6XfGCIiIiKJMWSTwV69eoWAgAAAQP/+/XNNd3R0RJs2bQAAx44d02uZtra2YlDXpkOHDgCAyMhIQ6tLREREVOgYsslg4eHhUCqVMDc3h5ubm9Yy7u7uAIDg4GBJ1pmeng4AKFu2rCTLIyIiInqbGLLJYOqzyQ4ODpDL5VrL1KpVS6NsQR0+fBjA/4V3IiIiouKMQ/iRwV68eAEAsLGx0VlGPU1dtiBOnjyJf/75BzKZDGPGjCnw8gRBQGpqqlHzpqWlafyfDMP2M166Muv//k5LQ6q5aRHWpuThvlcwUrSfIcO6EpUGDNlksIyMDADQeRYbAMzNzTXKGuvevXuYM2cOAGDEiBFo3rx5gZYHACqVCuHh4QVaRlRUVIHr8S5j+xlOmZkt/h39IBrxZrwQaQzuewVTkPbjlUh61zBkk8EsLCwAvA6ruiiVSo2yxoiPj8eYMWOQkpKCjh07YsaMGUYvKye5XI769esbNW9aWhqioqLg6OjI/uFGYPsZ7/WZ7DgAQO1atWFrY120FSphuO8VDNuPyHAM2WQwfbqC6NOlJC9PnjyBt7c34uLi0KpVK6xfvz7PM+eGkMlkBb5sWbZsWV76LAC2n+FMTDPFv8uw/YzGfa9g2H5E+uP1RjKYo6MjACAuLk7n2ewHDx5olDVEYmIiRowYgaioKDRr1gw//vhjgc6IExERERU2hmwyWMOGDSGXy6FUKhESEqK1zNWrVwEATZs2NWjZSUlJGDlyJO7du4fGjRvj559/hpWVVUGrTERERFSoGLLJYNbW1mjXrh0AYM+ePbmmR0VFITAwEADg5eWl93JfvnyJUaNG4datW1AoFPjll180nv5IREREVFIwZJNRJk6cCJlMhgMHDmD37t0QBAEA8PjxY0yfPh3Z2dno0qULnJ2dNebz9PSEp6dnridBpqWlwcfHBzdv3kTdunWxbds2VKhQodC2h4iIiEhKvPGRjOLm5oY5c+ZgxYoVWLhwITZt2oQKFSrg7t27UCqVqFOnDhYvXpxrvtjYWADINU71r7/+KnYxAYDJkyfrXPe6detQpUoVibaEiIiISHoM2WQ0b29vODk5YevWrQgJCUFiYiIcHBzg5eUFHx8fg/pSq4f8A4D79+/nWbagY28TERERvW0M2VQgHh4e8PDw0Lv8rVu3tL4+ZcoUTJkyRapqERERERUp9skmIiIiIpIYQzYRERERkcQYsomIiIiIJMaQTUREREQkMYZsIiIiIiKJMWQTEREREUmMIZuIiIiISGIM2UREREREEmPIJiIiIiKSGEM2EREREZHEGLKJiIiIiCTGkE1EREREJDGGbCIiIiIiiTFkExERERFJjCGbiIiIiEhiDNlERERERBJjyCYiIiIikhhDNhERERGRxBiyiYiIiIgkxpBNRERERCQxhmwiIiIiIokxZBMRERERSYwhm4iIiIhIYgzZREREREQSY8gmIiIiIpIYQzYRERERkcQYsomIiIiIJMaQTUREREQkMYZsIiIiIiKJMWQTEREREUmMIZuIiIiISGIM2UREREREEmPIJiIiIiKSGEM2EREREZHEGLKJiIiIiCTGkE1EREREJDGGbCIiIiIiiTFkExERERFJjCGbiIiIiEhiDNlERERERBJjyCYiIiIikhhDNhERERGRxBiyiYiIiIgkxpBNRERERCQxhmwiIiIiIokxZBMRERERSYwhm4iIiIhIYgzZREREREQSY8gmIiIiIpIYQzYRERERkcQYsomIiIiIJMaQTUREREQkMYZsIiIiIiKJMWQTEREREUmMIZuIiIiISGIM2UREREREEmPIJiIiIiKSmFlRV4BKtsDAQPj6+iI4OBipqalwcHCAl5cXfHx8YGlpadQyjx8/jt9++w0RERFQqVSoXbs2PvzwQwwfPhxyuVziLSAiIiKSHs9kk9F27NgBb29vnDlzBhYWFqhXrx5iY2OxadMmfPzxx0hKSjJ4md988w2mTp2Ky5cvw9bWFrVq1cKdO3ewcuVKjBw5EkqlUvoNISIiIpIYQzYZJTQ0FMuWLQMALFq0CGfOnIGfnx9OnjyJxo0b4969e1iwYIFByzxx4gS2bt0Kc3NzbNy4ESdOnMDBgwfx999/o0aNGrhy5QpWr179NjaHiIiISFIM2WSUjRs3Ijs7G71798aAAQMgk8kAAHZ2dli9ejVMTEzg7++PiIgIvZe5YcMGAMDYsWPRuXNn8fV69ephyZIlAIDff/8dz549k3BLiIiIiKTHkE0Ge/XqFQICAgAA/fv3zzXd0dERbdq0AQAcO3ZMr2VGRUWJgXzAgAG5pnt4eKB27dpQKpU4deqUsVUnIiIiKhQM2WSw8PBwKJVKmJubw83NTWsZd3d3AEBwcLBey7xx4wYAoGbNmrCzs5NkmURERERFhaOLkMEiIyMBAA4ODjpH+6hVq5ZG2fxERUVpzCfFMrVRqVQQBAEhISFGzS8IAgDgzp07YhcZ0h/bz3iCAHz6oT0A4EHUPcSY8ByJIbjvFYwU7WdhYQEnJycpq0VUrDFkk8FevHgBALCxsdFZRj1NXVbKZSYnJ+u1TG3UXw7GfknIZDKYm5sbvf53HdvPeDIZYFfRuGExifteQbH9iAzHkE0Gy8jIAIA8x6xWH4zVZaVcZnp6ul7L1KZZs2ZGz0tERESkL15vJINZWFgAeN31Qhf1eNbqslIus0yZMnotk4iIiKioMGSTwfTpCqJP94+cypcvr/cy1WWJiIiIiiuGbDKYo6MjACAuLk7nmecHDx5olM1PnTp1AADR0dE6yxi6TCIiIqKiwpBNBmvYsCHkcjmUSqXOUTquXr0KAGjatKley2zSpAkAICYmBo8ePZJkmURERERFhSGbDGZtbY127doBAPbs2ZNrelRUFAIDAwEAXl5eei2zTp06UCgUAIDdu3fnmn7x4kVER0dDLpdrPA2SiIiIqDhiyCajTJw4ETKZDAcOHMDu3bvFMVQfP36M6dOnIzs7G126dIGzs7PGfJ6envD09NT6JMjJkycDAH7++WecPn1afP3+/fv44osvAACDBw9GxYoV39ZmEREREUlCJqjTEZGBtm3bhhUrVkAQBFSrVg0VKlTA3bt3oVQqUadOHezcuTNXIFY/iGD58uXo169frmUuW7YM27dvB/D64TOWlpa4c+cOsrKy4O7uDl9fX71HLCEiIiIqKhwnm4zm7e0NJycnbN26FSEhIUhMTISDgwO8vLzg4+MDKysrg5c5b948NGvWDDt37kR4eDgeP36MevXq4cMPP4S3t3ee42gTERERFRc8k01EREREJDH2ySYiIiIikhhDNhERERGRxBiyiYiIiIgkxpBNRERERCQxji5CJV5gYCB8fX0RHByM1NRUjRFOLC0tDV7e8+fP4evri1OnTiEmJgZmZmaoX78++vXrh08++QQmJtp/m6qHJ9SlcuXKOH/+vM7pYWFh2Lx5M65cuYLk5GRUrVoVnTp1wsSJE9/a2ODFoe3mzJkDPz8/vZZ/+vRpVK9eXfz3vn37MHfu3DznGTt2LGbMmGHYhuTjyZMnOH/+PEJDQ/Hff/8hPDwcGRkZaNWqFXbs2FGgZRv7nrx69QqbN2/G8ePHERcXB0tLSzRp0gSjRo1C69at38o6jVWc2u/58+c4efIkLly4gJs3byI+Ph4mJiaoVq0a2rVrB29vb9SoUUPrutavX48NGzbkWZ+vvvoKgwYNKtA2vak4tR9QMo99RIWBIZtKtB07dmDp0qUQBAH29vaoVq0a7t69i02bNsHf3x87d+6Era2t3su7f/8+Ro0ahfj4eMjlcjRo0AAZGRkIDg7GjRs38M8//2DDhg0wM9P90XFxcYG5uXmu1/Oqh7+/P6ZPnw6VSoVKlSqhQYMGiIyMxI4dO3Ds2DHs2rULNWvW1Hs79FFc2s7R0RHNmzfXudyoqCg8e/YM1apVQ7Vq1bSWsba2Fp8Y+qacoVwqhw8fxvLlyyVfrrHvybNnzzB48GBERkbC3Nwc9evXx7Nnz3DmzBn8+++/WLBgAYYMGSLpOguiOLXfpEmTcPXqVQCAlZUV6tWrh/T0dDx8+BA7duzA3r17sXbtWnTo0EHneitVqoTatWtrnValShXJtk+tOLVfTiXl2EdUaASiEuq///4TnJ2dBScnJ+GPP/4QsrOzBUEQhISEBKFv376CQqEQJk+erPfyMjMzhZ49ewoKhUIYNGiQ8PjxY3FaRESE8P777wsKhUJYs2aN1vkVCoWgUCiEhw8fGrQdCQkJQpMmTcRlq1QqQRAEITk5WRg9erSgUCiEfv36idsnheLWdrpkZ2cLnTt3FhQKhbB69epc0/fu3SsoFAph6NChBi23oP7880/B29tb+O677wR/f39hzZo1Ba5HQd6T8ePHCwqFQujbt6+QkJAgCMLrtvvjjz8EhUIhNGzYUAgLC5N0nQVRnNpv6NChwvTp04XLly8LmZmZ4uvx8fHCyJEjBYVCITRv3lx48uRJrnnXrVsnKBQKYfbs2UbX2xjFqf0EoWQd+4gKE0M2lVgTJkwQFAqFMGvWrFzTIiMjBWdnZ0GhUAjh4eF6Le/UqVOCQqEQXFxctH5ZnD59WlAoFEKTJk2EFy9e5Jpu7BfNkiVLBIVCIQwZMiTXtKSkJMHd3V1QKBTCqVOnDFpuXopb2+ly6dIlsV2joqJyTS+qkP2mHTt2FLgexr4nN2/eFBQKheDs7Ky1jWbOnKkzIEm9HxirKNvv2bNnOpeZnJwstGnTRlAoFIKvr2+u6UUVst9UlO0nCCXr2EdUmHjjI5VIr169QkBAAACgf//+uaY7OjqiTZs2AIBjx47ptUz1JWMXFxetfTA7deoES0tLpKWl4dSpU8ZWPZfjx48D0L4dNjY28PLyAgAcPXpUkvWVpLZT99Vu3ry5zsvxpUFB3hP1/tOmTRutbTRgwAAAwL///ovU1FRJ1lncFGRbKlSooHO55cqVQ9OmTQEAkZGREtW2+CmqfaGwj31EhY0hm0qk8PBwKJVKmJubw83NTWsZd3d3AEBwcLBey3zx4gUAwM7OTmeZqlWrAgCuX7+us8zGjRsxZswYjBw5EnPmzMH+/fuhVCq1lo2Pj8ejR48AAC1bttRapkWLFgD03478FOe2yyk1NVX8Qu/Xr1+eZePi4jBnzhyMGDEC48aNwzfffIMbN27otZ7ioCDviXo71fvJm9zc3GBubo6MjAyEh4dLss7i5m1uS0ZGBgCgbNmyOstERETg888/x/DhwzFhwgSsWbMGd+7cMWg9RUmq9ivuxz6iwsYbH6lEUp9VcnBwgFwu11qmVq1aGmXzU65cOQAQD/zaPH78GMDrm/x02bt3r8a//fz8sG7dOqxfvx6NGzfWmBYVFQUAkMvlsLe317o89U0/Dx8+hEql0rm9+irObZfT8ePHkZqairJly6J79+55lo2JiUFMTIz47zNnzmDr1q3o2bMnli5dmmdAKg4K8p6o9yH19DfJ5XJUq1YN0dHRiIyMFMPS29gPisrb2pZHjx7h8uXLAHT/iAFeh9ScP2BOnz6NH3/8EcOHD8fs2bNhamqq9zqLglTtV9yPfUSFjSGbSiT1mVMbGxudZdTT1GXz4+rqCgAIDQ1FbGxsrlEpcl5u17bMzp07o3fv3nB2doa9vT1evXqFixcv4vvvv8fDhw8xatQo7N+/X2OEjKSkJLGuMplMa73Ud+ZnZ2fj5cuXeV7e1kdxbDtt9u3bBwD44IMPYG1trbVM+fLlMWbMGHTq1Am1a9eGjY0NYmNjsX//fmzZsgWHDx9GVlYW1q5dq9c6i0pB3hND5k1OTpZkncXN29qWxYsXQ6VSoX79+ujUqVOu6VWrVsXUqVPRvn171KhRA9bW1oiMjMTOnTvxxx9/YPv27TAzM8OsWbMM3KLCVdD2KynHPqLCxu4iVCKpL+HmdWZDPZSUumx+unTpAnt7eyiVSkyfPh3x8fHitJCQEHz55Zfiv9PT03PNv3HjRnTr1g21a9eGhYUFKlasiJ49e2LPnj1wcHBAUlJSrjF1DdkOQ7YlL8Wx7d708OFDXLlyBUDeXUW6dOmCmTNnokWLFqhSpQrMzc1Rp04dfPbZZ1i1ahWA131Ig4KC9NqOolKQ98SQeXO2/dvYD4rK29iWzZs348SJE5DL5VixYoXWs9EDBgzApEmT4ObmhooVK8Lc3BxOTk74+uuvxbHZt2/frnGVpTgqaPuVlGMfUWFjyKYSycLCAgCgUql0llH3BVSXzY+5uTnWrFmDcuXK4caNG+jcuTO6d+8OT09PfPLJJ0hLS0PXrl0BvB5PV18VK1aEj48PAODkyZMQBMGo7TBkW/JSEtpu//79EAQB1atXF2+4MlSPHj3QpEkTAMCJEyeMWkZhKch7Ysi8ZcqUkWSdxY3U2+Ln54fVq1dDJpNh6dKl4pUaQ4waNQpVq1ZFZmYmTp8+bfD8helt7QvF7dhHVNgYsqlE0ufSrz6XQN/UrFkz+Pn5YcCAAbC3t8fDhw+RkZGBfv36Yf/+/eLTxypXrmxQfZs1awbg9SVS9WXSN7cj5xdQTuryJiYmOrtNGKK4t50gCNi/fz8AoHfv3jovJetbJwCIjo42ehmFoSDvSfny5fWeV122oOssbqTcliNHjmD+/PkQBAFffvklevfubVSdTE1NxR95pXn/y09xOvYRFTb2yaYSydHREcDrUSV03RDz4MEDjbL6qlmzJhYtWqR12t27dwHA4DNbOeuXlZUl/q2um0qlQnx8PBwcHHLN+/DhQwBAjRo1JLnxp7i33eXLlxETEwOZTJbvqCL5UW9bZmZmgZbzthXkPXF0dMSjR490BjmVSoW4uLhc877N/aCwSbUtJ06cwMyZM5GVlYXZs2cX+HHo78L+l5/idOwjKmw8k00lUsOGDSGXy6FUKhESEqK1jHrsZvU4twX17Nkzcbi0zp07GzSvejgvCwsLjUcMOzg4iEPb6eo3rH5dqu0o7m2nHhu7RYsWBX6csrrddY1eUFwU5D1R/1s9/U0hISFQqVSwsLBAw4YNJVlncSPFtvz777/47LPPkJmZialTp2LUqFEFrte7sP/lpzgd+4gKG0M2lUjW1tZo164dAGDPnj25pkdFRSEwMBAAxAcaFNSaNWuQmZmJFi1awMXFRe/5MjMz4evrC+D1A0PMzDQvIHXr1g2A9u148eKFOFa0VNtRnNvu1atX4gMq+vbtW6B1RkREiA/YaNu2bYGW9bYV5D1R7z+XLl3SejZ79+7dAIAOHTpo9Icviv3gbSnotly8eBFTpkyBSqXCuHHjMGnSpALX6cyZM2LALM37X16K27GPqLAxZFOJNXHiRMhkMhw4cAC7d+8W+/U9fvwY06dPR3Z2Nrp06QJnZ2eN+Tw9PeHp6an1yWX//vtvrjOCycnJWLp0KXbv3g1LS0ut3SG+/fZb+Pn54eXLlxqvx8fHY+rUqbhx4wbMzMy0fnmPHj0aZcqUwZUrV7B27VrxkmpKSgo+//xzpKSkoFGjRvD09DSsgfJQnNouJ/XY2JaWlvl+sb58+RLTpk3DtWvXcvXpDAgIwNixY5GVlQVnZ2fxpsuiNmjQIHh6emLbtm25phn7njRu3BidOnVCVlYWPvvsM3E8ckEQsHv3bhw4cAAmJiaYMGGCZOssKm+j/a5fv46JEyciIyMD3t7emD59ul51uXPnDhYuXIiIiAiN17Ozs3Ho0CF8/vnnAF4/7VTXA14K29tov5J27CMqTDJB1x0HRCXAtm3bsGLFCgiCgGrVqqFChQq4e/culEol6tSpg507d4o33Kk5OTkBAJYvX56rz+/SpUvx66+/wtraWhzr+f79+1CpVLC1tcWGDRu0Pp1s4sSJOHXqFExNTVGzZk3Y2NggJSUFkZGREAQBFhYWWLJkCT788EOt23Hs2DF8/vnnyMzMRKVKlWBvb4/IyEikpqaicuXK2Llzp+SPFS8ubZfTsGHDcPnyZfTt2xcrVqzIs2xycrK4PCsrK9SsWRPm5uaIi4vD06dPAQANGjTA5s2btfb3LIj4+Hj06dNH/LdSqURqairMzMw0btAaM2YMxo4dK/7b09MTsbGxmDx5MqZMmZJruca8J8Dr7jiDBg1CVFQUzM3NUb9+fTx//hzx8fGQyWSYP38+hg0bpnVbjF1nQRSn9uvWrRuioqI0blTUplGjRliwYIH47/DwcHEbbG1t4eDgAFNTUzx48EC8SbBFixbYtGmTxg2nUihO7VcSj31EhYU3PlKJ5u3tDScnJ2zduhUhISFITEyEg4MDvLy84OPjY9BQe8DrcZcTExPx33//4cGDB5DJZKhTpw48PT3h7e2t82EIgwYNQuXKlREaGorHjx8jNjYWcrkcDRo0gIeHB4YOHarziXzA68uhNWvWxE8//YSgoCDcvn0bVatWRb9+/TBx4kRUqlTJoO3QR3FpO7WcY2Pr01WkbNmymDVrFm7cuIHbt28jLi4OqampsLa2RuvWrdGtWzd8/PHHb2Xor6ysLI2REtQyMzM1XtdnTPCcjH1PKlasiL179+Lnn3/GsWPHcPfuXVhaWqJDhw4YPXp0nsMgSr0f6KM4tZ96CLmsrCxcu3ZN57Lf7OpQvXp1TJs2DTdu3MC9e/cQHR0NpVIJGxsbdOjQAb169UKvXr3eytMei1P7lcRjH1Fh4ZlsIiIiIiKJsU82EREREZHEGLKJiIiIiCTGkE1EREREJDGGbCIiIiIiiTFkExERERFJjCGbiIiIiEhiDNlERERERBJjyCYiIiIikhhDNhERERGRxBiyieidMGzYMDg5OWH9+vVFXRUiInoHmBV1BYhIellZWTh+/DjOnDmD4OBgJCYmIj09HeXKlYOjoyNatGiB//3vf1AoFEVd1RLv0qVLuHz5MqpXr45+/foVdXVKPJVKhQMHDuD48eOIiIjA8+fPYWFhgcqVK6Nq1apo2rQpWrRogTZt2sDCwqKoq0tEpBNDNlEpc+PGDcyePRtRUVHia3K5HFZWVkhKSsK1a9dw7do1bN68GV27dsV3330Hc3PzoqtwCXf58mVs2LABrVq1YsguoPj4ePj4+OD27dvia3K5HKampnjw4AGioqJw+fJlbN68Gb/++itat25dhLUlIsobQzZRKXL69Gl8+umnUCqVsLW1xejRo9G1a1c4OjoCeH2GOywsDP7+/ti5cyf8/f2Rnp7OkE1FLisrCxMnTsTt27dRtmxZ+Pj4oG/fvrC3t4dMJoNSqURERATOnj2LAwcOFHV1iYjyxZBNVEpERUVh5syZUCqVqF+/Pn755RfY29trlDE1NYWrqytcXV0xevRozJs3r4hqS6QpMDAQYWFhAIClS5eiZ8+eGtPNzc3h5uYGNzc3TJo0CSqVqiiqSUSkN4ZsolJizZo1ePnyJSwsLLBhw4ZcAftNtra22LhxIwRB0Hj9yZMn2Lp1K86ePYvY2FgAQPXq1dGxY0eMGjUKlStXzrWsmJgYdO7cGQBw6tQpyGQybNq0CefOnUNiYiLs7OzQs2dPjBs3DpaWlgCA27dvY/Pmzbhy5QqePXuGatWqoU+fPhg7dizkcnmudQwbNgyXL1/G5MmTMW7cOGzbtg1///03Hj58CLlcDhcXF3h7e6Njx45GtZ+6Tjt27MClS5fw6NEjmJiYoEaNGvD09MSIESNQsWJFrdsMvO424uTkpLG85cuX5+pCEhMTg+3bt+PChQuIi4tDdnY2qlWrhnbt2mHUqFFwcHDIVa99+/Zh7ty5qF69Ok6fPo3Q0FD8/PPPuHr1KpKSkmBnZ4cuXbpg4sSJsLGx0bl9L1++xM6dO3Hq1ClERkYiNTUVlSpVQvPmzTF8+HA0a9ZM63wvXrzAtm3bcObMGURHR0OpVMLGxgYVK1ZEs2bN0L17d3h4eGjMk56ejt9//x3+/v64f/8+UlNTUa5cOVSsWBGurq7w9PREt27dxPLh4eHi3znbVRuZTJbn1Zfg4GD88ccfCAoKwuPHj2Fqagp7e3s0adIEPXr0QPv27XPNk5KSgu3bt+PUqVOIjo5GZmYm7O3t4eHhgTFjxqBmzZpa16V+z3/99VfUr18fmzdvxpkzZ5CQkID09HTcunVLo/yZM2ewd+9e3LhxA8+fP0fZsmWhUCjQs2dPfPzxx7yqRFSKMGQTlQJPnz7F8ePHAQD/+9//UKdOHb3nlclk4t+XL1/GpEmTkJycDABiIL579y7u3r2Lv/76Cxs3bkSLFi10Li8sLAzz589HcnIyrK2tkZWVhYcPH+LHH39EUFAQtm3bhvPnz2PatGlIS0tDuXLloFKpEB0djbVr1+LOnTv4/vvvdS5fpVJh5MiRCAoKgpmZGSwtLZGcnIwLFy7gwoULmDx5MqZMmaL39qv9/PPPWL16NbKzswEAZcuWhUqlwu3bt3H79m3s3bsXmzdvRqNGjQC8vipQuXJlpKamIjU1FXK5PFfALVOmjMa/Dx48iPnz50OpVAJ4fXbWxMQEkZGRiIyMxL59+7Bu3Tq0a9dOZz3//vtvzJ07FyqVCuXKlUNWVhZiYmLEdt29ezesrKxyzRceHo7x48cjISFBrH+ZMmWQkJCAI0eO4OjRo/jss88wbtw4jfkSEhIwaNAgxMXFAQBMTExQrlw5PH/+HE+fPsXt27cRGRmpEbJfvnyJIUOGICIiAsDrfaxcuXJISUnB8+fPce/ePVy5ckUjZL+5TnUXJ0NkZWVh+fLl2LFjh/iapaUlzMzMcP/+fdy7dw8nTpxAUFCQxnx37tzBmDFjxLaxsLCAmZkZoqOjER0djX379uHbb7/VWV8AePDgAaZPn46nT5+K8+eUnp6OWbNmiZ9TALC2tkZKSgqCgoIQFBSEAwcOYPPmzXn+UCKiEkQgohLv0KFDgkKhEBQKhfDPP/8YtYy4uDihRYsWgkKhEHr06CEEBQWJ065cuSJ069ZNUCgUQqtWrYSEhASNeR8+fCiuv0WLFsKIESOEO3fuCIIgCGlpacKvv/4qNGzYUFAoFML3338vuLu7C9OmTRNiYmIEQRCEly9fCqtXrxaXcf78+Vz1Gzp0qKBQKAR3d3fBxcVF2LVrl5Ceni7WfcqUKeL8J0+e1Dn/unXrck3bs2ePoFAohKZNmwqbNm0SHj9+LAiCIGRmZgr//fefMHz4cEGhUAgdOnQQXr58qTHvunXrBIVCIQwdOjTP9j137pzg7OwsNGrUSFi5cqXw8OFDITs7W8jOzhbu3bsnTJ06VVAoFELz5s2F2NhYjXn37t0rKBQKoUmTJoKLi4swf/58IS4uThAEQUhNTRV+++03oXHjxoJCoRDWrFmTa92PHj0SPDw8BIVCIUyePFn477//BKVSKQiCIDx9+lRYs2aN0KhRI0GhUAgnTpzQmHfevHmCQqEQOnXqJFy4cEHIzMwU2yYmJkbYuXOnsGrVKo15fvjhB3FfOX78uJCRkSEIgiBkZWUJCQkJgp+fn/DFF19ozHPp0iXx/Rs+fHiufUwfK1euFJcxd+5c4f79++K05ORk4cSJE8K0adM05klJSRE8PT0FhUIhtG/fXjhz5oyQlZUlCIIghIeHC/379xcUCoXg4uIihIeH51qnen1NmzYVunXrJly4cEGcP+f6Z8yYISgUCqFz587CwYMHhZSUFEEQBCE9PV04efKk0LlzZ0GhUAgTJ040eLuJqHhiyCYqBb7//nvxy96YcCIIgrBw4UJBoVAILVu2FENmTvHx8ULz5s0FhUIhfP311xrTcobsnj17iqEqp5kzZ4plRo4cKWRnZ+cqM3jwYEGhUAjz5s3LNU0dkhUKhfDnn3/mmp6VlSUMGTJErIOu+d8M2SkpKeKPi7Nnz+ZuGEEQVCqV0LdvX0GhUAi+vr4a0/QJ2VlZWULXrl0FhUIh/PHHHzrLjR8/XlAoFMKSJUs0XleHbIVCIcyePVvrvMuXLxcUCoXwwQcf5Jo2d+5cQaFQCNOnT9e5bl9fX0GhUAgffvihxuvdu3cXFAqF8Pfff+uc901jxowRFAqF8OOPP+o9jyAIwsiRI8XtbNiwoTBgwABh6dKlwv79+4XIyMg8571//77g7OwsKBQKYeXKlXqv86effhIUCoXQuHFj4datW7mmp6SkCJ06dRIUCoXg4+OTa7q6vs2bNxfi4+O1ruPKlSuCQqEQPDw8xB9Hb4qPjxeaNm0qKBQKISwsTO/6E1HxxYfREJUCSUlJ4t+2trYGzy8IAo4dOwYAGDhwIKpUqZKrjL29PQYOHAgAOHz4sM5ljRgxQmu/0pxdIMaOHavRTeXNMm/2Y82pWrVq+Oijj3K9bmJiggkTJgB4ffk/r2Xk5O/vj+TkZDRq1EhrX10AMDMzQ69evQAA586d02u5OV25cgVRUVGoUKECPvnkE53l+vTpk+861Nv4JnU/5ujoaKSlpYmvZ2Rk4NChQwBet7suvXv3BgBERETg6dOn4uvly5cH8Lqvvr6MmQcANmzYgMGDB0MulyMrKwvXr1/H9u3bMWvWLHTr1g2enp7YsGEDXr58mWve/fv3Izs7G7a2tpg6dare6zx69CgAoFu3blrHjbe2tsaYMWMAAGfPnkVKSorW5fTu3VvnfRB//fUXgNdduapVq6a1jL29vTgkYUBAgN71J6Lii32yiQgxMTFiUH/zBrac2rZtiy1btiApKQkPHz7UejOYm5ub1nlz3jDp6uqaZxl1n3BtWrVqpTWgA0CLFi1gZmaGzMxMhIaG5roRUZtr164BAO7du4e2bdvqLJeeng4AYt9kQ6jX8fLlS51BHoA4Yoauddja2qJ27dpap1WtWlX8Ozk5GWXLlgUAhIaGIiMjAwAwevRoveobFxcnvhfvv/8+rl+/ju+++w7379/HBx98gObNm8Pa2lrn/O+//z4OHTqE3377Dc+ePUOPHj3QvHlzjRtHtbG0tMSXX36JyZMn49SpUwgKCkJoaCiioqKQlZWF2NhYrF+/Hn5+fvD19UWtWrXEedVt3LZtW70fUqNUKsUfY/nt9wCQnZ2Nmzdvok2bNrnKNG/eXOf86rr99ddf4g8ebdQB3ph9jIiKH4ZsolIg59lr9WgThkhMTBT/zmvenNOePXumNWRru+kOeH2jnZqugKYuk5mZqVcd3mRhYQFbW1s8ffpUY5vy8vjxYwCvz/iqw2he1GHbEOp1qFQqjbPEhq5DV9sCmu2bc3g79boB6LVuABpnwkePHo2IiAgcPXoUe/bswZ49eyCTydCgQQO0a9cOn3zyCerWrasx///+9z+EhITgt99+w+HDh8UrH7Vr10bbtm3x0UcfwcXFRef6K1WqhP79+6N///4AgFevXiEwMBC//PILrl69ipiYGHz22WfYu3dvrm3TNjqLLi9evEBWVhaAvPernGeonz17prPOuqjfg5cvX2o9C/8mY/YxIip+GLKJSoEGDRqIf4eHhxscst9l6pDVo0ePPEc1kWIdTZo0wZ49e97KOnRRj5YCACEhIQY/ilwul2PNmjUYP348/P39cfXqVYSEhIijrmzfvh0zZszAqFGjNOabP38+hg4dimPHjiEoKAg3btwQR+vYuXMnhg8fjvnz5+tVBysrK3Tu3BmdOnWCt7c3Ll26hNDQUISHh6Nhw4YAoPPqRmExMdHd+1L9/n/11VcYNGhQYVWJiIoY+2QTlQKtW7cWv+RPnDhh8Pw5z8I9evRIZ7mc0/K79P+25FU/pVIpdnvJ68xiTur+52/zEn1hrEOXnN101OOeG8PZ2RlTp07F9u3bceXKFWzbtg0tW7ZEVlYWVq5cKQ7Xl1Pt2rUxbtw4/Pzzz7h06RJ2796NLl26AHg9rvSpU6cMqoOJiYlGn/bIyEjxb/V2GtLGNjY24hUA9fB92uScZsx+X5TvPxEVHYZsolKgcuXK6Nq1KwDg0KFDGuEjP4IgoEaNGmKXk4sXL+ose+HCBQCvu6foejjH23blypVcD9BRCwoKErua5NUdISd1X9qbN29qdK3Ql/oMqq465VzHkydP8N9//xm8joJwdXUVH+7zzz//SLJMMzMzeHh44KeffoK5uTkEQRD3DV1MTEzQtGlTrFu3TuzSkd882qjHbgegcYOt+kE658+f16vbj3p+db/9wMBAneXU9TQxMUHjxo0NrrO6bmfOnDF4XiIquRiyiUqJadOmwdLSEunp6ZgyZUqeZ3yB1/1Rp0yZgpSUFMhkMnTv3h0AsHv3bq2jQjx69Ai7d+8GAHGkjaIQFxcHPz+/XK9nZ2fjxx9/BADUr19fr5seAcDLywvly5eHSqXCihUr8gzL2dnZuW7KVPcvz+tmzdatW4s3LC5fvlx8GI0uOUeLKShLS0v873//A/D6gTv5nU19c9151dXc3Fw8E5yzu0Re85iamoqhP2cXj9u3b+e7zwLAgQMHxL/VXUUAoF+/fjA1NUVSUhLWrVuX73LUevToAQA4fvw4bt++nWv6q1evsGXLFgBAx44dUa5cOb2XrTZgwAAAr7dx586deZZNTU3Nd/8gopKBIZuolKhTpw5WrVoFuVyOO3fuoHfv3ti8eTOio6PFMllZWQgLC8PatWvRpUsX+Pv7i9PGjx+P8uXLIykpCSNHjhRHRACAq1evYuTIkUhOToatrS18fHwKddtyKleuHL766ivs2bNHPGMZHx+P6dOn49KlSwBe/+DQV/ny5TFv3jwAr4cm9PHxQXBwsNiXOTs7G/fu3cPWrVvRs2fPXGeD1cO+3b17V6PNcjIzM8PXX38NMzMzXL16FUOHDsXFixc1blB8+PAhdu3ahY8++ijfIGaozz77DFWrVsXz588xYMAA7N+/X+MGvGfPnuH48eOYNGkSPv/8c415O3XqhO+++w43btzQCH/R0dGYMWMG0tLSYGJiojFE4yeffIIlS5bg0qVLSE1NFV9/9OgRFi9eLO6THTt2FKddvnwZnTt3xrRp03D06FGNqwoZGRkICgrC+PHjxScmduvWDdWrVxfL1K5dWxw9ZcuWLZg/fz6ioqLE6S9fvsSRI0cwadIkje0bNGgQatSoAZVKhbFjx+Lff/8V3/tbt25h9OjRiImJgbm5uUH7VU6tWrVCv379AACLFi3CsmXL8PDhQ3G6UqnEjRs3sHLlSnTq1EnnzZVEVLLwxkeiUqRLly7Yvn075s6di+joaHz33Xf47rvvIJfLYWVlheTkZDFAyGQy9OrVSxzqzd7eHj/88AMmTpyIO3fuYNCgQeKleXVQKl++PH744YcivbFy8ODBCAoKwoIFC7Bo0SJYWlrixYsX4vQJEybggw8+MGiZffv2RXp6OpYuXYqzZ8/i7NmzMDc3h6WlJV69eqURht+8wa5Vq1aoU6cOIiMjMWjQINjY2Ihnt2fNmgUvLy8Ar4eIW7t2LWbNmoXg4GB4e3uL78ubZy/V/ZalUrVqVWzbtg0TJ05EVFQUZs+eDRMTE5QvXx5KpVIjCL/33nsa8z59+hSbN2/G5s2bxUeqp6eniz9wZDIZZs+ejfr164vzpKSkYMeOHdixY4f4SPXMzEyN9Xh7e2sMZ2hmZgaVSoWjR4+KY1dbWFigTJkyGu8v8Ho89WXLluXazmnTpuHVq1f4/fff8ddff+Gvv/6CpaUl5HI5kpOTIQhCrjPR1tbW2LRpk/hYdR8fH1hYWEAul4s/RMzNzbFq1So4Ozsb1O45ff311zA1NcWff/6J7du3Y/v27WLdUlJSNG5QLeqbOIlIGgzZRKWMu7s7jh49imPHjuGff/5BSEgIEhMT8erVK9jY2KBu3bpo2bIlevfunWvotVatWuHIkSPw9fXFv//+i9jYWMhkMtSrVw8dO3bEqFGjtD6opjDJ5XJs27YNvr6+OHToEB4+fIhy5crBxcUFI0eO1Dg7aohBgwahffv2+P3333HhwgXExMQgJSUF1tbWqFmzJpo1awZPT89cYySbmZlh+/btWL9+PS5evIhHjx6JoTBnqAReh+cTJ05g586dOHv2LKKjo5GSkoKyZcuibt26cHV1xfvvv48OHToY1zh5qFevHv7++2/4+fnB398f4eHhePHiBeRyOWrXro2GDRuibdu26Natm8Z8W7duxaVLl3D16lXEx8eLQ+XVrl0b7u7uGDJkSK7+76tXr8a5c+cQFBSEmJgYPH36FJmZmahevTqaNGmC/v375xqXeuDAgWjatCkCAgJw/fp13L17F0+ePEFKSgqsrKxQrVo1uLi4oEePHjrfY1NTUyxcuBA9e/bErl27cPXqVTx9+hRmZmaoX78+mjRporWrk0KhwOHDh7F9+3acPHkS0dHRUCqVqFWrFt577z2MHj1aY0xuY5ibm2PJkiX46KOPsGfPHgQFBeHx48dITU1FpUqVUKdOHbRs2RLdunXj6EBEpYRMyKsDIhFRMTFs2DBcvnwZkydPxpQpU4q6OkRERHlin2wiIiIiIokxZBMRERERSYwhm4iIiIhIYgzZREREREQS442PREREREQS45lsIiIiIiKJMWQTEREREUmMIZuIiIiISGIM2UREREREEmPIJiIiIiKSGEM2EREREZHEGLKJiIiIiCTGkE1EREREJDGGbCIiIiIiif0/8tlJlwTY58UAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.displot(roothog_df, x=\"CompletenessScore\", kind=\"ecdf\")\n", + "plt.title(\"Cumulative distribution of CompletenessScore for all RootHOGs\", fontsize=16);\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "073a3976-c942-42dc-815b-7fc1655d8837", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:49.833295Z", + "iopub.status.busy": "2024-10-18T00:52:49.832766Z", + "iopub.status.idle": "2024-10-18T00:52:50.529972Z", + "shell.execute_reply": "2024-10-18T00:52:50.529239Z" + }, + "papermill": { + "duration": 0.70651, + "end_time": "2024-10-18T00:52:50.531119", + "exception": false, + "start_time": "2024-10-18T00:52:49.824609", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCoAAAQvCAYAAADRmA95AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0l0lEQVR4nOzdd3gUVf/+8XsJCRAChBJCCkoNASRIDSqiUqTYgiIKgqIUG6hYEPSRR/QRsKFIU1QCUhRUIiqIgKFJD70k9EgPNSEhPZnfH/52v6xJYLPZkJF9v67LS3bm7OxnN2d3Z+85c8ZiGIYhAAAAAAAAEyhV0gUAAAAAAABYEVQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBU4Jpp3769GjRoYPsvNDRUzZo1U7t27dS3b1+9//772rFjxxW30bdvXzVo0EAbNmy4RlVfmfU5HTt2zG652eqUpOHDh6tBgwaaP39+SZdSLKKjo9W7d281b97c1sccef2tf8OrvS7Wv+mECRMKbHPhwgVNnDhRPXv2VHh4uG666Sa1bdtW/fv319y5c5WVleXQc9m9e7feffddPfDAAwoPD1fjxo3VqlUrPfDAA3rzzTe1bNkyZWdnO7QtZ5mxD18Pivo+vHDhgr744gv17dtXt912m2666SY1b95c9957r/7zn/9o3bp1Lq7YHCZMmHDV9x+Kx7Jly/TMM8+obdu2uummm9SiRQt16tRJ/fv316RJk7R///6SLtHUDMPQV199pXvvvVdhYWG276d/o4I+v+bPn68GDRpo+PDhhdre5fuE1v/CwsLUvn17DR06VDExMa4sv9hYX5erPX/r51jfvn0LbJOVlaV58+ZpwIABtvdceHi4Hn74YU2cOFHnz593qKaEhARNmDBBvXv3tn1XNGvWTHfffbdeeOEFff/997p48WKhnidwrZUu6QLgfpo3b64bb7xRkpSenq4LFy4oNjZWGzdu1LRp09S6dWuNHj1aNWvWLLYa2rdvr+PHj+uPP/5QcHBwsT3OtTJ//nyNGDFC3bt319ixY0u6nGsuNjZWL7zwgnJzc9WmTRv5+fnJYrGoWrVq16yGJUuWaMSIEUpJSZG3t7eaN28uX19fnTx5UuvXr9eff/6padOmafLkyapbt26+20hLS9PIkSP1888/S5IqV66sm266Sb6+vrp06ZLi4+P1ww8/6IcfflBQUJAWLFigChUqXLPniJL1008/adSoUUpNTZWXl5fCwsLk7++v9PR0HTp0SN9//72+//57denSRePHjy/pck1t+PDhioqK0pgxY/Tggw+WdDmmlJOTo2HDhunXX3+VJNWvX19hYWEqW7asTpw4oZiYGP35559KSUnR66+/XsLVmtecOXP04YcfqkKFCmrXrp18fHxKuiTTadu2rfz8/CT9Hcbu2rVLixYt0m+//aYRI0boiSeeKLHaruX+1cGDB/Xcc88pPj5eHh4eatq0qcLDw5WUlKQtW7Zox44dioyM1JgxY3T33XcXuJ2vv/5an376qTIzM1W2bFk1adJEfn5+ysnJ0YkTJ7Rs2TL9/vvvGjt2rL744gu1bNmyWJ8X4CyCClxzDz/8cJ4dQ8MwtGrVKo0ePVobN27Uo48+qu+++y5PWPH+++8rLS1NgYGB17LkAk2fPl1ZWVny9/cv6VKu6uWXX9bAgQNVvXr1ki7F5ZYtW6asrCw988wzGjp06DV//KVLl+rFF19Ubm6unnjiCQ0dOlTlypWzrU9ISNAbb7yhP//8U71799aPP/6YJyDLysrSgAEDFBMTIz8/P/33v/9Vx44dZbFY7NodO3ZMs2bN0uzZs5Wenl5sQYXZ3mvu7ttvv9Xbb78ti8WigQMH6plnnsnzg+fAgQOaMGGC/vrrrxKqEteT7777Tr/++qvKly+vyZMnq02bNnbr09LStHz58mIf3fVvt3jxYknS+PHjddttt5VwNeY0aNAghYeH226npaVp2LBhWrJkiT788EN16dLlX7GfVRRHjx5V7969lZiYqFtvvVXvvfee3fdvenq6xo8fr2nTpunFF1/UhAkT1LFjxzzb+fDDD/XVV1/J09NTr732mvr06aOyZcvatUlOTtaPP/6or776SgkJCcX+3ABnceoHTMFiseiOO+7Q999/r1q1auns2bP6z3/+k6ddYGCg6tata/cjsCTdcMMNqlu3rjw9PUu6lKuqXr266tate10egT9x4oQk2UbqXEvnz5/XiBEjlJubq379+umNN97I0z/9/f01ZcoUNWvWTImJiRo2bFie7UyaNEkxMTHy9fXVd999p06dOuUJKSQpODjYdjTY29u72J6X2d5r7uzgwYN67733JP09EuDVV1/N96hsvXr1NH78eL355pvXukRchxYuXChJ6tOnT56QQpLKlSunbt266f7777/Wpf2rlOT3079VuXLlbPuAWVlZWr16dQlXVPyGDRumxMRE3Xzzzfriiy/yHCQoW7asXn/9dT311FPKzc3V8OHDdeHCBbs2a9eu1VdffSVJ+vTTTzVgwIA8IYUkVahQQf369dPChQt10003Fd+TAoqIERUwlYoVK+qNN97QoEGDtH79eu3atcvuQ7Rv377auHGjvvnmG7v0PTMzU998840WLVqkw4cPKysrS5UqVVKNGjUUHh6uQYMGydfX1zaEz6pDhw52j2/d7oYNG/T444+rdevWmjp1qqZOnarFixfrxIkTqlq1qqKjoyU5dgrJxo0b9fnnn2vXrl3KyMhQ/fr11adPH0VERORpW9Dzs5owYYImTpyowYMHa8iQIXY1SFJUVJSioqJs7Vu3bq2ZM2dKuvpQ54ULF2revHmKjY1Vamqq/Pz81KZNGw0aNEi1a9fO0/7y537s2DFNnTpVO3fuVEZGhurWrasnnngi3+d4NdnZ2fr++++1YMEC7d+/X5mZmQoICFC7du00cOBAu6Mq1tfDasSIEba/7+XPvTjNmTNHycnJqlKlil5++eUC23l5eWnkyJHq3r27Nm/erI0bN6p169aSpJSUFH3zzTeSpOeff96h05Hq1atXqDpzc3P1/fffKyoqSgcOHFBaWpoqVqwoPz8/tWrVSk8++aTd4+bXF//5/inIP98P2dnZioqK0s8//6y9e/cqNTVV1atX1+23365nnnlGAQEBebaxdu1affPNN9qxY4eSkpLk7e2typUrKywsTI888ohatWrl0PNOSUnRokWLtGrVKu3bt0+nT5+WJNWsWVPt27dX//79VbFixTz3K0r/TkxM1KRJk7Rs2TKdOXNG1apVU/v27fXCCy84VPM/ffXVV8rKylJoaKhDQ6Dze21OnTqlL7/8UqtXr9bJkyfl5eWl+vXrKyIiQg8//LA8PDzs2l8+3PnNN9/UxIkTtXTpUp05c0YBAQHq0aOHBgwYoFKlSikhIUGTJk3SypUrde7cOQUFBalPnz75nod9eb+yWCwOfzZezeHDhxUZGam1a9cqISFBXl5eCg0NVc+ePfXAAw/Y2h07dszuc//yzwxJdp+t0t9HMefMmaPFixfr0KFDysjIUGBgoDp06KCBAweqcuXKBb5uI0eO1JQpU7R48WKdPHlSlSpVUtu2bfXyyy8XeHQ4ISFB06ZN06pVq3TixAmVKlVKderUUffu3fXoo4+qdGn73TZHv/us4uPj9cUXX2jDhg06ffq0PD095evrq/r166tz58566KGHbG3PnTsnSapSpUoh/hL2z2X69On6888/dezYMRmGIX9/fzVr1kw9e/ZU8+bN7doXpY8OHz5ckyZN0vLly3Xq1Ck1a9bM7vN/3bp1mj17trZt26bExERVqFBBzZs314ABA9SsWbM8tRfmdSqIta9bXd7v/tnPVq9erVmzZmnHjh1KTk6Wr6+vWrZsqf79+6tJkyYFbvubb76Rh4eHvvrqK9tzGz169FVPZ8rKyrJ9Lu7evVunT59Wdna2AgICdPvtt+f5ri0J/v7+8vX1VWJioq0vXi4tLU0zZ87Ub7/9pvj4eOXm5io4OFgdO3bUU089pUqVKuW73YMHD+qrr77S+vXrdebMGXl7e6thw4Z65JFH1K1bN7u2ju5fFdXGjRu1ZcsWSdJbb70lLy+vAtu+9NJLWrBggc6dO6fZs2dr8ODBtnVTpkyRJHXq1Cnf0Rb/VKlSpXxfp99++01z585VbGysUlJS5OPjo6pVq6p58+bq06ePQkNDC/sUAacQVMB02rVrZ/tyWrt27VXT3tzcXA0aNEjr1q2Tj4+PWrZsqYoVK+r8+fP666+/9PXXX+u+++6Tr6+vbrjhBnXv3l2///67UlNT1blzZ7uj0v+c0yAjI0N9+/bVwYMH1bJlS4WGhioxMdHh57J06VLNnj1bderUUdu2bXX69Glt3rxZr7/+uuLi4go98VR+OnfurG3btmnLli264YYb1KJFC9u6OnXqXPX+hmFo+PDh+umnn1S6dGm1bNlSVatW1e7duzV//nz99ttv+uyzz9SuXbt87//jjz9qypQpatSokW6//XYdP35c27Zt0+uvv67ExET169fP4eeSmZmpp59+WmvXrlWZMmUUHh4uHx8fbd26VTNnztSvv/6qr7/+Wo0bN5YkNWzY0PbD/8iRI3bznzjy3F1h2bJlkqSuXbuqTJkyV2zbqFEjhYSEaN++fYqOjrYFFevXr9elS5dksViK7ejkm2++qfnz56tMmTJq0aKFqlSposTERNupJLfccstVAxLr+yc/CQkJWrt2rSTZ/aBISUnRs88+q40bN8rb21s33XSTKleurH379um7777T4sWLFRkZqUaNGtnuExUVZfvxGBYWpvDwcKWnpyshIUGLFi1S5cqVHQ4q4uLi9NZbb6lKlSqqXbu2GjdurIsXL2rXrl36/PPPbTtk//zBaVXY/n327Fk99thjio+PV6VKlXTXXXcpNzdXv/zyi1avXl3ogMkwDFswGhERke8om6vZsWOHBg4cqMTERAUGBqpjx45KTk7Wxo0btXXrVi1dulRTpkzJd+f44sWLeuSRR5SYmKiWLVvq0qVLiomJ0ccff6yEhAQ98cQT6t27t0qXLq1mzZrp/PnziomJ0f/+9z+lpaVp0KBB+dbkys/G3377Ta+//royMjJUp04d3XHHHUpOTtaOHTs0bNgwrV+/XmPGjJEkeXt7F/iZIf39mWKVkJCgAQMGaN++ffL19VWTJk1Uvnx57dmzR19//bUWL16smTNnKigoKE9NycnJevTRR3Xy5Em1aNFC9evX17Zt2/TTTz9p06ZN+c4vs2nTJj3//PNKSkpSUFCQbr31VmVmZmrnzp169913tXz5cn3++ee2EXyF+e6TpH379qlXr15KSUlR7dq1ddddd9mCpk2bNikhIcHuB3hAQIDi4+MVFRWlhx56qFCj8datW6cXXnhBFy9eVNWqVXXLLbfI09NTx48ft815cXlQUZQ+euHCBT300ENKTk5WixYt1LhxY7tRju+//76mTZumUqVK2SYDPXnypP744w8tX75c7777rt3zLuzrVJDbb79dQUFB+e5vXN7PPv30U02ZMkUWi0XNmjVTYGCgDh48qN9++01LlizRO++8ox49euT7GIsXL9Z3332nOnXq6NZbb1VSUtIVf+RanTt3TsOGDVOFChVUt25dNWjQQGlpaYqNjdXMmTO1cOFCfffddyU6CiQ3N1epqamSpKpVq9qts372xsbGysfHR23atJGnp6ftwNCvv/6qGTNm5PlOW7FihV544QVlZGSodu3auvvuu3Xu3Dlt2rTJNpfU6NGjbe2Lun/lKOt+RP369a+6z1umTBl17dpVs2bNUnR0tC2oSEpKsk0+enk4W1gTJ07UhAkTbJ/p/v7+Sk5O1smTJ/XDDz+oXr16BBW4dgzgGrnrrruMkJAQ48cff7xq2379+hkhISHGq6++are8T58+RkhIiLF+/Xrbso0bNxohISFGRESEkZycnGdbO3bsMM6fP59vLUePHs338devX2+EhIQYISEhxn333WecPn36is/pn9ux1hkSEmJ8/vnndus2bNhghIWFGSEhIcaqVauu+vwu99lnnxkhISHGZ599Zrf8xx9/NEJCQozXX3893/sZhmG8/vrr+b7+c+bMMUJCQozw8HBjz549tuW5ubm2x2vZsqVx7ty5fJ9748aNjejo6HzradGihZGWllZgTf/04YcfGiEhIUbHjh3tXtPMzEzjjTfeMEJCQoz27dsbGRkZDj03RzjaL61/m8tf+8zMTCM0NNQICQkxoqKiHHq84cOHGyEhIcZjjz1mW/bpp5/anndxOH78uBESEmK0a9cu37584MAB4/jx43bLrtYXL5eUlGTcc889RkhIiDF27Fi7dS+//LIREhJiPP3008bZs2ft1kVGRhohISHG3XffbWRnZ9uWt2/f3ggJCTE2bdqU57HOnj1r7N69+6o1WZ08edJYu3atkZOTY7c8NTXVGDZsmBESEmK8/fbbee7nbP8eMmSIERISYvTu3du4ePGibfmFCxeMhx9+2Pa54GhfPXLkiO0++b0eV5ORkWF7LiNHjjQyMzPttm1dN27cuHyfo/Vvl5qaalu3a9cuo1GjRkZoaKjRrVs3Y+TIkUZWVpZt/dKlS42QkBCjefPmdvczDOc/Gwv67IuLizNuuukmo0mTJsbvv/9ut+7YsWPGvffem+/782qfGbm5ucajjz5qhISEGG+88Ybdd0tWVpYxduxYIyQkxOjbt2+Br9tTTz1ld7/ExETjgQceyPe5nz592mjdurXRoEEDY/bs2Xb99fz588bjjz9uhISEGBMmTLAtL+x3n/WzZ/LkyXnapqWlGRs3brRbZv07Wvv6q6++asyePdvYtm1bns/gy504ccJo0aKFERISYnz00Ud52p49e9auL7uijz7xxBP5vgZz5841QkJCjE6dOhmxsbF26zZu3Gg0a9bMaNy4sXH48GGnX6erudL+xsqVK42QkBCjSZMmxp9//mm3bt68ebbPoH379tmtu/x9NGvWrELVYxiGkZycbCxbtizP3yYzM9P4+OOPjZCQEGPgwIF57lfQ+8aRfZD8WJ9Dft8zf/75p+35nzp1ym7dSy+9ZISEhBgPP/ywXR9PSUkxBgwYYISEhBiPPPKI3X3OnDlj65eTJ082cnNzbet27NhhtGrVyggJCTHmzp1b6OdmfV2u9vytn2N9+vSxW967d28jJCTEGD58+BXvbxUVFWWEhIQYoaGhts/etWvX2l7PkydPOrSdf8rIyDDCwsKMm2++2Th48GCe9ceOHTMOHDjg1LYBZzBHBUzJenTTkdELZ8+elSS1aNEi3/O2mzRpUuDRUkeMHDnSNht1YTVq1EhPP/203bLWrVurd+/ekqTIyEin63KVadOmSfr7lIPLj/JYLBYNHjxYDRo00MWLFzVv3rx879+nTx/ddddddssefPBB1alTR8nJydq1a5dDdWRkZGj27NmS/h6OffmREE9PT/3nP/9RtWrVdOzYMf3++++Feo6OGDFiRL6XSrP+d/kQXqukpCTl5uZKynvEpyDWUTuXX2LMep5pQUOsExISNHz48Dz/WY/CXI31PdKoUaN8+3LdunWdnjQzMzNTzz//vPbv369u3brZzb9x8OBBLVy4UNWrV9dHH32U5zXq16+f7rjjDsXHx2vVqlW25efOnVOFChXynYm8atWqdqMvrqZGjRq65ZZbVKqU/ddduXLl9Pbbb6t06dK2ye7yU5j+ffLkSS1dulQWi0WjRo2yOwLt6+urUaNGOVy31eX9xJkh+L/99puOHz+u6tWr680337Q70lyzZk3b1RpmzpypjIyMPPf39vbWe++9ZzdXSePGjdWuXTvbEc833njD7pSEjh07KiQkRCkpKQW+/1312fj5558rMzNTL730Up5Z8IOCgmxze1hPrXLU6tWrtWXLFjVs2FCjRo2y+24pXbq0XnvtNYWEhGjDhg3at29fnvt7e3trzJgxdverVKmSbYSJdfSR1YwZM5SYmKjHHntMvXv3tuuvlStX1gcffCBPT0/Nnj1bhmFIKvx3n3X4/B133JGnbdmyZfOMUurYsaPee+89+fr6Kjk5WT///LNGjRqlnj17qmXLlhoyZEi+lxSPjIxUcnKy7rrrLr3yyit5jvBXrVrV7r1d1D7q6empd999N89rkJuba7uc7bhx4/IcBW7VqpWee+45ZWVlae7cuU6/TkVh/f61XkLycg8//LDuuusuZWVlFdh/27Rpo8cee6zQj+vj46MOHTrk+dt4enrq5ZdfVvXq1bV69WqlpKQUettFdf78eS1evFjDhw9XqVKlNHLkSLvTUE6cOKHFixfLYrHonXfesevj5cuX1//+9z+VKVNGW7dutZ1OIUnz5s1TcnKyGjdurGeffdZudFqTJk30zDPPSPr7ihnOioqKuuJ+xOWnqv7zOUt5R/UWxPpdmpubq6SkJEmym6+ioO+Kd999N89+xNSpU23rU1JSlJ6erpo1a+Y7YiQoKKjAq5YBxYFTP2BK1h9/jgxzbty4sTw8PPTjjz+qdu3a6tSpk8uubPHPHarCKmj4XUREhKZNm6bNmzcrJycnz7m318qpU6d05MgRScp3SL/FYtGDDz6oMWPGaMOGDbYv8sv980ecVd26dXXo0CGHZ5TeuXOnUlNT5evrq/bt2+dZb5247ZtvvtGGDRt03333ObRdR/1zCPg/rV692vbDoCisPzIKIykpye7cWKugoCCHzkOtU6eOypcvr1WrVmnKlCm69957XXL5X8MwNGLECG3cuFGtWrXS+++/b/eeXblypQzDuOIl+Vq3bq2VK1dq69attr7UpEkTbdy4UcOGDdPjjz+uRo0a5QkaCmvLli2KiYnRyZMnlZ6ebvs7eHp66vz580pKSsr3XN3C9O9NmzYpNzdXjRs3zvcUj4YNG6pBgwbau3dvkZ5LYVgDtnvuuSffIeF33323KlWqpKSkJO3atctuaLMk3XTTTfmGcLVq1ZIkhYeH53vKU61atezmBPknV3w25ubm2gKuf55bbtWkSRN5e3srNjZWGRkZVz09y2rlypWS/n59/jkvhCSVKlVKLVu21L59+7R161aFhITYrb/pppvy/R6y7vz/83PR+nhdu3bNtx5/f3/deOONOnDggOLj422nMRXmuy8sLEwrV67U22+/rSFDhqh169ZXfT169Oihe+65R8uXL9eGDRu0a9cu7d27VxkZGVqyZIn++OMPjRo1Sg8//LDtPtaJDx955JErbtuqqH20YcOG+X6e7dmzR6dPn9YNN9xQ4HB66+l3W7dutS1z5nVyRnZ2tu2HdEGn1PXo0cP22uenc+fORaohLi5O69at07Fjx5Sammr7XMzJyVFubq6OHDlSqGDYWY8//nieZWXLltW0adN0yy232C2//HM2v1MQ/P391bZtW/3xxx/asGGD7RQjaz+70mv9/vvvKz4+XgkJCU7N0fHP00P+KTY2VnFxcYXe7j85sx8hSb/++mueA4CtW7e2BahVqlRRUFCQ9u7dq7Fjx6pHjx6FPl0RcCWCCpiSNRkuaDKky91www0aMWKEPvjgA73zzjt65513FBQUpJtvvll33nmnunTp4tA5m/nJ79zjwijonH/r8vT0dCUmJjp8NN7VrDvLvr6+Bf6QvOGGG+za/lNBR+Kt28vvCFh+rD9orvSaX62WosjvsrmX69u3b56golKlSipVqpRyc3PznewrP/lNUGc9InT50fPLhYSE2P24ffPNN/XDDz849HjS33+LMWPGaMSIEfr000/16aefys/PTzfffLNuv/123XvvvSpfvrzD27P6+OOP9euvv6pevXqaNGlSnvfZ0aNHJUk//PDDVeu9/Lm//fbbevrpp7VgwQItWLBA5cuXV5MmTdSmTRs98MADhRr9ce7cOQ0ZMkSbN2++YruUlJR8P28K079PnTolqeD3vXVdYYKKy/vJ+fPnC31etPW9UlBNFotFwcHBSkpKyvd9ld9Ep5Js59oXtN7anwp6/7viszExMdF2xDe/o9/5tXf0x4e1744fP17jx4+/Ytv83rcFvS7WfpOZmZnv4zlydPz8+fOqXbt2ob/7+vfvr82bN2vt2rUaMGCAPD091aBBA7Vq1UrdunVTWFhYvo9nDYmtYVBqaqpWrVqlTz75RPHx8Ro1apRuv/121ahRQ9L/XeXC0b5a1D5a0HeG9TU9cuSIGjRocMUaLv8bOvs6FVZiYqLt/VHQc7cGMAV95zm7j5Kamqphw4Zp6dKlV2x3rUZUtG3bVn5+fsrNzdXZs2e1adMmpaen67XXXtO3335rF0Rdrb9I+e8rXO1+FStWtM2P5mxQ0aJFC40dO7bA9RMmTMg3qLDuAzh6MMTaX0uVKmX73rp8ZMn58+dt78fLXR54LViwIN8rkH3wwQd64YUXFBkZqcjISPn6+iosLEy33Xab7r//fqcn1wWcQVAB0zEMQ7GxsZKU5yhVQfr27auuXbsqOjpamzdv1ubNm7Vw4UItXLhQEyZM0OzZs50aZZHfZZ1crTDJuHWkiZk4M7nf9cLT01MhISGKi4vT9u3bHbpawc6dOyXJNiHo5f8+evRogUf2i6pz58669dZb9ccff2jz5s3asmWLli5dqqVLl+qzzz7TtGnTrrozf7k5c+boyy+/lJ+fn6ZOnZpvzdb+2rBhw6tOvtW0aVPbv+vWravFixdrzZo1Wr9+vbZu3arNmzdr/fr1mjRpkt577z2HJwt78803tXnzZjVr1kxDhgxRaGioKlasaBte3rZtW505c6bA92FJ9++goCDbzvPOnTuLNMLLGVcbyVLUkS5XcrXPxss/Dws6Snq5wlxG2rrtFi1a2H70FKR+/fp5lhX2dbE+3j8neM7P5VfxKMx3X7ly5RQZGakdO3Zo9erV2rp1q7Zu3apdu3YpMjJSvXv31n//+9+r1urt7a0uXbqoWbNm6ty5s9LS0rRq1Sr17NmzUM/ZVQr6nrb2Hz8/P7Vt2/aK27j8R56rXqdrwdl9lHHjxmnp0qWqU6eOXnnlFdtpQtZg69FHH9XWrVudPnJfWIMGDbK70tnlE9m+8sormjt3bol/Fhenxo0ba/PmzfmeSpUfa7vQ0FDbiK+GDRvaDpzs2rUr36DCES1btlR0dLRWrFihTZs2aevWrfrzzz+1atUqffbZZ5o0aVKeUS5AcSGogOmsXLnSds7d1XYuLletWjX17NnTtrN08OBBvfnmm9q6das+/vhjvf/++8VS75UcO3Ys3+XWy12VKVPGbqfTuiN96dKlfO9nPVLlKtYjBtYjk/mNqrAelSruS5VZd6atr01+rlUthdGhQwfFxcXZzqm90hDh3bt3a//+/ZJkd3pLmzZt5O3trdTUVP3yyy/q06dPsdRaoUIFRURE2AKVkydP6t1339Uff/yhd999V7NmzXJoO9HR0frf//6n8uXLa+rUqQUe1bMeVW7evLlGjhxZqFpLly6tO+64w3akPCUlRZGRkZo4caL++9//qlOnTlf9QWc98luqVClNnTo1z2VIU1NTXXI6j5W1X16pD19pXX5KlSqlu+66S1FRUfrpp5/05JNPOlWT9b2TH+vn1LV8XxX2szE/lStXVtmyZZWenq5hw4a59Eifte926NBB/fv3d9l2r/R48fHxGjhwYL6Xo7ySwn73hYWF2UYFZGdna9myZXr99dc1Z84cde7cWW3atHHocf39/VW3bl3t2rXL7vz4gIAAHT58WIcOHXLoqhHF1UetP9R8fX2veJS7IK56nQri6+srLy8vZWZm6ujRo/mGucX1nffbb79Jkj755JN8Hzc+Pt6lj1dY/v7++vTTT/XAAw9o+/bt+vnnn23htCP9Jb/Xzd/fX4cOHSrwfsnJybbTIq71PkaHDh30zTff6MCBA9q1a9cVr/yRkZFh+/tdvh/h6+ur5s2bKyYmRj///LNDp4UWpGzZsurSpYu6dOki6e8RGp9++qnmzp2rN954Q8uXL3d620BhMJkmTCU5Odl2GbnbbrvNbnLHwqpbt64GDBggSbYRGlbWQCAnJ8fp7Tvi559/znf5Tz/9JOnvo3WXn/9s/XI8ePBgnvukpaUVeJ6q9flkZ2cXqr4aNWrYjhbOnz8/z3rDMGxzI1x+tKM4WM8lT0xM1B9//JFnfXp6uhYtWnRNaimMPn36yMfHR+fPn9fHH39cYLvMzEy9++67kqRmzZrZPQcfHx/17dtX0t9DQ0+ePFm8Rf9/AQEBeuGFFyTlfY8UZMeOHXr55ZdlsVg0fvz4K56/bL2kbXR0tMOnABXEx8dHQ4YMUcWKFZWWlubQjnRycrJycnLk4+OTJ6SQ/n5/uvKIYatWrWSxWLRnz55838NxcXFOzU8xcOBAeXp6Ki4uTtOnT79qe+sl6qT/Owd/0aJF+f4Nli5dqqSkJJUvX/6ql8VzpcJ+NubHw8NDt956q6T/++HlqKt9B1j77uLFi6/JUeXbb79dUuGfR36u9N33T6VLl1aXLl1sBwUuH5Z+teedk5NjG05/+Q8763MpaALmfyquPmodJXDgwAFbQOysK71ORdmmdT6D/OYgkv6+PLLk+u8868Gg/ELm1atX2wVPJaVu3bp69NFHJf19yUzr/k2rVq1UqlSpAud7OH36tG2elMtfN2s/s37G/JP1ta5Vq5Zdf3Z2/6ow2rRpo5tvvlmS9M477+Q5Nexyn376qc6fPy8fH588p4o9++yzkqQlS5ZoxYoVLquvSpUqeu211yT9fcDM2n+A4kZQAVMwDEMrV65Ujx49FB8fLz8/P9uPuqtZt26dVq5cqaysrDzbtH5Q//M8c+uXUFF3Xq5m9+7d+vLLL+2WxcTEaM6cOZL+vurB5azD6ebMmWN3bmVqaqreeuutAn/AWo8c5ffj6GqeeuopSdLkyZPz7KROnjxZsbGxqlixYrEP6y1TpoztS/f999+3O/KclZWl9957T2fOnFFwcHCRJxBzpSpVqui9996TxWLRjBkzNGbMGKWlpdm1SUhI0LPPPqutW7eqYsWK+uCDD/JsZ/DgwWrWrJkSExP1yCOPaNmyZfn+UDh37lyhj3bt2bNHixYtUnp6ep510dHRkgqei+FyR48e1TPPPKO0tDS98847th8kBWnUqJE6d+6skydPavDgwfkeRU9NTdXPP/9sG9mQlpamyMjIfM/7j4mJ0cWLF+Xh4eHQsNZq1aqpUqVKunjxYp6d023btmncuHFX3UZhBAYGqlOnTsrNzdXbb79td353UlKS3n77bad+9NatW1fDhw+XJI0dO1bjxo3L99zxw4cP6+WXX9b//vc/27KuXbsqMDBQp0+f1pgxY+x2to8ePWo70ty3b99imTCwIIX9bCzI4MGD5enpqQ8//FBRUVH5nh63b98+LVmyxG7Z1b4DOnTooCZNmmjHjh0aMWJEvv0xKSlJ3377rUt+wAwYMEAVK1bU9OnTNW3atHx/qBw9elQLFiyw3S7sd9/s2bN16NChPNs9c+aM7eosl7d/+umnNXXq1HznR7h48aLefvttnTlzRj4+PrZgR5KefPJJlS9fXtHR0frkk0/y1Hfu3Dm7MK24+qinp6cGDx4swzA0ePBgu8e0ysnJ0bp167Rt2zbbssK+TkVhHSH17bffat26dXbr5s+fr+joaHl6euY72WRRWOcPmTlzpt3yQ4cOmea0Fkl67rnn5O3trSNHjtjCnMDAQHXp0kWGYWjkyJF2oUpqaqpGjhypjIwMNWvWzDaRpiT17NlTPj4+2r17tz7//HO7z+I9e/ZoypQpkpRnBFVR9q8K48MPP1TFihW1fft2Pf3003n299LT0/XBBx9o2rRpslgsGj16dJ5RZG3bttVTTz0lwzA0ZMgQRUZG5vu9n5mZme8VmY4fP67vv/8+3+8X675CpUqVCpzTDHA1Tv3ANff999/bZl/OzMzUhQsXtGfPHtuQu9atW2v06NEOTxK1d+9e22XgGjVqpOrVqysjI0N79uzR8ePHVaFCBb344ot29+ncubM2bNig1157TW3btrUdbe3fv3+hJ6u7kr59+2rcuHFasGCBGjRooNOnTysmJka5ubl6/PHH80wA17VrV82YMUO7du3SPffcoxYtWtjON/T09NRDDz1kS/0v17RpU1WvXl179uxR9+7dFRISotKlS6t27dq2I2sFsZ6LumDBAj300ENq1aqVqlatqt27d+vw4cMqW7asPvroo2sygdILL7ygXbt2ad26derWrZvCw8NVvnx5bdu2TSdOnJCvr6/Gjx/v9OSoxaVLly765JNP9Oabb2r69On6/vvv1bx5c1WqVEkJCQnaunWrsrOzdcMNN2jSpEn5nvPu5eWlr7/+Wm+99ZYWLlyo559/XlWqVFHjxo3l6+ur7OxsHTt2THv27FFOTo6Cg4MdPsp24sQJDR06VGXLllWjRo0UEBCg7Oxs7du3T4cPH5anp6ftaMmVTJkyRefOnVOVKlW0adMmbdq0Kd92lw/DHz16tC5evKhVq1apS5cuCg0NVXBwsAzD0PHjxxUXF6esrCwtWrRI1apVU1ZWlsaOHasPPvhAISEhuvHGG+Xp6anjx4/bfkw888wzDvVHDw8PPffccxozZoxtyHbNmjV14sQJbd26Vffff79iYmIKfTrGlYwcOVJxcXHauHGjOnTooNatW8swDG3YsMF2RRvrDl9h9OnTR+XKldP//vc/ffHFF5o+fbrCwsLk7++vjIwMHTp0yLYjfc8999ju5+XlpfHjx2vgwIH69ttvtWrVKjVt2lSXLl3S+vXrlZGRobZt2+r555932WvgiMJ+NhakcePG+vDDDzVixAgNHz5cn376qerVq6fKlSsrKSlJ+/bt06lTp9StWze7y5d27NhRkyZN0syZM7V//37VqFFDpUqVUvv27dWhQweVKlVKkyZN0tNPP62oqCj9/vvvatCggQIDA5WVlaWjR49q3759ysnJ0YMPPnjV0R9XU6NGDU2ePFlDhgzR+++/r6+++kr169eXn5+fUlJSdPDgQR05ckRNmza1DYEv7HffvHnz9M477yg4OFj169eXj4+PLly4oJiYGKWnp6tNmzZ2Q8kTEhL08ccfa9y4capTp45q166tMmXK2H6wp6amqmzZsnr//fft3o+BgYH67LPP9MILL+jzzz/XDz/8oJtvvlmlS5fWiRMnFBsbq3vvvdc230px9tE+ffroxIkT+vrrr/XYY4+pfv36uuGGG1S2bFmdOXNGcXFxttDFekS7sK9TUdxxxx169tlnNWXKFD355JNq3ry57dSZ3bt3y8PDQ2+//Xa+86AUxeDBg/XCCy9o/Pjx+u2331S/fn2dO3dOmzdvVosWLVS9enW7K6GUlCpVqujJJ5/UpEmTNGXKFEVERMjT01MjR47UoUOHtH37dnXq1Enh4eHy8PDQpk2bdP78eQUHB+ujjz6y21a1atX00Ucf6cUXX9Qnn3yiBQsWqFGjRjp37pw2bdqk7OxsPfjgg3kOyhRl/6owbrjhBs2ZM0fPPfec1q5dq44dO6pp06YKCAjQxYsXtWXLFqWkpMjb21ujR48u8IDN66+/rsqVK+uzzz7T2LFjNX78eDVp0kR+fn6yWCw6ffq07f1bvnx52+kd0t8B5H/+8x+NGjXK9l0tSX/99Zf27Nkji8Wi1157rcSuVAf3Q1CBa27Lli22S3J5e3vLx8dHISEhuummm9S1a9dCz6jdvn17paSkKCYmRn/99Ze2b9+usmXLqkaNGho0aJAee+yxPEdfe/XqpUuXLunnn3/WypUrbcNN77//fpcGFZ06dVKHDh30xRdf2I58NWrUSH369Ml38jdPT09FRkZq/PjxWrZsmdasWaMqVaqoU6dOevHFF21HG//J+iP3k08+0bZt2xQXF6fc3Fy1bt36ql+kFotFH3zwgdq1a6e5c+dq9+7dSktLU7Vq1fTggw9q4MCBLn1NrsTLy0tfffWV5s2bpwULFigmJkaZmZkKCAhQ3759NXDgQFPNT3G5rl27Kjw8XHPmzNHKlSu1c+dOXbp0SRUrVlR4eLg6deqkhx566IohS/ny5TVu3Dg9+eSTioqK0qZNm7R9+3ZdunRJ3t7eCggI0P3336+OHTvqjjvucHhywKZNm+qVV15RTEyMDh48qNjYWNuohMcee0x9+vRx6G9sPVp9/vz5AocqS3/vBFt/uPj4+GjatGlatGiRfv75Z+3evVtxcXEqX768qlevrvvuu08dOnSwhTfe3t4aNWqUNm3apD179mjt2rXKyspS9erVdffdd6tXr16FmsirX79+Cg4O1ldffaWDBw9q//79qlOnjkaOHKlevXqpQ4cODm/LEX5+fpo3b54mTZqkpUuXavny5apataq6deumF198Md/RNI566KGHdNddd2nu3Ln6888/dfDgQW3dulVeXl4KDg7WI488ovvuu0+tWrWyu19YWJh++uknffnll1q1apWWLl0qLy8vNWrUSA888IAefvjhIv/QLqzCfjZeSdeuXdWkSRPNnDlTa9eu1ZYtW5STk6Nq1arphhtu0GOPPWa3My79PQndhAkT9PXXX2v79u1at26dDMNQjRo1bH3C399f8+bN0/z587Vo0SLt3btXO3fuVKVKlVS9enU9+uijat++vctGorRq1UoLFy7UrFmzbJ8hmZmZqlq1qu29f3nYUtjvvqFDh2rFihXavn27tm/fruTkZFWtWlVhYWF66KGHdM8999j1gwkTJtgmtD148KBiYmKUnJwsb29v1a5dW7fccot69+6d70GFtm3b6tdff1VkZKRWr16t1atXy8PDQ9WrV9f999+f58dgcfbRYcOGqWPHjpozZ462bNmi1atXy9PTU35+fmrdurXuvPNOu9e1sK9TUb300ktq3ry5Zs2aZXvMypUrq0uXLurfv7/LrjJyubvvvluzZs3SxIkTFRcXp6NHj6pmzZoaPHiwnnrqqWsyL4ujnnrqKX377bc6fvy4fvzxRz366KOqXLmyvvvuO82cOVOLFi3SmjVrlJubq+DgYPXs2VNPPfVUgZebjoqK0pdffql169bp999/V7ly5dSiRQs9+uij+V7muCj7V4VVv359LVy4UFFRUVqyZIni4uK0Y8cOeXt7q1atWrrjjjvUp0+fqwb1gwYN0v3336958+Zp3bp1OnDggLZs2SIvLy9VrVpVt912m26//XZ16dLF7nWqWbOm3njjDW3atEn79++3XTa5evXqioiIUN++fa/pKYKAxbhWU/oCAAC31rdvX23cuFHffPONqeaaAQAA5sIcFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANNgjgoAAAAAAGAajKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBhQvt3btXe/fuLekyAAAAAAD41yKocKHMzExlZmaWdBl2MjIytHnzZmVkZJR0KfgXox/BFehHcAX6EVyFvgRXoB8BxYOg4jqXk5Nj93/AGfQjuAL9CK5AP4Kr0JfgCvQjoHgQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyjdEkXgOJ37mKWDp24qLJlzTHRp3eZ0gr08ynpMgAAAAAAJkRQcZ07ee6SJvyaICmhpEux88XwDoQVAAAAAIA8CCquc2kZf89AHOTnrXJlvEq4Gik9M1vHTqcoNSO7pEsBAAAAAJgQQYWb8PL0ULky/LkBAAAAAObGZJoAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANEqXdAHX0oQJEzRx4sQrtnn77bfVq1eva1QRAAAAAAC4nFsFFVZVq1bVjTfemO86Pz+/a1wNAAAAAACwcsugol27dho7dmxJlwEAAAAAAP6BOSoAAAAAAIBpEFQAAAAAAADTcMtTP+Li4vTKK6/ozJkzKl++vBo0aKB77rlH9evXL+nSAAAAAABwa24ZVMTGxio2NtZ2Ozo6Wp9//rkef/xxvf766/Lw8CjB6gAAAAAAcF9uFVRUr15dL7zwgm6//XYFBwfLx8dHhw8f1pw5c/Tdd99pxowZKl26tIYNG+b0YxiGodTUVBdWXTQZGRmSJCPXUE5uTglXI1sN6enppnqdcGVpaWl2/wecQT+CK9CP4Cr0JbiCGfuRt7d3SZcAFJnFMAyjpIswgy+//FIfffSRSpcurd9//13BwcGF3sbOnTuVmZlZDNU578T5TE1dfFoBlT1VxrPkpyTJyMrVyQtZGtSlugKreJV0OQAAAMB1pUWLFiVdAlBkbjWi4kqeeuopffPNNzp9+rSio6P1+OOPO7UdT09P1atXz8XVFcHhM5JOq0yZMvIu51nS1ciSkS1dyFLt2rVVJ7BiSZcDB6WlpSk+Pl61atVSuXLlSroc/EvRj+AK9CO4Cn0JrkA/AooHQcX/5+HhoaZNm2rp0qX666+/nN6OxWIx1XCrMmXKSJIspSzyKFXyc294lPp7AE/ZsmVN9TrBMeXKlePvhiKjH8EV6EdwFfoSXIF+BLhWyZ8LYCKenn+POMjOzi7hSgAAAAAAcE8EFZfZv3+/JKlGjRolXAkAAAAAAO6JoOL/W7FihS2ouO2220q4GgAAAAAA3JPbBBX79+/XyJEjFRcXZ7c8NzdXv/76q1555RVJ0l133aWwsLCSKBEAAAAAALfnNpNpZmdna+7cuZo7d658fX0VGBgoDw8PHTlyRElJSZKkli1b6oMPPijhSgEAAAAAcF9uE1QEBQXppZde0rZt23Tw4EH99ddfyszMVKVKldSuXTvde++9uvfee+XhUfJXxgAAAAAAwF25TVBRsWJFPfvssyVdBgAAAAAAuAK3maMCAAAAAACYH0EFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANNxmMk0AAAAA/24nzqQoNSO7pMuwSU9P17mLWSVdBnDdIagAAAAAYHonzqTo6bF/lHQZ+apb75LqenuXdBnAdYOgAgAAAIDpWUdSBFf3UVkvc/yMScvI1PEzqUrLyCnpUoDrijne4QAAAADggLJepVWujDl+xuTkElAAxYHJNAEAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGmULukCSsL69esVGRmp7du3KzU1VYGBgerSpYsGDRokb2/vki4PAAAAAAC35XYjKmbOnKl+/fppxYoVKlOmjOrWravjx49rypQp6tGjhxITE0u6RAAAAAAA3JZbBRW7du3S6NGjJUnvvPOOVqxYoaioKC1btkyNGzfWwYMH9dZbb5VwlQAAAAAAuC+3CiomT56s3NxcPfDAA3rkkUdksVgkSf7+/ho3bpxKlSqlJUuWKC4uroQrBQAAAADAPblNUHHp0iWtXr1aktSzZ88862vVqqU2bdpIkhYvXnxNawMAAAAAAH9zm6AiNjZWmZmZ8vLyUlhYWL5tWrRoIUnavn37tSwNAAAAAAD8f24TVBw+fFiSFBgYKE9Pz3zb3HDDDXZtAQAAAADAteU2lydNSkqSJFWqVKnANtZ11raFlZWVJcMwtGPHDqfuXxyysnP04v015FHKYpuToyQZhqdympdVwrGDOney5OuBYwxDys3N1Y5dcTJBN8K/FP0IrkA/gqvQl/59snMMU+3XSv9/3za3vDIuntSOHadLuhxJUpkyZdSgQYOSLgMoErcJKjIyMiSpwNEUkuTl5WXXtrCsH5hm+eCUJI9SHpKknFxDklGyxVwmLSO7pEuAU3JLugBcF+hHcAX6EVyFvvRvY7b9WunvfW4z/QYA/u3cJqgoU6aMpL9HPRQkMzPTrm1hNWvWzKn7AQAAAACAv7nNHBWOnNbhyOkhAAAAAACg+LhNUFGrVi1J0okTJwocVXHkyBG7tgAAAAAA4Npym6CiYcOG8vT0VGZmZoGTXW7evFmSdPPNN1/DygAAAAAAgJXbBBU+Pj5q27atJGnevHl51sfHx2v9+vWSpC5dulzT2gAAAAAAwN/cJqiQpOeee04Wi0ULFizQ3LlzZRh/zxZ8+vRpvfzyy8rNzVXHjh0VGhpawpUCAAAAAOCeLIb117qbmD59usaOHSvDMBQQEKDKlSvrwIEDyszMVO3atTVnzhxVqVKlpMsEAAAAAMAtuV1QIUnr1q3TtGnTtGPHDqWmpiowMFBdunTRoEGDVL58+ZIuDwAAAAAAt+WWQQUAAAAAADAnt5qjAgAAAAAAmBtBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUOFCe/fu1d69e0u6DAAAAAAoUfw2QlEQVLhQZmamMjMzS7oMOxkZGdq8ebMyMjJKuhT8i9GP4Ar0I7gC/QiuQl+CK9CPCpaZmamUlBReGxMzc/8lqLjO5eTk2P0fcAb9CK5AP4Ir0I/gKvQluAL96Op4bczLzP2XoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAOByOblGSZeAfymCCgAAAACAy11MzdHOg+dKugz8CxFUAAAAAACKxekLaSVdAv6FCCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMI3SJV1Afs6cOaM1a9Zo165d2rlzp2JjY5WRkaHWrVtr5syZLnuclStXatCgQZKkoKAgRUdHu2zbAAAAAACg8EwZVCxcuFBjxowp1se4dOmS3n777WJ9DAAAAAAAUDimDCp8fHx06623qkmTJmrSpIn27NmjyZMnu/QxPvnkE504cUIdOnTQH3/84dJtAwAAAAAA55gyqOjRo4d69Ohhu52QkODS7W/btk2zZ89Whw4d1LFjR4IKAAAAAABMwu0m08zKytJbb72lsmXLauTIkSVdDgAAAAAAuIzbBRVffPGF9u3bpxdffFE1atQo6XIAAAAAAMBl3CqoOHjwoL744gs1btxYffv2LelyAAAAAADAP5hyjoriYBiG/vOf/yg7O1ujRo2Sh4dHsT1OampqsWzbGWlpaXb/B5xBP4Ir0I/gCvQjuAp9Ca5gxn7k7e1d0iXYycrKMtXvI/yfkui/jvZPtwkq5syZoy1btqhv375q0qRJsT1OVlaWYmNji237zoqPjy/pEnAdoB/BFehHcAX6EVyFvgRXMFM/atGiRUmXYOfs2XOKjU0v6TJwBdey/zraP90iqEhISNC4cePk7++vl156qVgfy9PTU/Xq1SvWxyiMtLQ0xcfHq1atWipXrlxJl4N/KfoRXIF+BFegH8FV6EtwBfrR1VWrVlUNG9Yu6TKQDzP3X7cIKt59912lpKRozJgx8vHxKdbHslgsphtuJUnlypUzZV34d6EfwRXoR3AF+hFchb4EV6AfFczT05PXxuTM2H/dIqjYs2ePJGnUqFEaNWqU3br09L+HIZ08eVK33XabJGnChAlq3rz5tS0SAAAAAAC4R1Bhdfbs2QLX5ebm2tZnZWVdq5IAAAAAAMBl3CKoiI6OLnDd/PnzNWLECAUFBV2xHQAAAAAAKH6lSroAV+rVq5fat2+v6dOnl3QpAAAAAADACaYcUXHy5ElFRETYbmdmZkqStmzZovDwcNvyAQMGaODAgbbbCQkJOn78uJKTk69ZrQAAAAAAwHVMGVTk5OQoMTExz/Ls7Gy75daJMAEAAAAAwPXBlEFFcHCw9u7dW+j7OTPHxIMPPqgHH3yw0PcDAAAAAACud13NUQEAAAAAAP7dCCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYRumSLiA/Z86c0Zo1a7Rr1y7t3LlTsbGxysjIUOvWrTVz5sxCb88wDG3dulXR0dHavHmzDh06pJSUFFWoUEGNGjVSRESE7rvvPlkslmJ4NgAAAAAAwFGmDCoWLlyoMWPGuGx769evV79+/Wy3a9asqaCgIB0/flxr1qzRmjVrtHDhQk2YMEFeXl4ue1wAAAAAAFA4pgwqfHx8dOutt6pJkyZq0qSJ9uzZo8mTJzu9PcMwFBwcrCeeeEL33HOPqlatalv3008/6a233tKKFSs0fvx4vfbaa654CgAAAAAAwAmmDCp69OihHj162G4nJCQUaXthYWFavHixPD0986yLiIjQqVOn9Mknn+iHH37QK6+8olKlmLoDAAAAAICS4Ba/yH18fPINKazatWsnSUpMTNT58+evVVkAAAAAAOAf3CKouJr09HTbv8uWLVuClQAAAAAA4N4IKvT35J2SFBoaKh8fnxKuBgAAAAAA92XKOSqupV27dum7776TJA0aNKjI2zMMQ6mpqUXejqukpaXZ/R9wBv0IrkA/givQj+Aq9CW4ghn7kbe3d0mXYCcrK8tUv4/wf0qi/zraP906qDh79qyGDBmi7OxsderUSffcc0+Rt5mVlaXY2FgXVOda8fHxJV0CrgP0I7gC/QiuQD+Cq9CX4Apm6kctWrQo6RLsnD17TrGx6VdviBJzLfuvo/3TbYOK5ORkDRw4UCdOnFDjxo01duxYl2zX09NT9erVc8m2XCEtLU3x8fGqVauWypUrV9Ll4F+KfgRXoB/BFehHcBX6ElyBfnR11apVVcOGtUu6DOTDzP3XLYOKS5cuacCAAdqzZ4/q16+vr7/+2mVzU1gsFtMNt5KkcuXKmbIu/LvQj+AK9CO4Av0IrkJfgivQjwrm6enJa2NyZuy/bjeZZlpamp5++mlt27ZNtWrVUmRkpCpXrlzSZQEAAAAAALlZUJGRkaFnn31WmzZtUlBQkKZPny4/P7+SLgsAAAAAAPx/bhNUZGVlaciQIVq3bp38/f01Y8YMBQQElHRZAAAAAADgMtdVUNGrVy+1b99e06dPt1uek5OjV155RStXrpSfn59mzJihmjVrlkyRAAAAAACgQKacTPPkyZOKiIiw3c7MzJQkbdmyReHh4bblAwYM0MCBA223ExISdPz4cSUnJ9tt77ffftPvv/8uSfLy8tIbb7xR4GO/9dZbatSokSueBgAAAAAAKKRCBRWnT59WRkaGgoKCVKrU34MxNm7cqI0bN+Zp27BhQ3Xo0MGponJycpSYmJhneXZ2tt3y9HTHrsdrDTok6fjx4zp+/HiBbf8ZcgAAAAAAgGvH4aDi/Pnz6tKli5o1a6avv/7atnzjxo2aOHFinvbly5fX0qVLVaVKlUIXFRwcrL179xb6ftHR0fkuf/DBB/Xggw8WensAAAAAAODacjioWLBggdLS0vTqq6/mWWexWPTxxx/bbiclJWnUqFH6+eef1a9fP5cUCgAAAAAArn8OBxWrV69WvXr11LBhw3zXd+vWze52VFSUVq5cSVABAAAAAAAc5vBVP/bt26dmzZo5vOEGDRpo//79ThUFAAAAAADck8MjKhITE/Odb6J169b5tq9SpYqSkpKcrwwAAAAAALgdh4OKMmXKKC0tLc/y1q1b5xtWpKeny8vLq2jVAQAAAAAAt+LwqR81atQo1JU44uLiVKNGDaeKAgAAAAAA7snhoKJFixaKiYnR0aNHr9r2yJEjiomJUcuWLYtUHAAAAAAAcC8OBxW9e/dWdna2hg4dqsTExALbJSYm6uWXX1Zubq569erlihoBAAAAAICbcHiOitDQUD355JOKjIzUPffco0cffVStW7dW9erVJUmnT5/Whg0bNG/ePJ09e1ZPPvmkQkNDi61wAAAAAABw/XE4qJCkYcOGqXTp0po2bZomT56syZMn2603DEOlSpXSoEGDNHToUJcWCgAAAAAArn+FCiosFoteeeUVPfTQQ4qKitK2bdt09uxZSVLVqlXVrFkzde/eXbVq1SqOWgEAAAAAwHWuUEGFVa1atRgxAQAAAAAAXM7hyTQBAAAAAACKm1MjKo4ePar58+dr27ZtOnPmjCTJz8/PdupHzZo1XVokAAAAAABwD4UKKnJzczVu3DhFRkYqNzdXhmHY1h04cEDr1q3TF198oaeeekpDhw5VqVIM2AAAAAAAAI4rVFDx9ttva968eapUqZJ69uypW265RTVq1JAknTp1SmvXrtUPP/ygr776ShcvXtSoUaOKpWgAAAAAAHB9cjioWL9+vebNm6ewsDBNmTJFVatWtVtfp04d3XrrrXrqqaf07LPPat68eerWrZvCw8NdXjQAAAAAALg+OXxuxnfffSdvb29NmjQpT0hxuSpVqmjixIkqV66cvvvuO5cUCQAAAAAA3IPDQcXWrVt15513ys/P76pt/fz8dOedd2rLli1FKg4AAAAAALgXh4OK8+fPF+pqHjVr1tT58+edKgoAAAAAALgnh4MKb29vXbx40eENJycny9vb26miAAAAAACAe3I4qKhXr57WrFljd0nSguTm5urPP/9U3bp1i1QcAAAAAABwLw4HFXfffbeOHDmiSZMmXbXtlClTdPToUXXu3LlIxQEAAAAAAPficFDRq1cv3XjjjZo0aZJef/11xcfH52kTHx+v4cOHa+LEibrhhhvUq1cvV9YKAAAAAACuc6Udbejl5aWpU6dqwIABWrBggX7++Wf5+/urRo0akqRTp04pISFBhmEoODhYU6dOlZeXV7EVDgAAAAAArj8OBxWSdOONNyoqKkpffvmloqKidOrUKZ06dcq2vnr16urevbsGDBigChUquLxYAAAAAABwfStUUCFJPj4+Gjp0qIYOHaoTJ07o7NmzkqRq1aopMDDQ5QUCAAAAAAD3Ueig4nKBgYGEEwAAAAAAwGUcnkwTAAAAAACguDk8omLgwIGF3rjFYtHUqVMLfT8AAAAAAOCeHA4qVq9ene9yi8UiwzAKXAcAAAAAAOAoh4OKP/74I8+y6dOna9asWfmuAwAAAAAAKCyHg4qgoKA8yypVqlTgOgAAAAAAgMJiMk0AAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACm4fBVP7p165Zn2YULFwpcJ0kWi0ULFy50sjQAAAAAAOBuHA4qDh065NQ6AAAAAAAARzkcVMTFxRVnHQAAAAAAAMxRAQAAAAAAzIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGk4FFTExcXp3LlzxV0LAAAAAABwcw4FFd27d9e3335ru/3444/rp59+Kq6aAAAAAACAm3IoqPDw8FBubq7t9saNG3Xs2LFiKwoAAAAAALgnh4IKf39/xcbGFnctAAAAAADAzZV2pNFdd92lWbNmqWvXrvLz85MkRUVFaePGjVe8n8Vi0YwZM4peJQAAAAAAcAsOBRUvvfSSMjMztXLlSm3atEkWi0XHjx/X8ePHr3g/i8XikiIBAAAAAIB7cCio8PHx0TvvvGO7HRoaqsGDB2vw4MHFVhgAAAAAAHA/Ds1R8U/du3dXw4YNXV0LAAAAAABwcw6NqPinMWPGuLoOAAAAAAAA54IKq2PHjumXX35RbGysLl26pPLly6tRo0a69957FRwc7KoaAQAAAACAm3A6qJgxY4Y+/PBD5eTkyDAM2/IlS5Zo4sSJeu211/TEE0+4pEgAAAAAAOAenAoqli9frjFjxqhy5crq16+fwsPD5efnp7Nnz2rDhg2KjIzU2LFjdeONN+rOO+90cckAAAAAAOB65VRQERkZqUqVKikqKko1atSwLQ8KClLTpk113333KSIiQpGRkQQVAAAAAADAYU5d9WPPnj3q1q2bXUhxuYCAAHXt2lW7d+8uUnEAAAAAAMC9OBVUZGVlqVy5clds4+3traysLKeKAgAAAAAA7smpoKJWrVpavny5srOz812fnZ2tFStWqFatWkWpDQAAAAAAuBmngoqIiAgdPnxY/fv3165du+zW7dy5UwMHDtThw4fVvXt3lxQJAAAAAADcg1OTaT7++OPatGmToqOj9fDDD6ts2bKqWrWqzp07p/T0dBmGoQ4dOujxxx93db0AAAAAAOA65lRQ4eHhocmTJ+unn35SVFSU4uLidPLkSfn4+Khp06aKiIhQRESEi0sFAAAAAADXO6eCCisCCQAAAAAA4EpOzVEBAAAAAABQHAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMI3SRbnzmTNntGTJEh0+fFhpaWl67733JEnnz5/XsWPHFBISorJly7qkUAAAAAAAcP1zekTF7Nmz1aFDB7377ruaNWuW5s+fb1t37tw5PfLII/r5559dUiQAAAAAAHAPTgUV0dHRevfddxUSEqIpU6aoV69eduvr16+vBg0aaNmyZS4pEgAAAAAAuAenTv34+uuvFRgYqG+++Ube3t7avXt3njYhISGKiYkpcoEAAAAAAMB9ODWiIjY2VnfccYe8vb0LbOPv769z5845XRgAAAAAAHA/TgUVhmGodOkrD8Y4d+6cvLy8nCoKAAAAAAC4J6eCitq1a2vz5s0Frs/OzlZMTIxCQkKcLgwAAAAAALgfp4KK++67T3v27NHEiRPzrMvJydH777+vo0ePKiIioqj1AQAAAAAAN+LUZJp9+vRRdHS0Jk2apF9++cV2iseLL76oXbt26fjx47rtttvUo0cPlxYLAAAAAACub06NqPD09NTXX3+tQYMGKTExUfv375dhGPr999+VlJSkgQMHasqUKbJYLK6uFwAAAAAAXMecGlEhSV5eXho6dKheeuklHTp0SElJSfLx8VHdunXl4eHhyhoBAAAAAICbcCqo6NChg9q1a6f//ve/slgsqlu3rqvrAgAAAAAAbsipUz8uXLggHx8fV9cCAAAAAADcnFNBRYMGDRQfH+/iUgAAAAAAgLtzKqgYOHCgli9frvXr17u6HgAAAAAA4MacmqPi4sWLuu2229S/f3916NBBTZo0UbVq1fK9ykdERERRawQAAAAAAG7CqaBi+PDhslgsMgxDS5Ys0ZIlSyTJLqgwDEMWi4WgAgAAAAAAOMypoGLMmDGurgMAAAAAAMC5oKJ79+6urgMAAAAAAMC5yTQBAAAAAACKg1MjKqyOHTumX375RbGxsbp06ZLKly+vhg0b6r777lNwcLCragQAAAAAAG7C6aBixowZ+vDDD5WTkyPDMGzLlyxZokmTJum1117TE0884ZIiAQAAAACAe3AqqFi+fLnGjBmjypUrq1+/fgoPD5efn5/Onj2rDRs2KDIyUmPHjtWNN96oO++808UlAwAAAACA65VTQUVkZKQqVaqkqKgo1ahRw7Y8KChITZs21X333aeIiAhFRkYSVAAAAACAmzp+5pIOHEss6TKQj/T0dJ04n6kyJy6qbNlMl27bu0xpBfr5OH1/p4KKPXv26L777rMLKS4XEBCgrl276tdff3W6MAAAAADAv9vCtUe0cO2Rki4DV3S6WLb6xfAOTocVTgUVWVlZKleu3BXbeHt7Kysry6miAAAAAAD/fgHVvFW+rFdJl4F85OTmKD0tXWXLlZVHKQ+XbTc9M1vHTqcoNSPb6W04FVTUqlVLy5cv18svv6zSpfNuIjs7WytWrFCtWrWcLgwAAAAA8O9W1stD5coU6WKTKCY5uRYZ2aVUrkxplwYVrlDKmTtFRETo8OHD6t+/v3bt2mW3bufOnRo4cKAOHz6s7t27u6RIAAAAAADgHpyKth5//HFt2rRJ0dHRevjhh1W2bFlVrVpV586dU3p6ugzDUIcOHfT444+7ul4AAAAAAHAdcyqo8PDw0OTJk/XTTz8pKipKcXFxOnnypHx8fNS0aVNFREQoIiLCxaUCAAAAAIDrXZFOFiKQAAAAAAAAruTUHBUAAAAAAADFwamgYvny5Ro8eLASEhLyXZ+QkKDBgwdr5cqVRSoOAAAAAAC4F6eCitmzZ+vIkSPy9/fPd72/v7+OHTumOXPmFKk4AAAAAADgXpwKKuLi4tS0adMrtgkLC1NsbKxTRQEAAAAAAPfkVFCRlJSkKlWqXLFN5cqVdeHCBaeKAgAAAAAA7smpoKJKlSo6fPjwFdscPnxYlSpVcqooAAAAAADgnpwKKlq2bKnly5crLi4u3/VxcXGKjo5W69ati1QcAAAAAABwL04FFQMHDpQk9e7dWxMnTtTWrVt14sQJbd26VRMnTlTv3r1VqlQpDRo0yKXFAgAAAACA61tpZ+4UGhqqjz76SMOHD9ekSZM0adIk2zrDMOTt7a1x48YpNDTUZYUCAAAAAIDrn1NBhSR17txZLVu21Pz587Vz506lpKSoQoUKCgsLU/fu3a862SYAAAAAAMA/OR1USFLVqlVtp4EAAAAAAAAUlVNzVAAAAAAAABQHh4OK9PR0HT16VCkpKXnWHTt2TM8//7xatGihFi1a6Omnn9bBgwddWigAAAAAALj+ORxUzJw5U3fffXeeACI5OVl9+vRRdHS0Ll26pEuXLmnlypXq27evzp496/KCAQAAAADA9cvhoCImJkYBAQFq2rSp3fJZs2bp1KlTatmypZYtW6a1a9eqX79+On/+vKZPn+7qegEAAAAAwHXM4aDiwIEDatmyZZ7lS5culcVi0ejRoxUcHKwqVapo+PDhqlWrlv7880+XFgsAAAAAAK5vDgcV58+fV0BAgN2y9PR07d27VyEhIapZs6bduvDwcB09etQ1VQIAAAAAALfgcFCRk5Oj1NRUu2VxcXHKyclRWFhYnva+vr7KzMwseoUAAAAAAMBtOBxUBAQEaM+ePXbLYmJiZLFY8g0qkpKSVKVKlaJXCAAAAAAA3IbDQcUtt9yiLVu26JdffpEknTlzRt99951KlSqldu3a5Wm/e/duBQYGuq5SAAAAAABw3XM4qHj66afl4+OjYcOGKTw8XHfddZeOHTumBx54QP7+/nZtT506pV27dql169YuLxgAAAAAAFy/SjvaMCAgQDNnztSYMWO0fft2VatWTV27dtXQoUPztP3xxx/l4+OT70gLR5w5c0Zr1qzRrl27tHPnTsXGxiojI0OtW7fWzJkzndqm1fr16xUZGant27crNTVVgYGB6tKliwYNGiRvb+8ibRsAAAAAABSNw0GFJIWGhmrGjBlXbff888/r+eefd7qohQsXasyYMU7fvyAzZ87Ue++9J8MwVKNGDQUEBOjAgQOaMmWKlixZojlz5sjX19fljwsAAAAAABxTqKDiWvHx8dGtt96qJk2aqEmTJtqzZ48mT55cpG3u2rVLo0ePliS988476tmzpywWixISEvTss89q9+7deuuttzRhwgRXPAUAAAAAAOAEUwYVPXr0UI8ePWy3ExISirzNyZMnKzc3VxEREXrkkUdsy/39/TVu3Dh17dpVS5YsUVxcnEJDQ4v8eAAAAAAAoPAcnkzz3+zSpUtavXq1JKlnz5551teqVUtt2rSRJC1evPia1lacEs6nKiExS2V8b9TpxCwlnE8t6ZIAAACA68LpC/b72qcvsK8NuIopR1S4WmxsrDIzM+Xl5aWwsLB827Ro0UJr167V9u3br3F1xePk2RRN+mGHtu8/Y1vWtL6fnu8RpoBqPiVYGQAAAPDvxr42ULzcYkTF4cOHJUmBgYHy9PTMt80NN9xg1/bfLOF8ap4PTknavv+MJv2wg5EVAAAAgJNOX7jyvjYjK4Cic4sRFUlJSZKkSpUqFdjGus7a1lmGYSg1tWQ/nFLTs/J8cFpt339GqelZJV4j/l3S0tLs/g84g34EV6AfwVXoS3DWpbQr72tfSstSapmS29f29vYuscfOT1p6dkmXgAIYuYYysnKltCxZSrnu75SZlSNJSk9Pz/O709H+6RZBRUZGhiQVOJpCkry8vOzaOisrK0uxsbFF2kZRlfG98YrrL6VlKfbkgWtUDa4n8fHxJV0CrgP0I7gC/QiuQl9CYZl9X7tFixYl9tj5OXWeMND8soplqyeOxisjyf43uKP90+mgIjc3V6VK2Z85snXrVq1YsUJeXl566KGHVKNGDWc371JlypSR9HeIUJDMzEy7ts7y9PRUvXr1irSNokpIvHJHK1/OU3UCGl6janA9SEtLU3x8vGrVqqVy5cqVdDn4l6IfwRXoR3AV+hKcxb524XRuHag7W9Qs6TKQj4yMDJ04cUKBgYFF/h38T+XKeCiganmn7+9UUDF69Gh9++23WrNmjSpWrCjp76tlvPzyy8rNzZUkzZo1S1FRUaYIKxw5rcOR00McYbFYSny4lXd6qprW98t3SFrT+n7yLutZ4jXi36lcuXL0HRQZ/QiuQD+Cq9CXUFjlM668r12+HPval7sxoJJuqlfyvwmRV2pqqpR+Vg1r+5muzzo1meaGDRvUpk0bW0ghSZ999pkqVKig999/X6+99pouXryor7/+2mWFFkWtWrUkSSdOnChwVMWRI0fs2v6b+Vfx1vM9wtS0vp/dcutMxP5VzNUJAQAAgH+L6pWvvK9dvTL72kBROTWi4tSpU2rVqpXt9tGjR3Xo0CENHjxYDzzwgCQpJiZGq1evdk2VRdSwYUN5enoqMzNTO3bsyPe8mM2bN0uSbr755mtcXfEIqOajIT1vVmp6li6lZf2d7Jb1JKQAAAAAiiigmo9eeORmXUr7v33t8uU8CSkAF3FqREVqaqrd0JBNmzbJYrGoXbt2tmX16tVTQkJC0St0AR8fH7Vt21aSNG/evDzr4+PjtX79eklSly5drmltxcm/irf8fT2VkfiX/H0JKQAAAABXqV7Zfl+bkAJwHaeCiurVq+vw4cO226tXr5a3t7caN25sW5aSkmK7ksa10qtXL7Vv317Tp0/Ps+65556TxWLRggULNHfuXBmGIUk6ffq0bW6Njh07KjQ09JrWDAAAAAAA/o9Tp360bt1av/76q2bNmqUyZcpo6dKl6tChgzw8PGxtjhw5In9/f6eKOnnypCIiImy3rVfk2LJli8LDw23LBwwYoIEDB9puJyQk6Pjx40pOTs6zzbCwMA0fPlxjx47VyJEjNWXKFFWuXFkHDhxQZmamateurXfffdepegEAAAAAgGs4FVQ888wzWrZsmd577z0ZhqFy5cppyJAhtvUpKSmKiYlR9+7dnSoqJydHiYmJeZZnZ2fbLU9PTy/Udvv166cGDRpo2rRp2rFjh86dO6fAwEB16dJFgwYNUvnyzl8+BQAAAAAAFJ1TQcWNN96ohQsXasmSJZKku+66S0FBQbb1f/31lx555BHde++9ThUVHBysvXv3Fvp+0dHRV21zyy236JZbbnGmLAAAAAAAUMycCiqkv+ep6NOnT77rGjdubDdfBQAAAAAAgCOcDiryc+zYMa1du1ZeXl7q1KkTp1IAAAAAAIBCcSqo+PzzzzVv3jxFRUWpUqVKkqQNGzbomWeesc0bMWXKFM2dO1e+vr4uKxYAAAAAAFzfnLo86bJlyxQUFGQLKSTpo48+Um5uroYMGaJevXrpr7/+0owZM1xWKAAAAAAAuP45FVQcP35c9erVs91OSEjQzp071bt3bz333HMaOXKkbrnlFi1btsxlhQIAAAAAgOufU0FFSkqKKlasaLsdExMji8Wi9u3b25Y1atRIJ06cKHqFAAAAAADAbTgVVFSrVk3Hjx+33V6zZo28vLzUtGlT27KMjAxZLJaiVwgAAAAAANyGU5NpNmnSRH/88YeWL1+uMmXK6LffflN4eLi8vLxsbY4dO6bq1au7rFAAAAAAAHD9cyqoePrpp7VixQo999xzkiSLxaKnn37atj4zM1MxMTHq1KmTa6oEAAAAAABuwamgonHjxpo3b54WLFggSeratavCwsJs6/fs2aPw8HDde++9rqkSAAAAAAC4BaeCCkkKDQ1VaGhovutuvvlmTZo0yemiAAAAAACAe3I6qLC6dOmS4uPjlZaWppYtW7qiJgAAAAAA4KacuuqH9Pdkmc8++6xat26tHj166PHHH7et27x5s7p166YNGza4pEgAAAAAAOAenAoqTpw4oUceeUSrVq1Shw4ddPPNN8swDNv6pk2b6sKFC1q4cKHLCgUAAAAAANc/p4KKCRMmKCkpSTNnztRnn32m2267zW596dKl1bJlS23ZssUlRQIAAAAAAPfgVFCxevVqderUSc2bNy+wTWBgoBISEpwuDAAAAAAAuB+ngoqkpCQFBQVdsY1hGMrMzHSqKAAAAAAA4J6cCiqqVaumv/7664pt9u3bp4CAAKeKAgAAAAAA7smpoOLWW2/V8uXLFRcXl+/6mJgYrV+/XnfccUeRigMAAAAAAO6ltDN3evbZZ/X777+rT58+6t+/v210xcqVK7V161ZNnz5dlStXVv/+/V1aLAAAAAAAuL45FVQEBwfr66+/1tChQzV+/HhZLBYZhqFnnnlGhmEoMDBQ48ePV/Xq1V1dLwAAAAAAuI45FVRIUtOmTbVkyRItX75c27dvV1JSknx8fBQWFqYOHTrIy8vLlXUCAAAAAAA34HRQIUmlS5dWp06d1KlTJ1fVAwAAAAAA3JhTk2kCAAAAAAAUB6dHVGRmZmrZsmXauXOnkpOTlZOTk6eNxWLR6NGji1QgAAAAAABwH04FFcePH9dTTz2lI0eOyDCMAtsRVAAAAAAAgMJwKqgYM2aM/vrrLz3wwAN66KGHVKNGDXl4eLi6NgAAAAAA4GacCirWr1+vW265Re+//76r6wEAAAAAAG7Mqck0c3Nz1bBhQ1fXAgAAAAAA3JxTQUXTpk116NAhV9cCAAAAAADcnFNBxSuvvKL169dr8eLFrq4HAAAAAAC4MafmqFixYoXCw8M1dOhQzZkzR40bN1b58uXztLNYLHr++eeLXCQAAAAAAHAPTgUVEydOtP1748aN2rhxY77tCCoAAAAAAEBhOBVUfPPNN66uAwAAAAAAwLmgonXr1q6uAwAAAAAAwLnJNAEAAAAAAIqD00FFdna2pk+frh49eqh58+Zq1KiRbV1sbKzefvttHT582CVFAgAAAAAA9+DUqR/p6el66qmntHXrVlWuXFk+Pj5KS0uzrQ8ODtb8+fNVqVIlDR061GXFAgAAAACA65tTIyo+//xzbdmyRS+//LLWrFmjhx9+2G59hQoV1KpVK/35558uKRIAAAAAALgHp4KK3377TeHh4Ro4cKAsFossFkueNjVr1tTJkyeLXCAAAAAAAHAfTgUVJ06c0E033XTFNuXLl1dycrJTRQEAAAAAAPfkVFBRvnx5nT9//optjh49qipVqjhVFAAAAAAAcE9OBRU333yzoqOjdfHixXzXnzx5UitXrlTLli2LVBwAAAAAAHAvTgUV/fv318WLF9WvXz9t3rxZ2dnZkqS0tDStW7dO/fv3V05Ojp588kmXFgsAAAAAAK5vTl2etFWrVnrrrbc0evRo9enTx7a8efPmkiQPDw/997//veo8FgAAAAAAAJdzKqiQpN69eys8PFzffvutduzYoaSkJJUvX15NmzZV7969Vb9+fVfWCQAAAAAA3IDTQYUk1a1bV//5z39cVQsAAAAAAHBzTs1RMXHiRG3atOmKbWJiYjRx4kSnigIAAAAAAO7J6aBiw4YNV2yzadMmTZo0yamiAAAAAACAe3IqqHBEVlaWPDw8imvzAAAAAADgOuR0UGGxWApcl5mZqZiYGFWpUsXZzQMAAAAAADfk8GSaHTp0sLs9Y8YMzZ8/P0+73NxcXbhwQRkZGXr44YeLXiEAAAAAAHAbDgcVhmHY/m2xWGQYht0y2wZLl1a9evXUpk0bPffcc66pEgAAAAAAuAWHg4ro6Gjbv0NDQ/XEE09o8ODBxVIUAAAAAABwTw4HFZf7448/VLFiRVfXAgAAAAAA3JxTQUVQUJDt3wcOHNChQ4eUmpqqiIgIV9UFAAAAAADckNNX/dixY4ceeOAB3XfffXrxxRc1YsQI27pNmzapadOm+uOPP1xSJAAAAAAAcA9OBRX79+/XE088oWPHjqlfv35q166d3fqWLVuqcuXKWrx4sUuKBAAAAAAA7sGpoGLChAmSpPnz5+v1119XkyZN7NZbLBbdfPPN2rlzZ9ErBAAAAAAAbsOpoGLjxo3q3LmzbrzxxgLbBAQE6MyZM04XBgAAAAAA3I9TQcWlS5dUpUqVK7bJyMhQbm6uU0UBAAAAAAD35FRQERAQoH379l2xzZ49e1SzZk2nigIAAAAAAO7JqaDizjvv1Jo1a7R27dp81y9atEjbtm1Tx44di1QcAAAAAABwL6WdudMzzzyj33//XYMGDVJERITOnj0rSZo9e7a2bdumhQsXKigoSE8++aRLiwUAAAAAANc3p4KKKlWqaNasWXrttdf0ww8/2Ja/++67kqSmTZvq448/VoUKFVxTJQAAAAAAcAtOBRWSVLNmTX333XeKjY3Vtm3blJSUJB8fH4WFhSksLMyVNQIAAAAAADfhdFBh1bBhQzVs2NAVtQAAAAAAADfn1GSaAAAAAAAAxcGhERUTJ050auMWi0XPP/+8U/cFAAAAAADuh6ACAAAAAACYhkNBxTfffFPcdQAAAAAAADgWVLRu3bq46wAAAAAAAGAyTQAAAAAAYB5Fujzp7t27FRUVpdjYWCUnJ6tChQpq1KiRIiIi1LhxY1fVCAAAAAAA3ITTQcX777+vGTNmKDc312755s2bNXv2bPXr10/Dhg0rcoEAAAAAAMB9OBVUzJo1S5GRkapdu7aeffZZtWzZUtWqVdPZs2e1adMmTZkyRZGRkQoKCtJjjz3m6poBAAAAAMB1yqk5KubMmaOAgAB9//33uv/++xUYGCgvLy8FBgbqgQce0Pfffy9/f3/Nnj3b1fUCAAAAAIDrmFNBxbFjx3T33XfLx8cn3/UVKlTQ3XffrWPHjhWpOAAAAAAA4F6cCiqqVq3qULtq1ao5s3kAAAAAAOCmnAoq7rnnHi1ZskSXLl3Kd31KSoqWLFmie+65p0jFAQAAAAAA9+JUUPHCCy8oNDRUDz/8sBYuXKhTp04pKytLp06d0q+//qqePXuqUaNGGjJkiKvrBQAAAAAA1zGnrvrRtGlTSZJhGHr11VfzrDcMQ4cPH7a1s7JYLNqzZ48zDwkAAAAAANyAU0FFy5YtXV0HAAAAAACAc0HFzJkzXV0HAAAAAACAc3NUAAAAAAAAFAeCCgAAAAAAYBpOnfohSUePHtU333yjuLg4nT59WtnZ2XnaWCwWLVu2rEgFAgAAAAAA9+FUULFq1So9//zzysrKUunSpVW1alV5eHjkaWcYRpELBAAAAAAA7sOpoOKjjz6Sh4eHPvjgA3Xu3FmlSnEGCQAAAAAAKDqnEob4+Hjde++96tq1KyEFAAAAAABwGadShmrVqqlMmTKurgUAAAAAALg5p4KK++67T6tWrVJGRoar6wEAAAAAAG7MqaBi8ODBqlOnjvr376/Nmzfr0qVLrq4LAAAAAAC4Iacm0/T09FTfvn318ssvq0+fPgW2s1gs2rNnj9PFAQAAAAAA9+JUULFo0SK9+uqrys3NVc2aNeXn55fv5UkBAAAAAAAKw6mgYtKkSapQoYK+/PJLhYWFubomAAAAAADgppyao+LYsWPq1q0bIQUAAAAAAHApp4KKGjVqKCcnx9W1AAAAAAAAN+dUUNGzZ08tX75ciYmJLi4HAAAAAAC4M6fmqOjcubO2bNmiXr166dlnn1VoaKh8fHzybRsYGFikAgEAAAAAgPtwKqjo2LGjLBaLDMPQ66+/XmA7Lk8KAAAAAAAKw6mgIiIiQhaLxdW1AAAAAAAAN+dUUDF27FhX1wEAAAAAAODcZJoAAAAAAADFwakRFZfbvHmz4uLilJKSIh8fH4WGhqpFixauqA0AAAAAALgZp4OKLVu2aMSIETpy5IgkyTAM27wVN954o8aMGaNmzZq5pkoAAAAAAOAWnAoq9u/fr/79+ystLU233XabwsPD5efnpzNnzmjDhg1as2aN+vfvr3nz5qlevXqurhkAAAAAAFynnAoqJk2apKysLE2dOlXt2rWzWzdo0CCtWrVKzz33nCZNmqRPPvnEJYUCAAAAAIDrn1OTaW7cuFGdO3fOE1JYtWvXTp07d9aGDRuKVBwAAAAAAHAvTgUVycnJCg4OvmKb4OBgJScnO1UUAAAAAABwT04FFdWrV9e2bduu2Gb79u2qXr26M5sHAAAAAABuyqmgon379tq4caM+/fRTZWRk2K3LyMjQZ599pg0bNqhDhw4uKRIAAAAAALgHpybTfO6557RixQp98cUXmjt3rsLCwlS1alWdO3dOO3fu1Pnz51WzZk0999xzrq4XAAAAAABcx5wKKipXrqy5c+fqww8/1KJFi7Ry5UrbujJlyujBBx/Uq6++Kl9fX1fVCQAAAAAA3IBTQYUkValSRWPGjNE777yjQ4cOKSUlRT4+PqpTp448PT1dWSMAAAAAAHATTgcVVp6enmrQoIEragEAAAAAAG6uUJNpTpkyRePGjVNWVlaBbTIzMzVu3DhNnTq1yMUBAAAAAAD34nBQsXbtWn322Wfy9fW94qkdXl5eqly5sj755BOtX7/eJUUCAAAAAAD34HBQ8dNPP6lixYrq06fPVds+9thjqlSpkubPn1+k4gAAAAAAgHtxOKjYunWrbr31Vnl5eV21rZeXl2699VZt2bKlSMUBAAAAAAD34nBQcfr0adWsWdPhDQcHB+vMmTNOFQUAAAAAANyTw0FFqVKlrjiJ5j9lZWXp/7V353FRlvv/x9+jDipuUKKGZrg04IaiJnqyMrSTpplWxyWzXCE9Wh2ztDLrtBidyk5aaeZGtmkeza3MU2qLimV6cAnLDRfcTUWUnfv3B7+ZrxMgAwxyKa/n4+GjuO/rvua67/kwzLznvq+7XLlCzdUJAAAAAADKOI+ThFq1amnXrl0ed7xr1y7VqlWrSIMCAAAAAABlk8dBRZs2bRQbG6tDhw4V2PbQoUOKjY3VTTfdVKzBAQAAAACAssXjoGLAgAHKzMzUo48+qj/++CPfdqdPn9Zjjz2mrKws9e/f3yuDBAAAAAAAZUMFTxs2a9ZMDz/8sGJiYtS9e3f169dP4eHhqlOnjiTp2LFj2rBhgxYsWKA//vhDgwcPVrNmzUps4AAAAAAA4OrjcVAhSePHj1fFihU1a9YsTZ8+XdOnT3dbb1mWypcvr6ioKD3++OPFHlxsbKzmzJmjuLg4XbhwQYGBgeratasiIyPl6+tb6P4OHz6s2bNn68cff9SRI0eUnZ2tgIAAhYeHa9CgQQoODi72mAEAAAAAQNEVKqiw2WwaM2aM7r//fv3nP//Rli1bdPLkSUlSzZo11bp1a917772qX79+sQc2b948vfLKK7IsS3Xq1NF1112n3bt3a9q0aVq1apU++eQT+fn5edzfli1bNHToUJ0/f152u1316tWT3W7XgQMHtGjRIi1dulRvvPGGunXrVuyxAwAAAACAoilUUOFUv359/eMf//D2WFy2b9+uSZMmSZJefPFF9enTRzabTceOHdOIESO0Y8cOPffcc5o6dapH/VmWpXHjxun8+fMKCwvT5MmTFRgYKEk6d+6cXnjhBS1fvlwTJkxQx44dVa1atRLbNwAAAAAAkD+PJ9O8nN577z1lZ2frnnvuUd++fWWz2SRJtWvX1uTJk1WuXDmtWrVKO3fu9Ki/3bt3a//+/ZKkF154wRVSSFK1atX06quvytfXV8nJydq0aZP3dwgAAAAAAHjEuKDi/Pnz+uGHHyRJffr0ybU+KChI7du3lyStXLnSoz5TU1Nd/3/99dfnWu/j46PatWtLkjIzMws9ZgAAAAAA4B3GBRXx8fFKT0+Xj4+PQkND82zTpk0bSVJcXJxHfTZo0ECVKlWSlDNXxZ8dP35chw4dUvny5dW0adMijhwAAAAAABSXcUHFvn37JEmBgYGy2+15tnFO1ulsW5CqVatq5MiRkqSnn35aK1eu1OnTp5WcnKzY2FhFRkYqIyNDkZGRqlu3rhf2AgAAAAAAFEWRJtMsSWfPnpUk1ahRI982znXOtp6IiopSQECAZs2apccee8xtXVBQkN566y3dddddRRixO8uydOHChWL34y0pKSlu/wWKgjqCN1BH8AbqCN5CLcEbTKwjX1/f0h6Cm4yMDKM+H+H/lEb9elqfxgUVaWlpkpTv2RRSzpwSF7f1REZGhg4ePKizZ8+qQoUKrtuT7t+/X/v379fChQvVunVr1alTp1jjz8jIUHx8fLH6KAkJCQmlPQRcBagjeAN1BG+gjuAt1BK8waQ6cl4mb4qTJ08pPj614IYoNZezfj2tT+OCiooVK0rK+cCfn/T0dLe2nhg1apTWrl2rW2+9VS+//LJr8syzZ8/q5Zdf1tKlS9W3b1+tWLFCVatWLfL47Xa7GjduXOTtvS0lJUUJCQkKCgpS5cqVS3s4uEJRR/AG6gjeQB3BW6gleAN1VLCaNa9VkyYNSnsYyIPJ9WtcUOHJZR2eXB5ysdWrV2vt2rXy9/fX5MmTVa1aNbfHmzRpkrZv3669e/fqk08+UWRkZJHHb7PZjDvdSpIqV65s5LhwZaGO4A3UEbyBOoK3UEvwBuoof3a7nWNjOBPr17jJNIOCgiRJhw8fzvesigMHDri1LcimTZskSaGhoW4hhZPdbld4eLgkafv27YUcMQAAAAAA8BbjgoomTZrIbrcrPT1dW7duzbPNL7/8Iklq1aqVR32eP3/e48cvzLwXAAAAAADAu4wLKqpWraqOHTtKkhYsWJBrfUJCgmJjYyVJXbt29ajPBg1yronaunWrzp07l2t9RkaGNm7c6NYWAAAAAABcfsYFFZI0cuRI2Ww2LVmyRPPnz5dlWZKk48ePa8yYMcrOzlaXLl0UEhLitl1ERIQiIiK0cuVKt+Vdu3aVj4+PTp8+rTFjxujYsWOudWfPntUzzzyjvXv3ymazqWfPniW/gwAAAAAAIE/GTaYp5cwlMX78eEVHR2vixImaNm2a/P39tXv3bqWnp6tBgwZ66aWXcm2XmJgoSbnu01unTh299NJLevbZZ/X9998rIiLC7fak6enpstlsGjt2rJo2bXpZ9hEAAAAAAORmZFAhSYMGDVJwcLBmz56trVu36tSpUwoMDFTXrl0VGRmpKlWqFKq/Xr16KSQkRDExMdq0aZMOHz4sy7IUEBCgsLAwDRgwwLh7DgMAAAAAUNYYG1RIUocOHdShQweP2//222+XXB8SEqJXX321uMMCAAAAAAAlxMg5KgAAAAAAQNlEUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxBUAEAAAAAAIxRobQHcCmxsbGaM2eO4uLidOHCBQUGBqpr166KjIyUr69vkfq0LEsrVqzQ4sWLFR8fr6SkJPn5+alRo0a69dZbNXToUC/vBQAAAAAA8JSxZ1TMmzdPgwYN0tq1a1WxYkU1atRIiYmJmjZtmu6//36dOXOm0H2eP39eQ4YM0RNPPKEff/xRvr6+CgkJkd1u188//6wZM2Z4f0cAAAAAAIDHjDyjYvv27Zo0aZIk6cUXX1SfPn1ks9l07NgxjRgxQjt27NBzzz2nqVOnetynZVkaPXq01q9fr1tuuUUTJ05U/fr1XeuTkpL0888/e31fAAAAAACA54w8o+K9995Tdna27rnnHvXt21c2m02SVLt2bU2ePFnlypXTqlWrtHPnTo/7XLRokdatW6eWLVtq+vTpbiGFJFWvXl2dO3f26n4AAAAAAIDCMS6oOH/+vH744QdJUp8+fXKtDwoKUvv27SVJK1eu9LjfuXPnSpJGjBihChWMPJEEAAAAAIAyz7hP7PHx8UpPT5ePj49CQ0PzbNOmTRutX79ecXFxHvV54MAB/f777ypXrpzCw8MVFxen//znPzpw4IB8fX3VqlUr3X///brmmmu8uSsAAAAAAKCQjAsq9u3bJ0kKDAyU3W7Ps43zsg1n24Js375dkuTn56ePP/5Yb775pizLcq3/9ttv9cEHH2jq1KmuszUAAAAAAMDlZ1xQcfbsWUlSjRo18m3jXOdsW5Djx49Lypkw84033lCnTp305JNPqn79+tq3b58mTZqk2NhYjR49WsuWLVOdOnWKPH7LsnThwoUib+9tKSkpbv8FioI6gjdQR/AG6gjeQi3BG0ysI19f39IegpuMjAyjPh/h/5RG/Xpan8YFFWlpaZKU79kUkuTj4+PWtiDOX4zMzEzVr19f77zzjqv/4OBgTZ8+XXfccYdOnDihmJgYjRs3rsjjz8jIUHx8fJG3LykJCQmlPQRcBagjeAN1BG+gjuAt1BK8waQ6atOmTWkPwc3Jk6cUH59a2sPAJVzO+vW0Po0LKipWrCgp5wN/ftLT093aetqnJA0YMCBXCFK5cmX169dPU6dO1Q8//FCsoMJut6tx48ZF3t7bUlJSlJCQoKCgIFWuXLm0h4MrFHUEb6CO4A3UEbyFWoI3UEcFq1nzWjVp0qC0h4E8mFy/xgUVnlzW4cnlIRerXr266/8bNWqUZxvn8kOHDnnUZ35sNptxp1tJOWGMiePClYU6gjdQR/AG6gjeQi3BG6ij/Nntdo6N4UysX+NuTxoUFCRJOnz4cL5nVRw4cMCtbUEaNmzo+v/8LilxnnWRnZ3t4UgBAAAAAIC3GRdUNGnSRHa7Xenp6dq6dWuebX755RdJUqtWrTzqs2nTpqpUqZIk6eDBg3m2cYYfxZlIEwAAAAAAFI9xQUXVqlXVsWNHSdKCBQtyrU9ISFBsbKwkqWvXrh71WblyZd1+++2SpC+++CLXesuytHjxYkni9qQAAAAAAJQi44IKSRo5cqRsNpuWLFmi+fPny7IsSTm3GR0zZoyys7PVpUsXhYSEuG0XERGhiIgIrVy5Mlefo0aNUoUKFbRp0ya9++67ysrKkpRzJ5DXX39dO3fuVMWKFTVo0KAS3z8AAAAAAJA34ybTlKTQ0FCNHz9e0dHRmjhxoqZNmyZ/f3/t3r1b6enpatCggV566aVc2yUmJkpSnvfpbdy4sV5++WU9++yzmjJlij766CPVq1dPBw4c0JkzZ2S32zVp0iS3+SwAAAAAAMDlZWRQIUmDBg1ScHCwZs+era1bt+rUqVMKDAxU165dFRkZqSpVqhS6z969e6tx48aaOXOmNm3apPj4ePn5+alHjx4aPnx4rjM0AAAAAADA5WVsUCFJHTp0UIcOHTxu/9tvvxXYpkWLFnr77beLMywAAAAAAFBCjJyjAgAAAAAAlE0EFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAACAElHLv3JpDwFXoAqlPQAAAAAAwNWnum95NW90bWkPA1cgzqgAAAAAAHhd+XK20h4CrlAEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBgEFQAAAAAAwBg2y7Ks0h7E1WLz5s2yLEs+Pj6lPRQXy7KUkZEhu90um81W2sPBFYo6gjdQR/AG6gjeQi3BG0ysIx8fHwUHB5f2MFyfjUw6NnBXGvXraX1WuAxjKTNM/AW02WxGBSe4MlFH8AbqCN5AHcFbqCV4A3WUP+dnIxM/IyGHyfXLGRUAAAAAAMAYzFEBAAAAAACMQVABAAAAAACMQVABAAAAAACMQVABAAAAAACMQVABAAAAAACMQVABAAAAAACMQVABAAAAAACMQVABAAAAAACMQVABAAAAAACMQVABAAAAAACMQVABAAAAAACMQVABAAAAAACMUaG0B4BLsyxLW7Zs0erVq/XLL79o7969Sk5OVrVq1dS0aVP16tVLd999t2w2W5H6//rrr/XRRx9p586dysjI0A033KCePXvqoYcekt1u9/LeoLSURB1lZWUpNjZWa9eu1ZYtW5SQkKDU1FT5+fmpRYsW6tu3rzp16lRyO4VSUdKvSRf7+OOP9eKLL0qS2rVrp3nz5hW7T5ihpOvIsiytWLFCixcvVnx8vJKSkuTn56dGjRrp1ltv1dChQ728RygNJVlHhw8f1uzZs/Xjjz/qyJEjys7OVkBAgMLDwzVo0CAFBweXwB6htHz11Vdav369duzYoePHj+vMmTOy2+0KCgrSbbfdpocfflj+/v5F6rssvteOjY3VnDlzFBcXpwsXLigwMFBdu3ZVZGSkfH19S3t4V70TJ05o3bp12r59u7Zt26b4+HilpaV59F4qIyNDMTExWrp0qQ4cOCC73a6QkBANHDhQf/3rXy/THuSwWZZlXdZHRKFs2LBBgwYNcv18/fXXq3r16kpMTNSZM2ckSZ06ddLUqVPl4+NTqL5fe+01zZ49W5JUv359Va5cWbt371ZWVpZuuukmzZ49u9B9wkwlUUeff/65JkyYIEkqV66c6tevrypVqmj//v1KTk6WJPXt21f//Oc/vfKhFWYoydekix07dkx33XWXq5YIKq4uJVlH58+f16hRo7R+/XpX335+fjp16pSOHTumatWqaePGjd7aFZSikqqjLVu2aOjQoTp//rzsdrvq1asnu92uAwcOKDU1VRUqVNAbb7yhbt26eXmPUFruuece7dy5Uz4+PgoICJC/v7/++OMPHT58WJJ07bXXavbs2QoJCSlUv2Xxvfa8efP0yiuvyLIs1alTR9dcc412796t9PR0NWrUSJ988on8/PxKe5hXtblz5+rVV1/Ntbyg91JpaWkaPHiwfvnlF5UvX16NGzdWSkqKDhw4IEkaPny4xo4dW2LjzsWC0datW2dFRERYMTEx1smTJ93WLV682GrevLnlcDisf/3rX4Xqd9WqVZbD4bCaN29uffPNN67lu3fvtiIiIiyHw2G9+uqrXtkHlL6SqKMFCxZYd999t7VgwQIrKSnJtTwjI8OaOXOmFRwcbDkcDuvjjz/22n6g9JXUa9KfPfLII1aTJk2sqKgoy+FwWA8++GCx+oNZSqqOsrOzrcGDB1sOh8MaOnSotX//frf1Z8+edfubhytbSdRRdna2dccdd1gOh8Pq27evlZiY6FqXlJRkjRkzxnI4HFbr1q3d/vbhyjZ//nzrp59+stLT092W79y50+rRo4flcDisu+66q1B9lsX32tu2bbNCQkKs4OBg67PPPrOys7Mty7Kso0ePWr1797YcDoc1atSoUh7l1e/zzz+3Bg0aZL355pvWqlWrrH//+98evZd66aWXLIfDYUVERFh79uxxLf/mm29cr6fffvttSQ/fhaDCcOfOncv1onmxadOmWQ6Hw2rXrp2VlZXlcb89e/a0HA6H9fbbb+dat379etcL66lTp4o0bpilJOro9OnTrj9AeZkwYYLlcDisnj17Fnq8MFdJvSZdbMWKFZbD4bBefvlla8qUKQQVV6GSqqOFCxdaDofD+tvf/mZlZGR4Y6gwWEnU0e+//245HA7L4XBY8fHxudanpaVZrVq1shwOh7V69eoijx1Xjri4OFdN7N692+PtyuJ77REjRlgOh8N66qmncq3bt2+fFRISku/vFkrOvHnzCnwvdeLECatZs2aWw+GwNmzYkGu9M+zo3bt3SQ7VDZNpGq5q1aqXvH7t1ltvlSSdOXNGf/zxh0d9JiQkaOfOnZJyTs3/sw4dOuiGG25Qenq6vv322yKMGqYpiTry8/O75CUdzj737dtXiJHCdCVRSxc7e/asXnnlFdWpU0ePP/54UYcJw5VUHc2dO1eSNGLECFWowDRcV7uSqKPU1FTX/19//fW51vv4+Kh27dqSpMzMzMIMF1eohg0buv4/JSXFo23K4nvt8+fP64cffpAk9enTJ9f6oKAgtW/fXpK0cuXKyzo2FGz16tXKyMhwe54u1q9fP0nSjh07XJeClDSCiivcxX9QK1Wq5NE2//vf/yTl/AF2/rH9szZt2kiS4uLiijdAXBGKUkee9lm5cmWv9IcrQ3FrKTo6WidPntRzzz2nKlWqeHNouIIUpY4OHDig33//XeXKlVN4eLji4uI0ceJEDRo0SCNHjtSMGTOKFJ7hylWUOmrQoIGr7ZYtW3KtP378uA4dOqTy5curadOm3hkojPbLL79Iknx9fdWgQQOPtimL77Xj4+OVnp4uHx8fhYaG5tnmatvnq4mzZp3P0Z/Vrl1b9erVc2tb0ggqrnArVqyQJIWEhKhq1aoebZOQkCApZ1Kf/DjX8W142VCUOvK0z/xe8HB1Kk4tbdiwQYsWLVJERIS6dOlSEsPDFaIodbR9+3ZJOWd7ffzxx+rbt6/mz5+vDRs26Ntvv9Wbb76pO++8U7GxsSU2bpilKHVUtWpVjRw5UpL09NNPa+XKlTp9+rSSk5MVGxuryMhIZWRkKDIyUnXr1i2xsaN0ZWdn69ixY1q0aJGefvppSdLYsWM9DtDL4ntt534EBgbme6bT1bbPVxMTa5bzIq9g27dv12effSZJioyM9Hi7s2fPSpJq1KiRbxvnuqSkpGKMEFeCotbRpXzzzTdas2aNbDabhg0b5pU+Yb7i1FJqaqomTpwoX19fTZw4sSSGhytEUevo+PHjknL+br3xxhvq1KmTnnzySdWvX1/79u3TpEmTFBsbq9GjR2vZsmWqU6dOiYwfZijO61FUVJQCAgI0a9YsPfbYY27rgoKC9NZbb+muu+7y2lhhjrzulhAaGqro6GjXpUSeKIvvtQuzz862MIeJNcsZFVeokydPavTo0crMzNQdd9yh7t27e7xtWlqaJF3yuk7nrZIuPm0SV5/i1FF+9uzZo/Hjx0uSHn74YbVu3brYfcJ8xa2lKVOm6MCBA3rsscd03XXXldAoYbri1NGFCxck5cwbUL9+fb3zzjtq3LixfHx8FBwcrOnTpysgIEBJSUmKiYkpqV2AAYr7epSRkaGDBw/q7NmzqlChgoKCgnTjjTfKx8dH+/fv18KFC3X06NESGj1KU+3atdW6dWu1bNlSAQEBstlsio+P15IlSwr14awsvtcuzD4728IcJtYsQcUV6Ny5cxo+fLgOHz6sZs2aKTo6ulDbV6xYUVLOH+L8pKenS/LefAUwT3HrKC9HjhzRsGHDdO7cOd12222X917LKDXFraVff/1VMTExatq0qQYOHFhCo4TpvPW3TZIGDBiQ681W5cqVXZOBOSd8w9XHG3/bRo0apffee09NmjTR6tWr9fXXX2v58uX68ccfdffdd2vdunXq27evkpOTS2APUJq6deumTz/9VAsWLNCPP/6oL774Qi1bttTy5cv10EMPKSsry6N+yuJ77cLs88Wv1zCDiTVLUHGFOX/+vIYNG6Zff/1VN954o2bNmlXo68CrV68u6dKnXTnXOdvi6uKNOvqzEydOaNCgQTp8+LDatWunqVOnXjKVxdXBG7X07LPPKjs7Wy+++KLKly9fQiOFybz5t02SGjVqlGcb5/JDhw4VfbAwljfqaPXq1Vq7dq38/f01efJkt4kQa9SooUmTJqlhw4Y6evSoPvnkE2/vAgwTEhKi999/X/7+/oqPj3fNe1KQsvhe25PLOjy5vAClw8SaZY6KK0hKSoqioqL0v//9T0FBQZozZ478/f0L3Y9zxuL9+/fn28Z525mgoKAijRXm8lYdXezUqVN6+OGHlZCQoLCwME2fPp20vAzwVi39+uuvKl++vB555JFc65yn82/ZskU333yzJGnhwoVcHnIV8VYdXXwLwfxCUufrUnZ2dtEGC2N5q442bdokKWdegmrVquVab7fbFR4err1797omcMXVrWrVqmrXrp2+/vpr7dixQz179ixwm7L4Xtu5H4cPH1ZGRkaer8NX2z5fTYKCgrR582ajapYzKq4QaWlpGjFihH7++WfVrVtXc+fOVUBAQJH6atmypaScb5SOHTuWZxvnrZhatWpVpMeAmbxZR05nzpzR4MGDtWfPHjVr1kwffPABt5UsA7xdS1lZWTp58mSuf86gIiMjw7XM01NvYT5v1lHTpk1dp6MePHgwzzbON1lMpHl18WYdnT9/vlCPi7IhMzNTkjz++1MW32s3adJEdrtd6enp2rp1a55trrZ9vpo4n5PNmzfnuf7YsWOusxEv1/NHUHEFyMjI0OjRo7VhwwbVrl1bMTExxfo2sUGDBnI4HJKk+fPn51q/YcMG7d+/X3a7XZ07dy7y48As3q4jSUpOTtaQIUP022+/yeFwaNasWXl+A4Wri7dr6bfffsv336hRoyRJ7dq1cy1z3scbVzZv11HlypV1++23S5K++OKLXOsty9LixYslSe3bty/y48AsJfEeSZK2bt2qc+fO5fl4GzdudGuLq9uZM2f0008/Scr5MO6Jsvheu2rVqurYsaMkacGCBbnWJyQkuG4P3bVr18s6NhSsc+fOstvtbs/TxZx3UWratKluuOGGyzImggrDZWVl6YknntB3332ngIAAxcTE6Prrr/do24iICEVERGjlypW51jnf/H/wwQdavXq1a/nevXs1YcIESdIDDzyga665xgt7gdJWEnWUkpKiyMhI7dixQw0bNtTcuXOLfQkJzFdSr0koW0ryb1uFChW0adMmvfvuu65vPzMzM/X6669r586dqlixogYNGuTN3UEpKYk66tq1q3x8fHT69GmNGTPG7dvws2fP6plnntHevXtls9k8ugQA5vvpp5/03nvv5Tl3zY4dOzR06FCdO3dOtWvXzvUBm/fa7kaOHCmbzaYlS5Zo/vz5sixLUs7to8eMGaPs7Gx16dJFISEhpTxS/FnNmjXVt29fSTlzh+3du9e1bvXq1Zo5c6Yk6e9///tlGxNzVBjuq6++0tdffy0p55YwzzzzTL5tn3vuOTVt2tT1c2JioqT/u8b7YnfeeacefvhhxcTEaMSIEapfv758fX21a9cuZWVlqU2bNnriiSe8vDcoLSVRRx9++KHrFD7p//4g52XKlCnFvsQEZiip1ySULSVVR40bN9bLL7+sZ599VlOmTNFHH32kevXq6cCBAzpz5ozsdrtrMkRc+UqijurUqaOXXnpJzz77rL7//ntFRESoXr16stvt2r9/v9LT02Wz2TR27Fi3/nDlSkpK0ttvv623335bAQEBqlWrlsqXL68jR47oxIkTknJuW/r+++/nurSV99ruQkNDNX78eEVHR2vixImaNm2a/P39tXv3bqWnp6tBgwZ66aWXSnuYV70jR46oV69erp+dd+vYvHmzwsPDXcuHDRum4cOHu35+8skntWPHDm3ZskU9evTQjTfeqAsXLrgumxwyZIi6dOlyeXZCBBXGcxaWlPNi6HxBzEtepyheyjPPPKOwsDB98sknio+P1/Hjx9WoUSP17NlTgwYN4o4NV5GSqKOL+7w4dc0L1/FePUryNQllR0nWUe/evdW4cWPNnDlTmzZtUnx8vPz8/NSjRw8NHz6cb/KuIiVVR7169VJISIhiYmK0adMmHT58WJZlKSAgQGFhYRowYIDatGlTrLHDHGFhYXr66ae1ceNG7d69WwkJCUpPT1f16tUVHh6uiIgI3X///UW6O1pZfK89aNAgBQcHa/bs2dq6datOnTqlwMBAde3aVZGRkcxjdhlkZWXpzJkzuZZnZma6LU9NTXVbX6lSJX344YeaO3euli1bpoSEBNntdrVr104PPvig7rzzzhIeuTub5TwnBwAAAAAAoJQxRwUAAAAAADAGQQUAAAAAADAGQQUAAAAAADAGQQUAAAAAADAGQQUAAAAAADAGQQUAAAAAADAGQQUAAAAAADAGQQUAAAAAADAGQQUAAAAAADAGQQUAAAAAADAGQQUAXIEGDhyo4ODg0h6GyzfffKPg4GBt3ry5tIdSZBEREYqIiCjtYXjNhx9+qO7du6tly5YKDg7W3LlzS3tIJe7QoUMKDg7W+PHjS3soZdpbb72lsLAwnTx5srSHAgC4QhFUALiiOT+YDB06NN82GzduVHBwsCZOnJjn+nPnzundd9/Vfffdp7Zt26pFixaKiIjQuHHjtGPHjgLH8NNPP+mpp57SHXfcobCwMDVv3ly33nqroqKi9Omnnyo5ObnI+3clyMjI0Ouvv66OHTuqdevWpT0cSFqxYoVeeeUV+fj46KGHHtKoUaPUqlWr0h4WyoghQ4aoXLlymjJlSmkPBQBwhapQ2gMAgNK0detWjRw5UidOnJDD4VCvXr1UqVIl7dmzRytWrNCSJUs0atQojRo1Kte2qampmjBhgpYtW6aKFSsqPDxcERER8vHx0YkTJ/TLL79o7dq1+ve//60NGzaoXDnvZcOvvfaaUlJSvNZfcSxZskQJCQl64YUXSnso+P/WrFkjSZo+fbpq165dyqNBWVOjRg397W9/04cffqioqCjVrVu3tIcEALjCEFQAKLMOHz6s4cOHKykpSS+88IL69+/vtn7v3r2KiorS1KlT5e/vrwEDBritf+aZZ7RixQp17NhR0dHRCggIyPUYGzdu1Guvvabs7GyvBhWBgYFe66u4Pv30U1133XVq3759aQ8F/9/x48cliZACpaZnz56aM2eOPv/8cz3++OOlPRwAwBWGSz8AlFmTJ0/WmTNnFBkZmSukkKSGDRvqvffek91u1+TJk3Xu3DnXug0bNmjFihVq2LCh3n333TxDCkkKDw/XggULVKGCZ7nwjh079Oijj6pTp05q3ry52rdvr/vuu0/Tpk1za5fXHBXBwcGX/Ldo0SK39gcPHtSzzz7reqyOHTtq/PjxSkxM9GiskvT7779r+/bt+utf/yqbzea2znnJzdSpU7Vt2zYNHjxYYWFhatOmjf7+97/r0KFDbu0Lml8gODhYAwcOzPM4pKena/LkyerUqZNCQ0N17733av369ZJyLu355z//qY4dO6pFixbq27evtm7dmu8+JSUlaeLEibr55pvVokUL9erVS8uXL8+zrWVZWrhwofr166fWrVurZcuWuvfee7Vw4cJcbadOnarg4GBt3LhRixYtUu/evdWyZctc+5Sf1atXa+DAgWrTpo1CQ0NdHwQzMzNdbRYtWuR6DOcxc/4riHOOjnPnzun5559Xx44d1apVKw0YMMB1CdSxY8c0duxYdejQQaGhoRoyZIgSEhLy7K8w9eV8bo8dO6YnnnhC4eHhCgsLU2RkpA4ePChJ2rNnj0aOHKl27dopLCxMjz766CXnQNi1a5ciIyPVtm1bhYWFaciQIdq+fXuebZOTkzVlyhR1795doaGhatu2rYYOHapNmzblauusubS0NL311lvq0qWLmjVrpqlTpxZ0iJWSkqJ//etfuu2229SiRQv16NFDCxYscPtd8cZxPHnypMaNG6fw8HCFhoaqT58+rpoozr4fP35cL7/8sv7617+62nbr1k0TJ050e32UpKZNm+qGG27Q4sWLCzwuAAD8GWdUACiTLly4oJUrV6pixYqXnN/ixhtv1B133KEvv/xSK1eu1N/+9jdJcn0QHTJkiCpVqnTJx/I0pIiPj1e/fv1Uvnx5de7cWYGBgUpKStKePXu0YMECjRgx4pLb53V5ipRzxsOpU6fcxhkXF6ehQ4cqJSVFnTp10g033KDExEQtW7ZM33//vebPn6/rr7++wDFv2LBBki45/8G2bds0c+ZMhYeHq1+/fvr111/1zTff6Pfff9fy5ctVsWLFAh+nII8//rh+//13RUREKDU1VcuWLXPNETJx4kRlZGSoa9euOn36tL788ksNGzZM3377rapVq+bWT3p6ugYNGqQLFy6oZ8+eSklJ0VdffaUnnnhCp0+fdgsVLMvS2LFjtXz5cgUFBalHjx7y8fHRunXr9Oyzz2rPnj0aN25crrHOmjVLGzduVOfOnXXzzTerfPnyBe7fnDlzFB0dLT8/P/Xo0UO+vr5avXq1oqOjtWnTJr3zzjuy2Wxq0qSJRo0apcWLFysxMTHfmshPenq6Bg8erLS0NHXr1k2nTp3SV199pcGDB+vTTz/VsGHDFBAQoJ49e2r//v1as2aNoqKi9OWXX7rtR1Hq6+zZs+rfv78CAgLUu3dvJSQkaM2aNdq7d6/ee+89DRgwQM2aNdN9992n7du36+uvv9aZM2f04Ycf5tqPgwcPqn///mratKn69++vw4cPa+XKlXrwwQcVExOjli1butqeOXNGDz74oHbt2qXWrVurX79+Sk5O1rfffquHH35Yb7/9trp06ZLrMUaPHq2dO3fqlltuUfXq1VWvXr1LHtusrCxFRUVp48aNcjgc6tGjh86ePavo6Gi1a9cuz22KchyTkpL0wAMPqGrVqrrnnntcz+HQoUO1aNEiORyOIu17SkqK+vfvr8TERN18883q0qWLMjIydOjQIS1dulRDhw7N9fvUqlUrLVmyRPv27VODBg0ueXwAAHBjAcAV7ODBg5bD4bC6dOliTZkyJc9/48aNsxwOh/Xcc8+5ttu4caPlcDisfv36FfgY8+fPtxwOh/X000+7lkVERFgOh8M6cOCA1/bl1VdftRwOh/Xf//4317o//vjD7ecHH3zQcjgcBfb5/vvvWw6HwxoxYoSVlZVlWZZlpaenW7fffrsVFhZm7dixw639zz//bDVp0sSKioryaMyPPvqo5XA4rISEhFzrYmNjLYfDYTkcDmvFihVu65588knL4XBYy5cvdy1zPpfjxo3L87EcDof14IMPui1zHof+/ftb58+fdy1fsWKF5XA4rLZt21qPPvqolZGR4Vo3Y8YMy+FwWLNnz3br6/bbb7ccDoc1YMAAKy0tzbX8yJEjVnh4uNW8eXPr6NGjruXOuhg/fryVnp7uWp6WlmZFRUVZDofD2rZtm2v5lClTLIfDYbVq1crauXNnnvuYl/3791tNmza1OnToYB0+fNjtcfr37285HA5r8eLFeR6XwnDuf37Hq23bttakSZOs7Oxs17rnn3/ecjgc1tdff+1aVpT6ctbJpEmT3JY7+2/btq01d+5c1/Ls7Gxr+PDhlsPhsLZv3+5a7qwhh8NhvfHGG259ff/995bD4bB69OjhtnzMmDGWw+GwFixY4Lb85MmT1m233Wa1b9/eSk1NdS13Htt77rnHOn36dJ7HMi8LFiywHA6HNWzYMCszM9O1fNeuXVaLFi0sh8NhTZkyxbW8OMfxhRdecP2+X/zYF78GFnbfv/32W8vhcFivvPJKrn1LTk52+51xiomJsRwOh7Vw4cKCDg8AAG649APAVeHAgQN655138vyX16nHzlPGr7vuugL7rlOnjiTpxIkTubavVatWrvbffPONpk6d6vYvPj7e433J6wwNf39/j7d3WrVqlSZPnqxmzZrpjTfecM2RsXbtWiUmJmro0KFq2rSp2zZt27ZV586d9d1333l0t5Jjx45Jkq699tp829x0002666673Jbdd999knLOtvCGf/zjH/L19XX93LVrV9ntdiUlJWncuHFuZ7X06NFDkrRz5858+/Lx8XH9XKdOHT300ENKT0/XihUrXMs/+ugj+fr66vnnn5fdbnct9/Hx0T/+8Q9Jcmvv1KdPn0LdWnbZsmXKzMzU4MGD3erVx8dHY8eOlSSvnl6f3/HKzMzU448/7naJT17Hsqj15evrm2suA2f/fn5+euihh1zLbTabq6byeh6rV6+uRx55xG3ZLbfcog4dOrguV5KkP/74Q1999ZXat2/vOlvK6dprr9XQoUP1xx9/uC4jutjo0aPl5+eXa3l+li5dKimnvi4++6Rx48bq1atXrvbFOY5jx451mxOnd+/eqlChgtulL0Xd97xen6pUqeL2O+NUs2ZNSdLRo0dzrQMA4FK49APAVaFjx46aNWtWnus2btzo9iGnpH3zzTe5PjjWrVtXTZo0ueR23bp1U0xMjEaNGqVu3brp5ptv1k033VSkCRG3bdump556SrVq1dK0adPcPsT/73//kyTt27cvz2viT5w4oezsbO3bt08tWrS45OOcPn1a5cuXV9WqVfNt06xZs1zLnOFPUlKSJ7tToD8f23Llyumaa65RampqrolHnfOJOCecvFiFChUUFhaWa3nbtm0lSb/++quknNPgf//9d9WqVUsffPBBrvbOeSP27t2ba11oaKgnu+TiDLnCw8NzrQsLC1PFihXzDV0Kq0aNGvker6CgIFWuXDnPdRcfy6LW16X6Dw4OzjUHijMkzOt5bNKkiapUqZJredu2bbVhwwbFx8erefPm2rZtm7KyspSenp7nWJ3zb+zdu1e3336727rCPo+//fabfH19c4UOktS6dWvNnz/fbVlxjuOf971ChQq69tpr3X7fCrvvN910kwICAjRjxgzt3LlTnTp1Urt27dSoUaNcz41TjRo1JOW8TgAAUBgEFQDKJOc3fUeOHCmwrfPbwIsnzLz22muVmJio48eP57pGPDo6WtHR0ZKkGTNm6M033/RoTC1bttS8efM0ffp0LV++3DX5ZYsWLTR27FiP76px5MgRjRgxQjabLc/bU549e1ZSzjf1l+LJ7U8rVaqkrKwsZWRkuJ1VcLG8QgznN8rZ2dkFPoYn8nqMChUq5LtcktsklE7+/v553p3FecaI89vrpKQkWZalY8eO6Z133sl3XBcuXMi3L085HzOv7Ww2m2rWrOk6s6W4LnW8LvU8Xnwsi1pfl+rf08d2cv5+/5nzGDonfnSOdfPmzdq8ebPHY73UY+QnOTnZFdDlN66LefM4SjnP48W/b4Xd92rVqmnBggWaMmWK1qxZo++++05Szllpw4cPz3VXJCnnFs6ScgVQAAAUhKACQJnUvHlz2e127dixQ+fOncs1CdzFnBNGXvxNe1hYmBITExUbG+vRpJOeatu2rWbOnKnU1FTFxcVpzZo1+uSTTxQVFaXly5cX+FjJycmKiorSqVOn9M477+T57a3zg8z06dNzfUtcWNdcc42knA89hf3g9mfOgCCvD55/vqNASTl9+nSet5I9deqUpP87ds5vrJs1a5brbioFye/b5/w4H/PUqVOqW7eu2zrLsnTy5MlLntFyuXmzvooqv7uBOJ9H5++7c6xDhgzJc+LTSynK85jfmQXOcf25vVRyx7Eo+x4YGKjo6GhlZ2frt99+048//qh58+bpxRdfVI0aNVyX6jg5wxDn6wQAAJ5ijgoAZZKvr6/uvPNOpaWlafbs2fm227Nnj/773/+qSpUquvPOO13L77//fkk5d2NIS0vz+vgqVaqk8PBwjR8/XlFRUUpNTdW6desuuU1WVpbGjBmj3377TU899ZQ6d+6cZzvnKevOU8uLw3kHgX379hW7r+rVq0tSnmcHOC+5KGmZmZnasmVLruXOWzU6g5+qVauqUaNG2rt3r9cuX8mP87KWvG4vGRcXp7S0NIWEhJToGArDm/VVVPHx8Tp//nyu5c7n0XlMW7RoIZvNludz7m3BwcG6cOFCnvPV5HVGQ0kfx+Lse7ly5dSkSRMNHz5ckydPlpRz+9w/c74uXHynEQAAPEFQAaDMGjNmjGrUqKH3339fn3/+ea71CQkJGjlypDIyMvTEE0+4PkhLUocOHdS9e3ft2bNHf//7390m2rxYYc4E2LJlS56hh/Pb1oJu4zlp0iR999136tu3rwYPHpxvuy5duigwMFBz5szRzz//nGt9RkaG6wNdQW666SZJOR+Yi6tq1apq0KCBNm/erP3797uWJycnuz4MXQ5vvfWW0tPTXT8fPXpUH374oXx8fNS9e3fX8oEDByolJUUTJkzI8xKPgwcP6tChQ8Uez913360KFSpo7ty5biFOenq63njjDUk5kyWawpv1VVRJSUmaPn2627IffvhBGzZskMPhUPPmzSXlXM7VrVs3bdmyRTNnzpRlWbn6iouL8+gyqIL07NlTkvTvf//b7RKMPXv26IsvvsjVvqSPY2H3fdeuXXmeqeJcltfrU1xcXL7zvgAAcClc+gGgzKpbt65mzJihkSNHasKECZo3b57atWunypUra8+ePfr++++VmZmp0aNH53n99aRJk2Sz2bR8+XJ17txZ4eHhatSokex2u06ePKlt27Zp165d8vf3V8OGDQsczwcffKCNGzfqpptuUr169eTj46Nff/1VGzZs0PXXX6877rgj3223bt2qjz76SJUqVZK/v3+ek+N16dJFTZo0kY+Pj95++20NHz5cDz74oNq3by+HwyGbzabDhw9r06ZN8vPz08qVKwscc4cOHVSlShWtX79ew4YNK7B9QYYMGaLnnntOffv2VdeuXZWdna0ffvihwEk9vSUgIEAXLlxQz549dfvttyslJUVfffWVzpw5owkTJrjN99GvXz/FxcVp8eLF2rx5s/7yl7+oVq1aOnXqlPbu3au4uDi9+eabqlevXrHGVL9+fY0dO1bR0dHq2bOnunXrpsqVK2vNmjXat2+fOnfurHvuuae4u+413qyvomrbtq0+/fRTxcXFqVWrVkpMTNTKlStVqVIlvfzyy25tn3/+ee3bt0+vv/66lixZorCwMFWrVk1Hjx7V9u3blZCQoB9//LHY8yzce++9WrJkidauXatevXrp1ltv1dmzZ7VixQr95S9/0Zo1a9wuJ7kcx7Ew+75u3Tq9/vrrat26tYKCguTn56eDBw9q9erVqlixoh544AG3vs+fP6+4uDj95S9/cZvMFwAATxBUACjTWrVqpa+++krz5s3T6tWrtXjxYqWlpSkgIEDdu3fXwIEDXd++/lmlSpX05ptvqk+fPvrPf/6jzZs366efflJWVpb8/f0VEhKiBx54QD179vRoDoH+/furWrVqiouL008//STLshQYGKhHHnlEDz/88CX7cH7rmZqamuubZKeL7zwSGhqqpUuXaubMmfr++++1efNm+fj4qHbt2urSpYvbmQOXUqVKFfXs2VMLFizQ8ePH87xda2H06dNHGRkZ+vDDD7Vw4UIFBASod+/eGjFihL7++uti9e0JHx8fzZkzR2+++aaWLl2qpKQkNWzYUM8991yu6+9tNpuio6N166236vPPP9fatWt14cIFXXPNNbrhhhs0btw4dejQwSvjGjx4sOrXr6+5c+dq6dKlysjIUFBQkMaPH6+BAwcWer6Ekuat+iqq66+/Xi+88IJef/11ffzxx8rOzla7du30xBNP5Pp99vPz02effaaPPvpIX375pZYtW6bs7GzVrFlTISEhGjFiRJFuD/xn5cuX14wZMzR16lQtX75cMTExql+/vsaPH68aNWpozZo1uX7HS/o4Fmbfb7nlFiUmJmrTpk1atWqVLly4oNq1a+uuu+7SsGHD1LhxY7e+V61apdTUVPXt27dYYwQAlE02K69z/QAA8NDevXt19913a9SoURoxYkRpDwe44rz11luaPn26ZsyYodtuu620h+MVDzzwgE6dOqUvv/zSdYcWAAA8xRwVAIBiadiwoe6//37NnTvXdStNALkdP34817Ldu3dr3rx5ql69usLDw0thVN63YcMG/fLLLxo7diwhBQCgSLj0AwBQbI8++qhq1qypxMREBQcHl/ZwACO98MILSkxMVGhoqKpXr+6a4yEzM1OvvPKKKlWqVNpD9Ipz585p3Lhxl5xXBwCAS+HSDwAAgMtg6dKl+uyzz7Rnzx4lJyfL19dXLVq00ODBg3XLLbeU9vAAADAGQQUAAAAAADAGc1QAAAAAAABjEFQAAAAAAABjEFQAAAAAAABjEFQAAAAAAABjEFQAAAAAAABjEFQAAAAAAABjEFQAAAAAAABjEFQAAAAAAABjEFQAAAAAAABj/D+EjuExiZzhOwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "g = sns.jointplot(data=roothog_df, \n", + " kind=\"scatter\",\n", + " x='nr_members', \n", + " y='CompletenessScore', \n", + " marginal_kws=dict(bins=20, element=\"step\"), \n", + " marginal_ticks=True,\n", + " height=11)\n", + "g.fig.suptitle(\"Distribution of HOG sizes and CompletenessScores for all RootHOGs\", fontsize=16)\n", + "g.ax_joint.set_xlabel(\"HOG size (number of member genes)\", fontsize=14) \n", + "g.ax_joint.set_ylabel(\"Completeness Score of HOG\", fontsize=14)\n", + "g.fig.tight_layout()\n", + "g.fig.subplots_adjust(top=0.95)" + ] + }, + { + "cell_type": "markdown", + "id": "9954b3f6-f435-496a-8fab-7da09baffc47", + "metadata": { + "papermill": { + "duration": 0.007502, + "end_time": "2024-10-18T00:52:50.546964", + "exception": false, + "start_time": "2024-10-18T00:52:50.539462", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "Alternatively, we can also analyse the HOGs at a given taxonomic level. Here, we generate the plot for a relatively deep level in the species tree. You can change this to more useful levels tfor your dataset.\n", + "\n", + "## HOGs at a taxonomic level" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "0e6476e7-694f-4108-8a02-3e86374416ad", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:50.563476Z", + "iopub.status.busy": "2024-10-18T00:52:50.563162Z", + "iopub.status.idle": "2024-10-18T00:52:50.568292Z", + "shell.execute_reply": "2024-10-18T00:52:50.567669Z" + }, + "papermill": { + "duration": 0.014636, + "end_time": "2024-10-18T00:52:50.569337", + "exception": false, + "start_time": "2024-10-18T00:52:50.554701", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We've selected inter1 as our level of interest\n", + "It contains 2 species (out of 3).\n", + "You can use a different level by setting the level variable in the next cell instead.\n" + ] + } + ], + "source": [ + "desired_subtree_size = max(2, int(0.4*len(species_tree.get_leaf_names())))\n", + "node = species_tree\n", + "while True:\n", + " nr_child = [len(c.get_leaves()) for c in node.get_descendants()]\n", + " if max(nr_child) < desired_subtree_size:\n", + " break\n", + " k = nr_child.index(max(nr_child))\n", + " node = node.get_descendants()[k]\n", + "level = node.name\n", + "print(f\"We've selected {level} as our level of interest\\nIt contains {len(node.get_leaf_names())} species (out of {len(species_tree.get_leaves())}).\\nYou can use a different level by setting the level variable in the next cell instead.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "f164e5f4-85f9-40ec-9dc7-1f7ff963ca25", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:50.585645Z", + "iopub.status.busy": "2024-10-18T00:52:50.585146Z", + "iopub.status.idle": "2024-10-18T00:52:50.587813Z", + "shell.execute_reply": "2024-10-18T00:52:50.587250Z" + }, + "papermill": { + "duration": 0.011872, + "end_time": "2024-10-18T00:52:50.588876", + "exception": false, + "start_time": "2024-10-18T00:52:50.577004", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "#level = \"XXX\"" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "7066668b-f260-4b7d-a9a0-68141f1149ef", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:50.605282Z", + "iopub.status.busy": "2024-10-18T00:52:50.604802Z", + "iopub.status.idle": "2024-10-18T00:52:50.615666Z", + "shell.execute_reply": "2024-10-18T00:52:50.615098Z" + }, + "papermill": { + "duration": 0.020079, + "end_time": "2024-10-18T00:52:50.616720", + "exception": false, + "start_time": "2024-10-18T00:52:50.596641", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of HOGs at inter1: 10\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CompletenessScorenr_members
count10.010.0
mean1.02.0
std0.00.0
min1.02.0
25%1.02.0
50%1.02.0
75%1.02.0
max1.02.0
\n", + "
" + ], + "text/plain": [ + " CompletenessScore nr_members\n", + "count 10.0 10.0\n", + "mean 1.0 2.0\n", + "std 0.0 0.0\n", + "min 1.0 2.0\n", + "25% 1.0 2.0\n", + "50% 1.0 2.0\n", + "75% 1.0 2.0\n", + "max 1.0 2.0" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "level_df = hog_df[(hog_df['level']==level)]\n", + "print(f\"Number of HOGs at {level}: {len(level_df)}\")\n", + "level_df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "ee844afe-fa0a-4b3b-8fe3-4e9fec48bf36", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:50.633526Z", + "iopub.status.busy": "2024-10-18T00:52:50.633078Z", + "iopub.status.idle": "2024-10-18T00:52:50.920447Z", + "shell.execute_reply": "2024-10-18T00:52:50.919737Z" + }, + "papermill": { + "duration": 0.29689, + "end_time": "2024-10-18T00:52:50.921599", + "exception": false, + "start_time": "2024-10-18T00:52:50.624709", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAHkCAYAAADij8QjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACK70lEQVR4nOzdd1gU1/s28HuBBWl2RdEolgxW7IVoTESjxJhYYizRGGzYEzWJxhhNjDXNHvVrb9FgothFjL2BXVTACggIFhRB2gJ73j94d36s7I67FAFzf67Ly2XnzJkzZ2dn55k5RSWEECAiIiIiIiKDLAq7AEREREREREUZgyYiIiIiIiIFDJqIiIiIiIgUMGgiIiIiIiJSwKCJiIiIiIhIAYMmIiIiIiIiBQyaiIiIiIiIFDBoIiIiIiIiUsCgiYiIiIiISAGDpgIQFRUFV1dXuLq6Iioq6j+3/YKk26/AwEC994vDPnt4eMDV1RXbt2/PsczYfhUl27dvh6urKzw8PAq7KPQfEhgYKH8/iF5HN27cwJdffom2bduiXr16cHV1Rbdu3Qq7WPQa+eyzz+Dq6orFixcXdlGKNau8rJyZmYkDBw7g6NGjuHLlCuLi4pCamgpHR0e4uLigefPm+PDDDyFJUn6V9z9Pd8D36NEDVatWLeTSvL4SEhKwfv16AMDnn3+OkiVLFnKJCk5UVBR8fX0BAGPHji3k0vy3RUZGwtfXFwEBAbh37x7i4+OhVqtRoUIF1KtXDx4eHnjvvfdga2tb2EV9LfB8mr9u376Nv/76C2fPnkV0dDTS0tJQunRplC9fHrVq1ULz5s3RunVr1KhRo7CLWmRERkaiX79+SEpKAgCULl0aVlZWKFOmTCGXTN/ixYuxZMkSAFlBnpKoqCh06NABADBnzhz07NnTaNrExET8/fffOH78OO7cuYOnT5/Czs4OTk5OaNWqFbp3744GDRqYXM6YmBhs374dgYGBCA8PR3x8PACgVKlSqFWrFho3boxOnTqhXr16JudZmP7991+EhISgbt266NixY2EXx6Cidh49f/48rl+/juDgYFy/fh13795FZmYmWrZsiY0bN+Yp71wHTZcvX8akSZMQHh4uv6dWq2Fvb4/4+HhcvHgRFy9exIoVK9CpUyf8/vvvsLa2zlNhCfJJq2XLlkYPTrVaLf8oqdXqV1a2wpTf+5yQkCDXdY8ePfIlaHrjjTdgbW0NR0fHPOeVn6Kjo+V9VQqaHB0dUaNGDTg5Ob2qov1npKen45dffsHmzZuRkZEhv+/o6IiMjAxEREQgIiIC+/fvR4UKFTBz5ky8++67hVfg14Qp51MyzapVqzB//ny947dkyZJITEzEo0ePEBISgj179uTLhcvrxMfHB0lJSahevTo2btz4nzq/7tq1C7NmzZIDGyDrmElOTsbNmzdx8+ZNbNq0Cd26dcP06dNRokQJo3lpNBr89ttv2Lx5M9LT0+X3bW1toVar8ejRIzx8+BBnzpzBsmXL0Lx5c/zyyy+oUqVKQe5inv3777/w9fVFjx498hQ0Va5cGTVq1CiQYLyonUf79+9fYHnnKmg6fPgwvvzyS2g0GpQuXRpDhgxBp06d4OLiAiDrCVRwcDD8/f2xefNm+Pv7IzU1lUHTK+Lk5AQ/P7/CLsYrVRz2Wffkqrh677338N577xV2MV47Go0GQ4YMwdmzZwEAb7/9NgYOHIgWLVrIT5SePHmC06dPY8uWLTh//jxOnTrFoImKDH9/f/z6668AgBYtWmDkyJFo3rw5bGxsAAAPHjzA+fPnceDAATx//rwwi1rk3Lx5EwDQoUOH/1TAtGbNGvz8888AgJo1a+KLL77AO++8Azs7OwghEBwcjI0bN2LHjh3YsWMHwsLCsGHDBoOBU1paGoYMGYJz584BANq2bYv+/fujRYsW8k3KjIwMhISE4MSJE/Dx8cH58+dx586dIh805ZdffvmlsIvwypQoUQKSJKFevXpo0KAB/Pz8cPLkyXzJ2+ygKTw8HN988w00Gg1q166N1atXo1KlSnppLC0t0bBhQzRs2BBDhgzBd999ly+FJSJ63cyaNUsOmCZPngwvL68cacqWLYuuXbuia9euOHDgAG7duvWKS0lk3Jo1awAAkiRh3bp1sLLSv7RwcnLCBx98gA8++ACpqamFUcQiKyUlBQBgZ2dXyCV5dQICAuQgu3Xr1li+fLlek2OVSoX69etj7ty5aNasGb7//ntcuXIFP/30E2bPnp0jv59++kkOmKZOnYoBAwbkSGNlZSVfl3p7e2PNmjWKT66o+Lp48SIsLS3lvy9cuJBveZsdNC1YsADPnz+HjY0NlixZkiNgelHp0qWxdOlSCCHk93RtY5Ue0wcGBmLgwIEAcraffXH9Q4cOYcOGDQgNDUV6ejokScLQoUP1HmXu2LEDf/31F+7cuYOMjAzUq1cPY8aMgbu7u1nbzk7XMXnDhg1o1aqVYj1kd/nyZRw8eBCXLl1CTEwMHj9+DBsbG9SsWRMdO3ZE//79YW9vr7fOt99+K/c7ASCXT6dKlSo4fPgwAP32xIcOHZIfl86cORMbN25EvXr19PJ6UVJSEtq0aYOUlBT8/PPP6N69u97y58+fY/PmzTh06BDCwsKQnJyMcuXKoWnTphg4cCCaNGlicl286NmzZ1i+fDkOHjyIBw8eoFSpUmjatCm8vb0V2zUb22ed2NhYrFmzBqdOnUJ0dDQyMjJQunRpVKxYEc2bN0fXrl3h5uYGIKvDpO4iFoCcr07243b79u2YPHmyXP8BAQHYsGEDgoKCEBcXh27dumHu3LkAsgaCiI6Ofmkb70ePHmHZsmU4evQoHj16hJIlS6J169YYNWoUatWqlSN9Xo5XXZleTKPTo0cPufwv7qsh9+7dw+rVq3HmzBnExsbCysoK1atXR4cOHeDl5QUHB4eXlj8iIgLLly/H6dOnERcXh7Jly6Jdu3YYO3Zsnu7EPnr0CGvWrMHx48flfa5SpQreeecdDB48GOXLl8+xzovHVYkSJbB8+XIcPnwYjx49gqOjI1q1aoUxY8YY/Gxe5vbt2/Dx8QEAfPzxxwYDphd17tzZ6BM/f39/bNu2DVevXkVCQgJKliyJhg0bolevXkbX0Z1bdJ/19u3b4ePjg9u3b8PCwgL169fH6NGj0aJFCwBZd2y3bNkCX19fhIeHQ6VSoWnTphg3bhzq16+fI/8XP9+rV69i5cqVuHjxIp49e4ZKlSqhY8eOGDlyZK6bwWo0Gvz999/w8/PDzZs3kZSUhFKlSsHNzQ19+/bFO++8Y3CfdZTOpzparRZ79uzB7t27cf36dSQkJMDBwQH16tVDz5498cEHH0ClUuUoW/bvfdeuXbFhwwbs2rUL9+7dg6WlJerXr4+hQ4eiXbt2ivt44cIFbNmyBRcuXMDjx49hbW2NGjVqoFOnTgZ/M3R0d9aDgoLw5MkTWFtbo0yZMqhevTratGmDjz/+GKVLl9Zb58qVK9iwYQMuXbqER48ewdLSEmXKlEGVKlXg7u6Ojz/+WO+3PzQ0FADQrl27HAHTi5QuVJOTk+Hj44NDhw7h1q1bSEpKQtmyZVGtWjV4eHjgo48+Mvg9DQwMxJ9//olLly7h6dOnsLe3R506dfDRRx+he/fuehdQOi9eRxw4cAA+Pj4ICQnB06dPMXr0aL3myk+ePMH69etx7NgxREZGQqPRoGLFimjVqhUGDRqEN998U3G/X/TiuXfJkiVyMycg53VFfpy/tFotVq5ciVOnTuHhw4eoWLGi0XN5Qfrll1+g1WpRtmxZzJ8/X7GP5ieffIJLly5h27Zt2L59O7y8vPT6yd+4cQPbtm0DAPTr189gwPQiKysreHt7G1yWmpqKP//8E/7+/rh79y6Sk5Ph6OiIsmXLomHDhvDw8EDnzp3N2t9Hjx7Bz88Pp0+fRnh4OB4+fIj09HQ4OTmhZcuW8PLyynH8ZD9vAoCvr2+O6zZzrj111zVjxozJ0Qw/t+eowjqPdu7cGatWrcK///6LqKgoJCcn6133Gfq+5xezgqbHjx/jwIEDAIAPP/zQrM6chiohPyxatAh//PEHLCwsYG9vj6SkJFy6dAmjR4/G9OnT0adPH0yePBm+vr6wsrKCjY0NkpOTcf78eQwZMgRLly595c1c+vTpI7+2tbWFra0tnj17hitXruDKlSvYuXMnNmzYgHLlysnpHBwcUL58eTx+/BhAVqfG7H13TGmn2q1bN2zcuBHBwcG4deuW0ZO8v78/UlJSYGdnh06dOuktCwkJwYgRIxAbGwsg6+AsUaIEYmNjsW/fPuzfvx/jx4/H8OHDTa+Q/y8qKgoDBw6UfxDUajVSUlJw4MABHD58GAsXLjQ7TyDrB33gwIF49uyZXGYHBwc8fvwYjx49kr+4uqCpVKlSKFOmDJ4+fQogq26zfwlLlSplcDvr16/HnDlzIISAo6Njrr64UVFR+Oqrr/Do0SOUKFECVlZWePz4Mfbs2YODBw9iyZIlL724MkeZMmXw/PlzuW5e/OE1FOQYs2/fPkyaNAkajQYAYG9vj/T0dAQHByM4OBj//PMPVq9erRhcBAQEYOTIkUhOToa9vT2EEHjw4AH+/vtvHDt2DP/880+uAqezZ89i9OjRSEhIAPB/d3Vv376N27dv459//sHSpUvRvHlzo3ncvn0b3333HeLi4uQf+bi4OOzbtw/Hjx/Hn3/+iTp16phVrj///BNCCFhaWmL06NEmr2dhoT/wqUajwaRJk7Bv3z55uaOjI54+fYqjR4/i6NGj6Nq1K+bOnavY50/3I6g7VyYkJODMmTM4d+4clixZgjZt2mDkyJE4efIk1Go11Go1kpKScPz4cZw7dw6bNm1SvLnx77//Yty4cUhPT4eDgwOEELh37x7WrFmDAwcOYMOGDWa3iY+Ojsbw4cPlp28qlUr+fh8+fBiHDx9G3759MX36dHkdc8+n8fHxGDNmjHw3G4Bcv6dOncKpU6ewd+9eLFy40Ggz9OTkZAwYMABXrlyR6+758+cIDAzE2bNnMXPmTPTq1SvHelqtFrNnz9a7wWhnZ4eUlBRcvXoVV69exfbt27F69eocTY2WLFmiN1qWra0thBCIiopCVFQUTp06hQYNGuhdePn6+mLy5MnyjU5ra2tYWlri/v37uH//Ps6dO4fKlSsbvPGj+13IjevXr2P06NGIiYkBkHUMlyxZEk+fPsWDBw9w7tw5WFhY5LixMGfOHKxbtw5A1mfv6OiIxMREBAQEICAgALt27cIff/yheC6bO3cu1q5dC5VKhZIlS+b4fp0+fRpffvmlfP7QfX66ety1axdmzpyZ4wajkjJlyiAtLQ3Pnj1Deno67Ozs9J42ZT8e8+P8denSJUybNg3JyclyP5/CcOXKFVy/fh1AVt+TsmXLvnSdUaNGwdfXF1qtFps3b8aPP/4oL9u8eTOEELCyssLIkSPzVLbnz5+jf//+8k2A7MfT06dPcefOHZw7d87soOn333+XgwsrKys4ODggNTUV9+7dw71797Br1y789ttvevmq1WqUL18eiYmJSEtLg42NTY7+0Pn9GZp7jiqM82h8fDx69uyJ8PBwqNXqVz8okjDDnj17hCRJQpIkceTIEXNW1bNo0SIhSZIYMGCA0TQBAQHytoyt36xZM1G3bl2xbNkykZCQIIQQIjY2VgwePFhIkiSaNGkiFi5cKNzc3MSWLVtEcnKyEEKIsLAw0bNnTyFJknj33XdFZmamydvOTpcmICBA7/3IyEh5WWRkZI71hg8fLvbu3SsePnwov5eSkiL8/f1F586dhSRJYvTo0WZt09Ttd+nSRUiSJH799Vej63/++edCkiQxceJEvfcfPHgg3N3dhSRJYsyYMeLq1atCo9EIIYR4/PixWLBggahXr56QJEkcPHjQaP6GZGRkyJ9JixYtxL59+0R6eroQQohbt26JTz/9VDRv3jxXda7bnx49eohLly4JrVYrhBAiLS1NhIWFidWrV4uVK1eanF9227ZtE5IkiYYNG4q6deuKb7/9Vty/f1/ep4iICDlt+/bthSRJYtu2bTny0W2rWbNm4t133xUnT56Uy3nlyhXRtWtXIUmSaNq0qYiJidFbN6/Hq6nr6/a1ffv2OZZdu3ZN1K9fX0iSJPr27StCQ0OFEEJkZmaKQ4cOiTZt2ghJkkTHjh3F8+fPjW6/RYsWYsSIEeL27dtCiKzPaO/evaJJkyZCkiTxzTffKJbRkPv378vHTpcuXcT58+flZefOnZO/cy1bthSxsbF662Y/Dlq0aCH69u0rgoKChBBCpKeni1OnTsn79umnn5pdNt22e/bsafa62c2dO1dIkiRcXV3FggULxLNnz4QQQsTHx4t58+bJ+2Doez9p0iQhSZJo3ry5cHNzE3/99ZdISUkRQghx584d0aNHD/lz/+mnn0TLli3Fvn37hEajEVqtVly9elV07NhR/uxflP3zbdasmRgwYID8+aanp4u9e/eKFi1aCEmSxMcffywyMjKMrv+ipKQk4enpKf+eBAYGirS0NCGEEAkJCWLt2rWicePGQpIksW7duhzrm3I+zcjIEAMGDBCSJIlu3bqJw4cPy78lSUlJwtfXVz4vzpo1K8f6uu99ixYtxNtvvy0OHjwonzfv3LkjevfuLSRJEo0bN5Z/x7KbP3++kCRJuLu7i02bNomnT58KIYTQaDQiICBAdO/eXT6/Zf8ti4qKEnXq1BGSJIk5c+boHdsJCQni3Llz4scffxRXr16V309OTpa/a19//bXe+SspKUlcvXpV/Pzzz+Lo0aN6ZdTVT7169cSuXbty/Ka+zP3790WrVq2EJEninXfeEXv37pXrWKvVilu3bonFixeLnTt36q23ceNG+TOcOnWq/JualJQk1q5dK/8ejRs3Lsc2ddcRuuPj119/FXFxcUKIrPNOVFSUEEKI0NBQ4ebmJiRJEt9//724ffu2fIxGR0eLH3/8Ud533bnBHLq6W7RokdG6yY/zV+PGjcUnn3yiV8a7d++aXE5dfb3sd+LF7b74e7d8+XJ52Y0bN0zevu485Onpqfd+p06dhCRJolevXibnZcwff/wh1+WBAwfkc0lmZqaIjY0Vvr6+4vvvv89VvqtWrRI3btyQr2syMzPFzZs3xVdffSV/Pi9+fkL83/l50qRJedo3peMsr+eoV3kebdy4sWjTpo1eGWNiYuS8DNHVoVLMYSqzgibdyVuSJIMfrqnyK2iSJEksXbo0x/LExET5RChJUo4TrRBCREREyMvPnTtn8razy23QpCQ2NlY0aNBAuLq6iujoaJO3aer2//e//wlJkkS7du0M/rDFxsbKP7SnT5/WWzZ58mQhSZKYMGGC0W2vXbtWSJIkPvroo5ftqp69e/fKZX5xu0Jk/ZjrLszMrXPdD97FixdNLo+5QZMukFRiStBUv359+YIyu8ePH4uWLVsKSZLEjz/+qLesKARNQ4YMEZIkiffee8/gyev69evyBcyqVauMbv+zzz4zeFxu2LBBSJIk3Nzc5B8dU02bNk3+Qch+o0InJiZGNG3aVEiSJKZPn663LPtx4OnpKQcT2R06dEhO82JAqyQ9PV24urrKF2O5FRsbK9ft77//bjDNnDlz5OPrwYMHest0PyimnCsNnS+FEOL06dNG6yD759upUyeDdXjq1Ck5zb59+4yu/6IlS5bIvyW6H9AX+fv7C0mSRKtWrXIcO6acT319feXP39AFgxBCXL16Vbi6uor69euLx48f6y3Tfe8bNGhg8LsdFxcnGjZsaLD+IyMjRd26dYWbm5sICQkxuO3ExETRrl07IUn6N6t059ROnToZ3bcXXblyRb4wMed7FhgYKB+DkiSJNm3aiC+//FKsXLlSnDlzRiQlJSmu//XXX8sXq7qbTi+TkpIinxON/SbpzhuSJOkFh0LoX0fMmTPH6HYGDhyo+N0SQogZM2YISZLEyJEjTSp7di8LmvLr/NW+ffscN6zMkb2+3nrrLcV/ugDY0O+dLkioX7++WcH1d999JyQp68aQ7tjUaDTydqZOnZrrfdMZOnSokCRJLF++PM95mcPb21tIkiT++OOPHMteZdCUm3OUEK/2PFq3bl1x/fr1l+2unvwMmsya3Db7sJAvtoEuDDY2Nvj8889zvO/g4IDGjRsDAJydnfHhhx/mSFOtWjVUr14dwMvnHHiVnJycUKdOHQghcOnSpXzP/8MPP4SFhQViY2MNTqS6a9cuaLVaVKpUSa/JRlpaGvbs2QMAGDZsmNH8dRPyhYaGyo9sTaFrVtS0aVOD/cxsbW0xdOhQk/PLTvdI+9GjR7la31TG2kibw9PT02DztXLlyqFv374A/q+uioqEhAR5ZJohQ4YYfFxer149uU/N3r17jeY1YsSIHE1jgP/rV5aamoqIiAiTyyaEkEdV7Nu3LypUqJAjTaVKleS6VSrb4MGDDfbHaNeundwkwZxzybNnz+QmUMaafJriwIEDyMjIgI2NjdFjcOTIkbC2tkZ6errcxPpFppwrmzdvbrAJUMuWLeXmFEp1MHToUIN1+NZbb8l9Ic05vnV9Gby8vIw2VenYsSMcHBzw9OlTuVmQObL3lzA2XUCDBg3w5ptvIj093egE1Z07dzb43S5btqz8e/Vi3fn6+iIzMxNvv/220aafDg4Ocv/dEydOyO/r+oclJSUhOTlZYQ//j27/0tPT9X7vX6Zly5ZYtWqV3GT/0aNH2L9/P3799Vd8/vnnaNmyJby9vfWa5egkJydj//79ALLOoZUrVzZpm6dOnZLLOGbMGINpPv30U/k7r/v9epGFhYXR37SoqCgEBATAysoKgwcPNloWXbO8M2fOIDMz06TymyI/z19K/d7M9fjxY8V/uqbthmSfN8nQud4YXVMvIYTcnFz3vy4/Y6ZNm4Y2bdrk+PficaP7zhT0tcKLdH0u83PAgtzIzTnKVPl1Hn377bcLdY6tPE1uW9hq165tdMQZXX+gBg0aGO1PVa5cOURERMjthF8VrVaLvXv3Yu/evQgNDcWTJ0+QlpaWI11e2ocbU7lyZbRs2RIBAQHYuXNnjgBl165dAP4vuNK5du2aXMYhQ4aYtK379+8b7JxqyLVr1wBkjaRjjNIyJe3bt8fWrVsxadIkXLx4ER4eHmjYsGG+toUtUaKEwU7w5nrZ/i9fvhzx8fGIjIzEG2+8keft5Yfr16/LF/9vvfWW0XRt2rTB/v37cePGDaSnpxu8yNX1K3tRxYoV5dfmXMxFRUXJ6Q0F49nLtmrVKsW6NVY2KysrlC1bFg8ePND7EX9VdN+dhg0bGu23UapUKTRo0AAXL16U07/IlHNlw4YNDS7XDRTwsjp42fF96dIlo+V70YMHD+T+j1OmTMG0adOMptUFDdHR0WjUqJFJ+QNZ02dcvnwZQFb/oP/9739G0+r2O3vn/uyUtqs7vl+su4sXLwLIChDatGljdH3d/t2/f19+z83NDWXKlMGjR4/Qu3dv9O3bF+7u7qhZs6bRz7latWqoWbMm7t69K6/z9ttvQ5Kkl/bRdHd3x759+3D+/HmcPHkSV65cQWhoKOLj45Geno5jx47h2LFjGDVqFL788kt5vWvXrsnz6rRv315xG9npjhPd/DOGWFpaonXr1ti9e7fR46patWp6/Yez09W/VqvFBx98YLQsukApOTkZ8fHxRvMzV36ev5o2bZovZQLMm9y2KEhMTDR4E/fF79u7776LPXv2YNOmTXjy5Am6dOmCpk2bmtTv6mVCQ0Px119/4cKFC4iOjkZycrLeAGlA1jmtMOXmHGWK/DyP5udxnBtmBU3Zny7Fx8cX+pwCSndNdCP4mJIm+2R8BS0lJQXDhw/Xi6LVarU8CzgAuWOobijS/Na9e3cEBATgwIED+OGHH+TgISQkRJ4z4sUOrQ8fPpRfm/oEyZzyx8XFAYDiMfWykRqN+eabbxAREYHAwECsXbsWa9euhaWlJerUqYN3330Xffr0yfOxXLp0abPumhmjVI7sgcOTJ0+KTND05MkT+bVS+XXLMjIy8OzZM4MBtbGL/uwjcpnzfdUdV6aWDTBet/l9LilVqhRUKpXendPcMOW7A/zf9yd7nWT3Ks6npnwGxsr3ouwXGEp3trMzd7jrZ8+eyQObmPoZGdtGbupOd95NTk426WlR9m2XLFkS8+bNw1dffYVbt25hxowZALKeJjVv3hzvv/8+unTponfzwtLSEvPnz8fo0aMRFRWF33//Hb///jtsbW3RpEkTvPfee+jRo4fRG04WFhZo2bIlWrZsKb93584d7N27F2vXrkVycjKWLl0KNzc3OUDK/ntizpw5+XXcKwU4uvrXarUF8rv3Mvl5/sqvQC6vdNeRz549g1arNfl3M/t3XPdUKfvTJaXv5/z58zF//nz57xdHfdP58MMPERQUhE2bNsk3tgHojTSpNNCNMZs2bcKsWbOg1WoB/N8AE7qn86mpqXj+/LnJT4QLSkFdL+fneTQ/Ati8MCtoyj7aWkhISKEHTcXR8uXLERgYiBIlSmD8+PHo1KkTKleurHfn79NPP8WFCxdy3IXIL506dcL06dORnJyMgwcP4qOPPgIA7Ny5EwBQv3591K5dW28d3ZcdAIKCguRJC4uDkiVLYsOGDTh//jyOHDki322/fv06rl+/jtWrV2PWrFno2rVrrrdRkENc0uvJysoKLi4uCAsLQ3BwcGEXp9jJfk7at29froZ8f5nsTa1WrlyZryNXmrP9YcOG4euvvzZ7/bfeeguHDh2Cv78/AgICcOnSJYSHh+PIkSM4cuQIVq5cidWrV+v9ltepUwf79+/H0aNHcfLkSVy6dAm3bt3C6dOncfr0aaxYsQL/+9//ckxPYEytWrXwxRdfoEWLFhg0aBCEEPj777/NeqpUkJTO3bpjrHz58jh16tSrKlKByI+bevlBd22Rnp6OW7dumXwchYSEAABq1KghX8Cr1Wq4uLggPDxcXp5XU6ZMwYABA+Dn54fz58/j8uXLiIiIQEREBDZv3oyBAwdiypQpJud3584dzJ49G1qtFp6enhgyZAjq1KmjNzrc33//je+//z5fyl8U5ed5tLCvtcz6FrVq1Ur+4h08eDDXG9XttKEmaTqJiYm5zj+vsn8oxsqY2/Lp7lyMHj0aXl5ecHZ2ztFUwpy+QLlhb28vt4HXBUqZmZlym29dv6Tssj8VMPbYNC90d8GUHk/n9dF18+bN8c0332DLli04f/48li5dCkmSkJqaiu+++67A690USvuY/Wlf9rstBXm8miJ7WZSalOr2zcrKKk99eMyR/e6qqcfWq7yTpWtyExISkuvvlW4fX9acV7e8MO84m/IZmFq+7Oek7M3S8lP2FgAFtQ0luj4sedm2nZ0dunfvjrlz5+LAgQM4fvw4vv76a9jY2Og9gcrO2toanTp1wk8//YTdu3fjzJkzmD59OkqXLo2YmBh8++23ZpfD3d1d7hsXFhYmv5+9n44534FXcdzrjrGnT58WylOAon7+yo3szQz9/f1NWicyMlK+sfRiE1/d38HBwfnWvK169eoYPnw4Vq5cicDAQPj4+MjXTBs2bMChQ4dMzsvPzw+ZmZmoVasW5s+fDzc3txzDaReFa4+CVNjn0fxkVtBUvnx5ed6ePXv26J34Xib7UxPdBZNuPgZDgoKCzClavsp+QWesjFeuXMlV3roTeN26dQ0uj4qKUuzorguw8voUKnvH1UePHuH06dN49OgRrKysDHYGb9iwodyM48iRI3natiG6R97GOv8BWXP45BcbGxt06NBBnkwwLS1NrxNm9rtyBfXEzxBT9r906dJ6zS/yerzmdV/r168v53HmzBmj6U6fPg0gawLdVzVHSNWqVeXmIKaU7cW6LWiffvopVCoVMjMz8ccff5i8XvanLLrvzrVr14wGxwkJCXp9nwqL0ndYd+yb2vylatWq8hOS3J6TXnY+VavVcn0VxHnvZXTt90+fPq14k9EcTk5OGDZsGAYNGgQAJj1BKVOmDPr27Ss/7QoODja5SWR2uj7I2S8aGzRokKvfFt1xEhsba/RaJDMzUz6ucnPc6+o/MzMTx48fN3v9vCrq56/caNSokdyR/88//9Rr3m3MsmXL5O9ov3799JbpzqEZGRlYtmxZvpfXwsICjRs3xqJFi+Ds7Azg/+rbFLprvjp16hh92qeUX35d8xWkon4ezU9mP68dN24c7OzskJqairFjx740sn/27BnGjh2r92Ouexz78OFDgxdzcXFx2Lp1q7lFyzcuLi7yCE+G7oRotVrFjmxKdH02dJOnvej33383af28Pjl46623ULFiRWRmZmL37t3yE6e3337b4J0qOzs7OZhauXLlS+8WmNNZHwC6dOkCIGv0GEOBQ2pqKlavXm1WnkBW+9vsF5gvyj6SV/YTWva+Na/yqaefnx/u3r2b4/0nT57Ax8cHAPD+++/rLcvr8Zp9X3MzKErJkiXRtm1bAMDq1asNtukPDQ2Vy5aXZpDmUqlUcn35+PgYHBXpwYMHct2+yrIBWU2ee/fuDSBrdCHdJJ1K/v33XyxdulT+u3PnzrCyskJaWhpWrlxpcJ3ly5dDo9FArVbnmLD6VVqzZo3Bi/+AgAC50/2Lx7cSXd39888/L23iaOicZMr5VDcZuW4gA3O3kRcff/wxrKys8PTpUyxatEgxrUajQVJSkt7fSnTnjOznvZetk71Zdvb1Tp48+dKLutDQUPl3L/voV7a2tvIgCytWrFC8mZpdmzZt5IBCd/PrRX/99Zf8hF5pIAdjXFxc5P5Z8+fPf+lvQX5//kX9/JVbEydOhIWFBZ4+fYrx48cr9jX8+++/5ZHXevbsmaM5n6urKz7++GMAwJYtW7Bp06Zcl0vp+Le0tJSDe2MDqRiiO8fcvHnT4Hfk2LFjOHv27EvXf9UDlpmjqJ9H85PZQVONGjXw66+/Qq1W49atW+jWrRtWrFih93QkMzMTwcHBWLhwITp27JjjQq5p06Zyh89Jkybh6tWrEEJAq9UiMDAQn332WaFG1dkvLJYvX459+/bJX6a7d+9i9OjR8oAJ5nr77bcBZN058ff3lzvVRUZG4quvvsL+/fsVmy7p+pXt3r07Tx1OLSws5BPsP//8Iz9u1vVvMmT8+PGoWLEinj59ij59+mDHjh14/vy5vPzJkyc4cOAARo8eja+++sqs8nTq1Ekefe6LL77AgQMH5Hawd+7cwbBhw0y6I/Wi2NhYdOrUCUuXLkVwcLBeJ8bQ0FD5zqmdnR1atGghLytZsqR8F3v79u2vbLAQGxsbDB06FKdPn5a/A0FBQRg0aBCePn0Ke3v7HMNK5/V4dXFxkX8M/v7771x998aNGwe1Wo2IiAgMGTJEHl1Jq9Xi2LFjGDZsGDIyMlCtWjX55PmqjBgxAiVLlkR8fDwGDRokX5wDWUH6oEGDkJCQgNKlS+fLsPHm+v777+VhvOfMmYNhw4bhxIkTehcS8fHx2L9/PwYOHIjRo0frdaZ1cnLCwIEDAWRddC5atEj+gU1ISMCCBQvkGw5eXl56A4q8ao8ePYK3t7d8YyAjIwN+fn7yaGr169c3K6gbNGgQJElCWloaBg4ciE2bNuk9AUlISMCxY8cwceJE9O/fP8f6ppxPP/roI7z11lsQQmD06NFYunSp3s3C5ORkBAQEYPr06XITnvxSrVo1jBw5EgCwatUqTJw4Ue+7nJGRgZCQECxZsgSdOnXS69exYsUKDB06FDt27NBrwqbRaLBv3z75mHj33XflZXv37kXfvn3x119/ITIyUn4/MzMTJ06ckG/qNWnSRO936quvvoKnpyf++OMPBAUF6V18Pnr0COvWrYOXlxe0Wi2srKxyTBUyfvx4lClTBvHx8ejXrx/27dsnH/9CCNy8eRM///wzduzYIa9TokQJjB07FkBWy5dp06bJzZxSUlKwYcMGzJkzB0DWTbncdOAHgKlTp8LOzg7h4eHo3bs3/v33X73A/8GDB9ixYwc+//xz/Pbbb7nahpKifv7KDXd3d0yYMAFA1g2THj16YP/+/XrfweDgYEyePBlTp04FkPVk0dgImdOmTZN/v2fMmIEhQ4bg8OHDehfxWq0WYWFhWLlyJY4ePWown08++QQzZ85EYGCgXnPMBw8eYMaMGfJ1rm6IcFPo+u/cunUL06dPlwOC5ORk/PXXX/jyyy8Vp/CRJAlA1md9584dk7f7KhW182hSUhKePHki/9Odj9LT0/Xez80ATLkacrxjx45Yv349Jk+ejIiICHmEHbVaDXt7eyQkJOiNEtK1a1e90XYsLCwwffp0jBw5EmFhYejVqxdsbW2h1WqRlpYGFxcXTJs2Tf5SFYavvvoKAQEBePjwIcaPHw+1Wg0bGxs8f/4c9vb2WL58OT777DOz8x03bhxOnz6Nx48fY+zYsbCysoKtra385Z4wYQJOnjxp9M5D3759cfHiRRw4cACHDx9G2bJlYWVlBScnJ2zZssWssnTv3h1r1qyRv4glS5ZUHCa0YsWKWLduHUaNGoXw8HBMmjQJFhYWKFmyJDQajd5JRmnoaUOsrKywcOFCfPbZZ4iJicEXX3wBa2tr2NjYIDExEWq1GgsXLsSoUaPMyhfICkgXLlyIhQsXwtLSEo6OjkhKSpKHuVWr1ZgzZ06OE1ffvn2xcOFCbNy4ET4+PihXrhwsLCzQqFEjvZF48tPkyZMxf/58DBo0CLa2tlCpVHK9WltbY968eXITgezycrza2tqiW7du+Oeff/Drr79iyZIlKFOmDFQqFTp37oxJkya9tNz169fHL7/8gokTJ+LChQv46KOP4ODggPT0dPkCo3Llyli+fHm+zRViqkqVKuGPP/7AqFGjcOvWLfTr109uJqSr25IlS+KPP/4olMFtrK2tsXbtWsydOxc+Pj44fvy43BTI0dERmZmZet+tSpUq5ehIO378eMTExGD//v34448/sGzZMjg6OiIxMVE+F3ft2lVvqOfCMHfuXIwbNw7vv/8+HB0dkZaWJv+gOTs7Y+HChXojJb6Mvb09Vq1ahS+++AKXL1/GjBkzMHPmTDg6OkKr1erd1NH1p8nOlPOppaUlFi9ejK+//hpHjhyRzyUODg6wsLBAYmKifKPBnLKbavTo0cjMzMSyZcuwc+dO7Ny5EyVKlECJEiWQmJio18k6+x1wIQROnDghz92kWyf7/GC1atXS65+kmx9QN0egtbU17Ozs9H7TK1asiFmzZumVUa1WIzw8HIsWLcKiRYtgYWEBR0dHpKSk6AVQ9vb2mD17do45pypVqoTVq1dj5MiRiImJwfjx4+VzdUpKinwOmTx5st56AwYMQGRkJNatWwcfHx9s3boVJUuWRFJSknyjq1WrVgb7bZlKkiSsWrUKX375pXwTSle21NRUvZsbBdE0rqifv3Jr2LBhqFChAmbNmoW7d+9i3LhxUKlUKFmyJJKTk+XfZyDr3DVjxgyjozba2NhgzZo1+PXXX7FlyxacPHlSnjvQzs5O/i3Mnmfz5s0xceJEvXwSExOxceNGbNy4UR7hLiMjQ+/86+XlJd/8NoW7uzs++OAD7N27F1u2bMGWLVvkYzQzMxP169dHz549jR6jnTp1wrx58+Qh0MuUKSN//vPmzZPnTypMRe08OmPGDIOjI166dEmvT12VKlVw+PBhs/LOdcmaNWuG/fv3w8/PD0eOHEFQUBDi4uKQlJSEUqVKoWbNmmjRogW6deuGmjVr5lj/7bffxp9//olly5bh4sWLSElJgbOzMzp16oThw4fnahLC/FSpUiX8/fffWLJkCY4fP44nT57Azs4OHTt2xKhRowz+AJuiSpUq2LZtGxYvXizna2Njg+bNm2PAgAFo27at/GU3RDdIg4+PD27evIlHjx4pNj9T4urqirp168p3Jz09PV86Kl6tWrWwe/du+Pr6wt/fHyEhIXj27BnUajWqV6+OunXrok2bNujcubPZ5XnjjTewY8cOLF++HAcPHsSDBw9gY2ODt956C97e3rm6U+jk5IRly5YhMDAQly9fRmxsLOLi4mBlZYXq1aujVatWGDhwIFxcXHKsO2LECDg4OGDnzp24e/cuYmNjIYQwa1hcc1WtWhW+vr5YtmwZjh49iocPH6JcuXJwd3fHqFGjjI4Qltfj9YcffkDlypVx4MABREZGys0vzem30KVLF9SvXx+rV6/GmTNnEBsbCysrK9StWxcdO3aEl5eX0SHFC1rLli2xb98+rF27FseOHUN0dDRUKhVq1aqFd955B4MHDzY4ceSrYm1tjWnTpmHQoEHYtm0bAgICEBkZqffdatCgATp27IiOHTvm6EhsbW2NBQsW4P3338c///yDa9euyXefGzRogN69e8uTCxemjh07YsuWLVi5ciUuXLiA1NRUVK1aFZ06dcKIESNyNUCIk5MTNm/eDD8/P+zZswfXrl3D06dPYWFhgSpVqkCSJLi7uxts9mfq+dTBwQHLly/HsWPHsGPHDly+fBmPHz+GEAJOTk6oXbs2WrVqZVbTQlOpVCp8+eWXeP/997FlyxYEBgYiJiYGz58/R8mSJeHi4oKmTZvivffekycIBrKaLjo5OSEwMBA3b97Ew4cP8fz5c5QqVQq1a9dGp06d0LdvX71zvoeHB37++WcEBgYiODgYjx49wrNnz2Bvb48aNWqgffv2GDBggDwJqI6fnx9Onjwpr3fv3j0kJCRApVKhfPnyqFmzJtq0aYNevXoZnbuvfv362LdvHzZv3oxDhw7h7t27SEpKQvny5fHGG2+gQ4cOBvvbTp48Ge3bt8fmzZtx8eJFxMfHw97eHnXq1EG3bt3QvXv3PI+41axZM/j5+WHr1q04fPgwbt26hcTERNjY2KBWrVqoX78+2rVrV2BzExX181dude/eHe3bt8c///yDY8eO4e7du4iPj4etrS1q1KiBli1bonv37ib1R7O2tsaUKVMwaNAgbN++HWfPnkVYWBji4+ORmZmJ0qVLo2bNmmjcuDG6dOlicLLoefPm4eTJkzh//jyioqLw+PFjZGRkoEqVKmjUqBF69+6tOF+WMb/99hsaNWqEbdu2ISwsDJmZmZAkCV26dIGXl5fRiZeBrD7LmzZtwh9//IHz58/jyZMn8u9yfvVzzKvicB7NLypRlHuXERWyR48e4dSpU7h27RquXr2KkJAQpKWloWXLlti4cWOe8g4ICMDatWtx5coVJCcnw9nZGZ6envD29jY6aTNRcRMYGCg3H8ztbPJERESFLf/bEhC9Rvbu3Su3i89PGzduxKxZsyCEQKVKlVC5cmXcvn1b7uu2efNmxXbORERERPTqMGgiUuDg4IC33noLDRs2RMOGDREcHKw3clluXLt2DbNnzwYA/PTTT+jduzdUKhUePHiAkSNH4vr165g6dSoWL16cH7tARERERHnEoIlIQa9evdCrVy/57/yYPG/p0qXQarXo3r273khyTk5OmDdvHt5//334+/sjNDTUYLtrIiIiInq1zB5ynIhyLykpSR7NSjfHTHYuLi7yDOd+fn6vtGxEREREZBiDJqJXKCQkBBqNBtbW1nBzczOYplmzZgBgcOJnouKmVatWuHHjBgeBICKiYo1BE9ErFBYWBiBrThrdhLIvqlatml5aIiIiIipcDJqIXiHdDNRK89HoluVmtmod3tknIiIiyj8cCILoFdJNRmfsKRMAeeLSvExcp9FooNFocOHChVznQVQYNBlazN6aNbnyd72dYW3Fe3tUvOiaWBPR64VBE9ErZGNjAwBIT083mkaj0eilzS21Wo3atWvnat2UlBSEh4fDxcUFtra2eSrHfxHrL/dSNZkAsoKm6tWqo3Qph8ItUDHDYy9vWH9EZAyDJqJXyJSmd6Y04TOFSqWCnZ1dnvKwtbXNcx7/Zaw/81lYZsivS7D+co3HXt6w/ojoRWz3QPQKubi4AADu379v9GnTvXv39NISERERUeFi0ET0CtWtWxdqtRoajQZBQUEG0+j6ITVu3PgVloyIiIiIjGHQRPQKOTg4oG3btgCArVu35lgeHh6OgIAAAICnp+crLRsRERERGcagiagA9OvXDx4eHli3bl2OZaNGjYJKpcLOnTvh4+MDIQQA4OHDh5gwYQK0Wi06duyIOnXqvOJSExEREZEhHAiCSEFMTAy6d+8u/60b2e7ixYto1aqV/P7QoUMxbNgw+e8HDx4gOjoaiYmJOfJ0c3PDt99+i7lz52LatGlYtmwZypQpg9u3b0Oj0aBGjRqYMWNGwe0UEREREZmFQRORgszMTMTHx+d4PyMjQ+/91NRUs/L18vKCq6sr1qxZg6CgIMTFxcHZ2Rmenp7w9vaGvb19HktORERERPmFQRORgqpVq+LGjRtmr3f48OGXpnF3d4e7u3tuikVERERErxD7NBERERERESlg0ERERERERKSAQRMREREREZECBk1EREREREQKGDQREREREREpYNBERERERESkgEETERERERGRAgZNREREREREChg0ERERERERKWDQREREREREpIBBExERERERkQIGTURERERERAoYNBERERERESlg0ERERERERKSAQRMREREREZECBk1EREREREQKGDQREREREREpYNBERERERESkgEETERERERGRAgZNREREREREChg0ERERERERKWDQREREREREpIBBExERERERkQIGTURERERERAoYNBERERERESlg0ERERERERKSAQRMREREREZECBk1EREREREQKGDQREREREREpYNBERERERESkgEETERERERGRAgZNREREREREChg0ERERERERKWDQREREREREpIBBExERERERkQIGTURERERERAoYNBERERERESlg0ERERERERKSAQRMREREREZECBk1EREREREQKGDQREREREREpYNBERERERESkgEETERERERGRAgZNREREREREChg0ERERERERKWDQREREREREpIBBExERERERkQIGTURERERERAoYNBERERERESlg0ERERERERKSAQRMREREREZECBk1EREREREQKGDQREREREREpYNBERERERESkgEETERERERGRAgZNREREREREChg0ERERERERKbAq7AIQFQcBAQFYu3Ytrly5guTkZDg7O8PT0xPe3t6ws7MzO7/79+9jzZo1OHnyJGJiYqDValGhQgW0atUKXl5ecHV1LYC9ICIiIqLc4JMmopfYuHEjvLy8cPToUdjY2KBWrVqIjo7GsmXL0KtXL8THx5uV36VLl9C1a1ds3LgRUVFRqFy5MlxcXBAXF4ft27ejZ8+e2L9/f8HsDBERERGZjUETkYJr165h9uzZAICffvoJR48eha+vL/7991/Ur18fd+7cwdSpU03OTwiBSZMmISkpCU2aNIG/vz/8/Pywe/dunDx5El27dkVGRga+//57JCYmFtRuEREREZEZGDQRKVi6dCm0Wi26deuGPn36QKVSAQCcnJwwb948WFhYwN/fH6GhoSbld/v2bURERAAAfvzxRzg7O8vLHB0dMWfOHNjZ2eH58+c4f/58/u8QEREREZmNQROREUlJSThx4gQAoHfv3jmWu7i4oHXr1gAAPz8/k/JMTU2VX7/xxhs5lltbW8PJyQkAkJGRYXaZiYiIiCj/MWgiMiIkJAQajQbW1tZwc3MzmKZZs2YAgCtXrpiUZ40aNVCiRAkAWX2bXvTw4UNERUXB0tIS9erVy2XJiYiIiCg/cfQ8IiPCwsIAAM7OzlCr1QbTVKtWTS/tyzg4OGDUqFGYN28eJk+ejClTpqBVq1ZQq9W4du0a5s6di/T0dIwcORJVqlTJU/mFEEhOTs7VuikpKXr/k3lYf7mXqsn8v9cpKUi2tizE0hQ/PPbyJj/qLzcjqhJR0cegiciIZ8+eAQBKlSplNI1umS6tKYYPH44KFSpg9erV+PLLL/WWubi4YP78+ejSpUsuSqwvPT0dISEhecojPDw8z+X4L2P9mU+ToZVfR9yLQIwVG0TkBo+9vMlL/elaIBDR64VBE5ERaWlpAGD0KROQ1Qcpe1pTpKenIzIyEs+ePYOVlRWqVq0KtVqNiIgIRERE4J9//kHTpk1RqVKlPJVfrVajdu3auVo3JSUF4eHhcHFxga2tbZ7K8V/E+su9rCdN9wEA1atVR+lSDoVboGKGx17esP6IyBgGTURG2NjYAMgKcozRaDR6aU0xZswYHD16FO3atcPMmTPlgR+ePXuGmTNnYteuXejTpw/27t0LB4fcXzCqVKo8NxOxtbVlU5M8YP2Zz8Ly/wZAKcH6yzUee3nD+iOiF7HdA5ERpjS9M6UJX3aHDx/G0aNHUaZMGcybN08OmHR5zJ49GzVr1kRsbCw2b96ch9ITERERUX5h0ERkhIuLCwDg/v37Rp823bt3Ty/ty+jmXnJzc4Ojo2OO5Wq1Gq1atQKQNbEuERERERU+Bk1ERtStWxdqtRoajQZBQUEG01y4cAEA0LhxY5PyTEpKMnn75vSTIiIiIqKCw6CJyAgHBwe0bdsWALB169Ycy8PDwxEQEAAA8PT0NCnPGjVqAACCgoKQmJiYY3l6ejoCAwP10hIRERFR4WLQRKRg1KhRUKlU2LlzJ3x8fCCEAJA1Ce2ECROg1WrRsWNH1KlTR289Dw8PeHh4wM/PT+99T09PWFtb4+nTp5gwYQIePHggL3v27Bm+++473L17FyqVCh999FHB7yARERERvRRHzyNS4Obmhm+//RZz587FtGnTsGzZMpQpUwa3b9+GRqNBjRo1MGPGjBzrRUdHA0COyWUrVaqEGTNmYMqUKTh+/Dg8PDz0hhzXaDRQqVT4+uuvUa9evVeyj0RERESkjEET0Ut4eXnB1dUVa9asQVBQEOLi4uDs7AxPT094e3vD3t7erPy6d++OOnXqYP369Th//jzu378PIQQqVKiAJk2aoH///pwckYiIiKgIYdBEZAJ3d3e4u7ubnP7GjRuKy+vUqYM5c+bktVhERERE9AqwTxMREREREZECBk1EREREREQKGDQREREREREpYNBERERERESkgEETERERERGRAgZNREREREREChg0ERERERERKWDQREREREREpIBBExERERERkQIGTURERERERAoYNBERERERESlg0ERERERERKSAQRMREREREZECBk1EREREREQKGDQREREREREpYNBERERERESkgEETERERERGRAgZNREREREREChg0ERERERERKWDQREREREREpIBBExERERERkQIGTURERERERAoYNBERERERESlg0ERERERERKSAQRMREREREZECBk1EREREREQKGDQREREREREpYNBERERERESkgEETERERERGRAgZNREREREREChg0ERERERERKWDQREREREREpIBBExERERERkQIGTURERERERAoYNBERERERESlg0ERERERERKSAQRMREREREZECBk1EREREREQKGDQREREREREpYNBERERERESkgEETERERERGRAgZNREREREREChg0ERERERERKbAq7AIQ5ZYQAr6+vti7dy9u3LiB+Ph4ZGZmGk2vUqkQHBz8CktIRERERK8DBk1ULGk0Gnh7eyMwMBBCiMIuDhERERG9xhg0UbG0YsUKBAQEAAA6deoEDw8PODk5wdLSspBLRkRERESvGwZNVCzt27cPKpUKo0ePxpgxYwq7OERERET0GuNAEFQsRUVFQaVSYdCgQYVdFCIiIiJ6zfFJExVL9vb20Gq1sLe3L+yiEBEREdFrjk+aqFhq2LAhEhMTER8fX9hFISIiIqLXHIMmKpYGDRoEIQTWrVtX2EUhIiIiotccgyYqltzd3fH1119j5cqV+OOPP5CSklLYRSIiIiKi1xT7NFGxNHDgQABZfZuWLFmCFStWoHbt2op9nFQqFdavX/+qikhERERErwkGTVQsnT17Vu/vtLQ0XL9+XXEdlUpVkEUiIiIiotcUgyYqljg3ExERERG9KgyaqFhi0ERERERErwqDJiITBAQEYO3atbhy5QqSk5Ph7OwMT09PeHt7w87OLld5CiGwd+9e+Pr6IiQkBAkJCShdujRq1aqFdu3aYciQIfm8F0RERESUGxw9j+glNm7cCC8vLxw9ehQ2NjaoVasWoqOjsWzZMvTq1StXc0UlJSVh8ODB+Oqrr3Dy5EnY2dmhTp06UKvVOHfuHFasWJH/O0JEREREucInTVTsBQcHY/fu3bh27RqePHkCAChbtiwaNmyIrl27ol69ernO+9q1a5g9ezYA4KeffkLv3r2hUqnw4MEDjBw5EtevX8fUqVOxePFik/MUQmDs2LE4ffo03n77bUybNg3VqlWTlyckJODcuXO5LjMRERER5S8GTVRsJScnY+rUqdi3bx+ArGBE586dOzh//jzWrl2LLl26YMaMGblqRrd06VJotVp0794dffr0kd93cnLCvHnz8P7778Pf3x+hoaGoU6eOSXlu374dp06dQqNGjbB8+XJYWel/DUuWLIkOHTqYXVYiIiIiKhgMmqhY0mq1GDVqFAIDAyGEQIUKFdC6dWtUqlQJABAbG4vAwEA8fPgQ+/btw5MnT7BmzRqzhh1PSkrCiRMnAAC9e/fOsdzFxQWtW7fG6dOn4efnZ3LQtG7dOgDAyJEjcwRMRERERFT08IqNiqUdO3YgICAAVlZW+Pbbb/Hpp5/CwkK/i55Wq8WWLVswZ84cBAQEYOfOnejevbvJ2wgJCYFGo4G1tTXc3NwMpmnWrBlOnz6NK1eumJTnvXv3cPPmTVhYWKBVq1a4cuUKtm3bhnv37sHOzg6NGzdGr169ULZsWZPLSUREREQFi0ETFUu7du2CSqXCxIkTMWDAAINpLCws0L9/f2RmZmL27NnYsWOHWUFTWFgYAMDZ2RlqtdpgGl1fJF3al7l27RoAoHTp0vjzzz/x+++/6zUrPHToEFauXInFixejdevWJpeViIiIiAoOgyYqlkJDQ2FpaWmw2dyLevfujV9++QUhISFmbePZs2cAgFKlShlNo1umS/syDx8+BJA12MNvv/2Gd999F9988w2qVauGsLAwzJ49GwEBARg7dix2794tNzfMDSEEkpOTc7VuSkqK3v9kHtZf7qVqMv/vdUoKkq0tC7E0xQ+PvbzJj/rL7TQURFS0MWiiYikpKQn29vYoUaLES9OWKFEC9vb2ZgcQaWlpAGD0KRMAWFtb66V9GV0ZMjIyUK1aNSxZskTO39XVFcuXL8d7772HR48eYf369Zg0aZJZZc4uPT3d7EDxReHh4Xla/7+O9Wc+TYZWfh1xLwIxVpwZIzd47OVNXuqvWbNm+VcQIioyGDRRsVSmTBk8fvwYcXFxKFeunGLauLg4JCQkoHz58mZtw8bGBkBW8GGMRqPRS2tqngDQv3//HAGZra0t+vbti8WLF+PEiRN5CprUajVq166dq3VTUlIQHh4OFxcX2Nra5roM/1Wsv9zLetJ0HwBQvVp1lC7lULgFKmZ47OUN64+IjGHQRMVS48aNcfDgQSxevBg//vijYtpFixZBCIGmTZuatQ1Tmt6Z0oQvu5IlS8qva9WqZTCN7v2oqCiT8jRGpVLluZmIra0tm5rkAevPfBaWGfLrEqy/XOOxlzesPyJ6Eds9ULHUv39/CCHg4+ODb775BhERETnSRERE4Ouvv4aPjw9UKhX69+9v1jZcXFwAAPfv3zf6tOnevXt6aV+mZs2a8mtjzf50T6O0Wq3B5URERET0avFJExVLrVq1wueff47169djz5492LNnDypXroyKFSsCAB48eIDY2Fg5vZeXF1q2bGnWNurWrQu1Wg2NRoOgoCCD7dQvXLgAIOvJlynq1auHEiVKIDU1FZGRkQZHyNMFYnkZBIKIiIiI8g+fNFGxNXnyZHz//fcoWbIkhBC4f/8+Ll++jMuXLyMmJgZCCJQqVQpTp07NVd8gBwcHtG3bFgCwdevWHMvDw8MREBAAAPD09DQpT1tbW7Rv3x5A1lxTLxJCwNfXFwA45DgRERFREcEnTVSsDRgwAJ988glOnTqFa9euIS4uDgBQrlw5NGjQAG3atDF5kAZDRo0ahaNHj2Lnzp1o2rQpevfuDZVKhYcPH2LChAnQarXo2LEj6tSpo7eeh4cHAGDixIk5AqoxY8bg4MGDOH/+PP744w+MGDEClpaWyMjIwLx58xAaGgobGxt4eXnlutxERERElH8YNFGxZ2NjAw8PDzlQyU9ubm749ttvMXfuXEybNg3Lli1DmTJlcPv2bWg0GtSoUQMzZszIsV50dDQAGBzmvHbt2pg5cyamTJmCRYsWYdOmTahatSru3buH+Ph4qNVqzJ49W6//ExEREREVHgZNRC/h5eUFV1dXrFmzBkFBQYiLi4OzszM8PT3h7e0Ne3t7s/Ps0aMHateujVWrVuH8+fMICQlB6dKl0bVrVwwbNizHkysiIiIiKjwMmohM4O7uDnd3d5PT37hx46VpGjZsiIULF+alWERERET0CjBooiJv8uTJAICKFSti/Pjxeu+ZQ6VSYfbs2flaNiIiIiJ6/TFooiLP19cXKpUKNWrUkIMm3XtCiJeur0vHoImIiIiIcoNBExV53bt3h0qlQoUKFXK8R0RERERU0Bg0UZE3d+5ck94jIiIiIioInNyWiIiIiIhIAYMmKpZ27NiB/fv3m5ze398fO3bsKLgCEREREdFri83zqFj69ttvUaFCBbz//vsmpZ87dy5iY2PRvXv3gi0YEREREb12+KSJii1TRs7LS3oiIiIiIoBBE/1HJCUlQa1WF3YxiIiIiKgYYtBEr71Lly7h2bNncHJyKuyiEBEREVExxD5NVCz4+vrC19dX771nz55h4MCBRtcRQiAxMRG3b9+GSqWCu7t7QReTiIiIiF5DDJqoWIiOjsbZs2f13ktPT8/xnjE1atTAmDFjCqJoRERERPSaY9BExULLli31gp4lS5bAzs4OgwcPNrqOSqWCg4MDJElCy5YtYWlp+SqKSkRERESvGQZNVCy0bNkSLVu2lP/WBU18ekREREREBY1BExVLhw4dQmxsLNLS0mBjY1PYxSEiIiKi1xiDJiqWOnToAAsLCxw5coSj4hERERFRgWLQRMWSnZ0d1Go1AyYiIiIiKnCcp4mKpSpVqiAlJQWZmZmFXRQiIiIies0xaKJiqWPHjkhPT8exY8cKuyhERERE9Jpj0ETF0rBhw1CtWjX88MMPCA0NLeziEBEREdFrjH2aqFjy9/dH3759sXjxYvTq1Qtt27ZF06ZNUa5cOcX5mLp37/7qCklERERErwUGTVQsffvtt1CpVAAAIQSOHTv20qZ6KpWKQRMRERERmY1BExVLzs7OhV0EIiIiIvqPYNBExdLhw4cLuwhERERE9B/BgSCIiIiIiIgUMGgiIiIiIiJSwOZ59Fq4desWrl27hri4OABAuXLl0LBhQ9SuXbuQS0ZERERExR2DJirWTpw4gV9//RW3bt0yuFySJHzzzTdo27btKy4ZEREREb0u2DyPiq1NmzZh+PDhuHXrFoQQsLCwQLly5eS5moQQuHHjBoYNG4Y///yzsItLRERERMUUnzRRsRQaGorZs2dDq9WiUaNGGD16NFq3bg1ra2sAgEajQUBAAJYuXYrLly9j9uzZaNasGerUqVPIJSciIiKi4oZPmqhYWrt2LbRaLdq3b4/NmzejXbt2csAEANbW1mjXrh3+/PNPtG/fHpmZmVi/fn0hlpiIiIiIiisGTVQsnTt3DiqVClOmTIGlpaXRdJaWlvjuu+8AAIGBga+qeERERET0GmHQRMXS48eP4ejoiKpVq7407RtvvIGSJUvi8ePHr6BkRERERPS6YdBExVKJEiWQkpKCjIyMl6bNyMhASkoKSpQo8QpKRkRERESvGwZNVCzVrFkTGRkZOHDgwEvT+vn5IT09HTVr1nwFJSMiIiKi1w2DJiqWPD09IYTA9OnTcebMGaPpTp8+jenTp0OlUuH9999/hSUkIiIiotcFhxynYunTTz/Ftm3bcOvWLQwePBiNGzfGW2+9BScnJwBAbGwszpw5g8uXL0MIgTfffBP9+vUr5FITERERUXHEoImKJWtra6xatQpjx45FUFAQLl26hMuXL+ulEUIAABo1aoRFixbpDUlORERERGQqBk1UbDk5OeGvv/6Cn58f9u/fj2vXriEuLg4AUK5cOTRo0ABdunRB586dYWHBlqhERERElDsMmqhYs7CwQJcuXdClS5fCLgoRERERvaZ4+52IiIiIiEgBnzTRayM6OlqveV6VKlUKuURERERE9Dpg0ETF2oMHD7BixQrs27cP8fHxestKlSqFDz74AMOGDUOlSpUKp4BEREREVOyxeR4VWydPnkTXrl2xefNmPH36FEIIvX/x8fHYvHkzunbtiuPHjxd2cYmIiIiomOKTJiqW7t69i9GjRyMtLQ2lSpVC37590bp1a3mepgcPHiAwMBA+Pj54+vQpxo4dC19fX9SsWbOQS05ERERExQ2DJiqWli5dirS0NLi6umLt2rUoW7as3vKaNWvC3d0dAwcOxKBBg3Dz5k0sW7YMv/76ayGVmIiIiIiKKzbPo2IpICAAKpUKM2fOzBEwZVe2bFnMmDEDQgicOXPmFZaQiIiIiF4XDJqoWEpISICdnR0aNmz40rRubm6ws7NDQkLCKygZEREREb1uGDRRsVShQgVotVqT0wshUKFChQIsERERERG9rhg0UbH0zjvvIDU11aQmd2fOnEFKSgrat2//CkpGRERERK8bBk1ULI0aNQrlypXDlClTEBYWZjRdeHg4vv/+e1SoUAEjR458hSUkIiIiotcFR8+jYiksLAwTJkzAnDlz0K1bN3h6ehocctzPzw82NjaYPHky7t69i7t37+bIq0WLFq+6+ERERERUjDBoomLps88+g0qlkv/evXs3du/ebTCtRqPBd999Z3CZSqVCcHBwgZSRiIiIiF4PDJqo2BJCFIk8iIiIiOj1xqCJiqXQ0NDCLgIRERER/UdwIAgiIiIiIiIFDJqITBAQEIDhw4ejdevWcHNzg6enJxYsWIDk5OR8yf/PP/+Eq6srXF1d8dlnn+VLnkRERESUP9g8j14Lz58/R3BwMOLi4gAA5cqVQ7169eDg4JDnvDdu3IhZs2ZBCIFKlSqhcuXKuH37NpYtWwZ/f39s3rwZpUuXznX+Dx48wLx58/JcTiIiIiIqGAyaqFi7ceMG5s+fjxMnTkCr1eots7CwwDvvvIMvv/wSrq6uucr/2rVrmD17NgDgp59+Qu/evaFSqfDgwQOMHDkS169fx9SpU7F48eJc78OPP/4oT7575MiRXOdDRERERAWDzfOo2PL390fv3r1x7NgxZGZmQgih9y8zMxNHjhxB7969cfDgwVxtY+nSpdBqtejWrRv69OkjD3Pu5OSEefPmwcLCAv7+/rkemGLfvn04fPgw+vfvj/r16+cqDyIiIiIqWAyaqFiKjIzE119/jbS0NDg7O+OHH36Av78/goKCEBQUBH9/f/zwww+oUqUK0tLS8PXXXyMyMtKsbSQlJeHEiRMAgN69e+dY7uLigtatWwMA/Pz8zN6HZ8+eYdasWahUqRLGjRtn9vpERERE9GowaKJiafXq1dBoNGjcuDF27dqFfv36oVq1arC2toa1tTWqVauGfv36YdeuXWjcuDE0Gg3Wrl1r1jZCQkKg0WhgbW0NNzc3g2maNWsGALhy5YrZ+zB37lw8fvwYU6dOhb29vdnrExEREdGrwaCJiqUzZ85ApVJh+vTpigGHnZ0dpk+fDiEETp06ZdY2wsLCAADOzs5Qq9UG01SrVk0vranOnDmD7du3w8PDAx07djRrXSIiIiJ6tTgQBBVLsbGxsLe3N2mAB1dXVzg4OCA2NtasbTx79gwAUKpUKaNpdMt0aU2RmpqKadOmwc7ODtOmTTOrTOYQQuR6SPSUlBS9/8k8rL/cS9Vk/t/rlBQkW1sWYmmKHx57eZMf9WdnZ5dfxSGiIoRBExVLVlZWyMjIMCmtEALp6emwsjLvcE9LSwMAo0+ZAMDa2lovrSkWLVqEe/fuYfLkyahcubJZZTJHeno6QkJC8pRHeHh4/hTmP4r1Zz5Nxv+NghlxLwIxVmwQkRs89vImL/Wna7ZNRK8XBk1ULFWvXh0hISE4ceIE3n77bcW0J06cQFpaGmrVqmXWNmxsbABkBR/GaDQavbQvExwcjPXr16NevXoFPomtWq1G7dq1c7VuSkoKwsPD4eLiAltb23wu2euP9Zd7WU+a7gMAqlerjtKl8j7X2n8Jj728Yf0RkTEMmqhY8vDwQHBwMKZOnYrVq1cbDYhu376NadOmQaVSoUOHDmZtw5Smd6Y04ctuypQp0Gq1+Omnn2BpWbDNjlQqVZ6bidja2rKpSR6w/sxnYfl/T5BLsP5yjcde3rD+iOhFDJqoWPLy8sLff/+N2NhYdO/eHZ6ennB3d4eTkxOArD5PZ86cwYEDB5Ceno5KlSrh888/N2sbLi4uAID79+8jPT3dYDO9e/fu6aV9meDgYFhaWmLEiBE5lun6H126dAlt2rQBAPzzzz8F2oSPiIiIiF6OQRMVSw4ODli1ahVGjBiB6Oho7NmzB3v27MmRTgiBqlWrYtmyZXBwMK+ZT926daFWq6HRaBAUFGSwnfqFCxcAAI0bNzY538zMTDx+/Njo8vT0dHl5Zmam0XRERERE9GowaKJi680338SuXbvw559/ws/PDzdu3JCDDEtLS7i6uqJLly7o169fruZBcnBwQNu2bXHkyBFs3bo1R9AUHh6OgIAAAICnp6dJed64ccPossWLF2PJkiVo2bIlNm7caHZ5iYiIiKhgMGiiYs3e3h7e3t7w9vZGenq6Xh8jpVHvTDVq1CgcPXoUO3fuRNOmTdG7d2+oVCo8fPgQEyZMgFarRceOHVGnTh299Tw8PAAAEydONDmgIiIiIqKiiWO5UrGkmxQ2IiJCfk+tVqN8+fIoX758vgRMAODm5oZvv/0WADBt2jS0b98ePXr0QIcOHXD9+nXUqFEDM2bMyLFedHQ0oqOjcz1PEhEREREVHXzSRMXSo0ePoFarUb169QLflpeXF1xdXbFmzRoEBQUhLi4Ozs7O8PT0hLe3d66a/hERERFR8cGgiYqlihUr4smTJ69se+7u7nB3dzc5vVLfJWPGjh2LsWPHmr0eERERERUsNs+jYumtt95CamoqgoODC7soRERERPSaY9BExZK3tzdsbW3x008/ISUlpbCLQ0RERESvMTbPo2LJ0tISP/30E6ZNm4auXbvis88+Q5MmTVC2bFlYWloaXc/Z2fkVlpKIiIiIXgcMmqhY6tChg/w6JSUFP//880vXUalUbM5HRERERGZj0ETFkhDilaxDRERERMSgiYqlQ4cOFXYRiIiIiOg/gkETFTtarRYpKSl4/vw5SpUqhRo1ahR2kYiIiIjoNcagiYqN9PR0LFiwAD4+PkhKSpLfL1WqFD7//HOMGDECKpWqEEtIRERERK8jBk1UbIwePRonTpzI0TcpPj4eixYtQkREBObOnVtIpSMiIiKi1xWDJioW9u/fj+PHjwMAqlevDk9PTzg5OSE6Ohq7d+/Gw4cPsXPnTvTs2RMtW7Ys5NISERER0euEQRMVC7t27QIAtGnTBsuWLYO1tbW8bOTIkRg4cCBCQkKwe/duBk1ERERElK8sCrsARKYIDg6GSqXCd999pxcwAYCDgwO++eYbCCE4DxMRERER5TsGTVQsPH36FDY2NqhVq5bB5Q0aNJDTERERERHlJwZNVCxoNBo4ODgYXe7o6CinIyIiIiLKTwyaiIiIiIiIFDBoIiIiIiIiUsDR86jYiIuLQ926dY0uV6lUimlUKhUHiiAiIiIiszFoomLjxUltiYiIiIheBQZNVCyMGTOmsItARERERP9RDJqoWGDQRERERESFhQNBEBERERERKWDQREREREREpIBBExERERERkQIGTURERERERAoYNBERERERESlg0ERERERERKSAQRMREREREZECBk1EREREREQKGDQREREREREpYNBERERERESkgEETERERERGRAgZNREREREREChg0ERERERERKWDQREREREREpIBBExERERERkQIGTURERERERAoYNBERERERESlg0ERERERERKSAQRMREREREZECBk1EREREREQKGDQREREREREpYNBERERERESkgEETERERERGRAgZNREREREREChg0ERERERERKWDQREREREREpIBBExERERERkQIGTURERERERAoYNBERERERESlg0ERERERERKSAQRMREREREZECBk1EREREREQKGDQREREREREpYNBERERERESkgEETERERERGRAgZNRERERERECqwKuwBExUFAQADWrl2LK1euIDk5Gc7OzvD09IS3tzfs7OxMziczMxMBAQE4evQoLl26hPDwcKSmpqJ06dJo2LAh+vTpg3fffbfgdoSIiIiIzMYnTUQvsXHjRnh5eeHo0aOwsbFBrVq1EB0djWXLlqFXr16Ij483Oa/t27dj8ODB2LBhA65fv45y5cpBkiSkpKTg8OHDGD58OKZNmwYhRMHtEBERERGZhUETkYJr165h9uzZAICffvoJR48eha+vL/7991/Ur18fd+7cwdSpU83K09XVFTNnzsTZs2dx4MABbN++HYGBgZg4cSJUKhV8fHywZcuWgtgdIiIiIsoFBk1ECpYuXQqtVotu3bqhT58+UKlUAAAnJyfMmzcPFhYW8Pf3R2hoqEn5vffee9i5cyc++eQTODo6yu9bWVlhyJAh+OSTTwAAPj4++b8zRERERJQrDJqIjEhKSsKJEycAAL17986x3MXFBa1btwYA+Pn5mZRn6dKl5cDLkHbt2gEAwsLCzC0uERERERUQBk1ERoSEhECj0cDa2hpubm4G0zRr1gwAcOXKlXzZZmpqKgDA1tY2X/IjIiIiorxj0ERkhO5pj7OzM9RqtcE01apV00ubV3v37gXwf8EYERERERU+DjlOZMSzZ88AAKVKlTKaRrdMlzYv/v33Xxw5cgQqlQpDhw7Nc35CCCQnJ+dq3ZSUFL3/yTysv9xL1WT+3+uUFCRbWxZiaYofHnt5kx/1Z840FERUfDBoIjIiLS0NAIw+ZQIAa2trvbS5defOHXz77bcAgM8//xxNmzbNU34AkJ6ejpCQkDzlER4enudy/Jex/synydDKryPuRSDGig0icoPHXt7kpf7YUoDo9cSgicgIGxsbAFnBhzEajUYvbW7ExMRg6NChSExMxDvvvIOvv/4613llp1arUbt27Vytm5KSgvDwcLi4uLB/VS6w/nIv60nTfQBA9WrVUbqUQ+EWqJjhsZc3rD8iMoZBE5ERpjS9M6UJn5JHjx7By8sL9+/fR8uWLbF48WLFJ1vmUKlUeW4mYmtry6YmecD6M5+FZYb8ugTrL9d47OUN64+IXsR2D0RGuLi4AADu379v9GnTvXv39NKaIy4uDp9//jnCw8PRpEkTLF++PE9PrIiIiIioYDBoIjKibt26UKvV0Gg0CAoKMpjmwoULAIDGjRublXd8fDwGDRqEO3fuoH79+li5ciXs7e3zWmQiIiIiKgAMmoiMcHBwQNu2bQEAW7duzbE8PDwcAQEBAABPT0+T833+/DkGDx6MGzduQJIkrF69Go6OjvlTaCIiIiLKdwyaiBSMGjUKKpUKO3fuhI+PD4QQAICHDx9iwoQJ0Gq16NixI+rUqaO3noeHBzw8PODn56f3fkpKCry9vXH9+nXUrFkT69atQ5kyZV7Z/hARERGR+TgQBJECNzc3fPvtt5g7dy6mTZuGZcuWoUyZMrh9+zY0Gg1q1KiBGTNm5FgvOjoaAHLMk7Rhwwa5SR8AjBkzxui2Fy1ahAoVKuTTnhARERFRbjFoInoJLy8vuLq6Ys2aNQgKCkJcXBycnZ3h6ekJb29vs/oi6YYoB4C7d+8qps3r3E9ERERElD8YNBGZwN3dHe7u7ianv3HjhsH3x44di7Fjx+ZXsYiIiIjoFWCfJiIiIiIiIgUMmoiIiIiIiBQwaCIiIiIiIlLAoImIiIiIiEgBgyYiIiIiIiIFDJqIiIiIiIgUMGgiIiIiIiJSwKCJiIiIiIhIAYMmIiIiIiIiBQyaiIiIiIiIFDBoIiIiIiIiUsCgiYiIiIiISAGDJiIiIiIiIgUMmoiIiIiIiBQwaCIiIiIiIlLAoImIiIiIiEgBgyYiIiIiIiIFDJqIiIiIiIgUMGgiIiIiIiJSwKCJiIiIiIhIAYMmIiIiIiIiBQyaiIiIiIiIFDBoIiIiIiIiUsCgiYiIiIiISAGDJiIiIiIiIgUMmoiIiIiIiBQwaCIiIiIiIlLAoImIiIiIiEgBgyYiIiIiIiIFDJqIiIiIiIgUMGgiIiIiIiJSwKCJiIiIiIhIAYMmIiIiIiIiBQyaiIiIiIiIFDBoIiIiIiIiUsCgiYiIiIiISAGDJiIiIiIiIgUMmoiIiIiIiBQwaCIiIiIiIlLAoImIiIiIiEgBgyYiIiIiIiIFDJqIiIiIiIgUMGgiIiIiIiJSwKCJiIiIiIhIAYMmIiIiIiIiBQyaiIiIiIiIFDBoIiIiIiIiUsCgiYiIiIiISAGDJiIiIiIiIgUMmoiIiIiIiBQwaCIiIiIiIlLAoImIiIiIiEgBgyYiIiIiIiIFDJqIiIiIiIgUMGgiIiIiIiJSwKCJiIiIiIhIAYMmIiIiIiIiBVaFXQCi4iAgIABr167FlStXkJycDGdnZ3h6esLb2xt2dna5yvPAgQPYtGkTQkNDkZ6ejurVq+Ojjz7CwIEDoVar83kPiIiIiCi3+KSJ6CU2btwILy8vHD16FDY2NqhVqxaio6OxbNky9OrVC/Hx8Wbn+fPPP+OLL77A2bNnUbp0aVSrVg23bt3CL7/8gkGDBkGj0eT/jhARERFRrjBoIlJw7do1zJ49GwDw008/4ejRo/D19cW///6L+vXr486dO5g6dapZeR48eBBr1qyBtbU1li5dioMHD2LXrl3YvXs3qlatinPnzmHevHkFsTtERERElAsMmogULF26FFqtFt26dUOfPn2gUqkAAE5OTpg3bx4sLCzg7++P0NBQk/NcsmQJAGDYsGHo0KGD/H6tWrUwc+ZMAMCff/6JJ0+e5OOeEBEREVFuMWgiMiIpKQknTpwAAPTu3TvHchcXF7Ru3RoA4OfnZ1Ke4eHhcoDVp0+fHMvd3d1RvXp1aDQaHDp0KLdFJyIiIqJ8xKCJyIiQkBBoNBpYW1vDzc3NYJpmzZoBAK5cuWJSnpcvXwYAvPHGG3BycsqXPImIiIioYHH0PCIjwsLCAADOzs5GR7OrVq2aXtqXCQ8P11svP/I0JD09HUIIBAUF5Wp9IQQA4NatW3KTRDId6y/3hAC+/KgSAOBe+B1EWfDenjl47OVNftSfjY0NXF1d87NYRFQEMGgiMuLZs2cAgFKlShlNo1umS5ufeSYkJJiUpyG6H/vc/uirVCpYW1vnevv/day/3FOpAKeyuRvGn3js5RXrj4iMYdBEZERaWhoAKM6ZpPtx1aXNzzxTU1NNytOQJk2a5HpdIiIiItLHdg9ERtjY2ADIaupmjG4+JV3a/MyzRIkSJuVJRERERAWLQROREaY0vTOluV12JUuWNDlPXVoiIiIiKlwMmoiMcHFxAQDcv3/f6JOhe/fu6aV9mRo1agAAIiIijKYxN08iIiIiKlgMmoiMqFu3LtRqNTQajdFR6C5cuAAAaNy4sUl5NmrUCAAQFRWFBw8e5EueRERERFSwGDQRGeHg4IC2bdsCALZu3ZpjeXh4OAICAgAAnp6eJuVZo0YNSJIEAPDx8cmx/MyZM4iIiIBarUaHDh1yW3QiIiIiykcMmogUjBo1CiqVCjt37oSPj488h8fDhw8xYcIEaLVadOzYEXXq1NFbz8PDAx4eHvDz88uR55gxYwAAK1euxOHDh+X37969i++//x4A8Omnn6Js2bIFtVtEREREZAaV0F0FEpFB69atw9y5cyGEQOXKlVGmTBncvn0bGo0GNWrUwObNm3MEOLqJDefMmYOePXvmyHP27NlYv349gKzJbO3s7HDr1i1kZmaiWbNmWLt2rckj8hERERFRweI8TUQv4eXlBVdXV6xZswZBQUGIi4uDs7MzPD094e3tDXt7e7Pz/O6779CkSRNs3rwZISEhePjwIWrVqoWPPvoIXl5eivM4EREREdGrxSdNRERERERECtiniYiIiIiISAGDJiIiIiIiIgUMmoiIiIiIiBQwaCIiIiIiIlLA0fOIiomAgACsXbsWV65cQXJyst4IfnZ2dmbn9/TpU6xduxaHDh1CVFQUrKysULt2bfTs2ROffPIJLCwM31PRDaduTPny5XHq1Cmjy4ODg7FixQqcO3cOCQkJqFixItq3b49Ro0YV2NxURaHuvv32W/j6+pqU/+HDh1GlShX57+3bt2Py5MmK6wwbNgxff/21eTvyEo8ePcKpU6dw7do1XL16FSEhIUhLS0PLli2xcePGPOWd288kKSkJK1aswIEDB3D//n3Y2dmhUaNGGDx4MFq1alUg28ytolR/T58+xb///ovTp0/j+vXriImJgYWFBSpXroy2bdvCy8sLVatWNbitxYsXY8mSJYrl+fHHH9GvX7887dOLilL9AcXz3EdE+YdBE1ExsHHjRsyaNQtCCFSqVAmVK1fG7du3sWzZMvj7+2Pz5s0oXbq0yfndvXsXgwcPRkxMDNRqNd58802kpaXhypUruHz5Mo4cOYIlS5bAysr4KaJBgwawtrbO8b5SOfz9/TFhwgSkp6ejXLlyePPNNxEWFoaNGzfCz88PW7ZswRtvvGHyfpiiqNSdi4sLmjZtajTf8PBwPHnyBJUrV0blypUNpnFwcIAkSQaXZQ+y8svevXsxZ86cfM83t5/JkydP8OmnnyIsLAzW1taoXbs2njx5gqNHj+LYsWOYOnUq+vfvn6/bzIuiVH+jR4/GhQsXAAD29vaoVasWUlNTERkZiY0bN2Lbtm1YuHAh2rVrZ3S75cqVQ/Xq1Q0uq1ChQr7tn05Rqr/sisu5j4jymSCiIu3q1auiTp06wtXVVfz1119Cq9UKIYSIjY0VPXr0EJIkiTFjxpicX0ZGhvjggw+EJEmiX79+4uHDh/Ky0NBQ8e677wpJksSCBQsMri9JkpAkSURGRpq1H7GxsaJRo0Zy3unp6UIIIRISEsSQIUOEJEmiZ8+e8v7lh6JWd8ZotVrRoUMHIUmSmDdvXo7l27ZtE5IkiQEDBpiVb179/fffwsvLS/z+++/C399fLFiwIM/lyMtnMmLECCFJkujRo4eIjY0VQmTV3V9//SUkSRJ169YVwcHB+brNvChK9TdgwAAxYcIEcfbsWZGRkSG/HxMTIwYNGiQkSRJNmzYVjx49yrHuokWLhCRJYtKkSbkud24UpfoTonid+4go/zFoIiriRo4cKSRJEhMnTsyxLCwsTNSpU0dIkiRCQkJMyu/QoUNCkiTRoEEDgz/+hw8fFpIkiUaNGolnz57lWJ7bC4eZM2cKSZJE//79cyyLj48XzZo1E5IkiUOHDpmVr5KiVnfGBAYGyvUaHh6eY3lhBU0v2rhxY57LkdvP5Pr160KSJFGnTh2DdfTNN98YveDN7+Mgtwqz/p48eWI0z4SEBNG6dWshSZJYu3ZtjuWFFTS9qDDrT4jide4jovzHgSCIirCkpCScOHECANC7d+8cy11cXNC6dWsAgJ+fn0l56proNGjQwGAfhvbt28POzg4pKSk4dOhQbouew4EDBwAY3o9SpUrB09MTALB///582V5xqjtdX6emTZsabf70OsjLZ6I7flq3bm2wjvr06QMAOHbsGJKTk/Nlm0VNXvalTJkyRvN1dHRE48aNAQBhYWH5VNqip7COhVd97iOigsGgiagICwkJgUajgbW1Ndzc3AymadasGQDgypUrJuX57NkzAICTk5PRNBUrVgQAXLp0yWiapUuXYujQoRg0aBC+/fZb7NixAxqNxmDamJgYPHjwAADQokULg2maN28OwPT9eJmiXHfZJScnyxdoPXv2VEx7//59fPvtt/j8888xfPhw/Pzzz7h8+bJJ2ykK8vKZ6PZTd5y8yM3NDdbW1khLS0NISEi+bLOoKch9SUtLAwDY2toaTRMaGoqvvvoKAwcOxMiRI7FgwQLcunXLrO0Upvyqv6J+7iOigsGBIIiKMN1dX2dnZ6jVaoNpqlWrppf2ZRwdHQFA/iE35OHDhwCyBj0wZtu2bXp/+/r6YtGiRVi8eDHq16+vtyw8PBwAoFarUalSJYP56TpBR0ZGIj093ej+mqoo1112Bw4cQHJyMmxtbfH+++8rpo2KikJUVJT899GjR7FmzRp88MEHmDVrluIFb1GQl89Edwzplr9IrVajcuXKiIiIQFhYmHzxWxDHQWEpqH158OABzp49C8B4UApkBR3ZA9LDhw9j+fLlGDhwICZNmgRLS0uTt1kY8qv+ivq5j4gKBoMmoiJM92SjVKlSRtPolunSvkzDhg0BANeuXUN0dHSOUdeyN28ylGeHDh3QrVs31KlTB5UqVUJSUhLOnDmD+fPnIzIyEoMHD8aOHTv0RoCLj4+Xy6pSqQyWSzfylFarxfPnzxWbE5miKNadIdu3bwcAvPfee3BwcDCYpmTJkhg6dCjat2+P6tWro1SpUoiOjsaOHTuwatUq7N27F5mZmVi4cKFJ2ywseflMzFk3ISEhX7ZZ1BTUvsyYMQPp6emoXbs22rdvn2N5xYoV8cUXX+Dtt99G1apV4eDggLCwMGzevBl//fUX1q9fDysrK0ycONHMPXq18lp/xeXcR0QFg83ziIowXZMZpTuPuqFvdWlfpmPHjqhUqRI0Gg0mTJiAmJgYeVlQUBB++OEH+e/U1NQc6y9duhSdO3dG9erVYWNjg7Jly+KDDz7A1q1b4ezsjPj4+BxzupizH+bsi5KiWHcvioyMxLlz5wAoN83r2LEjvvnmGzRv3hwVKlSAtbU1atSogfHjx+PXX38FkNUH4/z58ybtR2HJy2dizrrZ674gjoPCUhD7smLFChw8eBBqtRpz5841+LSoT58+GD16NNzc3FC2bFlYW1vD1dUV06dPl+cGW79+vd5T0KIor/VXXM59RFQwGDQRFWE2NjYAgPT0dKNpdG3pdWlfxtraGgsWLICjoyMuX76MDh064P3334eHhwc++eQTpKSkoFOnTgCy5nMxVdmyZeHt7Q0A+PfffyGEyNV+mLMvSopD3e3YsQNCCFSpUkXugG6uLl26oFGjRgCAgwcP5iqPVyUvn4k565YoUSJftlnU5Pe++Pr6Yt68eVCpVJg1a5b8JNUcgwcPRsWKFZGRkYHDhw+bvf6rVFDHQlE79xFRwWDQRFSEmdLUxpQmJy9q0qQJfH190adPH1SqVAmRkZFIS0tDz549sWPHDnl2+vLly5tV3iZNmgDIapKia5by4n5kv6DITpfewsLCaDM1cxT1uhNCYMeOHQCAbt26GW26Y2qZACAiIiLXebwKeflMSpYsafK6urR53WZRk5/7sm/fPkyZMgVCCPzwww/o1q1brspkaWkpB+2v8/H3MkXp3EdEBYN9moiKMBcXFwBZo6YZ6yB87949vbSmeuONN/DTTz8ZXHb79m0AMPvOc/byZWZmyq91ZUtPT0dMTAycnZ1zrBsZGQkAqFq1ar50hC7qdXf27FlERUVBpVK9dNS8l9HtW0ZGRp7yKWh5+UxcXFzw4MEDoxfm6enpuH//fo51C/I4eNXya18OHjyIb775BpmZmZg0aRL69euXp3L9F46/lylK5z4iKhh80kRUhNWtWxdqtRoajQZBQUEG0+jmDtLNs5JXT548kYd37tChg1nr6oYftrGxkTs3A1mjVemG4jbW70b3fn7tR1GvO93cTM2bN5dHz8otXb0bG52rqMjLZ6L7W7f8RUFBQUhPT4eNjQ3q1q2bL9ssavJjX44dO4bx48cjIyMDX3zxBQYPHpzncv0Xjr+XKUrnPiIqGAyaiIowBwcHtG3bFgCwdevWHMvDw8MREBAAAPIEiXm1YMECZGRkoHnz5mjQoIHJ62VkZGDt2rUAsiYgtbLSf5DduXNnAIb349mzZ/JcRfm1H0W57pKSkuQJL3v06JGnbYaGhsoTdrZp0yZPeRW0vHwmuuMnMDDQ4NMmHx8fAEC7du30+pMVxnFQUPK6L2fOnMHYsWORnp6O4cOHY/To0Xku09GjR+WA4XU+/pQUtXMfERUMBk1ERdyoUaOgUqmwc+dO+Pj4yO3iHz58iAkTJkCr1aJjx46oU6eO3noeHh7w8PAwOLP9sWPHctyxT0hIwKxZs+Dj4wM7OzuDzc9+++03+Pr64vnz53rvx8TE4IsvvsDly5dhZWVl8GJsyJAhKFGiBM6dO4eFCxfKTVgSExPx1VdfITExEfXq1YOHh4d5FaSgKNVddrq5mezs7F56ofT8+XOMGzcOFy9ezNEn4sSJExg2bBgyMzNRp04deRCKwtavXz94eHhg3bp1OZbl9jOpX78+2rdvj8zMTIwfP16eD0sIAR8fH+zcuRMWFhYYOXJkvm2zsBRE/V26dAmjRo1CWloavLy8MGHCBJPKcuvWLUybNg2hoaF672u1WuzZswdfffUVAKB9+/ZGJ4x91Qqi/orbuY+I8p9KGOuZSERFxrp16zB37lwIIVC5cmWUKVMGt2/fhkajQY0aNbB582Z5AAIdV1dXAMCcOXNy9JmZNWsWNmzYAAcHB3muobt37yI9PR2lS5fGkiVLDM5eP2rUKBw6dAiWlpZ44403UKpUKSQmJiIsLAxCCNjY2GDmzJn46KOPDO6Hn58fvvrqK2RkZKBcuXKoVKkSwsLCkJycjPLly2Pz5s2oXr16flSZrKjUXXafffYZzp49ix49emDu3LmKaRMSEuT87O3t8cYbb8Da2hr379/H48ePAQBvvvkmVqxYYbC/RF7ExMSge/fu8t8ajQbJycmwsrLS67A+dOhQDBs2TP7bw8MD0dHRGDNmDMaOHZsj39x8JkBW88d+/fohPDwc1tbWqF27Np4+fYqYmBioVCpMmTIFn332mcF9ye0286Io1V/nzp0RHh6uN3CDIfXq1cPUqVPlv0NCQuR9KF26NJydnWFpaYl79+7JgyY0b94cy5Yt0xuAIz8Upforjuc+IspfHAiCqBjw8vKCq6sr1qxZg6CgIMTFxcHZ2Rmenp7w9vY2a2hwIGven7i4OFy9ehX37t2DSqVCjRo14OHhAS8vL6OTK/br1w/ly5fHtWvX8PDhQ0RHR0OtVuPNN9+Eu7s7BgwYgGrVqhndrqenJ9544w3873//w/nz53Hz5k1UrFgRPXv2xKhRo1CuXDmz9sMURaXudLLPzWRK0zxbW1tMnDgRly9fxs2bN3H//n0kJyfDwcEBrVq1QufOndGrV68CGao4MzNTbyQwnYyMDL33TZmTKrvcfiZly5bFtm3bsHLlSvj5+eH27duws7NDu3btMGTIEMVh2/P7ODBFUao/3ZDXmZmZuHjxotG8X2xaVqVKFYwbNw6XL1/GnTt3EBERAY1Gg1KlSqFdu3bo2rUrunbtanB+p7wqSvVXHM99RJS/+KSJiIiIiIhIAfs0ERERERERKWDQREREREREpIBBExERERERkQIGTURERERERAoYNBERERERESlg0ERERERERKSAQRMREREREZECBk1EREREREQKGDQREREREREpYNBERPQa+eyzz+Dq6orFixcXdlGIiIheG1aFXQAiotzKzMzEgQMHcPToUVy5cgVxcXFITU2Fo6MjXFxc0Lx5c3z44YeQJKmwi1rsBQYG4uzZs6hSpQp69uxZ2MUp9tLT07Fz504cOHAAoaGhePr0KWxsbFC+fHlUrFgRjRs3RvPmzdG6dWvY2NgUdnGJiP7zGDQRUbF0+fJlTJo0CeHh4fJ7arUa9vb2iI+Px8WLF3Hx4kWsWLECnTp1wu+//w5ra+vCK3Axd/bsWSxZsgQtW7Zk0JRHMTEx8Pb2xs2bN+X31Go1LC0tce/ePYSHh+Ps2bNYsWIFNmzYgFatWhViaYmICGDQRETF0OHDh/Hll19Co9GgdOnSGDJkCDp16gQXFxcAWU+ggoOD4e/vj82bN8Pf3x+pqakMmqjQZWZmYtSoUbh58yZsbW3h7e2NHj16oFKlSlCpVNBoNAgNDcXx48exc+fOwi4uERH9fwyaiKhYCQ8PxzfffAONRoPatWtj9erVqFSpkl4aS0tLNGzYEA0bNsSQIUPw3XffFVJpifQFBAQgODgYADBr1ix88MEHesutra3h5uYGNzc3jB49Gunp6YVRTCIiegGDJiIqVhYsWIDnz5/DxsYGS5YsyREwvah06dJYunQphBB67z969Ahr1qzB8ePHER0dDQCoUqUK3nnnHQwePBjly5fPkVdUVBQ6dOgAADh06BBUKhWWLVuGkydPIi4uDk5OTvjggw8wfPhw2NnZAQBu3ryJFStW4Ny5c3jy5AkqV66M7t27Y9iwYVCr1Tm28dlnn+Hs2bMYM2YMhg8fjnXr1mH37t2IjIyEWq1GgwYN4OXlhXfeeSdX9acr08aNGxEYGIgHDx7AwsICVatWhYeHBz7//HOULVvW4D4DWc30XF1d9fKbM2dOjiZ7UVFRWL9+PU6fPo379+9Dq9WicuXKaNu2LQYPHgxnZ+cc5dq+fTsmT56MKlWq4PDhw7h27RpWrlyJCxcuID4+Hk5OTujYsSNGjRqFUqVKGd2/58+fY/PmzTh06BDCwsKQnJyMcuXKoWnTphg4cCCaNGlicL1nz55h3bp1OHr0KCIiIqDRaFCqVCmULVsWTZo0wfvvvw93d3e9dVJTU/Hnn3/C398fd+/eRXJyMhwdHVG2bFk0bNgQHh4e6Ny5s5w+JCREfp29Xg1RqVSKT0evXLmCv/76C+fPn8fDhw9haWmJSpUqoVGjRujSpQvefvvtHOskJiZi/fr1OHToECIiIpCRkYFKlSrB3d0dQ4cOxRtvvGFwW7rPfMOGDahduzZWrFiBo0ePIjY2Fqmpqbhx44Ze+qNHj2Lbtm24fPkynj59CltbW0iShA8++AC9evXiU18iKnYYNBFRsfH48WMcOHAAAPDhhx+iRo0aJq+rUqnk12fPnsXo0aORkJAAAHKAc/v2bdy+fRv//PMPli5diubNmxvNLzg4GFOmTEFCQgIcHByQmZmJyMhILF++HOfPn8e6detw6tQpjBs3DikpKXB0dER6ejoiIiKwcOFC3Lp1C/Pnzzeaf3p6OgYNGoTz58/DysoKdnZ2SEhIwOnTp3H69GmMGTMGY8eONXn/dVauXIl58+ZBq9UCAGxtbZGeno6bN2/i5s2b2LZtG1asWIF69eoByHpqV758eSQnJyM5ORlqtTpHwFKiRAm9v3ft2oUpU6ZAo9EAyHp6YmFhgbCwMISFhWH79u1YtGgR2rZta7Scu3fvxuTJk5Geng5HR0dkZmYiKipKrlcfHx/Y29vnWC8kJAQjRoxAbGysXP4SJUogNjYW+/btw/79+zF+/HgMHz5cb73Y2Fj069cP9+/fBwBYWFjA0dERT58+xePHj3Hz5k2EhYXpBU3Pnz9H//79ERoaCiDrGHN0dERiYiKePn2KO3fu4Ny5c3pB04vb1DUpNUdmZibmzJmDjRs3yu/Z2dnBysoKd+/exZ07d3Dw4EGcP39eb71bt25h6NChct3Y2NjAysoKERERiIiIwPbt2/Hbb78ZLS8A3Lt3DxMmTMDjx4/l9bNLTU3FxIkT5e8pADg4OCAxMRHnz5/H+fPnsXPnTqxYsUIx8CUiKnIEEVExsWfPHiFJkpAkSRw5ciRXedy/f180b95cSJIkunTpIs6fPy8vO3funOjcubOQJEm0bNlSxMbG6q0bGRkpb7958+bi888/F7du3RJCCJGSkiI2bNgg6tatKyRJEvPnzxfNmjUT48aNE1FRUUIIIZ4/fy7mzZsn53Hq1Kkc5RswYICQJEk0a9ZMNGjQQGzZskWkpqbKZR87dqy8/r///mt0/UWLFuVYtnXrViFJkmjcuLFYtmyZePjwoRBCiIyMDHH16lUxcOBAIUmSaNeunXj+/LneuosWLRKSJIkBAwYo1u/JkydFnTp1RL169cQvv/wiIiMjhVarFVqtVty5c0d88cUXQpIk0bRpUxEdHa237rZt24QkSaJRo0aiQYMGYsqUKeL+/ftCCCGSk5PFpk2bRP369YUkSWLBggU5tv3gwQPh7u4uJEkSY8aMEVevXhUajUYIIcTjx4/FggULRL169YQkSeLgwYN663733XdCkiTRvn17cfr0aZGRkSHXTVRUlNi8ebP49ddf9db5448/5GPlwIEDIi0tTQghRGZmpoiNjRW+vr7i+++/11snMDBQ/vwGDhyY4xgzxS+//CLnMXnyZHH37l15WUJCgjh48KAYN26c3jqJiYnCw8NDSJIk3n77bXH06FGRmZkphBAiJCRE9O7dW0iSJBo0aCBCQkJybFO3vcaNG4vOnTuL06dPy+tn3/7XX38tJEkSHTp0ELt27RKJiYlCCCFSU1PFv//+Kzp06CAkSRKjRo0ye7+JiAoTgyYiKjbmz58vX7zl5mJTCCGmTZsmJEkSLVq0kIOG7GJiYkTTpk2FJEli+vTpesuyB00ffPCBfJGc3TfffCOnGTRokNBqtTnSfPrpp0KSJPHdd9/lWKYLeiRJEn///XeO5ZmZmaJ///5yGYyt/2LQlJiYKAeLx48fz1kxQoj09HTRo0cPIUmSWLt2rd4yU4KmzMxM0alTJyFJkvjrr7+MphsxYoSQJEnMnDlT731d0CRJkpg0aZLBdefMmSMkSRLvvfdejmWTJ08WkiSJCRMmGN322rVrhSRJ4qOPPtJ7//333xeSJIndu3cbXfdFQ4cOFZIkieXLl5u8jhBCDBo0SN7PunXrij59+ohZs2aJHTt2iLCwMMV17969K+rUqSMkSRK//PKLydv83//+JyRJEvXr1xc3btzIsTwxMVG0b99eSJIkvL29cyzXlbdp06YiJibG4DbOnTsnJEkS7u7ucrD7opiYGNG4cWMhSZIIDg42ufxERIWNk9sSUbERHx8vvy5durTZ6wsh4OfnBwDo27cvKlSokCNNpUqV0LdvXwDA3r17jeb1+eefG+yXkb3J2bBhw/SaBb6Y5sV+INlVrlwZH3/8cY73LSwsMHLkSABZza2U8sjO398fCQkJqFevnsG+LgBgZWWFrl27AgBOnjxpUr7ZnTt3DuHh4ShTpgw++eQTo+m6d+/+0m3o9vFFun5AERERSElJkd9PS0vDnj17AGTVuzHdunUDAISGhuLx48fy+yVLlgSQ1dfNVLlZBwCWLFmCTz/9FGq1GpmZmbh06RLWr1+PiRMnonPnzvDw8MCSJUvw/PnzHOvu2LEDWq0WpUuXxhdffGHyNvfv3w8A6Ny5s8F5yxwcHDB06FAAwPHjx5GYmGgwn27duhntR/jPP/8AyGo6W7lyZYNpKlWqJA+hfuLECZPLT0RU2NiniYj+M6KiouTA68UO/dm1adMGq1atQnx8PCIjIw12jndzczO4bvYBJBo2bKiYRtenypCWLVsaDLgAoHnz5rCyskJGRgauXbuWY2AGQy5evAgAuHPnDtq0aWM0XWpqKgDIfXvModvG8+fPjQZmAOQR4Yxto3Tp0qhevbrBZRUrVpRfJyQkwNbWFgBw7do1pKWlAQCGDBliUnnv378vfxbvvvsuLl26hN9//x13797Fe++9h6ZNm8LBwcHo+u+++y727NmDTZs24cmTJ+jSpQuaNm2qN5CGIXZ2dvjhhx8wZswYHDp0COfPn8e1a9cQHh6OzMxMREdHY/HixfD19cXatWtRrVo1eV1dHbdp08bkSW81Go0cXL/suAcArVaL69evo3Xr1jnSNG3a1Oj6urL9888/cgBriC4gy80xRkRUWBg0EVGxkf3pkm40NXPExcXJr5XWzb7syZMnBoMmQ4MQAFkDD+gYu+DWpcnIyDCpDC+ysbFB6dKl8fjxY719UvLw4UMAWU9kdMGFEl3wZA7dNtLT0/We4pi7DWN1C+jXb/bhuHXbBmDStgHoPakaMmQIQkNDsX//fmzduhVbt26FSqXCm2++ibZt2+KTTz5BzZo19db/8MMPERQUhE2bNmHv3r3yk8nq1aujTZs2+Pjjj9GgQQOj2y9Xrhx69+6N3r17AwCSkpIQEBCA1atX48KFC4iKisL48eOxbdu2HPtmaPRBY549e4bMzEwAysdV9idIT548MVpmY3SfwfPnzw0+JXtRbo4xIqLCwqCJiIqNN998U34dEhJidtD0X6a7aO7SpYviqH35sY1GjRph69atBbINY3SjAQJAUFCQyU9hdNRqNRYsWIARI0bA398fFy5cQFBQkDyq4Pr16/H1119j8ODBeutNmTIFAwYMgJ+fH86fP4/Lly/Lo9Ft3rwZAwcOxJQpU0wqg729PTp06ID27dvDy8sLgYGBuHbtGkJCQlC3bl0AMPr08VWxsDDeql/3+f/444/o16/fqyoSEdErwT5NRFRstGrVSr5oO3jwoNnrZ79L/uDBA6Ppsi97WVOrgqJUPo1GIzczVLrzn52u/1ZBNol6FdswJnuzSN28W7lRp04dfPHFF1i/fj3OnTuHdevWoUWLFsjMzMQvv/wiDy+eXfXq1TF8+HCsXLkSgYGB8PHxQceOHQFkzWt06NAhs8pgYWGh1ycsLCxMfq3bT3PquFSpUvITOt1w44ZkX5ab474wP38iooLGoImIio3y5cujU6dOAIA9e/boXUy+jBACVatWlZv4nTlzxmja06dPA8hqDmhsss+Cdu7cuRwT8uqcP39ebtqn1PwrO11flOvXr+s1ZTOV7gmHsTJl38ajR49w9epVs7eRFw0bNpQnCz5y5Ei+5GllZQV3d3f873//g7W1NYQQ8rFhjIWFBRo3boxFixbJTeheto4hurnDAOgNOKKbmPfUqVMmNbPUra/r9xYQEGA0na6cFhYWqF+/vtll1pXt6NGjZq9LRFTUMWgiomJl3LhxsLOzQ2pqKsaOHav4RAbI6s8xduxYJCYmQqVS4f333wcA+Pj4GBz17MGDB/Dx8QEAeSS5wnD//n34+vrmeF+r1WL58uUAgNq1a5s0CAQAeHp6omTJkkhPT8fcuXMVgx+tVptjkApd/yylwStatWolD+AwZ84ceXJbY7KPhphXdnZ2+PDDDwFkTeD7sqcdL25bqazW1tbyk5rszdOU1rG0tJSDuOxN6m7evPnSYxYAdu7cKb/WNc0DgJ49e8LS0hLx8fFYtGjRS/PR6dKlCwDgwIEDuHnzZo7lSUlJWLVqFQDgnXfegaOjo8l56/Tp0wdA1j5u3rxZMW1ycvJLjw8ioqKEQRMRFSs1atTAr7/+CrVajVu3bqFbt25YsWIFIiIi5DSZmZkIDg7GwoUL0bFjR/j7+8vLRowYgZIlSyI+Ph6DBg2SR/wCgAsXLmDQoEFISEhA6dKl4e3t/Ur3LTtHR0f8+OOP2Lp1q/xEISYmBhMmTEBgYCCArADSVCVLlsR3330HIGsodW9vb1y5ckXuC6TVanHnzh2sWbMGH3zwQY6nNbphqm/fvq1XZ9lZWVlh+vTpsLKywoULFzBgwACcOXNGb8CGyMhIbNmyBR9//PFLL6zNNX78eFSsWBFPnz5Fnz59sGPHDr0BCZ48eYIDBw5g9OjR+Or/tXd/IU29cRzH35vbrOn0IojCaviHKDAsxF0YZfYHo4KoKFoRWFaUFQiFElGQmRfFgggJJNIhFpTQReX6B+GKQplk3UQU5HBR1rrQNbMp9LuQDi3rgPHj1y/4vC737NnOOc+5eD4853yfgweT+paWluLz+ejp6UmazIfDYQ4dOsTnz5+xWq1JJeU3btxIXV0dnZ2dDA0NGZ/39/dz4sQJ454sKSkx2rq6uli2bBlVVVUEAoGkVb8vX74QCoXYs2cPt2/fBsZKhGdlZRnfcbvdRnXACxcucOTIEXp7e432T58+0d7ezr59+5LOz+v1MmPGDEZGRti1axcdHR3G2L948YKKigoikQgOh2NC99X3PB4P69evB6C2tpb6+nr6+vqM9kQiQU9PD6dOnaK0tPSXxSZERP6PVAhCRP46y5cvx+/3c/jwYcLhMD6fD5/Ph91uJy0tjcHBQWNCaLFYWLNmjVGaetq0aTQ0NFBZWcnLly/xer3Go1DfJr4ZGRk0NDT80UITW7ZsIRQKcfToUWpra3E6nQwMDBjte/fuZcWKFRP6zXXr1jE8PMzJkycJBoMEg0EcDgdOp5N4PJ4Ubn4sOODxeMjOzub169d4vV4yMzON1afq6mpWrlwJjJW0Pnv2LNXV1Tx9+pTy8nJjXH5cXfj23s+/ZerUqTQ3N1NZWUlvby81NTVYrVYyMjJIJBJJwaa4uDipbzQapbGxkcbGRqxWKy6Xi+HhYSOwWiwWampqyMvLM/rEYjFaWlpoaWnBYrHgcrkYHR1N+p/y8vKk8us2m42RkRECgYCxd1JqaiqTJk1KGl8Y28+rvr5+3HlWVVURj8dpbW2lra2NtrY2nE4ndrudwcFBvn79Om6lKD09nfPnz7Nz507evXvH7t27SU1NxW63G8HS4XBw+vRp5syZM6Hr/r3jx4+TkpLC1atX8fv9+P1+49hisVhSwY4/XdRCRGQiFJpE5K9UWFhIIBDg1q1b3L9/n2fPnvHx40fi8TiZmZnk5ORQVFTE2rVrx5WK9ng8tLe309TUREdHB2/evMFisZCbm0tJSQk7duz46ca3/yW73U5zczNNTU3cuHGDvr4+XC4X+fn5bN++PWn1YiK8Xi+LFi2itbWVR48eEYlEiMVipKenM3PmTBYsWMDSpUvH7dFjs9nw+/2cO3eOx48f09/fb0zyvw8JMBaG7t69y6VLlwgGg4TDYWKxGJMnTyYnJ4d58+axZMkSFi9e/HsXx0Rubi7Xr1/n2rVr3Llzh+fPnzMwMIDdbsftdjN37lwWLlxIWVlZUr+LFy/S2dlJd3c3b9++NUp7u91uCgsL2bp167j3x86cOcPDhw8JhUJEIhGi0Sijo6NkZWVRUFDApk2bxu2LtHnzZubPn8+DBw948uQJr1694sOHD8RiMdLS0pg+fTr5+fmsWrXql2OckpLCsWPHWL16NZcvX6a7u5toNIrNZiMvL4+CgoKfPlo6e/Zsbt68id/v5969e4TDYRKJBLNmzaK4uJiKioqkPaF+h8PhoK6ujg0bNnDlyhVCoRDv379naGiIKVOmkJ2dTVFREWVlZap+KSJ/FctXswfbRUTkP7Vt2za6urrYv38/Bw4c+NOHIyIiIuidJhEREREREVMKTSIiIiIiIiYUmkREREREREwoNImIiIiIiJhQIQgRERERERETWmkSERERERExodAkIiIiIiJiQqFJRERERETEhEKTiIiIiIiICYUmEREREREREwpNIiIiIiIiJhSaRERERERETCg0iYiIiIiImFBoEhERERERMfEPiBMUl1/GaNYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.displot(level_df, x=\"CompletenessScore\", kind=\"ecdf\")\n", + "plt.title(f\"Cumulative distribution on CompletenessScore for HOGs at {level}\");\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "3f572007-d324-4310-bc55-b210e19034f8", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:50.940069Z", + "iopub.status.busy": "2024-10-18T00:52:50.939592Z", + "iopub.status.idle": "2024-10-18T00:52:51.457613Z", + "shell.execute_reply": "2024-10-18T00:52:51.456877Z" + }, + "papermill": { + "duration": 0.529677, + "end_time": "2024-10-18T00:52:51.460284", + "exception": false, + "start_time": "2024-10-18T00:52:50.930607", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCoAAAQvCAYAAADRmA95AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvsUlEQVR4nOzdd3xTZf//8XeAFigFyijQliWjlFVkSMGBsmSJFkSQpShLBVRwgd4i6K3oreJguRCQIaKCqCAyioCsUiij0LLLpsyW7pnfH36TH7UtpEnaHsjr+Xj4kJ5z5eST5MpJ8j7XuY7JbDabBQAAAAAAYADFiroAAAAAAAAAC4IKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMIwSRV0Abg8dOnTQmTNnrH+bTCaVLl1aZcuWVa1atdSkSRN169ZNgYGBeW5j8ODBCg0N1XfffaegoKDCKPuGLI9p3bp1ql69unW50eqUpPHjx2vZsmWaMmWKevfuXdTlOF1ISIi++eYbRUVFKTExUZJsev4tr+HNnhfLazp69GiNGTMm1zZXr17VwoULtXHjRp04cUKJiYny8vJSgwYN9OCDD6p3795yc3O76WPZv3+/li5dqrCwMJ0/f14JCQny8PCQr6+vmjRpovbt2+uBBx5QiRIFt3s2Yh++HTj6Prx69aqWLFmiv//+W8eOHVNcXJzc3d3l6+urO++8Uz169FDbtm0LoPKiNW3aNE2fPv2G7z8UjLVr1+qnn35SRESEYmNjVbJkSVWsWFE1a9ZUixYt9OCDD6p+/fpFXaZhmc1mzZ49W7/88otOnjyp1NRUSdLBgweLrKbt27friSeeuGkdp0+fVseOHSUpx/ec6+3evVs//vijduzYoYsXL8psNsvb21t33XWX+vTpoxYtWty0poyMDK1YsULr1q1TRESErl69qvT0dJUvX15169ZVy5Yt1a1bN/n7+9vxiI3tdvt+dvXqVa1fv1779+/X/v37FRkZqZSUFLVt21Zz584t6vJwmyGogFO1aNFCtWrVkiSlpKTo6tWrioyMVGhoqL799lu1bt1a7733nmrUqFFgNeQVMNyqli5dqgkTJqhXr156//33i7qcQhcZGannn39eWVlZatOmjby9vWUymVS5cuVCq2H16tWaMGGCNVRo0aKFvLy8dO7cOW3btk1///23vv32W82cOVN169bNdRvJycmaOHGifv31V0lShQoV1KRJE3l5eSkxMVHR0dH66aef9NNPP8nPz0/Lly9X2bJlC+0xomj98ssvmjx5spKSkuTu7q7AwEBVrVpVKSkpOnbsmH788Uf9+OOP6tq1qz777LOiLtfQbrcfBgUhMzNTr776qn7//XdJUv369RUYGKhSpUrp7NmzCgsL099//62EhAS99tprRVytcS1atEgffvihypYtq3bt2snT07OoS3KatLQ0TZo0ST///LMkqWbNmrr33ntlMpl08OBB/fzzz/r555/Vu3dvTZ48We7u7rlu58CBA3rhhRd08uRJmUwm1atXTw0bNlSpUqV09epVRUREaPv27Zo5c6aefPJJvf7664X5MG/KaEGqJYhq3bq15s+fX+j3v3PnTk2YMKHQ7xeuiaACTvXYY4/l+GJoNpu1ceNGvffeewoNDdXjjz+uxYsX5wgrPvjgAyUnJ8vX17cwS87T3LlzlZ6erqpVqxZ1KTc1btw4DR8+XFWqVCnqUpxu7dq1Sk9P1zPPPKOxY8cW+v2vWbNGL7zwgrKysvTkk09q7NixKl26tHV9TEyMXn/9df39998aMGCAfv755xwBWXp6uoYNG6awsDB5e3vrrbfeUqdOnWQymbK1O336tBYsWKCFCxcqJSWlwIIKo73XXN3333+vSZMmyWQyafjw4XrmmWdy/OA5cuSIpk2bphMnThRRlbidLF68WL///rvKlCmjmTNnqk2bNtnWJycna/369crIyCiiCm8Nq1atkiR99tlnuueee4q4GucaN26c1qxZIy8vL73//vtq3759tvUbNmzQ+PHjtXTpUiUkJGjatGk5thEREaFBgwYpOTlZ7du31/jx41W7du1sbbKysrR161Z9+eWXOnr0aEE+pCJxu30/q1Spkvr166fGjRurUaNG2r9/v956662iLgu3KYIKFDiTyaT7779fzZs312OPPabo6Gj95z//0bx587K1M9qPppo1axZ1CTarUqXKbfMh+G9nz56VJOtIncJ05coVTZgwQVlZWRoyZEiuRxGqVq2qWbNm6YknnlB4eLheffVVLVq0KFubGTNmKCwsTF5eXlq8eHGeI32qV6+u8ePHq0+fPvLw8CiQxyQZ773myo4ePap3331X0j8jAYYMGZJru3r16umzzz7Tjh07CrE63K5WrFghSRo0aFCOkEKSSpcure7duxd2Wbecovx8KkhLlizRmjVr5Obmpm+++UZNmzbN0eb+++/X7Nmz1bdvX61evVo//vijHnvsMev69PR0vfDCC0pOTlaXLl306aefqlixnFPjFStWTPfcc4/uuece7d27t0AfV1G43b6fNW/eXM2bN7f+ffjw4SKsBrc7ggoUmnLlyun111/XiBEjtG3bNkVERKhJkybW9XmdN5+WlqbvvvtOK1eu1PHjx63nNVarVk1BQUEaMWKEvLy8rKdIWFjOvbSwbPf6YXNfffWVvvrqK61atUpnz55VpUqVFBISIsm2U0hCQ0P1xRdfKCIiQqmpqapfv74GDRqk4ODgHG1vNi9AbsMLr5/7Y9myZVq2bJm1/fXD/m421HnFihVasmSJIiMjlZSUJG9vb7Vp00YjRozQHXfckaP99Y/99OnT+uqrr7Rv3z6lpqaqbt26evLJJ3N9jDeTkZGhH3/8UcuXL9fhw4eVlpYmHx8ftWvXTsOHD882esXyfFhMmDDB+voW1pDHRYsWKT4+XhUrVtS4cePybOfu7q6JEyeqV69e2rlzp0JDQ9W6dWtJUkJCgr777jtJ0qhRo2w6HalevXr5qjMrK0s//vijli1bpiNHjig5OVnlypWznkf81FNP3XSelX+/f/Ly7/dDRkaGli1bpl9//VUHDx5UUlKSqlSpovvuu0/PPPOMfHx8cmxjy5Yt+u6777R3717FxcXJw8NDFSpUUGBgoPr166e77rrLpsedkJCglStXauPGjTp06JAuXLggSapRo4Y6dOigoUOHqly5cjlu50j/jo2N1YwZM7R27VpdvHhRlStXVocOHfT888/bVPO/ffPNN0pPT1dAQICefPLJm7bP7bk5f/68vv76a23atEnnzp2Tu7u76tevr+DgYD322GMqXrx4tvbXn072xhtvaPr06VqzZo0uXrwoHx8f9enTR8OGDVOxYsUUExOjGTNmaMOGDbp8+bL8/Pw0aNAgDR48OEcd1/crk8lk877xZo4fP645c+Zoy5YtiomJkbu7uwICAtS3b1898sgj1nbXn3MvZd9nSMoxdDslJUWLFi3SqlWrdOzYMaWmpsrX11cdO3bU8OHDVaFChTyft4kTJ2rWrFlatWqVzp07p/Lly+vee+/VuHHj8hyFFxMTo2+//VYbN27U2bNnVaxYMdWpU0e9evXS448/nmNeGls/+yyio6P15Zdfavv27bpw4YLc3Nzk5eWl+vXrq0uXLnr00UetbS9fvixJqlixYj5eieyPZe7cufr77791+vRpmc1mVa1aVc2bN1ffvn1zzFvgSB8dP368ZsyYofXr1+v8+fNq3rx5tv3/1q1btXDhQu3evVuxsbEqW7asWrRooWHDhmX7QWXP85QXS1+3uL7f/bufbdq0SQsWLNDevXsVHx8vLy8vtWrVSkOHDs01ALj+fVS8eHF988031sf23nvvFfjpTGazWV9++aUk6fHHH8+1RotGjRrp8ccf1/z58/Xll1+qT58+1pGCv/32m06fPi13d3dNmjQp15Di33Kbx8wZr5fF6tWrtWHDBu3Zs0cxMTFKSUmRt7e3goKCNHz4cNWpUydb+wYNGlj/PX369GzfSWw9HTev72fXf+cbOHCgpk2bppCQEF2+fFmVKlVSp06d9MILL2T7DLu+34WGhmarz8/Pz/r91SK/7w3L9iyn9ixZskRHjhxRQkLCbXM6NW4tBBUoVO3atZOXl5diY2O1ZcuWbEFFbrKysjRixAht3bpVnp6eatWqlcqVK6crV67oxIkTmj17tnr27CkvLy/VrFlTvXr10p9//qmkpCR16dIl21Hpf89pkJqaqsGDB+vo0aNq1aqVAgICFBsba/NjWbNmjRYuXKg6dero3nvv1YULF7Rz50699tprioqK0vjx4/P13OSmS5cu2r17t3bt2qWaNWuqZcuW1nX//kDNjdls1vjx4/XLL7+oRIkSatWqlSpVqmSd0PGPP/7Q559/rnbt2uV6+59//lmzZs1So0aNdN999+nMmTPavXu3XnvtNcXGxuZ59Dc3aWlpGjlypLZs2aKSJUsqKChInp6eCg8P1/z58/X7779r9uzZaty4sSSpYcOG1h/+J0+ezDb/iS2P3RnWrl0rSerWrZtKlix5w7aNGjWSv7+/Dh06pJCQEGtQsW3bNiUmJspkMunhhx8ukDrfeOMNLV26VCVLllTLli1VsWJFxcbGWk8ladu27U2/YFjeP7mJiYnRli1bJCnbD4qEhAQ9++yzCg0NlYeHh5o0aaIKFSro0KFDWrx4sVatWqU5c+aoUaNG1tssW7bM+uMxMDBQQUFBSklJUUxMjFauXKkKFSrYHFRERUXpzTffVMWKFXXHHXeocePGunbtmiIiIvTFF1/ojz/+0A8//JDjB6dFfvv3pUuXNHDgQEVHR6t8+fJq3769srKy9Ntvv2nTpk35DpjMZrP1i2VwcHCOU4FssXfvXg0fPlyxsbHy9fVVp06dFB8fr9DQUIWHh2vNmjWaNWtWruePX7t2Tf369VNsbKxatWqlxMREhYWF6eOPP1ZMTIyefPJJDRgwQCVKlFDz5s115coVhYWF6b///a+Sk5M1YsSIXGty5r7xjz/+0GuvvabU1FTVqVNH999/v+Lj47V37169+uqr2rZtm6ZMmSJJ8vDwyHOfIf2zT7GIiYnRsGHDdOjQIXl5ealp06YqU6aMDhw4oNmzZ2vVqlWaP3++/Pz8ctQUHx+vxx9/XOfOnVPLli1Vv3597d69W7/88ot27NiR6/wyO3bs0KhRoxQXFyc/Pz/dfffdSktL0759+/TOO+9o/fr1+uKLL6wT8ubns0+SDh06pP79+yshIUF33HGH2rdvbw2aduzYoZiYmGw/6Hx8fBQdHa1ly5bp0UcfzddpZlu3btXzzz+va9euqVKlSmrbtq3c3Nx05swZ65wX1wcVjvTRq1ev6tFHH1V8fLxatmypxo0bZ5u0+IMPPtC3336rYsWKqUmTJmrZsqXOnTundevWaf369XrnnXeyPe78Pk95ue++++Tn55fr943r+9mnn36qWbNmyWQyqXnz5vL19dXRo0f1xx9/aPXq1Xr77bfVp0+fXO9j1apVWrx4serUqaO7777bOrluQTt48KBOnz4tSdmCwLwEBwdr/vz5OnXqlA4dOmT9sbtu3TpJ0r333mt3IOas18vixRdflLu7u+rWras2bdooIyNDhw8f1tKlS7Vq1SrNnj07W9/t1auXIiMjFRUVpYCAgGyv7fXfxxxx7tw59erVSxkZGWrRooVSU1O1a9cuLViwQHv27NH3339v7fP33Xef3N3d9ffff6ty5cq67777rNv59+dcft8b13vnnXe0aNEiNW/eXA888IBOnTpl1+cT4DAz4ATt27c3+/v7m3/++eebth0yZIjZ39/f/PLLL2dbPmjQILO/v79527Zt1mWhoaFmf39/c3BwsDk+Pj7Htvbu3Wu+cuVKrrWcOnUq1/vftm2b2d/f3+zv72/u2bOn+cKFCzd8TP/ejqVOf39/8xdffJFt3fbt282BgYFmf39/88aNG2/6+K73+eefm/39/c2ff/55tuU///yz2d/f3/zaa6/lejuz2Wx+7bXXcn3+Fy1aZPb39zcHBQWZDxw4YF2elZVlvb9WrVqZL1++nOtjb9y4sTkkJCTXelq2bGlOTk7Os6Z/+/DDD83+/v7mTp06ZXtO09LSzK+//rrZ39/f3KFDB3NqaqpNj80WtvZLy2tz/XOflpZmDggIMPv7+5uXLVtm0/2NHz/e7O/vbx44cKB12aeffmp93AXhzJkzZn9/f3O7du1y7ctHjhwxnzlzJtuym/XF68XFxZl79Ohh9vf3N7///vvZ1o0bN87s7+9vHjlypPnSpUvZ1s2ZM8fs7+9vfvDBB80ZGRnW5R06dDD7+/ubd+zYkeO+Ll26ZN6/f/9Na7I4d+6cecuWLebMzMxsy5OSksyvvvqq2d/f3zxp0qQct7O3f48ZM8bs7+9vHjBggPnatWvW5VevXjU/9thj1v2CrX315MmT1tvk9nzcTGpqqvWxTJw40ZyWlpZt25Z1U6dOzfUxWl67pKQk67qIiAhzo0aNzAEBAebu3bubJ06caE5PT7euX7Nmjdnf39/cokWLbLczm+3fN+a174uKijI3adLE3LRpU/Off/6Zbd3p06fNDz30UK7vz5vtM7KyssyPP/642d/f3/z6669n+2xJT083v//++2Z/f3/z4MGD83zenn766Wy3i42NNT/yyCO5PvYLFy6YW7dubW7QoIF54cKF2frrlStXzE888YTZ39/fPG3aNOvy/H72WfY9M2fOzNE2OTnZHBoamm2Z5XW09PWXX37ZvHDhQvPu3btz7IOvd/bsWXPLli3N/v7+5o8++ihH20uXLmXry87oo08++WSuz8EPP/xg9vf3N3fu3NkcGRmZbV1oaKi5efPm5saNG5uPHz9u9/N0Mzf6vrFhwwazv7+/uWnTpua///4727olS5ZY90GHDh3Ktu7699GCBQvyVY/ZnP07zo2cOnXK2u76+n/88Udrbde/9/OSnp5ubty4sdnf39/8008/WZfff//9Zn9/f/OMGTPy/RgsnP16rVixwpyYmJhtWVZWlnnBggVmf39/c48ePcxZWVnZ1ue1f7JVXvsjy3b9/f3N48ePz/ZeOnv2rPm+++4z+/v7m3/77bdst7O8voMGDcrzPu15b5jNZms9LVq0MIeHh9v0+Czv1SeffNKm9kB+3HwcFuBkltTXltELly5dkvRPcp3bbNpNmzbN82ipLSZOnChvb2+7btuoUSONHDky27LWrVtrwIABkqQ5c+bYXZezfPvtt5L+OeXg+iMBJpNJo0ePVoMGDXTt2jUtWbIk19sPGjQoxwRavXv3Vp06dRQfH6+IiAib6khNTdXChQsl/TMc+/qj+25ubvrPf/6jypUr6/Tp0/rzzz/z9RhtMWHCBDVo0CDP/64fwmsRFxenrKwsSf9MHmULy6idK1euWJddvXpVUt5DrGNiYjR+/Pgc/1lGc9yM5T3SqFGjXPty3bp17Z6TIi0tTaNGjdLhw4fVvXt3vfrqq9Z1R48e1YoVK1SlShV99NFHOZ6jIUOG6P7771d0dLQ2btxoXX758mWVLVtWrVq1ynF/lSpVyjb64maqVaumtm3b5hhSXLp0aU2aNEklSpSwTnaXm/z073PnzmnNmjUymUyaPHlytiPQXl5emjx5ss11W1zfT+w54vjHH3/ozJkzqlKlit54441sR5pr1KhhvVrD/PnzrZdNvJ6Hh4fefffdbJPDNm7cWO3atVNWVpaSkpL0+uuvZzsloVOnTvL391dCQkKe739n7Ru/+OILpaWl6cUXX9SDDz6YbZ2fn591bg/LqVW22rRpk3bt2qWGDRtq8uTJ2T5bSpQooVdeeUX+/v7avn27Dh06lOP2Hh4emjJlSrbblS9f3jrCxDL6yGLevHmKjY3VwIEDNWDAgGz9tUKFCvrf//4nNzc3LVy4UGazWVL+P/ssp3Lcf//9OdqWKlUqxyilTp066d1335WXl5fi4+P166+/avLkyerbt69atWqlMWPG5DpfwJw5cxQfH6/27dvrpZdeynGEv1KlStne2472UTc3N73zzjs5noOsrCzr5I1Tp05VQEBAtvV33XWXnnvuOaWnp+uHH36w+3lyhOXzd8CAATkm2nzsscfUvn17paen59l/27Rpo4EDBzpUw40+9/59eqyFZb/k5eVl02WyS5QoYR3Zk5/PvpUrV+b62Xf9Npz9enXv3j3H/E8mk0kDBw5U8+bNdfjw4UKf0LNatWqaOHFitveSj4+PBg0aJCnn/uRm7H1vXO/pp5/WnXfema/7BQoCp36g0Fl+/NkyjKxx48YqXry4fv75Z91xxx3q3Lmz0yYl+vcXqvzKa0hkcHCwvv32W+3cuVOZmZk5zr0tLOfPn9fJkyclKdch/SaTSb1799aUKVO0fft2PfPMMzna/PtHnEXdunV17NgxxcTE2FTLvn37lJSUJC8vL3Xo0CHHesvEbd999522b9+unj172rRdW/17CPi/bdq0yfrDwBGWHxn5ERcXl23uEQs/Pz916tTpprevU6eOypQpo40bN2rWrFl66KGHnHL5X7PZrAkTJig0NFR33XWXPvjgg2zv2Q0bNshsNt/wknytW7fWhg0bFB4ebu1LTZs2VWhoqF599VU98cQTatSokU3nLt/Irl27FBYWpnPnziklJcX6Ori5uenKlSuKi4tT+fLlc9wuP/17x44dysrKUuPGjXM9xaNhw4Zq0KCBDh486NBjyQ9LwNajR49ch4Q/+OCDKl++vOLi4hQREZFjqHKTJk1yDeEss/IHBQXlespT7dq1s80J8m/O2DdmZWVZA668JnVs2rSpPDw8FBkZqdTU1JuenmWxYcMGSf88P7n9ECtWrJhatWqlQ4cOKTw8XP7+/tnWN2nSJNfPIcspaf/eL1rur1u3brnWU7VqVdWqVUtHjhxRdHS09TSm/Hz2BQYGasOGDZo0aZLGjBmj1q1b3/T56NOnj3r06KH169dr+/btioiI0MGDB5WamqrVq1dr3bp1mjx5crYJEjdt2iRJ6tev3w23beFoH23YsGGu+7MDBw7owoULqlmzZp6nkFpOvwsPD7cus+d5skdGRoZ27dolKffPX+mf59/y3OemS5cuDteR131LUlJSktMODNjz2bdv375cP/tGjx5tDTcK4vU6ceKENm3apBMnTigxMdH6ndTyHeD48eP5Po3PEW3bts0WFltYLnVu6/csC3vfG9fr2rVrvu4TKCgEFSh0lpQ9tx8O/1azZk1NmDBB//vf//T222/r7bfflp+fn+6880498MAD6tq1q93nbOZ27nF+3OjKDdI/E7XFxsbafDTe2Swfbl5eXnn+kLRc2SSvD8K8jsRbtpfbEbDcWH7Q3Og5v1ktjsjtsrnXGzx4cI6gonz58ipWrJiysrKsR3VuJrcJ6ixHPa8/SnQ9f3//bD9u33jjDf3000823Z/0z2sxZcoUTZgwQZ9++qk+/fRTeXt7684779R9992nhx56SGXKlLF5exYff/yxfv/9d9WrV08zZszI8T47deqUJOmnn366ab3XP/ZJkyZp5MiRWr58uZYvX64yZcqoadOmatOmjR555JF8jf64fPmyxowZo507d96wXUJCQq77m/z07/Pnz0vK+31vWZefoOL6fnLlypV8z71iea/kVZPJZFL16tUVFxeX6/sqt4lOJVmPOOa13tKf8nr/O2PfGBsbq4SEBEm5H03Nrb2tl5K29N3PPvtMn3322Q3b5va+zet5sfSbtLS0XO/PlqPjV65c0R133JHvz76hQ4dq586d2rJli4YNGyY3Nzc1aNBAd911l7p3757rJIXS/w+JLWFQUlKSNm7cqE8++UTR0dGaPHmy7rvvPlWrVk3S/7/Kha191dE+mtdnhuU5PXnyZLYJBXNz/Wto7/OUX7Gxsdb3R16P3RLA5PWZ5+h3FEk3nOwxrxGM1496zcjIuOmoioyMDMXFxUnK+dl37ty5PD/7XnvtNeuIGumfkViZmZnZ2jjz9crMzNTbb7+tH3744YbBimW/U1jyuz+5GXvfG9dzRt8DnIGgAoXKbDYrMjJSknIcpcrL4MGD1a1bN4WEhGjnzp3auXOnVqxYoRUrVmjatGlauHChXaMsSpUqle/b5Fd+jjJYUn0jceXJk9zc3OTv76+oqCjt2bPHpqsV7Nu3T5KsE4Je/+9Tp07leWTfUV26dNHdd9+tdevWaefOndq1a5fWrFmjNWvW6PPPP9e333570y8s11u0aJG+/vpreXt766uvvsq1Zkt/bdiwYY6hpf/WrFkz67/r1q2rVatWafPmzdq2bZvCw8O1c+dObdu2TTNmzNC7775r0wRu0j+hzs6dO9W8eXONGTNGAQEBKleunHV4+b333quLFy/m+T4s6v7t5+dnnVx43759Do3wssfNRrI4OtLlRm62b7x+f3ijo8IW159ScDOWbbds2fKml6GuX79+jmX5fV4s9/fvCZ5zc/1VPPLz2Ve6dGnNmTNHe/fu1aZNmxQeHq7w8HBFRERozpw5GjBggN56662b1urh4aGuXbuqefPm6tKli5KTk7Vx40b17ds3X4/ZWfL6nLb0H29vb91777033Mb1p8g463kqDIXxHSU3lqPw6enpOnDgwE3DgMjISKWnp0vK/tnXqFEjnTt3zuZTRHPjzNfru+++0+LFi+Xt7a3x48erefPmqly5snWExksvvaTff//drtEhjnD2ftbe98b1iqrvAf9GUIFCtWHDBmvyfrMd6PUqV66svn37Wr8sHT16VG+88YbCw8P18ccf64MPPiiQem/EMiv2v1kuJ1qyZMlsXzotX6QTExNzvZ3lSJWzWI4uWo5M5jaqwpK823ok0l6WL9OW5yY3hVVLfnTs2FFRUVFatWqVxo8ff8Mhp/v377deT/z601vatGkjDw8PJSUl6bfffrOed+psZcuWVXBwsDVQOXfunN555x2tW7dO77zzjhYsWGDTdkJCQvTf//5XZcqU0VdffZXnkRXLUaAWLVpo4sSJ+aq1RIkSuv/++61HyhMSEjRnzhxNnz5db731ljp37nzTH3SWI7/FihXTV199leMypElJSU45ncfC0i9v1IdvtC43xYoVU/v27bVs2TL98ssveuqpp+yqyfLeyY1lP1WY76v87htzU6FCBZUqVUopKSl69dVX7b5qQG4sfbdjx44aOnSo07Z7o/uLjo7W8OHDb3ipx9zk97MvMDDQ+sMyIyNDa9eu1WuvvaZFixapS5cuatOmjU33W7VqVdWtW1cRERHWUZCWx3L8+HEdO3bshqfTXb8dyfl91DLCw8vLy6ZLRP6bs56nvHh5ecnd3V1paWk6depUrmGuET/zJCkgIEB+fn46c+aMli9fftOgYvny5ZL+CV6vD8Q7dOigdevW6e+//9aVK1cceg874/X6448/JEmTJ0/OdX6O6Ohou+szEkffG4CRMJkmCk18fLz1MnL33HNPtskd86tu3boaNmyYJFlHaFhYAoF/DyF0tl9//TXX5b/88oukf47WXT9k0vJlJLeJmpKTk/M8T9XyeDIyMvJVX7Vq1axHC5cuXZpjvdlstp4fGhQUlK9t55flXPLY2FjrJcuul5KSopUrVxZKLfkxaNAgeXp66sqVK/r444/zbJeWlqZ33nlHktS8efNsj8HT01ODBw+W9M9108+dO1ewRf8fHx8fPf/885JyvkfysnfvXo0bN04mk0mfffbZDSe2tFzSNiQkxOZTgPLi6empMWPGqFy5ckpOTrbpC2N8fLwyMzPl6emZI6SQ/nl/OvPI2F133SWTyaQDBw7k+h6Oioqya36K4cOHy83NTVFRUZo7d+5N24eFhVn/bTnPeOXKlbm+BmvWrFFcXJzKlClz00tBO1N+9425KV68uO6++25J//8Hhq1u9hlg6burVq0qlKOnlksI5vdx5OZGn33/VqJECXXt2tV6UCAqKsq67maPOzMz03pKwvU/pC2PJa8JmP+toPqoZTLRI0eOWANie93oeXJkm5b5NnKbh0H65/LIkrE+86R/RppZJob94YcfrCMFc3PgwAEtXrxYkjRy5Mhso9Qefvhh+fn5KTU1VW+//bbT3mv2vl6Wg2S5he+HDx/Oczv2fgcrKDerx5nvDaCoEVSgwJnNZm3YsEF9+vRRdHS0vL29rT/qbmbr1q3asGGDdVjh9dv866+/JOU8z9zypaqgd9D79+/X119/nW1ZWFiYFi1aJOmfqx5cr23btpL+GVZ//TmpSUlJevPNN/P8AWtJx+2Zifrpp5+WJM2cOTPHl9SZM2cqMjJS5cqVK/BhvSVLlrSen/3BBx9kO/Kcnp6ud999VxcvXlT16tWdMoGYs1SsWFHvvvuuTCaT5s2bpylTpig5OTlbm5iYGD377LMKDw9XuXLl9L///S/HdkaPHq3mzZsrNjZW/fr109q1a3P90nb58uV8H9U5cOCAVq5cqZSUlBzrQkJCJOU9F8P1Tp06pWeeeUbJycl6++23s12fPTeNGjVSly5ddO7cOY0ePTrXo+hJSUn69ddfrSMbkpOTNWfOnFzPiw0LC9O1a9dUvHhxa5+/kcqVK6t8+fK6du2a9Qewxe7duzV16tSbbiM/fH191blzZ2VlZWnSpEnZzmOOi4vTpEmT7PoiXrduXY0fP17SP+eTT506NddzpI8fP65x48bpv//9r3VZt27d5OvrqwsXLmjKlCnZvrieOnXKejRt8ODBBTJhYF7yu2/My+jRo+Xm5qYPP/xQy5Yty/X0uEOHDmn16tXZlt3sM6Bjx45q2rSp9u7dqwkTJuTaH+Pi4vT999875cfJsGHDVK5cOc2dO1fffvttruecnzp1ynpkWsr/Z9/ChQt17NixHNu9ePGidej99e1Hjhypr776Ktf5Ea5du6ZJkybp4sWL8vT0tAY7kvTUU0+pTJkyCgkJ0SeffJKjvsuXL2cL0wqqj7q5uWn06NEym80aPXp0tvu0yMzM1NatW7V7927rsvw+T46wjJD6/vvvtXXr1mzrli5dqpCQELm5uemJJ55wyv05U79+/dShQwelp6dr2LBhWr9+fY42Gzdu1NChQ5Wenq4OHTrk+B7h7u6uTz/9VCVLltQff/yhUaNG6cSJE7ne365du3Ldfzrz9bLMq7Jw4cJs+5ILFy7otddey/O9bvk8OnLkiE33U9As9Zw4cSLH+0+y/70BGBGnfsCpfvzxR+ss32lpabp69aoOHDhgvRRp69at9d5779k8Uc/Bgwetl4Fr1KiRqlSpotTUVB04cEBnzpxR2bJl9cILL2S7TZcuXbR9+3a98soruvfee61HW4cOHZrvyepuZPDgwZo6daqWL1+uBg0a6MKFCwoLC1NWVpaeeOKJHBPAdevWTfPmzVNERIR69Oihli1bKisrSxEREXJzc9Ojjz5qPcJyvWbNmqlKlSo6cOCAevXqJX9/f5UoUUJ33HGH9chaXh5//HGFh4dr+fLlevTRR3XXXXepUqVK2r9/v44fP65SpUrpo48+cuqw6rw8//zzioiI0NatW9W9e3cFBQWpTJky2r17t86ePSsvLy999tlndk+OWlC6du2qTz75RG+88Ybmzp2rH3/8US1atFD58uUVExOj8PBwZWRkqGbNmpoxY0au57y7u7tr9uzZevPNN7VixQqNGjVKFStWVOPGjeXl5aWMjAydPn1aBw4cUGZmpqpXr27zUbazZ89q7NixKlWqlBo1aiQfHx9lZGTo0KFDOn78uNzc3PTKK6/cdDuzZs3S5cuXVbFiRe3YsUM7duzItd31w/Dfe+89Xbt2TRs3blTXrl0VEBCg6tWry2w268yZM4qKilJ6erpWrlypypUrKz09Xe+//77+97//yd/fX7Vq1ZKbm5vOnDlj/cL0zDPP2NQfixcvrueee05TpkyxDgGuUaOGzp49q/DwcD388MMKCwvL9+kYNzJx4kRFRUUpNDRUHTt2VOvWrWU2m7V9+3brFW0s4VB+DBo0SKVLl9Z///tfffnll5o7d64CAwNVtWpVpaam6tixY9agskePHtbbubu767PPPtPw4cP1/fffa+PGjWrWrJkSExO1bds2paam6t5779WoUaOc9hzYIr/7xrw0btxYH374oSZMmKDx48fr008/Vb169VShQgXFxcXp0KFDOn/+vLp3757t8qWdOnXSjBkzNH/+fB0+fFjVqlVTsWLF1KFDB3Xs2FHFihXTjBkzNHLkSC1btkx//vmnGjRoIF9fX6Wnp+vUqVM6dOiQMjMz1bt3b5su0Xgj1apV08yZMzVmzBh98MEH+uabb1S/fn15e3srISFBR48e1cmTJ9WsWTPr/Cz5/exbsmSJ3n77bVWvXl3169eXp6enrl69qrCwMKWkpKhNmzbZTkmLiYnRxx9/rKlTp6pOnTq64447VLJkSesPwKSkJJUqVUoffPBBtvejr6+vPv/8cz3//PP64osv9NNPP+nOO+9UiRIldPbsWUVGRuqhhx6yzrdSkH100KBBOnv2rGbPnq2BAweqfv36qlmzpkqVKqWLFy8qKirKGrpYLrWY3+fJEffff7+effZZzZo1S0899ZRatGhhPXVm//79Kl68uCZNmpTrPChFzTKqbuLEiVq2bJmeeeYZ1apVy3oKy8GDB62h+iOPPKL//ve/uc75ExgYqIULF+rFF1/UunXrFBISovr166tWrVoqXbq04uPjdejQIet+un379tnmTXDm6/XMM89o06ZNWrJkibZv365GjRopISFBO3bsUI0aNdS5c2etWbMmx+3uvfdeeXh4aO3aterfv79q166tYsWKqUWLFnr00Ufz+9Q6zNfXV02aNFFERIR69uypJk2aqGTJkqpQoYJefvllSfa9N/Lj+lDKEvTu27cv2/LnnntODzzwgEOPFSCogFPt2rXLekkuDw8PeXp6yt/fX02aNFG3bt3yPaN2hw4dlJCQoLCwMJ04cUJ79uxRqVKlVK1aNY0YMUIDBw7McfS1f//+SkxM1K+//qoNGzZYh5s+/PDDTg0qOnfurI4dO+rLL7+0Hvlq1KiRBg0alOvkb25ubpozZ44+++wzrV27Vps3b1bFihXVuXNnvfDCC9ajjf9m+ZH7ySefaPfu3YqKilJWVpZat25906DCZDLpf//7n9q1a6cffvhB+/fvV3JysipXrqzevXtr+PDhTn1ObsTd3V3ffPONlixZouXLlyssLExpaWny8fHR4MGDNXz4cMOdq2vRrVs3BQUFadGiRdqwYYP27dunxMRElStXTkFBQercubMeffTRG4YsZcqU0dSpU/XUU09p2bJl2rFjh/bs2aPExER5eHjIx8dHDz/8sDp16qT777/f5skBmzVrppdeeklhYWE6evSoIiMjraMSBg4cqEGDBtn0GluOMF25ciXPocpS9kvHeXp66ttvv9XKlSv166+/av/+/YqKilKZMmVUpUoV9ezZUx07drSGNx4eHpo8ebJ27NihAwcOaMuWLUpPT1eVKlX04IMPqn///taRR7YYMmSIqlevrm+++UZHjx7V4cOHVadOHU2cOFH9+/fP9TxkR3h7e2vJkiWaMWOG1qxZo/Xr16tSpUrq3r27XnjhhVxH09jq0UcfVfv27fXDDz/o77//1tGjRxUeHi53d3dVr15d/fr1U8+ePXXXXXdlu11gYKB++eUXff3119q4caPWrFkjd3d3NWrUSI888ogee+wxh39o51d+94030q1bNzVt2lTz58/Xli1btGvXLmVmZqpy5cqqWbOmBg4cmONSegEBAZo2bZpmz56tPXv2aOvWrTKbzapWrZq1T1StWlVLlizR0qVLtXLlSh08eFD79u1T+fLlVaVKFT3++OPq0KGD00ai3HXXXVqxYoUWLFhg3YekpaWpUqVK1vf+9WFLfj/7xo4dq7/++kt79uzRnj17FB8fr0qVKikwMFCPPvqoevToka0fTJs2zTqh7dGjRxUWFqb4+Hh5eHjojjvuUNu2bTVgwIBcDyrce++9+v333zVnzhxt2rRJmzZtUvHixVWlShU9/PDDOY6sF2QfffXVV9WpUyctWrRIu3bt0qZNm+Tm5iZvb2+1bt1aDzzwQLbnNb/Pk6NefPFFtWjRQgsWLLDeZ4UKFdS1a1cNHTrUaVcZKQju7u56//331bdvX/34448KCwvTxo0bZTab5e3trd69e6tPnz45Lin7b02bNtWqVau0YsUKrVu3ThEREdq0aZMyMzNVrlw51alTRw899JAeeuihHJOsO/P1atasmX7++Wd9+umn2rdvn0JCQuTj46NBgwbp2WefzTZa7XqVK1fW119/rRkzZmj//v3avXu3srKylJmZWSRBhfTP+/fjjz/W9u3b9ccffygjI0N+fn7WoELK/3sjP/bs2ZNjWUJCQrbleV1RBMgPk7mwp7cFAAC3ncGDBys0NFTfffed4c67BwAAtxbmqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGc1QAAAAAAADDYEQFAAAAAAAwDIIKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBglirqA/Lp48aI2b96siIgI7du3T5GRkUpNTVXr1q01f/78G942PT1d8+bN06+//qqTJ0/Kzc1NAQEBGjx4sB588MFCegQAAAAAACAvt1xQsWLFCk2ZMiXft0tNTdVTTz2lnTt3qnjx4qpXr56Sk5MVGhqq0NBQDR8+XC+//LJDtR08eFCS1KBBA4e2AwAAAACAq7rlTv3w9PTU3XffrZEjR2r69Ol67rnnbLrdhx9+qJ07d6p69er6/fff9euvv2rNmjWaOXOm3N3d9fXXXyskJMSh2tLS0pSWlubQNlC4UlNTtXPnTqWmphZ1KbhF0YfgKPoQHEUfgqPoQwCM5pYbUdGnTx/16dPH+ndMTMxNb3Pp0iUtXrxYkvTuu++qTp061nUdO3bUsGHDNHPmTE2fPl0dOnRwftEwrMzMzGz/B/KLPgRH0YfgKPoQHEUfAmA0t9yICnuEhIQoPT1dtWvXVps2bXKsf/zxxyVJ+/fv18mTJwu7PAAAAAAA8H9cIqjYvXu3JKlly5a5rq9ataqqV6+erS0AAAAAACh8LhFUREdHS5Jq1qyZZxvLuuPHjxdGSQAAAAAAIBe33BwV9oiLi5MklS9fPs82lnXXrl1z6L7MZrOSkpIc2gYKT3Jycrb/A/lFH4KjkpOTdflauiKPX1TJkiWLuhxJUumSxeVTqUxRlwEbsR+Co+hDtyYPD4+iLgEoMC4RVFhmMHZzc8uzjbu7uyQpJSXFoftKT09XZGSkQ9tA4bOMugHsRR+CvS5fS9e032Mk3Xxy6MI05qGqqlQu789NGA/7ITiKPnRryeu0duB24BJBheUIVXp6ep5tLJcVLVWqlEP35ebmpnr16jm0DRSe5ORkRUdHq3bt2ipdunRRl4NbEH0Ijoo8flFSjHwqlVapkkX/sZyWnqkzF5PkW6O26viWK+pyYAP2Q3AUfQiA0RT9N6JCUK7cP1+0LKeA5MayztLWXiaTiWFYt6DSpUvzusEh9CHYyxKmlypZQp6li/7Uj+RiGZKSVKpUKfr0LYb9EBxFHwJgFC4xmWbt2rUlSSdOnMizjeWypJa2AAAAAACg8LlEUHHnnXdKknbt2pXr+piYGJ0+fTpbWwAAAAAAUPhcIqjo2LGj3NzcFB0drW3btuVYv3jxYklSo0aNVKtWrcIuDwAAAAAA/B+XCCoqV66sfv36SZLeeOMNHTt2zLouJCRE33zzjSRp1KhRRVIfAAAAAAD4xy03mea5c+cUHBxs/dtytY5du3YpKCjIunzYsGEaPny49e9XXnlF+/fvV3h4uB566CHVr19fSUlJ1rkpnn76aXXq1KlwHgQAAAAAAMjVLRdUZGZmKjY2NsfyjIyMbMtTUlKyrS9VqpS+++47zZ07V7/99puio6Pl5uam1q1ba9CgQerSpUsBVw4AAAAAAG7mlgsqqlevroMHD9p1W3d3d40YMUIjRoxwclUAAAAAAMAZXGKOCgAAAAAAcGsgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKgAAAAAAgGEQVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKgAAAAAAgGEQVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKgAAAAAAgGEQVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKgAAAAAAgGEQVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADCMEkVdQFHYtm2b5syZoz179igpKUm+vr7q2rWrRowYIQ8Pj6IuDwAAAAAAl+VyIyrmz5+vIUOG6K+//lLJkiVVt25dnTlzRrNmzVKfPn0UGxtb1CUCAAAAAOCyXCqoiIiI0HvvvSdJevvtt/XXX39p2bJlWrt2rRo3bqyjR4/qzTffLOIqAQAAAABwXS4VVMycOVNZWVl65JFH1K9fP5lMJklS1apVNXXqVBUrVkyrV69WVFRUEVcKAAAAAIBrcpmgIjExUZs2bZIk9e3bN8f62rVrq02bNpKkVatWFWptAAAAAADgHy4TVERGRiotLU3u7u4KDAzMtU3Lli0lSXv27CnM0gAAAAAAwP9xmaDi+PHjkiRfX1+5ubnl2qZmzZrZ2gIAAAAAgMLlMpcnjYuLkySVL18+zzaWdZa2+ZWeni6z2ay9e/fadfuCkJaeqcwsc1GXYVhms5SVlaW9EVH6vylLgHyhD8FRGZlZeuHhaipezGSdO6komc1uymxRSjGnj+ryuaKvBzfHfgiOog/dXPFiJrm7FS/qMrIpWbKkGjRoUNRlAAXCZYKK1NRUScpzNIUkubu7Z2ubX5YvmEb4oilJGZlmxSakFXUZt4isoi4Atzz6EBzzT6hsnGA5OTWjqEtAvrEfgqPoQzdSqXxplShujO/5wO3OZYKKkiVLSvpn1ENe0tLSsrXNr+bNm9t1OwAAAAAA8A+XmaPCltM6bDk9BAAAAAAAFByXCSpq164tSTp79myeoypOnjyZrS0AAAAAAChcLhNUNGzYUG5ubkpLS8tzssudO3dKku68885CrAwAAAAAAFi4TFDh6empe++9V5K0ZMmSHOujo6O1bds2SVLXrl0LtTYAAAAAAPAPlwkqJOm5556TyWTS8uXL9cMPP8hs/md29QsXLmjcuHHKyspSp06dFBAQUMSVAgAAAADgmkxmy691FzF37ly9//77MpvN8vHxUYUKFXTkyBGlpaXpjjvu0KJFi1SxYsWiLhMAAAAAAJfkckGFJG3dulXffvut9u7dq6SkJPn6+qpr164aMWKEypQpU9TlAQAAAADgslwyqAAAAAAAAMbkUnNUAAAAAAAAYyOoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKgAAAAAAgGEQVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKpzo4MGDOnjwYFGXAQAAAAAFjt8/KCgEFU6UlpamtLS0oi4D+ZCamqqdO3cqNTW1qEvBLYo+BEfRh+Ao+hAcRR+CvdLS0pSQkEDfcTGFsc8gqIBLy8zMzPZ/IL/oQ3AUfQiOog/BUfQhOIq+41oKY59BUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKgAAAAAAgGEQVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAALBLZpa5qEvAbYigAgAAAABgl2tJmdp39HJRl4HbDEEFAAAAAMBuF64mF3UJuM0QVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKgAAAAAAgGEQVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKgAAAAAAgGEQVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGCWKuoDcXLx4UZs3b1ZERIT27dunyMhIpaamqnXr1po/f77T7mfDhg0aMWKEJMnPz08hISFO2zYAAAAAAMg/QwYVK1as0JQpUwr0PhITEzVp0qQCvQ8AAAAAAJA/hgwqPD09dffdd6tp06Zq2rSpDhw4oJkzZzr1Pj755BOdPXtWHTt21Lp165y6bQAAAAAAYB9DBhV9+vRRnz59rH/HxMQ4dfu7d+/WwoUL1bFjR3Xq1ImgAgAAAAAAg3C5yTTT09P15ptvqlSpUpo4cWJRlwMAAAAAAK7jckHFl19+qUOHDumFF15QtWrVirocAAAAAABwHZcKKo4ePaovv/xSjRs31uDBg4u6HAAAAAAA8C+GnKOiIJjNZv3nP/9RRkaGJk+erOLFixfY/SQlJRXItuF8ycnJ2f4P5Bd9CI6iD8FR9CE4ij50a/Lw8CjqEqzS09P5DeRCbrTPcFa/dJmgYtGiRdq1a5cGDx6spk2bFtj9pKenKzIyssC2j4IRHR1d1CXgFkcfgqPoQ3AUfQiOog/dWlq2bFnUJVhdunRZkZEpRV0GCllu+wxn9UuXCCpiYmI0depUVa1aVS+++GKB3pebm5vq1atXoPcB50lOTlZ0dLRq166t0qVLF3U5uAXRh+Ao+hAcRR+Co+hDcFTlypXUsOEdRV0GCklh7DNcIqh45513lJCQoClTpsjT07NA78tkMhlqGBZsU7p0aV43OIQ+BEfRh+Ao+hAcRR+Cvdzc3Og7Lqgg9xkuEVQcOHBAkjR58mRNnjw527qUlH+GKJ07d0733HOPJGnatGlq0aJF4RYJAAAAAABcI6iwuHTpUp7rsrKyrOvT09MLqyQAAAAAAHAdlwgqQkJC8ly3dOlSTZgwQX5+fjdsBwAAAAAACl6xoi7Amfr3768OHTpo7ty5RV0KAAAAAACwgyFHVJw7d07BwcHWv9PS0iRJu3btUlBQkHX5sGHDNHz4cOvfMTExOnPmjOLj4wutVgAAAAAA4DyGDCoyMzMVGxubY3lGRka25ZaJMAEAAAAAwO3BkEFF9erVdfDgwXzfzp45Jnr37q3evXvn+3YAAAAAAMD5bqs5KgAAAAAAwK2NoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKgAAAAAAgGEQVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKgAAAAAAgGEQVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKgAAAAAAgGEQVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKgAAAAAAgGEQVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhEFQAAAAAAADDIKgAAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGAQVAAAAAADAMAgqAAAAAACAYRBUAAAAAAAAwyCoAAAAAAAAhkFQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKgAAAAAAgGEQVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABgGQQUAAAAAADAMggoAAAAAAGAYBBUAAAAAAMAwCCoAAAAAAIBhlCjqAnJz8eJFbd68WREREdq3b58iIyOVmpqq1q1ba/78+fnentlsVnh4uEJCQrRz504dO3ZMCQkJKlu2rBo1aqTg4GD17NlTJpOpAB4NAAAAAACwlSGDihUrVmjKlClO2962bds0ZMgQ6981atSQn5+fzpw5o82bN2vz5s1asWKFpk2bJnd3d6fdLwAAAAAAyB9DBhWenp66++671bRpUzVt2lQHDhzQzJkz7d6e2WxW9erV9eSTT6pHjx6qVKmSdd0vv/yiN998U3/99Zc+++wzvfLKK854CAAAAAAAwA6GDCr69OmjPn36WP+OiYlxaHuBgYFatWqV3NzccqwLDg7W+fPn9cknn+inn37SSy+9pGLFmLoDAAAAAICi4BK/yD09PXMNKSzatWsnSYqNjdWVK1cKqywAAAAAAPAvLhFU3ExKSor136VKlSrCSgAAAAAAcG0EFfpn8k5JCggIkKenZxFXAwAAAACA6zLkHBWFKSIiQosXL5YkjRgxwuHtmc1mJSUlObwdFI7k5ORs/wfyiz4ER9GH4Cj6EBxFH7o1eXh4FHUJVunp6fwGciE32mc4q1+6dFBx6dIljRkzRhkZGercubN69Ojh8DbT09MVGRnphOpQmKKjo4u6BNzi6ENwFH0IjqIPwVH0oVtLy5Yti7oEq0uXLisyMuXmDXFbyW2f4ax+6bJBRXx8vIYPH66zZ8+qcePGev/9952yXTc3N9WrV88p20LBS05OVnR0tGrXrq3SpUsXdTm4BdGH4Cj6EBxFH4Kj6ENwVOXKldSw4R1FXQYKSWHsM1wyqEhMTNSwYcN04MAB1a9fX7Nnz3ba3BQmk8lQw7Bgm9KlS/O6wSH0ITiKPgRH0YfgKPoQ7OXm5kbfcUEFuc9wuck0k5OTNXLkSO3evVu1a9fWnDlzVKFChaIuCwAAAAAAyMWCitTUVD377LPasWOH/Pz8NHfuXHl7exd1WQAAAAAA4P+4TFCRnp6uMWPGaOvWrapatarmzZsnHx+foi4LAAAAAABc57YKKvr3768OHTpo7ty52ZZnZmbqpZde0oYNG+Tt7a158+apRo0aRVMkAAAAAADIkyEn0zx37pyCg4Otf6elpUmSdu3apaCgIOvyYcOGafjw4da/Y2JidObMGcXHx2fb3h9//KE///xTkuTu7q7XX389z/t+88031ahRI2c8DAAAAAAAkE/5CiouXLig1NRU+fn5qVixfwZjhIaGKjQ0NEfbhg0bqmPHjnYVlZmZqdjY2BzLMzIysi1PSbHtWr2WoEOSzpw5ozNnzuTZ9t8hBwAAAAAAKDw2BxVXrlxR165d1bx5c82ePdu6PDQ0VNOnT8/RvkyZMlqzZo0qVqyY76KqV6+ugwcP5vt2ISEhuS7v3bu3evfune/tAQAAAACAwmVzULF8+XIlJyfr5ZdfzrHOZDLp448/tv4dFxenyZMn69dff9WQIUOcUigAAAAAALj92RxUbNq0SfXq1VPDhg1zXd+9e/dsfy9btkwbNmwgqAAAAAAAADaz+aofhw4dUvPmzW3ecIMGDXT48GG7igIAAAAAAK7J5hEVsbGxuc430bp161zbV6xYUXFxcfZXBgAAAAAAXI7NQUXJkiWVnJycY3nr1q1zDStSUlLk7u7uWHUAAAAAAMCl2HzqR7Vq1fJ1JY6oqChVq1bNrqIAAAAAAIBrsjmoaNmypcLCwnTq1Kmbtj158qTCwsLUqlUrh4oDAAAAAACuxeagYsCAAcrIyNDYsWMVGxubZ7vY2FiNGzdOWVlZ6t+/vzNqBAAAAAAALsLmOSoCAgL01FNPac6cOerRo4cef/xxtW7dWlWqVJEkXbhwQdu3b9eSJUt06dIlPfXUUwoICCiwwgEAAAAAwO3H5qBCkl599VWVKFFC3377rWbOnKmZM2dmW282m1WsWDGNGDFCY8eOdWqhAAAAAADg9pevoMJkMumll17So48+qmXLlmn37t26dOmSJKlSpUpq3ry5evXqpdq1axdErQAAAAAA4DaXr6DConbt2oyYAAAAAAAATmfzZJoAAAAAAAAFza4RFadOndLSpUu1e/duXbx4UZLk7e1tPfWjRo0aTi0SAAAAAAC4hnwFFVlZWZo6darmzJmjrKwsmc1m67ojR45o69at+vLLL/X0009r7NixKlaMARsAAAAAAMB2+QoqJk2apCVLlqh8+fLq27ev2rZtq2rVqkmSzp8/ry1btuinn37SN998o2vXrmny5MkFUjQAAAAAALg92RxUbNu2TUuWLFFgYKBmzZqlSpUqZVtfp04d3X333Xr66af17LPPasmSJerevbuCgoKcXjQAAAAAALg92XxuxuLFi+Xh4aEZM2bkCCmuV7FiRU2fPl2lS5fW4sWLnVIkAAAAAABwDTYHFeHh4XrggQfk7e1907be3t564IEHtGvXLoeKAwAAAAAArsXmoOLKlSv5uppHjRo1dOXKFbuKAgAAAAAArsnmoMLDw0PXrl2zecPx8fHy8PCwqygAAAAAAOCabA4q6tWrp82bN2e7JGlesrKy9Pfff6tu3boOFQcAAAAAAFyLzUHFgw8+qJMnT2rGjBk3bTtr1iydOnVKXbp0cag4AAAAAADgWmwOKvr3769atWppxowZeu211xQdHZ2jTXR0tMaPH6/p06erZs2a6t+/vzNrBQAAAAAAt7kStjZ0d3fXV199pWHDhmn58uX69ddfVbVqVVWrVk2SdP78ecXExMhsNqt69er66quv5O7uXmCFAwAAAACA24/NQYUk1apVS8uWLdPXX3+tZcuW6fz58zp//rx1fZUqVdSrVy8NGzZMZcuWdXqxAAAAAADg9pavoEKSPD09NXbsWI0dO1Znz57VpUuXJEmVK1eWr6+v0wsEAAAAAACuI99BxfV8fX0JJwAAAAAAgNPYPJkmAAAAAABAQbN5RMXw4cPzvXGTyaSvvvoq37cDAAAAAACuyeagYtOmTbkuN5lMMpvNea4DAAAAAACwlc1Bxbp163Ismzt3rhYsWJDrOgAAAAAAgPyyOajw8/PLsax8+fJ5rgMAAAAAAMgvJtMEAAAAAACGQVABAAAAAAAMg6ACAAAAAAAYBkEFAAAAAAAwDIIKAAAAAABgGDZf9aN79+45ll29ejXPdZJkMpm0YsUKO0sDAAAAAACuxuag4tixY3atAwAAAAAAsJXNQUVUVFRB1gEAAAAAAMAcFQAAAAAAwDgIKgAAAAAAgGEQVAAAAAAAAMMgqAAAAAAAAIZBUAEAAAAAAAyDoAIAAAAAABiGTUFFVFSULl++XNC1AAAAAAAAF2dTUNGrVy99//331r+feOIJ/fLLLwVVEwAAAAAAcFE2BRXFixdXVlaW9e/Q0FCdPn26wIoCAAAAAACuyaagomrVqoqMjCzoWgAAAAAAgIsrYUuj9u3ba8GCBerWrZu8vb0lScuWLVNoaOgNb2cymTRv3jzHqwQAAAAAAC7BpqDixRdfVFpamjZs2KAdO3bIZDLpzJkzOnPmzA1vZzKZnFIkAAAAAABwDTYFFZ6ennr77betfwcEBGj06NEaPXp0gRUGAAAAAABcj01zVPxbr1691LBhQ2fXAgAAAAAAXJxNIyr+bcqUKc6uAwAAAAAAwL6gwuL06dP67bffFBkZqcTERJUpU0aNGjXSQw89pOrVqzurRgAAAAAA4CLsDirmzZunDz/8UJmZmTKbzdblq1ev1vTp0/XKK6/oySefdEqRAAAAAADANdgVVKxfv15TpkxRhQoVNGTIEAUFBcnb21uXLl3S9u3bNWfOHL3//vuqVauWHnjgASeXDAAAAAAAbld2BRVz5sxR+fLltWzZMlWrVs263M/PT82aNVPPnj0VHBysOXPmEFQAAAAAAACb2XXVjwMHDqh79+7ZQorr+fj4qFu3btq/f79DxQEAAAAAANdiV1CRnp6u0qVL37CNh4eH0tPT7SoKAAAAAAC4JruCitq1a2v9+vXKyMjIdX1GRob++usv1a5d25HaAAAAAACAi7ErqAgODtbx48c1dOhQRUREZFu3b98+DR8+XMePH1evXr2cUiQAAAAAAHANdk2m+cQTT2jHjh0KCQnRY489plKlSqlSpUq6fPmyUlJSZDab1bFjRz3xxBPOrhcAAAAAANzG7AoqihcvrpkzZ+qXX37RsmXLFBUVpXPnzsnT01PNmjVTcHCwgoODnVwqAAAAAAC43dkVVFgQSAAAAAAAAGeya44KAAAAAACAgkBQAQAAAAAADIOgAgAAAAAAGAZBBQAAAAAAMAyCCgAAAAAAYBgEFQAAAAAAwDAIKgAAAAAAgGGUcOTGFy9e1OrVq3X8+HElJyfr3XfflSRduXJFp0+flr+/v0qVKuWUQgEAAAAAwO3P7hEVCxcuVMeOHfXOO+9owYIFWrp0qXXd5cuX1a9fP/36669OKRIAAAAAALgGu4KKkJAQvfPOO/L399esWbPUv3//bOvr16+vBg0aaO3atU4pEgAAAAAAuAa7Tv2YPXu2fH199d1338nDw0P79+/P0cbf319hYWEOFwgAAAAAAFyHXSMqIiMjdf/998vDwyPPNlWrVtXly5ftLgwAAAAAALgeu4IKs9msEiVuPBjj8uXLcnd3t6soAAAAAADgmuwKKu644w7t3Lkzz/UZGRkKCwuTv7+/3YUBAAAAAADXY1dQ0bNnTx04cEDTp0/PsS4zM1MffPCBTp06peDgYEfrAwAAAAAALsSuyTQHDRqkkJAQzZgxQ7/99pv1FI8XXnhBEREROnPmjO655x716dPHqcUCAAAAAIDbm10jKtzc3DR79myNGDFCsbGxOnz4sMxms/7880/FxcVp+PDhmjVrlkwmk7PrBQAAAAAAtzG7RlRIkru7u8aOHasXX3xRx44dU1xcnDw9PVW3bl0VL17cmTUCAAAAAAAXYVdQ0bFjR7Vr105vvfWWTCaT6tat6+y6AAAAAACAC7Lr1I+rV6/K09PT2bUAAAAAAAAXZ1dQ0aBBA0VHRzu5FAAAAAAA4OrsCiqGDx+u9evXa9u2bc6uBwAAAAAAuDC75qi4du2a7rnnHg0dOlQdO3ZU06ZNVbly5Vyv8hEcHOxojQAAAAAAwEXYFVSMHz9eJpNJZrNZq1ev1urVqyUpW1BhNptlMpkIKgAAAAAAgM3sCiqmTJni7DoAAAAAAADsCyp69erl7DoAAAAAAADsm0wTAAAAAACgINg1osLi9OnT+u233xQZGanExESVKVNGDRs2VM+ePVW9enVn1QgAAAAAAFyE3UHFvHnz9OGHHyozM1Nms9m6fPXq1ZoxY4ZeeeUVPfnkk04pEgAAAAAAuAa7gor169drypQpqlChgoYMGaKgoCB5e3vr0qVL2r59u+bMmaP3339ftWrV0gMPPODkkgEAAAAAwO3KrqBizpw5Kl++vJYtW6Zq1apZl/v5+alZs2bq2bOngoODNWfOHIIKAAAAALiNnbmYqCOnY4u6DBSSlJQUXb6WXqD3YVdQceDAAfXs2TNbSHE9Hx8fdevWTb///rtDxQEAAAAAjG3FlpNaseVkUZeBQla3XqLqengUyLbtCirS09NVunTpG7bx8PBQenrBpiwAAAAAgKLlU9lDZUq5F3UZKCTJqWk6czFJyamZBXYfdgUVtWvX1vr16zVu3DiVKJFzExkZGfrrr79Uu3ZtR+sDAAAAABhYKffiKl3SoQtK4haSmVVwAYVFMXtuFBwcrOPHj2vo0KGKiIjItm7fvn0aPny4jh8/rl69ejmlSAAAAAAA4Brsir2eeOIJ7dixQyEhIXrsscdUqlQpVapUSZcvX1ZKSorMZrM6duyoJ554wtn1AgAAAACA25hdQUXx4sU1c+ZM/fLLL1q2bJmioqJ07tw5eXp6qlmzZgoODlZwcLCTSwUAAAAAALc7h04kIpAAAAAAAADOZNccFQAAAAAAAAXBrqBi/fr1Gj16tGJiYnJdHxMTo9GjR2vDhg0OFQcAAAAAAFyLXUHFwoULdfLkSVWtWjXX9VWrVtXp06e1aNEih4oDAAAAAACuxa6gIioqSs2aNbthm8DAQEVGRtpVFAAAAAAAcE12BRVxcXGqWLHiDdtUqFBBV69etasoAAAAAADgmuwKKipWrKjjx4/fsM3x48dVvnx5u4oCAAAAAACuya6golWrVlq/fr2ioqJyXR8VFaWQkBC1bt3aoeIAAAAAAIBrsSuoGD58uCRpwIABmj59usLDw3X27FmFh4dr+vTpGjBggIoVK6YRI0Y4tVgAAAAAAHB7K2HPjQICAvTRRx9p/PjxmjFjhmbMmGFdZzab5eHhoalTpyogIMBphQIAAAAAgNufXUGFJHXp0kWtWrXS0qVLtW/fPiUkJKhs2bIKDAxUr169bjrZJgAAAAAAwL/ZHVRIUqVKlayngQAAAAAAADjKrjkqAAAAAAAACoLNQUVKSopOnTqlhISEHOtOnz6tUaNGqWXLlmrZsqVGjhypo0ePOrVQAAAAAABw+7M5qJg/f74efPDBHAFEfHy8Bg0apJCQECUmJioxMVEbNmzQ4MGDdenSJacXDAAAAAAAbl82BxVhYWHy8fFRs2bNsi1fsGCBzp8/r1atWmnt2rXasmWLhgwZoitXrmju3LnOrhcAAAAAANzGbA4qjhw5olatWuVYvmbNGplMJr333nuqXr26KlasqPHjx6t27dr6+++/nVosAAAAAAC4vdkcVFy5ckU+Pj7ZlqWkpOjgwYPy9/dXjRo1sq0LCgrSqVOnnFMlAAAAAABwCTYHFZmZmUpKSsq2LCoqSpmZmQoMDMzR3svLS2lpaY5XCAAAAAAAXIbNQYWPj48OHDiQbVlYWJhMJlOuQUVcXJwqVqzoeIUAAAAAAMBl2BxUtG3bVrt27dJvv/0mSbp48aIWL16sYsWKqV27djna79+/X76+vs6rFAAAAAAA3PZsDipGjhwpT09PvfrqqwoKClL79u11+vRpPfLII6patWq2tufPn1dERIRat27t9IIBAAAAAMDtq4StDX18fDR//nxNmTJFe/bsUeXKldWtWzeNHTs2R9uff/5Znp6euY60sMXFixe1efNmRUREaN++fYqMjFRqaqpat26t+fPn27VNi23btmnOnDnas2ePkpKS5Ovrq65du2rEiBHy8PBwaNsAAAAAAMAxNgcVkhQQEKB58+bdtN2oUaM0atQou4tasWKFpkyZYvft8zJ//ny9++67MpvNqlatmnx8fHTkyBHNmjVLq1ev1qJFi+Tl5eX0+wUAAAAAALbJV1BRWDw9PXX33XeradOmatq0qQ4cOKCZM2c6tM2IiAi99957kqS3335bffv2lclkUkxMjJ599lnt379fb775pqZNm+aMhwAAAAAAAOxgyKCiT58+6tOnj/XvmJgYh7c5c+ZMZWVlKTg4WP369bMur1q1qqZOnapu3bpp9erVioqKUkBAgMP3BwAAAAAA8s/myTRvZYmJidq0aZMkqW/fvjnW165dW23atJEkrVq1qlBrAwC4rpgrSYqJTVdJr1q6EJuumCtJRV0SAABAkTPkiApni4yMVFpamtzd3RUYGJhrm5YtW2rLli3as2dPIVcHAHBF5y4laMZPe7Xn8EXrsmb1vTWqT6B8KnsWYWUAAABFyyVGVBw/flyS5OvrKzc3t1zb1KxZM1tbAAAKSsyVpBwhhSTtOXxRM37ay8gKAADg0lxiREVcXJwkqXz58nm2sayztLWX2WxWUhJfMG8VycnJ2f4P5Bd9CPZISknPEVJY7Dl8UUkp6XyWwGbsh+Ao+tCtycPDo6hLsEpOySjqElCIUlL/eb1TU1NzfF9xVr90iaAiNTVVkvIcTSFJ7u7u2draKz09XZGRkQ5tA4UvOjq6qEvALY4+hPwo6VXrhusTk9MVee5IIVWD2wX7ITiKPnRradmyZVGXYHX+CiGXK7p84ZwiUy5lW+asfml3UJGVlaVixbKfORIeHq6//vpL7u7uevTRR1WtWjWHC3SGkiVLSvonRMhLWlpatrb2cnNzU7169RzaBgpPcnKyoqOjVbt2bZUuXbqoy8EtiD4Ee8TE5v15JEllSrupjk/DQqoGtzr2Q3AUfQiO6tLaVw+0rFHUZaCQpKam6vKFc2oZWL/A9hl2BRXvvfeevv/+e23evFnlypWT9M/VMsaNG6esrCxJ0oIFC7Rs2TJDhBW2nNZhy+khtjCZTIYahgXblC5dmtcNDqEPIT88UpLUrL53rqd/NKvvLY9SbvQn5Bv7ITiKPgR71fIpryb1iv53HwpHUlKSIlMuFeg+w67JNLdv3642bdpYQwpJ+vzzz1W2bFl98MEHeuWVV3Tt2jXNnj3baYU6onbt2pKks2fP5jmq4uTJk9naAgBQUKpW9NCoPoFqVt8723LLVT+qVuSHAgAAcF12jag4f/687rrrLuvfp06d0rFjxzR69Gg98sgjkqSwsDBt2rTJOVU6qGHDhnJzc1NaWpr27t2b63kzO3fulCTdeeedhVwdAMAV+VT21Ji+dyopJV2JyekqU9pNHqXcCCkAAIDLs2tERVJSUrYhHjt27JDJZFK7du2sy+rVq6eYmBjHK3QCT09P3XvvvZKkJUuW5FgfHR2tbdu2SZK6du1aqLUBAFxX1YoequrlptTYE6rqRUgBAAAg2RlUVKlSRcePH7f+vWnTJnl4eKhx48bWZQkJCdYraRSW/v37q0OHDpo7d26Odc8995xMJpOWL1+uH374QWazWZJ04cIF69wanTp1UkBAQKHWDAAAAAAA/j+7Tv1o3bq1fv/9dy1YsEAlS5bUmjVr1LFjRxUvXtza5uTJk6patapdRZ07d07BwcHWvy1X5Ni1a5eCgoKsy4cNG6bhw4db/46JidGZM2cUHx+fY5uBgYEaP3683n//fU2cOFGzZs1ShQoVdOTIEaWlpemOO+7QO++8Y1e9AAAAAADAOewKKp555hmtXbtW7777rsxms0qXLq0xY8ZY1yckJCgsLEy9evWyq6jMzEzFxsbmWJ6RkZFteUpKSr62O2TIEDVo0EDffvut9u7dq8uXL8vX11ddu3bViBEjVKZMGbvqBQAAAAAAzmFXUFGrVi2tWLFCq1evliS1b99efn5+1vUnTpxQv3799NBDD9lVVPXq1XXw4MF83y4kJOSmbdq2bau2bdvaUxYAAAAAAChgdgUV0j/zVAwaNCjXdY0bN842XwUAAAAAAIAt7A4qcnP69Glt2bJF7u7u6ty5M6dSAAAAAACAfLErqPjiiy+0ZMkSLVu2TOXLl5ckbd++Xc8884x13ohZs2bphx9+kJeXl9OKBQAAAAAAtze7Lk+6du1a+fn5WUMKSfroo4+UlZWlMWPGqH///jpx4oTmzZvntEIBAAAAAMDtz66g4syZM6pXr57175iYGO3bt08DBgzQc889p4kTJ6pt27Zau3at0woFAAAAAAC3P7uCioSEBJUrV876d1hYmEwmkzp06GBd1qhRI509e9bxCgEAAAAAgMuwK6ioXLmyzpw5Y/178+bNcnd3V7NmzazLUlNTZTKZHK8QAAAAAAC4DLsm02zatKnWrVun9evXq2TJkvrjjz8UFBQkd3d3a5vTp0+rSpUqTisUAAAAAADc/uwKKkaOHKm//vpLzz33nCTJZDJp5MiR1vVpaWkKCwtT586dnVMlAAAAAABwCXYFFY0bN9aSJUu0fPlySVK3bt0UGBhoXX/gwAEFBQXpoYceck6VAAAAAADAJdgVVEhSQECAAgICcl135513asaMGXYXBQAAAAAAXJPdQYVFYmKioqOjlZycrFatWjmjJgAAAAAA4KLsuuqH9M9kmc8++6xat26tPn366IknnrCu27lzp7p3767t27c7pUgAAAAAAOAa7Aoqzp49q379+mnjxo3q2LGj7rzzTpnNZuv6Zs2a6erVq1qxYoXTCgUAAAAAALc/u4KKadOmKS4uTvPnz9fnn3+ue+65J9v6EiVKqFWrVtq1a5dTigQAAAAAAK7BrqBi06ZN6ty5s1q0aJFnG19fX8XExNhdGAAAAAAAcD12BRVxcXHy8/O7YRuz2ay0tDS7igIAAAAAAK7JrqCicuXKOnHixA3bHDp0SD4+PnYVBQAAAAAAXJNdQcXdd9+t9evXKyoqKtf1YWFh2rZtm+6//36HigMAAAAAAK6lhD03evbZZ/Xnn39q0KBBGjp0qHV0xYYNGxQeHq65c+eqQoUKGjp0qFOLBQAAAAAAtze7gorq1atr9uzZGjt2rD777DOZTCaZzWY988wzMpvN8vX11WeffaYqVao4u14AAAAAAHAbsyuokKRmzZpp9erVWr9+vfbs2aO4uDh5enoqMDBQHTt2lLu7uzPrBAAAAAAALsDuoEKSSpQooc6dO6tz587OqgcAAAAAALgwuybTBAAAAAAAKAh2j6hIS0vT2rVrtW/fPsXHxyszMzNHG5PJpPfee8+hAgEAAAAAgOuwK6g4c+aMnn76aZ08eVJmsznPdgQVAAAAAAAgP+wKKqZMmaITJ07okUce0aOPPqpq1aqpePHizq4NAAAAAAC4GLuCim3btqlt27b64IMPnF0PAAAAAABwYXZNppmVlaWGDRs6uxYAAAAAAODi7AoqmjVrpmPHjjm7FgAAAAAA4OLsCipeeuklbdu2TatWrXJ2PQAAAAAAwIXZNUfFX3/9paCgII0dO1aLFi1S48aNVaZMmRztTCaTRo0a5XCRAAAAAADANdgVVEyfPt3679DQUIWGhubajqACAAAAAADkh11BxXfffefsOgAAAAAAAOwLKlq3bu3sOgAAAAAAAOybTBMAAAAAAKAg2B1UZGRkaO7cuerTp49atGihRo0aWddFRkZq0qRJOn78uFOKBAAAAAAArsGuUz9SUlL09NNPKzw8XBUqVJCnp6eSk5Ot66tXr66lS5eqfPnyGjt2rNOKBQAAAAAAtze7RlR88cUX2rVrl8aNG6fNmzfrsccey7a+bNmyuuuuu/T33387pUgAAAAAAOAa7Aoq/vjjDwUFBWn48OEymUwymUw52tSoUUPnzp1zuEAAAAAAAOA67Aoqzp49qyZNmtywTZkyZRQfH29XUQAAAAAAwDXZFVSUKVNGV65cuWGbU6dOqWLFinYVBQAAAAAAXJNdQcWdd96pkJAQXbt2Ldf1586d04YNG9SqVSuHigMAAAAAAK7FrqBi6NChunbtmoYMGaKdO3cqIyNDkpScnKytW7dq6NChyszM1FNPPeXUYgEAAAAAwO3NrsuT3nXXXXrzzTf13nvvadCgQdblLVq0kCQVL15cb7311k3nsQAAAAAAALieXUGFJA0YMEBBQUH6/vvvtXfvXsXFxalMmTJq1qyZBgwYoPr16zuzTgAAAAAA4ALsDiokqW7duvrPf/7jrFoAAAAAAICLs2uOiunTp2vHjh03bBMWFqbp06fbVRQAAAAAAHBNdgcV27dvv2GbHTt2aMaMGXYVBQAAAAAAXJNdQYUt0tPTVbx48YLaPAAAAAAAuA3ZHVSYTKY816WlpSksLEwVK1a0d/MAAAAAAMAF2TyZZseOHbP9PW/ePC1dujRHu6ysLF29elWpqal67LHHHK8QAAAAAAC4DJuDCrPZbP23yWSS2WzOtsy6wRIlVK9ePbVp00bPPfecc6oEAAAAAAAuweagIiQkxPrvgIAAPfnkkxo9enSBFAUAAAAAAFyTzUHF9datW6dy5co5uxYAAAAAAODi7Aoq/Pz8rP8+cuSIjh07pqSkJAUHBzurLgAAAAAA4ILsvurH3r179cgjj6hnz5564YUXNGHCBOu6HTt2qFmzZlq3bp1TigQAAAAAAK7BrqDi8OHDevLJJ3X69GkNGTJE7dq1y7a+VatWqlChglatWuWUIgEAAAAAgGuwK6iYNm2aJGnp0qV67bXX1LRp02zrTSaT7rzzTu3bt8/xCgEAAAAAgMuwK6gIDQ1Vly5dVKtWrTzb+Pj46OLFi3YXBgAAAAAAXI9dQUViYqIqVqx4wzapqanKysqyqygAAAAAAOCa7AoqfHx8dOjQoRu2OXDggGrUqGFXUQAAAAAAwDXZFVQ88MAD2rx5s7Zs2ZLr+pUrV2r37t3q1KmTQ8UBAAAAAADXUsKeGz3zzDP6888/NWLECAUHB+vSpUuSpIULF2r37t1asWKF/Pz89NRTTzm1WAAAAAAAcHuzK6ioWLGiFixYoFdeeUU//fSTdfk777wjSWrWrJk+/vhjlS1b1jlVAgAAAAAAl2BXUCFJNWrU0OLFixUZGandu3crLi5Onp6eCgwMVGBgoDNrBAAAAAAALsLuoMKiYcOGatiwoTNqAQAAAAAALs6uyTQBAAAAAAAKgk0jKqZPn27Xxk0mk0aNGmXXbQEAAAAAgOshqAAAAAAAAIZhU1Dx3XffFXQdAAAAAAAAtgUVrVu3Lug6AAAAAAAAmEwTAAAAAAAYh0OXJ92/f7+WLVumyMhIxcfHq2zZsmrUqJGCg4PVuHFjZ9UIAAAAAABchN1BxQcffKB58+YpKysr2/KdO3dq4cKFGjJkiF599VWHCwQAAAAAAK7DrqBiwYIFmjNnju644w49++yzatWqlSpXrqxLly5px44dmjVrlubMmSM/Pz8NHDjQ2TUDAAAAAIDblF1zVCxatEg+Pj768ccf9fDDD8vX11fu7u7y9fXVI488oh9//FFVq1bVwoULnV0vAAAAAAC4jdkVVJw+fVoPPvigPD09c11ftmxZPfjggzp9+rRDxQEAAAAAANdiV1BRqVIlm9pVrlzZns0DAAAAAAAXZVdQ0aNHD61evVqJiYm5rk9ISNDq1avVo0cPh4oDAAAAAACuxa6g4vnnn1dAQIAee+wxrVixQufPn1d6errOnz+v33//XX379lWjRo00ZswYZ9cLAAAAAABuY3Zd9aNZs2aSJLPZrJdffjnHerPZrOPHj1vbWZhMJh04cMCeuwQAAAAAAC7ArqCiVatWzq4DAAAAAADAvqBi/vz5zq4DAAAAAADAvjkqAAAAAAAACgJBBQAAAAAAMAy7Tv2QpFOnTum7775TVFSULly4oIyMjBxtTCaT1q5d61CBAAAAAADAddgVVGzcuFGjRo1Senq6SpQooUqVKql48eI52pnNZocLBAAAAAAArsOuoOKjjz5S8eLF9b///U9dunRRsWKcQQIAAAAAABxnV8IQHR2thx56SN26dSOkAAAAAAAATmNXylC5cmWVLFnS2bUAAAAAAAAXZ1dQ0bNnT23cuFGpqanOrgcAAAAAALgwu4KK0aNHq06dOho6dKh27typxMREZ9cFAAAAAABckF2Tabq5uWnw4MEaN26cBg0alGc7k8mkAwcO2F0cAAAAAABwLXYFFStXrtTLL7+srKws1ahRQ97e3rlenhQAAAAAACA/7AoqZsyYobJly+rrr79WYGCgs2sCAAAAAAAuyq45Kk6fPq3u3bsTUgAAAAAAAKeyK6ioVq2aMjMznV0LAAAAAABwcXYFFX379tX69esVGxvr5HIAAAAAAIArs2uOii5dumjXrl3q37+/nn32WQUEBMjT0zPXtr6+vg4VCAAAAAAAXIddQUWnTp1kMplkNpv12muv5dmOy5MCAAAAAID8sCuoCA4OlslkcnYtAAAAAADAxdkVVLz//vvOrgMAAAAAAMC+yTQBAAAAAAAKgl0jKq63c+dORUVFKSEhQZ6engoICFDLli2dURsAAAAAAHAxdgcVu3bt0oQJE3Ty5ElJktlsts5bUatWLU2ZMkXNmzd3TpUAAAAAAMAl2BVUHD58WEOHDlVycrLuueceBQUFydvbWxcvXtT27du1efNmDR06VEuWLFG9evWcXTMAAAAAALhN2RVUzJgxQ+np6frqq6/Url27bOtGjBihjRs36rnnntOMGTP0ySefOKVQAAAAAABw+7NrMs3Q0FB16dIlR0hh0a5dO3Xp0kXbt293qDgAAAAAAOBa7Aoq4uPjVb169Ru2qV69uuLj4+0qCgAAAAAAuCa7gooqVapo9+7dN2yzZ88eValSxZ7NAwAAAAAAF2VXUNGhQweFhobq008/VWpqarZ1qamp+vzzz7V9+3Z17NjRKUUCAAAAAADXYNdkms8995z++usvffnll/rhhx8UGBioSpUq6fLly9q3b5+uXLmiGjVq6LnnnnN2vQAAAAAA4DZmV1BRoUIF/fDDD/rwww+1cuVKbdiwwbquZMmS6t27t15++WV5eXk5q04AAAAAAOAC7AoqJKlixYqaMmWK3n77bR07dkwJCQny9PRUnTp15Obm5swaAQAAAACAi7A7qLBwc3NTgwYNnFELAAAAAABwcfmaTHPWrFmaOnWq0tPT82yTlpamqVOn6quvvnK4OAAAAAAA4FpsDiq2bNmizz//XF5eXjc8tcPd3V0VKlTQJ598om3btjmlSAAAAAAA4BpsDip++eUXlStXToMGDbpp24EDB6p8+fJaunSpQ8UBAAAAAADXYnNQER4errvvvlvu7u43bevu7q67775bu3btcqg4AAAAAADgWmwOKi5cuKAaNWrYvOHq1avr4sWLdhUFAAAAAABck81BRbFixW44iea/paenq1ixfM3VCQAAAAAAXJzNSUKVKlV0+PBhmzd8+PBhValSxa6iAAAAAACAa7I5qGjZsqW2bdum06dP37Tt6dOntW3bNt11110OFQcAAAAAAFyLzUHFwIEDlZGRoeeff15XrlzJs93Vq1f1wgsvKDMzU/3793dKkQAAAAAAwDWUsLVh48aN9eSTT2revHnq0aOHHn/8cQUFBalatWqSpJiYGG3dulVLlizRlStX9NRTT6lx48YFVjgAAAAAALj92BxUSNL48eNVsmRJzZ49W1988YW++OKLbOvNZrOKFy+ukSNH6sUXX3S4uG3btmnOnDnas2ePkpKS5Ovrq65du2rEiBHy8PDI9/bOnj2rb7/9Vn///bfOnTunrKwseXt7KygoSEOGDFGDBg0crhkAAAAAANgvX0GFyWTSuHHj1KdPH/38888KDw/XpUuXJEmVK1dWixYt1Lt3b9WsWdPhwubPn693331XZrNZ1apVk4+Pj44cOaJZs2Zp9erVWrRokby8vGzeXnh4uIYOHarExES5ubmpevXqcnNz08mTJ7V06VL9+uuv+uijj9StWzeHawcAAAAAAPbJV1BhUbNmTY0dO9bZtVhFRETovffekyS9/fbb6tu3r0wmk2JiYvTss89q//79evPNNzVt2jSbtmc2m/Xaa68pMTFRzZs319SpU+Xr6ytJio+P16RJk/T777/rP//5j+69916VLVu2wB4bAAAAAADIm82TaRammTNnKisrS4888oj69esnk8kkSapataqmTp2qYsWKafXq1YqKirJpe0eOHNGJEyckSf+vvTuPi7Lc/z/+HhVERMUtDTdczoALKG64VYp2wvSQnjouqeWKYdrpqKWn1MzKOMey1ErTcu3U0Tx53G1TWxQ9uYQbmhsuWIrkhmwj3L8//M78HBkUGJAbfT0fDx/CfV9zzee+55ph5j33fd2TJ092hBSSVK5cOb355pvy9vZWcnKyduzYUfAbBAAAAAAAcsV0QcXVq1f1ww8/SJJ69eqVbb2/v7/atGkjSdqwYUOu+kxLS3P8XKtWrWzrPT09Va1aNUnStWvX8lwzAAAAAAAoGKYLKuLi4pSRkSFPT08FBwe7bNOiRQtJUmxsbK76rFu3rry8vCRdn6viZufOndPp06dVsmRJNWrUKJ+VAwAAAAAAd5kuqDh+/Lgkyc/PTx4eHi7b2CfrtLe9HR8fH40YMUKS9Pe//10bNmzQhQsXlJycrG3btikyMlI2m02RkZGqUaNGAWwFAAAAAADIj3xNplmYLl26JEmqUKFCjm3s6+xtc2P48OGqWrWqPv74Y/31r391Wufv76933nlHjz76aD4qdmYYhlJSUtzuB3dGamqq0/9AXjGG4C7GENzFGIK7GEPFk7e3d1GX4GCz2fgMdA+51WtGQY1L0wUV6enpkpTj0RTS9TklbmybGzabTadOndKlS5dUqlQpx+VJT5w4oRMnTmj58uVq3ry5qlev7lb9NptNcXFxbvWBOy8+Pr6oS0AxxxiCuxhDcBdjCO5iDBUv9tPhzeD8+STFxaXdviHuKq5eMwpqXJouqChdurSk6x/4c5KRkeHUNjdGjhypzZs368EHH9Trr7/umDzz0qVLev3117Vq1Sr17t1ba9eulY+PT77r9/DwUIMGDfJ9e9xZqampio+Pl7+/v8qUKVPU5aAYYgzBXYwhuIsxBHcxhuCuKlUqq2HDukVdBu6QO/GaYbqgIjendeTm9JAbbdy4UZs3b1bFihU1ffp0lStXzun+pk6dqn379unYsWP69NNPFRkZme/6LRaLqQ7DQu6UKVOGxw1uYQzBXYwhuIsxBHcxhpBfHh4ejJ17UGG+ZphuMk1/f39J0pkzZ3I8quLkyZNObW9nx44dkqTg4GCnkMLOw8NDoaGhkqR9+/blsWIAAAAAAFBQTBdUNGzYUB4eHsrIyNCePXtcttm5c6ckqVmzZrnq8+rVq7m+/7zMewEAAAAAAAqW6YIKHx8fdejQQZK0bNmybOvj4+O1bds2SVJ4eHiu+qxb9/r5Unv27NGVK1eyrbfZbNq+fbtTWwAAAAAAcOeZLqiQpBEjRshisWjlypVaunSpDMOQJJ07d06jR49WVlaWunTposDAQKfbhYWFKSwsTBs2bHBaHh4eLk9PT124cEGjR4/W2bNnHesuXbqkl156SceOHZPFYlFEREThbyAAAAAAAHDJdJNpStfnkhg/fryio6M1adIkzZ49WxUrVtSRI0eUkZGhunXr6rXXXst2u4SEBEnKdg3f6tWr67XXXtPLL7+s77//XmFhYU6XJ83IyJDFYtHYsWPVqFGjO7KNAAAAAAAgO1MGFZI0cOBABQQEaP78+dqzZ4+SkpLk5+en8PBwRUZGqmzZsnnqr0ePHgoMDNSiRYu0Y8cOnTlzRoZhqGrVqgoJCVG/fv1MdS1iAAAAAADuRaYNKiSpbdu2atu2ba7bHzp06JbrAwMD9eabb7pbFgAAAAAAKCSmnKMCAAAAAADcmwgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATKNUURdwK9u2bdOCBQsUGxurlJQU+fn5KTw8XJGRkfL29s5Xn4ZhaO3atVqxYoXi4uJ0+fJl+fr6qn79+nrwwQc1ZMiQAt4KAAAAAACQW6Y9omLJkiUaOHCgNm/erNKlS6t+/fpKSEjQ7Nmz9cQTT+jixYt57vPq1asaPHiwxowZox9//FHe3t4KDAyUh4eHfvrpJ82dO7fgNwQAAAAAAOSaKY+o2Ldvn6ZOnSpJmjJlinr16iWLxaKzZ88qKipK+/fv18SJEzVr1qxc92kYhkaNGqWtW7fqgQce0KRJk1S7dm3H+suXL+unn34q8G0BAAAAAAC5Z8ojKj744ANlZWXpscceU+/evWWxWCRJ1apV0/Tp01WiRAl99dVXOnjwYK77/OKLL7RlyxY1bdpUc+bMcQopJKl8+fLq3LlzgW4HAAAAAADIG9MFFVevXtUPP/wgSerVq1e29f7+/mrTpo0kacOGDbnud+HChZKkqKgolSplygNJAAAAAAC455nuE3tcXJwyMjLk6emp4OBgl21atGihrVu3KjY2Nld9njx5Ur/88otKlCih0NBQxcbG6j//+Y9Onjwpb29vNWvWTE888YQqVapUkJsCAAAAAADyyHRBxfHjxyVJfn5+8vDwcNnGftqGve3t7Nu3T5Lk6+urf/3rX3r77bdlGIZj/bfffqt58+Zp1qxZjqM1AAAAAADAnWe6oOLSpUuSpAoVKuTYxr7O3vZ2zp07J+n6hJlvvfWWOnbsqBdeeEG1a9fW8ePHNXXqVG3btk2jRo3S6tWrVb169XzXbxiGUlJS8n173FmpqalO/wN5xRiCuxhDcBdjCO5iDBVP3t7eRV2Cg81m4zPQPeRWrxkFNS5NF1Skp6dLUo5HU0iSp6enU9vbsT9prl27ptq1a+u9995z9B8QEKA5c+bo4YcfVmJiohYtWqRx48blu36bzaa4uLh83x5FIz4+vqhLQDHHGIK7GENwF2MI7mIMFS8tWrQo6hIczp9PUlxcWlGXgTvM1WtGQY1L0wUVpUuXlnT9A39OMjIynNrmtk9J6tevX7YQpEyZMurTp49mzZqlH374wa2gwsPDQw0aNMj37XFnpaamKj4+Xv7+/ipTpkxRl4NiiDEEdzGG4C7GENzFGIK7qlSprIYN6xZ1GbhD7sRrhumCityc1pGb00NuVL58ecfP9evXd9nGvvz06dO56jMnFovFVIdhIXfKlCnD4wa3MIbgLsYQ3MUYgrsYQ8gvDw8Pxs49qDBfM0x3eVJ/f39J0pkzZ3I8quLkyZNObW+nXr16jp9zOqXEftRFVlZWLisFAAAAAAAFzXRBRcOGDeXh4aGMjAzt2bPHZZudO3dKkpo1a5arPhs1aiQvLy9J0qlTp1y2sYcf7kykCQAAAAAA3GO6oMLHx0cdOnSQJC1btizb+vj4eG3btk2SFB4enqs+y5Qpo06dOkmS/vvf/2ZbbxiGVqxYIUlcnhQAAAAAgCJkuqBCkkaMGCGLxaKVK1dq6dKlMgxD0vXLjI4ePVpZWVnq0qWLAgMDnW4XFhamsLAwbdiwIVufI0eOVKlSpbRjxw69//77yszMlHT9SiDTpk3TwYMHVbp0aQ0cOLDQtw8AAAAAALhmusk0JSk4OFjjx49XdHS0Jk2apNmzZ6tixYo6cuSIMjIyVLduXb322mvZbpeQkCBJLq/h26BBA73++ut6+eWXNXPmTH3yySeqWbOmTp48qYsXL8rDw0NTp051ms8CAAAAAADcWaYMKiRp4MCBCggI0Pz587Vnzx4lJSXJz89P4eHhioyMVNmyZfPcZ8+ePdWgQQN99NFH2rFjh+Li4uTr66vu3btr2LBh2Y7QAAAAAAAAd5ZpgwpJatu2rdq2bZvr9ocOHbptm6CgIM2YMcOdsgAAAAAAQCEx5RwVAAAAAADg3kRQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAPl2X8UyRV0C7jKliroAAAAAAEDxVN67pJrUr1zUZeAuwxEVAAAAAIB8KVnCUtQl4C5EUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmQVABAAAAAABMg6ACAAAAAACYBkEFAAAAAAAwDYIKAAAAAABgGgQVAAAAAADANAgqAAAAAACAaRBUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAAAAAAGAaBBUAAAAAAMA0CCoAAAAAAIBpEFQAAAAAAADTIKgAAAAAAACmYTEMwyjqIu4Wu3btkmEY8vT0LOpSkEuGYchms8nDw0MWi6Woy0ExxBiCuxhDcBdjCO5iDBVPnp6eCggIKNIa7J9/GDv3llu9ZhTUuCzldg9w4MlZ/FgsFoIluIUxBHcxhuAuxhDcxRhCftk///A56N5yJ14zOKICAAAAAACYBnNUAAAAAAAA0yCoAAAAAAAApkFQAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJhGqaIuAHBXYmKitmzZon379mnv3r2Ki4tTenq6WrdurSVLlrjd/3fffafPP/9cP//8sy5evKgKFSqoVq1aCg0N1ahRo1SqFE+j4q6wxtCFCxe0YMECbdq0SadPn5bNZlOlSpUUEhKiAQMGqGXLlgW4FSgqhmFo9+7d2rhxo3bu3Kljx44pOTlZ5cqVU6NGjdSjRw/96U9/ksViyVf/X375pT755BMdPHhQNptNderUUUREhJ566il5eHgU8NagKBTGGMrMzNS2bdu0efNm7d69W/Hx8UpLS5Ovr6+CgoLUu3dvdezYsfA2CndUYb8O3ehf//qXpkyZIkkF9l4Lxc+2bdu0YMECxcbGKiUlRX5+fgoPD1dkZKS8vb2Lujzkgzvvh202mxYtWqRVq1bp5MmT8vDwUGBgoAYMGKA//vGP+arHYhiGka9bAiaxcOFCvfnmm9mWu/vH89q1a/r73/+uVatWSZLuv/9+ValSRRcvXtRvv/0mm82mXbt2qWzZsvm+D5hDYYyh+Ph49e/fX4mJiSpRooRq1KghHx8fnTx5UlevXpXFYtH48eM1cOBAN6tHUYuJiXF6HGvVqqXy5csrISFBFy9elCR17NhRs2bNkqenZ576/sc//qH58+dLkmrXrq0yZcroyJEjyszMVKtWrTR//vw89wnzKYwx9Pnnn2vChAmSpBIlSqh27doqW7asTpw4oeTkZElS79699eqrrxbIh1cUrcJ8HbrR2bNn9eijjzrGEEHFvWnJkiV64403ZBiGqlevrkqVKunIkSPKyMhQ/fr19emnn8rX17eoy0Qe5ff9cHp6ugYNGqSdO3eqZMmSatCggVJTU3Xy5ElJ0rBhwzR27Ng818NXwSj2fHx81K5dOwUFBSkoKEgHDhzQBx984Ha/kydP1qpVqxQUFKQpU6aoUaNGjnWpqanaunUrHxDuEoUxhl555RUlJibK399f77//vho0aCDp+ov5u+++q/nz52vatGnq2LGj/P39C2ArUFQMw1DNmjX19NNPq1u3bqpcubJj3X//+19NnDhRmzdv1owZM/TCCy/kut+vv/7aEUS8++676ty5syTp6NGjioyM1E8//aTp06dr/PjxBb5NuLMKawwFBARowIABCg8PV7ly5SRdD+EXLVqkadOmaenSpQoMDNSTTz5Z4NuEO6uwxtDNJk+erNTUVHXq1EmbNm0qiNJRzOzbt09Tp06VJE2ZMkW9evWSxWLR2bNnFRUVpf3792vixImaNWtWEVeKvMrv++Fp06Zp586dqlmzpubNm6d69epJkr799ls9//zzmjdvnpo3b66wsLC8FWQAd5klS5YYVqvV6N+/f777iImJMaxWq9GpUyfjypUrBVgdigN3x9CVK1eMgIAAw2q1Gl9//XW29VlZWcbDDz9sWK1WY8mSJe6WiyJ25coVIyMjI8f1s2fPNqxWq9G6dWsjMzMz1/1GREQYVqvVmDFjRrZ1W7duNaxWq9GkSRMjKSkpX3XDPApjDF24cMHIysrKcf2ECRMMq9VqRERE5LlemE9hvQ7daO3atYbVajVef/11Y+bMmW6/10LxFBUVZVitVuPFF1/Mtu748eNGYGCgYbVajbi4uCKoDgUpN++HExMTjcaNGxtWq9WIiYnJtv7dd981rFar0bNnzzzfP5NpAi4sWLBAkjR48GD5+PgUcTUobjIyMmT831l1tWvXzrbeYrGoVq1akq5/u4nizcfH55ZzRTz44IOSpIsXL+r333/PVZ/x8fE6ePCgpOuH59+sbdu2qlOnjjIyMvTtt9/mo2qYSWGMIV9f31ue0mHv8/jx43moFGZVGGPoRpcuXdIbb7yh6tWr6/nnn89vmSjmrl69qh9++EGS1KtXr2zr/f391aZNG0nShg0b7mhtKBobN26UzWZzeuxv1KdPH0nS/v37HaeC5BZBBXCT9PR0bdmyRdL1DwNHjhzRG2+8ocGDB+uZZ57RjBkzlJCQUMRVwswqVaqk6tWrS5J2796dbX1KSorjQ2hQUNAdrQ13XlpamuNnLy+vXN3m559/lnT9PPNq1aq5bNOiRQtJUmxsrHsFwvTyM4Zy22eZMmUKpD+Ym7tjKDo6WufPn9fEiROZm+seFhcXp4yMDHl6eio4ONhlG/423Vvs71fsj/vNqlWrppo1azq1zS2CCuAm9pn1JWnnzp3q0aOHFi9erC1btmjTpk364IMPFB4erjVr1hRxpTCzMWPGyGKx6J///Kc+//xzJSYmKjU1VXv27FFUVJTOnz+viIiIHF/YcfdYu3atJCkwMDDXR2jFx8dLcn1Ejp19Hd+I3/3yM4Zy2yevQfcGd8ZQTEyMvvjiC4WFhalLly6FUR6KCfvfGz8/vxyP4OFv072lMN+vMJkmcJPExETHz/ZJNCdMmKDAwED9+uuveuedd7R+/XqNHz9e9erVc5pkE7CLiIhQuXLlNHv2bMfM+3ZVq1bV5MmTHYfD4e61b98+/fvf/5YkRUZG5vp2ly5dkiRVqFAhxzb2dZcvX3ajQphdfsfQrXzzzTfatGmTLBaLhg4dWiB9wrzcGUNpaWmaNGmSvL29NWnSpMIoD8VIXv422dvi7laY71c4ogK4ydWrVx0/e3l5ad68eQoODpanp6fq1Kmj6dOnq2HDhrLZbJozZ04RVgqzO3HihJKSkhyXJw0ICFCZMmWUmJioFStW6PDhw0VdIgrR+fPnNWrUKF27dk0PP/ywunXrluvbpqenS9Itzzm3X3XoxkO6cXdxZwzl5OjRo44rxTz99NNq3ry5233CvNwdQzNnztTJkyf117/+Vffff38hVYniIi9/m+xtcXcrzPcrBBXATUqXLu34uWfPntkSwhIlSjiuVf7jjz8qKyvrTpaHYuLVV1/Vm2++qYoVK2rdunXauHGjVq1apW3btmnIkCGKjY1V3759me/kLnXlyhUNGzZMZ86cUePGjRUdHZ2n29tfh+ynobmSkZEhqeDmLIC5uDuGXPn11181dOhQXblyRQ899FC+rmuP4sPdMXTgwAEtWrRIjRo10oABAwqpShQnefnbdOP7ady9CvP9CkEFcJMbg4n69eu7bGO/PvDVq1d18eLFO1EWipGDBw/qs88+k4eHh2bMmKG6des61nl5eenFF19U27ZtlZycrA8//LAIK0VhuHr1qoYOHaoDBw7oD3/4gz7++OM8nxNevnx5Sbc+dNa+zt4Wd4+CGEM3S0xM1MCBA3XmzBm1bt1as2bNuuU3YCjeCmIMvfzyy8rKytKUKVNUsmTJQqoUxUluTuvIzakAuHsU5vsV5qgAbmIPIaScD2O6MSXmiArcbOfOnTIMQ3Xq1FGNGjVctmnfvr1iYmK0b9++O1wdClNqaqqGDx+un3/+Wf7+/lqwYIEqVqyY537s4daJEydybGO/zJe/v3++aoU5FdQYulFSUpKefvppxcfHKyQkRHPmzOHbzrtYQY2hAwcOqGTJknrmmWeyrUtJSZF0/cpW7du3lyQtX76c00Pucva/N2fOnJHNZnP5Ppm/TfcWf39/7dq1q1Der3BEBXCTatWqOT5cnjp1ymUb+/LSpUvL19f3TpWGYuLGeU5ux344HIq/9PR0RUVF6aefflKNGjW0cOFCVa1aNV99NW3aVJJ0+vRpnT171mWbnTt3SpKaNWuWr/uA+RTkGLK7ePGiBg0apKNHj6px48aaN28el5e8ixX0GMrMzNT58+ez/bMHFTabzbEsMzOzoDYDJtWwYUN5eHgoIyNDe/bscdmGv033FvvjvGvXLpfrz549q9OnTzu1zS2CCsCFrl27SpJWr16ta9euZVu/fPlySVKrVq1UqhQHJsHZjd+G5zQHxZYtW5zaoniz2WwaNWqUYmJiVK1aNS1atMitbxbr1q0rq9UqSVq6dGm29TExMTpx4oQ8PDzUuXPnfN8PzKOgx5AkJScna/DgwTp06JCsVqs+/vhjlStXroAqhtkU9Bg6dOhQjv9GjhwpSWrdurVjWc2aNQtqU2BSPj4+6tChgyRp2bJl2dbHx8dr27ZtkqTw8PA7WhuKRufOneXh4eH02N/IfsWhRo0aqU6dOnnqm6AC96y+ffsqLCxMCxcuzLZuyJAhKleunE6fPq0pU6Y4ZrQ1DEOLFy92XNatoC4Vh+IppzHUvn17Va5cWTabTX/961+drhudlpamf/7zn4qJiZEkPfbYY3eyZBSCzMxMjRkzRt99952qVq2qRYsWqVatWrm6bVhYmMLCwrRhw4Zs6+wfBObNm6eNGzc6lh87dsxxydsnn3xSlSpVKoCtQFEqjDGUmpqqyMhI7d+/X/Xq1dPChQvdPoUE5lVYr0PAzUaMGCGLxaKVK1dq6dKlMgxDknTu3DmNHj1aWVlZ6tKliwIDA4u4UtwJVapUUe/evSVdn9fm2LFjjnUbN27URx99JEl69tln89w3XwWj2Pv111/Vo0cPx+/2Q+l37dql0NBQx/KhQ4dq2LBhjt/Pnj2rhIQEXblyJVuflSpV0syZMxUVFaWlS5dq3bp18vf312+//abExERZLBa98MILTv2j+CroMeTt7a233npLzz77rPbu3atHH31Ufn5+Klu2rE6ePKnU1FRJUr9+/dSlS5dC3DLcCevXr9eXX34p6foluF566aUc206cOFGNGjVy/G4/4sZ+GPWNHnnkET399NNatGiRoqKiVLt2bXl7e+vw4cPKzMxUixYtNGbMmALeGhSFwhhDixcvdhyCLf3/4MuVmTNnun2KCYpWYb0OATcLDg7W+PHjFR0drUmTJmn27NmqWLGijhw5ooyMDNWtW1evvfZaUZeJfMjv++EXXnhB+/fv1+7du9W9e3f94Q9/UEpKimNuisGDB+fr/S5BBYq9zMxMl1feuHbtmtPyvF67t127dlq5cqU+/PBDbd26VQcPHpSPj4/CwsI0aNAgtW7d2s3KYRaFMYbatWunVatWaeHChdq6davOnDmjs2fPytfXV+3atVOvXr3UsWNH94tHkbtxnpGEhIRbXnLWVTB6Ky+99JJCQkL06aefKi4uTufOnVP9+vUVERGhgQMHctWGu0RhjKEb+7zxGy5X7EcNovgqzNch4GYDBw5UQECA5s+frz179igpKUl+fn4KDw9XZGQk8+AUU/l9P+zl5aXFixdr4cKFWr16teLj4+Xh4aHWrVurf//+euSRR/JVj8WwH68DAAAAAABQxJijAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEyDoAIAAAAAAJgGQQUAAAAAADANggoAKAYGDBiggICAoi7D4ZtvvlFAQIB27dpV1KXkW1hYmMLCwoq6jAKzePFidevWTU2bNlVAQIAWLlxY1CUVutOnTysgIEDjx48v6lLuae+8845CQkJ0/vz5oi4FAHCXIKgAUKzYP5gMGTIkxzbbt29XQECAJk2a5HL9lStX9P777+vxxx9Xy5YtFRQUpLCwMI0bN0779++/bQ3/+9//9OKLL+rhhx9WSEiImjRpogcffFDDhw/XZ599puTk5HxvX3Fgs9k0bdo0dejQQc2bNy/qciBp7dq1euONN+Tp6amnnnpKI0eOVLNmzYq6LNwjBg8erBIlSmjmzJlFXQoA4C5RqqgLAIA7ac+ePRoxYoQSExNltVrVo0cPeXl56ejRo1q7dq1WrlypkSNHauTIkdlum5aWpgkTJmj16tUqXbq0QkNDFRYWJk9PTyUmJmrnzp3avHmz3n33XcXExKhEiYLLgv/xj38oNTW1wPpzx8qVKxUfH6/JkycXdSn4P5s2bZIkzZkzR9WqVSvianCvqVChgv7yl79o8eLFGj58uGrUqFHUJQEAijmCCgD3jDNnzmjYsGG6fPmyJk+erL59+zqtP3bsmIYPH65Zs2apYsWK6tevn9P6l156SWvXrlWHDh0UHR2tqlWrZruP7du36x//+IeysrIKNKjw8/MrsL7c9dlnn+n+++9XmzZtiroU/J9z585JEiEFikxERIQWLFigzz//XM8//3xRlwMAKOY49QPAPWP69Om6ePGiIiMjs4UUklSvXj198MEH8vDw0PTp03XlyhXHupiYGK1du1b16tXT+++/7zKkkKTQ0FAtW7ZMpUrlLgfev3+/nnvuOXXs2FFNmjRRmzZt9Pjjj2v27NlO7VzNUREQEHDLf1988YVT+1OnTunll1923FeHDh00fvx4JSQk5KpWSfrll1+0b98+/fGPf5TFYnFaZz/lZtasWdq7d68GDRqkkJAQtWjRQs8++6xOnz7t1P528wsEBARowIABLvdDRkaGpk+fro4dOyo4OFh//vOftXXrVknXT+159dVX1aFDBwUFBal3797as2dPjtt0+fJlTZo0Se3bt1dQUJB69OihNWvWuGxrGIaWL1+uPn36qHnz5mratKn+/Oc/a/ny5dnazpo1SwEBAdq+fbu++OIL9ezZU02bNs22TTnZuHGjBgwYoBYtWig4ONjxQfDatWuONl988YXjPuz7zP7vduxzdFy5ckWvvPKKOnTooGbNmqlfv36OU6DOnj2rsWPHqm3btgoODtbgwYMVHx/vsr+8jC/7Y3v27FmNGTNGoaGhCgkJUWRkpE6dOiVJOnr0qEaMGKHWrVsrJCREzz333C3nQDh8+LAiIyPVsmVLhYSEaPDgwdq3b5/LtsnJyZo5c6a6deum4OBgtWzZUkOGDNGOHTuytbWPufT0dL3zzjvq0qWLGjdurFmzZt1uFys1NVX//Oc/9dBDDykoKEjdu3fXsmXLnJ4rBbEfz58/r3Hjxik0NFTBwcHq1auXY0y4s+3nzp3T66+/rj/+8Y+Otl27dtWkSZOcXh8lqVGjRqpTp45WrFhx2/0CAMDtcEQFgHtCSkqKNmzYoNKlS99yfos//OEPevjhh7Vu3Tpt2LBBf/nLXyTJ8UF08ODB8vLyuuV95TakiIuLU58+fVSyZEl17txZfn5+unz5so4ePaply5YpKirqlrd3dXqKdP2Ih6SkJKc6Y2NjNWTIEKWmpqpjx46qU6eOEhIStHr1an3//fdaunSpatWqdduaY2JiJOmW8x/s3btXH330kUJDQ9WnTx8dOHBA33zzjX755RetWbNGpUuXvu393M7zzz+vX375RWFhYUpLS9Pq1asdc4RMmjRJNptN4eHhunDhgtatW6ehQ4fq22+/Vbly5Zz6ycjI0MCBA5WSkqKIiAilpqZq/fr1GjNmjC5cuOAUKhiGobFjx2rNmjXy9/dX9+7d5enpqS1btujll1/W0aNHNW7cuGy1fvzxx9q+fbs6d+6s9u3bq2TJkrfdvgULFig6Olq+vr7q3r27vL29tXHjRkVHR2vHjh167733ZLFY1LBhQ40cOVIrVqxQQkJCjmMiJxkZGRo0aJDS09PVtWtXJSUlaf369Ro0aJA+++wzDR06VFWrVlVERIROnDihTZs2afjw4Vq3bp3TduRnfF26dEl9+/ZV1apV1bNnT8XHx2vTpk06duyYPvjgA/Xr10+NGzfW448/rn379unLL7/UxYsXtXjx4mzbcerUKfXt21eNGjVS3759debMGW3YsEH9+/fXokWL1LRpU0fbixcvqn///jp8+LCaN2+uPn36KDk5Wd9++62efvppzZgxQ126dMl2H6NGjdLBgwf1wAMPqHz58qpZs+Yt921mZqaGDx+u7du3y2q1qnv37rp06ZKio6PVunVrl7fJz368fPmynnzySfn4+Oixxx5zPIZDhgzRF198IavVmq9tT01NVd++fZWQkKD27durS5custlsOn36tFatWqUhQ4Zkez41a9ZMK1eu1PHjx1W3bt1b7h8AAG7JAIBi5NSpU4bVajW6dOlizJw50+W/cePGGVar1Zg4caLjdtu3bzesVqvRp0+f297H0qVLDavVavz97393LAsLCzOsVqtx8uTJAtuWN99807BarcbXX3+dbd3vv//u9Hv//v0Nq9V62z4//PBDw2q1GlFRUUZmZqZhGIaRkZFhdOrUyQgJCTH279/v1P6nn34yGjZsaAwfPjxXNT/33HOG1Wo14uPjs63btm2bYbVaDavVaqxdu9Zp3QsvvGBYrVZjzZo1jmX2x3LcuHEu78tqtRr9+/d3WmbfD3379jWuXr3qWL527VrDarUaLVu2NJ577jnDZrM51s2dO9ewWq3G/Pnznfrq1KmTYbVajX79+hnp6emO5b/++qsRGhpqNGnSxPjtt98cy+3jYvz48UZGRoZjeXp6ujF8+HDDarUae/fudSyfOXOmYbVajWbNmhkHDx50uY2unDhxwmjUqJHRtm1b48yZM07307dvX8NqtRorVqxwuV/ywr79Oe2vli1bGlOnTjWysrIc61555RXDarUaX375pWNZfsaXfZxMnTrVabm9/5YtWxoLFy50LM/KyjKGDRtmWK1WY9++fY7l9jFktVqNt956y6mv77//3rBarUb37t2dlo8ePdqwWq3GsmXLnJafP3/eeOihh4w2bdoYaWlpjuX2ffvYY48ZFy5ccLkvXVm2bJlhtVqNoUOHGteuXXMsP3z4sBEUFGRYrVZj5syZjuXu7MfJkyc7nu833veNr4F53fZvv/3WsFqtxhtvvJFt25KTk52eM3aLFi0yrFarsXz58tvtHgAAbolTPwAUSydPntR7773n8p+rQ4/th4zff//9t+27evXqkqTExMRst7/vvvuytf/mm280a9Ysp39xcXG53hZXR2hUrFgx17e3++qrrzR9+nQ1btxYb731lmOOjM2bNyshIUFDhgxRo0aNnG7TsmVLde7cWd99912urlZy9uxZSVLlypVzbNOqVSs9+uijTssef/xxSdePtigIf/vb3+Tt7e34PTw8XB4eHrp8+bLGjRvndFRL9+7dJUkHDx7MsS9PT0/H79WrV9dTTz2ljIwMrV271rH8k08+kbe3t1555RV5eHg4lnt6eupvf/ubJDm1t+vVq1eeLi27evVqXbt2TYMGDXIar56enho7dqwkFejh9Tntr2vXrun55593OsXH1b7M7/jy9vbONpeBvX9fX1899dRTjuUWi8Uxplw9juXLl9czzzzjtOyBBx5Q27ZtHacrSdLvv/+u9evXq02bNo6jpewqV66sIUOG6Pfff3ecRnSjUaNGydfXN9vynKxatUrS9fF149EnDRo0UI8ePbK1d2c/jh071mlOnJ49e6pUqVJOp77kd9tdvT6VLVvW6TljV6VKFUnSb7/9lm0dAAB5wakfAIqlDh066OOPP3a5bvv27U4fcgrbN998k+2DY40aNdSwYcNb3q5r165atGiRRo4cqa5du6p9+/Zq1apVviZE3Lt3r1588UXdd999mj17ttOH+J9//lmSdPz4cZfnxCcmJiorK0vHjx9XUFDQLe/nwoULKlmypHx8fHJs07hx42zL7OHP5cuXc7M5t3Xzvi1RooQqVaqktLS0bBOP2ucTsU84eaNSpUopJCQk2/KWLVtKkg4cOCDp+mHwv/zyi+677z7NmzcvW3v7vBHHjh3Lti44ODg3m+RgD7lCQ0OzrQsJCVHp0qVzDF3yqkKFCjnuL39/f5UpU8bluhv3ZX7H1636DwgIyDYHij0kdPU4NmzYUGXLls22vGXLloqJiVFcXJyaNGmivXv3KjMzUxkZGS5rtc+/cezYMXXq1MlpXV4fx0OHDsnb2ztb6CBJzZs319KlS52WubMfb972UqVKqXLlyk7Pt7xue6tWrVS1alXNnTtXBw8eVMeOHdW6dWvVr18/22NjV6FCBUnXXycAAHAHQQWAe4L9m75ff/31tm3t3wbeOGFm5cqVlZCQoHPnzmU7Rzw6OlrR0dGSpLlz5+rtt9/OVU1NmzbVkiVLNGfOHK1Zs8Yx+WVQUJDGjh2b66tq/Prrr4qKipLFYnF5ecpLly5Juv5N/a3k5vKnXl5eyszMlM1mczqq4EauQgz7N8pZWVm3vY/ccHUfpUqVynG5JKdJKO0qVqzo8uos9iNG7N9eX758WYZh6OzZs3rvvfdyrCslJSXHvnLLfp+ubmexWFSlShXHkS3uutX+utXjeOO+zO/4ulX/ub1vO/vz+2b2fWif+NFe665du7Rr165c13qr+8hJcnKyI6DLqa4bFeR+lK4/jjc+3/K67eXKldOyZcs0c+ZMbdq0Sd99952k60elDRs2LNtVkaTrl3CWlC2AAgAgrwgqANwTmjRpIg8PD+3fv19XrlzJNgncjewTRt74TXtISIgSEhK0bdu2XE06mVstW7bURx99pLS0NMXGxmrTpk369NNPNXz4cK1Zs+a295WcnKzhw4crKSlJ7733nstvb+0fZObMmZPtW+K8qlSpkqTrH3ry+sHtZvaAwNUHz5uvKFBYLly44PJSsklJSZL+/76zf2PduHHjbFdTuZ2cvn3Oif0+k5KSVKNGDad1hmHo/Pnztzyi5U4ryPGVXzldDcT+ONqf7/ZaBw8e7HLi01vJz+OY05EF9rpubi8V3n7Mz7b7+fkpOjpaWVlZOnTokH788UctWbJEU6ZMUYUKFRyn6tjZwxD76wQAAPnFHBUA7gne3t565JFHlJ6ervnz5+fY7ujRo/r6669VtmxZPfLII47lTzzxhKTrV2NIT08v8Pq8vLwUGhqq8ePHa/jw4UpLS9OWLVtueZvMzEyNHj1ahw4d0osvvqjOnTu7bGc/ZN1+aLk77FcQOH78uNt9lS9fXpJcHh1gP+WisF27dk27d+/Ottx+qUZ78OPj46P69evr2LFjBXb6Sk7sp7W4urxkbGys0tPTFRgYWKg15EVBjq/8iouL09WrV7Mttz+O9n0aFBQki8Xi8jEvaAEBAUpJSXE5X42rIxoKez+6s+0lSpRQw4YNNWzYME2fPl3S9cvn3sz+unDjlUYAAMgPggoA94zRo0erQoUK+vDDD/X5559nWx8fH68RI0bIZrNpzJgxjg/SktS2bVt169ZNR48e1bPPPus00eaN8nIkwO7du12GHvZvW293Gc+pU6fqu+++U+/evTVo0KAc23Xp0kV+fn5asGCBfvrpp2zrbTab4wPd7bRq1UrS9Q/M7vLx8VHdunW1a9cunThxwrE8OTnZ8WHoTnjnnXeUkZHh+P23337T4sWL5enpqW7dujmWDxgwQKmpqZowYYLLUzxOnTql06dPu13Pn/70J5UqVUoLFy50CnEyMjL01ltvSbo+WaJZFOT4yq/Lly9rzpw5Tst++OEHxcTEyGq1qkmTJpKun87VtWtX7d69Wx999JEMw8jWV2xsbK5Og7qdiIgISdK7777rdArG0aNH9d///jdb+8Lej3nd9sOHD7s8UsW+zNXrU2xsbI7zvgAAkBec+gHgnlGjRg3NnTtXI0aM0IQJE7RkyRK1bt1aZcqU0dGjR/X999/r2rVrGjVqlMvzr6dOnSqLxaI1a9aoc+fOCg0NVf369eXh4aHz589r7969Onz4sCpWrKh69erdtp558+Zp+/btatWqlWrWrClPT08dOHBAMTExqlWrlh5++OEcb7tnzx598skn8vLyUsWKFV1OjtelSxc1bNhQnp6emjFjhoYNG6b+/furTZs2slqtslgsOnPmjHbs2CFfX19t2LDhtjW3bdtWZcuW1datWzV06NDbtr+dwYMHa+LEierdu7fCw8OVlZWlH3744baTehaUqlWrKiUlRREREerUqZNSU1O1fv16Xbx4URMmTHCa76NPnz6KjY3VihUrtGvXLrVr10733XefkpKSdOzYMcXGxurtt99WzZo13aqpdu3aGjt2rKKjoxUREaGuXbuqTJky2rRpk44fP67OnTvrsccec3fTC0xBjq/8atmypT777DPFxsaqWbNmSkhI0IYNG+Tl5aXXX3/dqe0rr7yi48ePa9q0aVq5cqVCQkJUrlw5/fbbb9q3b5/i4+P1448/uj3Pwp///GetXLlSmzdvVo8ePfTggw/q0qVLWrt2rdq1a6dNmzY5nU5yJ/ZjXrZ9y5YtmjZtmpo3by5/f3/5+vrq1KlT2rhxo0qXLq0nn3zSqe+rV68qNjZW7dq1c5rMFwCA/CCoAHBPadasmdavX68lS5Zo48aNWrFihdLT01W1alV169ZNAwYMcHz7ejMvLy+9/fbb6tWrl/7zn/9o165d+t///qfMzExVrFhRgYGBevLJJxUREZGrOQT69u2rcuXKKTY2Vv/73/9kGIb8/Pz0zDPP6Omnn75lH/ZvPdPS0rJ9k2x345VHgoODtWrVKn300Uf6/vvvtWvXLnl6eqpatWrq0qWL05EDt1K2bFlFRERo2bJlOnfunMvLteZFr169ZLPZtHjxYi1fvlxVq1ZVz549FRUVpS+//NKtvnPD09NTCxYs0Ntvv61Vq1bp8uXLqlevniZOnJjt/HuLxaLo6Gg9+OCD+vzzz7V582alpKSoUqVKqlOnjsaNG6e2bdsWSF2DBg1S7dq1tXDhQq1atUo2m03+/v4aP368BgwYkOf5EgpbQY2v/KpVq5YmT56sadOm6V//+peysrLUunVrjRkzJtvz2dfXV//+97/1ySefaN26dVq9erWysrJUpUoVBQYGKioqKl+XB75ZyZIlNXfuXM2aNUtr1qzRokWLVLt2bY0fP14VKlTQpk2bsj3HC3s/5mXbH3jgASUkJGjHjh366quvlJKSomrVqunRRx/V0KFD1aBBA6e+v/rqK6Wlpal3795u1QgAgCRZDFfH/gEAkINjx47pT3/6k0aOHKmoqKiiLgcodt555x3NmTNHc+fO1UMPPVTU5RSIJ598UklJSVq3bp3jCi0AAOQXc1QAAPKkXr16euKJJ7Rw4ULHpTQBZHfu3Llsy44cOaIlS5aofPnyCg0NLYKqCl5MTIx27typsWPHElIAAAoEp34AAPLsueeeU5UqVZSQkKCAgICiLgcwpcmTJyshIUHBwcEqX768Y46Ha9eu6Y033pCXl1dRl1ggrly5onHjxt1yXh0AAPKCUz8AAAAKwapVq/Tvf/9bR48eVXJysry9vRUUFKRBgwbpgQceKOryAAAwLYIKAAAAAABgGsxRAQAAAAAATIOgAgAAAAAAmAZBBQAAAAAAMA2CCgAAAAAAYBoEFQAAAAAAwDQIKgAAAAAAgGkQVAAAAAAAANMgqAAAAAAAAKZBUAEAAAAAAEzj/wHhpjbYOz6vOgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "g = sns.jointplot(data=level_df, \n", + " kind=\"scatter\",\n", + " x='nr_members', \n", + " y='CompletenessScore', \n", + " marginal_kws=dict(bins=20, element=\"step\"), \n", + " marginal_ticks=True,\n", + " height=11)\n", + "g.fig.suptitle(f\"Distribution of HOG sizes and CompletenessScores for HOGs at {level}\", fontsize=16)\n", + "g.ax_joint.set_xlabel(\"HOG size (number of member genes)\", fontsize=14) \n", + "g.ax_joint.set_ylabel(\"Completeness Score of HOG\", fontsize=14)\n", + "g.fig.tight_layout()\n", + "g.fig.subplots_adjust(top=0.95) " + ] + }, + { + "cell_type": "markdown", + "id": "3ec445a2", + "metadata": { + "papermill": { + "duration": 0.008676, + "end_time": "2024-10-18T00:52:51.478889", + "exception": false, + "start_time": "2024-10-18T00:52:51.470213", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "# Get duplications/losses/gains/retained with PyHAM" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "505ff59a", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:51.497795Z", + "iopub.status.busy": "2024-10-18T00:52:51.497479Z", + "iopub.status.idle": "2024-10-18T00:52:51.772886Z", + "shell.execute_reply": "2024-10-18T00:52:51.772214Z" + }, + "papermill": { + "duration": 0.286381, + "end_time": "2024-10-18T00:52:51.774127", + "exception": false, + "start_time": "2024-10-18T00:52:51.487746", + "status": "completed" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "import pyham \n", + "import logging\n", + "logging.basicConfig(level=logging.INFO, format=\"%(asctime)s %(name)-12s %(levelname)-8s %(message)s\")" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "f4ba82f4", + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-18T00:52:51.793032Z", + "iopub.status.busy": "2024-10-18T00:52:51.792786Z", + "iopub.status.idle": "2024-10-18T00:52:51.801791Z", + "shell.execute_reply": "2024-10-18T00:52:51.801186Z" + }, + "papermill": { + "duration": 0.019482, + "end_time": "2024-10-18T00:52:51.802820", + "exception": false, + "start_time": "2024-10-18T00:52:51.783338", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-18 02:52:51 INFO Build taxonomy: completed.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-18 02:52:51 INFO Species MYCGE created. \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-18 02:52:51 INFO Species CHLTR created. \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-18 02:52:51 INFO Species AQUAE created. \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-18 02:52:51 INFO Parse Orthoxml: 12 top level hogs and 28 extant genes extract.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-18 02:52:51 INFO Set up Ham analysis: ready to go with 12 hogs founded within 3 species.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ham analysis done\n" + ] + } + ], + "source": [ + "nwk_path= os.path.join(output_folder, \"species_tree_checked.nwk\") # species tree should be pruned (no extra leaves)\n", + "orthoxml_path=os.path.join(output_folder, \"FastOMA_HOGs.orthoxml\")\n", + "ham_analysis = pyham.Ham(nwk_path, orthoxml_path, tree_format=\"newick\", use_internal_name=True)\n", + "print(\"Ham analysis done\") # for a big orthoxml file it can take ~30mins" + ] + }, + { + "cell_type": "markdown", + "id": "0931c6a7", + "metadata": { + "collapsed": false, + "papermill": { + "duration": 0.008997, + "end_time": "2024-10-18T00:52:51.820955", + "exception": false, + "start_time": "2024-10-18T00:52:51.811958", + "status": "completed" + }, + "tags": [] + }, + "source": [ + "## Generate Phylostratigraphy plots\n", + "\n", + "create tree profile, classify all genomes by extant or ancestral, and get % of dup, lost, retained, and gained" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "52eca580", + "metadata": { + "collapsed": false, + "execution": { + "iopub.execute_input": "2024-10-18T00:52:51.840261Z", + "iopub.status.busy": "2024-10-18T00:52:51.839802Z", + "iopub.status.idle": "2024-10-18T00:52:51.846811Z", + "shell.execute_reply": "2024-10-18T00:52:51.846253Z" + }, + "papermill": { + "duration": 0.017714, + "end_time": "2024-10-18T00:52:51.847871", + "exception": false, + "start_time": "2024-10-18T00:52:51.830157", + "status": "completed" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "phylostratigraphy = os.path.join(output_folder, \"phylostratigraphy.html\")\n", + "treeprofile = ham_analysis.create_tree_profile(outfile=phylostratigraphy)\n", + "\n", + "from IPython.display import IFrame\n", + "IFrame(os.path.basename(phylostratigraphy), width=800, height=600)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + }, + "papermill": { + "default_parameters": {}, + "duration": 26.402991, + "end_time": "2024-10-18T00:52:52.374380", + "environment_variables": {}, + "exception": null, + "input_path": "fastoma_notebook_stat.ipynb", + "output_path": "report.ipynb", + "parameters": { + "output_folder": "./", + "proteome_folder": "proteome" + }, + "start_time": "2024-10-18T00:52:25.971389", + "version": "2.5.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/testdata/expected_output/species_tree_checked.nwk b/testdata/expected_output/species_tree_checked.nwk new file mode 100644 index 0000000..2e0fe6d --- /dev/null +++ b/testdata/expected_output/species_tree_checked.nwk @@ -0,0 +1 @@ +((AQUAE:1,CHLTR:1)inter1:1,MYCGE:1)inter2:0; \ No newline at end of file diff --git a/testdata/expected_output/stats/report_2024-10-18_02-43-20.html b/testdata/expected_output/stats/report_2024-10-18_02-43-20.html new file mode 100644 index 0000000..19ff875 --- /dev/null +++ b/testdata/expected_output/stats/report_2024-10-18_02-43-20.html @@ -0,0 +1,1038 @@ + + + + + + + + + + + [voluminous_kare] Nextflow Workflow Report + + + + + + + +
+
+ +

Nextflow workflow report

+

[voluminous_kare]

+ + +
+ Workflow execution completed successfully! +
+ + +
+
Run times
+
+ 18-Oct-2024 02:43:21 - 18-Oct-2024 02:53:30 + (duration: 10m 9s) +
+ +
+
+
  10 succeeded  
+
  0 cached  
+
  0 ignored  
+
  0 failed  
+
+
+ +
Nextflow command
+
nextflow run ../FastOMA.nf --input_folder in_folder/ --output_folder output -with-report
+
+ +
+
CPU-Hours
+
0.1
+ +
Launch directory
+
/work/FAC/FBM/DBC/cdessim2/default/smajidi1/fast/FastOMA-main/testdata
+ +
Work directory
+
/work/FAC/FBM/DBC/cdessim2/default/smajidi1/fast/FastOMA-main/testdata/work
+ +
Project directory
+
/work/FAC/FBM/DBC/cdessim2/default/smajidi1/fast/FastOMA-main
+ + +
Script name
+
FastOMA.nf
+ + + +
Script ID
+
aab11f6e00f5e3986c9fe72626cf8004
+ + +
Workflow session
+
f8437cce-adcf-4fb5-8a1f-1fbe7dd9c9e5
+ + + +
Workflow profile
+
standard
+ + + +
Nextflow version
+
version 23.04.3, build 5875 (11-08-2023 18:37 UTC)
+
+
+
+ +
+

Resource Usage

+

These plots give an overview of the distribution of resource usage for each process.

+ +

CPU

+ +
+
+
+
+
+
+
+ +
+ +

Memory

+ +
+
+
+
+
+
+
+
+
+
+
+ +

Job Duration

+ +
+
+
+
+
+
+
+
+ +

I/O

+ +
+
+
+
+
+
+
+
+
+ +
+
+

Tasks

+

This table shows information about each task in the workflow. Use the search box on the right + to filter rows for specific values. Clicking headers will sort the table by that value and + scrolling side to side will reveal more columns.

+
+ + +
+
+
+
+
+ +
+ (tasks table omitted because the dataset is too big) +
+
+ +
+
+ Generated by Nextflow, version 23.04.3 +
+
+ + + + +